American

 Institute of Physics Handbook
THE HARRIS COLLEGE

 CORPORATION STREET, PRESTON.All Books must be Returned to the College Library not later than the last date shown below.

McGRAW-HILL HANDBOOKS

Abbott and Smith - National Electrical Code Iradbrook, 8th ed. American Institute of Physics

American Institute of Physics Handbook
American Society of Mechanical Engineers
ASME Handbook: Engineering Tables
ASME Handbook: Metals Engineering-Desn
ASME Handbook: Metals Properties
American Society of Tool Engineers - Die Dgn
American Society of Tool Engineers. Tool Egin
Handbook
Beeman - Industrial Power Systems Handbodk
Berry, Bollay, and Beers. Handbook of Neteole gy haommathet
Brady - Materials Handbook, 8th ed.
Compressed Air and Gas Institute - Compresd A ir Handbook, 2d ed. Crocker - Piping Handbook, 4th ed.
Croft • American Electricians' Handbook, 7thed
Davis - Handbook of Applied Hydraulics, 2d e.
Fink - Television Engineering Handbook
Henney - Radio Engineering Handbook, 4th ec.
Hunter - Handbook of Semiconductor Electroics
Johnson and Auth - Fuels and Combustion Handbook
Juran • Quality-control Handbook
Ketchum • Structural Engineers' Handbook, 3ded.
King • Handbook of Hydraulies, 4th ed.
Knowlton • Standard Handbook for Electrical Engireers, 8th ed.
Kurtz • The Lineman's Handbook, 3d ed.
Labberton and Marks • Marine Engineers' Handbock
Laughner and Hargan - Handbook of Fa tening enl Joining of Metal Parts
Le Grand - The New American Machinist's Handbck
Liddell. Handbook of Nonferrous Metallurky, 2 pls. 2d ed.
Magill, Holden, and Ackley - Air Pollutioy Haftook
Manas . National Plumbing Code Handbook
Marks - Mechanical Engineers' Handbook, 5
Markus and Zeluff • Handbook of Industr
Markus and Zeluff • Handbook of Industri
Maynard - Industrial Engineering Handbook
Morrow - Maintenance Engineering Handbo
O'Rourke - General Engineering Handbook,
Pacific Coast Gas Association - Gas Engine
ed
Catrol Circuits
Eleronic Control Circuits
le
irs Tandbook

Perry . Chemical Business Handbook
Perry . Chemical Engineers' Handbook, 3d ed
Staniar - Plant Engineering Handbook
Terman - Radio Engineers' Handbook
Urquhart • Civil Engineering Handbook, 3d ed

American Institute

 of Physics Handbook

Section Editors

Albert A. Bennett, Ph.D. Professor of Mathematics Brown University
Bruce H. Billings, Ph.D. Vice President Baird-Atomic, Inc.
D. F. Bleil, Ph.D.

Chief, Physics Research
Department
U.S. Naval Ordnance Laboratory, White Oak, Md.
G. H. Dieke, Ph.D.

Chairman, Department of Physics
The Johns Hopkins University

Floyd A. Firestone, Ph.D. Editor, The Journal of the Acoustical Society of America
F. N. D. Kurie, Ph.D.

Technical Director
U.S. Navy Electronics Laboratory
R. Bruce Lindsay, Ph.D.

Dean of the Graduate School
Brown University
Mark W. Zemansky, Ph.D.
Professor of Physics
The City College of New York

Coordinating Editor

Dwight E. Gray, Ph.D.
 Program Director for Government Research Information
 National Science Foundation

McGraw-Hill Book Company, Inc.
New ${ }_{A}$ Vork Toronto London

AMERICAN INSTITUTE OF PHYSICS HANDBOOK

Copyright © 1957 by the McGraw-Hill Book Company, Inc. Printed in the United States of America. All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

Library of Congress catalog card number: 56-7553
II

Contributors

F. Ajzenberg-Selove, Ph.D., Haverford College
W. P. Allis, D.Sc., Massachusetts Institute of Technology
D. J. Angelakos, Ph.D., University of California
Stephen J. Angello, Ph.D., Westinghouse Electric Corporation
Frank. Asaro, Ph.D., University of California
Fred D. Ayres, Ph.D., Reed College
S. S. Ballard, Ph.D., Scripps Institution of Oceanography
Albert A. Bennett, Ph.D., Brown University
Leo L. Beranek, Sc.D., Bolt Beranek and Newman, Inc.
Bruce H. Billings, Ph.D., Baird-Atomic, Inc.
D. F. Bleil, Ph.D., U.S. Naval Ordnance Laboratory, White Oak, Md.
R. M. Bozorth, Ph.D., Bell Telephone Laboratories, Inc.
L. M. Branscomb, Ph.D., The National Bureau of Standards
P. W. Bridgman, Ph.D., Sc.D., Harvard University
W. Brouwer, M.S., Baird-Atomic, Inc.
S. C. Brown, Ph.D., Massachusetts Institute of Technology
R. M. Burley, A.B., Baird-Atomic, Inc.

Robert O'B. Carpenter, Ph.D., BairdAtomic, Inc.
J. M. Cork, Ph.D., University of Michigan
R. J. Corruccini, Ph.D., NBS-AEC Cryogenic Engineering Laboratory
H. M. Crosswhite, Ph.D., The Johns Hopkins University
Evan A. Davis, Westinghouse Electric Corporation
Thomas J. Derby, B.A.E., Pratt and Whitney Aircraft Corporation
G. H. Dieke, Ph.D., The Johns Hopkins University
T. B. Douglas, Ph.D., The National Bureau of Standards
D. Edelson, Ph.D., Bell Telephone Laboratories, Inc.
Phillip Eisenberg, B.S., C.E., Office of Naval Research
R. D. Fay, S.B., Massachusetts Institute of Technology
K. A. Fegley, Ph.D., University of Pennsylvania
Floyd A. Firestone, Ph.D., The Journal of the Acoustical Society of America
W. E. Forsythe, Ph.D., The Smithsonian Institution
Eli H. Freedman, Ph.D., University of Buffalo
R. J. Friauf, Ph.D., University of Kansas

Abraham S. Friedman, Ph.D., U.S. Atomic Energy Commission
M. M. Fulk, NBS-AEC Cryogenic Engineering Laboratory
Dudley D. Fuller, M.S., Columbia University
G. T. Furukawa, Ph.D., The National Bureau of Standards
Edward F. Greene, Ph.D., Brown University
B. Gutenberg, Ph.D., California Institute of Technology
Cyril M. Harris, Ph.D., Columbia University
F. K. Harris, Ph.D., The National Bureau of Standards
J. A. Harvey, Ph.D., Oak Ridge $N a$ tional Laboratory
George Hass, Ph.D., Engineer Research and Development Laboratories, Ft. Belvoir
W. A. Heiskanen, Ph.D., The Ohio State University and the Finnish Geodetic Institute
G. Herzberg, Dr.Ing., F.R.S., National Research Council of Canada
L. Herzberg, Ph.D., National Research Council of Canada
Peter Hidnert, Ph.D., The National Bureau of Standards
Joseph Hilsenrath, B.S., The National Bureau of Standards
Ralph P. Hudson, Ph.D., The National Bureau of Standards
D. J. Hughes, Ph.D., Brookhaven National Laboratory
Frederick V. Hunt, Ph.D., Harvard University
H. S. Isbin, Sc.D., University of Minnesota

Walter John, Ph.D., University of Illinois
J. Kestin, Ph.D., Brown University

David G. Knapp, B.S., U.S. Coast and Geodetic Survey
E. H. Krause, Ph.D., Aeronutronic Systems, Inc.
H. S. Krider, The National Bureau of Standards
Franz N. D. Kurie, Ph.D., U.S. Navy Electronics Laboratory
T. Lauritsen, Ph.D., California Institute of Technology
L. Leventhal, M. S., Tracerlab, Inc.

Robert Lindsay, Ph.D., Trinity College
R. Bruce Lindsay, Ph.D., Brown University
R. J. List, M. S., U.S. Weather Bureau
L. G. Longsworth, Ph.D., Rockefeller Institute for Medical Research
D. L. MacAdam, Ph.D., Eastman Kodak Corporation
K. A. McCarthy, M.S., Tufts University
W. McMahon, B.S., Bell Telephone Laboratories, Inc.
W. P. Mason, Ph.D., Bell Telephone Laboratories, Inc.
Frank Massa, M.S., Massa Laboratories, Inc.
W. J. Merz, Ph.D., RCA Laboratories

David Mintzer, Ph.D., Yale University
R. B. Montgomery, Sc.D., Chesapeake Bay Institute, The Johns Hopkins University
Karl Z. Morgan, Ph.D., Oak Ridge National Laboratory
S. O. Morgan, Ph. D., Bell Telephone Laboratories, Inc.
R. W. Morse, Ph.D., Brown University

Edwin B. Newman, Ph.D., Harvard University
Wesley L. Nyborg, Ph.D., Brown University

Harry F. Olson, Ph.D., RCA Laboratories
D. H. Perkel, A.B., Aerojet-General Nucleonics
I. Perlman, Ph.D., University of California

Wladimir Philippoff, Franklin Institute
B. B. Phillips, M.S., U.S. Weather Bureau

Robert L. Powell, M.A., NBS-AEC Cyrogenic Engineering Laroratory
M. M. Reynolds, M.S., Linde Air Products Co.
R. C. Roberts, Ph.D., U.S. Naval Ordnance Laboratory, White Oak, Md.
Arthur F. Scott, Ph.D., Reed College
Maurice M. Shapiro, Ph.D., U.S. Naval Research Laboratory
W. A. Shurcliff, Ph.D., Polaroid Corporation
S. Silver, Ph.D., University of California
L. Slack, Ph.D., George Washington University
Thor L. Smith, Ph.D., Jet Propulsion Laboratory, California Institute of Technology
W. R. Smythe, Ph.D., California Institute of Technology
R. L. Sproull, Ph.D., Cornell University
D. E. Stone, A.B., Naval Research Laboratory
Paul Tamarkin, Ph.D., RAND Corporation
H. M. Trent, Ph.D., Naval Research Laboratory
George L. Trigg, Ph.D., Oregon State College
R. G. Van Nostrand, Ph.D., Magnolia Petroleum Company
D. D. Wagman, M. A., The National Bureau of Standards
C. B. West, Ph.D., Polaroid Corporation
C. N. Weygandt, Ph.D., University of Pennsylvania
J. R. Whinnery, Ph.D., University of California
David White, Ph.D., The Ohio State University
R. E. Wilson, Hughes Research and Development Laboratories
E. A. Wood, Ph.D., Bell Telephone Laboratories, Inc.
Robert W. Young, Ph.D., U.S. Navy Electronics Laboratory
T. F. Young, Ph.D., University of Chicago
L. R. Zumwalt, Ph.D., General Dynamics Corporation

Preface

The American Institute of Physics Handbook has been prepared as an important working tool for those employing physical methods in research, application, and teaching. It should prove especially valuable in this period of scientific development, particularly since the impact of wartime research, when the science of physics has expanded into many specialized fields. The many new discoveries and advances have been taken into consideration by the board of editors so as to select and compile the most generally useful data.
This volume represents the first handbook specifically on physics to be published in America. It is also the first such volume to be sponsored by the American Institute of Physics, the organization which acts as the central service agency of the five member societies in physics. Prior to this time, the profession of physics has had to depend on handbooks prepared primarily for other disciplines.

The book has been over four years in the making under the guidance of Dwight E. Gray, coordinating editor. Its publication would not have been possible without his patient direction and the active cooperation of many of the leading physicists in the nation as well as the help and assistance of hundreds of other scientists. The American Institute of Physics owes much to their unselfish spirit.

This handbook will be of primary usefulness to the young scientific investigator and will also have value as a reference work to the senior physicist. It should be of assistance to the individual engaged in applied physics and engineering. The volume has been divided into the logical areas of physics.

We are pleased to add this handbook to the many publications sponsored by the Institute and to invite the suggestions and criticism of physicists so that future editions may be more complete and useful.

Contents

Section
MATHEMATICAL AIDS TO COMPUTATION 1
Editor, Dr. Albert A. Bennett, Brown University
MECHANICS 2
Editor, Dr. R. Bruce Lindsay, Brown University
Fundamental concepts of mechanics. Units and conversion factors. Density of solids. Centers of mass and moments of inertia. Coefficients of friction. Crystallographic data. Elastic constants, hardness, strength, and elastic limits of solids. Mechanical properties of gels and thixotropic substances. Viscosity of solids. Astronomical data. Geodetic data. Seismological and related data. Oceanographic data. Meteorological data. Density and compressibility of liquids. Viscosity of liquids. Tensile strength and surface tension of liquids. Fluid-flow properties of porous media and viscosity of suspension. Cavitation in flowing liquids. Diffusion in liquids. Liquid jets. Density of gases at standard temperature and pressure. Viscosity of gases. Diffusion of gases. Compressible flow of gases. Laminar and turbulent flow of gases. Shock waves.

ACOUSTICS
Editor, Dr. Floyd A. Firestone, The Journal of the Acoustical Society of America

Acoustical definitions. Letter symbols and conversion factors for acoustical quantities. Propagation of sound in fluids. Acoustic
properties of gases. Acoustic properties of liquids. Acoustic properties of solids. Properties of transducer materials. Frequencies of simple vibrators. Radiation of sound. Architectural acoustics. Speech and hearing. Classical electrodynamical analogies. The mobility and classical impedance analogies. Selected references on acoustics.

Abstract

HEAT Editor, Dr. Mark W. Zemansky, The City College of New York Temperature scales, thermocouples, and resistance thermometers. Very low temperature data. Properties of paramagnetic salts. Critical constants. High-pressure effects. Heat capacities. Thermal expansion. Thermal conductivity. Thermodynamic properties of gases. Pressure-volume-temperature relationships of fluids. Virial coefficients. Temperature, pressure, heat, and entropy change of transition, fusion, and vaporization.

Abstract

ELECTRICITY AND MAGNETISM Editor, Dr. D. F. Bleil, U.S. Naval Ordnance Laboratory, White Oak, Md.

Definitions, units, nomenclature, symbols, conversion tables. Formulas. Electrical standards. Properties of dielectrics. Properties of semiconductors. Properties of nonmetallic conductors. Properties of metallic conductors. Magnetic properties of materials. Electrical power practices. Electrochemical information. Electrical and magnetic properties of the earth and stars.

OPTICS
Editor, Dr. Bruce H. Billings, Baird-Atomic, Inc.
Fundamental definitions, standards, and photometric units. Index of refraction. Absorption and transmission. Reflection. Glass, polarizing and interference filters. Colorimetry. Radiometry. Wavelengths for spectrographic calibrations. Magneto- and elec-tro-optics. Specific rotation. Optical constants of metals. Fluorescence and phosphorence. Radiation detection. Velocity of light. Radio astronomy.
ATOMIC AND MOLECULAR PHYSICS 7
Editor, Dr. G. H. Dieke, The Johns Hopkins University

Atomic constants. The periodic system. The electronic structure of atoms. Structure of atomic spectra. Energy-level diagrams of atoms. Persistent lines of the elements. Important atomic spec-
tra. Data on characteristic X-ray spectra. Constants and energy levels of diatomic molecules. Constants of polyatomic molecules. Wave mechanics. Zeeman effect. Motions of electrons and ions in gases.

NUCLEAR PHYSICS

Editor, Dr. F. N. D. Kurie, U.S. Navy Electronics Laboratory Introduction and general constants. Systematics of stable nuclei. Passage of particles through matter. Decay-energy systematics of the heavy elements. Energy levels of the light nuclei. Gamma rays. Artificial radioisotopes and isomers. Neutrons. Particle accelerators. Fission-product chains and yields. Nuclear reactors. Mesons and hyperons. Health physics.

Index

Section 1

MATHEMATICAL AIDS TO GOMPUTATION

ALBERT A. BENNETT
Brown University
and
THOMAS J. DERBY
Pratt and Whitney Aircraft Corporation

To the physicist who is equipped by training and temperament to use them, many mathematical aids of a variety of kinds are available for dealing with mathematical relationships among physical quantities. Such aids include mechanical computing devices, numerical tables of functional values, collections of formulas, syllabi of computational techniques and artifices, and the like. None of these is the outcome of physical theory or of laboratory experimentation but frequently physicists find them very useful.

Among mechanical computing devices are slide rules and desk computers. In widespread use, beside the pocket-size " 7 -inch" slide rule and the portable " 10 -inch" rule, are the larger " $20-\mathrm{inch}$ " (or more properly " $50-\mathrm{cm}$ ") slide rules and plane circular slide rules of various diameters. Rules of comparable quality and value are manufactured by several well-known companies. Various larger devices, suggested by the conventional Mannheim style slide rule, have cylindrical, and even squirrelcage scales, but these are seldom favored by practical experts. Among desk computers, the most widely used in America (in alphabetic order) are the Friden, the Marchant, and the Monroe; each ranges from simple hand-powered devices to electricdriven machines with numerous semiautomatic features. Such computing devices have practically displaced common logarithms for simple multiplication and division. High-speed electronic digital computers, where they are available, also are rendering superfluous many mathematical artifices and tables of special functions.

Numerical tables of the simpler mathematical functions are widely owned. These vary as to tabular interval and numbers of significant digits. Mathematical handbooks often contain much material which, while of service to the number theorist or actuary, may seldom be relevant to work in the physical laboratory. Statistical tables and techniques of sampling are gradually finding increasing use in the calculus of observations for the physical laboratory technologist no less than for the sociologist and practical geneticist. A single mathematical handbook may be adequate for most routine laboratory situations and may occupy all the immediate desk space that the physicist is willing to devote to such aids. Often such a handbook has been acquired
in connection with an undergraduate course in mathematics. To save computing labor many computers prefer (particularly for inverse interpolation) to use tables which give values to more significant figures than are to be retained.

Most American standard mathematical handbooks of tables contain at least the following:

Squares, cubes, square roots, cube roots, reciprocals
Common logarithms
Natural trigonometric functions in degrees and minutes
Common logarithms of the trigonometric functions
Natural logarithms
Exponential and hyperbolic functions
Values of the probability integral
Among the compilations of tables most widely used in this country are the following, most of which are revised and republished from time to time:

Allen, Edward S.: "Six-place Tables," 7th ed., McGraw-Hill Book Company, Inc., New York, 1947, 232 pages:

Squares, cubes, square roots, cube roots, reciprocals, common logarithms; natural trigonometric functions; logarithms of the trigonometric functions; natural logarithms; exponential and hyperbolic functions, probability integral; gamma function; integrals; miscellaneous constants; formulas and conversion tables.

Burington, Richard S.: "Handbook of Mathematical Tables and Formulas," 3d ed., Handbook Publishers Inc., Sandusky, 1949, 269 pages:

Squares, cubes, square roots, cube roots, reciprocals; common logarithms (4- and 5 -place, 7 -place of $1,000-1,200$); natural trigonometric functions (4 - and 5-place); logarithms of trigonometric functions (4 - and 5 -place); natural logarithms (5-place); exponential and hyperbolic functions; probability integral; derivatives; elliptic integrals; gamma function; integrals; logarithms of prime numbers (10-place); miscellaneous constants, formulas, and conversion tables.

Carmichael, Robert D., and Edwin R. Smith: "Mathematical Tables and Formulas," Ginn \& Company, Boston, 1931, 269 pages:

Squares, cubes, square roots, cube roots, reciprocals, common logarithms (4- and 5 -place); natural trigonometric functions (4- and 5-place); logarithms of trigonometric functions (4- and 5-place); natural logarithms (5-place); exponential and hyperbolic functions; integrals; logarithms of prime numbers (10-place); miscellaneous constants, formulas, conversion tables, and reference curves.
Comrie, Leslie J.: "Barlow's Tables of Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of All Integer Numbers up to 10,000 ," 3d ed., E. \& F. N. Spon, Ltd., London, 1935, 208 pages:

Squares, cubes, square roots, cube roots, reciprocals; miscellaneous constants; powers (4th-20th).

Comrie, Leslie J.: "Chambers' Shorter Six-figure Mathematical Tables," W. and R. Chambers, Ltd., Edinburgh and London, 1950, 387 pages:

Squares, cubes, square roots, cube roots, reciprocals, common logarithms; natural trigonometric functions; logarithms of trigonometric functions (5-place); natural logarithms; exponential and hyperbolic functions; derivatives; integrals; inverse functions; miscellaneous constants, formulas, and conversion tables.

Dwight, Herbert B.: "Mathematical Tables," McGraw-Hill Book Company, Inc., New York, 1941, 231 pages:

Common logarithms (4-place); natural trigonometric functions (5-place); loga-
rithms of trigonometric functions (5-place); natural logarithms (4-place); exponential and hyperbolic functions; probability integral; Bernoulli's and Euler's numbers; Bessel functions; elliptic integrals; gamma function; Riemann zeta function; zonal harmonics.

Dwight, Herbert B.: "Tables of Integrals and Other Mathematical Data," rev. ed., The Macmillan Company, New York, 1947, 250 pages:

Common logarithms (4-place); natural trigonometric functions (4-place); natural logarithms (4-place); exponential and hyperbolic functions; probability integral; Bessel functions; derivatives; elliptic integrals; gamma function; integrals; miscellaneous constants, formulas, and conversion tables.

Hedrick, Earle R.: "Logarithmic and Trigonometric Tables" (bound with tables from "The Calculus" by Ellery W. Davis and William C. Brenke), The Macmillan Company, New York, 1938, $142+50$ pages:

Squares, cubes, square roots, cube roots, reciprocals; common logarithms (4- and 5 -place); natural trigonometric functions (4- and 5-place); logarithms of trigonometric functions (5-place); natural logarithms (5-place); exponential and hyperbolic functions; haversines; logarithms of prime numbers (10-place); miscellaneous constants and conversion tables.

Hodgman, Charles D.: "Mathematical Tables" (based on his "Handbook of Chemistry and Physics"), 10th ed., Chemical Rubber Publishing Co., Cleveland, 1954, 406 pages:

Squares, cubes, square roots, cube roots, reciprocals; common logarithms (4-, 5-, and 7-place); natural trigonometric functions (5-place); logarithms of trigonometric functions (5-place); natural logarithms (5-place); exponential and hyperbolic functions; probability integral; derivatives; elliptic integrals; gamma function; haversines; integrals, interest tables; miscellaneous constants, formulas and conversion tables; mathematical symbols and abbreviations.

Hodgman, Charles D.: "Standard Mathematical Tables" (based on his "Handbook of Chemistry and Physics") 10th ed., Chemical Rubber Publishing Co., Cleveland, 1955, 433 pages. Similar to preceding item in content but of larger page size.

Hudson, Ralph G., and Joseph Lipka: "A Manual of Mathematics, John Wiley \& Sons, Inc., New York, Chapman \& Hall, Ltd., London, 1940, 135 pages:

Squares, cubes, square roots, cube roots, reciprocals; common logarithms (4-place); natural trigonometric functions (4-place); logarithms of trigonometric functions (4-place); natural logarithms (4-place); exponential and hyperbolic functions; derivatives; integrals; miscellaneous constants, formulas, and conversion tables.

Huntington, Edward V.: "Handbook of Mathematics" (from "Mechanical Engineers' Handbook," by Lionel S. Marks), 3d ed., McGraw-Hill Book Company, Inc., New York, 1943, 193 pages:

Squares, cubes, square roots, cube roots, reciprocals; common logarithms (4-place); natural trigonometric functions (4-place); logarithms of trigonometric functions (4-place); natural logarithms (4-place); exponential and hyperbolic functions; derivatives; integrals; miscellaneous constants, formulas, and conversion tables.

Jahnke, Eugene, and Fritz Emde: "Tables of Functions with Formulae and Curves," 4th ed., (German and English), Dover Publication., Inc., New York, 1945, 382 pages:

Bessel functions, circular and hyperbolic functions of a complex variable; cubic equations; elliptic integrals; exponential functions; factorial functions; Legendre functions; miscellaneous conversion tables; Planck's radiation function; powers (2nd to 15th); probability integral and related functions; reciprocals and square
roots of complex numbers; Riemann zeta function; sine, cosine, and logarithmic integral; theta functions; transcendental equations; vector addition.

Larsen, Harold D.: "Rinehart Mathematical Tables, Formulas and Curves," Rinehart \& Company, Inc., New York, 1953, 280 pages:

Squares, cubes, square roots, cube roots, reciprocals, common logarithms (4- and 5 -place); natural trigonometric functions (5-place); logarithms of trigonometric functions (5 -place); natural logarithms (4-place); exponential and hyperbolic functions; probability integral; Bessel functions; derivatives; elliptic integrals; integrals; miscellaneous constants, formulas, conversion tables, and reference curves.

Peirce, Benjamin O.: "A Short Table of Integrals," 4th rev. ed., Ginn \& Company, Boston, 1956, 189 pages:

Squares; common logarithms (4-place); natural trigonometric functions (3- and 4-place); logarithms of trigonometric functions (4-place); natural logarithms (5-place); exponential and hyperbolic functions; probability integral; derivatives; elliptic integrals; integrals; miscellaneous constants, formulas, and conversion tables.

Potin, Louis F.: "Formulas and Numerical Tables Pertaining to Circular, Hyperbolic, and Elliptic Functions" (Formules et tables numeriques relatives aux functions circulaires, hyperboliques, elliptiques), G. Doin, Gauthier-Villars \& Cie, Paris, 1925, 862 pages:

Natural trigonometric functions (4- and 5-place); Bernoulli's and Euler's numbers; elliptic integrals; hyperbolic functions; integrals; miscellaneous formulas and conversion tables.

Rosenbach, Joseph B., Edwin A. Whitman, and David Moscovitz: "Mathematical Tables," Ginn \& Company, Boston, 1943, 212 pages:

Squares, cubes, square roots, cube roots, reciprocals, common logarithms (4- and 5 -place); natural trigonometric functions (4- and 5-place); logarithms of trigonometric functions ($4-$ and 5 -place); natural logarithms (5 -place); exponential and hyperbolic functions; probability integral; Bernoulli's numbers; Bessel functions; elliptic integrals; gamma functions; haversines; logarithms of prime numbers (20-place); miscellaneous constants and conversion tables.

Silberstein, Ludwik: "Synopsis of Applicable Mathematics with Tables," G. Bell \& Sons, Ltd., London, 1923, 250 pages:

Reciprocals; common logarithms (4-, 5-, and 6-place); natural trigonometric functions (4-place); logarithms of trigonometric functions (5-place); hyperbolic functions; probability integral; Bessel functions; derivatives; elliptic integrals; gamma functions; integrals; miscellaneous formulas and conversion tables; zonal harmonics.

Many of these or analogous tables are incorporated as appendixes in standard college texts on trigonometry or general mathematics and appear in such handbooks as:

Eshbach, Ovid W.: "Handbook of Engineering Fundamentals," 2d ed., John Wiley \& Sons, Inc., New York, 1952, lv.

Hodgman, Charles D.: "Handbook of Chemistry and Physics," 37th ed. (1955-1956), Chemical Rubber Publishing Co., Cleveland, 1955, 3156 pages.

Of a special kind, the following volume may be mentioned:
Kober, H.: "Dictionary of Conformal Representations," Dover Publications, Inc., New York, 1952, 208 pages.

In view of the hundreds of published special-purpose mathematical tables, no short selected list is likely to be of great service in an emergency. During the depression of the 1930's, several large volume mathematical tables for higher functions were prepared under A. N. Lowan and associates as New York W.P.A. projects; additional tables prepared under his direction have been issued by the Bureau of Standards in Washington. Using high-speed digital computers, the Computation Laboratory of Harvard University has prepared and is issuing a series of tables of higher mathematical functions. These and the impressive series of tables being published for the British Association by the Cambridge University Press (since 1931) should be available in every science library.

Some tables for statistics are found in:
Burington, Richard S., and Donald C. May: "Handbook of Probability and Statistics with Tables," Handbook Publishers, Inc., Sandusky, 1953, 332 pages.

Hald, Anders: "Statistical Tables and Formulas," John Wiley \& Sons, Inc., New York; Chapman \& Hall, Ltd., London, 1952, 97 pages.
Kelley, Truman L.: "The Kelley Statistical Tables," Harvard University Press, Cambridge, 1948, 223 pages.
Waugh, Albert E.: "Statistical Tables and Problems," 3d ed., McGraw-Hill Book Company, Inc., New York, 1952, 242 pages.

For ready reference to modern mathematical tables (but previous to 1945), one should consult the extensive and definitive work:
Fletcher, Alan, Jeffrey C. P. Miller, and Louis Rosenhead: "An Index of Mathematical Tables," Scientific Computing Service, Ltd., London, 1946, 450 pages. This valuable index states for each table the range, tabular interval, number of significant figures in the values, whether or not tables of proportional parts are given, what order or orders of differences are shown, and so forth.

Information on new publications and critiques in the field appears in the periodical:
"Mathematical Tables and Other Aids to Computation," Washington, National Research Council, (quarterly).

Section 2

MECHANICS

R. BRUCE LINDSAY, Editor
Brown University

CONTENTS

2a. Fundamental Concepts of Mechanics. Units and Conversion Factors 2-2
2b. Density of Solids 2-17
2c. Centers of Mass and Moments of Inertia 2-36
2d. Coefficients of Friction 2-39
2e. Crystallographic Data 2-44
2f. Elastic Constants, Hardness, Strength, and Elastic Limits of Solids 2-55
2g. Mechanical Properties of Gels and Thixotropic Substances. 2-81
2h. Viscosity of Solids 2-84
2i. Astronomical Data 2-90
2j. Geodetic Data 2-92
2k. Seismological and Related Data 2-101
21. Oceanographic Data 2-115
2m. Meteorological Data 2-124
2n. Density and Compressibility of Liquids 2-136
20. Viscosity of Liquids 2-165
2p. Tensile Strength and Surface Tension of Liquids 2-169
2q. Fluid-flow Properties of Porous Media and Viscosity of Suspensions 2-179
2r. Cavitation in Flowing Liquids 2-182
2s. Diffusion in Liquids 2-189
2t. Liquid Jets 2-195
2u. Density of Gases at Standard Temperature and Pressure 2-197
2v. Viscosity of Gases 2-201
2w. Diffusion of Gases 2-211
2x. Compressible Flow of Gases 2-214
2ys: Laminar and Turbulent Flow of Gases 2-220
2z. Shock Waves 2-231

2a. Fundamental Concepts of Mechanics. Units and Conversion Factors

DAVID MINTZER, ${ }^{1}$ PAUL TAMARKIN, ${ }^{2}$ AND R. BRUCE LINDSAY
Department of Physics
Brown University

2a-1. Newtonian Concepts of Mechanics. The science of mechanics deals with the motion of material bodies, which ideally can be considered as made up of point particles. In order to describe the motion of a particle three concepts are needed: a frame of reference, distance and time interval. These concepts are left undefined as intuitive concepts with sufficiently universal meanings. Distance and time intervals are measured in terms of standards which have a wide range of acceptance, such as the standard meter and the sidereal day. (The important systems of units are tabulated in Secs. $2 \mathrm{a}-8$ and $2 \mathrm{a}-9$.) The frame of reference consists of a reference point and a coordinate system (whose origin may be at the reference point); a reference event is necessary as well as a frame of reference.

The position of a particle may be specified with respect to the reference point by considering a rectangular coordinate system whose origin is at the reference point. The position of any particle is then given in terms of the distances along the coordinate

Fig. 2a-1. Base vectors in rectangular coordinates. axes from the origin to the projection on these axes of the point representing the position of the particle.

The location of an event in time, or the time of an event, similarly is expressed in terms of the time interval with respect to the reference event. The terms "time interval" and "time" are usually used interchangeably.

The above concepts are usually referred to as Newtonian; they suffice for classical mechanics.

2a-2. Kinematics-The Space-Time Relationships in the Motions of Point Particles. Velocity. Velocity is the rate of change of position with respect to time. Two types of velocity are commonly used, instantaneous and average. Instantaneous velocity is the time rate of change of position calculated pointwise, thus being a derivative. Average velocity is the time rate of change of position calculated as the quotient of a finite distance and the corresponding finite time interval.

Velocity is a vector with components which depend in general on the coordinate system used. If e_{1}, e_{2}, e_{3} are base vectors of the coordinate system under consideration, then, for three commonly used systems:

[^0](1) Rectangular coordinates (cf. Fig. 2a-1):
\[

$$
\begin{equation*}
v=e_{1} v_{x}+e_{2} v_{v}+e_{3} v_{z}=e_{1} \frac{d x}{d t}+e_{2} \frac{d y}{d t}+e_{3} \frac{d z}{d t} \tag{2a-1}
\end{equation*}
$$

\]

(2) Cylindrical coordinates (cf. Fig. 2a-2):

$$
\begin{equation*}
\nabla=\mathrm{e}_{1} v_{r}+\mathrm{e}_{2} v_{\theta}+\mathrm{e}_{3} v_{z}=\mathrm{e}_{1} \frac{d r}{d t}+\mathrm{e}_{2} r \frac{d \theta}{d t}+\mathrm{e}_{3} \frac{d z}{d t} \tag{2a-2}
\end{equation*}
$$

(3) Spherical coordinates (cf. Fig. 2a-3):

$$
\begin{equation*}
\mathrm{v}=\mathrm{e}_{1} v_{r}+\mathrm{e}_{2} v_{\theta}+\mathrm{e}_{3} v_{\phi}=\mathrm{e}_{1} \frac{d r}{d t}+\mathrm{e}_{2} r \frac{d \theta}{d t}+\mathrm{e}_{3} r \sin \theta \frac{d \phi}{d t} \tag{2a-3}
\end{equation*}
$$

Acceleration. Acceleration is the rate of change of velocity with respect to time. Instantaneous and average acceleration may be defined analogously to instantaneous and average velocities; however, instantaneous acceleration, or the time derivative of velocity (or equivalently the second time derivative of position) is the more commonly

Frg. 2a-2. Base vectors in cylindrical coordinates.

Fig. 2a-3. Base vectors in spherical coordinates.
used quantity. Acceleration is a vector with components which depend in general on the coordinate system used. If e_{1}, e_{2}, e_{3} are the unit base vectors of the coordinate system under consideration, then for the commonly used systems:
(1) Rectangular coordinates:

$$
\begin{equation*}
\mathrm{a}=\mathrm{e}_{1} a_{x}+\mathrm{e}_{2} a_{y}+\mathrm{e}_{3} a_{z}=\mathrm{e}_{1} \frac{d^{2} x}{d t^{2}}+\mathrm{e}_{2} \frac{d^{2} y}{d t^{2}}+\mathrm{e}_{3} \frac{d^{2} z}{d t^{2}} \tag{2a-4}
\end{equation*}
$$

(2) Cylindrical coordinates:

$$
\begin{equation*}
a=e_{1} a_{r}+\mathbf{e}_{2} a_{\theta}+e_{3} a_{z}=e_{1}\left[\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}\right]+e_{2}\left[r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}\right]+\mathrm{e}_{3} \frac{d^{2} z}{d t^{2}} \tag{2a-5}
\end{equation*}
$$

(3) Spherical coordinates:

$$
\begin{align*}
a=e_{1} a_{r}+e_{2} a_{\theta}+e_{3} a_{\phi} & =e_{1}\left[\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}-r \sin ^{2} \theta\left(\frac{d \phi}{d t}\right)^{2}\right] \\
& +e_{2}\left[r \frac{d^{2} \theta}{d t^{2}}+2 \frac{d r}{d t} \frac{d \theta}{d t}-r \sin \theta \cos \theta\left(\frac{d \phi}{d t}\right)^{2}\right] \\
& +e_{3}\left[r \sin \theta \frac{d^{2} \phi}{d t^{2}}+2 r \cos \theta \frac{d \theta}{d t} \frac{d \phi}{d t}+2 \sin \theta \frac{d r}{d t} \frac{d \phi}{d t}\right] \tag{2a-6}
\end{align*}
$$

2a-3. Newtonian Dynamics of Particles-Relationship of the Motion of Particles to the Forces Acting upon Them. Inertial Frames of Reference. Not all frames of
reference are equally useful in describing the motion of a body; of all possible frames there is a set, called "inertial frames of reference," in which particularly simple laws describe the motion of a particle. An intuitive definition of an inertial frame of reference regards such a frame as being one which is "embedded in space" with respect to an observer; more exactly, an inertial frame of reference is one in which an isolated body moves with constant velocity. It may be easily seen from Newton's second law of motion (below) that any inertial frame is transformed to any other by uniform motion in a straight line.

Definitions of Useful Concepts. mass: The Newtonian mass of a particle may be defined by considering the acceleration associated with the mutual interaction of this particle with a second, a test particle, when the two form an isolated system. The mass of the first particle is defined as a constant times the ratio of the magnitude of the accelerations of the second and first particles, respectively. The constant depends only on the choice of the second particle, and by mutual consent the constant may arbitrarily be set equal to unity. The second particle then represents the standard unit of mass, and the mass of the first is thus determined by the above-mentioned ratio of accelerations. This method; although having the advantage of yielding an unequivocal definition of mass, is not usually a practicable one and is replaced by other methods (e.g., the balance) in actual determinations. Implicit in this definition is the assumption of additivity of masses, thus enabling the mass of a finite body, as an aggregate of particles, to be determined uniquely.
density: The density of a substance is defined as the mass per unit volume of the substance, and is calculated from the formula

$$
\begin{equation*}
\rho=m / V \tag{2a-7}
\end{equation*}
$$

where ρ is the density, m is the mass, V is the volume occupied by mass m. Density is thus a measure of the volume concentration of mass."
momentum: The momentum of a particle is defined as the product of its mass and velocity and is therefore a vector quantity.
kinetic energy: The kinetic energy of a particle is defined as one-half the product of its mass and the square of its velocity, and is a scalar.

FORCE: The force acting upon a particle is assumed as the cause of the acceleration of the particle. It may be defined as that vector function which, in magnitude and direction, equals the time rate of change of momentum of the particle. Thus

$$
\begin{equation*}
\mathbf{F}=\frac{d}{d t}(m \mathbf{v}) \tag{2a-8}
\end{equation*}
$$

where F represents the force, and m and v are the particle mass and velocity, respectively.

This force depends in general not only on the particle in question but also on the nature of other particles in, and properties of, the system of which the original particle is a part, the mutual separations and velocities of the particles and possibly of the time. Although force has been defined so far only for a particle, the definition may be extended to finite distributions of matter by considering infinitesimal portions as particles and integrating.

Newton's Laws. The dynamics of particles situated in an inertial frame of reference is governed by Newton's three laws of motion. The extension of these laws to a noninertial frame is, in principle, immediately forthcoming by considerations of the accelerations of the noninertial frame with respect to an inertial one; thus Newton's laws govern the dynamics of particles when Newtonian concepts are valid. Newton's laws are as follows:

1. A particle, not under the action of a force, will maintain its velocity unchanged in magnitude and direction.
2. A force acting on a particle causes a change of momentum of the particle, the rate of change of momentum being vectorially equal to the force.
3. If one particle exerts a force on a second, then the second exerts a force, equal in magnitude but opposite in direction, on the first.

Statics. The branch of dynamics which deals with particles undergoing no acceleration is termed "statics." We see from Newton's second law that, in this case,

$$
\begin{equation*}
F=0 \tag{2a-9}
\end{equation*}
$$

where F refers to the vectorial sum of all the forces acting on the particle.
Noninertial Dynamics. At times it is convenient to consider the dynamics of a particle in a noninertial frame; e.g., motion relative to rotating or other moving axes. There will then be an apparent force acting on the particle which is the difference between the Newtonian force (that acting in the inertial system) and the inertial force $m a_{0}$, where \mathbf{a}_{0} is the acceleration of the noninertial system with respect to the inertial frame. Symbolically, $\mathbf{F}_{d}=\mathbf{F}-m \mathbf{a}_{0}$, where \mathbf{F}_{d} is the apparent force, and \mathbf{F} is the Newtonian force. We can set $\mathbf{F}_{d}=m \mathbf{a}_{d}$ where \mathbf{a}_{d} is the acceleration of the particle with respect to the noninertial frame.

D'ALEMBERT'S PRINCIPLE: Often it is advantageous to choose a noninertial system such that $\mathrm{F}_{d}=0$; the dynamical problem in the noninertial system then reduces to a statical one. That such a noninertial system can be chosen is one statement of D'Alembert's principle.
inertial forces-centrifugal and coriolis forces: The difference between the Newtonian force and the apparent noninertial force can be termed the "inertial force:" Centrifugal and Coriolis forces are two commonly occurring examples of such inertial forces. The centrifugal force is given by

$$
\begin{equation*}
\mathbf{f}_{\xi}=\boldsymbol{\omega} \times(\boldsymbol{\omega} \times \mathbf{r}) \tag{2a-10}
\end{equation*}
$$

where ω is the instantaneous angular velocity of the moving axes about the axis of rotation and r is the position vector of the particle with respect to the moving axes. The Coriolis force is given by

$$
\begin{equation*}
f_{c}=2 \omega \times v \tag{2a-11}
\end{equation*}
$$

where ω has the same meaning as above and v is the apparent velocity of the particle with respect to the moving axes.

Conservation of Momentum. impulse-momentum theorem: The impulse of a force acting between times t_{0} and t_{1} is defined by

$$
\begin{equation*}
g=\int_{t_{0}}^{t_{1}} \mathbf{F} d t \tag{2a-12}
\end{equation*}
$$

From Newton's second law, the impulse of the total force acting on a particle during some time interval is equal to the change in the momentum of the particle during the time interval, i.e.,

$$
\begin{equation*}
\mathfrak{g}=m \boldsymbol{v}_{1}-m \mathbf{v}_{0} \tag{2a-13}
\end{equation*}
$$

CONSERVATION OF MOMENTUM: When the total force acting upon a particle is zero, the momentum of the particle is a constant; this follows directly from the impulsemomentum theorem.

Conservation of Energy. work-energy theorem: The work done on a particle by a force acting during the displacement of a particle from position P_{0} to position P_{1} is defined as

$$
\begin{equation*}
W=\int_{P_{0}}^{P_{1}} \mathbf{F} \cdot d \mathbf{s} \tag{2a-14}
\end{equation*}
$$

where $d s$ is an infinitesimal displacement along the path of the particle. From Newton's second law the work done by the total force acting on a particle during some displacement of the particle is equal to the change in kinetic energy of the particle:

$$
\begin{equation*}
W=\frac{1}{2} m v_{1}^{2}-\frac{1}{2} m v_{0}^{2} \tag{2a-15}
\end{equation*}
$$

potential energy: If the work done by a force acting on a particle does not depend upon the path of the particle, but only on the initial and end points of its motion, we call the force a "conservative force." The condition for a force to be conservative is that its curl shall vanish, i.e.,

$$
\begin{equation*}
\nabla \times F=0 \tag{2a-16}
\end{equation*}
$$

If the force is conservative, we may define a potential-energy function of position V such that

$$
\begin{equation*}
\mathbf{F}=-\nabla V \tag{2a-17}
\end{equation*}
$$

conservation of energy: If the total force acting upon a particle is conservative, the sum of the kinetic and potential energies is a constant; this follows from the workenergy theorem and the definition of the potential energy:

$$
\begin{equation*}
\frac{1}{2} m v^{2}+V(x, y, z)=U \tag{2a-18}
\end{equation*}
$$

where U, the total mechanical energy, is a constant.
2a-4. Dynamics of Systems of Particles. In examining the dynamics of a system of point masses, consider N point particles, each of mass m_{i}, where $i=1,2, \ldots, N$. The total force acting on m_{i} due to m_{j} is $\mathrm{F}_{i j}$; in addition, a total external force F_{i} acts on m_{i}. At any time t, m_{i} has a position \mathbf{r}_{i}, a velocity $\dot{\mathbf{r}}_{i}$, and an acceleration \dot{r}_{i}, all relative to some inertial frame. (The dots denote differentiation with respect to time.)

Definition of Useful Concepts. center of mass: The position of the center of mass of the above system is given by

$$
\begin{equation*}
\mathrm{R}=\frac{\sum_{i=1}^{N} m_{i} \mathrm{r}_{i}}{\sum_{i=1}^{N} m_{i}} \tag{2a-19}
\end{equation*}
$$

moment of momentum: The moment of momentum of the i th particle in the above system is defined as

$$
\begin{equation*}
\mathbf{L}_{i}=\mathbf{r}_{i} \times m_{i} \dot{\mathbf{r}}_{\boldsymbol{i}} \tag{2a-20}
\end{equation*}
$$

The total moment of momentum of the system is

$$
\begin{equation*}
\mathrm{L}=\sum_{i=1}^{N} \mathrm{~L}_{i}=\sum_{i=1}^{N} m_{i}\left(\mathrm{r}_{i} \times \dot{\mathrm{r}}_{i}\right) \tag{2a-21}
\end{equation*}
$$

If the collection of particles is a rigid body, the moment of momentum is called the "angular momentum" (cf. Sec. 2a-5).
torque (moment of force): The torque due to a force F_{i} acting on the i th particle in the above system is defined as

$$
\begin{equation*}
T_{i}=r_{i} \times F_{i} \tag{2a-22}
\end{equation*}
$$

The total torque acting on the system is $T=\sum_{i=1}^{N} T_{i}$. (The force F_{i} includes forces
externally applied to the particle, as well as internal forces of interaction among the particles of the system.)

Application of Newton's Laws. We may apply Newton's second law to each particle of the system, and obtain

$$
\begin{equation*}
m_{i} \ddot{\mathbf{I}}_{i}=\mathbf{F}_{i}{ }^{i}+\mathbf{F}_{i}{ }^{e} \tag{2a-23}
\end{equation*}
$$

where $F_{i}{ }^{i}=\Sigma_{j \neq 1} F_{i j}$ is the total internal force acting on m_{i} (due to all other particles), and $F_{i}{ }^{e}$ is the external force on the i th particle.

If we sum over all particles of the system, we obtain, by use of Newton's third law,

$$
\begin{equation*}
\sum_{i=1}^{N} \mathrm{~F}_{i^{i}}=0 \tag{2a-24}
\end{equation*}
$$

motion of the center of mass: The analogue of Newton's second law for the entire system is therefore

$$
\begin{equation*}
M \ddot{\mathbf{R}}=\sum_{i=1}^{N} \mathrm{~F}_{i^{e}} \tag{2a-25}
\end{equation*}
$$

where $M=\sum_{i=1}^{N} m_{i}$ is the total mass of the system, $\ddot{\mathbf{R}}$ is the acceleration of the center of mass of the system, and $\Sigma_{i} F_{i}{ }^{e}$ is the total external force.
moment of momentum and torque: By forming the cross product of both sides of Eq. (2a-23) with r_{i} and summing over all particles we can show that

$$
\begin{equation*}
\frac{d}{d t} \sum\left[\mathbf{r}_{i} \times\left(m_{i} \dot{\mathbf{r}}_{i}\right)\right]=\sum \mathbf{T}_{i^{e}}=\mathbf{T}^{e} \tag{2a-26}
\end{equation*}
$$

provided that the internal force $F_{i j}$ acts along the straight line connecting the particles i and j in each case.

In particular, if $\mathbf{r}_{i c}$ is the position of the i th particle with respect to the center of mass, so that

$$
\mathbf{r}_{i c}=\mathbf{r}_{i}-\mathbf{R}
$$

it follows from Eq. (2a-26) that

$$
\begin{equation*}
\frac{d}{d t} \sum_{i=1}^{N} \mathbf{r}_{i c} \times\left(m_{i} \dot{\mathbf{t}}_{i c}\right)=\sum_{i=1}^{N} \mathbf{r}_{i c} \times \mathbf{F}^{e} \tag{2a-27}
\end{equation*}
$$

That is, the time rate of change of the moment of momentum is equal to the total external torque when both are taken with respect to the center of mass. The above equation is also true if the center of mass is replaced by any point moving with the velocity of the center of mass, which may, of course, also be at rest.

Conservation of Momentum. It follows from Eqs. (2a-25) and (2a-26) that

1. If the total external force is zero, the linear momentum of the center of mass is constant.
2. If the total external torque about a fixed point, or one moving with velocity of the center of mass, is zero, the moment of momentum about that point is constant.

Conservation of Energy. work-energy theorem: The total work done by the external and internal forces acting on the system is equal to the change in the total kinetic energy of the system (the sum of the kinetic energy of each article)

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{N} m_{i}\left(v_{i}^{\prime \prime 2}-v_{i}^{\prime 2}\right)=\sum_{1=1}^{N} \int_{r_{i}^{\prime}}^{r_{i}^{\prime \prime}}\left(\mathrm{F}_{i}{ }^{e}+\mathrm{F}_{i}{ }^{i}\right) \cdot \mathrm{d} \mathrm{r}_{i} \tag{2a-28}
\end{equation*}
$$

MECHANICS

where $\mathbf{v}_{i}^{\prime}, \mathbf{v}_{i}^{\prime \prime}$ are the velocities of the i th particle at position \mathbf{r}_{i}^{\prime} and $\mathbf{r}_{i}^{\prime \prime}$, respectively, and $\mathrm{F}_{i}{ }^{i}=\Sigma_{j \neq 1} \mathrm{~F}_{i j}$ is the total internal force acting on the i th particle.
conservation of energy: If the internal and external forces are conservative, so that they can be derived from potentials,

$$
\begin{equation*}
F_{i^{i}}=-\nabla V_{i^{i}}^{i} \quad \text { and } \quad F_{i}^{e}=-\nabla V_{i^{e}} \tag{2a-29}
\end{equation*}
$$

then the sum of the kinetic and potential energies of all the particles is a constant

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\frac{1}{2} m_{i} v_{i}^{2}+V_{i^{i}}+V_{i^{e}}\right)=U \tag{2a-30}
\end{equation*}
$$

where U is the total energy of the system.
2a-5. Dynamics of Rigid Bodies. Definitions of Kinematical Concepts. A rigid body is an aggregate of particles the distance between any two of which remains constant. The position of a rigid body in any frame of reference is completely determined by fixing the position of three noncollinear points. This means that the number of degrees of freedom of the rigid body is six. There are two principal types of motion of a rigid body: (1) translation, in which all particles move with the same velocity and acceleration in parallel paths, and (2) rotation, in which some point or line of points (axis) remains fixed in space. Every motion of a rigid body can be considered as a combination of translations and rotations.

The instantaneous angular velocity ω is the primary quantity descriptive of the kinematics of a rigid body. This is a vector lying along the instantaneous axis of rotation and having the magnitude such that its cross product with the position vector r_{P} of any point P of the rigid body relative to an origin on the axis yields the velocity of the point P. Symbolically

$$
\begin{equation*}
\mathbf{v}_{P}=\dot{\mathbf{r}}_{P}=\boldsymbol{\omega} \times \mathbf{r}_{P} \tag{2a-31}
\end{equation*}
$$

The angular velocity can always be resolved into rectangular components $\omega_{x}, \omega_{y}, \omega_{z}$, i.e.,

$$
\begin{equation*}
\omega=\mathbf{i} \omega_{x}+\mathbf{j} \omega_{y}+\mathbf{k} \omega_{z} \tag{2a-32}
\end{equation*}
$$

Angular acceleration is the time rate of change of angular velocity, i.e. (to use the dot notation),

$$
\begin{equation*}
\alpha=\dot{\omega} \tag{2a-33}
\end{equation*}
$$

Dynamical Concepts and Equations of Motion. The total moment of momentum L of the rigid body with respect to some fixed origin of coordinates either inside or outside the body [cf. Eq. (2a-20)] is called the angular momentum of the rigid body about the origin. By expansion of the summand in Eq. (2a-21) after employing Eq. (2a-31) there results

$$
\begin{align*}
\mathbf{L} & =\mathbf{i}\left(\omega_{x} I_{x x}-\omega_{y} I_{x y}-\omega_{z} I_{x z}\right) \\
& +\mathbf{j}\left(-\omega_{x} I_{y x}+\omega_{y} I_{y y}-\omega_{z} I_{y z}\right) \\
& +\mathbf{k}\left(-\omega_{x} I_{y x}-\omega_{y} I_{z y}+\omega_{z} I_{z z}\right) \tag{2a-34}
\end{align*}
$$

where $I_{x x}, I_{y y}, I_{z z}$ are called the "moments of inertia" of the rigid body about the x, y, z axes, respectively, and $I_{x y} ; I_{y z}, I_{x z}$, etc., are called "products of inertia." We have

$$
\begin{align*}
& I_{x x}=\Sigma m_{i}\left(y_{i}{ }^{2}+z_{i}^{2}\right) \\
& I_{x y}=\Sigma m_{i} x_{i} y_{i} \quad \text { etc. } \tag{2a-35}
\end{align*}
$$

By proper choice of axes (called "principal" axes) the products of inertia can be made
to vanish. If we write
where

$$
\begin{align*}
& \boldsymbol{I}_{x x^{\prime}}=M \boldsymbol{R}^{2} \tag{2a-36}\\
& \boldsymbol{R}^{2}=\frac{\boldsymbol{\Sigma} m_{i}\left(y_{i}{ }^{2}+z_{i}{ }^{2}\right)}{M} \tag{2a-37}
\end{align*}
$$

and M is the total mass of the rigid body, R is termed the "radius of gyration" about the x axis.
The fundamental equation of motion (Newton's second law) of the rigid body about a fixed origin is.

$$
\begin{equation*}
\mathbf{L}=\mathbf{T} \tag{2a-38}
\end{equation*}
$$

where T is the total torque about the instantaneous axis through the fixed origin. If the fixed origin is chosen as the center of mass, the total motion is obtained by superposing the translational motion of the center of mass on the rotational motion about the center of mass.

Static Equilibrium. A rigid body is in translational equilibrium if its center of mass moves with constant velocity in an inertial frame. It is in rotational equilibrium about any point if the resultant torque about the point vanishes. This means $\dot{L}=0$ and corresponds to conservation of angular momentum. The behavior of a rigid body under these conditions is the subject matter of rigid statics.

Moving Axes. Euler's Equation. For axes fixed in space, ω and the moments and products of inertia in general change with time as the rigid body moves. Simplification often results by using axes fixed in the body, since then $I_{x x}$, $I_{x y}$, etc., remain constant. Then, for motion about a fixed point the axes rotate, and we have

$$
\begin{equation*}
\mathbf{L}=\mathbf{i} L_{x}+\mathbf{j} L_{y}+\mathbf{k} L_{z}+\omega \times \mathbf{L} \tag{2a-39}
\end{equation*}
$$

where L_{x}, L_{y}, L_{z} are the components of angular momentum about the moving axes and ω is the instantaneous angular velocity of the body about the instantaneous axis of rotation. If we choose principal axes the equation of motion ($2 a-38$) becomes

$$
\begin{align*}
\mathbf{T} & =\mathrm{i}\left[I_{x x} \omega_{x}+\left(I_{z z}-I_{j y}\right) \omega_{y} \omega_{z}\right] \\
& +\mathrm{j}\left[I_{y} I_{y} \omega_{y}+\left(I_{x x}-I_{z z}\right) \omega_{2} \omega_{x}\right] \\
& +\mathbf{k}\left[I_{z z} \omega_{z}+\left(I_{y y}-I_{x x}\right) \omega_{x} \omega_{y}\right]
\end{align*}
$$

This is Euler's equation. The three component equations to which it reduces are usually called Euler's equations.

Kinetic Energy. Work-Energy Theorem. If a rigid body has one point fixed in space and the angular momentum about this point is L, while the angular velocity about an instantaneous axis through the point is ω, the kinetic energy of rotational motion is

$$
\begin{equation*}
K=\frac{1}{2} \omega \cdot L \tag{2a-41}
\end{equation*}
$$

The work done by the resultant torque T about the fixed point in time $d t$ is

$$
\begin{equation*}
d W=\mathbf{T} \cdot \omega d t \tag{2a-42}
\end{equation*}
$$

measured with respect to axes fixed in the body. Since

$$
\begin{equation*}
\omega \cdot d \mathbf{L}=d K \tag{2a-43}
\end{equation*}
$$

it follows that the work done by the resultant torque in any time interval is equal to the change in kinetic energy of rotation during this same interval.

Total Energy. The total kinetic energy of a rigid body is the sum of the kinetic energy of translation of the center of mass (assuming all the mass to be concentrated there) and the kinetic energy of rotation about the center of mass. The total potential energy is the sum of the potential energy of the center of mass (with all the mass concentrated there) due to the external forces acting on the body and the potential energy.
of all the particles of the body due to the internal forces of cohesion that hold the body together. If the body remains really rigid throughout its motion, the last-named potential energy remains constant. With this understanding, the law of conservation of energy of a rigid body is phrased as precisely as that in the case of a particle.
2a-6. Dynamics of Deformable Media. General Concepts of Strain and Stress. Whenever an extended medium moves in such a way that the distance between any two particles constituting the medium changes, the medium is said to be deformed. Deformations are of two general types: (1) dilatational or extensional, in which a change in the density of the medium takes place (change in the size, if the medium is finite) and (2) shear, in which a change in the shape alone takes place. The corresponding fractional deformations (nondimensional quantities) are termed strains. Thus the dilatational strain is the negative of the change in density divided by the mean density. The extensional strain (in the case of a rod, string, or other linear medium) is the change in length divided by the mean length. The shear strain is the difference in displacement of two parallel planes in the medium divided by the perpendicular distance between them.

When a medium is deformed by the application of external forces, the dynamics of the deformation is best described in terms of internal stresses which are assumed to change with the deformation. A stress is a force per unit area with which the part of the medium on one side of an imaginary surface acts on the part on the other side. If the force is normal to the surface, the stress is dilatational; if the force is parallel to the surface, the stress is a shear. The stresses associated with deformations are strictly excess stresses (i.e., the change in stress produced by the application of the external force). The adjective is normally omitted.
Elastic Media. Hooke's Law. If when the deforming forces are removed a medium reverts to its original condition, it is said to be elastic. In such media the ratio of stress to strain is approximately a constant for a certain range of stress variation. This is Hooke's law. For all solid media the imposition of a sufficiently large deforming force leads to a breakdown of this linear relation; i.e., they possess an elastic limit (cf. Sec. 2f). Indeed even larger deforming forces may cause the solid to flow (strain dependent on time) and it becomes plastic. Even elastic substances do not always return immediately to their original condition after the removal of the deforming force (elastic lag or relaxation). Fluids can experience change of state under sufficiently high stresses.

For an elastic medium for which Hooke's law holds it is possible to define elastic moduli, i.e., ratios of stress to strain. Thus,

$$
\begin{aligned}
\frac{\text { Compressional stress }}{\text { Volume strain }} & =k=\text { bulk modulus or modulus of volume elasticity } \\
\frac{\text { Tensile stress }}{\text { Linear strain }} & =Y=\text { Young's modulus } \\
\frac{\text { Shearing stress }}{\text { Shear strain }} & =\mu=\text { shear modulus or rigidity }
\end{aligned}
$$

The deformation of a homogeneous isotropic elastic medium can be completely described in terms of these three moduli. A fourth, Poisson's ratio σ, is usually added. This is the reciprocal of the ratio of linear extensional strain in a wire or rod to the concomitant lateral contractional strain. The following relations hold among the moduli:

$$
\begin{align*}
& Y=3 k(1-2 \sigma)=2 \mu(1+\sigma) \\
& Y=\frac{9 k \mu}{\mu+3 k} \tag{2a-44}
\end{align*}
$$

Evidently for such media

$$
\begin{equation*}
-1<\sigma<\frac{1}{2} \tag{2a-45}
\end{equation*}
$$

General Stress and Strain Expressions for an Arbitrary Medium. If the displacement from its equilibrium position of any particle of a deformable medium is denoted by the vector

$$
\begin{equation*}
\Delta=\mathbf{i} \xi+\mathbf{j} \eta+\mathbf{k} \zeta \tag{2a-46}
\end{equation*}
$$

where the displacement components ξ, η, ζ are in general functions of both space and time, the effective strain is denoted by the covariant tensor of the second order written in matrix form as follows:

$$
\mathbf{D}=\left|\begin{array}{l}
\partial \xi / \partial x, \frac{1}{2}(\partial \eta / \partial x+\partial \xi / \partial y), \frac{1}{2}(\partial \xi / \partial x+\partial \xi / \partial z) \tag{2a-47}\\
\frac{1}{2}(\partial \eta / \partial x+\partial \xi / \partial y), \partial \eta / \partial y, \frac{1}{2}(\partial \eta / \partial z+\partial \zeta / \partial y) \\
\frac{1}{2}(\partial \zeta / \partial x+\partial \xi / \partial z), \frac{1}{2}(\partial \zeta / \partial y+\partial \eta / \partial z), \partial \zeta / \partial z
\end{array}\right|
$$

This is often written in the abbreviated symbolic form

$$
\boldsymbol{D}=\left|\begin{array}{l}
e_{x x}, \frac{1}{2} e_{x y}, \frac{1}{2} e_{x z} \tag{2a-48}\\
\frac{1}{2} e_{x y}, e_{y y}, \frac{1}{2} e_{y z} \\
\frac{1}{2} e_{x z}, \frac{1}{2} e_{y z}, e_{z z}
\end{array}\right|
$$

The diagonal elements in this matrix are dilatational strain components, whereas the nondiagonal elements are shear strain components.

The total stress in a deformable medium is most adequately expressed in terms of the stress tensor S which is represented by the following matrix:

$$
\mathbf{S}=\left|\begin{array}{c}
X_{x}, X_{y}, X_{z} \tag{2a-49}\\
Y_{x}, Y_{y}, Y_{z} \\
Z_{x}, Z_{y}, Z_{z}
\end{array}\right|
$$

Here $X_{x}=$ tensile stress in x direction on surface normal to x axis
$X_{y}=$ shear stress in y direction on surface normal to x axis
$X_{z}=$ shear stress in z direction on surface normal to x axis
etc.
It should be noted that the stress tensor is symmetrical, i.e., $X_{y}=Y_{x}$, etc. The same is true of the strain tensor ($e_{z x}=e_{x z}$, etc.).

Hooke's Law in Tensor Form for a Homogeneous, Isotropic Elastic Medium. For this case Hooke's law takes the form

$$
\begin{equation*}
S=2 \mu D+\lambda D^{\prime} \tag{2a-50}
\end{equation*}
$$

where μ is still the shear modulus, and $\lambda=k-2 \mu / 3$. D^{\prime} is the diagonal tensor.

$$
\begin{align*}
& \mathbf{D}^{\prime}=\left|\begin{array}{ccc}
\Theta & 0 & 0 \\
0 & \boldsymbol{\Theta} & 0 \\
0 & 0 & \Theta
\end{array}\right| \tag{2a-51}\\
& \mathbf{\Theta}=e_{x x}+e_{y y}+e_{z z} \tag{2a-52}
\end{align*}
$$

Hooke's Law for an Arbitrary Crystalline Medium. If the medium is a crystal with different properties in different directions, Hooke's law takes the form of the following linear equations expressing the strain components in terms of the stress components.

$$
\begin{align*}
& e_{x x}=S_{11} X_{x}+S_{12} Y_{y}+S_{13} Z_{z}+S_{14} Y_{z}+S_{15} Z_{x}+S_{16} X_{y} \\
& e_{y y}=S_{21} X_{x}+S_{22} Y_{y}+S_{23} Z_{z}+S_{24} Y_{z}+S_{25} Z_{x}+S_{26} X_{y} \\
& e_{2 z}=S_{31} X_{x}+S_{32} Y_{y}+S_{33} Z_{z}+S_{34} Y_{z}+S_{36} Z_{x}+S_{36} X_{y} \tag{2a-53}\\
& e_{z x}=S_{41} X_{x}+S_{42} Y_{y}+S_{43} Z_{z}+S_{44} Y_{z}+S_{45} Z_{x}+S_{46} X_{y} \\
& e_{z y}=S_{51} X_{x}+S_{52} Y_{y}+S_{53} Z_{z}+S_{54} Y_{z}+S_{55} Z_{x}+S_{56} X_{y} \\
& e_{x y}=S_{61} X_{x}+S_{62} Y_{y}+S_{63} Z_{z}+S_{64} Y_{z}+S_{65} Z_{x}+S_{66} X_{y}
\end{align*}
$$

MECHANICS

The 36 cqefficients $S_{11}, S_{12}, \ldots, S_{i j}, \ldots$. S_{66} are oalled the "elastic constants." If the above linear equations are solved for the stress components in terms of the strain components, the corresponding coefficients $C_{i j}$ are called "elastic coefficients." It can be shown that, for any $i_{i j}, C_{i j}=C_{j i}$ and $S_{i j}=S_{i i}$.

For a cubic crystal the elastic coefficient matrix reduces to

$$
\mathrm{C}=\left|\begin{array}{llllll}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \tag{2a-54}\\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{44}
\end{array}\right|
$$

Moreover for a cubic crystal $C_{44}=1 / S_{44}$. The bulk modulus in this case is given by

$$
\begin{equation*}
k=\frac{C_{11}+2 C_{12}}{3} \tag{2a-55}
\end{equation*}
$$

Equation of Motion of a Deformed Homogeneous Isotropic Elastic Medium. The equation of motion of such a medium of density ρ, in which the displacement from equilibrium is the vector Δ, takes the form

$$
\begin{equation*}
\rho \ddot{\mathbf{\Delta}}=\left(k+\frac{4 \mu}{3}\right) \nabla \nabla \cdot \mathbf{\Delta}-\mu \nabla \times \nabla \mathbf{\Delta} \tag{2a-56}
\end{equation*}
$$

If $\nabla \times \Delta=0$ this is the equation of irrotational waves traveling with velocity

$$
\begin{equation*}
v_{i}=\sqrt{\frac{k+4 \mu / 3}{\rho}} \tag{2a-57}
\end{equation*}
$$

If $\nabla \cdot \Delta=0$, this is the equation of solenoidal waves traveling with velocity

$$
\begin{equation*}
V_{s}=\sqrt{\frac{\mu}{\rho}} \tag{2a-58}
\end{equation*}
$$

2a-7. Fluid Dynamics. General Concepts. Fluids in Equilibrium. A perfect fluid is a deformable medium in which deforming forces give rise only to dilatations and never to shears. This is an ideal concept and is realized only approximately for actual fluids. Gases manifest the property more nearly than liquids, though both are normally considered to be fluids. Liquids can present under many circumstances the phenomenon of a free surface.
The dilatational stress in the case of a fluid is termed the pressure, which is the force per unit area directed against any surface imagined to exist in the fluid. A perfect fluid in equilibrium under the influence of an external force F acting on unit mass is subject to the relation

$$
\begin{equation*}
\rho \mathbf{F}=\nabla p \tag{2a-59}
\end{equation*}
$$

where p is the pressure (here treated for simplicity as a scalar since it acts normally to every surface when the fluid is in equilibrium) and ρ the density, all quantities being considered as functions of space alone. The solution of this equation for given \mathbf{F} gives p as a function of position in space and yields Pascal's law of the transmissibility of pressure in a fluid in equilibrium. From this also follows at once the principle of Archimedes that any fluid in equilibrium exerts on a body immersed in it a buoyant force equal in magnitude to the weight of the fluid displaced by the bedy and directed upward through the center of gravity.

Flow Concepts. Equations of Continuity. In the Eulerian system to which this review is confined the flow velocity of a fluid is the vector ∇ whose magnitude at any point and at any time is the volume flow per unit time per unit area placed normal to the direction of flow, the latter being the direction of v . This quantity is a function of both space and time. In any continuous indestructible fluid of density ρ containing no sources or sinks ∇ obeys the so-called equation of continuity

$$
\begin{equation*}
\nabla \cdot(\rho \nabla)=-\rho \tag{2a-60}
\end{equation*}
$$

where it is to be noted that ρ also is a function of space and time. For a homogeneous incompressible fluid this equation reduces to

$$
\begin{equation*}
\nabla \cdot \nabla=0 \tag{2a-61}
\end{equation*}
$$

i.e., v is a solenoidal vector. If further v is irrotational, so that $\nabla \times v=0$, it follows that

$$
\begin{equation*}
\mathrm{v}=\nabla \phi \tag{2a-62}
\end{equation*}
$$

where ϕ is a scalar potential, called the "velocity potential" and the equation of continuity reduces to Laplace's equation

$$
\begin{equation*}
\nabla^{2} \phi=0 \tag{2a-63}
\end{equation*}
$$

Equation of Motion. Bernoull's Principle. The vector equation of motion of a compressible fluid of density subject to an external force F is

$$
\begin{equation*}
\dot{\mathbf{v}}+\nabla \cdot \nabla \mathbf{v}=\mathbf{F}-\frac{\nabla p}{\rho} \tag{2a-64}
\end{equation*}
$$

where p is the pressure.
For irrotational flow in a conservative force field $(F=-\nabla V)$ it follows from the equation of motion that

$$
\begin{equation*}
\frac{1}{2} \rho v^{2}+\rho V+p=\text { const } \tag{2a-65}
\end{equation*}
$$

which is the principle of Bernoulli. It can also be shown that, even if the flow is not irrotational, as long as it is steady and in streamlines, so that v does not depend on the time, the above equation of Bernoulli will still hold as one proceeds along any given streamline, though the constant will in general be different for different streamlines.

Viscous Fluids. In contrast to a perfect fluid in which no shearing strains can exist, a viscous fluid is one in which the part of the medium flowing in one layer exerts a tangential or shearing stress on that flowing in the same direction in an adjacent layer. In the simplest type of viscous flow the tangential force is proportional to the velocity gradient normal to the layer and the coefficient of proportionality is called the viscosity η. Specifically

$$
\begin{equation*}
\eta=\frac{\text { shearing stress }}{\text { velocity gradient normal to flow }} \tag{2a-66}
\end{equation*}
$$

The analogy between this relation and that defining the shear modulus for an elastic medium is obvious, the difference being that here the denominator is the rate of change of shear strain instead of the strain itself. The suggestion is immediate that the discussion of viscous flow can develop along the lines of the analysis of the behavior of deformable media in general (cf. Sec. 2a-6). This is indeed the case; it makes pressure appear as a tensor (analogous to the stress tensor). See also Secs. 20, 2v, 2y.
A solid moving through a viscous fluid encounters increased resistance because of the viscosity. The simplest case is that in which a sphere of radius a moves through a fluid of viscosity η with constant velocity v . The resisting force is then given by Stokes' law

$$
\begin{equation*}
F=6 \pi \eta a v \tag{2a-67}
\end{equation*}
$$

Surface Tension in Liquids. This is the force per unit length γ in the surface separating a liquid from the material surrounding it. Details concerning this as well as numerical values will be found in Sec. 2 p.

Surface Waves in Liquids. When the free surface of a liquid is deformed, the forces acting on the deformed elements are primarily surface tension and gravity. The velocity of the resulting surface wave, if it is harmonic and has wavelength λ, is

$$
\begin{equation*}
V=\sqrt{\left(\frac{g \lambda}{2 \pi}+\frac{2 \pi \gamma}{\rho \lambda}\right) \tanh \frac{2 \pi l}{\lambda}} \tag{2a-68}
\end{equation*}
$$

where g is the acceleration of gravity, ρ the density, γ the surface tension, and l the depth of the liquid. For a relatively shallow liquid, for which $l \ll \lambda$, and the surface tension not very large, we have

$$
\begin{equation*}
V \doteq \sqrt{g l} \tag{2a-69}
\end{equation*}
$$

If the liquid is relatively deep, or $l \gg \lambda$,

$$
\begin{equation*}
V \doteq \sqrt{\frac{g \lambda}{2 \pi}+\frac{2 \pi \gamma}{k \lambda}} \tag{2a-70}
\end{equation*}
$$

For long waves

$$
V \doteq \sqrt{\frac{g \lambda}{2 \pi}}
$$

while for ripples (small λ), surface tension predominates and

$$
V \doteq \sqrt{\frac{2 \pi \gamma}{k \lambda}}
$$

Compressional Waves in Fluids. The combination of the equation of motion ($2 a-64$), the equation of continuity ($2 a-60$), and the equation of state of the fluid, i.e., the relation connecting change in density with change in pressure, leads to the wave equation for compressional waves traveling with velocity

$$
\begin{equation*}
V=\sqrt{\frac{d p}{d \rho}} \tag{2a-71}
\end{equation*}
$$

The values of V for gases and liquids will be found in Sec. 3.

2a-8. Fundamental Units

Circular Mil. Area of circle whose diameter is 0.001 in.
Day. Period taken for one revolution of earth about its axis.
Degree. Angle subtended at the center by a circular arc which is $\frac{1}{360}$ of the circumference.

Hour. $\frac{1}{24}$ part of day.
Light-year. Distance traveled by light in 1 year at rate of approximately $186 \times$ 10^{3} miles $/ \mathrm{sec}$.

Minute. $\frac{1}{60}$ part of hour.
Radian. Angle subtended at the center by a circular arc which is equal in length to radius of circle.

Second. $\frac{1}{60}$ part of minute.
Steradian. Solid angle subtended at the center by $1 / 4 \pi$ of the surface area of a sphere of unit radius.

Year (Sidereal). Time taken by sun (as seen from earth) in leaving and returning to meridian of a given star.

Year (Tropical, Mean Solar). Time taken by sun (as seen from earth) in leaving and returning to the same equinox.

2a-9. Derived Units

Atmosphere. Pressure exerted by air at sea level under standard conditions.
British Thermal Unit (Mean). Energy required to raise temperature of 1 lb mass of water $1^{\circ} \mathrm{F}$ (averaged from 32 to $212^{\circ} \mathrm{F}$).

Calorie (Mean). Energy required to raise 1 g mass of water $1^{\circ} \mathrm{C}$ (averaged from 0 to $100^{\circ} \mathrm{C}$).

Centimeters of Hg at $0^{\circ} \mathrm{C}$. Pressure exerted by column of Hg of stated height at $0^{\circ} \mathrm{C}$.

Dyne. Force necessary to give 1 g mass acceleration of $1 \mathrm{~cm} / \mathrm{sec}^{2}$.
Erg. Work done by force of 1 dyne applied over distance of 1 cm .
Feet of \dot{W} ater at $4^{\circ} \mathrm{C}$. Pressure exerted by column of water of stated height at $4^{\circ} \mathrm{C}$.
Kilowatthour. Work done in 1 hr at power level or rate of 10^{3} watts.
Newton. Force necessary to give 1 kg mass acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$.
Poundal. Force necessary to give 1 lb mass acceleration of $1 \mathrm{ft} / \mathrm{sec}^{2}$.
Watt. Rate of doing work, or power expended, in the amount of $10^{7} \mathrm{ergs} / \mathrm{sec}$.
Table 2a-1. Units and Conversion Factors, Length

	Angstrom	Centimeter	Fathom	Foot	Inch (U.S.)	Kilometer	Light-year
Angstrom.	1	10-8	3.281×10^{-10}	3.937×10^{-9}	10^{-18}	
Centimeter.	10^{8}	1		3.281×10^{-2}	0.3937	10^{-5}	
Fathom.			1	6	72		
Foot.		30.48	0.1667	1	12		
Inch (U.S.)	2.540×10^{8}	2.540	8.333×10^{-2}	1		
Kilometer.		10^{5}	3.281×10^{3}		1	1.057×10^{-18}
Light-year.						9.46×10^{12}	1
Meter.	1010	10^{2}	0.5468	3.281	39.37	10^{-3}	
Micron.	10^{4}	10^{-4}		3.937×10^{-5}		
Mil.		2.540×10^{-3}		10^{-3}		
Mile (statute)			\ldots	5.280×10^{3}	6.336×10^{4}	1.609	1.69×10^{-13}
Millimeter.		10^{-1}			3.937×10^{-2}		
Millimicron.	10	10^{-7}					
Yard (U.S.).		91.44	\ldots	3	36		

	Meter	Micron	Mil	Mile (statute)	Millimeter	Millimicron	Yard (U.S.)
Angstrom.	10-10	10-4	3.937×10^{-6}		10^{-7}	10-1	1.094×10^{-10}
Centimeter	10-2	10^{4}	3.937×10^{2}		10	10^{7}	1.094×10^{-2}
Fathom..	1.829					2
Foot..	0.3048	\ldots		1.894×10^{-4}		\ldots	0.3333
Inch (U.S.).		\ldots	10^{3}	1.578×10^{-5}	25.40	\ldots	2.778×10^{-2}
Kilometer.	10^{3}	\ldots		0.6214		\ldots	1.094×10^{3}
Light-year.			$5.9 \times 1{ }^{12}$			
Meter	1			6.214×10^{-4}		10^{9}	1.094
Micron.	10^{-6}	1	3.937×10^{-2}		10^{-3}	10^{3}	
Mil.		25.40	1		2.450×10^{2}		
Mile (statute)	1.609×10^{3}	\ldots		1		\ldots	1.760×10^{3}
Millimeter.	10^{-3}	10^{3}	39.37		1		
Millimicron.	10^{-9}	10^{-3}				1	
Yard (U.S.)...	0.9144	\ldots.		5.682×10^{-4}		\ldots	1

Table 2a-2. Units and Conversion Factors, Area

	Circular mil	Square centimeter	Square foot (U.S.)	Square inch (U.S.)	Square kilometer	Square meter	Square mile	Square millimeter	Square yard
Circular mil.	1	5.067×10^{-6}		7.854×10^{-7}				5.067×10^{-4}	
Square centimeter.	1.974×10^{5}	1	1.076×10^{-3}	0.1550		10^{-4}		10^{2}	1.196×10^{-4}
Square foot (U.S.).		9.290×10^{2}		1.44×10^{2}	\therefore	9.290×10^{-2}	3.587×10^{-8}		0.1111
Square inch (U.S.)	1.273×10^{6}	6.452	6.944×10^{-3}	1		6.452×10^{-4}		6.452×10^{2}	7.716×10^{-4}
Square kilometer.			1.076×10^{7}		1	10^{6}	0.3861		1.196×10^{8}
Square meter...		10^{4}	10.76	1.550×10^{3}	10^{-6}		3.861×10^{-7}	10^{6}	1.196
Square mile.			2.788×10^{7}		2.590	2.590×10^{6}	- 1 :		3.098×10^{6}
Square millimeter	1.974×10^{3}	10^{-2}		1.550×10^{-3}		10^{-6}		1	
Square yard		8.361×10^{3}	9	1.296×10^{3}		0.8361	3.228×10^{-7}		1

${ }^{*} 1$ milliliter $=1.000027$ cubic centimeters.

2b. Density of Solids

H. M. TRENT AND D. E. STONE

Naval Research Laboratory
R. BRUCE LINDSAY

Brown University

For the definition of density ρ consult Sec. 2a-2. The cgs unit of density is the gram per cubic centimeter and this is used throughout the tables in this subsection.

Densities of the elements in solid form are given in Table 2b-1. All data are taken from "Smithsonian Physical Tables" (9th revised edition, 1954) unless otherwise stated. The values marked * are calculated densities from X-ray crystallographic data at room tempersture and are taken from International Critical Tables (1926). All others are measured values for polycrystalline condition, save when otherwise stated. Standard room temperature is understood, unless otherwise stated.

Table 2b-1. Density of the Elements in Solid Form

Element	Physical state	Density, $\mathrm{g} / \mathrm{cm}^{3}$	Temp., ${ }^{\circ} \mathrm{C}$
Aluminum.	Commercial hard-drawn solid	2.70	20
Aluminum.	Single crystal	2.692*	
Antimony.	Vacuo-distilled solid	6.62	20
Antimony.	Single crystal	6.73*	
Argon.	Solid	1.65	-233
Argon	Single crystal	1.645*	-253
Arsenic.	Crystallized solid	5.73	14
Arsenic.	Single crystal	5.75*	
Barium.	Solid	3.5	20
Beryllium.	Solid	1.85	20
Beryllium.	Single crystal	1.83*	
Bismuth.	Vacuo-distilled solid	9.78	20
Bismuth.	Single crystal	9.86*	
Boron.	Crystallized solid	2.535	
Bromine.	Solid	4.2	-273
Cadmium.	Vacuo-distilled solid	8.65	20
Cadmium.	Single crystal	8.56*	
Calcium.	Solid	1.55	20
Calcium	Single crystal	1.54*	
Carbon.	Diamond	3.52	20

Table 2b-1. Density of the Elements in Solid Form (Continued)

Element	Physical state	Density, $\mathrm{g} / \mathrm{cm}^{3}$	$\underset{{ }^{\circ} \mathrm{C}}{\text { Temp., }}$
Carbon.	Graphite	2.25	20
Cerium	Solid	6.90	20
Cerium	Cubic crystal	6.90*	
Cerium.	Hexagonal crystal	6.73*	
Cesium.	Solid	1.873	20
Chlorine	Solid	2.2	-273
Chromium.	Solid	7.14	20
Chromium.	Crystal	7.22*	
Cobalt.	Solid	8.71	21
Cobalt.	Cubic crystal	8.67*	
Columbium	Solid	8.4	20
Copper.	Vacuo-distilled solid	8.933	20
Copper.	Single crystal	8.95*	
Erbium.	Solid	4.77	
Fluorine.	Solid	1.5	-273
Gallium .	Solid	5.93	23
Germanium.	Solid	5.46	
Germanium	Single crystal	5.38*	
Gold.	Vacuo-distilled solid	18.88	20
Gold.	Cast	19.3	20
Gold.	Single crystal	19.4*	
Hafnium.	Solid	13.3	20
Hafnium.	Single crystal	11.3*	
Helium.	Solid	0.19	-273
Hydrogen.	Solid	0.763	-260
Indium.	Solid	7.28	
Indium.	Single crystal	7.43*	
Iodine.	Solid	4.94	20
Iridium.	Solid	22.42	17
Iridium.	Single crystal	22.8*	
Iron.	Pure solid	7.86	
Iron.	Single crystal Fe- α	7.92*	
Krypton.	Solid	3.4	-273
Lanthanum.	Solid	6.15	
Lead.	Vacuo-distilled	11.342	20
Lead.	Single crystal	11.48*	
Lithium.	Solid	0.534	20
Lithium.	Single crystal	0.534^{*}	
Magnesium.	Solid	1.74	20
Magnesium .	Single crystal	1.71*	
Manganese.	Solid	7.3	
Manganese.	Single crystal Mn- α	7.21*	
Mercury...	Solid	14.193	-38.8
Molybdenum	Solid	9.01	
Molybdenum.	Single crystal	10.20*	
Neodymium.	Solid	7.00	

Table 2b-1. Density of the Elements in Solid Form (Continued)

Element	Physical state	Density, $\mathrm{g} / \mathrm{cm}^{3}$	Temp., ${ }^{\circ} \mathrm{C}$
Neon.	Solid	1.204	-245
Nickel	Solid	8.8	
Nickel.	Single crystal	9.04*	
Nitrogen.	Solid	1.14	-273
Osmium.	Solid	22.5	
Osmium	Single crystal	22.8*	
Oxygen.	Solid	1.568	-273
Palladium.	Solid	12.16	
Palladium.	Single crystal	12.25*	
Phosphorus.	Solid, white	1.83	
Phosphorus.	Solid, red	2.20	
Phosphorus.	Solid, black	2.69	
Platinum.	Solid	21.37	
Platinum.	Single crystal	21.5*	
Potassium.	Solid	0.87	20
Praseodymium.	Solid	6.48	20
Radium.	Solid	5(?)	
Rhenium .	Solid	20.53	
Rhodium.	Solid	12.44	
Rubidium.	Solid	1.53	20
Ruthenium	Solid	12.1	19
Samarium.	Solid	7.7-7.8	
Scandium.	Solid	3.02(?)	
Selenium.	Solid	4.82	
Selenium.	Single crystal	4.86*	
Silicon.	Solid crystal	2.42	20
Silicon.	Single crystal	2.32*	
Silver.	Vacuo-distilled	10.492	20
Silver.	Single crystal	10.49*	
Sodium.	Solid	0.9712	20
Sodium.	Single crystal	0.954*	
Strontium.	Solid	2.60	
Sulfur.	Solid, rhombic	2.07	
Sulfur.	Solid, monoclinic	1.96	
Sulfur.	Single crystal	2.02*	
Tantalum.	Solid	16.6	
Tantalum.	Single crystal	17.1**	
Tellurium.	Solid, crystal	6.25	
Tellurium.	Single crystal	6.26*	
Thallium.	Solid	11.86	
Thallium.	Single crystal	11.7*	
Thorium.	Solid	11.00	17
Thorium.	Single crystal	12.0*	
Tin.	Solid, white tetragonal	7.29	20
Tin.	Solid, white rhombic	6.55	
Tin.	Solid, gray	5.75	20

Table 2b-1. Density of the Elementa in Solid Form (Continued)

Element	Physical state	Density, $\mathrm{g} / \mathrm{cm}^{3}$	Temp.. ${ }^{\circ} \mathrm{C}$
Tin.	White single crystal	7.30*	
Titanium	Solid	4.5	18
Titanium.	Single crystal	4.58*	
Tungsten.	Solid	19.3	
Tungsten	Single crystal	19.3*	
Uranium.	Solid	18.7	13
Vanadium.	Solid	5.87	15
Vanadium.	Single crystal	5.98*	
Yttrium.	Solid	3.8	
Zinc.	Solid, vacuo-distilled	6.92	20
Zinc.	Solid	4.32	-273
Zinc.	Single crystal	7.04*	
Zirconium	Solid	-.. 6.44	
Zirconium	Single crystal	$6.47 *$	

Table 2b-2. Density of Common Solids at $20^{\circ} \mathrm{C}$ *

Substance	Density, $\mathrm{g} / \mathrm{cm}^{3}$	Substance	Density, $\mathrm{g} / \mathrm{cm}^{3}$
Agate.	2.5-2.7	Gypsum.	2.31-2.33
Amber	1.06-1.11	Hematite.	4.9-5.3
Anthracite.	1.4-1.8	Hornblende.	3.0
Aragonite.	2.93	Ice.	0.917
Asbestos.	2.0-2.8	Ivory .	1.83-1.92
Basalt.	2.4-3.1	Lava, basaltic.	2.8-3.0
Beeswax	0.96-0.97	Lava, trachytic	2.0-2.7
Beryl	2.69-2.7	Leather, dry . . .	0.86
Bone.	1.7-2.0	Leather, greased.	1.02
Brick	1.4-2.2	Lime, mortar. . .	1.65-1.78
Butter.	0.86-0.87	Lime, slaked.	1.3-1.4
Calcite.	2.71	Limestone. . .	2.68-2.76
Camphor	0.99	Magnetite.	4.9-5.2
Cauotchoric	0.92-0.99	Malachite.	3.7-4.1
Celluloid	1.4	Marble.	2.6-2.84
Cement (set)	2.7-3.0	Mica	2.6-3.2
Chalk	1.9-2.8	Olivine	3.27-3.37
Charcoal, oak.	0.57	Opal	2.2
Charcoal, pine.	0.28-0.44	Paper	0.7-1.15
Cinnabar.	8.12	Paraffin.	0.87-0.91
Clay.	1.8-2.6	Pitch.	1.07
Coal, soft	1.2-1.5	Porcelain.	2.3-2.5
Coke.	1.0-1.7	Pyrite.	4.95-5.1
Cork	0.22-0.26	Quartz.	2.65
Cork linoleum	0.55	Resin..	1.07
Corundum	3.9-4.0	Rock salt.	2.18
Dolomite	2.84	Rubber, hard	1.19
Ebonite	1.15	Rubber, soft.	1.1
Emery.	4.0	Rutile.	4.2
Feldspar	2.55-2.75	Sandstone.	2.19-2.36
Flint.	2.63	Slate.	2.6-3.3
Fluorite	3.18	Soapstone.	2.6-2.8
Garnet.	3.15-4.3	Starch.	1.53
Gelatin	1.27	Sugar	1.61
Glass, common.	2.4-2.8	Talc.	2.7-2.8
Glass, flint.	2.9-5.9	Tallow	0.91-0.97
Glue.	1.27	Tar.	1.02
Granite	2.64-2.76	Topaz.	3.5-3.6
Graphite.	2.30-2.72	Tourmaline.	3.0-3.2
Gum arabic.	1.3-1.4	Wax, sealing.	1.8

[^1]Table 2b-3. Density of Steels*
(At room temperature)

- "Metals Handbook," 48th ed., American Society for Metals.

Table 2b-3. Density of Steels (Continued)

Table 2b-4. Density of Aluminum Alloys*
(At $20^{\circ} \mathrm{C}$)

Material	$\stackrel{\rho,}{\mathrm{g} / \mathrm{cm}^{3}}$	\% Al	\% Mn	\% Mg	\% Cu	\% Zn	\% Cr	\% Si	\% Ni	\% Bi	\% Sn	\% Ti
Casting alloys:												
13 alloy....	2.66	88	\ldots	\ldots	\ldots	\ldots	\ldots	12				
43 alloy. . . .	2.69	95	\ldots	\ldots	\ldots	\cdots	\cdots	5				
85 alloy.	2.78	91	. . .	\ldots	4	\ldots	\ldots	5				
108 alloy.	2.79	93	\ldots	\cdots	4	\cdots	\cdots	3				
Allcast.	2.76	92	\ldots	\cdots	3	\cdots	\cdots	5				
A108 alloy.	2.79	90	...	\ldots	4.5		\ldots	5.5				
113 alloy.	2.91	89.3	. .		7	1.7	\cdots	2				
C113 alloy.	2.91	89.5	\cdots	\cdots	7	...	\cdots	3.5				
122 alloy.	2.95	89.8	\ldots	0.2	10							
A132 alloy...	2.68	83.5	\ldots	1.2	0.8	\cdots	\ldots	12	2.5			
Red X-13.....	2.7	85.1	0.7	0.7	$\therefore 1.5$	\ldots	\cdots	12				
142 alloy.	2.81	92.5	. .	1.5	4	\cdots	\cdots	...	2			
195 alloy. . . .	2.81	95.5	\ldots	\ldots	4.5							
B195 alloy...	2.78	93.0		\ldots	4.5		\cdots	2.5				
214 alloy.	2.65	96.2	\ldots	3.8								
A214 alloy....	2.65	94.4	\ldots	3.8	\ldots	1.8						
218 alloy.	2.53	92.0	\cdots	8	.							
220 alloy	2.58	90.0		10								
319 alloy.	2.77	90.5	\ldots	.	3.5			6				
355 alloy.	2.70	93.2	\ldots	0.5	1.3	\ldots		5				
356 alloy.	2.68	92.7		0.3	\cdots	\cdots		7				
Red X-8.	2.73	89.9	0.3	0.3	1.5	\cdots	\cdots	8		\cdots		
360 alloy	2.68	90.0	...	0.5	\cdots	\cdots	9.5				
380 alloy.	2.76	88.0		...	3.5			8.5				
750 alloy.	2.89	91.5			1.0				1.0	\cdots	6.5	
40 E alloy.	2.81	93.2		0.6		5.5	0.5			0.2

* "Metals Handbook," 48th ed., American Society for Metals.

Table 2b-5. Density of Cobalt Alloys*

Material	$\stackrel{\rho}{\mathrm{g} / \mathrm{cm}^{3}}$	\% Co	\% W	\% Ni	\% Cr	\% Mo	\% Cb	\% Fe
Pure cobalt.	8.9	100						
61 alloy (cast).	8.54	70.0	5.0	2.0	23.0			
Vitallium.	8.30	65.0		2.0	27.0	6.0		
X-40 alloy.	8.61	60.0	7.0	10.0	23.0			
422-19 alloy	8.31	55.0		16.0	23.0	6.0		
S-816 alloy	8.59	50.0	4.0	20.0	19.0		4.0	3.0
6059.	8.21	39.0		32.0	23.0	6.0		

[^2]Table 2b－6．Density of Copper Alloys＊

$\begin{aligned} & \text { 毋 } \\ & \text { s゚ } \end{aligned}$	
$\begin{aligned} & \dot{\sigma} \\ & \text { so } \end{aligned}$	
$\begin{aligned} & \dot{Z} \\ & \text { o } \end{aligned}$	
$\begin{aligned} & \text { ব } \\ & \text { かo } \end{aligned}$	
$\sum_{\Delta \circ}^{5}$	\cdots
$\begin{aligned} & 0 \\ & \text { B } \\ & 80 \end{aligned}$	$\stackrel{+}{4}$
$\begin{aligned} & \text { 묘 } \\ & 80 \end{aligned}$	8198 -100
R 80	
$\begin{aligned} & \text { ㄱ } \\ & \text { かの } \end{aligned}$	上
4	
$\begin{aligned} & 0 \\ & 89 \end{aligned}$	
$\begin{aligned} & 3 \\ & 0 \end{aligned}$	
$2 \stackrel{\text { d }}{8}$	家 $\infty \infty \infty$ ∞

Table 2b-6. Density of Copper Alloys* (Continued)

Material	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	\% Cu	\% 0	\% P	\% Zn	$\% \mathrm{~Pb}$	\% Sn	\% Fe	\% Mn	\% Al	\% Ni	\% Si	\% Be
Leaded yellow brass	8.40	60.0		\ldots	38.0	1.0	1.0						
High-strength yellow brass.	7.9	62.0	\ldots	\ldots	26.0			3.0	3.5	5.5			
High-strength yellow brass.	8.2	58.0			39.25			1.25	0.25	1.25			
Leaded manganese brass.	8.2	59.0	\ldots	\ldots	37.0		0.75	1.25	0.50	0.75			
Nickel silver.	8.8-8.9	66.0	.		2.0	1.5	5.0		25.0		
Nickel silver.	8.85	64.0			8.0	4.0	4.0	\ldots		20.0		
Nickel silver.	8.95	57.0	\ldots	\ldots	20.0	9.0	2.0	\cdots			12.0		
Leaded nickel brass.	8.95	60.0		16.0	5.0	3.0			16.0		
Aluminum bronze.	?	89.0						1.0		10.0			
Aluminum bronze.	7.4	87.5				3.5		9.0			
Aluminum bronze.	7.5	86.0	\cdots	\ldots				4.0		10.0			
Aluminum bronze.	?	79.0						5.0		11.0	5.0		

[^3]Table 2b-7. Density of Lead Alloys*

Material	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	\% Pb	\% Ca	\% Sb	\% Sn	\% As	\% Co
Pure lead.	11.34	99.73					
Chemically pure lead.	11.34						
Cable-sheath alloy.	11.34	99.8	0.028	\cdots			
1% antimonial lead.	11.27	99.0		1.0			
Hard lead.	11.04	96.0		4.0			
Hard lead.	10.88	94.0		6.0			
8\% antimonial lead	10.74	92.0		8.0			
Grid metal.	10.66	91.0		9.0			
ASTM-12 bearing metal.	10.67	90.0		10.0			
ASTM-11 bearing metal.	10.28	85.0		15.0			
Lead-base babbitt. .	10.24	85.0		10.0	5.0		
G lead-base babbitt.	10.1	83.0		12.75	0.75	3.0	
S lead-base babbitt.	10.1	83.0		15.0	1.0	1.0	
ASTM-10 bearing metal.	10.07	83.0		15.0	2.0		
Lead-base babbitt.	10.04	80.0		15.0	5.0		
Lead-base babbitt.	9.73	75.0		15.0	10.0		
ASTM-6 bearing metal.	9.33	63.5	\ldots	15.0	20.0		1.5
Tin-lead solder.	11.0	95.0			5.0		
Tin-lead solder.	10.2	80.0			20.0		
50-50 half and half......	8.89	50.0			50.0		

* "Metals Handbook," 48th ed., American Society for Metals.

Table 2b-8. Density of Magnesium Alloys*

Material	$\begin{gathered} \rho, \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	\% Mg	\% Al	\% Mn	\% Zn	\% Sn	- Remarks
Magnesium . .	1.74	99.8					
A10 alloy.	1.81	89.9	10.0	0.1		\ldots	Wrought, sand cast, and
							permanent-mold cast
AZ91 alloy.	1.81		9.0	0.2	0.7		Die cast
AZ92 alloy .	1.82		9.0	0.1	2.0		Sand cast and perma-
							nent-mold cast
A8 alloy	1.80	. .	8,0	0.2		. .	Sand cast
AZ61X alloy.	1.80	...	6.0	0.2	1.0	\ldots	Wrought
AM244 alloy .	1.76	. . .	4.0	0.2	Sand cast
AM11 alloy ...	1.70	. . .	1.25	1		\ldots	Die cast
AZ80X alloy. .	1.80	.	8.5	0.15	0.5	. .	Wrought
AZ63 alloy . . .	1.84	. . .	6.0	0.2	3.0	\ldots	Sand cast
AZ51X alloy.	1.79	. . .	5.0	0.25	1.0	\ldots	Wrought
AZ31X alloy.	1.78	. . .	3.0	0.3	1.0		Wrought
M1.	1.76	. . .		1.5	. . .		Wrought
TA54.	1.84		3.0	0.5		5.0	Wrought
$\mathrm{Mg}-\mathrm{Al}$ alloy . . .	1.75	98.0	2.0				
$\mathbf{M g}-\mathrm{Al}$ alloy . .	1.77	96.0	4.0				
$\mathbf{M g}$-Al alloy .	1.78	94.0	6.0				
$\mathrm{Mg}-\mathrm{Al}$ alloy . . .	1.80	92.0	8.0				
Mg-Al alloy . . .	1.81	90.0	10.0				
$\mathrm{Mg}-\mathrm{Al}$ alloy . . .	1.82	88.0	12.0				

[^4]Table 2b-9. Density of Nickel alloys*

Material	$\underset{\mathrm{g} / \mathrm{cm}^{3}}{\rho,}$	\% Ni	\% Co	\% Si	\% Mn	\% C	\% Al	\% Cu	\% Fe	\% Mo	\% Cr	\% W
Nickel.	8.902	99.95										
A nickel.	8.885	99.4										
Cast nickel	8.34	97.0	.	1.5	0.5	0.5						
D nickel.	8.78	95.2	4.5							
Z nickel.	8.75	94	.	\ldots	\cdots	\cdots	4.5					
Monel.	8.84	67	.	\ldots	1.0	0.15	\ldots	30	1.4			
Cast monel.	8.63	63	.	1.6	...	0.2	\cdots	32				
K monel.	8.47	66	.	\cdots	\ldots	\ldots	3	29				
S monel.	8.36	63	.	4	...	\ldots	\cdots	30	2			
Hastelloy A.	8.80	60	\ldots	20	20		
Hastelloy B.	9.24	65	\ldots	\ldots	5	30		
Hastelloy C. .	8.94	58	.	\cdots	. .	\cdots	\ldots	.	5	17	15	5
Hastelloy D.	7.8	85	.	8-11	\ldots	\ldots	\ldots	3				
Illium G. .	8.58	58	\ldots	0.2	\ldots	6	6	6	22	
Inconel.	8.51	80	-	\cdots	. .	. \cdot	\ldots	.	6	.	14	
Cast Inconel.	8.3	77.5	.	2	\ldots	6	-	13.5	
Chromel A.	8.4	80	\ldots	\ldots	...	\ldots	\ldots	.	\ldots	.	20	
Nichrome.	8.25	60	\ldots	\cdots	24	.	16	
Chromax.	7.95	35	.	\ldots	\cdots	\cdots	\ldots	\cdots	50	.	15	
Constantin (wrought)	8.9	45	\cdots	55				
$\mathrm{Ni}-\mathrm{Fe}$ alloys.......	8.8	90	\ldots	\cdots	.	10			
$\mathrm{Ni}-\mathrm{Fe}$ alloys...	8.6	80	\ldots	\ldots	\cdots	.	20			
$\mathrm{Ni}-\mathrm{Fe}$ alloys. .	8.5	70	\ldots	\ldots	.	30			
$\mathrm{Ni}-\mathrm{Fe}$ alloys.	8.35	60	\ldots	\ldots	\cdots	\cdots	...	\cdots	40			
Permalloy..	8.6	78	\ldots	\ldots	\ldots	\ldots	\ldots	\because	22			
Numetal...	8.6	76	\cdots	\cdots	\cdots	\cdots	\cdots	6	16		2	

* "Metals Handbook," 48th ed., American Society for Metals.

Table 2b-10. Density of Zinc Alloys*

Material	$\stackrel{\rho,}{\mathrm{g} / \mathrm{cm}^{3}}$	\% Zn	\% Al	\% Cu	\% Mg	\% Pb	\% Cd
Zinc.	7.133	100					
Zamak (2)	6.7	92	4	3	0.03		
Zamak (3)	6.6	95	4		0.04		
Zamak (5).	6.7	94	4	1	0.04		
SAE 63, T-11 (cast).	6.9	86	4	10			
Commercial rolled zinc.	7.14	99	.		\ldots	0.08	
Commercial rolled zinc.	7.14	99	\cdots	.	\ldots	0.06	0.06
Commercial rolled zinc.	7.14	99	\cdots	\cdots		0.3	0.3
Zilloy 40 (rolled).	7.18	98	\cdots	1		0.08	
Zilloy 15 (rolled).	7.18	98		1	0.01	0.1	

[^5]Table 2b-11. Density of Woods (Oven-dry)*

Common name	Botanical name	$\rho, \mathrm{g} / \mathrm{cm}^{3}$
Applewood or wild apple.	Pyrus malus	0.745
Ash, black	Fraxinus nigra	0.526
Ash, blue.	Fraxinus quadrangulata	0.603
Ash, green	Fraxinus pennsylvanica lanceolata	0.610
Ash, white	Fraxinus americana	0.638
Aspen. .	Populus tremuloides	0.401
Aspen, large-toothed	Populus grandidentata	0.412
Balsa, tropical American.	Ochroma	0.12-0.20 \dagger
Basswood.	Tilia glabra or Tilia americanus	0.398
Beech.	Fagus grandifolia or Fagus americana	0.655
Beech, blue.	Carpinus caroliniana	0.717
Birch, gray.	Betula populifolia	0.552
Birch, paper	Betula papyrifera	0.600
Birch, sweet.	Betula lenta	0.714
Birch, yellow	Betula lutea	0.668
Buckeye, yellow	Aesculus octandra	0.383
Butternut.	Juglans cinera	0.404
Cedar, eastern red	Juniperus virginiana	0.492
Cedar, northern white.	Thuja occidentalis	0.315
Cedar, southern white.	Chamaecyparis thyoides	0.352
Cedar, tropical American.	Cedrela odorata	0.37-0.70†
Cedar, western red.	Thuja plicata	0.344
Cherry; black	Prunus serotine	0.534
Cherry, wild red.	Prunus pennsylvanica	0.425
Chestnut.	Castanea dentata	0.454
Corkwood.	Leitneria floridana	0.207
Cottonwood, eastern	Populus deltoides	0.433
Cypress, southern.	Taxodium distichum	0.482
Dogwood (flowering).	Cornus florida	0.796
Douglas fir (coast type).	Pseudotsuga taxifolia	0.512
Douglas fir (mountain type).	Pseudotsuga taxifolia	0.446
Ebony, Andaman marblewood (India)	Diospyros Kurzii	$0.978 \dagger$
Ebony, Ebene marbre (Mauritius, East Africa)	Diospyros melanida	$0.768 \dagger$
Elm, American.	Ulmus americana	0.554
Elm, rock	Ulmus racemosa or Ulmus thomasi	0.658
Elm, slippery	Ulmus fulva or Ulmus pubescens	0.568
Eucalyptus, Karri (west Australia).	Eucalyptus diversicolor	$0.829 \dagger$
Eucalyptus, mahogany (New South Wales)	Eucalyptus hemilampra	$1.058 \dagger$
Eucalyptus, west Australian mahogany	Eucalyptus marginata	$0.787 \dagger$
Fir, balsam	Abies balsamea	0.414
Fir, silver.	Abies amabilis	0.415
Greenheart (British Guiana).	Nectandra rodioci	1.06-1.23 \dagger

[^6]Table 2b-11. Density of Woods (Oven-dry)* (Continued)

$\therefore \quad$ Common name	Botanical name	$\rho, \mathrm{g} / \mathrm{cm}^{3}$
Gum, black.	Nyssa sylvatica	0.552
Gum, blue. .	Eucalyptus globulus	0.796
Gum, red.	Liquidambar styraciflua	0.530
Gum, tupelo	Nussa aquatica	0.524
Hemlock, eastern	Tsuga canadensis	0.431
Hemlock, mountain	Tsuga martensiana	0.480
Hemlock, western.	Tsuga heterophylla	0.432
Hickory; bigleaf shagbark	Hicoria laciniosa	0.809
Hickory; mockernut.....	Hicoria alba	0.820
Hickory, pignut.	Hicoria glabra	0.820
Hickory, shagbark.	Hicoria ovata	0.836
Hornbeam........	Ostryra virginiana	0.762
Ironwood, black	Rhamnidium ferreum	1.077
Jacaranda, Brazilian rosewood.	Dalbergia nigra	$0.85 \dagger$
Larch, western	Larix occidentalis	0.587
Locust, black or yellow	Robinia pseudacacia	0.708
Locust, honey	Gleditsia triacanthos	0.666
Magnolia, cucumber.........	Magnolia acuminata	0.516
Mahogany (West Africa)....	Khaya ivorensis	$0.668 \dagger$
Mahogany (East India)..	Swietenia macrophylla	$0.54 \dagger$
Mahogany (East India).	Swietenia mahogani	$0.54 \dagger$
Maple, black	Acer nigrum	0.620
Maple, red.	Acer rubrum	0.546
Maple, silver	Acer saccharinum	0.506
Maple, sugar	Acer saccharum	0.676
Oak, black	Quercus velutina	0.669
Oak, bur. .	Quercus macrocarpa	0.671
Oak, canyon live	Quercus chrysolepsis	0.838
Oak, chestnut....	Quercus montana	0.674
Oak, laurel...	Quercus laurifolia	0.703
Oak, live. .	Quercus virginiana	0.977
Oak, pin.	Quercus palustris	0.677
Oak, post	Quercus stellata or Quercuis minor	0.738
Oak, red.	Quercus borealis	0.657
Oak, scarlet.	Quercus coccinea	0.709
Oak, swamp chestnut.	Quercus prinus	0.756
Oak, swamp white.	Quercus bicolor or Quercus platanoides	0.792
Oak, white.	Quercus alba	0.710
Persimmon.	Diospyros virginiana	0.776
Pine, eastern white.	Pinus strobus	0.373
Pine, jack.	Pinus banksiana or Pinus divaricata	0.461
Pine, loblolly	Pinus taeda	0.593
Pine, longleaf.	Pinus palustris	0.638
Pine, pitch:	Pinus rigida	0.542
Pine, red. .	Pinus resinosa	0.507

Table 2b-11. Density of Woods (Oven-dry)* (Continued)

Common name	Botanical name	$\rho, \mathrm{g} / \mathrm{cm}^{3}$
Pine, shortleaf.	Pinus echinata	0.584
Poplar, balsam.	Populus balsamifera or Populus candicans	0.331
Poplar, yellow.	Liriodendron tulipifera	0.427
Redwood.	Sequoia sempervivens	0.436
Sassafras.	Sassafras variafolium	0.473
Satinwood (Ceylon)	Chloroxylon swietenia	$1.031 \dagger$
Sourwood..	Oxydendrum arboreum	0. 593
Spruce, black	Picea mariana	0.428
Spruce, red.	Picea rubra or Picea rubens	0.413
Spruce, white.	Picea glauca	0.431
Sycamore.	Platanus occidentalis	0.539
Tamarack.	Larix laricina or Larix americana	0.558
Teak (India).	Tectona grandis	$0.582 \dagger$
Walnut, black	Juglans nigra	0.562
Willow, black	Salix nigra	0.408

[^7]Table 2b-12. Density of Plastics*

Resin group and subgroup	Trade names	$\rho, \mathrm{g} / \mathrm{cm}^{3}$	
		Lower limit	Upper limit
Acrylate and methacrylate.	Lucite, Crystalite, Plexiglas	1.16	1.20
Casein	Ameroid	1.34	1.35
Cellulose acetate (sheet).	Bakelite, Lumarith, Plastecele, Protectoid	1.27	1.60
Cellulose acetate (molded).	Fibestos, Hercules, Nixonite, Tenite	1.27	1.60
Cellulose acetobutyrate.	Tenite II	1.14	1.23
Cellulose nitrate.	Celluloid, Nitron, Nixonoid, Pyralin	1.35	1.60
Ethyl cellulose	Ditzler, Ethocel, Ethofoil, Lumarith, Nixon, Hercules	1.05	1.25
Phenol-formaldehyde compounds: Wood-flour-filled (molded).	Bakelite, Durez, Durite, Micarta, Catalin, Haveg, Indur, Makalot, Resinox, Textolite, Formica	1.25	1.52
Mineral-filled (molded).	Bakelite, Durez, Durite, Micarta, Catalin, Haveg, Indur, Makalot, Resinox, Textolite, Formica	1.59	2.09
Macerated-fabric-filled (molded)...	Bakelite, Durez, Durite, Micarta, Catalin, Haveg, Indur, Makalot, Resinox, Textolite, Formica	1.36	1.47
Paper-base (laminated).	Bakelite, Durez, Durite, Micarta, Catalin, Haveg, Indur, Makalot, Resinox, Textolite, Formica	1.30	1.40
Fabric base (laminated).	Bakelite, Durez, Durite, Micarta, Catalin, Haveg, Indur, Makalot, Resinox, Textolite, Formica	1.30	1.40
Cast (unfilled).	Bakelite, Catalin, Gemstone, Marblette, Opalon, Prystal	1.20	1.10
Phenolic furfural (filled)	Durite	1.3	2.0
Polyvinyl acetals (unfilled).	Alvar, Formvar, Saflex, Butacite, Vinylite X, etc.	1.05	1.23
Polyvinyl acetate.	Gelva, Vinylite A, etc.	1.19	(?)
Copolyvinyl chloride acetate.	Vinylite V, etc.	1.34	1.37
Polyvinyl chloride (and copolymer) plasticized.	Koroseal, Vinylite	1.2	1.7
Polystyrene.	Bakelite, Loalin, Lustron, Styron	1.054	1.070

[^8]Table 2b-12. Density of Plastics (Continued)

Resin group and subgroup	Trade names	$\rho, \mathrm{g} / \mathrm{cm}^{3}$	
		Lower limit	Upper limit
Modified isomerized rubber	Plioform, Pliolite	1.06	(?)
Chlorinated rubber.	Torneseit, Parlon	1.64	(?)
Urea formaldehyde.	Bakelite, Beetle, Plascon	1.45	1.55
Melamine formaldehyde filled	Catalin, Melmac, Plaskon	1.49	1.86
Vinylidene chloride.	Saran, Velon	1.68	1.75

Table 2b-13. Density of Rubbers*

Rubber; raw polymer	Trade Name	At $25^{\circ} \mathrm{C}$
Natural rubber.	Hevea	0.92
Butadienestyrene copolymer		0.94
Butadieneacrylonitrile copolymer		1.00
Polychloroprene (neoprene).		1.25
Isobutylenediolefin copolymer (butyl).		0.91
Alkylene polysulfide.		1.35

*"Handbook of Chemistry and Physics," 30th ed., p. 1282.

2c. Centers of Mass and Moments of Inertia

R. B. LINDSAY
Brown University

Table 2c-1. Centers of Mass*

Body

1. Uniform circular wire of radius R, \quad On axis of symmetry distant $(R \sin \theta) / \theta$ subtending angle 2θ at center
2. Uniform triangular sheet
3. Uniform rectangular sheet
4. Uniform quadrilateral sheet
from center
At intersection of the medians
At intersection of the diagonals
From each vertex lay off segments equal
to $\frac{1}{3}$ the length of the corresponding sides meeting at this vertex. Draw extended lines through the ends of the segments associated with each vertex, respectively. These intersect to form a parallelogram. The intersection of the diagonals of this parallelogram is the center of mass of the quadrilateral
On axis of symmetry distant $(2 R \sin \theta) /$ 3θ from center

On axis of symmetry distant $l^{3} / 12 A$ from center, where $A=$ area of segment

$$
=\frac{R^{2}(2 \theta-\sin 2 \theta)}{2}
$$

On axis of symmetry distant $4 a / 3 \pi$ from center of equivalent ellipse if the semiellipse is bounded by minor axis. The distance is $4 b / 3 \pi$ if the semiellipse is bounded by the major axis
At point $4 b / 3 \pi$ above major axis and $4 a / 3 \pi$ above minor axis and minor axes of equivalent ellipse equal to $2 a$ and $2 b$, respectively
9. Uniform parabolic sheet segment. Chord $=2 l$ perpendicular to axis of symmetry distant h from vertex
10. Right rectangular pyramid (rectangular base with sides a and b and with height h)
11. Pyramid (general)

On axis of symmetry distant $3 h / 5$ from vertex

On axis of symmetry distant $h / 4$ from vertex

On line joining apex with center of symmetry of base at distance three-quarters of its length from apex

[^9]Table 2c-1. Centers of Mass (Continued)

Body
12. Frustum of pyramid with area of larger base S and smaller base s, and altitude h
13. Right circular cone (height h)
14. Frustum of right circular cone (altitude h, radii of larger and smaller bases R and r, respectively)
15. Cone (general)
16. Frustum of cone with altitude h and radii of larger and smaller bases R and r, respectively
17. Spherical sector of radius R, with plane vertex angle equal to 2θ
18. Hemisphere of radius R
19. Spherical segment of radius R and maximum height from base equal to h
20. Octant of ellipsoid with semiaxes a, b, c, respectively, and center of corresponding ellipsoid at origin of system of rectangular coordinates
21. Paraboloid of revolution with altitude h and radius of circular base equal to R
22. Uniform hemispherical shell of radius R (excluding base)
23. Conical shell (excluding base)

On line joining apex of corresponding pyramid with center of symmetry of larger base and distant

$$
\frac{h(S+2 \sqrt{S s}+3 s)}{4(S+\sqrt{S s}+s)}
$$

from the larger base
On axis of symmetry distant $h / 4$ from base
On axis of symmetry distant

$$
\frac{h\left[(R+r)^{2}+2 r^{2}\right]}{4\left[(R+r)^{2}-R r\right]}
$$

from the base
On line joining apex with center of base at distance three-quarters of its length from apex
On line joining apex of corresponding cone with center of larger base and distant

$$
\frac{h\left[(R+r)^{2}+2 r^{2}\right]}{4\left[(R+r)^{2}-R r\right]}
$$

from the larger base
On axis of symmetry distant

$$
\frac{3 R}{8}(1+\cos \theta)
$$

from the vertex
On axis of symmetry distant $3 R / 8$ from center of corresponding sphere
On axis of symmetry distant $\frac{h(4 R-h)}{4(3 R-h)}$ above the base of the segment
Point with coordinates

$$
\bar{x}=\frac{3 a}{8} \quad \bar{y}=\frac{3 b}{8} \quad \bar{z}=\frac{3 c}{8}
$$

On axis of symmetry distant $h / 3$ from the base
On axis of symmetry distant $R / 2$ from center of corresponding sphere
On line joining the apex with the center of symmetry of the base at distance twothirds its length from the apex

Table 2c-2. Moments of Inertia*

Body	Axis	Moment of inertia
Uniform rectangular sheet of sides a and b	Through the center parallel to b	$m \frac{a^{2}}{12}$
Uniform rectangular sheet of sides a and b	Through the center perpendicular to the sheet	$m \frac{a^{2}+b^{2}}{12}$
Uniform circular sheet of radius r	Normal to the plate through the center	$m \frac{r^{2}}{2}$
Uniform circular sheet of radius r	Along any diameter	$m \frac{r^{2}}{4}$
Uniform circular ring sheet. Radii r_{1} and r_{2}	Through center normal to plane of ring	$m \frac{r_{1}{ }^{2}+r_{2}{ }^{2}}{2}$
Uniform circular ring sheet. Radii r_{1} and r_{2}	A diameter	$m \frac{r_{1}{ }^{2}+r_{2}{ }^{2}}{4}$
Uniform thin spherical shell, mean radius r	A diameter	$m \frac{2 r^{2}}{3}$
Uniform cylindrical shell, radius r, length l	Longitudinal axis	$m r^{2}$
Right circular cylinder of radius r, length l	Longitudinal axis	$m \frac{r^{2}}{2}$
Right circular cone, altitude h, radius of base r	Axis of the figure	$m \frac{3}{10} r^{2}$
Spheroid of revolution, equatorial radius r	Polar axis	$m \frac{2 r^{2}}{5}$
Ellipsoid, axes $2 a, 2 b, 2 c \ldots$.	Axis $2 a$	$m \frac{\left(b^{2}+c^{2}\right)}{5}$
Uniform thin rod	Normal to the length, at one end	$m \frac{l^{2}}{3}$
Uniform thin rod	Normal to the length, at the center	$m \frac{l^{2}}{12}$
Rectangular prism, dimensions $2 a, 2 b, 2 c$	Axis $2 a$	$m \frac{\left(b^{2}+c^{2}\right)}{3}$
Sphere, radius r...........	A diameter	$m \frac{2}{5} r^{2}$
Rectangular parallelepiped, edges a, b, and c	Through center perpendicular to face $a b$ (parallel to edge c)	$m \frac{a^{2}+b^{2}}{12}$
Right circular cylinder of radius r, length l	Through center perpendicular to the axis of the figure	$m\left(\frac{r^{2}}{4}+\frac{l^{2}}{12}\right)$
Spherical shell, external radius r_{1}, internal radius r_{2}	A diameter	$m \frac{2}{5} \frac{\left(r_{1}{ }^{5}-r_{2}{ }^{5}\right)}{\left(r_{1}{ }^{3}-r_{2}{ }^{3}\right)}$
Hollow circular cylinder, length l, external radius r_{1}, internal radius r_{2}	Longitudinal axis	$m \frac{\left(r_{1}{ }^{2}+r_{2}{ }^{2}\right)}{2}$
Hollow circular cylinder, length l, radii r_{1} and r_{2}	Transverse diameter	$m\left(\frac{r_{1}{ }^{2}+r_{2}{ }^{2}}{4}+\frac{l^{2}}{12}\right)$

[^10]Table 2c-2. Moments of Inertia (Continued)

Body	Axis	Moment of inertia
Hollow circular cylinder, length l, very thin, mean radius r	Transverse diameter	$m\left(\frac{r^{2}}{2}+\frac{l^{2}}{12}\right)$
Right elliptical cylinder, length $2 a$, transverse axes $2 b, 2 c$	Longitudinal axis $2 a$ through center of mass	$m \frac{\left(b^{2}+c^{2}\right)}{4}$
Right elliptical cylinder, length $2 a$, transverse axes $2 b, 2 c$	Transverse axis $2 b$ through center of mass	$m\left(\frac{c^{2}}{4}+\frac{a^{2}}{3}\right)$
Frustum of right circular cone with radii of larger and smaller bases, equal to R and r, respectively	Axis of symmetry	$\frac{3 m\left(R^{5}-r^{5}\right)}{10\left(R^{3}-r^{3}\right)}$
Right circular cone, radius of base r, altitude h	Perpendicular to axis of symmetry, through center of mass	$\frac{3 m}{20}\left(r^{2}+\frac{h^{2}}{4}\right)$
Hemisphere of radius r	Axis of symmetry	$\frac{2 m r^{2}}{5}$
Spherical sector of radius r, with plane angle at vertex $=2 \theta$	Axis of symmetry through vertex	$\frac{m r^{2}(1-\cos \theta)(2+\cos \theta)}{5}$
Spherical segment of radius r and maximum height h	Axis of symmetry perpendicular to base	$m\left(r^{2}-\frac{3 r h}{4}+\frac{3 h^{2}}{20}\right) \frac{2 h}{(3 r-h)}$
Torus or anchor ring mean radius R, radius of circular cross section r	Axis of symmetry perpendicular to plane of ring	$\frac{m\left(4 R^{2}+3 r^{2}\right)}{4}$
Torus mean radius R, radius of circular cross section r	Axis of symmetry in plane of ring	$\frac{m\left(4 R^{2}+5 r^{2}\right)}{8}$

2d. Coefficients of Friction

DUDLEY D. FULLER

Columbia University

2d-1. Static and Sliding Friction. All surfaces encountered in experience are more or less rough in the sense that as bodies move on them they exert forces parallel to the surface and in such direction as to resist motion. Such forces are termed "frictional." Frictional force is proportional to the normal thrust between body and surface; how-

MECHANICS

ever, the coefficient of proportionality, known as the coefficient of friction, can for the same body and surface vary a great deal depending on the nature of the contact and the motion. It is customary to define

$$
\begin{equation*}
f_{s}=\frac{\text { magnitude of maximum frictional force }}{\text { magnitude of normal thrust }} \tag{2~d-1}
\end{equation*}
$$

as the coefficient of static friction if motion is just on the point of starting. On the other hand, f_{K}, called the coefficient of kinetic or sliding friction, is the value of the ratio in Eq. (2d-1), when motion has once been established. In general $f_{K}<f_{s}$ for the same body and surface or the same two surfaces.

The friction between surfaces is dependent upon many variables. These include the nature of the materials themselves, surface finish and surface condition, atmospheric dust, humidity, oxide and other surface films, velocity of sliding, temperature, vibration, and extent of contamination.

In many instances the degree of contamination is perhaps the most important single variable. For example, Table $2 \mathrm{~d}-1$ lists values for the static coefficient of friction f_{s} for steel on steel under various test conditions.

Table 2d-1. Coefficients of Static Friction for Steel on Steel

Test condition	f_{s}	Ref.*
Degassed at elevated temp. in high vacuum	Weld on contact	20
Grease-free in vacuum.	0.78	1
Grease-free in air.	0.39	8
Clean and coated with oleic acid	0.11	1
Clean and coated with solution of stearic acid	0.013	21

* References follow Table 2d-4.

The most effective lubricants for nonfluid lubrication are generally those which react chemically with the solid surface and form an adhering film that is attached to the surface with a chemical bond. This action depends upon the nature of the lubricant and upon the reactivity of the solid surface. Table $2 \mathrm{~d}-2$ indicates that a fatty acid such as those found in animal, vegetable, and marine oils reduces the coefficient

Table 2d-2. Coefficients of Static Friction at Room Temperature

Surfaces	Clean	Paraffin oil	Paraffin oil $+1 \%$ lauric acid	Degree of reactivity of solid
Nickel.	0.7	0.3	0.28	Low
Chromium	0.4	0.3	0.3	Low
Platinum	1.2	0.28	0.25	Low
Silver	1.4	0.8	0.7	Low
Glass	0.9		0.4	Low
Copper	1.4	0.3	0.08	High
Cadmium	0.5	0.45	0.05	High
Zinc.	0.6	0.2	0.04	High
Magnesium	0.6	0.5	0.08	High
Iron.	1.0	0.3	0.2	Mild
Aluminum.	1.4	0.7	0.3	Mild

of friction markedly only if it can react effectively with the solid surface. Paraffin oil is almost completely nonreactive. The data are taken from ref. 22.

It is generally recognized that coefficients of friction reduce on dry surfaces as sliding velocity increases. Dokos (ref. 4) has measured this for steel on steel. It is difficult to screen out the effect of temperature, however, which also increases with sliding velocity so that frequently, under these conditions, both variables are present. Table $2 \mathrm{~d}-3$ gives values which are the average of four tests at high contact pressures.

Table 2d-3. Coefficients of Friction, Steel on Steel, Unlubricated

Velocity, in./sec...............0001	0.001	0.01	0.1	1	10	100	
Coefficient of friction f_{K}.	0.53	0.48	0.39	0.31	0.23	0.19	0.18

Table 2d-4 presents typical values of the coefficients of static and sliding friction for various materials under a variety of conditions.

Table 2d-4. Coefficients of Static and Sliding Friction*

Materials	Static friction		Sliding friction	
	Dry	Greasy	Dry	Greasy
Hard steel on hard steel.	0.78(1)	0.11(1,a)	0.42(2)	0.029(5,h)
		0.23(1,b)		$0.081(5, \mathrm{c})$
		0.15(1,c)		0.080(5,i)
		$0.11(1, \mathrm{~d})$		$0.058(5, \mathrm{j})$
		0.0075(18,p)		0.084(5,d)
		0.0052(18,h)	0.105(5,k)
				$0.096(5,1)$
				$0.108(5, \mathrm{~m})$
			0.57 (3)	$0.12(5, \mathrm{a})$
Mild steel on mild steel.	0.74(19)			0.09(3,a)
				0.19(3, u)
Hard steel on graphite.	0.21(1)	0.09(1,a)		
Hard steel on babbitt (ASTM 1)..	0.70(11)	0.23(1,b)	0.33(6)	0.16(1,b)
		$0.15(1, \mathrm{c})$		0.06(1,c)
		0.08(1,d)		0.11(1,d)
		0.085(1,e)		
Hard steel on babbitt (ASTM 8)..	0.42(11)	$0.17(1, b)$	0.35(11)	$0.14(1, \mathrm{~b})$
		0.11(1,c)		0.065(1,c)
		0.09(1,d)		0.07(1,d)
		0.08(1,e)		0.08(11,h)
Hard steel on babbitt (ASTM 10).	$0.25(1, \mathrm{~b})$		$0.13(1, \mathrm{~b})$
		$0.12(1, \mathrm{c})$		0.06(1,c)
		0.10(1,d)		$0.055(1, \mathrm{~d})$
Mild steel on cadmium silver. .				0.097(2,f)
Mild steel on phosphor bronze.			0.34(3)	$0.173(2, \mathrm{f})$
Mild steel on copper lead.				$0.145(2, \mathrm{f})$
Mild steel on cast iron.		0.183(15,c)	0.23(6)	0.133(2,f)
Mild steel on lead..	0.95(11)	0.5(1,f)	$0.95(11)$	$0.3(11, \mathrm{f})$
Nickel on mild steel.			0.64(3)	0.178(3,x)
Aluminum on mild steel.	0.61(8)		0.47 (3)	
Magnesium on mild steel.			0.42(3)	
Magnesium on magnesium.....	0.6(22)	0.08(22,y)		

[^11] list.

Table 2d-4. Coffficients of Static and Sliding Friction (Continued)

Materials	Static friction		Sliding friction	
	Dry	Greasy	Dry	Greasy
Cadmium on mild steel.			0.46(3)	
Copper on mild steel	0.53(8)		0.36(3)	0.18(17,a)
Nickel on nickel.	1.10(16)	0.28(22,y)	0.53 (3)	$0.12(3, w)$
Brass on mild steel	0.51 (8)	$0.11(22, c)$	0.44 (6)	
Brass on cast iron			0.30(6)	
Zinc on cast iron.	0.85(16)		0.21 (7)	
Magnesium on cast iron			0.25 (7)	
Copper on cast iron.	1.05(16)		0.29 (7)	
Tin on cast iron.			$0.32(7)$	
Lead on cast iron			0.43(7)	
Aluminum on aluminum	1.05(16)	$0.30(22, y)$	1.4(3)	
Glass on glass.	0.94(8)	$\begin{aligned} & 0.35(22, \mathrm{y}) \\ & 0.1(22, \mathrm{q}) \end{aligned}$	0.4(3)	$0.09(3, a)$
Carbon on glass.			0.18(3)	
Garnet on mild steel			$0.39(3)$	
Glass on nickel.	0.78(8)		0.56(3)	
Copper on glass.	0.68(8)		0.53 (3)	
Cast iron on cast iron	1.10(16)	$0.2(22, y)$	0.15 (9)	$0.070(9, \mathrm{~d})$
Bronze on cast iron			0.22 (9)	$0.077(9, \mathrm{n})$
Oak on oak (parallel to grain)....	0.62(9)		0.48(9)	$\begin{aligned} & 0.164(9, \mathrm{r}) \\ & 0.067(9, \mathrm{~s}) \end{aligned}$
Oak on oak (perpendicular)...... .	0.54(9)		0.32(9)	0.072(9,s)
Leather on oak (parallel).....	0.61 (9)		0.52 (9)	
Cast iron on oak.			0.49(9)	$0.075(9, \mathrm{n})$
Leather on cast iron			0.56(9)	$0.36(9, t)$
Teflon on Teflon	0.04(22)		0.04(22,f)	
Teflon on steel.	0.04(22)		$0.04(22, \mathrm{f})$	
Fluted rubber bearing on steel.				0.05(13, t)
Laminated plastic on steel....... .			$0.35(12)$	$0.05(12, \mathrm{t})$
Tungsten carbide on tungsten carbide.	0.2(22)	$0.12(22, \mathrm{a})$		
Tungsten carbide on steel. .	$0.5(22)$	0.08(22,a)		

Lubricant References for Table 2d-4

a. Oleic acid
b. Atlantic spindle oil (light mineral)
c. Castor oil
d. Lard oil
e. Atlantic spindle oil plus 2 per cent oleic acid
f. Medium mineral oil
g. Medium mineral oil plus $\frac{1}{2}$ per cent oleic acid
h. Stearic acid
i. Grease (zinc oxide base)
j. Graphite
k. Turbine oil plus 1 per cent graphite
l. Turbine oil plus 1 per cent stearic aid
m. Turbine oil (medium mineral)
n. Olive oil
p. Palmitic acid
q. Ricinoleic acid
r. Dry soap
s. Lard
t. Water
u. Rape oil
v. 3-in-1 oil
w. Octyl alcohol
x. Triolein
y. 1 per cent lauric acid in paraffin oil

References for Table 2d-4

1. Campbell, W. E.: Studies in Boundary Lubrication, Trans. ASME 61 (7), 633-641 (1939).
2. Clark, G. L., B. H. Lincoln, and R. R. Sterrett: Fundamental Physical and Chemical Forces in Lubrication, Proc. API 16, 68-80 (1935).
3. Beare, W. G., and F. P. Bowden: Physical Properties of Surfaces. 1, Kinetic Friction, Trans. Roy. Soc. (London), ser. A, 234, 329-354 (June 6, 1935).
4. Dokos, S. J.: Sliding Friction under Extreme Pressures-1, J. Appl. Mech. 13, A-148-156 (1946).
5. Boyd, J., and B. P. Robertson: The Friction Properties of Various Lubricants at High Pressures, Trans. ASME 67 (1), 51-56 (January, 1945).
6. Sachs, G.: Versuche über die Reibung fester Korper (Experiments about the Friction of Solid Bodies), Z. angew. Math. Mech. 4, 1-32 (February, 1924).
7. Honda, K., and R. Yamada: Some Experiments on the Abrasion of Metals, J. Inst. Metals 33 (1), 49-69 (1925).
8. Tomlinson, G. A.: A Molecular Theory of Friction, Phil. Mag., ser. 7, 7 (46), 905-939 (suppl., June, 1929).
9. Morin, A.: Nouvelles experiences sur le frottement (New Experiments on Friction), Acad. roy. Sciences, Paris (a) 57, 128 (1832); (b) 59, 104 (1834); (c) 60, 143 (1835); (d) 63, 99 (1838).
10. Claypoole, W.: Static Friction, Trans. ASME 65, 317-324 (May, 1943).
11. Tabor, D.: The Frictional Properties of Some White-metal Bearing Alloys: The Role of the Matrix and Hard Particles, J. Appl.Phys. 16 (6), 325-337 (June, 1945).
12. Eyssen, G. R.: Properties and Performance of Bearing Materials Bonded with Synthetic Resin, General Discussion on Lubrication and Lubricants, Inst. Mech. Engrs., J. 1, 84-92 (1937).
13. Brazier, S. A., and W. Holland-Bowyer: Rubber as a Material for Bearings, General Discussion on Lubrication and Lubricants, Inst. Mech. Engrs., J. 1, 30-37 (1937); India-Rubber J. 94 (22), 636-638 (Nov. 27, 1937).
14. Burwell, J. T.: The Role of Surface Chemistry and Profile in Boundary Lubrication, J. SAE 50 (10), 450-457 (1942).
15. Stanton, T. E.: "Friction," Longmans, Green \& Co., Ltd., London, 1923.
16. Ernst, H., and M. E. Merchant: Surface Friction of Clean Metals-A Basic Factor in Metal Cutting Process, Proc. Conf. Friction and Surface Finish (MIT) June, 1940, pp. 76-101.
17. Gongwer, C. A.: Proc. Conf. Friction and Surface Finish (MIT.) June, 1940, pp. 239-244.
18. Hardy, W., and I. Bircumshaw: Boundary Lubrication-Plane Surfaces and the Limitations of Amontons' Law, Proc. Roy. Soc. (London), ser. A, 108 (A 745), 1-27 (May, 1925).
19. Hardy, W. R., and J. K. Hardy: Note on Static Friction and on the Lubricating Properties of Certain Chemical Substances, Phil. Mag., ser. 6, 38 (233), 32-48 (1919).
20. Bowden, F. P., and J. E. Young: Friction of Clean Metals and Influence of Adsorbed Films, Proc. Roy. Soc. (London), ser. A, 208 (A 1094), 311-325 (September, 1951).
21. Hardy, W. B., and I. Doubleday: Boundary Lubrication-The Latent Period and Mixtures of Two Lubricants, Proc. Roy. Soc. (London), ser. A, 104 (A 724), 25-38 (August, 1923).
22. Bowden, F. P., and D. Tabor: "The Friction and Lubrication of Solids," Oxford University Press, New York, 1950.
2d-2. Rolling Friction. Rolling is frequently substituted for sliding friction. The resistance to motion is substantially smaller than for sliding under nonfluid film conditions. The frictional resistance to rolling under the action of load W may be designated as P in Fig. 2d-1. The coefficient of rolling friction is then defined as

$$
\begin{equation*}
f_{R}=\frac{P}{\bar{W}} \tag{2d-2}
\end{equation*}
$$

MECHANICS

The frictional resistance P to the rolling of a cylinder under load is applied at the

Fig. 2d-1. Rolling friction. center of the roller and is inversely proportional to the radius r of the roller and proportional to a factor k, a function of the material and its surface condition. Thus

$$
\begin{equation*}
P=\frac{k}{r} W \tag{2d-3}
\end{equation*}
$$

If r is in inches, values of k may be taken as follows: hardwood on hardwood, 0.02; iron on iron, steel on steel, 0.002; hard polished steel on hard polished steel, 0.0002 to 0.0004 . Noonan and Strange suggest, for steel rollers on steel plates: surfaces well finished and clean, 0.005 to 0.001 ; surfaces well oiled, 0.001 to 0.002 ; surfaces covered with silt, 0.003 to 0.005 ; surfaces rusty, 0.005 to 0.01 .

Fig. 2d-2. Load carried on rollers.
If the load is carried on rollers as in Fig. 2d-2, and k and k^{\prime} are the respective factors for lower and upper surfaces, the force P is

$$
\begin{equation*}
P=\frac{\left(k+k^{\prime}\right) W}{d} \tag{2d-4}
\end{equation*}
$$

2e. Crystallographic Data

W. P. MASON AND E. A. WOOD

Bell Telephone Laboratories, Inc.

This section presents data relating to the crystals of the elements and certain important compounds. For details about crystal structure the references at the end of the subsection may be consulted.

The lattice constants tabulated in Tables $2 \mathrm{e}-2$ and $2 \mathrm{e}-3$ are referred to crystallographic axes a, b, and c, making axial angles α, β, γ with each other as shown in Fig. 2e-1.

The relationships which obtain among these quantities in the various crystal systems are listed in Table 2e-1.

2e-1. Lattice-constant Relationship Crystal System	for Various Crystal Systems Lattice-constant Relationships
Cubic ($=$ isometric)	$a=b=c \quad \alpha=\beta=\gamma=90^{\circ}$
Tetragonal	$a=b \neq c \quad \alpha=\beta=\gamma=90^{\circ}$
Orthorhombic	$a \neq b \neq c \quad \alpha=\beta=\gamma=90^{\circ}$
Trigonal, if rhombohedral (see following text)	$=b=c \quad \alpha=\beta=\gamma \neq 90^{\circ}$
Hexagonal (see Fig. 2e-2)	$=b \neq c \quad \alpha=\beta=90^{\circ} \gamma=120^{\circ}$
Mon	$\neq b \neq c \quad \alpha=\gamma=90^{\circ} \beta>90^{\circ}$

Only those lattice constants whose values are not specified by the relationships in Table $2 \mathrm{e}-1$ are actually listed in Tables $2 \mathrm{e}-2$ and $2 \mathrm{e}-3$. For example, in the tetragonal system, it is only necessary to give values for a and c.

The following are the Hermann-Mauguin point-group symbols for the 32 classes of symmetry, grouped into seven crystal systems, included here for comparison with the

Fig. 2e-1. Crystallographic axes.

Fig. 2e-2. Crystallographic axes for the hexagonal system.
space-group symbols of Tables $2 \mathrm{e}-2$ and $2 \mathrm{e}-3$. (The alternative Schönflies symbol, enclosed in parentheses, follows the Hermann-Mauguin symbol to which it is equivalent.)

Triclinic: $1\left(C_{1}\right), \overline{1}\left(C_{i}\right)$
Monoclinic: 2($\left.C_{2}\right), m\left(C_{s}\right), 2 / m\left(C_{2 h}\right)$
Orthorhombic: $m m\left(C_{2 v}\right), 222\left(D_{2}\right), m m m\left(D_{2 h}\right)$
Trigonal: $3\left(C_{3}\right), \overline{3}\left(C_{3 i}\right), 3 m\left(C_{3 v}\right), \overline{3} m\left(D_{3 d}\right), 32\left(D_{3}\right)$
Hexagonal: $6\left(C_{6}\right), \overline{6}\left(C_{3 h}\right), 6 / m\left(C_{6 h}\right), 6 m m\left(C_{6 v}\right), \overline{6} 2 m\left(D_{3 h}\right), 62\left(D_{6}\right), 6 / m m m\left(D_{6 h}\right)$
Tetragonal: $4\left(C_{4}\right), \overline{4}\left(S_{4}\right), 4 / m\left(C_{4 k}\right), \overline{4} 2 m\left(D_{2 d}\right), 4 m m\left(C_{4 v}\right), 42\left(D_{4}\right), 4 / m m m\left(D_{4 h}\right)$
Cubic: 23(T), $m 3\left(T_{h}\right), \overline{4} 3 m\left(T_{d}\right), 43(0), m 3 m\left(\mathrm{O}_{h}\right)$
These symbols describe the symmetry operations which relate equivalent directions in the crystal. All the bulk physical properties of the crystal have this symmetry. The numbers ($1,2,3$, etc.) refer to axes of symmetry (2 -fold, 3 -fold, etc.); a number with a bar indicates an inversion axis. For example, $\overline{4}$ indicates the symmetry operation of a quarter turn combined with an inversion through a center of symmetry. Symmetry planes are indicated by m, placed beside the axial number when the plane is parallel to the axis, beneath it when the plane is normal to the axis, except in the cubic system where the 3 -fold axes are always in the $\langle 111\rangle$ directions ${ }^{1}$ and the symmetry planes parallel to the $\{100\}$ planes and, where m is the third symbol, the $\{110\}$ planes.

Figure $2 \mathrm{e}-3 a, b, c, d$ illustrates the operations of some of these symmetry elements.

[^12]
(a)

(b)

(c)

(d)

Fig. 2e-3. Operations of symmetry elements. (a) tetragonal, 4/mm; (b) monoclinic, 2/m; (c) orthorhombic, $m m$; (d) tetragonal, $\overline{4} 2 m$.

In the space-group symbols some of the plane and axis point-group symbols are replaced by symbols for glide planes (a, b, c, d, n) and screw axes (e.g. 2_{1}) which relate the atom positions in the crystal structure and are preceded by a capital letter indicating whether the lattice is rhombohedral (R), primitive (P), body-centered (I), sidecentered (A, B, or C), or centered on all faces (F). Thus $F m 3 m$, for example, indicates a face-centered cubic structure.

In the column of crystal systems, all crystals with a unique 3 -fold axis of symmetry are listed as trigonal. For some of these, the smallest unit cell is rhombohedral. Alternatively one may say their structures may be referred to a rhombohedral lattice. For these the Hermann-Mauguin space-group symbol begins with R. For other trigonal structures the smallest unit cell is the same shape as that of the hexagonal crystals. For these the space-group symbol begins with P.
(Caution: Orthorhombic is sometimes abbreviated to rhombic in the literature. Care must be taken not to confuse this with rhombohedral.)

The reader is referred to X-ray crystallographic texts (e.g. refs. 6 to 9) for the interpretation of the glide-plane and screw-axis symbols. For the symmetry of the bulk physical properties of the crystal he can replace the former by m and omit the subscript of the latter.

The value Z in the fourth column of Tables $2 \mathrm{e}-2$ and $2 \mathrm{e}-3$ is the number of formula units (e.g., atoms in the case of most elements) per unit cell.

The symbols in the last column of the tables refer to structure types described in the Strukturbericht (refs. 3 and 4): A1, cubic-close-packed ($=$ face-centered cubic, f.c.c.); $A 2$, body-centered cubic (b.c.c.); A3, hexagonal close-packed (h.c.p.); A4, diamond structure. For types other than these common ones, the reader is referred to the Strukturbericht. In some cases, where the structure is commonly known by the name of some substance exhibiting it, this is indicated; e.g., for Bi , structure type $A 7$ (As) and for $\mathrm{NiFe}_{2} \mathrm{O}_{4}$, structure type H 11 (spinel).
The conventional choice of the coordinate axes ("crystallographic axes") x or a, y or b, z or c is usually dictated by symmetry. Where this is not so, the dimensions of the unit cell determined from X-ray diffraction work govern the choice of axes (see ref. 2, p. 6).

The following list may be useful in determining axial directions in crystals for which the symmetry elements are determinable. Many crystal drawings should be used to supplement this list. For these the reader is referred to the texts, e.g., "A Textbook of Mineralogy" by E. S. Dana and W. E. Ford (4th ed., John Wiley \& Sons, Inc., New York, 1932). This list should be used in conjunction with the list of latticeconstant relationships (Table $2 \mathrm{e}-1$) for the various systems.

Cubic. The a axis makes equal angles ($54^{\circ} 44^{\prime}$) with the four 3 -fold symmetry axes. In most cases the a axis will be a 4 -fold symmetry axis. b and c are indistinguishable from a.

Rhombohedral. The 3 -fold symmetry axis makes equal angles with the three symmetrically equivalent (indistinguishable) crystallographic axes.

Tetragonal. The unique (4-fold) axis is taken as c.
Hexagonal. The unique (6 -fold) axis is taken as c.
Orthorhombic. The crystallographic axes are parallel to the three 2 -fold axes where present; normal to the three symmetry planes where present.

Monoclinic. The 2 -fold symmetry axis, if present, is taken as the b axis. Otherwise the normal to the symmetry plane is taken as b.

Triclinic. Choice of crystallographic axes is not indicated by symmetry.
Tables $2 \mathrm{e}-2$ and $2 \mathrm{e}-3$ list the various quantities which characterize the crystal lattices of the elements and certain compounds, respectively. All values in these tables came from ref. 1, except as indicated.

Table 2e-2. Crystallographic Data for the Elements

Formula (temp., ${ }^{\circ} \mathrm{C}$, for the lattice constants given)	Crystal system	Space group	Z	Lattice constants, A,* $a, b, c ; \alpha, \beta, \gamma$	Structure type
A (-235°)	Cub.	Fm3m	4	5.43	$A 1$ (f.c.c.)
$\mathrm{Ag}\left(18^{\circ}\right) \ldots$	Cub.	Fm3m	4	4.086 ± 0.0006	1 (f.c.c.)
Al (25°)	Cub.	Fm3m	4	4.0495 to 4.0507	$A 1$ (f.c.c.)
As....	Trig.	$R \overline{3} m$	6	$3.77,10.57^{*}$	A7
$\mathrm{Au}\left(18^{\circ}\right)$	Cub.	Fm3m	4	4.0781 ± 0.0003	A1 (f.c.c.)
B.......	Tet.	$P \overline{4} n 2$	50	8.74, 5.07	
Ba	Cub.	Im3m	2	5.025 ± 0.003	A2 (b.c.c.)
Be (18 8°)	Hex.	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	2.2808, 3.5735*	A3 (h.c.p.)
$\begin{array}{r} \left(630^{\circ}\right) \text { (stable } \\ \left.5-700^{\circ}\right) \ldots . \end{array}$	Hex.		ca. 60	7.1, 10.8*	
Bi.	Trig.	$R \overline{3} m$	6 2	$\begin{gathered} 4.53726 \pm 0.0002 \\ 11.8381 \pm 0.0008^{*} \\ \left(a_{\text {rh }} 4.7364 \pm 0.0003\right. \\ \left.\alpha 57^{\circ} 14^{\prime} 13^{\prime \prime} \pm 23^{\prime \prime}\right) \end{gathered}$	A7 (As)
$\mathrm{Br}_{2}\left(-150^{\circ}\right)$	Orth.	Bmab	4	6.67, 8.72, 4.48*	A14 (I_{2})
C (diamond)	Cub.	Fd3m	8	3.56696 ± 0.00005	A4 (diamond)
$\begin{aligned} & \text { C (graphite) } \\ & \left(15^{\circ}\right) \end{aligned}$	Hex.	$\mathrm{Pb}_{3} / m m \mathrm{c}$	4	$\begin{gathered} 2.4612 \pm 0.0001, \\ 6.7079 \pm 0.0007^{*} \end{gathered}$	A9
C (graphite)	Trig.	$R \overline{3} m$	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.461,10.064^{*} \\ & \left(a_{r h} 3.642, \alpha 39.49^{\circ}\right) \end{aligned}$	
$\mathrm{Ca}(\alpha)$ (electrolytic).	Cub.	Fm3m	4	5.57	A1 (f.c.c.)
$\begin{array}{r} \mathrm{Ca} \quad(\beta) \quad\left(450^{\circ}\right) \\ (\text { stable } \\ \left.450^{\circ}\right) \ldots \ldots \ldots \end{array}$	Hex.	$\mathrm{Pb}_{3} / m m c$	2	3.98, 6.52*	A3 (h.c.p.)
Cb (see Nb)					
Cd.	Hex.	$\mathrm{Pb}_{3} / m m c$	2	$\begin{aligned} & 2.9736 \pm 0.0005 \\ & 5.6058 \pm 0.0005^{*} \end{aligned}$)
Ce.	Cub.	Fm3m	4	5.150 ± 0.002	A1 (f.c.c.)
Ce.	Hex.	$P 6_{3} / m m c$	2	3.65, 5.96*	A3 (h.c.p.)
Ce at 15,000 atmos.	Cub.	Fm3m	4	4.84 ± 0.03	A1 (f.c.c.)
$\mathrm{Cl}_{2}\left(-185^{\circ}\right)$.	Tet.	$P 4_{2} / \mathrm{ncm}$	8	8.56, 6.12*	A18
Co (20 ${ }^{\circ}$) ...	Hex.	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	2.5074, 4.0699	A3 (h.c.p.)
Co (20 ${ }^{\circ}$)	Cub.	Fm3m	4	3.5442	A1 (f.c.c.)
Cp.....	Hex.	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	3.509, 3.559*	A3 (h.c.p.)
Cr .	Cub.	$\operatorname{Im} 3 m$.	2	2.8845 ± 0.001	A2 (b.c.c.)
Cs $\left(-100^{\circ}\right)$	Cub.	Im3m	2	6.08	A2 (b.c.c.)
$\mathrm{Cu}\left(20^{\circ}\right) \ldots$.	Cub.	Fm3m	4	3.6147 ± 0.0020	A1 (f.c.c.)
Dy.......	Hex.	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	3.578, 5.648*	A3 (h.c.p.)
Er.	Hex.	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	$\begin{gathered} 3.532 \pm 0.002 \\ 5.589 \pm 0.005^{*} \end{gathered}$	A3 (h.c.p.)
Eu.	Cub.	Im3m	2	4.573	$A 2$ (b.c.c.)

[^13]Table 2e-2. Crystallographic Data for the Elements (Continued)

Formula (temp., ${ }^{\circ} \mathrm{C}$, for the lattice constants given)	Crystal system	Space group	Z	Lattice constants, A , ${ }^{*}$ $a, b, c ; \alpha, \beta, \gamma$	Structure type
$\mathrm{Fe}(\alpha)\left(20^{\circ}\right)$ (stable to 910°). .	Cub.	Im3m	2	2.86645	A2 (b.c.c.)
$\mathrm{Fe}(\gamma)$ (stable 910-1400 ${ }^{\circ}$.	Cub.	Fm3m	4	3.64)
Fe (δ) (stable above 1400°).	Cub.	Im3m	2	2.94	A2 (b.c.c.)
Ga.	Orth.	Abam (alt. Cmca)	8	$\begin{gathered} 4.5167 \pm 0.0001, \\ 7.6448 \pm 0.0002, \end{gathered}$	A11
Gd.	Hex.	$P 6_{3} / m m c$	2	3.622, 5.748*	A3 (h.c.p.)
Ge (25 ${ }^{\circ}$)	Cub.	Fd3m	8	$5.6575 \dagger$	A4 (diamond)
$\begin{gathered} \mathrm{H}_{2}\left(4.2^{\circ} \mathrm{K},\right. \text { and } \\ \left.1.65^{\circ} \mathrm{K}\right) \ldots \ldots \end{gathered}$	Hex.	$P 6{ }_{3} / m m c$	2	3.75, 6.12*	A3 (h.c.p.)
$\mathrm{He}\left(1.45^{\circ} \mathrm{K}, c a\right.$. 37 atm)	Hex.	$P 6_{3} / m m c$	2	3.57, 5.83*	A3 (h.c.p.)
Hf	Hex.	$\mathrm{Pb}_{3} / m m c$	2	3.1952, 5.0569	A3 (h.c.p.)
$\mathrm{Hg}\left(-46^{\circ}\right.$)	Trig.	$R \overline{3} m$	1	2.999; $70^{\circ} 32^{\prime *}$	A10
Ho.	Hex.	$P 6 / m m c$	2	$\begin{aligned} & 3.557 \pm 0.003, \\ & 5.620 \pm 0.005^{*} \end{aligned}$	A3 (h.c.p.)
I_{2}	Orth.	Bmab	4	7.250, 9.772, 4.774	A14
In	Tet.	$14 / \mathrm{mmm}$	2	3.241, $4.936 \pm 0.002^{*}$	A6
Ir	Cub.	Fm3m	4	3.8389 ± 0.0005	$A 1$ (f.c.c.)
K (20 ${ }^{\circ}$)	Cub.	Im3m	2	5.344 ± 0.005	A2 (b.c.c.)
$\begin{aligned} \operatorname{Kr} & \left(-252.5^{\circ}\right) \\ & \left(-184^{\circ}\right) \end{aligned}$		Fm3m	4	$\begin{aligned} & 5.60 \text { (est. } 98 \% \text { pure) } \\ & 5.706 \pm 0.017 \end{aligned}$	A1 (f.c.c.)
La.	Hex.	$P 6_{3} / m m c$	2	$\begin{aligned} & 3.754 \pm 0.010, \\ & 6.063 \pm 0.030^{*} \end{aligned}$	A3 (h.c.p.)
La (β)	Cub.	Fm3m	4	$\begin{gathered} 5.307 \pm 0.002 \\ \text { (} 99.6 \% \text { pure) } \end{gathered}$	A1 (f.c.e.)
Li.	Cub.	Im3m	2	3.5087 ± 0.0002	A2 (b.c.c.)
Li (-196°)	Cub.	Im3m	2	3.50	$A 2$ (b.c.c.)
Li ($-196{ }^{\circ}$)	Cub.	Fm3m	4	4.41 (induced by plastic deformation)	A1 (f.c.c.)
$\mathrm{Mg}\left(25^{\circ}\right)$.	Hex.	$P 6_{3} / m m c$	2	$\begin{aligned} & 3.20280 \pm 0.00003 \\ & 5.19983 \pm 0.00005^{*} \\ & (99.995 \% \text { pure }) \end{aligned}$	A3 (h.c.p.)
Mn (α)	Cub.	$\underline{I} \overline{4} 3 \mathrm{~m}$	58	8.894	A12
$\mathrm{Mn}(\beta)$.	Tet.	$P 4,3$	20	6.30	A13
Mn (γ) .	Tet.	F tet.	4	3.774, 3.533	
Mo.	Cub.	Im3m	2	3.150 ± 0.005	$A 2$ (b.c.c.)
$\mathrm{N}(\alpha)$ (at liquid H_{2}) (stable below $35.4^{\circ} \mathrm{K}$)	Cub.	$P 2.3$	8	5.667	B21 (?)

[^14]Table 2e-2. Crystallographic Data for the Elements (Continued)

Formula (temp., ${ }^{\circ} \mathrm{C}$, for the lattice constants given)	Crystal system	Space group	Z	Lattice constants, A,* $a, b, c ; \alpha, \beta, \gamma$	Structure type
$\mathrm{N}_{2}(\beta) \quad\left(45^{\circ} \mathrm{K}\right)$					
(stable above $\left.35.4^{\circ} \mathrm{K}\right)$	Hex.	$P 6_{3} / m m c$	2	4.039, 6.670*	A3 (h.c.p.)
Na............	Cub.	Im3m	2	4.2906 ± 0.0005	A2 (b.c.c.)
$\mathrm{Na}\left(-195^{\circ}\right)$	Cub.	Fm3m	4	5.339 (induced by plastic deformation at -253°)	A1 (f.c.c.)
$\mathrm{Nb}\left(20^{\circ}\right)$	Cub.	Im3m	2	$3.3008 \pm 0.0003\left(\mathrm{H}_{2}\right.$ free)	$A 2$ (b.c.c.)
Nd......	Hex.	$P 6_{3} / m m c$	2	$\begin{gathered} 3.650 \pm 0.003 \\ 5.890 \pm 0.005^{*} \end{gathered}$	$A 3$ (h.c.p.)
Ne (at liquid He)	Cub.	Fm3m	4	4.53	A1 (f.c.c.)
$\mathrm{Ni}\left(25^{\circ}\right) \ldots$.	Cub.	Fm3m	4	3.52394 (99.99\% pure)	$A 1$ (f.c.c.)
$\mathrm{O}_{2} \quad(\alpha)$ (stable below $23.5^{\circ} \mathrm{K}$) $\mathrm{O}_{2} \quad(\beta) \quad$ (stable $\left.23.5-43.4^{\circ} \mathrm{K}\right)$.				$\left\{\begin{array}{l} \text { Existing data are in con- } \\ \text { flict } \end{array}\right.$	
$\mathrm{O}_{2}(\gamma)\left(50^{\circ} \mathrm{K}\right) .$.	Cub.	Pa3 (?)		6.84	
Os (18°) \ldots	Hex.	$P 6_{3} / m m c$	2	$\begin{gathered} 2.7304 \pm 0.0005 \\ 4.3097 \pm 0.0005 \end{gathered}$	$A 3$ (h.c.p.)
P (white) (-35°)	Cub.	cub.	4	7.18 not cubic at liquidair temp	
P (black)	Orth.	Abam	8	$4.38,10.50,3.31$	A 17
P (red)..	Mon.?			7.34 (pseudo-cubic) $4.9496+0.0003$	
$\mathrm{Pb}\left(18^{\circ}\right)$.	Cub.	Fm3m	4	$\begin{gathered} 4.9496 \pm 0.0003 \\ (99.9 \% \text { pure }) \end{gathered}$	A1 (f.c.c.)
$\operatorname{Pd}\left(18^{\circ}\right)$	Cub.	Fm3m	4	3.8902 ± 0.0003	A1 (f.c.c.)
Po.	Mon.?		12	$\begin{aligned} & 14.10,4.29 \pm 0.04, \\ & 7.42 \pm 0.07 ; c a .92^{\circ} \end{aligned}$	
$\operatorname{Pr}(\alpha)\left(18^{\circ}\right)$	Hex.	$P 6_{3} / m m c$	2	$\begin{aligned} & 3.657,5.924^{*} \\ & \text { (99.4\% pure) } \end{aligned}$	A3 (h.c.p.)
Pr	Cub.	Fm3m	4	5.151	A1 (f.c.e.)
Pt (18°)	Cub.	Fm3m	4	3.9237 ± 0.0003	$A 1$ (f.c.c.)
(208)	Cub.	Fm $3 m$		3.9310	$A 1$ (f.c.c.)
$\left(600^{\circ}\right)$	Cub.	Fm 2 m		3.9460	$A 1$ (f.c.c.)
$\mathrm{Rb}\left(19^{\circ}\right)$	Cub.	Im3m	2	5.709	A2 (b.c.c.)
Re......	Hex.	$P 6_{3} / \mathrm{mmc}$	2	$\begin{aligned} & 2.7553 \pm 0.0004 \\ & 4.4493 \pm 0.0003^{*} \end{aligned}$	A3 (h.c.p.)
Rh.	Cub.	Fm3m	4	3.8044 ± 0.0001	$A 1$ (f.c.e.)
$\mathrm{Ru}\left(20^{\circ}\right)$.	Hex.	$\mathrm{Pb}_{3} / \mathrm{mmc}$	2	2.69844, 4.27305*	A3 (h.c.p.)
S (103)	Mon.	$P 2_{1} / c$	48	$\begin{aligned} & 10.90,10.96,11.02 ; \\ & 96^{\circ} 44^{\prime} \end{aligned}$	
S.	Orth	Fddd	128	12.92, 24.55, 10.48	A16
S (unstable).	Trig.	$R \overline{3}$ (?)	18	$10.9,4.26 \mathrm{kX}$	

See page 2-52 for footnotes.

Table 2e-2. Crystallographic Data for the Elements (Continued)

[^15]Table 2e-2. Crystallographic Data for the Elements (Continued)

Formula (temp., ${ }^{\circ} \mathrm{C}$, for the lattice constants given)	Crystal system	Space group	Z	Lattice constants, A,* $a, b, c ; \alpha, \beta, \gamma$	Structure type
$\mathrm{V}\left(25^{\circ}\right)$	Cub.	Im $3 m$	2	3.0399 ± 0.0003	A2 (b.c.c.)
W (α) (25°)	Cub.	Im3m	2	3.16475 ± 0.00012	A2 (b.c.c.)
W (β) (transforms irreversibly to α above 700°).	Cub.	Pm3n	8	5.048 ± 0.003	A15
Xe ($88^{\circ} \mathrm{K}$)	Cub.	Fm3m	4	6.25 ± 0.025	A1 (f.c.c.)
Y.........	Hex.	$P 6_{3} / m m c$	2	$\begin{aligned} & 3.663 \pm 0.008 \\ & 5.814 \pm 0.012^{*} \\ & (99.5 \% \text { pure }) \end{aligned}$	A3 (h.c.p.)
Yb .	Cub.	Fm3m	4	5.479	A1 (f.c.c.)
Zn .	Hex.	$P 6_{3} / m m c$	2	$\begin{array}{\|c} 2.6590 \pm 0.0005 \\ 4.9351 \pm 0.0009 \\ \text { (} 99.99 \% \text { pure }) \end{array}$	A3 (h.c.p.)
Zr.	Hex.	$P 6_{3} / m m c$	2	3.229, 5.141*	A3 (h.c.p.)
$\mathrm{Zr}(\beta)\left(840^{\circ}\right)$.	Cub.	Im3m	2	3.62	A2 (b.c.c.)

[^16]Table 2e-3. Crystallographic Data for Selected Compounds

Formula (temp., ${ }^{\circ} \mathrm{C}$, for the lattice constants given)	Crystal system	Space group	Z	Lattice constants, A^{*} $a, b, c ; \alpha, \beta, \gamma$	Structure type
$\begin{gathered} \mathrm{Al}_{2} \mathrm{O}_{3}(\alpha) \text { (corun- } \\ \operatorname{dum}) \ldots \ldots \ldots . \end{gathered}$	Trig.	$R \overline{3} c$	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 4.76 \mathrm{kX}, 13.01 \mathrm{kX} \\ & \left(a_{r h} 5.13 \mathrm{kX} \pm 0.02 ; \alpha\right. \\ & \left.55^{\circ} 16^{\prime} \pm 5^{\prime}\right) \end{aligned}$	D51
$\mathrm{Al}_{2} \mathrm{O}_{3}(\beta)$	Hex.	P6/mmc	12	$5.56 \mathrm{kX}, 22.55 \mathrm{kX}$	D56
BaTiO_{3} (barium titanate)	Tet.	$P 4 / \mathrm{mmm}$	1	3.9860, 4.0259*	Distortion of G5
$\mathrm{BaTiO}_{3}\left(200^{\circ}\right) \ldots$	Cub.	Pm3m	1	4.012 kX	```G5 ("perov- skite type")\dagger```
CaCO_{3} (calcite)..	Trig.	$R \overline{3} c$	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	$\begin{aligned} & 4.983,17.02^{*} \\ & \left(a_{r h} 6.361 ; \alpha 46^{\circ} 7^{\prime}\right)^{*} \\ & d \text { cleavage }=3.02904 \\ & \mathrm{kX} \text { for first order } \end{aligned}$	G1
CaCO_{3} (aragonite)	Orth.	Pnam	4	5.72, 7.94, 4.94*	$G 2$
CaF_{2} (fluorite)	Cub.	Fm3m	4	5.462 ± 0.003	C1
CdI_{2}.	Trig.	$P \overline{3} m 1$		4.24, 6.835*	C6
$\mathrm{CoFe}_{2} \mathrm{O}_{4}$ (cobalt ferrite)	Cub.	F $\mathbf{d} 3 \mathrm{~m}$	8	8.37; also reported: 8.38 and 8.412	$H 11$ (spinel) \ddagger
$\begin{aligned} & \mathrm{COOK} \cdot(\mathrm{CHOH})_{2} \cdot \\ & \text { COONa} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\ & \text { (rochelle salt) } \end{aligned}$	Orth.	$P 2.212$	4	$\begin{aligned} & 1191 \pm 0.04 \\ & 14.32 \pm 0.05 \\ & 6.20 \pm 0.02 \end{aligned}$	
CsCl.	Cub.	$P m 3 m$	1	4.121 ± 0.003	$B 2$
$\mathrm{Fe}_{3} \mathrm{O}_{4}\left(26^{\circ}\right)$ (iron ferrite or magnetite).	Cub.	$F d 3 m$	8	8.380 ± 0.002	$H 11$ (spinel) \ddagger
$\mathrm{KH}_{2} \mathrm{PO}_{4}\left(20^{\circ}\right)$ (potassium dihydrogen phosphate)	Tet.	$\overline{14} 2 d$	4	$\begin{aligned} & 7.437,6.945 \pm 0.002 ; * \\ & \text { also reported: } 7.43 \text {, } \\ & 6.97^{*} \end{aligned}$	H22
$\mathbf{M g A l} \mathbf{2}^{\mathbf{O}} \mathbf{4}$ (spinel).	Cub.	$F d 3 m$	8	$\begin{aligned} & 8.116 \pm 0.004 \text { (contain- } \\ & \text { ing } \mathrm{Fe}, \mathrm{Cr}, \mathrm{Mn} \text {) } \end{aligned}$	H11
$\mathrm{MgFe}_{2} \mathrm{O}_{4}$ (magnesium ferrite)	Cub.	$F d 3 m$	8	$\begin{aligned} & 8.359 \pm 0.005 \text {; also } \\ & \text { reported: } 8.37 \pm 0.3 \% \\ & \text { and } 8.38 \pm 0.01 \end{aligned}$	H11 (spinel) \ddagger
$\mathrm{MnFe}_{2} \mathrm{O}_{4}$ (manganese ferrite)	Cub.	$F d 3 m$	8	$\begin{aligned} & 8.419 \pm 0.003 ; \text { also } \\ & \text { reported: } 8.589 \pm 0.006 \end{aligned}$	H11 (spinel) \ddagger
$\mathrm{NaCl}\left(18^{\circ}\right)$	Cub.	Fm3m	4	5.63874 ± 0.00002	B1
NiAs.	Hex.	$\mathrm{P6}_{3} / \mathrm{mmc}$	2	3.610, 5.028*	B8
$\mathrm{NiFe}_{2} \mathrm{O}_{4}$ (nickel ferrite)	Cub.	F $d 3 m$	8	8.357 ± 0.005; also reported: 8.43	H11 (spinel) \ddagger
$\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ (ammonium dihydrogen phosphate)	Tet.	$\overline{4} 2 d$	4	7.51, 7.53;* also reported: 7.48, 7.56, and 7.479, $7.516 \pm 0.005^{*}$	H22

[^17]Table 2e-3. Crystallographic Data for Selected Compounds (Continued)

Formula (temp., ${ }^{\circ} \mathrm{C}$, for the lattice constants given)	Crystal system	Space group	Z	Lattice constants, A^{*} $a, b, c ; \alpha, \beta, \gamma$	Structure type
SiO_{2} (low quartz, stable up to $573^{\circ} \pm 1^{\circ}$)	Trig.	$\begin{gathered} P 3_{2} 21 \text { or } \\ P 3_{1} 21 \end{gathered}$	3	$\begin{gathered} 4.910 \pm 0.01 \\ 5.394 \pm 0.01 \end{gathered}$	C8-like
SiO_{2} (high quartz, stable 573-870 ${ }^{\circ}$)	Hex.	$\begin{gathered} P 6_{2} 22 \text { or } \\ P 6_{4} 22 \end{gathered}$	3	5.01, 5.47	C8
SiO_{2} (upper high tridymite; stable $870-1470^{\circ}$)	Hex.	$P 6_{3} / m m c$	4	5.03, 8.22 (determined outside its stability range?)	C10
SiO_{2} (high cristobalite, stable $1470-1710^{\circ}, \mathrm{mp}$)	Cub.	$\begin{aligned} & P 2_{13} 3 \\ & \text { (also as } \\ & F d 3 m \text {) } \end{aligned}$	8	7.1473 (at $\left.1300^{\circ} \mathrm{C}\right)$	C9
ZnS ("blende" or sphalerite)	Cub.	$F \overline{4} 3 m$	4	$\begin{aligned} & 5.423 \pm 0.006 \text { (contain- } \\ & \text { ing } 0.16 \mathrm{wt} . \% \mathrm{Fe} \text {) } \end{aligned}$	B3
ZnS (wurtzite).	Hex.	P6mc	2	3.811, 6.234*	B4

[^18]
Illustrative References

References 1 to 5 give crystallographic data. References 6 to 10 are texts dealing with crystal structure.

1. Donnay, J. D. H., and Werner Nowacki: "Crystal Data," Geological Society of America Memoir 60, Geological Society of America, New York, 1954.
2. Palache, C., H. Berman, and C. Frondel: "The System of Mineralogy," 7th ed., John Wiley \& Sons, Inc., New York; Chapman \& Hall, Ltd., London, vol. 1, 1944; vol. II, 1951.
3. Structure Reports, the continuation of the Strukturbericht, published for the International Union of Crystallography by N. V. A. Oosthoek's Uitgevers MIJ, Utrecht, Netherlands.
4. Strukturbericht, a digest of crystal-structure literature from 1913 through 1939, published in conjunction with the Zeitschrift für Kristallographie.
5. Wyckoff, R. W. G.: Crystal Structures, Interscience Publishers, Inc., New York and London, vol. I, 1948; vol. II, 1951; vol. III, 1953.
6. Barrett, C. S.: "Structure of Metals," 2d ed., McGraw-Hill Book Company, Inc., New York, 1952.
7. Bragg, W. L.: "The Crystalline State," George Bell \& Sons, Ltd., London; The Macmillan Company, New York, 1939.
8. Buerger, M. J.: "X-ray Crystallography," John Wiley \& Sons, Inc., New York; Chapman \& Hall, Ltd., London, 1942.
9. Bunn, C. W.: "Chemical Crystallography," Oxford University Press, New York, 1946.
10. Mason, W. P.: "Piezoelectric Crystals and Their Application to Ultrasonics," D. Van Nostrand Company, Inc., New York, 1950.

2f. Elastic Constants, Hardness, Strength, and Elastic Limits of Solids

H. M. TRENT AND D. E. STONE

Naval Research Laboratory

2f-1. Introduction. For the fundamental ideas connected with elasticity and the definition of the elastic constant, see Sec. 2a-6. The notation used in this section is presented below. For other definitions see Sec. 2f-3.

Symbols

E	Young's modulus	S.S.	shear strength
G	rigidity modulus	El.	elongation
σ	Poisson's ratio	R.A.	reduction in area
ρ	density	Bhn	Brinell hardness number
$S_{i j}$	elastic constant (cf. Sec. 2a-6)	R	Rockwell hardness number (often used with subscripts)
$C_{i j}$	elastic coefficient (cf. Sec. 2a-6)		VDH, Vhn
T.S.	tensile strength	Vickers hardness number	
Y.S. yield strength	D	diffusion coefficient	
Y.P. yield point			

2f-2. Elastic Constants and Coefficients of Crystals. Tables 2f-1 to 5 present tabulated values of the elastic constants $S_{i j}$ and elastic coefficients $C_{i j}$ for cubic, tetragonal, trigonal, hexagonal, and rhombic crystals (cf. Sec. 2e for X-ray crystallographic data).

For other values, see also Tables $2 \mathrm{~h}-2$ and $3 \mathrm{~h}-3$.
2f-3. Elastic Constants, Hardness, Strength, and Elastic Limits of Polycrystalline Solids. Tables $2 \mathrm{f}-6$ through $2 \mathrm{f}-15$ contain data on the Young's modulus, modulus of rigidity, hardness, etc., of various solids, metals, and alloys. The elastic constants, tensile strength, yield strength, shear strength, and all other quantities having the dimensions of stress are expressed in dynes per square centimeter. The definitions of these and other tabulated quantities are given in the following list.

Definitions (Continued on pages 2-69, 2-78, 2-80)

1. Tensile Strength. "The maximum tensile stress which a material is capable of developing."

Note: In practice, it is considered to be the maximum stress developed by a specimen representing the material in a tension test carried to rupture, under definite prescribed conditions. Tensile strength is calculated from the maximum load P carried during a tension test and the original cross-sectional area of the specimen A_{0} from the formula

$$
\text { Tensile strength }=\frac{P}{A_{0}}
$$

2. Yield Strength. ${ }^{1}$ "The stress at which a material exhibits a specified permanent set."
${ }^{1}$ Standard Definitions of Terms Relating to Methods of Testing, ASTM E6-36.

Table 2f-1. Elastic Constants and Coefficients of Cubic Crystals
($S_{i j}$ in units of $10^{-13} \mathrm{~cm}^{2} /$ dyne; $C_{i j}$ in units of 10^{11} dynes $/ \mathrm{cm}^{2}$)

Material	Test temp.	(1)	(2)	(3)	(4)	(5)	$\begin{aligned} & C_{44} \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ref.* } \\ & \text { cols. } \\ & 1-3 \end{aligned}$	$\begin{aligned} & \text { Ref.* } \\ & \text { cols. } \\ & 4-6 \end{aligned}$
Silver (Ag)	Room	23.2	-9.93	22.9	12.0	8.97	4.36	23	54
$75 \mathrm{Ag}, 25 \mathrm{~A}$	Room	20.7	-8.91	${ }_{19}^{20.5}$				58 58	
$50 \mathrm{Ag}, 50 \mathrm{~A}$ Alum....	Room				2.56	1.07	0.86		51
${ }_{\text {Aluminum }}$ (Room	15.9	-5.80	35.16	10.56	6.39	2.853	10	37
${ }^{\text {Al, }} 5 \mathrm{Cu}$.	Room	15	-6.9		2.50	1.06	0.80		66
Ammonium alum	Room	23.3	-10.65	23.8	18.7	15.7	4.36	13	54
$75 \mathrm{Au}, 25 \mathrm{Ag}$	Room	20.5	-9.09	20.6				58	
Barium nitrat	Room				6.02	1.86	1.21		37
Copper (Cu)	Room	14.91	-6.25	13.28 15.08	17.10	12.39	7.56	${ }_{29}^{13}$	37
$\mathrm{Cu}_{3} \mathrm{Au} .$.	${ }_{100^{\circ} \mathrm{C}}$	13.44 13.80	-5.65 -6.10	15.				29	
$\mathrm{Cu}_{3} \mathrm{Au}$	$300^{\circ} \mathrm{C}$	15.12	-6.46	15.93				29	
CuZn					12.91	10.97	8.24		37
$72 \mathrm{Cu}, 28 \mathrm{Zn}$	Room	19.4	-8.4	${ }^{13.9} 5$			17.3	${ }_{46}$	62
$\mathrm{Cu}_{53} \mathrm{Zn}_{47}$ (β-brass)	${ }^{244^{\circ}}$	38.8	-15.2 -14.2	5.78 5.80	5.40	3.55	17.3	46	62
$\mathrm{Cu}_{53} \mathrm{Cu}_{53} \mathrm{Zn}_{47}$ (β - β brass)	${ }^{1959}{ }^{\circ} \mathrm{C}$	36.1 41.5	-14.2 -15.3	5.80 6.24				46	
$\mathrm{Cu}_{53} \mathrm{Zn}_{47}$ (α brass)	Room				15.22	11.62	7.19		62
$\mathrm{Cu}, 4 \mathrm{Si} \ldots$.	Room				$\stackrel{16.2}{16}$	${ }^{12.0}{ }^{12}$	7.55 0.77		
Cr. Alum	Room		-1.49	29.6	${ }_{16.4}^{2.4}$	0.93 4.48	3.38	26	66 53
CaF_{2} (fluorspar)	Room	6.92	-1.49	29.6	${ }_{95.0}^{16.4}$	39.0	43.0		42
$\mathrm{Diamond}_{2}$ (pyrite)	Room	2.89	+0.44	9.48	36.1	-4.74	10.55	26	53
Garnet 21.8% FeO	Room				19.7	9.0	5.7	.	65
Garnet 22.7 \% FeO	Room				19.2	9.9 10.9	5.9 7.0	\cdots	65
Garnet 23.0 \% FeO	Room				${ }_{21 .}^{22.2}$	10.4 10.3	7.7		
Garnet $23.6 \% \mathrm{FeO}$	Room				${ }_{22.6}^{21.0}$	12.6	6.2		65
Garnet $26.2 \% \mathrm{FeO}$	Room				27.3	15.7	6.8		65
Garnet 33.5\% FeO	Room				32.7	12.4	8.9		65
Fe.......	Room	7.72	-2.85	9.02	${ }^{23.7}$	14.1	11.6	59	62
Germanium	$25^{\circ} \mathrm{C}$	${ }_{31} 9.685$	-2.70	${ }_{161} 14.94$	12.98 3.33	4.88 0.58	6.73 0.62	38 3	$\stackrel{49}{52}$
$\mathrm{KBra}^{\mathrm{K}}$	$\mathrm{Room}_{-193{ }^{\circ} \mathrm{C}}$	31.36	-4.3	150.7				6	
KCl .	$-3^{\circ} \mathrm{C}$	25.23	-3.3	157.3				6	
KCl .	Room	27.4	-1.38	156	4.095	0.705	0.630	26	37
KI	Room	39.2	-5.4	238					
Potassium al	Room				2.459	1.072	0.263	39	62
	Room	${ }^{833} 10.6$	-370 -2	38	${ }_{9.9}^{0.459}$	4.3	5.4	24	63
MgO	$-193{ }^{\circ} \mathrm{C}$	3.839	-0.855	6.380		.		6	
MgO	$-103^{\circ} \mathrm{C}$	3.888	-0.878	6.399				6	
MgO	$-7^{\circ} \mathrm{C}$	3.991	-0.922	6.447 6.502				6	
MgO	$197^{\circ} \mathrm{C}$	4.243	-1.027	6.564				6	
MgO	$287^{\circ} \mathrm{C}$	4.383	-1.085	6.626				${ }^{6}$	
Na	$-193{ }^{\circ} \mathrm{C}$	482.6	-208.7	${ }_{203}^{168.5}$				22	
	Room	535.4	-232.1		0.945	0.779	0.618		62
NaBr	Room	40.0	-11.5	75.4				3	
NaCl .	$-3^{\circ} \mathrm{C}$	22.08	-4.49	78.26					
NaCl	Room	24.3	-5.27	78.8 80	4.911	1.225	1.284	${ }_{6}^{6}$	37
$\stackrel{\mathrm{NaCl}}{\mathrm{NaCl}}$.	${ }^{197}{ }^{\circ} \mathrm{C}$	${ }_{27}^{24.43}$	-5.43	82.85				6	
NaClO_{3}		24.60	+12.5	83.7				26	
NaClO_{3}	$26^{\circ} \mathrm{C}$				4.89	1.39	1.173		44
$\mathrm{NH}_{4} \mathrm{Br}$	Room				2.96 3.90	0.59	0.53	\cdots	66
${ }_{\text {Nickel }} \mathrm{NH}_{4} \mathrm{Cl}(\underset{\mathrm{N}}{ } \mathrm{i})$	Room						10.6		
Nickel (Pb).	Room	93	-42.6	69.4	4.76	4.03	1.44	13	62
Lead (Pb).	$25^{\circ} \mathrm{C}$				16.740	6.523	7.957		47
W (tungsten)	Room	2.573	-0.729	6.604	450.2	19.9	15.1	21	62
Zinc blende.	Room	20.0	-8.0	24.3	10.79 8.69	7.22	4.12	61	121
Galena.	Room				8.69 32.25	4.01 14.37	4.42 11.67		116
Chromium oxide	Room				${ }_{36.7}^{32.25}$	-4.64	10.52		118
Iron purite	Room				16.44	5.02	3.47		119
Magnelite					27.25	10.6	9.71		118
Sodium chlor					5.09 4.97	1.55 1.27	${ }_{1}^{1.18}$		1120
Rock salt.					4.97	1.27	1.27		119

* References are on p. 2-58.

Table 2f-2. Elastic Constants and Coffficients for Tetragonal Crystals ($S_{i j}$ in units of $10^{-13} \mathrm{~cm}^{2} /$ dyne; $C_{i j}$ in units of 10^{11} dynes $/ \mathrm{cm}^{2}$)

Material	Test temp.	$\begin{aligned} & S_{11} \\ & (1) \end{aligned}$	S_{33} (2)	S_{44} (3)	S_{66} (4)	S_{12} (5)	S_{13} (6)	C_{11} (7)	C_{66} (8)	$\begin{aligned} & C_{12} \\ & (9) \end{aligned}$	Ref.* cols. 1-6	$\begin{aligned} & \text { Ref.* } \\ & \text { cols. } \\ & 7-9 \end{aligned}$
Tin (Sn).	Room	18.5	11.8	57.0	135	-9.9	-2.5				73	
$\mathrm{KD}_{2} \mathrm{PO}_{4}$.	$26^{\circ} \mathrm{C}$							7.04	0.607	0.46		72
$\mathrm{RbH}_{2} \mathrm{PO}_{4}$	$26^{\circ} \mathrm{C}$							6.7	0.4	0.2		72

* References are on p. 2-58.

Table 2f-3. Elastic Constants and-Coefficients for Trigonal Crystals ($C_{i j}$ in units of 10^{11} dynes $/ \mathrm{cm}^{2} ; S_{i j}$ in units of $10^{-13} \mathrm{~cm}^{2} /$ dyne)

Material	Test temp.	C_{11}	C_{33}	C_{44}	C_{12}	C_{13}	C_{14}	Ref.*
Calespar	Room	13.74	8.01	3.42	4.40	4.50	-2.03	74
Corundum	Room	46.5	56.3	23.3	12.4	11.7	10.1	75
Quartz .	Room	86.94	106.80	57.62	6.96	15.60	17.43	75
Sodium nitrate.	Room	8.67	3.74	2.13	1.63	1.60	0.82	74
		S_{11}	S_{33}	S_{44}	S_{12}	S_{13}	S_{14}	
$\boldsymbol{\alpha}$ quartz.	Room	12.98	9.90	20.05	-1.66	-1.52	-4.31	26
Bismuth (B_{1})	Room	2.69	28.7	104.8	-14	-6.2	$+16.0$	73
Calespar.	Room	11.3	17.5	40.3	-3.7	-4.3	+9.1	70
$\mathrm{Fe}_{2} \mathrm{O}_{3}$.	Room	4.42	4.44	11.93	-1.02	-0.23	+0.80	26
Hematite	Room	4.41	4.43	11.9	$\rightarrow 1.02$	-0.23	+0.79	70
Hg .	-190°	15.4	4.5	15.1	-11.9	-2.1	-10.0	15
Quartz	Room	13.0	9.9	20.0	-1.66	-1.52	-4.30	70
Sb .	Room	17.7	33.8	41.0	-3.8	-8.5	-8.0	73
Tellurium	Room	48.7	23.4	58.1	-6.9	-13.8		2
Tourmaline.	Room	3.99	6.24	15.14	-1.03	-0.16	+0.58	26

* References are on p. 2-58.

Table 2f-4. Elastic Constants and Coefficients for Hexagonal Crystals ($C_{i j}$ in units of 10^{11} dynes $/ \mathrm{cm}^{2} ; S_{i j}$ in units of $10^{-13} \mathrm{~cm}^{2} /$ dyne)

[^19]Table 2f-5. Elastic Constants and Coefficients for Rhombic Crystals (At room temperature; $C_{i j}$ in units of 10^{11} dynes $/ \mathrm{cm}^{2}$;
$S_{i j}$ in units of $10^{-13} \mathrm{~cm}^{2} /$ dyne)

Material	C_{11}	C_{22}	\boldsymbol{C}_{33}	C_{44}	C_{55}	C_{66}	C_{12}	C_{13}	C_{23}	Ref.*
Sodium tartrate.	4.61	5.47	6.65	1.24	0.31	0.98	2.86	3.20	3.52	76
Rochelle salt.	4.06	5.20	6.40	1.22	0.30	0.95	2.56	3.46	3.20	76
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	6.98	5.29	8.22	1.07	2.33	2.22	3.90	2.82	2.83	76
$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	4.00	3.22	5.45	0.50	1.70	1.81	1.32	1.08	1.19	76
S (orthorhombi	2.40	2.05	4.83	0.43	0.87	0.76	1.33	1.71	1.59	77
	S_{11}	S_{22}	\boldsymbol{S}_{33}	S_{44}	S_{55}	S_{66}	S_{12}	S_{13}	S_{23}	
Sodium tartrate.	37.1	31.6	26.4	80.6	323	100	-12.0	-11.5	-10.9	76
Rochelle salt	50.2	30.4	31.7	82.0	333	106	-11.6	-21.4	-8.95	76
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.	24.5	34.1	15.0	93.5	42.9	45.0	-16.6	-2.68	-6.05	76
$\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.	29.5	37.7	20.4	200.0	58.8	55.5	-10.8	-3.49	-6.10	76
S (orthorhombic)	89.9	106.0	38.4	232	115	132	45.2	13.6	18.8	77
Aragonite.	6.97	13.2	12.2	24.3	39.0	23.5	-2.37	0.43	-3.04	26
Barite.	16.45	18.94	10.63	83.9	34.9	36.0	-2.51	-1.92	-8.97	26
Ammonium rochelle salt. .	55.7	38.5	37.3	87.4	359.9	118.4	-5.0	-34.3	-8.7	20
Topaz.	4.43	3.53	3.84	9.24	7.54	7.64	-0.66	-0.86	-1.37	26

* References are below.

References for Tables $\mathbf{2 f - 1}$ through 2f-5

1. Birch and Bancroft: unpublished.
2. Bridgman: Proc. Am. Acad. Arts Sci. 60, 305 (1925).
3. Bridgman: Proc. Am. Acad. Arts Sci. 64, 19 (1929).
4. Bridgman: Proc. Am. Acad. Arts Sci. 67, 29 (1932).
5. Bridgman: Phys. Rev. 47, 393 (1935).
6. Durard: Phys. Rev. 50, 449 (1936); Rose, Phys. Rev. 49, 50 (1936).
7. Giebe and Blechschmidt: Ann. Physik 18, 417, 457 (1933).
8. Giebe and Scheibe: Ann. Physik 9, 39 (1931).
9. Goens: Ann. Physik 16, 793 (1933).
10. Goens: Ann. Physik 17, 233 (1933).
11. Goens and Schmid: Physik Z. 37, 385 (1936).
12. Goens and Schmid: Naturwiss. 19, 521 (1931).
13. Goens and Weerts: Physik Z. 37, 321 (1936).
14. Gruneisen and Goens: Z. Physik 26, 235 (1924).
15. Gruneisen and Sckell: Ann. Physik 19, 387 (1934).
16. Hanson: Phys. Rev. 45, 324 (1934).
17. Kimura: Sci. Repts. Tôhoku Imp. Univ. 22, 533 (1933).
18. Kimura and Ohno: Sci. Repts. Tôhoku Imp. Univ. 23, 359 (1934).
19. Mandell: Proc. Roy. Soc. (London) 116, 623 (1927).
20. Mandell: Proc. Roy. Soc. (London) 121, 122 (1928).
21. Perrier and Mandrot: Compt. rend. 175, 622, 1006 (1922); also Freedericks and Michailov: Z. Physik 76, 328 (1932); de Mandrot, Helv. Phys. Acta 5, 362 (1932).
22. Quimby and Siegel: Phys. Rev. 52, 665 (1937); 54, 293 (1938).
23. Rohl, Ann. Phys. 16, 887 (1933).
24. Schaeter and Beramann: Sitzber. preuss. Akad. Wiss. Physik-math. Ke. 222 (1935).
25. Tyndall: Phys. Rev. 47, 398 (1935).
26. Voigt: "Lehrbuch der Kristallphysik," Teubner Verlagsgesellschaft, Berlin, 1928.
27. Wright: Proc. Roy. Soc. (London) 126, 613 (1929).
28. Mason: Phys. Rev. 55, 775 (1939).
29. Siegel: Phys. Rev. 57, 537 (1940).
30. Rinehart, Phys. Rev. 58, 365 (1940).
31. Mason: Bell System Tech. J. 19, 74 (1940).
32. Beckmann, H. F.: Tech. U. El AK 44, 145 (1934).
33. Schmid and Boas: "Kristallplastizität," p. 202, Springer-Verlag OHG, Berlin, 1935.
34. Atanasoff and Kammer: Phys. Rev. 59, 97 (1941).
35. Lawson: Phys. Rev. 59, 608 (1941).
36. Atansoff and Hart: Phys. Rev. 59, 85 (1941).
37. Lazarus, D.: Phys. Rev. 75, 545 (1949).
38. Fine, Morris E.: J. Appl. Phys. 24, 338 (1953).
39. Seitz, Frederick: J. Appl. Phys. 12, 100 (1941).
40. Neighbours, J. R., F. W. Bratten, and C. S. Smith: J. Appl. Phys. 23, 389 (1952).
41. Artman, R. A., and D. O. Thompson: J. Appl. Phys. 23, 470 (1952).
42. Bhagavantam, S., and J. Bhimasenachar: Proc. Indian Acad. Sci. 1945 (Department of Physics, Andhra University).
43. Wert, G. A., and E. P. T. Tyrdall: J. Appl: Phys. 20, 587 (1948).
44. Jona, Franco: Helv. Phys. Acta 24, VII (1950).
45. Kammer, E. W., and J. V. Atansoff: Phys. Rev. 62, 395, 1942.
46. Good, Walter A.: Phys. Rev. 60, 605, 1941.
47. McSkimin, H. J., W. L. Bond, E. Buehler, and G. K. Teal: Phys. Rev. 83, 1080 (1952).
48. Lazarus, David: Phys. Rev. 74, 1726 (1948).
49. Bond, W. L., W. P. Mason, H. J. McSkimin, K. M. Oleson, and G. K. Teal: Phys. Rev. 78, 176, 1950.
50. Rao, B. Ramachandra: Current Sci. (India) 14.
51. Rao, Sundara: Nature 162, 818.
52. Bridgman, P. W.: Proc. Am. Acad. Arts Sci. 64, 19 (1929).
53. Voigt, W.: Wiedemanns Ann. 35, 642 (1888).
54. Rohl, H.: Ann. Phys. 16 (5), 887 (1933).
55. Wright, S. J.: Proc. Roy. Soc. (London) 126, 613 (1930).
56. Karnop, R., and G. Sachs: Z. Physik 53, 605 (1929).
57. Masima, M., and G. Sachs: Z. Physik 50, 161 (1928).
58. Rohl, H.: Ann. Physik 16, 887 (1933).
59. Kimura, R.: Proc. Phys.-Math. Soc. Japan 21, 686, 786 (1939); 22, 45, 219 (1940).
60. Voigt, W.: Nachr. Ges. Wiss. Göttingen, 85 (1918).
61. Bhagavantam and Suryanavayana: Proc. Indian Acad. Sci. 20, 304 (1944).
62. Jones, H.: Physica 15, 13 (1949).
63. Hoerni, J., and W. Wooster: Acta Cryst. 5, 386 (1952).
64. Smith, G. S., and J. W. Burns: J. Appl. Phys. 24, 15 (1952).
65. Rao, B. Ramachandra: Proc. Indian Acad. Sci. 22A, 194 (1945).
66. Rao, Sundara: Current Sci. (India) 17, 50 (1948).
67. Rao, Sundara, and T. S. Balakrishnan: Proc. Indian Acad. Sci. 28A, 475 (1948).
68. Yamomolo, M.: Phys. Rev. 77, 566 (1950).
69. Wert, C., and E. Tyndall: J. Appl. Phys. 20, 587, 1948.
70. Voigt, W.: "Lehrbuch der Kristallphysik," 1910.
71. Kammer, E.
72. Jona, F.: Helv. Phys. Acta 23 (24VII, 1950).
73. Bridgman, P. W.: Proc. Natl. Acad. Sci. U.S. 10, 411 (1924).
74. Bhimasenacher, J.: Proc. Indian Acad. Sci. 22, 199 (1945).
75. Bhimasenachar, J.: Current Sci. (India) 18.
76. Rao, Sundara: Proc. Indian Acad. Sci. 28, 185 (1948).
77. Rao, Sundara: Proc. Indian Acad. Sci. 31, 365 (1950).
78. Adams and Coker: Carnegie Inst. Wash. Publ. 46 (1906).
79. Birch: J. Appl. Phys. 8, 129 (1937).
80. Birch and Bancroft: J. Geol. 46, 59, 113 (1938).
81. Birch and Bancroft: J. Geol. 48, 752 (1940).
82. Birch and Bancroft: Am. J. Sci. 2, 237 (1939).
83. Birch and Bancroft: Bull. Seism. Soc. Am. 28, 243 (1938).
84. Boyle and Sproule: Can. J. Research 5, 601 (1931).'
85. Breyer: Z. Geophys. 6, 98 (1930).

MECHANICS

86. Bridgman: Proc. Am. Acad. Arts Sci. 63, 401 (1929); 64, 39 (1929).
87. Drane: Proc. Roy. Soc. (London), ser. A, 122, 274 (1929).
88. Drude and Voigt: Wiedemanns Ann. 42, 537 (1891).
89. Ewing, Crary, and Thorne: Physics 5, 165 (1934).
90. Hermann, Stocke, and Udluft: Beitr. angew. Geophys. 6, 206 (1937).
91. Horton: Trans. Roy. Soc. (London), ser. A, 204, 407 (1905); Iida: Bull. Earthquake Research Inst. 13, 665 (1935).
92. Ide: Proc. Natl. Acad. Sci. U.S. 22, 81, 482 (1936).
93. Ide: J. Geol. 45, 689 (1937).
94. Koch: Ann. Physik 45, 237 (1914).
95. Koch and Dannecker: Ann. Physik 47, 197 (1915).
96. Koch and Dieterle: Ann. Physik 68, 441 (1922).
97. Kusakabe: Earthquake Invest. Comm. Tokyo 14, 1 (1903); 17, 1 (1904); 22, 38 (1906).
98. Nagaoka: Phil. Mag. 50, 53 (1900).
99. Perman and Urry: Proc. Phys. Soc. (London) 40, 186 (1928).
100. Pierce: Proc. Inst. Radio Engrs. 17, 42 (1929).
101. Richards: Proc. Phys. Soc. (London) 45, 70 (1933).
102. Zisman; Proc. Natl. Acad. Sci. U.S. 19, 653 (1933).
103. Weatherby, Born, and Harding: Bull. Am. Assoc. Petroleum Geol. 19, 9 (1935).
104. Andrews: Proc. Phys. Soc. (London) 37, 169 (1925).
105. Bancroft and Jacobs: Rev. Sci. Instr. 9, 279 (1938).
106. Vose: unpublished.
107. Abram, J. Iron Steel Inst. (London) 129, 325 (1934).
108. Regula: Z. Geophys. 16, 40 (1940).
109. Obert, U.S. Bur. Mines, Rept. Invest. 3444 (1939).
110. Lawson: Phys. Rev. 57, 417 (1940).
111. Birch and Bancroft: J. Chem. Phys. 8, 641 (1940).
112. Birch and Bancroft: unpublished.
113. Kimura: Proc. Phys.-Math. Soc. Japan 21, 786 (1939).
114. McKeown, J., and E. D. Ward: Brit. Non-ferrous Metals Research Assoc., Research Rept., Assoc. Series 473 (1938).
115. Rogers, B. A., I. C. Schoonover, and L. Jordan: Natl. Bur. Standards (U.S.) Circ. C412 (1936).
116. Bhagavantam, S., and J. Bhimasenachar: Proc. Indian Acad. Sci. 20 (1944).
117. Doraiswami, M. S.: Proc. Indian Acad. Sci. 25A (1947).
118. Doraiswami, M. S.: Proc. Indian Acad. Sci. 25A (1947).
119. Bhagavantam, S. : Proc. 33rd Indian Sci. Congr., pt. II, sec. III, Physics, 1946.
120. Bhagavantam, S., and D. Suryanavayana: Phys. Rev. 2, 71 (1947).
121. Bhagavantam, S., and D. Suryanavayana: Proc. Indian Acad. Sci. 20A (1944).
122. Bhimasenashar, J.: Proc. Indian Acad. Sci. 22 (1945).

Abbreviations in Tables 2f-6 through 2f-15

Abbreviation	Definition
H.R.	Hot rolled
C.R	Cold rolled
W.Q	Water quenched
O.Q	Oil quenched
A.Q.	Air quenched
A.C.	Air cooled
F.C.	Furnace cooled
h-t.	Heat-treated
wr	Wrought
ann	Annealed
art. aged.	Artificially aged
nat. aged	Naturally aged
spec.	Specimen
G.S.	Grain size

ELASTICITY, HARDNESS, AND STRENGTH OF SOLIDS
Table 2f-6. Elastic and Strength Constants for Various Solids

Material	Condition	E	G	Tensile strength	Yield strength at 0.2% offset	Elongation	Bhn	Ref.*
Iridium.	Ann.	52×10^{11}					Vhn 170	
Osmium .	Ann.	56×10^{11}					Vhn 170	1
Rhodium	Ann.			50×10^{8}				1
Ruthenium.	As cast	41×10^{11}		50×10^{3}			Vhn 390	1
Antimony.		7.78×10^{11}		1.1×10^{8}			30-58	1
Beryllium..	Vacuum cast	29×10^{11}		$12-15 \times 10^{8}$			30-58	1
Cadmium..	Chill cast 1-in. section	$5.5 \times 10^{11} \dagger$ \cdot	7.1×10^{8}		50	21-23	1
Calcium...	Cast slab	$2-3 \times 10^{11}$	5.5×10^{8}	3.8×10^{8}	53-60	17	1
Chromium.	As cast						110-170	1
Cobalt.....	Cast Sheet, ann. 0.01-in	21×10^{11}	23.7×10^{8}			125	1
Columbium.	Sheet, ann. 0.01-in. section Sheet, worked 0.01-in. section		… $\cdot \cdots$	34×10^{8} 69×10^{8}		30		1
Lithium.			69×10^{8}		1	Softer than	1
Manganese. .	Quenched		-	50×10^{8}	24×10^{8}	40	pure lead $\mathrm{R}_{\mathrm{C}} 35$	1
Molybdenum.	Pressed + sintered (sheet)	34×10^{11}		69×10^{8}			${ }_{156}$	1
Silicon......	Chill cast $3.55 \times 0.97 \times 0.97 \mathrm{in}$.	11.26×10^{11}						1
Tantalum							$0.07 \ddagger$	1
Tantalum	Ann. $0.010-\mathrm{in}$. sheet		34×10^{8}		40	$\mathrm{R}_{\mathrm{E}} 60$	1
Titanium.	Aorked 0.010-in. sheet Ann.	11.6×10^{11}		76×10^{8}		1	$\mathrm{R}_{\mathrm{E}} 95$	1
Titanium.	Hard, 60% reduction	11.6×10^{11}	54×10^{8} 76.82×10^{8}	43×10^{8}	25.2	$\mathrm{R}_{\mathrm{G}} 76$	1
Tungsten.		34×10^{11}	13.5×10^{11}	76.82×10^{8}		1.5	$\mathrm{R}_{\mathrm{G}} 72$	1
Zirconium.	Hard drawn	9.99×10^{11}		84×10^{8}	48×10^{8}	18 T	$\mathrm{R}_{\mathrm{B}} 87.4$	1

* References are on p. 2-78.
$\ddagger 3.2-\mathrm{kg}$ load, $10-\mathrm{mm}$ ball.
$\stackrel{+}{\square}$ Per cent in 4 in.

2－6		MECHANICS
	$\stackrel{*}{\stackrel{*}{\ddot{\sim}}}$	
$\begin{aligned} & \text { 花 } \\ & \text { 曷 } \\ & 4 \end{aligned}$	嵒	
		$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$ ！$\vdots \vdots \vdots$
边		
$\begin{aligned} & \text { 尉 } \\ & \stackrel{0}{2} \\ & \frac{2}{2} \end{aligned}$	\bigcirc	
	田	
$\begin{aligned} & \text { İ } \\ & \text { 的 } \\ & \text { 胃 } \\ & \text { H } \end{aligned}$		

Table 2f-7. Elastic and Strength Constants for Silver, Gold, Platinum, Palladium Alloys (Continued)

Material	Condition	E	σ	Tensile strength	Yield strength at 0.2% offset	Elongation	Reduction in area	Bhn	Ref.*
$\begin{aligned} & 41.6 \mathrm{Au}, 4.6 \mathrm{Ag}, 43.4 \mathrm{Cu}, \\ & \text { 5.0 Ni, } 5.4 \mathrm{Zn} \end{aligned}$	Air cooled			46.8×10^{8}	$\begin{aligned} & 26.7 \times 10^{8} \\ & \text { at } 0.1 \% \\ & \text { offset } \end{aligned}$	41.5	36.0	$\mathrm{R}_{\mathrm{B}} 68$	1
$69 \mathrm{Au}, 25 \mathrm{Ag}, 6 \mathrm{Pt}$.	Ann.			37.6×10^{8}				Vhn 112	1
Pt 99.99\%.	Ann.	14.7×10^{11}	0.39	$12-13 \times 10^{8}$		25-40		Vhn 38-40	1
$\mathrm{Pt}+5 \mathrm{Ir}$.	Ann.			27×10^{8}				90	1
$\mathrm{Pt}+10 \mathrm{Ir}$.	Ann.			38×10^{8}		\ldots	130	1
$\mathrm{Pt}+25 \mathrm{Ir}$.	Ann.		86×10^{8}			240	1
$\mathrm{Pt}+3.5 \mathrm{Rh}$.	Ann.			17×10^{8}			60	
$\mathrm{Pt}+5.0 \mathrm{Rh} .$.	Ann.		21×10^{8}			\ldots	70	1
$\mathrm{Pt}+10.0 \mathrm{Rh}$.	Ann.			31×10^{8}		35		90	1
$\mathrm{Pt}+20.0 \mathrm{Rh}$.	Ann.		48×10^{8}		40	\ldots	120	1
$\mathrm{Pt}+5 \mathrm{Ru}$.	Ann.			41×10^{8}			\ldots	130	1
$\mathrm{Pt}+10 \mathrm{Ru}$.	Ann.			59×10^{8}				190	1
$\mathrm{Pt}+1 \mathrm{Ni}$.	Ann.	-............		21×10^{8}				Vhn 60-65	1
$\mathrm{Pt}+2 \mathrm{Ni}$.	Ann.			28×10^{8}				Vhn 80-90	1
$\mathrm{Pt}+5 \mathrm{Ni} .$.	Ann.			45×10^{8}				Vhn 130-140	1
$84 . \mathrm{Pt}, 10 \mathrm{Pd}, 6 \mathrm{Ru}$.	Ann.			- 55×10^{8}		18-25		Vhn 150-170	1
$96 \mathrm{Pt}, 4 \mathrm{~W}$.	Ann.			$48-52 \times 10^{8}$		25		Vhn 140-150	1
Pd (pure)...	Ann. and rolled	12.1×10^{11}		$\geq 15 \times 10^{8}$		24		Vhn 37-39	1
$60 \mathrm{Pd}, 40 \mathrm{Ag}$.	Ann.			35×10^{8}		47		Vhn 100	1
$60 \mathrm{Pd}, 40 \mathrm{Cu}$.	Ann.			52×10^{8}					
$95 \mathrm{Pd}, 4 \mathrm{Ru}, 1 \mathrm{Rh}$.	Ann.			$38-41 \times 10^{8}$		25		Vhn 100-110	1

[^20]Table 2f-8. Elastic and Strength Constants for Aluminum Alloys

Table 2f－9．Elastic and Strength Constants for Copper Alloys

品	
寅．	か ®ㅛ
$\begin{aligned} & \text { 品 } \\ & \text { E. } \\ & \text { 菏 } \end{aligned}$	
	 ぶ
	$\times \times
\bigcirc	
\bigcirc	
18	$\times \times
훌 0 0	
家	

$\vdots \vdots	$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \infty \ldots$ ¢
$\times \times 	

${ }^{60} \mathrm{Cu}, 37.5 \mathrm{Zn}, 1.75 \mathrm{~Pb}, 0.75 \mathrm{Sn}$	1-in. rod, soft ann.	$10.3 \times 1{ }^{11}$
$58.5 \mathrm{Cu}, 39 \mathrm{Zn}, 1.4 \mathrm{Fe}, 1 \mathrm{Sn}, 0.1 \mathrm{Mn}$	1-in. rod, soft ann.	10.3×10^{11}
${ }_{95} \mathrm{Cu}, 5 \mathrm{Sn} \ldots \ldots$	Ann., flat spec.	11.0×1011
${ }_{92} \mathrm{Cu}, 8 \mathrm{Sn}$	Ann., lat plate (0.040 in.)	11.0×10^{11}
${ }_{92} \mathrm{Cu}, 8 \mathrm{Sn}$	Spring temper plate (0.040 in.)	11.0 ${ }^{\text {a }}$
$90 \mathrm{Cu}, 10 \mathrm{Sn}$	Ann. flat plate (0.040 in.)	11.0×10^{11}
$90 \mathrm{Cu}, 10 \mathrm{Sn}$.	Spring, flat plate (0.040 in.)	11.0×10^{11}
${ }^{98.75} \mathrm{Cu}, 1.25 \mathrm{Sn}$	Ann., flat plate (0.040 in.)	11.7×10^{11}
${ }_{98.75} \mathrm{Cu}, 1.25 \mathrm{Sn}$	Spring, flat plate (0.040 in.)	11.7×10^{11}
$70 \mathrm{Cu}, 30 \mathrm{Ni}$.	H.R. 1-in. plate.	15.2×10^{11}
${ }^{65} \mathrm{Cu}, 18 \mathrm{Ni}, 17 \mathrm{Zn}$.	Ann., flat plate (0.040 in.)	12.4×10^{11}
${ }_{55} 5 \mathrm{Cu}, 27 \mathrm{Zn}, 18 \mathrm{Ni}$.	Ann., flat plate (0.040 in.)	12.4×10^{11}
${ }^{55} \mathrm{Cu}, 27 \mathrm{Zn}, 18 \mathrm{Ni}$.	Spring, flat plate (0.040 in.)	12.4×10^{11}
$\mathrm{Cu}, 3 \mathrm{Si}$.	Flat plate (0.040 in .) ($\mathbf{G} . \mathrm{S} .0 .070 \mathrm{~mm}$)	12.4×1
$\mathrm{Cu}, 3 \mathrm{Si}$.	Flat plate (0.040 in.) spring	
$\mathrm{Cu}, 1.5 \mathrm{Si}$.	1-in. rod (G.S. 0.035 mm)	10.3×10^{11}
$94.88 \mathrm{Cu}, 5.02 \mathrm{Al}, 0.04 \mathrm{Fe}, 0.06 \mathrm{Zn}$	0.041 -in. sheet, ann. at $500^{\circ} \mathrm{C}$	10.3×10
$94.88 \mathrm{Cu}, 5.02 \mathrm{Al}, 0.04 \mathrm{Fe}, 0.06 \mathrm{Zn}$	0.041-in. sheet, C.R., 44% reduction	
$91.74 \mathrm{Cu}, 8.10 \mathrm{Al}, 0.04 \mathrm{Fe}, 0.02 \mathrm{Ni}, 0.10$ Zn.	0.020 -in. sheet, ann. at $400^{\circ} \mathrm{C}$	
$91.74 \mathrm{Cu}, 8.10 \mathrm{Al}, 0.04 \mathrm{Fe}, 0.02 \mathrm{Ni}, 0.10$	0020-in sheot CR 37	
${ }_{92.65} \mathrm{Cu}, 7.35 \mathrm{Al}$	H.R.	
$92 \mathrm{Cu}, 7 \mathrm{Al}, 1 \mathrm{Ni}$.	C.R., ann.	
$89.25 \mathrm{Cu}, 9.25 \mathrm{Al}, 0.6 \mathrm{Fe}, 0.5 \mathrm{Ni}$	Ann., rod	
$87.45 \mathrm{Cu}, 5.62 \mathrm{Al}, 6.93 \mathrm{Ni}$.	H.R.	
$85.75 \mathrm{Cu}, 10.75 \mathrm{Al}, 3.50 \mathrm{Fe}$.	Sand cast	
$81.3 \mathrm{Cu}, 10.7 \mathrm{Al}, 4.0 \mathrm{Fe}, 4.0 \mathrm{Ni}$.	Forged, ann. at $845^{\circ} \mathrm{C}$	
$\mathrm{Cu}^{2} 2 \mathrm{Be}, 0.25 \mathrm{Co}$ (or 0.35 Ni).	Solution treated, quenched	11.7×11^{11}
$88 \mathrm{Cu}, 6 \mathrm{Sn}, 1.5 \mathrm{~Pb}, 4.5 \mathrm{Zn}$.	Sand cast 0.505 -in. section	8.96×10^{11}
$87 \mathrm{Cu}, 8 \mathrm{Sn}, 1 \mathrm{~Pb}, 4 \mathrm{Zn}$.	Sand cast 0.505-in. section	8.65×10^{11} 9.65
${ }_{85} 8 \mathrm{Cu}, 5 \mathrm{5n}, 9 \mathrm{~Pb}, 1 \mathrm{Zn}$	Sand cast 0.505-in. section	9.65×10
${ }^{83} \mathrm{Cu}, 7 \mathrm{Sn}, 7 \mathrm{~Pb}, 3 \mathrm{Zn}$	Sand cast 0.505-in. section	9.99×1011
$8^{\circ} \mathrm{Ca}, 10 \mathrm{Sa}, 10 \mathrm{~Pb}$.	Sand cast 0.505-in. section	7.58×1011
	Sand cast	7.23×10^{11}
${ }_{80} \mathrm{Cu}, 5 \mathrm{Sn}, 25 \mathrm{~Pb}$.	Sand cast	$8.89 \times 1{ }^{111}$
	Sand cast	9.30×10^{11}
$83 \mathrm{Cu}, 4 \mathrm{Sn}, 6 \mathrm{~Pb}, 7 \mathrm{Zn}$	Sand cast	9.30×10
$81 \mathrm{Cu}, 3 \mathrm{Sn}, 7 \mathrm{~Pb}, 9 \mathrm{Zn}$.	Sand cast	8.96×1011

Table 2f-9. Elastic and Strength Constants for Copper Alloys (Continued)

[^21]The yield strength is conventionally determined in either of two ways. In the first method, a specimen of the material is repeatedly loaded and unloaded with the load being increased at each cycle, the process being continued until a specified permanent set is obtained after one of the unloadings. The stress which produces this specified permanent set is called the yield strength.

In the second method, known as the offset method, a load-elongation curve is determined experimentally, the elongation being measured in units of extension per unit length of the undeformed specimen. A straight line is then drawn having a slope equal to the initial slope of the load-elongation curve and an intercept on the elongation axis equal to the specified offset, which is usually given in units of per cent elongation. The yield strength is taken to be that load defined by the interaction of the added straight line with the load-elongation curve.

Further discussion of yield strength can be found in ASTM E6-36.
3. Yield Point. ${ }^{1}$ The stress at which a marked increase in deformation takes place without increase in the load.
4. Shear Strength. ${ }^{2}$ "The stress, usually expressed in pounds per square inch, required to produce fracture when impressed perpendicularly upon the cross-section of a material."
5. Elongation." "In tensile testing the elongation of a specimen is the increase in gage length, after rupture, referred to the original gage length. It is reported as percentage elongation."
6. Reduction in Area. " "In tensile testing the reduction in area of a specimen is the ratio of the difference between the original cross-sectional area of the specimen and the cross-sectional area after rupture, to the original cross-sectional area. It is reported as the percentage reduction of area."
7. Rockwell Hardness Number. ${ }^{2}$ "A hardness value indicated on a direct-reading dial when a designated load is imposed on a metallic material in the Rockwell hardness testing machine using a steel ball or a diamond penetrator. The value must be qualified by reference to the load and penetrator used. Several scales are in common use: Rockwell A hardness is determined with a minor load of 10 kg and a major load of 60 kg using the diamond cone (brale); Rockwell B hardness is determined with a minor load of 10 kg and a major load of 100 kg using a $\frac{1}{16}-\mathrm{in}$. steel ball; Rockwell C hardness is determined with a minor load of 10 kg and a major load of 150 kg using the diamond cone"; Rockwell D hardness is determined with a minor load of 10 kg and a major load of 100 kg using a diamond cone indenter; Rockwell E hardness is determined with a minor load of 10 kg and a major load of 100 kg using a $\frac{1}{8}$-in. steel ball indenter; Rockwell F hardness is determined with a minor load of 10 kg and a major load of 60 kg using a $\frac{1}{16}-\mathrm{in}$. steel ball; Rockwell G hardness is determined with a minor load of 10 kg and a major load of 150 kg , using a $\frac{1}{16}-\mathrm{in}$. steel ball indenter.

A second set of Rockwell hardness numbers are the Rockwell superficial hardness numbers. One of these is the Rockwell 15T hardness which is determined with a minor load of 3 kg and a major load of 15 kg , using a $\frac{1}{16}-\mathrm{in}$. steel ball.

Note: The methods of determining the hardness values can be found in Standard Methods of Test for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM E18-42.
8. Brinell Hardness Number. ${ }^{4}$ "A hard spherical indenter of diameter $D \mathrm{~mm}$ is pressed into the metal surface under a load $W \mathrm{~kg}$ and the mean chordal diameter of the*

[^22]

Table 2f-11. Elastic and Strength Constants for Lead and Lead Alloys

Alloy	Condition	E	σ	Tensile strength	Yield strength at 0.5% offset	Elongation, \% in 2 in .	Reduction in area	Bhn	Shear strength	Ref.*
99.90 Pb	Rolled, aged		1.77×10^{8}	0.95×10^{8}	22		$\mathrm{R}_{\mathrm{B} 75}$		1
99.73 Pb	Sand cast	1.38×10^{11}	$1.1-1.3 \times 10^{8}$	0.55×10^{8}	30	100	3.2-4.5	1.2×10^{8}	1
99.73 Pb	Chill cast	0.40-0.45	1.4×10^{8}		47	100	4.2		1
$\begin{gathered} 0.023-0.033 \mathrm{Ca}, \\ 0.02-0.1 \mathrm{Cu}, 0.002- \\ 0.02 \mathrm{Ag} . . \end{gathered} .$	Extruded			2.1×10^{8}		40			1
1 Sb	Extruded and aged	1.38×10^{11}	2.1×10^{8}	50	7	1
4 Sb	Rolled, 95% reduction			2.77×10^{8}		48.3		8.1		1
6 Sb .	Chill cast			4.71×10^{8}	24		13.0		1
6 Sb .	Extruded			2.27×10^{8}	65	\ldots	10.7		1
6 Sb .	Cold rolled, 95% reduction	\ldots	2.82×10^{8}	47	\cdots		1
8 Sb .	Rolled, 95% reduction			3.20×10^{8}		31.3		$9.5 \dagger$		1
9 Sb .	Chill cast	5.2×10^{8}		17		15.4	1
$4.5-5.5 \mathrm{Sn}$.				2.3×10^{3}	1.0×10^{8}	50	80	8		1
20 Sn			\ldots	4.0×10^{8}	2.51×10^{8}	16	50	11.3		1
				4.2×10^{8}	3.3×10^{8}	60	70	14.5	4.04×10^{8}	1
4.50-5.50 Sn, 9.25-10.75 Sb.	Chill cast	2.89×10^{11}		6.9×10^{8}		5	19		1
$4.50+5.50 \mathrm{Sn}, 14-16 \mathrm{Sb}$.	Chill cast	2.89×10^{11}		6.9×10^{8}		5		20		1
9.3-10.7 Sn, 14-16 Sb	Cast	2.89×10^{11}		7.2×10^{8}		4		22		1
$0.75-1.25 \mathrm{Sn}, 0.8-1.4 \mathrm{As}, 14.5-17.5 \mathrm{Sb}$	Chill cast	2.89×10^{11}		7.1×10^{8}		2		20		1
0.6-1.0 Sn, 1.5-3.0 As, 12.0-13.5 Sb	Chill cast	2.89×10^{11}		6.8×10^{8}		1.5	22	1

[^23]Table 2f-12. Elastic and Strength Constants for Magnesium Alloys

Alloy	Condition	E	G	σ	Tensile strength	Yield strength at 0.2% offset	Elongation, $\%$ in 2 in.	Bhn	Shear strength	Ref.*
$99.9+\mathrm{Mg}$		4.48×10^{11}	1.67×10^{11}	0.35						
8.3-9.7 Al, $0.10 \mathrm{Mn}, 1.7-2.3 \mathrm{Zn}, \leq 0.3 \mathrm{Si}$, $\leq 0.05 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other	Sand and permanent cast molds, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	16.5×10^{8}	9.65×10^{8}	2	65	13.1×10^{8}	14
8.3-9.7 Al, $0.10 \mathrm{Mn}, 1.7-2.3 \mathrm{Zn}, \leq 0.3 \mathrm{Si}$, $\leq 0.05 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other	Sand and permanent cast molds, cast and stabilized	4.48×10^{11}	1.67×10^{11}	0.35	16.5×10^{8}	9.65×10^{8}	2	.	13.1×10^{8}	14
$8.3-9.7 \mathrm{Al}, 0.10 \mathrm{Mn}, 1.7-2.3 \mathrm{Zn}, \leq 0.3 \mathrm{Si}$, $\leq 0.05 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other	Sand and permanent cast, solution h-t	4.48×10^{11}	1.67×10^{11}	0.35	27.6×10^{8}	9.65×10^{8}	10	63	$13.8 \times 10^{\text {a }}$	14
$\begin{aligned} & \text { 5.3-6.7 Al, } \geq 0.15 \mathrm{Mn}, 2.5-3.5 \mathrm{Zn}, \leq 0.3 \mathrm{Si}, \\ & \leq 0.05 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3 \text { other } \end{aligned}$	Sand and permanent cast molds, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	20.0×10^{8}	9.65×10^{8}	6	50	12.4×10^{8}	14
$5.3-6.7 \mathrm{Al}, \geq 0.15 \mathrm{Mn}, 2.5-3.5 \mathrm{Zn}, \leq 0.3 \mathrm{Si},$ $\leq 0.05 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3 \text { other }$	Sand and permanent cast molds, cast and stabilized	4.48×10^{11}	1.67×10^{11}	0.35	20.0×10^{8}	9.65×10^{8}	5	.	13.1×10^{8}	14
$\begin{aligned} & \text { 5.3-6.7 Al, } \geq 0.15 \mathrm{Mn}, 2.5-3.5 \mathrm{Zn}, \leq 0.3 \mathrm{Si}, \\ & \leq 0.05 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3 \text { other } \end{aligned}$	Sand and permanent cast molds, solution h-t	4.48×10^{11}	1.67×10^{11}	0.35	27.6×10^{8}	9.65×10^{8}	12	55	13.1×10^{8}	14
$\begin{aligned} & \text { 8.3-9.7 Al, } \geq 0.13 \mathrm{Mn}, 0.4-1.0 \mathrm{Zn}, \leq 0.5 \mathrm{Si}, \\ & \leq 0.10 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3 \text { other } \end{aligned}$	Sand and permanent cast molds, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	16.5×10^{8}	9.65×10^{8}	2	52		14
$\begin{aligned} & \text { 8.3-9.7 Al, } \geq 0.13 \mathrm{Mn}, 0.4-1.0 \mathrm{Zn}, \leq 0.5 \mathrm{Si}, \\ & \leq 0.10 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3 \text { other } \end{aligned}$	Sand and permanent cast molds, solution h -t	4.48×10^{11}	1.67×10^{11}	0.35	27.6×10^{8}	9.65×10^{8}	11	53		14
8.3-9.7 Al, $\geq 0.13 \mathrm{Mn}, 0.4-1.0 \mathrm{Zn}, \leq 0.5 \mathrm{Si}$, $\leq 0.10 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other	Sand and permanent cast, solution h-t, aged	4.48×10^{11}	1.67×10^{11}	0.35	27.6×10^{8}	13.1×10^{8}	4	66		14
8.3-9.7 Al, $\geq 0.13 \mathrm{Mn}, 0.4-1.0 \mathrm{Zn}, \leq 0.5 \mathrm{Si}$, $0.10 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other.	Die cast, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	22.7×10^{8}	15.2×10^{8}	3	60	13.8×10^{8}	14
8.3-9.7 Al, $\geq 0.10 \mathrm{Mn}, 0.4-1.0 \mathrm{Zn}, \leq 0.5 \mathrm{Si}$, $\leq 0.3 \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other.	Die cast, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	22.7×10^{8}	15.2×10^{8}	3	60	13.8×10^{8}	14
$2.5-3.5 \mathrm{Al}, \geq 0.20 \mathrm{Mn}, 0.6-1.4 \mathrm{Zn}, 0.08-$ $0.30 \mathrm{Ca}, \leq 0.3 \mathrm{Si}, \leq 0.05 \mathrm{Cu}, \leq 0.005 \mathrm{Fe}$, $\leq 0.005 \mathrm{Ni}, 0.3$ other.	Sheet, ann.	4.48×10^{11}	1.67×10^{11}	0.35	25.5×10^{8}	15.2×10^{8}	21	56	14.5×10^{8}	14
$\begin{aligned} & 2.5-3.5 \mathrm{Al}, \geq 0.20 \mathrm{Mn}, 0.6-1.4 \mathrm{Zn}, 0.08- \\ & 0.30 \mathrm{Ca}, \leq 0.3 \mathrm{Si}, \leq 0.05 \mathrm{Cu}, \leq 0.005 \mathrm{Fe} \end{aligned}$		4.48×10^{11}	1.67×10^{11}		25.5×10^{8}	15.2×10^{8}		56	14.5×10^{8}	14
$\leq 0.005 \mathrm{Ni}, 0.3$ other.	Sheet, hard rolled	4.48×10^{11}	1.67×10^{11}	0.35	28.9×10^{8}	22.0×10^{8}	16	73	15.8×10^{8}	14

Table 2f-12. Elastic and Strength Constants for Magnesium Alloys (Continued)

Alloy	Condition	E	\boldsymbol{G}	σ	Tensile strength	Yield strength at 0.2% offset	Elongation, $\%$ in 2 in.	Bhn	Shear strength	Ref.*
$2.5-3.5 \mathrm{Al}, \geq 0.20 \mathrm{Mn}, 0.6-1.4 \mathrm{Zn}, 0.08-$										
$0.30 \mathrm{Ca}, \leq 0.3 \mathrm{Si}, \leq 0.05 \mathrm{Cu}, \leq 0.005 \mathrm{Fe}$, $\leq 0.005 \mathrm{Ni}, 0.3$ other.	Sheet, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	25.5×10^{8}	15.2×10^{8}	21		14.5×10^{8}	14
$\geq 1.20 \mathrm{Mn}, 0.08-0.14 \mathrm{Ca}, \leq 0.3 \mathrm{Si}, \leq 0.05$										
$\mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3$ other.............	Sheet, ann.	4.48×10^{11}	1.67×10^{11}	0.35	22.7×10^{8}	12.4×10^{8}	16	48	12.4×10^{8}	14
$\begin{aligned} & \geq 1.20 \mathrm{Mn}, 0.08-0.14 \mathrm{Ca}, \leq 0.3 \mathrm{Si}, \leq 0.05 \\ & \mathrm{Cu}, \leq 0.01 \mathrm{Ni}, 0.3 \text { other............. } \end{aligned}$	Sheet, hard rolled	4.48×10^{11}	1.67×10^{11}	0.35	25.5×10^{8}	19.3×10^{8}	7	56	11.7×10^{8}	14
$\leq 1.20 \mathrm{Mn}, 0.08-0.14 \mathrm{Ca}, \leq 0.3 \mathrm{Si}, \leq 0.05$						10.3×10			11.7×10	14
$\mathrm{Cu}, \leq 0.01 \mathrm{Ni}, \leq 0.3$ other...........	Sheet, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	22.7×10^{8}		.			14
$5.8-7.2 \mathrm{Al}, 0.15 \mathrm{Mn}, 0.4-1.5 \mathrm{Zn}, \leq 0.3 \mathrm{Si}$, $\leq 0.05 \mathrm{Cu}, \leq 0.005 \mathrm{Ni}, \leq 0.005 \mathrm{Fe},+0.3$ other	Extruded bars, rods, or shapes, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	30.3×10^{8}	20.7×10^{8}	14	60	13.1×10^{8}	14
$7.8-9.2 \mathrm{Al}, \geq 0.15 \mathrm{Mn}, 0.2-0.8 \mathrm{Zn}, \leq 0.3 \mathrm{Si}$, $\leq 0.05 \mathrm{Cu}, \leq 0.005 \mathrm{Ni}, \leq 0.005 \mathrm{Fe}, 0.3$ other	Extruded bars, rods, or shapes, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	33.1×10^{8}	22.0×10^{8}	12	60	15.2×10^{8}	14
$7.8-9.2 \mathrm{Al}, \geq 0.15 \mathrm{Mn}, 0.2-0.8 \mathrm{Zn}, \leq 0.3 \mathrm{Si}$, $\leq 0.05 \mathrm{Cu}, \leq 0.005 \mathrm{Ni}, \leq 0.005 \mathrm{Fe}, 0.3$ other	Extruded bars, rods, or shapes, aged	4.48×10^{11}	1.67×10^{11}	0.35	35.8×10^{8}	24.8×10^{8}	5	82	16.5×10^{8}	14
$\geq 0.06 \mathrm{Mn}, 4.3-6.2 \mathrm{Zn}, \geq 0.45 \mathrm{Zr}, 0.3$ other	Extruded bars, rods, or shapes, as fabricated	4.48×10^{11}	1.67×10^{11}	0.35	33.8×10^{8}	26.2×10^{8}	12	75	16.5×10^{8}	14
$\geq 0.06 \mathrm{Mn}, 4.3-6.2 \mathrm{Zn}, \geq 0.45 \mathrm{Zr}, 0.3$ other	Extruded bars, rods, or shapes, aged	4.48×10^{11}	1.67×10^{11}	0.35	35.1×10^{8}	28.9×10^{8}	10	82	17.2×10^{8}	14

[^24]ELASTICITY, HARDNESS, AND STRENGTH OF SOLIDS
Table 2f-13. Elastic and Strength Constants for Nickel and Nickel Alloys

Alloy	Condition	\boldsymbol{E}	G	Tensile strength	Yield strength at 0.2% offset	$\begin{array}{\|c\|} \hline \text { Elonga- } \\ \text { tion } \end{array}$	Reduction in area	Bhn	Shear strength	Ref.*
$63-70 \mathrm{Ni}, \leq 2.5 \mathrm{Fe}, \leq 2.0 \mathrm{Mn}$, remainder Cu.	Wr., ann.			51.7×10^{8}	24.1×10^{8}					
$63-70 \mathrm{Ni}, \leq 2.5 \mathrm{Fe}, \leq 2.0 \mathrm{Mn}$, remainder Cu .	Wr., H.R.	17.9×10^{11}		61.7×10^{8} 62.0×10^{8}	24.1×10^{8} 34.4×10^{8}	40 35		125 150	$34-44 \times 10^{8}$ $34-44 \times 10^{8}$	15
$63-70 \mathrm{Ni}, \leq 2.5 \mathrm{Fe}, \leq 2.0 \mathrm{Mn} \text {, remainder }$ Cu .	Wr., cold drawn			62.0×10^{8} 68.9×10^{8}	34.4×10^{8} 55.1×10^{8}	35 25		150 190	$34-44 \times 10^{8}$ $34-44 \times 10^{8}$	15 15
$\underset{\mathrm{Cu}}{63-70 \mathrm{Ni}, \leq 2.5 \mathrm{Fe}, \leq 2.0 \mathrm{Mn}, \text { remainder }}$	Wr., C.R. (hard temper)			75.8×10^{8}	68.9×10^{8}	5		240	$34-44 \times 10^{8}$	15
	H.R.	18×10^{11}	0.32	68.9×10^{8}	31.0×10^{8}	40		160		15
$\begin{aligned} & \text { 63-70 } \mathrm{Ni}, 2.0-4.0 \mathrm{Al}, 0.25-1.0 \mathrm{Ti} \text {, remain- } \\ & \text { der } \mathrm{Cu} \end{aligned}$	H.R., age hardened	18×10^{11}		103×10^{8}	75.8×10^{8}	25	280		15
63-70 Ni, 2.0-4.0 Al, 0.25-1.0 Ti, remainder Cu .	Cold drawn	18×10^{11}		79.2×10^{8}	58.6×10^{8}	25		210		15
$\begin{aligned} & 63-70 \mathrm{Ni}, 2.0-4.0 \mathrm{Al}, 0.25-1.0 \mathrm{Ti} \text {, remain- } \\ & \operatorname{der} \mathrm{Cu} \end{aligned}$	Cold drawn, age hardened	18×10^{11}		107×10^{8}	79.2×10^{8}	20	\ldots	290		15
$\geq 99.0 \mathrm{Ni}, \leq 0.15 \mathrm{C}, \leq 0.35 \mathrm{Mn}, \leq 0.40 \mathrm{Fe}$	Wr., ann.	21×10^{11}	0.31	48.2×10^{8}	13.8×10^{8}	40		100	36×10^{8}	15
$\geq 99.0 \mathrm{Ni}, \leq 0.15 \mathrm{C}, \leq 0.35 \mathrm{Mn}, \leq 0.40 \mathrm{Fe}$	Wr., H.R.			51.7×10^{8}	17.2×10^{8}	40		110		15
$\geq 99.0 \mathrm{Ni}, \leq 0.15 \mathrm{C}, \leq 0.35 \mathrm{Mn}, \leq 0.40 \mathrm{Fe}$	W_{r}., cold drawn			65.4×10^{8}	48.2×10^{8}	25		170		15
$\geq 99.0 \mathrm{Ni}, \leq 0.15 \mathrm{C}, \leq 0.35 \mathrm{Mn}, \leq 0.40 \mathrm{Fe}$	W_{r}., cold rolled (hard temper)			72.3×10^{8}	65.4×10^{8}	5	210		15
$\geq 99.0 \mathrm{Ni}, \leq 0.02 \mathrm{C}$.	Ann.	21×10^{11}	0.31	41.3×10^{8}	10.3×10^{8}	50	\ldots.	90		15
$\geq 93.0 \mathrm{Ni}, 4.00-4.75 \mathrm{Al}, 0.25-1.0 \mathrm{Ti}, \leq 0.30$										
C...............................	H.R.	21×10^{11}	0.31	72.3×10^{8}	34.4×10^{8}	35		180		15
$\underset{C}{\geq 93.0 ~ \mathrm{Ni}, 4.00-4.75 \mathrm{Al}, 0.25-1.0 \mathrm{Ti}, \leq 0.30}$	H.R., age hardened		117×10^{8}	89.6×10^{8}	15	\ldots	320		15
$\begin{gathered} \geq 93.0 \mathrm{Ni}, 4.00-4.75 \mathrm{Al}, 0.25-1.0 \mathrm{Ti}, \leq 0.30 \\ \mathrm{C} . \ldots \ldots \ldots . . . \end{gathered}$	Cold drawn			82.7×10^{8}		25				
$\underset{\mathrm{C}}{\geq 93.0 \mathrm{Ni}, 4.00-4.75 \mathrm{Al}, 0.25-1.0 \mathrm{Ti}, \leq 0.30}$	Cold drawn, age hardened		...	$\begin{array}{r}82.7 \\ 121 \times 10^{8} \\ \hline\end{array}$	62.0×10^{8} 93.0×10^{8}	25 15	\ldots	220 340		15

Table 2f－13．Elastic and Strength Constants for Nickel and Nickel Alloys（Continued）

$\stackrel{*}{\stackrel{*}{\overleftarrow{0}}} \underset{\substack{* \\ \hline}}{ }$	
袁	
盛吕	
\bigcirc	
1	
$\begin{aligned} & \text { \# } \\ & \text { \# } \\ & \text { \# } \\ & 0 \end{aligned}$	
$\stackrel{\stackrel{\rightharpoonup}{c}}{\dot{c}}$	

[^25]Table 2f-14. Elastic and Strength Constants for Tin and Tin Alloys

Alloy	Condition	E	σ	Tensile strength	Yield strength at 0.2% offset	Elongation	Bhn	Shear strength	Ref.*
Pure tin.	Cast	$4.1-4.5 \times 10^{11}$		2.14×10^{8}			5.3	2.00×10^{8}	
Pure tin.	Chill cast			1.45×10^{8}		69		2.00×10^{8}	
Pure tin	0.1-in. sheet, ann.			1.65×10^{8}		96			
$99.8 \mathrm{Sn} \dagger$.	Cast	4.13×10^{11}		1.45×10^{8}		$54 \dagger$			
$99.8 \mathrm{Sn} \dagger$.	Ann., 0.040-in. sheet	4.13×10^{11}	0.33	1.52×10^{8}		45	Vhn 7.2	0.896×10^{8}	1
$, 95 \mathrm{Sn}, 5 \mathrm{Sb}$.	Cast			4.06×10^{8}		$38 \dagger$		4.13×10^{8}	
$95 \mathrm{Sn}, 5 \mathrm{Ag}$.	$0.040-\mathrm{in}$. sheet, aged at room temp.			3.17×10^{8}	2.48×10^{8}	49		\times	1
$70 \mathrm{Sn}, 30 \mathrm{~Pb}$.	Cast			4.68×10^{8}			12		
$63 \mathrm{Sn}, 37 \mathrm{~Pb}$.	Cast			5.17×10^{8}		$32 \dagger$	14	4.27×10^{8}	1
$91 \mathrm{Sn}, 4.5 \mathrm{Sb}, 4.5 \mathrm{Cu}$.	Chill cast	5.03×10^{11}		6.41×10^{8}	$4.34 \times 10^{8} \ddagger$		17		1
$83.4 \mathrm{Sn}, 8.3 \mathrm{Sb}, 8.3 \mathrm{Cu}$.	Chill cast				$5.51 \times 10^{8} \ddagger$		27		1

* References are on p. 2-78.
\ddagger At 0.3% offset.

Table 2f-15. Elastic and Strength Constants for Zinc and Zinc Alloys

Alloy	Condition	Tensile strength	Elongation, \% in 2 in .	Bhn	Shear strength	Ref.*
3.5-4.3 Al, $0.03-0.08 \mathrm{Mg}$	Die cast, $1 / 4$-in. section	28×10^{8}	10	82	21×10^{8}	1
$\begin{aligned} & 3.5-4.3 \mathrm{Al}, 0.75-1.25 \mathrm{Cu}, 0.03-0.08 \\ & \mathrm{Mg} \end{aligned}$	Die cast, 3/4-in. section	33×10^{8}	7	91	26×10^{8}	1
$\begin{aligned} & 3.5-4.5 \mathrm{Al}, 2.5-3.5 \mathrm{Cu}, 0.02-0.10 \\ & \mathrm{Mg} \end{aligned}$	Die cast, 34-in. section	35.9×10^{8}	8	100	32×10^{8}	1
4.5-5.0 Al, $0.2-0.3 \mathrm{Cu}$	Chill cast, 1/2in. section	19×10^{8}	\ldots	\cdots		1
5.25-5.75 Al.	Chill cast, 1/2in. section	17×10^{8}	1	\cdots		1
$\leq 0.10 \mathrm{~Pb}$.	H.R. strip	13.4-16 $\times 10^{8}$	50-65	38		1
$0.05-0.10 \mathrm{~Pb}, 0.05-0.08 \mathrm{Cd}$.	H.R. strip	$14-17 \times 10^{8}$	30-52	43		1
$0.25-0.50 \mathrm{~Pb}, 0.25-0.45 \mathrm{Cd}$	H.R. strip	$16-20 \times 10^{8}$	32-50	47		1
$0.85-1.25 \mathrm{Cu}$.	H.R. strip	$16-22 \times 10^{8}$	15-20	52		1
0.85-1.25 Cu, $0.006-0.016 \mathrm{Mg}$.	H.R. strip	$19-25 \times 10^{8}$	10-20	61		1

* References are below.

References for Tables 2f-6 through 2f-15

1. "Metals Handbook," 1948 ed., American Society for Metals.
2. Natl. Bur. Standards (U.S.) Circ. C447, 1943.
3. Bain, E. C.: "Functions of the Alloying Elements in Steel," American Society for |Metals, 1939.
4. Hoyt, S. L.: "Metals and Alloys Data Book," Reinhold Publishing Corporation, New York, 1943.
5. "Selection of Special Steels, Data Sheet," D.T.A. 72, Société de commentry, Paris, France, 1946.
6. Halley, J. W.: Pat. 2402135, 1946.
7. "Nickel Alloy Steel," 2d ed., The International Nickel Co., Inc., New York, 1949.
8. "Fox Alloy Steels," Samuel Fox and Co. Ltd., Sheffield, England, 1942.
9. "Case Hardening of Nickel Alloy Steels," International Nickel Co., New York, 1941.
10. Everett, F. L., and J. Miklowitz: J. Appl. Phys. 15 (1944).
11. Climax Molybdenum Company Laboratory Records.
12. "Sheet Iron, a Primer," Republic Steel Corp., 1934.
13. Comstock, G. F.: J. Am. Ceram. Soc. 29 (1946).
14. "Magnesium Alloys and Products," Dow Chemical Co., 1950.
15. "Nickel," The International Nickel Co., Inc., rev. 1951.
resultant indentation measured ($d \mathrm{~mm}$). The Brinell hardness number (Bhn) is defined as

$$
\begin{aligned}
\text { Bhn } & =\frac{W}{\text { curved area of indentation }} \\
& =\frac{2 W}{\pi D\left(D-\sqrt{\left.D^{2}-d^{2}\right)}\right.}
\end{aligned}
$$

and is expressed in $\mathrm{kg} / \mathrm{mm}^{2}$."
9. Vickers Hardness Number. "A pyramidal diamond indenter is pressed into the surface of a metal under a load of $W \mathrm{~kg}$ and the mean diagonal of the resultant indenta-

[^26]Table 2f-16. Diffusion Coefficients for Metals

Metal	Test temp.	$D\left(\frac{\mathrm{~cm}^{2}}{\mathrm{sec}}\right)$	Ref.
Ag into Ag	Room	0.895	1
Ag into Ag .	$460{ }^{\circ} \mathrm{C}$	8.0×10^{-14}	11
Ag into Ag .	$600^{\circ} \mathrm{C}$	5.9×10^{-12}	11
Ag into Ag .	$666^{\circ} \mathrm{C}$	2.45×10^{-11}	2
Ag into Ag .	$794{ }^{\circ} \mathrm{C}$	3.64×10^{-10}	2
Ag into Ag	$936{ }^{\circ} \mathrm{C}$	4.61×10^{-9}	2
Al into Cu .	Room	1.75×10^{-2}	1
Au into Au .	Room	0.160	3
Au into Cu .	Room	0.1 ± 0.06	4
Be into Cu .	Room	2.32×10^{-4}	1
Bi into Pb .	Room	0.018	3
Cd into Cu .	Room	1.97×10^{-9}	3
Cd into Ag .	Room	7.3×10^{-5}	3
Cd into Pb .	Room	1.8×10^{-3}	3
Cl^{-}into NaCl single crystals.	$650^{\circ} \mathrm{C}$	7.25×10^{-11}	5
Cl^{-}into NaCl single crystals.	$681{ }^{\circ} \mathrm{C}$	2.84×10^{-10}	5
Cl^{-}into NaCl single crystals.	$703^{\circ} \mathrm{C}$	6.76×10^{-10}	5
Cl^{-}into NaCl single crystals.	$735^{\circ} \mathrm{C}$	1.67×10^{-9}	5
Cl^{-}into $\cdot \mathrm{NaCl}$ single crystals.	$762^{\circ} \mathrm{C}$	2.52×10^{-9}	5
Cu into Cu .	Room	0.1-47	1
Cu into Cu .	$700^{\circ} \mathrm{C}$	4.06×10^{-12}	7
Cu into Cu .	$900^{\circ} \mathrm{C}$	3.58×10^{-10}	7
Cu into Cu .	$1000^{\circ} \mathrm{C}$	1.95×10^{-9}	7
Cu into CuO	$800^{\circ} \mathrm{C}$	0.19×10^{-8}	6
Cu into CuO .	$900^{\circ} \mathrm{C}$	0.77×10^{-8}	6
Cu into CuO .	$1000^{\circ} \mathrm{C}$	3.2×10^{-8}	6
Cu into Ag .	Room	5.95×10^{-5}	1
In into In.	$49.95{ }^{\circ} \mathrm{C}$	$7-8.5 \times 10^{-13}$	9
In into In .	$87.25^{\circ} \mathrm{C}$	$1.4-1.5 \times 10^{-11}$	9
In into In.	$155.50^{\circ} \mathrm{C}$	1.14×10^{-9}	9
In into In.	$155.81{ }^{\circ} \mathrm{C}$	1.70×10^{-7}	9
In into In.	$156.60^{\circ} \mathrm{C}$	6.52×10^{-6}	9
In into In.	$157.30^{\circ} \mathrm{C}$	1.23×10^{-5}	9
In into Ag.	Room	4.85×10^{-5}	1
Liq. Hg into liq. Hg	$2.5{ }^{\circ} \mathrm{C}$	1.52×10^{-5}	8
Liq. Hg into liq. Hg	$16.4{ }^{\circ} \mathrm{C}$	1.68×10^{-5}	8
Lig. Hg into liq. Hg .	$23.0{ }^{\circ} \mathrm{C}$	1.79×10^{-5}	8
Liq. Hg into liq. Hg	$31.9{ }^{\circ} \mathrm{C}$	1.88×10^{-5}	8
Liq. Hg into liq. Hg	$41.5{ }^{\circ} \mathrm{C}$	1.98×10^{-5}	8
Liq. Hg into liq. Hg .	$66.1{ }^{\circ} \mathrm{C}$	2.24×10^{-5}	8
Liq. Hg into liq. Hg .	$91.2{ }^{\circ} \mathrm{C}$	2.57×10^{-5}	8
Mn into Cu .	Room	0.72×10^{-5}	1
Ni into Cu .	Room	6.5×10^{-6}	1
Ni into Pb .	Room	0.66	1
Pd into Cu .	Room	0.16×10^{-5}	1

Table 2f-16. Diffusion Coefficients for Metals (Continued)

Metal	Test temp.	$D\left(\frac{\mathrm{~cm}^{2}}{\mathrm{sec}}\right)$	Ref.
Pt into Cu .	Room	1.02×10^{-4}	1
Pb into Pb	Room	6.6	1
Sb into Ag	Room	5.31×10^{-5}	1
Si into ferrite.	$1435 \pm 5^{\circ} \mathrm{C}$	1.1×10^{-7}	10
Si into Cu	Room	3.7×10^{-2}	1
Sn into Ag	Room	7.82×10^{-5}	1
Sn into Cu	Room	1.13	1
Sn into Pb	Room	3.96	1
Ti into In .	$49.27^{\circ} \mathrm{C}$	1.4×10^{-12}	9
Ti into In.	$74.19^{\circ} \mathrm{C}$	9.2×10^{-12}	9
Ti into In.	$101.55^{\circ} \mathrm{C}$	$4.6-4.8 \times 10^{-11}$	9
Ti into In.	$139.16^{\circ} \mathrm{C}$	$2.8-3.2 \times 10^{-10}$	9
Ti into In.	$155.60^{\circ} \mathrm{C}$	2.17×10^{-9}	9
Ti into In.	$155.91{ }^{\circ} \mathrm{C}$	1.87×10^{-7}	9
Ti into In.	$157.80^{\circ} \mathrm{C}$	2.27×10^{-5}	9
Ti into Pb	Room	0.025	1

N. B. The values quoted from ref. 1 are for D_{0} in the equation $D=D_{0} e^{-H / R T}$. Cf. ref. 1 for values of H.

References

1. Nowick, A. S.: J. Appl. Phys. 22, 1182 (1951).
2. Slifkin, L., D. Lazarus, and T. Tomizuka: J. Appl. Phys. 23, 1032 (1952).
3. Smithells, C. J.: "Metals Reference Book."
4. Martin, A. B.: and F. Asaro: Phys. Rev. 80, 123A (1950).
5. Chemla, Marius: Compt. rend. 234, 2601 (1952).
6. Moore, W. J., and Bernard Selikson: J. Chem. Phys. 19, 1539 (1951).
7. Cohen, G., and G. C. Kuczynski: J. Appl. Phys. 21, 1339L (1950).
8. Hoffman, R. E.: J. Chem. Phys. 20, 1567 (1951).
9. Eckert, R. E., and H. G. Drickamer: J. Chem. Phys. 20, 13 (1951).
10. Bradshaw, F. J., G. Hoyle, and K. Speight: Nature 171, 488 (1953).
11. Kuczynski, G. C.: J. Appl. Phys. 21, 632 (1950).
tion measured ($d \mathrm{~mm}$). The Vickers hardness number (Vhn), or Vickers diamond hardness (Vdh), is defined as

$$
\mathrm{Vdh}(\text { or Vhn })=\frac{W}{\text { pyramidal area of indentation }}
$$

The indenter has an angle of 136° between opposite faces and 146° between opposite edges. From simple geometry, this means that the pyramidal area of the indentation is greater than the projected area of the indentation by the ratio 1:0.9272. Hence

$$
\begin{aligned}
\mathrm{Vdh} & =\frac{0.9272 \mathrm{~W}}{\text { projected area of indentation }} \\
& =1.8544 \mathrm{~W} / d^{2}
\end{aligned}
$$

The value is expressed in $\mathrm{kg} / \mathrm{mm}^{2}$."
10. Diffusion Coefficient. If the concentration (mass of solid per unit volume of solution) at one surface of a layer of liquid is d_{1}, and at the other surface d_{2}, the thickness of the layer is h, the area under consideration is A, and the mass of a given substance which diffuses through the cross section A in time t is m, then the diffusion coefficient is defined as

$$
D=\frac{m h}{A\left(d_{2}-d_{1}\right) t}
$$

2g. Mechanical Properties of Gels and Thixotropic Substances

THOR L. SMITH
Jet Propulsion Laboratory
California Institute of Technology

2g-1. Introduction. A gel ${ }^{1}$ may be defined as a colloidal disperse system which (1) contains a dispersed component and a dispersion medium, both of which extend continuously throughout the system and (2) has time-independent or equilibrium elastic properties, e.g., it will support a static shear stress without undergoing permanent deformation. Gels are similar to solids in that they have a shear modulus of rigidity, but they are similar to liquids in most of their other physical properties.

The dispersed component of a gel must be a three-dimensional network held together by bonds or junction points whose lifetimes are essentially infinite. The junction points may be formed by primary valence bonds, long-range attractive forces, or secondary valence bonds that cause association between segments of polymer chains or formation of submicroscopic crystalline regions.

Certain systems, such as moderately concentrated polymer solutions, are similar to gels but differ in an important respect: they undergo flow when a shear stress, no matter how small, is applied, since they contain a network formed by molecular entanglements and the junction points are transient. They exhibit time-dependent elastic properties, as shown by stress-relaxation experiments or dynamic experiments with periodic stress, ${ }^{2}$ but they do not have equilibrium elastic properties as do true gels.

A class of materials that includes dry gelatin, agar, and lightly cross-linked rubber is called xerogels. Xerogels when in contact with suitable solvents swell to form gels.

A thixotropic substance is a gel which can undergo an isothermal gel-sol-gel transformation. The gel is transformed into a sol by mechanical agitation, and the sol reverts to a gel when the agitation is discontinued. The gel-sol transformation occurs if the gel is subjected to a shear stress greater than some critical amount, called the yield value.

2g-2. Gels. The equilibrium rigidity modulus of gels that have a dispersed component composed of randomly kinked long molecular chains which are cross-linked by primary valence bonds (or occasionally secondary valence bonds) is given approximately by the statistical theory of rubber elasticity. ${ }^{3}$ The theory equates the total elastic force of a deformed gel to the decrease in configurational entropy of the network chains. The theory can be applied to gels formed in several different ways: (1) by swelling a lightly cross-linked polymer such as rubber; (2) by introducing sufficient

[^27]cross links between polymer molecules in solution to form a three-dimensional network; or (3) by adding or removing some of the solvent in the gels formed under (2).

The modulus of rigidity G for any gel of the three classes is given by the equation

$$
\begin{equation*}
G=\frac{\rho}{M_{c}} R T v_{2^{\frac{1}{3}}}\left(v_{2}{ }^{0}\right)^{\frac{1}{3}} \tag{2~g-1}
\end{equation*}
$$

where ρ is the density of the dry polymeric material, M_{c} the number average molecular weight of polymer segments between cross links, R the gas constant, and T the absolute temperature. The quantity $v_{2}{ }^{0}$ is the volume fraction of polymer in the state when cross links were formed; and v_{2} is the volume fraction of polymer in the gel of rigidity G. Thus, for gels of class (1), $v_{2}{ }^{0}$ equals unity; for gel of class (2), $v_{2}{ }^{0}$ equals v_{2}; for gels of class (3), $v_{2}{ }^{0}$ equals the volume fraction of the polymer in the solution when the cross links were formed, and v_{2} is the volume fraction of the polymer in the gel formed by addition or removal of solvent.

The ratio ρ / M_{c} can be calculated from the measured rigidity of the gel in a given state using Eq. ($2 \mathrm{~g}-1$) or from equilibrium swelling measurements. ${ }^{1}$

The rigidities of a variety of gels are listed in Table $2 \mathrm{~g}-1$. These rigidities were obtained from the original literature and are given here without critical evaluation. Whenever Young's modulus E was reported in the literature, it has been converted into the shear modulus by using the relation $E=2 G(1+\nu)$ with ν, Poisson's ratio, set equal to 0.5 .

The rigidity of most gels depends on their age, method of preparation, temperature, and the concentration of the dispersed component. Hence ranges of rigidity moduli are given in Table $2 \mathrm{~g}-1$. Because of the time dependence of the rigidity of many gels, the moduli listed may not be equilibrium values. Also, some of the gels may show appreciable permanent deformation; therefore they may not conform strictly to the definition of a gel given previously.
$\mathbf{2 g}$-3. Thixotropic Substances. Numerous colloidal systems are thixotropic. Examples are paints, printing inks, iron oxide sols, solutions of sodium carboxymethylcellulose and agar, suspensions of glass spheres, kaolin, bentonite, carbon black, and kieselguhr. In fact, it appears that many gelling systems may become thixotropic under certain conditions of concentration, temperature, or ionic strength. ${ }^{2}$

The complete characterization of the mechanical properties of thixotropic substances ${ }^{3}$ should include the rigidity of the gel at various stages of its formation, and the flow curves (shear rate vs. shear stress curve) of the sol for all stages of breakdown. The latter is difficult to obtain since the degree of breakdown is changed by shear. However, several methods that give considerable information have been used to investigate a wide variety of thixotropic gels.

Pryce-Jones ${ }^{4}$ uses a concentric-cylinder apparatus whose inner cylinder is attached to a torsion wire. Data are obtained on the rate of change of viscous properties of the sol and elastic properties of the gel. Green and Weltman ${ }^{5}$ subject thixotropic systems to increasing shear rates, followed immediately by decreasing shear rates. A loop is obtained in the flow curves, from which a coefficient of thixotropic breakdown is calculated. They also calculate a coefficient of thixotropic breakdown with time from the decrease in viscosity (measured at a given rate) with time. Goodeve and Whitfield ${ }^{6}$

[^28]have introduced a coefficient of thixotropy θ, defined by the equation
\[

$$
\begin{equation*}
\eta-\eta_{0}=\frac{\Theta}{D} \tag{2~g-2}
\end{equation*}
$$

\]

where η is an apparent viscosity, η_{0} the limiting viscosity at high shear rates, and D the rate of shear. However, the equation is applicable only to comparatively simple systems.

Table 2g-1. Shear Modulus of Gels

| Gel | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

References for Table 2g-1

1. Hatschek, E.: J. Phys. Chem. 36, 2994 (1932).
2. Michaud: Ann. phys. 19, 63 (1923).
3. McDowell and Usher: Proc. Roy. Soc. (London), ser. A, 131, 409, 564 (1931).
4. Prasad: Kolloid-Z. 33, 279 (1923).
5. Amiot: Compt. rend. 224, 388 (1947).
6. Hatschek and Jane: Kolloid-Z. 39, 300 (1926).
7. Hutton and Matthews: Viscoelastic Behavior of Lubricating Greases, in "Proceedings of the Second International Rheological Congress," Harrison, ed., Academic Press, Inc., New York, 1954.
8. Poole, H. J.: Trans. Faraday Soc. 22, 82 (1926).
9. Ferry, J. D., and P. R. Morrison: J. Am. Chem. Soc. 69, 388, 400 (1947).
10. Ferry, Singer, Morrison, Porsche, and Kutz: J. Am. Chem. Soc. 69, 409 (1947). Also see Ferry, Protein Gels, in "Advances in Protein Chemistry," vol. IV, Anson and Edsall, eds., Academic Press, Inc., New York, 1948.
11. Wiederhorn and Reardon: J. Polymer Sci. 9, 315 (1952).
12. Saunders and Ward: An Absolute Method for the Rigidity Modulus of Gelatine Gels, in "Proceedings of the Second International Rheological Congress," Harrison, ed., Academic Press, Inc., New York, 1954.
13. Ferry and Eldridge: J. Phys. \& Colloid Chem. 53, 184 (1949); Miller, Ferry, Schremp, and Eldridge: J. Phys. \& Colloid Chem. 55, 1387 (1951).
14. Walter, A. T.: J. Polymer Sci. 13, 207 (1954).
15. Fitzgerald and Ferry: J. Colloid Sci. 8, 1 (1953); Ferry and Fitzgerald: J. Colloid. Sci. 8, 224 (1953).
16. Davies, Miller, and Busse: J. Am. Chem. Soc. 63, 361 (1941).
17. Aiken, Alfrey, Janssen, and Mark: J. Polymer Sci. 2, 178 (1947).
18. Dyson: J. Polymer Sci 7, 147 (1951).
19. Nielsen, Buchdahl, and Levreault: J. Appl. Phys. 21, 607 (1950).
20. Bisschops, J.: J. Polymer Sci. 12, 583 (1954).
21. Gee, G.: Trans. Faraday Soc. 42, 585 (1946).
22. Brimhall and Hixon: Ind. Eng. Chem., Anal. Ed. 11, 358 (1939).

2h. Viscosity of Solids

EVAN A. DAVIS
Westinghouse Electric Corporation

2h-1. Anelasticity. A perfectly elastic solid is truly an ideal material. Actual materials contain structural imperfections which prohibit

Fig. 2h-1. Mechanical model for demonstrating anelastic and creep behavior of solids. them from behaving in a perfectly elastic manner. Even when the stresses are low enough to ensure that no perceptible permanent deformation takes place the total strain is made up of a purely elastic part that is directly proportional to the load and a time-dependent but fully recoverable part that will vary with the rate of loading and the duration of the load. The behavior associated with the time-dependent part of the strain has been called "anelasticity" by Zener, ${ }^{1}$ who has endeavored to explain this behavior in terms of the atomic arrangement and the microstructure of the material.

Anelastic behavior is observed in many ways, depending upon the manner in which the material is loaded. Its effect may be referred to as elastic hysteresis, internal friction, elastic aftereffect, specific damping capacity, or dynamic and static moduli of elasticity. The fact that the term anelasticity has been limited to the region of no permanent deformation does not exclude the existence of such behavior at higher stresses. When a material deforms permanently, however, the anelastic effects are overshadowed by and engulfed in the plastic behavior.
In the realm of small deformations a metal or a plastic can be represented qualita-

[^29]tively by the mechanical model of springs and dashpots shown in Fig. 2h-1. For the anelastic behavior at low stresses the viscosity η_{1} of the upper dashpot can be considered as infinite. The spring with the elastic modulus E_{1} contributes the purely elastic strain. The time-dependent part of the strain comes from the parallel arrangement of spring E_{2} and dashpot η_{2}. This model will exhibit, though not in a quantitative manner, the various anelastic effects of solids.

If the unit is elongated at a slow rate, dashpot η_{2} will have little effect in resisting the deformation of spring E_{2}. The static or isothermal modulus of elasticity will be that of springs E_{1} and E_{2} connected in series. If the unit is elongated rapidly dashpot η_{2} will tend to act as a rigid mechanism. The dynamic or adiabatic modulus of elasticity will be that of spring E_{1} acting alone.

If the unit is put through a constant-rate loading and unloading cycle a hysteresis loop will be traced out in the stress-strain diagram. The area of the loop will be proportional to the amount of energy dissipated in dashpot $\boldsymbol{\eta}_{2}$.

If the unit is loaded slowly and then unloaded rapidly the strain will not immediately return to zero. What appears to be a permanent strain or elastic aftereffect will be observed. The strain will return to zero when the stress trapped in the spring E_{2} by dashpot η_{2} has been relaxed.

If a mass is attached to the lower end of the unit and the entire mechanism is allowed to vibrate freely the amplitude of vibration will decrease with each cycle. The decrease in amplitude of vibration is due to the dissipation of energy in dashpot $\boldsymbol{\eta}_{2}$. If the springs are linear and elastic and the dashpot behaves in a perfectly viscous manner the ratio of the decrease in amplitude for any given cycle to the amplitude at the beginning of the cycle will be a constant. This constant is called the logarithmic decrement δ, and it is probably the most-used measure of the anelastic behavior of materials.

The logarithmic decrement of actual materials is relatively high for dielectric materials and low for metals. Since this quantity depends upon imperfections in the atomic structure it will vary with such factors as heat-treatment, grain size, or the amount of cold working, and it will be impossible to assign a value to a specific material such as steel. The values listed by Kimball ${ }^{1}$ and shown in Table $2 \mathrm{~h}-1$ and those listed by Gemant ${ }^{2}$ and shown in Table $2 \mathrm{~h}-2$ are to be considered as representative values which give the order of magnitude of the decrement or internal friction.

The factors which affect the logarithmic decrement are discussed in detail by Zener and by Gemant. The decrement is influenced by such factors as frequency, temperature, amplitude, elastic modulus, grain size, annealing temperature, and aging time.

In general there is not much change in decrement with frequency. Gemant and Jackson ${ }^{3}$ found slight increases in the decrement of ebonite and glass over rather narrow frequency ranges (Fig. 2h-2). Gemant shows a slight increase in the decrement for paraffin wax and a slight decrease in the decrement for steel (Fig. 2h-3). An exception to this rule was found by Rinehart, ${ }^{4}$ who reported an appreciable increase in the decrement of Lucite at room temperature (Fig. 2h-4).

Certain materials show steep peaks in the log decrement vs. log frequency curve. These peaks are associated with frequencies that correspond to the reciprocal of some characteristic time for the material. Such a curve, taken from Gemant and based on the work of Zener and Bennewitz and Rötger, ${ }^{5}$ is shown in Fig. 2h-5. In this case the peak in the internal-friction curve is due to the diffusion of heat from parts heated by compression to parts cooled by tensile stresses.

[^30]The logarithmic decrement usually increases with increasing temperature. The viscous behavior changes more rapidly than the elastic properties with temperature, with the result that at higher temperatures more energy is dissipated in the dashpot.

The decrement does not vary greatly with amplitude when the amplitudes are small. The decrement increases at higher amplitudes. This is evidence that the viscosity of materials is not of a pure viscous nature. The rate of strain increases more rapidly at the higher stresses than the linear viscous law would predict.

Fig. 2h-2. Logarithmic decrement vs. logarithm of frequency for ebonite and glass. (Gemant and Jackson.)
(

Fig. 2h-4. Logarithmic decrement vs. frequency for Lucite at $26^{\circ} \mathrm{C}$. (Rinehart.)

Fig. 2h-3. Logarithmic decrement vs. frequency at room temperature for steel and paraffin wax. (Gemant.)

Fig. 2h-5. Logarithmic decrement vs. frequency for German silver. (Measured points after Bennemitz and Rötger; theoretical curve after Zener.)

Materials with high elastic moduli have lower decrements than those with low moduli. There is some evidence to show that the product of the elastic modulus and the decrement is nearly a constant value.
$\mathbf{2 h} \mathbf{- 2}$. Creep. When a material is subjected to the proper combination of high stress and temperature it will deform permanently. A representative behavior will be produced by the model shown in Fig. 2h-1 if the viscosity of both dashpots η_{1} and η_{2} is finite. The continuing deformation of a material under a constant load is called "creep." If the model is loaded with a given load at $t=0$ there will be an instantaneous elastic deflection ϵ^{\prime} of spring E_{1}, dashpot η_{1} will deform at some constant rate $u_{0}^{\prime \prime}$, and dashpot η_{2} will deform at a decreasing rate. ${ }^{1}$ The rate of strain in dashpot η_{2}

[^31]```
 Table 2h-1. Logarithmic Decrements for Various Materials*
 Logarithmic
 Material
 Decrement \delta
 Phosphor bronze, cold rolled. 0.37 }\times1\mp@subsup{10}{10-3}{
 Monel, cold rolled. 1.43
 Nickel steel, 3\frac{1}{2}% swaged 2.3
 Nickel, cold rolled. 3.2
 Phosphor bronze, annealed 3.2
 Aluminum, cold rolled. 3.4
 Brass, cold rolled. 4.8
 Mild steel, cold rolled. 4.9
 Copper, cold rolled. 5.0
 Glass. 6.4
 Molybdenum, swaged. 6.9
 Swedish iron, annealed 7.9
 Tungsten, swaged. 16.5
 Zinc, swaged. }2
 Maple wood. 22
 Celluloid. }4
 Tin, swaged. }12
 Rubber, 90% pure.
 260
```

* A. L. Kimball, "Vibration Prevention in Engineering," John Wiley \& Sons, Inc., New York, 1932.

* A. Gemant, "Frictional Phenomena," Chemical Publishing Company, Inc., New York, 1950.
decreases because the load is gradually transferred to spring $E_{2}$ as the deformation takes place, and this part of the deformation stops at a strain $\epsilon_{0}^{\prime \prime}$ when the spring $E_{2}$ carries the complete load. The creep curve for the model and for materials which are not stressed high enough to cause fracture will have the form shown in Fig. 2h-6 (the elastic strain $\epsilon^{\prime}$ is not shown). The plastic strain starts at a rapid rate but approaches the asymptotic value given by

$$
\begin{equation*}
\epsilon^{\prime \prime}=\epsilon_{0}^{\prime \prime}+u_{0}^{\prime \prime} t \tag{2h-1}
\end{equation*}
$$

The shape of the initial part of the creep curve or the manner in which the


Fig. 2h-6. Typical creep curve. curve approaches the asymptote has been studied by Andrade ${ }^{1}$ and by McVetty. ${ }^{2}$

[^32]Andrade found that the increase of strain during the first part of the test was proportional to the cube root of the time.

$$
\begin{equation*}
\epsilon^{\prime \prime}=\beta t^{1 / 3} \tag{2h-2}
\end{equation*}
$$

McVetty used an exponential relationship to describe the initial deformation.

$$
\begin{equation*}
\epsilon^{\prime \prime}=\epsilon_{0}^{\prime \prime}\left(1-e^{-\alpha t}\right)+u_{0}^{\prime \prime} t \tag{2h-3}
\end{equation*}
$$

When creep tests are made to obtain design data for equipment having long service life, and most of the early creep tests were made under these conditions, the major part of the strain is accounted for by the $u_{0}^{\prime \prime} t$ term in Eq. (2h-1). The important relationship to be established, then, is that between the minimum creep rate $u_{0}^{\prime \prime}$ and the stress $\sigma$, and this is the only information reported by many investigations.

If shorter service times are considered the initial part of the creep curve becomes more important, and it becomes desirable to know the relationship between the plastic intercept $\epsilon_{0}^{\prime \prime}$ and the stress $\sigma$. McVetty shows a plot of this relationship for the lower stress range where a power function or hyperbolic sine relationship would be suitable.

$$
\begin{equation*}
\epsilon_{0}^{\prime \prime}=A \sigma^{n} \quad \text { or } \quad \epsilon_{0}^{\prime \prime}=B \sinh \frac{\sigma}{\sigma_{0}} \tag{2h-4}
\end{equation*}
$$

Such relationships indicate that, if the model of Fig. $2 \mathrm{~h}-1$ is to represent actual materials, spring $\dot{E}_{2}$ must be nonlinear. At higher stresses these relationships do not hold. As the stress is increased a maximum value is reached above which the value of $\epsilon_{0}^{\prime \prime}$ decreases with increasing stress.

In the range of strain rates that can be tolerated in reasonable testing times the minimum creep rate $u_{0}^{\prime \prime}$ vs. stress $\sigma$ curve can be approximated by a straight line on either a double-log or a semilog plot.

$$
\begin{equation*}
u_{0}^{\prime \prime}=D \sigma^{m} \quad \text { or } \quad u_{0}^{\prime \prime}=u_{1}^{\prime \prime} \sinh \frac{\sigma}{\sigma_{0}} \tag{2h-5}
\end{equation*}
$$

The hyperbolic sine relationship has been shown by Kauzmann ${ }^{1}$ to have some theoretical foundation in terms of the "chemical rate theory." The power-function relationship has the advantage of being more workable from a mathematical point of view, but it suffers somewhat from the illogical conclusion that the viscosity of dashpot $\eta_{1}$ should approach infinity as the stress approaches zero. Creep properties, like anelastic properties, vary with many factors, and compilation of creep data means very little unless heat-treatment, grain size, and amount of cold working are also specified. A few representative values of the stress required for a creep rate of $10^{-6}$ per hour taken from the 1943 compilation of the National Bureau of Standards, ${ }^{2}$ are given in Table 2h-3.

Materials held under constant load during long-time creep tests recover part of their plastic strain when the load is removed. According to the model of Fig. $2 \mathrm{~h}-1$ the recoverable strain should be equal to $\epsilon_{0}^{\prime \prime}$. In actual practice, however, the recovery is usually much less than $\epsilon_{0}^{\prime \prime}$ and is generally less than the elastic strain of unloading. If after the first unloading and subsequent recovery the specimen is loaded and unloaded the new plastic intercept $\epsilon_{0}^{\prime \prime}$ and the recoverable strain are approximately equal.

Both constants in either of the expressions of Eq. (2h-5) vary with temperature. According to the chemical rate theory of Kauzmann and the various theories based on diffusion phenomena the constants $D$ or $u_{1}$ should decrease with increasing temperature according to an exponential expression

$$
\begin{equation*}
u_{1}^{\prime \prime}=C_{1} e^{-\left(C_{2} / T\right)} \tag{2h-6}
\end{equation*}
$$

[^33]Table 2h-3. Creep Rates for Various Materials*

| Material and composition | Condition | Temp |  | Stress for 0.001 strain in $1,000 \mathrm{hr}$, psi |
| :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |  |
| Aluminum copper alloy, Cu 4.25 , Mn 0.63, Mg 0.44, Fe 0.52, Si 0.25 | $\frac{5}{8}$ diam rod, wrought, aged | 150 | 302 | 22,000 |
|  |  | 250 | 482 | 5,700 |
|  |  | 350 | 662 | 1,500 |
| Aluminum silicon alloy, Si 13.18, Ni 3.08, Cu 2.96, Mg 1.04, Fe 0.53 | Wrought | 205 | 400 | 8,800 |
|  |  | 315 | 600 | 950 |
| Electrocopper | Fully annealed | 205 | 400 | 6,700 |
| Deoxidized copper | $\frac{3}{4}$ diam rod, cold drawn, annealed | 205 | 400 | 20,500 |
| Copper nickel alloy, Ni 20.0, Zn 5.08, Mn 0.69 | $\frac{3}{4}$ diam rod, cold drawn, annealed at $1200^{\circ} \mathrm{F}$ | 315 | 600 | 27,800 |
| Copper tin alloy, Sn 5.99, Zn 5.10, Pb 2.33, Ni 0.23, Fe 0.06 | Cast | 260 | 500 | 10,000 |
|  |  | 315 | 600 | 3,000 |
| Copper zinc alloy, $\mathrm{Cu} 96.43, \mathrm{~Pb}$ $0.05, \mathrm{Fe} 0.01, \mathrm{Zn}$ remainder | $\frac{1}{8}$ diam wire, drawn, fine-grained | 149 | 300 | 50,000 |
|  |  | 205 | 400 | 3,500 |
|  |  | 260 | 500 | 700 |
| Carbon steel, C 0.15, Mn 0.46, Si 0.28 (basic open hearth) | 1 in. diam bar, wrought, annealed at $1500^{\circ}$ F, grain size 5-6 ASTM | 427 | 800 | 17,200 |
|  |  | 538 | 1000 | 3,300 |
|  |  | 648 | 1200 | 540 |
| Carbon steel, C 0.15, Mn 0.50, Si 0.23 (basic electric furnace) | 1 in. diam bar, wrought, annealed at $1550^{\circ} \mathrm{F}$, grain size 4-5 ASTM | 427 | 800 | 26,800 |
|  |  | 482 | 900 | 16,900 |
|  |  | 538 | 1000 | 5,750 |
|  |  | 593 | 1100 | 1,800 |
|  |  | 648 | 1200 | 620 |
| Chromium steel, C 0.10 , Cr 5.09, Mo 0.55, Mn 0.45, Si 0.18 | 1 in. diam bar, wrought, annealed at $1550^{\circ} \mathrm{F}$, grain size $4-5$ ASTM | 482 | 900 | 15,200 |
|  |  | 538 | 1000 | 10,100 |
|  |  | 593 | 1100 | 5,850 |
|  |  | 648 | 1200 | 2,800 |
| Molybdenum steel, C 0.22, Mo $1.06, \mathrm{Mn} 0.50$, Si 0.13 (induction furnace) | Bar $1 \frac{1}{4}$ sq. cast, annealed at $1650^{\circ} \mathrm{F}$, grain size 7 | 427 | 800 | 28,000 |
|  |  | 482 | 900 | 20,800 |
|  |  | 538 | 1000 | 11,200 |
| Nickel steel, C 0.36, Ni 1.19, Mn 0.58 , Cr 0.51, Mo 0.51, Si 0.22 (induction furnace) | 1 in. diam bar, hot rolled, normalized at $1600^{\circ} \mathrm{F}$, tempered 3 hr at $1250^{\circ} \mathrm{F}$ | 454 | 850 | 40,000 |
|  |  | 538 | 1000 | 12,300 |
|  |  | 593 | 1100 | 3,600 |
|  |  | 648 | 1200 | 1,600 |
| Lead <br> Magnesium alloy, Al 3, Zn 1 <br> Nickel alloy, Cu 28.46, Fe 1.24, Mn 0.94, C 0.18, Si 0.10 | Grade 2 <br> Sand cast, $\frac{1}{2}$ diam rods Wrought | 43 | 110 | 320 |
|  |  | 150 | 302 | 4,900 $\dagger$ |
|  |  | 427 | 800 | 30,000 |
|  |  | 482 | 900 | 23,000 |
|  |  | 538 | 1000 | 3,700 |
|  |  | 593 | 1100 | 1,300 |
|  |  | 648 | 1200 | 450 |

[^34]Table 2h-3. Creep Rates for Various Materials (Continued)

| Material and composition | Condition | Temp |  | Stress for 0.001 strain in $1,000 \mathrm{hr}$, psi |
| :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ |  |
| Zinc alloy, $\mathrm{Cd} 0.3, \mathrm{~Pb} 0.3$ | Rolled, soft, tested | 20 | 68 | 10,100 |
|  | parallel to rolling | 40 | 104 | 8,000 |
|  | direction | 60 | 140 | 6,300 |
| Zinc alloy, $\mathrm{Cd} 0.3, \mathrm{~Pb} 0.3$ | Rolled, soft, tested | 20 | 68 | 15,400 |
|  | perpendicular to roll- | 40 | 104 | 12,100 |
|  | ing direction | 60 | 140 | 8,000 |

This has been checked experimentally over reasonably wide temperature ranges. The constant $\sigma_{0}$, in the lower stress range, usually decreases slightly with increasing temperature. If the constant $m$ changes with temperature caution must be observed in extrapolating toward regions where the curves for two different temperatures would cross.

## 2i. Astronomical Data

## R. BRUCE LINDSAY <br> Brown University

Table 2i-1. Planetary Orbits*

| Planet | Mean distance to sun, million km | Sidereal period, mean days | Inclination to the ecliptic | Eccentricity |
| :---: | :---: | :---: | :---: | :---: |
| Mercury | 57.9 | 87.97 | $7^{\circ} 00^{\prime} 14^{\prime \prime}$ | 0.2056 |
| Venus. | 108.1 | 224.70 | $3^{\circ} 23^{\prime} 39^{\prime \prime}$ | 0.0068 |
| Earth. | 149.5 | 365.26 |  | 0.0167 |
| Mars. | 227.8 | 686.98 | $1^{\circ} 50^{\prime} 60^{\prime \prime}$ | 0.0934 |
| Jupiter | 777.8 | 4,332.58 | $1^{\circ} 18^{\prime} 20^{\prime \prime}$ | 0.0484 |
| Saturn. | 1,426.1 | 10,759.20 | $2^{\circ} 29^{\prime} 25^{\prime \prime}$ | 0.0557 |
| Uranus. | 2,867.70 | 30,685.16 | $0^{\circ} 46^{\prime} 23^{\prime \prime}$ | 0.0472 |
| Neptune. | 4,493.63 | 60,189.56 | $1^{\circ} 46^{\prime} 27^{\prime \prime}$ | 0.0086 |
| Pluto. | 5,907.90 | 90,737.07 | $17^{\circ} 08^{\prime} 38^{\prime \prime}$ | 0.2486 |

[^35]Table 2i-2. Physical Data for the Planets and the Moon*

| Planet | $\begin{gathered} \text { Mass } \\ (\text { Earth }=1) \end{gathered}$ | $\begin{array}{\|c} \text { Mean } \\ \text { diam } \\ (\text { Earth }=1) \end{array}$ | Mean density, $\mathrm{g} / \mathrm{cm}^{3}$ | Surface gravity (Earth =1) | Velocity of escape, $\mathrm{km} / \mathrm{sec}$ | Rotation period, days |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mercury . | 0.054 | 0.38 | 5.46 | 0.38 | 4.3 | 88.0 |
| Venus. | 0.814 | 0.97 | 4.96 | 0.87 | 10.4 | 15-30(?) |
| Earth. | 1.000 | 1.00 | 5.52 | 1.00 | 11.3 | 1.00 |
| Mars. | 0.107 | 0.52 | 4.12 | 0.39 | 5.1 | 1.03 |
| Jupiter. | 318.35 | 10.97 | 1.33 | 2.65 | 61.0 | 0.41 |
| Saturn. | 95.3 | 9.03 | 0.71 | 1.17 | 36.7 | 0.43 |
| Uranus. | 14.58 | 3.72 | 1.56 | 1.05 | 22.4 | 0.45 |
| Neptune. | 17.26 | 3.38 | 2.47 | 1.23 | 25.6 | 0.66 |
| Pluto. | <0.1 | 0.45 | <5.5(?) | <0.5(?) | <5.3(?) | (?) |
| Moon. | 0.012 | 0.27 | 3.33 | 0.16 | 2.4 | 27.3 |

* Taken from "Smithsonian Physical Tables," 9th ed., 1954.

Table 2i-3. Miscellaneous Astronomical Constants*
Mean solar day . . . . . . . . . . . . . . . . . . . . . . . 86,400 sec $=1.0027379$ sidereal day
Sidereal day............................ 86,164.09054 mean solar sec $=23 \mathrm{hr}$ $56 \min 40.09054$ sec mean solar time
Mass of the earth......................... . . $5.975 \times 10^{27} \mathrm{~g}$
Mass of the sun............................. $1.987 \times 10^{33} \mathrm{~g}$
Mass of the moon. ......................... $7.343 \times 10^{25} \mathrm{~g}$
Moon's mean distance from the earth . . . 384, 400 km
Moon's sidereal period. .................. . . 27.322 days
Earth's orbital velocity . . . . . . . . . . . . . . . . . 18.5 miles/sec

Acceleration of gravity $g \ldots \ldots \ldots \ldots \ldots . .978 .0495 \mathrm{~cm} \mathrm{sec}^{-2}$ (sea level at equator)
Precession of the equinoxes. .............. . $50.2564+0.000222(t-1900)$ in seconds of arc per year ( $t=$ year in question)
Sun's diameter
864,408 miles
Solar parallax. . . . . . . . . . . . . . . . . . . . . . . . . 8.80 seconds of arc
Sun's mean density........................ . . . $1.41 \mathrm{~g} / \mathrm{cm}^{3}$
Sun's radius. . . . . . . . . . . . . . . . . . . . . . . . . . . $6.965 \times 10^{10} \mathrm{~cm}$
Obliquity of the ecliptic................... . $23^{\circ} 27^{\prime} 8.26^{\prime \prime}-0.4684(t-1900)^{\prime \prime}$

* Taken from "Smithsonian Physical Tables," 9th ed., 1954.


# 2j. Geodetic Data 

W. A. HEISKANEN<br>The Ohio State University and the Finnish Geodetic Institute

## 2j-1. List of Symbols

$a \quad$ equatorial radius of the earth
$b$ polar radius of the earth
$\alpha \quad$ flattening of the meridian
$e \quad$ eccentricity of meridian ellipse
$R \quad$ earth's radius
$M$ meridian radius of curvature
$L \quad$ east-west radius of curvature
$l$ length of arc along the geoid's surface
$v$ angle subtended by arc at center of earth
$\theta$ deflection of the vertical
$\xi$ meridian component of deflection of the vertical
$\eta \quad$ east-west component of deflection of the vertical
$N$ distance between geoid and ellipsoid or undulation of geoid
$\phi^{\prime}$ astronomical latitude
$\lambda^{\prime}$ astronomical longitude
$A^{\prime}$ astronomical azimuth
$\phi$ geodetic latitude
$\lambda$ geodetic longitude
A geodetic azimuth
$\Delta g \quad$ gravity anomaly $=g_{o}-\gamma$
$\gamma \quad$ theoretically computed acceleration of gravity
$g_{o} \quad$ observed acceleration of gravity reduced to geoid level
$k$ gravitational constant
2j-2. Principal Problems of Geodesy. The principal task of geodesy is to determine the size and shape of the earth or, as we often say, the dimensions of the earth, and to measure and compute control points for the mapping and charting work. When we have only a small area to survey, as, for instance, a city, we can use a plane as representative of the earth. When larger areas are concerned, we must consider the curvature of the earth, i.e., we have to carry out the computations along the sphere. In case a whole country has to be mapped, we must use instead of a sphere an ellipsoid of revolution, or reference ellipsoid. Lastly, if we have to connect different countries and different continents with one another, we must know how big the differences are between the used reference ellipsoid and the equipotential surface of the earth, or geoid.

Much has been written also about the triaxial earth ellipsoid, but this, if in fact it exists, has only scientific significance; it has no value for practical purposes.

Until the last few decades we have used the reference ellipsoid of revolution. It is
known, of course, if we can determine two of its parameters, for instance, equator radius $a$, and flattening $\alpha$, of the meridian. The flattening $\alpha$ is $\alpha=(a-b) / a$ where $b$ is the polar radius of the earth. From the two quantities $a$ and $\alpha$ we can compute the eccentricity $e$ of the meridian ellipse as well as the important radii of the curvature at different latitudes and in different directions on the ellipsoid.

In order to be able to determine the dimensions of the earth, we have to solve two problems. First is the geodetic problem, i.e., to measure in some direction the length of arc $l$ of a great circle along the earth's surface. Earlier these arcs were in general measured at or close to the meridian direction. Now it does not make any difference in which direction the arcs are measured, because we can determine the geographic longitude with nearly as high accuracy as the latitude. The measurement of the


Fig. 2j-1. Mass surplus of the mountains and the mass deficiencies of the oceans bring about the undulations $N$ of the geoid and the deflections of the vertical $\xi$.


Fig. 2j-2. The mass anomalies $\Delta m$ (surpluses or deficiencies) bring about the gravity anomalies $\Delta g$, the undulations $N$, and the deflections of the vertical $\xi$. $\Delta g$ can be observed, $N$ and $\xi$ computed using $\Delta g$.
central angle $v$ corresponding to the arc is the astronomic problem. By the aid of $l$ and $v$, the earth's radius $R$ will be obtained from the formula

$$
\begin{equation*}
R=\frac{l}{v} \tag{2j-1}
\end{equation*}
$$

where $v$ is given in radians.
If the measured arc is sufficiently long, or if we have different arcs, we can compute not only the radius $a$ of the equator, but the flattening $\alpha$ as well. The arcs $l$ have been measured by the aid of triangulation since 1615, when the Dutch scientist Willebrord Snellius used it for the first time. The corresponding central angle $v$ can be observed by different types of astronomical measuring instruments. We can anticipate that, by the aid of the arc-measuring method, we shall obtain rather accurate values for the constants $a$ and $\alpha$. The list of the dimensions of the reference ellipsoid computed by different authors and by the aid of different material (Table $2 \mathrm{j}-1$ ) shows that the different $\alpha$ values agree quite well but that the $a$ values may differ as much as some hundreds of meters. This discrepancy is brought about by the fact that the geoid, to which we refer our geodetic measurements, is not the same as the reference ellipsoid. Quite on the contrary, it has "humps" and "'hollows" as compared with the reference ellipsoid. Figures $2 \mathrm{j}-1,2,3$ show why this is so. Figure $2 \mathrm{j}-1$ shows that the visible

> Table 2 j-1. Dimensions of the Earth Ellipsoid $(a=$ equator radius; $\alpha=$ flattening of the meridian $)$

From Arc Measurings

| Author | Year | $a$ | 1/a |
| :---: | :---: | :---: | :---: |
| Bouguer, Maupertuis | 1738 | 6,397,300m | 216.8 |
| Delambre. | 1800 | 6,375,653 | 334.0 |
| Walbeck | 1819 | 6,376,896 | 302.8 |
| Everest. | 1830 | 6,377,276 | 300.8 |
| Airy | 1830 | 6,376,542 | 299.3 |
| Bessel. | 1841 | 6,377,397 | 299.15 |
| Clarke. | 1857 | 6,378,345 | 294.26 |
| Pratt. | 1863 | 6,378,245 | 295.3 |
| Clarke | 1866 | 6,378,206 | 295.0 |
| Clarke. | 1880 | 6,378,249 | 293.5 |
| Bonsdorff | 1888 | 6,378,444 | 298.6 |
| Hayford | 1906 | 6,378,283 | 297.8 |
| Helmert. | 1907 | 6,378,200 | 298.3 |
| Hayford. | 1910 | 6,378,388 | 297.0 |
| Heiskanen. | 1926 | 6,378,397 | (297.0) |
| Krassowski. | 1938 | 6,378,245 | 298.3 |
| Jeffreys. | 1948 | 6,378,099 | 297.1 |

$1 / \alpha$ by the Aid of Other Methods

| Author | Year | 1/ $\boldsymbol{\alpha}$ |
| :---: | :---: | :---: |
| Gravimetrically: |  |  |
| Helmert. | 1884 | 299.25 |
| Ivanov. | 1889 | 297.2 |
| Helmert. | 1901 | 298.2 |
| Bowie. | 1917 | 297.4 |
| Berroth | 1916 | 297.4 |
| Helmert. | 1915 | 296.7 |
| Heiskanen. | 1924 | 297.4 |
| Heiskanen | 1928 | 297.0 |
| Heiskanen | 1938 | 298.2 |
| Niskanen | 1945 | 297.8 |
| Astronomically: |  |  |
| de Sitter |  | 296.96 |
| de Sitter. |  | 296.75 |
| Bullard. | 1948 | 297.34 |
| Jeffreys. | 1948 | 297.10 |
| Spencer-Jones. | 1941 | 296.78 |

topography, mountains, and oceans bring about irregularities to the geoid. According to Fig. 2j-2, similar irregularities will also be caused by the invisible mass anomalies. They (Figs. $2 \mathrm{j}-1$ and $2 \mathrm{j}-2$ ) show also that the normal of the ellipsoid and the normal of the geoid or plumb line will in general not have the same direction. The angle between these normals is the important deflection of the vertical $\theta$. It cannot be observed itself, but only its meridian component $\xi$ and east-west component $\eta$. We have, of course, the equation $\boldsymbol{\theta}^{2}=\xi^{2}+\eta^{2}$.

Figure $\mathbf{2 j} \mathbf{j} \mathbf{3}$ shows that, if the measured arc is in the area where the geoid is above the ellipsoid, we get too small dimensions $R_{2}$ for the earth's ellipsoid. In case the geoid is under the ellipsoid, we generally get too large dimensions $R_{1}$, while the correct radius is $R_{0}$.
$\mathbf{2 j - 3}$. Different Geodetic Systems. The geodesist is, in a way, in an embarrassing situation. He has to reduce his triangulation, gravity measurements, and elevation determinations to sea level, i.e., to the geoid. But he must make his geodetic computations of the coordinates along the regular reference ellipsoid. In order to eliminate this "dualism" he ought to know the deviations between these two surfaces, i.e., the distance $N$ and the tilting $\theta$ between them.


Fig. 2j-3. Because of the undulations $N$ of the geoid we get the wrong dimensions for the earth's ellipsoid. Arc $A B$, which is below the ellipsoid, gives too large a reduction $R_{1}$; $\operatorname{arc} B C$, where the geoid is above the ellipsoid, gives too small a reduction $R_{2}$; the correct value is $R_{0}$. Even if we "smooth" the effect of the undulation $N$ by the aid of isostatic reductions, we cannot quite eliminate this source of error. Likewise, the arc $E D$ gives too small a reduction and the arc $F G$ too large a reduction.

The general procedure for solving this problem has been the following: We carry out the triangulation, and make astronomical observations, i.e., the astronomical latitude $\phi_{0}^{\prime}$, longitude $\lambda_{0}^{\prime}$, and azimuth $A_{0}^{\prime}$, at one triangulation point. Starting from this initial point of the geodetic datum we compute along the reference ellipsoid the coordinates $\phi$ and $\lambda$ and azimuth $A$ of the successive triangulation points. These geodetic coordinates are referred to the used ellipsoid and they will be used as control points for practical mapping work. If the astronomical coordinates $\phi^{\prime}$ and $\lambda^{\prime}$ and the astronomical azimuth $A^{\prime}$, which refer to the geoid, have been observed, not only at the initial point but at other triangulation points as well, we get the deflections of the vertical components at all such triangulation points. The following equations give the meridian component $\xi$ and the east-west component $\eta$ :

$$
\begin{align*}
& \xi=\phi^{\prime}-\phi \\
& \eta=\left(\lambda^{\prime}-\lambda\right) \cos \phi  \tag{2j-2}\\
& \eta=\left(A^{\prime}-A\right) \cot \phi
\end{align*}
$$

As we see, we get $\eta$ from the longitude differences $\left(\lambda^{\prime}-\lambda\right)$ as well as from the azimuth differences $\left(A^{\prime}-A\right)$. Between them there exists the Laplace equation

$$
\begin{equation*}
A^{\prime}-A=\left(\lambda^{\prime}-\lambda\right) \sin \phi \tag{2j-3}
\end{equation*}
$$

These quantities $\xi$ and $\eta$ can be computed at all astronomical points of the measured arc. Assuming that they can be used as observation errors, we correct the quantities $a$ and $\alpha$, so that the square sums $\Sigma \xi^{2}$ or $\Sigma \eta^{2}$ or the sum $\Sigma\left(\xi^{2}+\eta^{2}\right)$ will be minimum. We use $\Sigma \xi^{2}=\min$ if the arc is measured mostly on the meridian direction, $\Sigma \eta^{2}=\min$ if it goes in an east-west direction, and $\Sigma\left(\xi^{2}+\eta^{2}\right)=\min$ if the arc is oblique.

Depending on what reference ellipsoid we use or what point we take as the initial point, we obtain different geodetic systems. In order to determine a geodetic system we need five quantities: the equator radius $a$, the flattening $\alpha$, the latitude $\phi_{0}$ and longitude $\lambda_{0}$, as well as azimuth $A_{0}$ at the initial point. That means we must have an initial point from which to compute, a direction in which to compute, and a surface along which to compute. If only one of these quantities changes, the entire geodetic system will change too. This fact explains why we have so many geodetic systems.

We have seen that different reference ellipsoids have been computed. We must use some of them. In America the ellipsoid of Clarke of the year 1866 has been used; in Russia, the ellipsoid of Krassovski of the year 1938; and in most other countries, the ellipsoid of the American geodesist John F. Hayford from the year 1910 has been used. The last one was accepted in the International Geodetic Congress at Madrid, 1924, as the international ellipsoid.

The mission of this decade is to standardize the geodetic computations of the world, i.e., to determine the reference ellipsoid and the accurate coordinates and azimuth $\phi_{0}, \lambda_{0}$, and $A_{0}$, of the initial point, to be used in all countries. Only in this way can we rid ourselves of the confusion brought about by the different systems. The conversion of the geodetic systems of one continent can possibly be carried out by classic triangulation methods. In order to convert the geodetic systems across the oceans to the same world geodetic system, we need other methods, because triangulation fails on the oceans.

2j-4. Different Methods for Determining the Size and Shape of the Earth. These methods are partly electronic, partly astronomical, and partly gravimetrical. The Shoran measurements can span small seas. They can join to the same system, for example, different islands and the coastal areas around the Gulf of Mexico and the Caribbean Sea. They can also be used successfully in the Arctic areas. However, at least so far, they have failed in measurements across oceans.

In order to get distances across oceans, we must use either the gravimetrical method or celestial triangulation. In all three celestial techniques, the solar-eclipse method, the occultation method, and the moon-camera method, i.e., photographing the moon with the neighboring stars on the same photographic plate, we use the moon as one triangulation point.

In the solar-eclipse method the total eclipse of the sun brought about by the moon is used. We know that the moon's shadow travels along the zone of totality approximately from west to east. When we know the exact distance of the moon (and the sun), we can compute the exact speed of this shadow in different parts of the zone of totality. If, in addition, we determine by the aid of modern sound-film techniques the time points when the totality of the eclipse either begins or ends at one western and one eastern station, we can get the exact time which the shadow of the moon requires to travel from the western observation point to the eastern one. By the aid of this travel time and the speed of the shadow it is possible to compute distances between the observation points, quite regardless of whether the points are on the same or different continents.

If the moon's topography were well known, this method would give an accuracy of about 30 m for the distances between the continents.

The star-occultation method is similar. We have to observe at only two different points as accurately as possible the times when a star disappears behind the moon's limb or reappears from behind the limb. As the distance to the moon $M$ is not infinite, this phenomena will be seen in different parts of the world at different times. When we make such observations from two different observation points $A$ and $B$, we get celestial triangle $A B M$. As the distance of the moon is known, the distance $A B$ along the earth's surface can be obtained. The more accurately the time of the occultation can be obtained, the more stars that are used, and the better we know the moon's distance at the observation moment, the more accurate are the results.

A technique based on the direct photographing of the moon has been developed at the Naval Observatory by Markowitz. In this method the moon and the neighboring stars are photographed on the same plate. It was not used earlier because the stars require time to make images on photographic plates. During the exposure time the moon had changed its position so much that its image was hazy. Markowitz has developed a device by the aid of which the relative movement of the moon in respect to the stars can be stopped for the exposure time. In this way, the pictures of the stars are quite clear. We have only to measure the distances of the different distinguishing points of the moon's limb from the neighboring stars. Thus we get the exact position from the moon as observed from different points of the earth's surface. Needless to say, this promising method can be used on any clear moonlight night and on any continent.

Arc measurements give us several arcs on many continents. By the aid of celestial methods we can have such geodetic yardsticks also across the oceans. If we still knew accurately the central angle $v$ which corresponds to these different measured arcs, we would be able to get the dimensions of the earth with high accuracy.
In order to get the central angle, we must measure astronomically $\phi^{\prime}$ and $\lambda^{\prime}$ and correct them because of the deflection of vertical components $\xi$ and $\eta$, at least at the end points of the different arcs. The quantities $\xi$ and $\eta$ can now be determined by the aid of the gravity anomalies.
The gravity anomalies $\Delta g$, the deflections of the vertical $\xi, \eta$, and the undulations $N$ of the geoid are brought about by the same cause, by the disturbing masses $\Delta m$ of the earth's topography and the earth's interior. The gravity anomalies can be measured, and the deflections of the vertical as well as the undulations of the geoid can be computed.

Thus, we get at the end points $A$ and $B$ of the arc, the deflections of the vertical $\xi$ and $\eta$ astronomic-geodetically as well as $\xi_{\theta}, \eta_{\theta}$ gravimetrically (the index $g$ refers to the gravimetric method). The quantities $\xi$ and $\eta$ depend on the used dimensions of the reference ellipsoid: $\xi_{\theta}, \eta_{\theta}$ are independent from it. If the residuals $\left(\xi-\xi_{g}\right)$ at the points $A$ and $B$ and likewise the residuals $\eta-\eta_{\theta}$ are approximately equal, the used reference ellipsoid is good. If systematic differences exist, we have to correct the dimensions of the used ellipsoid so that the systematic differences disappear. In this way, every measured arc gives a correction to the used $a$ and $\alpha$ values of the reference ellipsoid. By the least-square method, the most probable corrections to the earth's ellipsoid can then be computed.

The flattening value $\alpha$ itself can be obtained directly from gravity anomalies and also by astronomical methods. The precession of the earth is brought about by the flattening of the earth, or, more accurately, by the differences between the polar and equatorial moments of inertia $C$ and $A$. When we know the precession constant accurately and make logical assumptions about the mass distribution of the earth, we obtain accurate values for $\alpha$.

Also, the irregularity of the moon's revolution around the earth renders the flattening of the meridian. In our list, the $\alpha$ values obtained by different methods are given.
$\mathbf{2 j - 5}$. The Constants of the International Ellipsoid and of the International Gravity Formula. If the earth were homogeneous, the equilibrium figure of the rotating earth
would be an exact ellipsoid of revolution. Because the mass density of the earth increases toward the earth's center, the figure of the earth will not be an ellipsoid, but another body, a spheroid, which differs from the ellipsoid very little. Depending on what hypothesis concerning the inner constitution of the earth is accepted, we get different spheroids. They are closely related to the gravity formula, which gives the normal acceleration of gravity $\gamma$ at any part of the earth's surface.
The gravity formula, if we neglect the longitude term, is of the form

$$
\begin{equation*}
\gamma=\gamma_{E}\left(1+\beta \sin ^{2} \phi+\epsilon \sin ^{2} 2 \phi\right) \tag{2j-4}
\end{equation*}
$$

where $\gamma_{E}$ is the equator value of gravity, $\beta$ the important coefficient of the $\sin ^{2} \phi$ term, and $\epsilon$ depends on the internal constitution of the earth.

Between the quantities $\beta$ and $\alpha$, we have the following relation:

$$
\begin{equation*}
\alpha+\beta=\frac{5 m}{2}-\alpha\left(\alpha+\frac{m}{2}\right)+\frac{2 \delta}{7} \tag{2j-5}
\end{equation*}
$$

where $m$ is the ratio between the centrifugal force and gravity at the equator. From these coefficients, $\alpha, \beta$, and $m$ are small quantities of first order; $\delta$ is of second order.

Equation (2j-5) gives the famous Clairaut's formula, which often is shown in the approximate form

$$
\begin{equation*}
\alpha=\frac{5 m}{2}-\beta \tag{2j-5a}
\end{equation*}
$$

The small quantity of second order, $\delta$, determines the type of the spheroid and is

$$
\begin{equation*}
\delta=\frac{7 \alpha^{2}-4 \alpha \beta-4 \epsilon}{3} \tag{2j-6}
\end{equation*}
$$

If we put $\delta=0$, we get a spheroid, often called the normal spheroid, which is geometrically a surface of the fourteenth degree.

Helmert introduced the terms with $\delta$, which he computed from the hypotheses of Wiechert and Darwin concerning the internal structure of the earth. He got the values $\delta=0.0000125$ and $\epsilon=-0.000007$ and a spheroid which differs from the ellipsoid of revolution of the same axis most at latitude $45^{\circ}$, by only 3 m .

Also the ellipsoid is one of the spheroids, i.e., where

$$
\begin{equation*}
\delta=\frac{7 \alpha^{2}}{2}-\frac{5 \alpha m}{2} \tag{2j-7}
\end{equation*}
$$

Then the two coefficients of the gravity formula are

$$
\begin{align*}
\beta & =\frac{5 m}{2}-\alpha-\frac{17 \alpha m}{14}  \tag{2j-8}\\
\epsilon & =\frac{\alpha(5 m-\alpha)}{8}
\end{align*}
$$

The coefficient $\beta$ can be either determined by the aid of the gravity anomalies or computed from Eq. ( $2 \mathrm{j}-8$ ), if the flattening $\alpha$ has already been accepted. If we use the $\alpha$ value of the international ellipsoid $\alpha=1 / 297.0$, we obtain $\beta=0.0052884$ and $\epsilon=-0.0000059$. In such a way we get the international gravity formula.

$$
\begin{equation*}
\gamma=978.0490\left(1+0.0052884 \sin ^{2} \phi-0.0000059 \sin ^{2} 2 \phi\right) \tag{2j-9}
\end{equation*}
$$

The unit is $\mathrm{cm} / \mathrm{sec}^{2}$ or $\mathbf{1}$ gal (from Galileo). If we use the unit 1 milligal $=0.001$ gal, we have to push the decimal sign three figures to the right.

The equator value $\gamma_{E}=978.0490$ gal was computed by Heiskanen in 1928.

The parameters $a$ and $\alpha$ of the international earth ellipsoid and the parameters $\gamma_{E}$, $\beta$, and $\epsilon$ determine the geometry of the earth ellipsoid and the normal gravity along it. These parameters are

$$
\begin{align*}
a & =6,378,388.0 \mathrm{~m} \\
\alpha & =1 / 297.0 \\
\gamma_{E} & =978.0490 \mathrm{~cm} / \mathrm{sec}^{2}  \tag{2j-10}\\
\beta & =0.0052884 \\
\epsilon & =-0.0000059
\end{align*}
$$

The international earth's ellipsoid and the international gravity formula are in agreement. If it seems necessary to change, for instance, the coefficient $\beta$ of the gravity formula, then we have to change also the flattening value $\alpha$ of the meridian. Therefore, it is best to use the international ellipsoid and the international gravity formulas until we know exactly how much we have to change $\beta$. The change of the equator gravity value $\gamma_{E}$ will do no harm for the reference ellipsoid.

The gravity anomaly is $\Delta g=g_{0}-\gamma$, where $g_{0}$ is the observed gravity value reduced to sea level. The "gravity" does not mean the gravity force, but the acceleration brought about by it.

The gravity anomalies are, in large parts of Europe and the eastern Atlantic, systematically positive; in America and still more clearly in India and northwest of it, they are systematically negative. Gravity formulas are therefore computed also with a longitude term, which would correspond to the triaxial ellipsoid. On the largest gravity material bases, the gravity formula with longitude term is

$$
\begin{align*}
\gamma=987.0524\left[1+0.0052970 \sin ^{2} \phi-\right. & 0.0000059 \sin ^{2} 2 \phi \\
& \left.+0.0000276 \cos ^{2} \phi \cos 2\left(\lambda+25^{\circ}\right)\right] \tag{2j-11}
\end{align*}
$$

$\phi$ and $\lambda$ are, of course, the latitude and longitude of the point at which the normal gravity is needed. According to this formula, computed by Heiskanen in 1938, the longitude of the long equator axis, at which longitude the gravity is largest (at the same latitude) is $25^{\circ}$ west of Greenwich.

2j-6. Isostatic Equilibrium. The mountains are, in general, no absolute mass surplus and the oceans no absolute mass deficiency in the earth's crust but are compensated by invisible masses of smaller density under the mountains and by masses of higher density under the oceans. Thus at a certain depth the mass unit is subjected to the same pressure regardless of whether it is under a mountain, level land, or the ocean. This is the meaning of isostatic equilibrium.

On the assumption that isostatic equilibrium results from the fact that the mountains rise from the under layer so that the crustal density is smaller the higher the mountains (the Pratt-Hayford hypothesis), the hydrostatic equilibrium prevails (i.e., the depth of compensation is) according to Helmert, at the depth of 122 km ; according to Hayford at 113 km , and according to Bowie at 96 km .

If one assumes that the mountains have sunk deeper in the under layer the higher they are, so that they will have "roots" and the oceans corresponding "antiroots" (the Airy-Heiskanen hypothesis), the thickness $T$ of the earth's crust is greater under the mountains and smaller under the oceans than under level terrain. The "normal" thickness $T$ corresponding to the zero elevation of the topography, as obtained from isostatic analysis of the gravity anomalies, is (Heiskanen, 1952) in Norway 32 km , in Fergana basin 38 km , in the Carpathian mountains 30 km , in the central Alps 20 km , in north Italy 29 km , in South Africa $30-35 \mathrm{~km}$, and in France 30 km .

2j-7. Gravimetrical Undulations of the Geoid and Deflections of the Vertical. To compute the undulations $N$ of the geoid and the deflection of the vertical components $\xi$ and $\eta$, not only along the measured arcs but in any part of the continents or the oceans, we must know the gravity field of the earth, i.e., the gravity anomalies

## MECHANICS

$\Delta g$ reduced to sea level, in the vicinity of the computation point well and all over the world in broad lines. With this information, the undulations $N$ can be obtained with the aid of the famous Stokes formula, derived in 1849, as well as the deflection of the vertical components using the Vening Meinesz formulas, derived in 1928.

The Stokes formula can be written as a finite sum:

$$
\begin{equation*}
N=\frac{1}{4 \pi} \frac{R}{g} \sum \Delta g_{q} \int_{q} S(\psi) d q \tag{2j-12}
\end{equation*}
$$

where $R$ is the mean radius and $g$ the mean gravity of the earth, $q$ a fixed square element on the unit sphere, e.g., $1^{\circ} \times 1^{\circ}, \Delta g_{q}$ the corresponding mean gravity anomaly, $\psi$ the angular distance of $g$ from the computation point, and $S(\psi)$ the Stokes function
$S(\psi)=\csc (\psi / 2)+1-6 \sin (\psi / 2)-5 \cos \psi-3 \cos \psi \ln \left[\sin (\psi / 2)+\sin ^{2}(\psi / 2)\right]$
The formula ( $2 \mathrm{j}-12$ ) can be written

$$
\begin{align*}
N & =\Sigma c_{q} \Delta g_{q}  \tag{2j-14}\\
c_{q} & =\frac{1}{4 \pi} \frac{R}{g} \int_{q} S(\psi) d q
\end{align*}
$$

$\Delta g_{q}$ can be taken from the gravity-anomaly map; the corresponding coefficient $c_{q}$ can be computed. The summation $\Sigma c_{q} \Delta g_{q}$ all over the globe will give the distance $N$.

The formula for computing the deflections of the vertical component $\xi$ is as follows (Vening Meinesz):

$$
\begin{align*}
& \xi^{\prime \prime}=\frac{\sin A_{2}-\sin A_{1}}{2 \pi} \sum \Delta g_{\psi} \int_{\psi}^{\psi+d \psi} Q(\psi) d \psi  \tag{2j-15}\\
& Q(\psi)=\frac{\rho^{\prime \prime}}{2 g} \cdot \cos ^{2} \frac{\psi}{2}\left[\csc \frac{\psi}{2}+\frac{3}{1+\sin (\psi / 2)}+12 \sin \frac{\psi}{2}-32 \sin ^{2} \frac{\psi}{2}\right. \\
&\left.-12 \sin ^{2} \frac{\psi}{2} \ln \left(\sin \frac{\psi}{2}+\sin ^{2} \frac{\psi}{2}\right)\right] \tag{2j-16}
\end{align*}
$$

This formula gives the effect of a compartment between the azimuths $A_{2}$ and $A_{1}$ as well as between the circle rings with the angular distances $\psi$ and $\psi+d \psi . \quad \Delta g_{g}$ is the mean gravity anomaly of this compartment. The formula for $\eta$ will be similar; instead of $\left(\sin A_{2}-\sin A_{1}\right)$ it will be $\left(\cos A_{1}-\cos A_{2}\right)$.

## 2j-8. Some Quantities Which Concern the International Ellipsoid

Equator radius $a=6,378,388 \mathrm{~m}$
Polar radius $b=6,356,911 \mathrm{~m}$
Polar radius of curvature $c=a^{2} / b=6,399,937 \mathrm{~m}$
Mean radius $(2 a+b) / 3=6,371,229 \mathrm{~m}$
Radius of sphere of same volume $=6,371,221 \mathrm{~m}$
Length of meridian quadrant $=10,002,288 \mathrm{~m}$
Length of equatorial quadrant $=10,019,148 \mathrm{~m}$
Volume of the ellipsoid $=1,083,319.78 \times 10^{6} \mathrm{~km}^{3}$
Flattening $\alpha=1 / 297.0=0.00336700$
Eccentricity $e=\frac{\sqrt{a^{2}-b^{2}}}{a}=\alpha(2-\alpha)=0.08199189 ; e^{2}=0.00672267$
Second eccentricity $e^{\prime}=\frac{\sqrt{a^{2}-b^{2}}}{b}=0.08226889 ; e^{\prime 2}=0.00676817$

$$
\text { Function } W=\sqrt{1-e^{2} \sin ^{2} \phi}
$$

Function $V=\sqrt{1+e^{\prime 2} \cos ^{2} \phi}$
Meridian radius of curvature $M=a\left(1-e^{2}\right) / W^{3}=c / V^{3}$
East-west radius of curvature $L=a / W=c / V$
Mean radius of curvature $r=\sqrt{M L}=a \sqrt{1-e^{2}} / W^{2}=c / V^{2}$

General radius of curvature $R_{A}$ in the aximuth $A$ will be obtained from Euler's formula:

$$
\frac{1}{R_{A}}=\frac{\cos ^{2} \alpha}{M}+\frac{\sin ^{2} \alpha}{L}
$$

$$
\begin{aligned}
& \text { International gravity formula } \gamma=978.0490\left[1+0.0052884 \sin ^{2} \phi\right. \\
& \left.-0.0000059 \sin ^{2} 2 \phi\right] \\
& \text { Normal gravity at equator } \gamma_{0}=978.0490 \mathrm{~cm} / \mathrm{sec}^{2} \\
& \text { Normal gravity at latitude } 45^{\circ} \gamma_{45}=980.6294 \mathrm{~cm} / \mathrm{sec}^{2} \\
& \text { Normal gravity at pole } \gamma_{90}=983.2213 \mathrm{~cm} / \mathrm{sec}^{2} \\
& (C-A) / A=0.003273=\frac{1}{305}
\end{aligned}
$$

where $C$ and $A$ are the moments of inertia about the polar and equatorial axes.
Mean solar day $d=86,400$ sec
Sidereal day $S=86,164.09$ sec
Angular velocity of the earth's rotation $\omega=2 \pi / S=7.29211585 \times 10^{-5} \mathrm{radian} / \mathrm{sec}$.
Gravitational constant $k=6.673 \times 10^{-8} \mathrm{~cm}^{2}$ dynes $/ \mathrm{g}^{2}$
Mean density of the earth $\rho_{m}=5.517 \mathrm{~g} / \mathrm{cm}^{3}$
Mass of the earth $M=5.975 \times 10^{27} \mathrm{~g}$

## 2k. Seismological and Related Data

B. GUTENBERG<br>California Institute of Technology

## $\mathbf{2 k}$-1. List of Symbols

$V \quad$ velocity of longitudinal wave $P$
$v$ velocity of transverse wave $S$
$P \quad$ symbol denoting longitudinal wave
$S$ symbol denoting transverse wave
$k \quad$ bulk modulus or volume elasticity
$\mu \quad$ rigidity or shear modulus
$\rho$ density
$\sigma$ Poisson's ratio
$A$ ratio $V / v$
$t$ temperature in degrees centigrade, time
$p$ pressure in bars
$h$ depth in the earth
$T$ period of seismic disturbance
G symbol denoting surface shear waves
$\boldsymbol{R}_{a}$ symbol denoting Rayleigh waves
$\Delta$ epicentral distance in degrees

SH symbol denoting horizontal component of $S$ wave
$S V$ symbol denoting vertical component of $S$ wave
$i \quad$ actual angle of incidence at a discontinuity
$\bar{i}$ apparent angle of incidence at a discontinuity
$u \quad$ ratio of horizontal ground displacement to incident amplitude
2k-2. Fundamental Equations for Elastic Constants and Wave Velocities. In purely elastic, isotropic, homogeneous media the velocity $V$ of longitudinal waves $P$, $v$ of transverse waves $S$, the bulk modulus $k$, the rigidity $\mu$, the density $\rho$ and Poisson's ratio $\sigma$ are connected by the following equations:

$$
\begin{align*}
V^{2} & =\frac{k+\frac{4}{3} \mu}{\rho} & v^{2} & =\frac{\mu}{\rho}  \tag{2k-1}\\
\sigma & =\frac{\frac{1}{2} A^{2}-1}{A^{2}-1} & A & =\frac{V}{v}  \tag{2k-2}\\
k & =\rho\left(V^{2}-\frac{4}{3} v^{2}\right) & \mu & =v^{2} \rho \tag{2k-3}
\end{align*}
$$

Table 2k-1. Corresponding Values of Poisson's Ratio $\sigma$ and $V / v$

| $\sigma$ | 0.00 | 0.10 | 0.20 | 0.22 | 0.24 | 0.25 | 0.26 | 0.28 | 0.30 | 0.40 | 0.50 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $V / v$ | 1.414 | 1.500 | 1.633 | 1.670 | 1.710 | 1.732 | 1.756 | 1.809 | 1.871 | 2.449 | $\infty$ |

2k-3. Elastic Constants and Wave Velocities in Rocks (Laboratory Experiments). In rocks the elastic constants and the wave velocities usually increase with increasing pressure $p$ (Tables $2 \mathrm{k}-2$ and $2 \mathrm{k}-3$ ) and decrease with increasing temperature $t$ and with porosity. Phase changes affect all elastic quantities. At normal pressure, values of Young's modulus have been found ${ }^{1}$ to be as shown in Table 2k-4. Wavelengths are usually great enough in geophysics to permit assumption of isotropy.

Table 2k-2. Elastic Constants and Wave Velocities in Rocks at Room Temperature*


[^36]2k-4. Periods and Amplitudes of Seismic Waves. Most seismographs have their maximum magnification for waves with periods $T$ between 0.1 sec (short-period instruments, mainly for nearby shocks) and 15 sec (for teleseisms, especially transverse and surface waves); most instruments for recording of artificial explosions in com-

[^37]Table 2k-3. Longitudinal Velocities, km/sec, at Pressures $p$ and Temperatures $t$ Corresponding to the Depth $h$ in the Earth after Laboratory Measurement*

| $p$, <br> bars | $t$, <br> ${ }^{\circ} \mathrm{C}$ | $h$, <br> km | Dunite | Solenhofen <br> limestone | Barrifield <br> granite | Quincy <br> granite | Cheshire <br> quartzite |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 25 | 0.33 | 8.60 | 6.00 | 5.85 | 5.88 | 6.00 |
| 750 | 100 | $2.8 \pm$ | 8.77 | 5.93 | 6.28 | 6.17 | 6.04 |
| 1,620 | 200 | $6.1 \pm$ | 8.78 | 5.84 | 6.35 | 6.23 | 5.83 |
| 2,540 | 300 | $9.4 \pm$ | 8.70 | 5.82 | $\ldots$. | $\ldots$ | 5.59 |

* D. S. Hughes, and J. H. Cross, Elastic Wave Velocities at High Pressures and Temperatures, Geophysics 16, 577 (1951).

Table 2k-4. Young's Modulus for Quartz at Normal Pressure (Units $10^{11}$ dynes/ $\mathrm{cm}^{2}$ )

|  | $\alpha$ quartz |  | $\beta$ quartz | |
|---|---|---|---|---|
|  | $0^{\circ} \mathrm{C}$ | $570^{\circ} \mathrm{C}$ | $600^{\circ} \mathrm{C}$ |
| L optic axis. $\ldots \ldots \ldots \ldots$ | 10.3 | 5.9 | 9.5 <br> $\\|$ optic axis................. |

mercial work record mainly waves with $0.001<T<0.1 \mathrm{sec}$. In longitudinal body waves of earthquakes, usually $T=0.1$ to 0.5 sec near the epicenter, but shorter periods exist. With distance increasing beyond $5,000 \pm \mathrm{km} T$ increases to several seconds. In transverse body waves the prevailing periods $T$ are frequently about twice those of the longitudinal; the two waves then have roughly the same length. In surface waves of nearby shocks $T$ is usually a fraction of a second, but longer waves ( $T>10 \mathrm{sec}$ ) are recorded. $T$ increases with distance; beyond about $4,000 \mathrm{~km}$, surface waves usually do not contain well-recorded waves with $T<12 \mathrm{sec}$. In major shocks the fastest surface waves have periods $T \geq 1 \mathrm{~min}$; after traveling a few times around the earth (each time in about $2 \frac{1}{2} \mathrm{hr}$ ) they frequently start with periods of many minutes.

Periods of natural microseisms (continued motion from meteorological sources and ocean waves) range from a fraction of a second to a minute or more. The largest amplitudes of the most frequent types of microseisms ( $4 \leq T \leq 10 \mathrm{sec}$ ) are a few microns at inland stations on rock and between 10 and $100 \mu$ at stations near oceans during heavy storms (hurricanes).

In great distant earthquakes, waves through the earth's interior may exhibit ground amplitudes of over $10 \mu$ with $T \sim 5 \mathrm{sec}$, and surface waves may have ground amplitudes of 10 mm with $T \sim 20 \mathrm{sec}$. Much greater amplitudes occur near the source. In motion from not too close artificial explosions longitudinal waves usually carry the largest amplitudes, and even waves through the earth's core have been identified on their records. ${ }^{1}$
$\mathbf{2 k} \mathbf{- 5}$. Travel Times of Earthquake Waves. Examples of travel times are given in Table 2k-5. Surface waves traveling a few times around the earth have travel times of several hours. No dispersion has been established for body waves. However, the prevailing increase of their velocity with depth results in an increase in wave velocity

[^38]of surface waves as their wavelength (depth of energy penetration) increases. The corresponding group velocity has a minimum ${ }^{1}$ for periods of several seconds, depending on the crustal structure.

Table 2k-5. Travel Times* (min:sec) of Direct Longitudinal Waves $P$ and Transverse Waves $S$ through the Earth Starting at Depth $h$, and of Surface Shear Waves $G$ and Rayleigh Waves $R_{a}$ with Periods of About 1 Min (Independent of Focal Depth) ( $\Delta=$ epicentral distance, deg; $P$ waves arriving at $\Delta>100$ deg enter the earth's core.)

| $\Delta$ | $h=25 \mathrm{~km}$ |  | $\underset{\min }{G}$ | $\begin{gathered} R_{a} \\ \min \end{gathered}$ | $h=300 \mathrm{~km}$ |  | $h=700 \mathrm{~km}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P$ | $S$ |  |  | $P$ | $S$ | $P$ | $S$ |
| 0 | 0:04 | 0:07 | . . . | . . . | 0:39 | 1:08 | 1:20 | 2:24 |
| 2 | 0:32 | 0:55 | . . . | . . . | 0:46 | 1:24 | 1:24 | 2:30 |
| 4 | 0:59 | 1:56 | . . . | . . . | 1:07 | 1:51 | 1:32 | 2:48 |
| 10 | 2:28 | . . . . | 4.1 | 4.5 | 2:17 | 4:03 | 2:20 | 4:12 |
| 20 | 4:34 | 8:16 | 8.3 | 9.0 | 4:15 | 7:39 | 3:55 | 7:02 |
| 40 | 7:36 | 13:42 | 16.5 | 17.9 | 7:11 | 12:52 | 6:44 | 12:01 |
| 70 | 11:12 | 20:20 | 28.9 | 31.4 | 10:44 | 19:21 | 10:11 | 18:20 |
| 100 | 13:46 | 25:14 | 41.3 | 44.8 | 13:15 | 24:23 | 12:37 | 23:14 |
| 120 | 18:54 | 28:00 | 49.5 | 53.8 | 18:19 | 27:09 | 17:38 | 26:01 |
| 150 | 19:46 |  | 61.9 | 67.2 | 19:11 |  | 18:31 |  |
| 180 | 20:10 |  | 74.2 | 80.6 | 19:35 |  | 18:54 |  |

* B. Gutenberg, Travel Times of Longitudinal Waves from Surface Foci, Proc. Natl. Acad. Sci. U.S. 39, 849 (1953) ; H. Jeffreys and K. E. Bullen, "Seismological Tables," British Association for the Advancement of Science, 1940; B. Gutenberg, and C. F. Richter, On Seismic Waves, Gerlands Beitr. Geophys. 43, 56-133 (1934); 54, 94-136 (1939).

2k-6. Reflection and Refraction of Waves. If a body wave $P$ or $S$ arrives at a discontinuity, one $P$ and one $S$ wave are reflected and one of each type is refracted if the velocity ratio $V_{r} / V_{i}$ of the reflected or refracted ( $r$ ) and incident ( $i$ ) wave permits. ${ }^{2}$

$$
\begin{equation*}
\sin i_{r}=\frac{V_{r}}{V_{i}} \sin i_{i} \tag{2k-4}
\end{equation*}
$$

where $i=$ angle of incidence. Examples are given in Table 2k-6. Amplitudes of transverse waves (vibrations perpendicular to the ray) are frequently resolved into two components, $S H$ in the horizontal plane, and $S V$ (with a vertical component) perpendicular to $S H$. If an $S H$ wave is incident, the reflected wave and the refracted wave (if it exists) are always of the $S H$ type.

If a wave arrives at the earth's surface (actual angle of incidence $i$ ) a wave of the same type is reflected (angle $i$ ), and one of the other type may be reflected [Eq. (2k-4)] (see Table $2 \mathrm{k}-7$ ). As a consequence of these three waves, the apparent angle of incidence $\bar{\imath}$ calculated from records of horizontal $H$ and vertical $V$ instruments $(\tan \bar{\imath}=H / V)$ differs from $i$. In case of incident transverse waves the particles move in ellipses, ${ }^{3}$ if $(V \sin i) / v>1$. If an $S H$ wave is incident, the reflected wave has the same amplitude as the incident wave, the ground displacement is twice the incident

[^39]Table 2k-6. Square Root of Energy Reflected or Transmitted at a Discontinuity with Density Ratio (Upper Layer to Lower) 1.103, Corresponding Velocity Ratio 1.286 for $P$ and for $S$, Poisson's Ratio 0.25 in Both Layers
(Incident energy taken as unity. Based on Slichter-Gabriel.* 1-indicates values between 0.95 and 1.0. $i=$ angle of incidence. $\quad P=$ longitudinal, $S V=$ component of transverse wave in plane of ray)

| $i^{\circ}$ | Refracted waves |  |  |  |  |  |  |  | Reflected waves |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $P$ from |  |  |  | $S V$ from |  |  |  | $P$ from |  |  |  | $S V$ from |  |  |  |
|  | Above |  | Below |  | Above |  | Below |  | Above |  | Below |  | Above |  | Below |  |
|  | $P$ | SV |
| 0 | 1- | 0.0 | 1- | 0.0 | 0.0 | 0.2 | 0.0 | 1- | 0.2 | 0.0 | 0.2 | 0.0 | 1.0 | 0.0 | 0.0 | 0.2 |
| 15 | 1- | 0.1 | 1- | 0.1 | 0.1 | 0.1 | 0.1 | 1- | 0.2 | 0.1 | 0.2 | 0.1 | 1- | 0.1 | 0.1 | 0.1 |
| 30 | 1- | 0.1 | 1- | 0.1 | .. | 0.2 | 0.2 | 1- | 0.1 | 0.1 | 0.1 | 0.1 | 0.9 | 0.2 | 0.1 | 0.0 |
| 45 | 0.5 | 0.2 | 0.9 | 0.1 | . | 0.4 | 0.3 | 1- | 0.2 | 0.0 | 0.1 | 0.1 | 0.9 | 0.3 |  | 0.2 |
| 60 |  | 0.3 | 0.9 | 0.2 |  |  | ... | 1- | 0.9 | 0.1 | 0.2 | 0.1 |  | ... |  | 0.3 |
| 75 |  | 0.4 | 0.8 | 0.3 |  | $\ldots$ | $\cdots$ | 0.8 | 0.9 | 0.1 | 0.4 | 0.1 | $\ldots$ | $\cdots$ |  | 0.5 |
| 90 |  | 0.0 | 0.0 | 0.0 | . | . |  | 0.0 | 1.0 | 0.0 | 1.0 | 0.0 |  | $\ldots$ |  | 1.0 |

* B. Gutenberg, Bull. Seis. Soc. Amer. 34, 85 (1944).

Table 2k-7. Square Roots of Ratio of Reflected to Incident Energy a at Earth's Surface as Function of Angle of Incidence $i$ and Ratio of Horizontal $u$ and Vertical $w$ Ground Displacements to Incident Amplitude for Continuous Sinusoidal Waves If Poisson's Ratio Is 0.25 (Elliptic motion of ground is indicated by ${ }^{*}$, and corresponding values for $\bar{\imath}$ are calculated on the assumption that the vertical and horizontal component reach their maximum simultaneously. $\dagger S V=$ component of transverse wave in plane of ray)

| $i$ | Longitudinal wave $P$ incident |  |  |  |  | $S V$ incident |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $a$ of $P$ | $a$ of $S V$ | $u$ | $w$ | $\bar{\imath}, \mathrm{deg}$ | $a$ of $P$ | $a$ of $S V$ | $u$ | $w$ | $\bar{\imath}, \operatorname{deg}$ |
| $0^{\circ}$ | 1.0 | 0.0 | 0.0 | 2.0 | 0 | 0.0 | 1.0 | 2.0 | 0.0 | 0 |
| 20 | 0.8 | 0.6 | 0.8 | 1.9 | 23 | 0.9 | 0.4 | 1.8 | 0.8 | 23 |
| 30 | 0.6 | 0.8 | 1.2 | 1.7 | 34 | 1.0 | 0.0 | 1.7 | 1.0 | 30 |
| 35.3 | 0.5 | 0.9 | 1.3 | 1.5 | 39 | 0.0 | 1.0 | 4.9 | 0.0 | $\pm 0$ |
| 40 | 0.4 | 0.9 | 1.4 | 1.4 | 44 | ... | 1.0 | 0.7* | 1.6* | -64* |
| 45 | 0.3 | 0.9 | 1.5 | 1.3 | 48 | $\ldots$ | 1.0 | 0.0 | 1.4 | $\pm 90$ |
| 60 | 0.0 | 1.0 | 1.7 | 1.0 | 60 | $\ldots$ | 1.0 | 0.5* | 1.1* | 66* |
| 80 | 0.1 | 1.0 | 1.3 | 0.5 | 69 | $\ldots$ | 1.0 | 0.3* | 0.5* | 59* |
| 90 | 1.0 | 0.0 | 0.0 | 0.0 | 71 |  | 1.0 | 0.0* | 0.0* | 60* |

[^40]amplitude, and $\bar{\imath}=i$. For energy ratios of waves reflected and refracted at the boundary of the earth's core, see Table $2 \mathrm{k}-8$. An $S H$ wave incident upon the core is totally reflected.

Table 2k-8. Square Roots of Energy Ratios for Waves Refracted (Refr.) and Reflected (Refl.) at the Boundary of the Earth's Core*
[Assumed at the core boundary: densities 5.4 (mantle), 10.1 (core); longitudinal velocities 13.7 and $8.0 \mathrm{~km} / \mathrm{sec}$, respectively; transverse velocity in the mantle $7.25 \mathrm{~km} / \mathrm{sec}, 0$ in core. $i=$ angle of incidence of the arriving wave]

| $P$ incident in mantle |  |  |  | $P$ incident in core |  |  |  | $S V$ incident in mantle |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $i$ | Refr. $P$ | Refl. $P$ | Refl. $S$ | $i$ | Refr. $P$ | $\begin{gathered} \text { Refr. } \\ S \end{gathered}$ | Refl. $P$ | $i$ | Refr. $P$ | Refl. $P$ | Refl. $S$ |
| 0 | 0.999 | 0.04 | 0.00 | 0 | 0.999 | 0.00 | 0.04 | 0 | 0.00 | 0.00 | 1.00 |
| 20 | 0.96 | 0.12 | 0.24 | 20 | 0.90 | 0.44 | 0.08 | 20 | 0.50 | 0.39 | 0.78 |
| 40 | 0.87 | 0.29 | 0.39 | $33 \frac{1}{2}$ | 0.79 | 0.62 | 0.00 | 30 | 0.61 | 0.47 | 0.64 |
| 60 | 0.79 | 0.42 | 0.44 | 35 | 0.83 | 0.55 | 0.10 | 31 | 0.58 | 0.49 | 0.65 |
| 80 | 0.84 | 0.20 | 0.51 | 35.7 | 0.00 | 0.00 | 1.00 | 32.0 | 0.00 | 0.00 | 1.00 |
| 83.8 | 0.85 | 0.00 | 0.52 | 37 |  | 0.85 | 0.53 | 33 | 0.84 |  | 0.54 |
| 85 | 0.85 | 0.10 | 0.52 | 50 |  | 0.92 | 0.40 | 40 | 0.92 |  | 0.40 |
| 89 | 0.60 | 0.71 | 0.36 | 80 |  | 0.62 | 0.78 | 64 | 0.55 |  | 0.84 |
| 90 | 0.00 | 1.00 | 0.00 | 90 |  | 0.00 | 1.00 | 65.0 |  |  | 1.00 |

* After S. Dana, The Partition of Energy among Seismic Waves Reflected and Refracted at the Earth's Core, Bull. Seis. Soc. Amer. 34, 189-197 (1944).

2k-7. Wave Types and Their Symbols. The main discontinuities of the earth (Fig. 2k-1) are its surface, the "Mohorovicić discontinuity" (depth $10 \pm \mathrm{km}$ in the deeper parts of the major oceans, $30 \pm \mathrm{km}$ under the lower parts of continents, perhaps


Fig. 2k-1. Main discontinuities of the earth.
up to 60 km under high mountain ranges) and the boundary of the earth's core at a depth of $2,900 \pm 20 \mathrm{~km}$ (radius $r=3,470 \mathrm{~km}$ ). There is doubt whether the boundary of the "inner core" ( $r=1,300 \pm \mathrm{km}$ ) is a discontinuity or whether the transition extends over a zone with a depth range of 100 to 200 km .

By international agreement longitudinal waves in the mantle are indicated by $P$ (starting downward at the source) or $p$ (starting upward), transverse waves by $S$ or $s$, longitudinal waves through the outer core by $K$, through the inner core by $I$, and (hypothetical) transverse waves through the inner core by $J . \quad P^{\prime} \equiv P K P, P^{\prime \prime} \equiv$ $P K I K P$. For a source below the surface, there is one reflection at the surface near
the epicenter, another about halfway between source and station. The symbols for these waves are, respectively, $p P$ and $P P, s P$ and $S P, p S$ and $P S, s S$ and $S S$. Similarly, for twice-reflected waves $p P P, P P P$, etc., are used. Time differences $p P-P$, $s P-P, s S-S$, etc., give a good indication for the focal depth (Table $2 \mathrm{k}-9$ ). ${ }^{1}$ Among waves through the core reflected at the surface of the earth are $p P K P, s P K P$, $P^{\prime} P^{\prime} \equiv P K P P K P, P^{\prime} P^{\prime} P^{\prime}$ (with a travel time of about 1 hr ).

Waves in the mantle with a reflection at the core surface permit accurate determination of the radius of the core. They are indicated by $c$, e.g., $P c P, P c S, S c S ; p P c P$, $S c S S c S$, etc., are in addition, reflected at the surface. All these waves have periods of 1 to 4 sec. Waves reflected inside the core are indicated by $P K K P, S K K S$, etc. Their periods, too, are small ( $P K K P$ waves with wavelengths $L<10 \mathrm{~km}$ have been observed) indicating a sharp boundary of the core. Waves refracted through the core (in addition to $P K P$ ) are $P K S, S K P, S K S$, etc. All observed travel times agree within a few seconds with those following from the velocities for $P, K$, and $S$ (see Table 2k-11).

## Table 2k-9. Focal Depth, km, of Earthquakes for Given Time Differences $p P-P, s P-P$, and $s S-S$ for Epicentral Distances $\Delta$ of 30,80 , and 145 deg <br> (* indicates that $p P, s P$, or $s S$, respectively, does not exist under given conditions)

| Time <br> diff., <br> min:sec | $\Delta=30 \mathrm{deg}$ |  |  | $\Delta=80 \mathrm{deg}$ |  | $\Delta=145 \mathrm{deg}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $p P-P$ | $s P-P$ | $s S-S$ | $p P-P$ | $s P-P$ | $s S-S$ | $p P^{\prime}-P^{\prime}$ |
| $0: 20$ | 100 | 60 | 50 | 75 | 55 | 40 | 70 |
| $0: 40$ | 205 | 120 | 100 | 160 | 105 | 85 | 150 |
| $1: 00$ | 310 | 195 | 165 | 250 | 165 | 140 | 235 |
| $1: 30$ | $*$ | 295 | 270 | 395 | 255 | 220 | 375 |
| $2: 00$ | $*$ | 415 | 425 | 565 | 350 | 300 | 525 |
| $2: 30$ | $*$ | 535 | $*$ | 755 | 460 | 390 | 690 |
| $3: 00$ | $*$ | $*$ | $*$ | $?$ | 575 | 485 | $?$ |

2k-8. Equations Used in Calculating Travel Times and Velocities. If $i=$ angle of incidence (between ray and vertical), $r=$ radius vector measured from center of earth, $V=$ velocity, and if quantities at the surface of the earth are indicated by the index $o$, the ray equation is

$$
\begin{equation*}
\frac{\mathrm{r} \sin i}{V}=\frac{r_{0} \sin i_{0}}{V_{0}}=\mathrm{const} \tag{2k-5}
\end{equation*}
$$

The radius $R$ of curvature of the ray is given by

$$
\begin{equation*}
R=\frac{V}{(d V / d r) \sin i} \tag{2k-6}
\end{equation*}
$$

If $d V / d r=V / r$, and $i=90 \mathrm{deg}, R=r$. If $V$ decreases with depth at a greater rate, no ray can have its deepest point in the respective layer, and the travel-time curve is interrupted. The angle of incidence $i_{o}$ at the surface at a given epicentral distance $\Delta$ is found from

$$
\begin{equation*}
\sin i_{0}=\frac{V_{0}}{\bar{V}_{0}} \tag{2k-7}
\end{equation*}
$$

where $\bar{V}=d \Delta / d t$.
${ }^{1}$ B. Gutenberg and C. F. Richter, Materials for the Study of Deep-focus Earthquakes, Bull. Seis. Soc.,Amer. 26, 341-390 (1936); see also H. Jeffreys and K. E. Bullen, "Seismological Tables," p. 24, British Association for the Advancement of Science, 1940.

The angular distance $\theta$ of a ray section (or the whole ray) and the corresponding travel time $t$ are given by

$$
\begin{equation*}
\Theta=\int_{r_{1}}^{r_{2} \frac{\tan i}{r} d r \quad t=\int_{r_{1}}^{r_{2}} \frac{d r}{V \cos i}, ~} \tag{2k-8}
\end{equation*}
$$

The radius $r_{s}$ to the deepest point of a ray arriving at the distance $\Delta$ in degrees and the corresponding velocity $V_{S}$ are found from.

$$
\begin{equation*}
\log r_{S}=\log r_{o}-0.0024127 \int_{0}^{\Delta} q d \Delta \tag{2k-9}
\end{equation*}
$$

where $\cosh q=\bar{V}_{\Delta} / \bar{V}(\Delta)$.

$$
\begin{equation*}
V_{S}=\bar{V} \frac{r_{S}}{r_{0}} \tag{2k-10}
\end{equation*}
$$

$\bar{V}_{\Delta}=\bar{V}$ at the distance $\Delta, \bar{V}(\Delta)$ is variable as a function of $\Delta$. Equation (2k-9) cannot be used if $V$ decreases suddenly with depth between $r_{o}$ and $r_{s}$ or if it decreases gradually at a rate in excess of that given by $d V / d r=V / r .{ }^{1}$

2k-9. Wave Velocity, Elastic Constants, and Pressure in the Earth. Equations ( $2 \mathrm{k}-9$ ) and ( $2 \mathrm{k}-10$ ) or other methods are used to calculate $V$ and $v$ as a function of $r$. Poisson's ratio follows from Eq. (2k-2). If the density $\rho$ is known as a function of depth, Eqs. ( $2 \mathrm{k}-3$ ) give the bulk modulus $k$ and the rigidity $\mu$. The pressure $p$ and gravity $g$ are given by

$$
\begin{equation*}
g=\frac{4 \pi K}{r^{2}} \int_{0}^{r} \rho r^{2} d r=\frac{3 g_{0}}{\rho_{m} r_{0} r^{2}} \int_{0}^{r} \rho r^{2} d r \quad p=\int_{r}^{r_{0}} g d r \tag{2k-11}
\end{equation*}
$$

$K=$ gravitational constant $\left(6.673 \times 10^{-8} \mathrm{cgs}\right), \rho_{m}=$ mean density of the earth $\left(5.517 \mathrm{~g} / \mathrm{cm}^{3}\right), r_{o}=$ radius of the earth $(6,371 \mathrm{~km})$ and $g_{o}=$ gravity at the surface ( 981 gal ).
In sediments (thickness usually $<2 \mathrm{~km}$, but up to 20 km in some basins) the longitudinal velocity $V$ ranges from $1 \pm \mathrm{km} / \mathrm{sec}$ for sand to $7 \pm$ in well-cemented rocks. In the continents frequently "granitic rocks," $V=6 \pm \mathrm{km} / \mathrm{sec}$, are below the sediments. At a depth of $15 \pm \mathrm{km} V$ and $v$ seem to have minima ${ }^{2}$ (compare Table $2 \mathrm{k}-3$ ). In the next deeper layer in the continents $V$ is usually $6 \frac{1}{2}$ to $7 \mathrm{~km} / \mathrm{sec}$ which is, e.g., characteristic of gabbro and olivine-gabbro (selected data in Table $2 \mathrm{k}-10$; details differ appreciably). In some regions indications of velocities of 7 to $7 \frac{1}{2} \mathrm{~km} / \mathrm{sec}$ have been found immediately above the Mohorovičić discontinuity. The values found for the velocity $v$ of transverse waves corresponding to $V=6 \pm \mathrm{km} / \mathrm{sec}$ scatter between about 3.0 and $3.5 \pm \mathrm{km} / \mathrm{sec}$; a few data corresponding to $V=6 \frac{1}{2} \mathrm{~km} / \mathrm{sec}$ are near $3.7 \mathrm{~km} / \mathrm{sec}$; below the Mohorovičić discontinuity, see Table $2 \mathrm{k}-10$.

Below $60 \pm \mathrm{km}$ no regional differences in $V$ have been established (Table $2 \mathrm{k}-11$ ).
2k-10. Intensity, Magnitude, and Energy of Earthquakes, and Related Quantities. The "intensity" of an earthquake refers to the effects of shaking at a given point. In the United States the modified Mercalli scale ${ }^{3}$ (I to XII) is used; a few greatly condensed examples follow.
II. Felt by few persons at rest.
IV. Felt outdoors by few; some sleepers awakened; dishes, windows disturbed.
V. Some dishes, windows broken; unstable objects overturned; pendulum clocks may stop.
VI. Felt by all; some fallen plaster or damaged chimneys.*
${ }^{1}$ For other limitations, see L. B. Slichter, The Theory of the Interpretation of Seismic Travel Time Curves in Horizontal Structures, Physics 3, 273 (1932); H. Witte, Beiträge zur Berechnung der Geschwindigkeit der Raumwellen im Erdinnern, Nachr. Ges. Wiss. Göttingen, Math.-physik Kl., 1932, p. 199.
${ }^{2}$ B. Gutenberg, Low Velocity Layers in the Earth's Mantle, Bull. Geol. Soc. Amer. 65, 337-347 (1954); Channel Waves in the Earth's Crust, Geophysics 20, 283-294 (1955).
${ }^{3}$ H. O. Wood and F. Neumann, Modified Mercalli Intensity Scale of 1931"Bull. Seis. Soc. Amer. 21, 277-283 (1931).

* Continued on p. 2-110.

Table $2 \mathrm{k}-10$. Velocity $V$, km/sec, of Longitudinal Waves at Selected Depth Intervals $h$, km, Observed in Various Regions, 1950-1953*
( $S E=$ source of energy, $A E=$ artificial explosions, $E Q=$ earthquake, $R B=$ rock burst. $\quad M_{0}$ is the depth of the Mohorovičic discontinuity below sea level; $V_{M}, v_{M}$ are reported longitudinal and transverse velocities, respectively, just below $M_{0}$. Corresponding values of Poisson's ratio are 0.23 to 0.27 )

| Region | SE | $h$ | V | $h$ | $V$ | $M_{0}$ | $V_{M}$ | $v_{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N. Germany | AE | 2-10 | 5.9 | 10-? | 6.7 | ? | ? | ? |
| N.W. Germany | $A E$ | $6-15 \pm$ | $5.5 \pm$ | 15-28 | $6.4 \pm$ | $28 \pm$ | 8.18 | 4.58 |
| Black Forest. | $A E$ | 1-21 | 6.0 | 21-31 | 6.55 | 31 | 8.2 | 4.82 |
| Southern Alps | $E Q$ | 0-35 | $5.7 \pm$ | $35-45 \pm$ | $6.6 \pm$ | $45 \pm$ | 8.1 | ? |
| Northern Italy | $E Q$ | ? | 5.2-5.5 | ? | 6.4-7.0 | $40 \pm$ | 7.8-8.0 | 4.4-4.8 |
| South Africa. | $R B$ | 4-36(?) | 6.1 | ? | 6.8? | 36 | 8.27 | 4.83 |
| New York | $A E$ | 0-34 | 6.3 |  |  | 34 | 8.2 | 4.68 |
| Eastern U.S | $A E$ | 0-5 | 6.0 | 5-15 | $6.5 \pm$ | $45 \pm$ | 8.1 | ? |
| Wisconsin. | $A E$ | $\frac{1}{2}-3$ | $4 \frac{1}{2}$ | 3-42 $\pm$ | 6.0-6.9 | $42 \pm$ | 8.17 | ? |
| So. California | $A E$. | $1 \pm$ | 5.8 | 4-12 | 6.1-6.7 | $32 \pm$ | 8.2 | ? |
| So. California | $E Q$ | ? | ? | ? | ? | 32-40土 | 8.17 | 4.60 |
| Sierra Nevada. | $E Q$ |  |  |  |  | $50 \pm$ | 8.17 | ? |
| Canadian Shield | $R B$ | 0-35(?) | 6.23 | ? | 7.0? | $36 \frac{1}{2}$ | 8.18 | 4.85 |
| Japan' | $A E$ | $1 \frac{1}{2}-27$ | $6.1 \pm$ | 27-32 | 7.4 | $32 \pm$ | 8.2? | ? |
| W. Atlantic Basic. | $A E$ | (Water) |  | $5-10 \pm$ | 6.7 | $10 \pm$ | 8.1 | ? |
| Pacific Basin. . | $A E$ | (Water) |  | $5-11 \pm$ | $6.8 \pm$ | $11 \pm$ | 8.2 | ? |

* B. Gutenberg, Wave Velocities in the Earth's Crust, Geol. Soc. Amer. Spec. Paper 62, 19-34 (1955).

Table 2 k -11. Wave Velocities $V$ (Longitudinal) and $v$ (Transverse), km/sec
[Poisson's ratio $\sigma$, Eq. (2), density $\rho, \mathrm{g} / \mathrm{cm}^{3}$ (Bullen*), bulk modulus $k$ and rigidity $\mu$, both in $10^{12}$ dynes $/ \mathrm{cm}^{2}$, Eq. (3), gravitational acceleration $g, \mathrm{~cm} / \mathrm{sec}^{2}$, and pressure $p$, million atm (Bullen*) in the earth as function of depth, km]

| Depth | $V$ | $v$ | $\sigma$ | $\rho$ | $k$ | $\mu$ | $g$ | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mantle: |  |  |  |  |  |  |  |  |
| 50 | 8.2 | 4.45 | 0.26 | 3.3 | 1.3 | 0.65 | 985 | 0.014 |
| 100 | 8.0 | 4.4 | 0.27 | 3.4 | 1.3 | 0.65 | 987 | 0.03 |
| 150 | 7.9 | 4.35 | 0.27 | 3.4 | 1.3 | 0.64 | 989 | 0.05 |
| 200 | 8.0 | 4.4 | 0.28 | 3.5 | 1.3 | 0.68 | 990 | 0.06 |
| 250 | 8.2 | 4.5 | 0.28 | 3.5 | 1.4 | 0.71 | 991 | 0.08 |
| 300 | 8.3 | 4.6 | 0.29 | 3.6 | 1.6 | 0.8 | 992 | 0.10 |
| 500 | 9.6 | 5.3 | 0.28 | 3.9 | 2 | 1.1 | 997 | 0.17 |
| 1,000 | 11.5 | 6.4 | 0.28 | 4.7 | $3 \frac{1}{2}$ | 1.9 | 991 | 0.39 |
| 1,500 | 12.2 | 6.7 | 0.28 | 5.1 | $4 \frac{1}{2}$ | 2.3 | 979 | 0.6 |
| 2,000 | 12.8 | 6.9 | 0.29 | $5 \frac{1}{4}$ | 5 | 2.6 | 972 | 1 |
| 2,900 | 13.7 | 7:3 | 0.30 | $5 \frac{3}{4}$ | $6 \frac{1}{2}$ | 3.1 | 1,000 | $1 \frac{1}{2}$ |
| Outer core: |  |  |  |  |  |  |  |  |
| 2,900 | 8.0 | No $S$ waves | 0.5 | $9 \frac{1}{2} \pm$ | $6 \pm$ | $\mu=0$ | 1,000 | 11 ${ }_{2}$ |
| 4,000 | 9.4 | known | 0.5 | $11 \pm$ | $10 \pm$ | assumed | $910 \pm$ | $2 \frac{1}{4}$ |
| 5,000 | 10.0 |  | 0.5 | $12 \pm$ | $12 \pm$ |  | $630 \pm$ | $3 \frac{1}{4} \pm$ |
| Inner core: |  |  |  |  |  |  |  |  |
| 5,400 | 11.1 | ? | ? | 15? | 18? | ? | $560 \pm$ | $3 \frac{1}{2} \pm$ |
| 6,370 | 11.2 | ? | ? | 15? | 18? | ? | 0 | $3 \frac{3}{4} \pm$ |

[^41]Table 2 k -12. Values of $F(\Delta)$ and $f(\Delta, h)$ in Eq. ( $2 \mathrm{k}-12$ ) for Vertical
Components $Z$ of $P$ and $P P$, Horizontal Component $S H$ of $S$, and Horizontal Component of Maximum (Max)
( $h=$ focal depth; $\Delta=$ epicentral distance, deg*)

| $\Delta$ | $h=25 \mathrm{~km}$ |  |  |  | $h=300 \mathrm{~km}$ |  |  | $h=600 \mathrm{~km}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PZ | PPZ | SH | Max | $P Z$ | PPZ | $S H$ | $P Z$ | $P P Z$ | $S H$ |
| 20 | 6.3 | $\ldots$ | 5.9 | 4.0 | 5.0 | $\ldots$ | 6.0 | 6.1 | $\ldots$ | 6.0 |
| 30 | 6.5 | 6.7 | 6.1 | 4.3 | 6.6 | 5.9 | 6.3 | 6.2 | 6.0 | 6.1 |
| 50 | 6.8 | 6.7 | 6.6 | 4.6 | 6.5 | 6.4 | 6.4 | 6.4 | 6.3 | 6.3 |
| 80 | 6.8 | 7.1 | 6.9 | 5.0 | 6.3 | 7.0 | 6.6 | 6.5 | 6.9 | 6.7 |
| 100 | 7.3 | 7.0 | 7.2 | 5.1 | 7.2 | 6.7 | 6.8 | 7.2 | 7.0 | 6.8 |
| 160 |  | 6.8 |  | 5.4 |  | 6.6 |  |  | 6.7 |  |

* B. Gutenberg, Amplitudes of Surface Waves and Magnitudes of Shallow Earthquakes, Bull. Seis. Soc. Amer. 35, 3-12 (1945); Magnitude Determination for Deep-focus Earthquakes, Bull. Seis. Soc. Amer. 35, 117-130 (1945).
VII. Considerable damage in poorly built structures.
IX. Buildings shifted off foundations; ground cracked.
XI. Few structures remain standing; rails bent.

The observed intensity depends on the depth of focus, the ground, the type of building, the density of population, etc. The intensity is useful for engineers but not for studies of seismicity, for which the earthquake magnitude $M$ is used. Magnitude $M$ originally was defined ${ }^{1}$ for Southern California as the common logarithm of the maximum trace amplitude expressed in microns with which a seismograph with $T=0.8$ sec, magnification 2,800 , damping $65: 1$ would record the shock at a distance of 100 km . Tables ${ }^{1}$ permit the determination of $M$. In addition, for $\Delta>15^{\circ}, M$ is now found (1) from ground amplitudes $b$ (in microns) of surface waves with periods of 20 sec in shallow earthquakes; (2) from amplitudes $a$ of $P, P P$, and $S$ waves in shocks (focal depth $h$ ) recorded at the epicentral distance $\Delta^{\circ}$ :

$$
\begin{array}{ll}
\text { (1) } M_{S}=\log b+F(\Delta) & \text { (2) } M_{B}=\log a-\log T+f(\Delta, h)
\end{array}
$$

For $F(\Delta)$ and $f(\Delta, h)$, see Table $2 \mathrm{k}-12$; small station corrections are to be added. The amplitudes $b$ of surface waves of length $L$ decrease with increasing focal depth $h$ corresponding to a factor $e^{-q h / L}$, where $q$ (about 2) depends on crustal structure.
The energy $E$ corresponding to the amplitude $M$ depends on duration of the shock, periods of the motion, depth of focus, etc. To a first approximation,

$$
\begin{equation*}
\log E=m+n M \tag{2k-13}
\end{equation*}
$$

$m=12, n=1.8$ have been used, ${ }^{2}$ but the resulting $E$ was too great, and $m=5.8$, $n=2.4$ are preferable in connection with $M_{B .}{ }^{3}$
$\mathbf{2 k - 1 1}$. Seismicity of the Earth. Earthquakes are divided into shallow shocks ( $h \leq 60 \mathrm{~km}$ ), intermediate ( $60<h \leq 300$ ), and deep ( $h>300$, maximum $720 \pm \mathrm{km}$ ). Most shocks occur in narrow belts (Table $2 \mathrm{k}-14$ ). ${ }^{2}$ Deep and intermediate shocks are limited to the circumpacific belt and the trans-Asiatic (Alpide) belt.*

[^42]Table $2 k-13$. Intensity $I$ at the Epicenter, Corresponding Maximum Acceleration $\alpha$, cm/sec ${ }^{2}$, Mean Radius $r_{p}$ of Area of
Perceptibility, km, log $E$ of Energy, ergs, for a
Given Magnitude $M$, in Average Shocks in Southern California ( $h=16 \pm \mathrm{km}$ )
[Values for $I, \alpha, r$ are based on empirical equations, those for $\log E$ on Eq. (2k-13) with $m=11, n=1.6]^{*}$

| $M$ | 2.2 | 3 | 4 | 5 | 6 | 7 | 8 | $8 \frac{1}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.5 | 2.8 | 4.5 | 6.2 | 7.8 | 9.5 | 11.2 | 12.0 |
| $\alpha$ | 1 | 3 | 10 | 36 | 130 | 460 | 1,670 | 3,160 |
| $r_{p}$ | 0 | 25 | 55 | 110 | 200 | 390 | 740 | 1,000 |
| $\log E$ | 14.5 | 15.8 | 17.4 | 19.0 | 20.6 | 22.2 | 23.8 | 24.6 |

[^43]| Region | Number, \% |  |  | Energy, \% |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Shallow | Intermed. | Deep | Shallow | Intermed. | Deep |
| (a) Circumpacific belt. | 82 | 91 | 100 | 75 | 89 | 100 |
| Trans-Asiatic belt. | 10 | 9 | 0 | 23 | 11 | 0.3 |
| Atlantic and Indian Ocean | 5 | 0 | 0 | 1 | 0 | 0 |
| All others. | 3 | 0 | 0 | 1 | 0 | 0 |
| Total. | 100 | 100 | 100 | 100 | 100 | 100 |
| (b) Pacific region, Alaska to U.S. | 2 | 0 | 0 | 2 | 0 | 0 |
| North and Central America, West Coast. | 12 | 10 | 0 | 12 | 8 | 0 |
| South America, western part. | 10 | 19 | 6 | 15 | 9 | 19 |
| Kermadec-Tonga Is. . . . . . | 3 | 3 | 41 | 4 | 5 | 25 |
| New Hebrides and Solomon Is. | 12 | 20 | 4 | 7 | 18 | 3 |
| Marianas Is....... | 2 | 6 | 6 | 1 | 8 | 3 |
| Japan-Kamchatka. | 15 | 16 | 35 | 19 | 22 | 44 |
| Philippine Is..... | 5 | 3 | 4 |  | 2 |  |
| Celebes-Sunda Is. | 8 | 11 | 4 | 6 | 15 | 3 |
| Hindu Kush. | 0 | 5 | 0 | 0 | 6 | 0 |
| Asia Minor to Italy. | 2 | 2 | 0 | 1 | 4 | 0 |
| Total. | 71 | 95 | 100 | 73 | 97 | 100 |

Table 2k-15. (a) Magnitude $M$ of Greatest Known Shock (1905-1952) in Depth Intervals $d$, Centering at $\boldsymbol{h}$; (b) Percentage of Shocks for the Whole Earth; (c) Corresponding Frequency for Selected Parts of the Circumpacific Belt

| $d, \mathrm{~km}$. | 60 | 60 | 100 | 100 | 100 | 100 | 100 | 50 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h, \mathrm{~km}$. | 30 | 90 | 175 | 275 | 375 | 475 | 575 | 650 | 700 |
| (a) Largest observed M | 8.6 | 8.1 | 8.2 | 7.8 | 8.0 | 7.5 | 7.8 | 7.6 | 6.9 |
| (b) Number of shocks, \% | 72 | 12 | 7 | 2 | 2 | 2 | 2 | 1 | $\frac{1}{3}$ |
| (c) Mexico, Central America, $\%$ | 73 | 20 | 6 | 1 | 0 | 0 | 0 | 0 | 0 |
| Andes, \% . . . . . . . . . . . . . | 36 | 30 | 20 | 5 | 0 | 0 | 4 | 4 | 0 |
| New Zealand-Samoa, \%. | 30 | 10 | 10 | 6 | 7 | 6 | 25 | 5 | $\frac{1}{2}$ |
| New Hebrides-New Guinea, \% | 43 | 30 | 20 | 4 | 3 | 1 | 0 | 0 |  |
| Japan-Manchuria, \%.. | 36 | 16 | 11 | 6 | 15 | 9 | 6 | $\frac{1}{4}$ | 0 |
| Sunda Arc, \%. | 30 | 26 | 20 | 1 | 4 | 1 | 10 | 2 | 5 |

Table 2k-16. Average Annual Energy Release in All Earthquakes with $M \leq M^{*}$
(Units $10^{23}$ ergs. Ratios of figures are good approximations; absolute values may be incorrect by factor 100)

| $M^{*}$ | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: |
| Shallow shocks. | 0.2 | 1 | 5 |
| Intermediate shocks | ? | 0.2 | 0.6 |
| Deep shocks. | ? | 0.05 | 0.1 |

Table 2k-17. Maximum, Minimum, and Average Annual Energy Release in Earthquakes 1904-1952*
(Units $\mathbf{1 0}^{23}$ ergs. Accuracy as in Table $2 \mathrm{k}-16$ )

|  | Max | Year | Min | Year | Avg |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Shallow shocks | 340 | 1906 | 9 | 1954 | 70 |
| Intermediate shocks. | 100 | 1911 | 1 | 1933 | 16 |
| Deep shocks........ | 75 | 1906 | 0.2 | Several | 3 |
| All shocks. . . | 430 | 1906 | 12 | 1930 | 90 |

* B. Gutenberg, Energy of Earthquakes, Science 122, 876 (1955).

For the magnitude of the largest observed shock and the relative frequency of earthquakes in various depth intervals, see Table $2 \mathrm{k}-15$, which also shows examples of regional differences.

2k-12. Energy E of Earthquakes. Most calculations of $E$ depend on Eq. ( $2 \mathrm{k}-13$ ). Estimated errors in $\log E$ are $\pm 1$, but relative values of $E$ are fairly accurate. The shocks of magnitudes over 7 account for most of the total energy release (Table 2k-16). For annual extreme and average energy release, 1904 to 1952, see Table $2 k-17$. The annual energy release by heat flow from the earth's interior through the surface is about $70,000 \times 10^{23} \mathrm{ergs}$.

2k-13. Aftershocks and Earthquake Sequences. Investigations by Benioff ${ }^{1}$ show that elastic strain-rebound increments in series of earthquake aftershocks follow two types of functions:

$$
\begin{array}{ll}
\text { (1) } S_{1}=A+B \log t & \text { (2) } S_{2}=C-D e^{-\sqrt{t}} \tag{2k-14}
\end{array}
$$

where $t$ is time from a selected zero point and $A, B, C, D$ are constants of the process. (1) was given previously by Griggs for compressional recoverable creep strain, (2) by Michelson for shearing creep recovery. For series of earthquakes in certain areas and for all earthquakes in certain depth ranges Benioff ${ }^{2}$ has found strain-rebound characteristics of forms similar to Eq. ( $2 \mathrm{k}-14$ ). Yearly strain rebound in all deep shocks shows a decrease between at least 1905 and 1950 following Eq. (1), whereas most great shallow shocks have occurred in five active periods. The units of the Pacific belt have different patterns of activity. ${ }^{3}$

2k-14. Nonelastic Properties of the Earth's Interior. The strain produced in the earth by a tangential stress $S$ in nonelastic processes is frequently expressed to a first (frequently poor) approximation by

$$
\begin{equation*}
\gamma=\frac{S}{\mu}-\lambda_{r} \frac{d \gamma}{d t}+\frac{1}{\eta} \int S d t \tag{2k-15}
\end{equation*}
$$

where $\eta=\mu \tau, \nu=\mu \lambda_{r}, \mu=$ rigidity, $\eta=$ coefficient of viscosity, $\tau=$ time of relaxation in viscous flow, $\nu=$ "coefficient of internal friction" or "coefficient of retarded elastic motion," and $\lambda_{r}=$ time of retardation, i.e., the time in which the strain is reduced to $1 / e$ in elastic processes, if the stress is removed. $\quad \gamma=S / \mu$ is Hooke's law; the following two terms express, respectively, delaying action (of importance only in high-speed processes) and viscous flow (in processes of long duration).

The distance $\Delta^{*}$ to which seismic body waves (velocity $V$, period $T$ ) have to travel before their amplitude $a$ is reduced to $1 / e$ of its value is given approximately by ${ }^{4}$

$$
\begin{equation*}
\lambda_{r}=\frac{2 V}{p^{2} \Delta^{*}} \tag{2k-16}
\end{equation*}
$$

where $p=2 \pi / T$. Observations give $\Delta^{*}=8,000 \pm \mathrm{km}$. With $p$ about unity, $\lambda_{r} \sim 10^{-2}$ to $10^{-3} \mathrm{sec}$ and $\nu \sim 10^{9}$ to $10^{10}$ poises. If the whole absorption is a consequence of internal friction, the waves in traveling from the source (period $T_{o}$ ) to the distance $\Delta\left(\operatorname{period} T_{\Delta}\right)$ are getting longer and flatter and ${ }^{5}$ approximately

$$
\begin{equation*}
T_{\Delta^{2}}=T_{o}^{2}+\frac{5 \nu \Delta}{\rho V^{3}} \tag{2k-17}
\end{equation*}
$$

where $\rho=$ density. Application of Eq. ( $2 \mathrm{k}-17$ ) to observed increase in $T$ indicates that $\lambda_{r}$ and $\nu$ depend on the wavelength $L . \quad \nu$ increases from about $10^{7}$ to $10^{9}$ poises as $L$ increases from 0.1 to 100 km , and $\lambda_{r}$ decreases from $10^{-4}$ to $5 \times 10^{-3}$ sec. ${ }^{6}$ The order of magnitude is in good agreement with the result from Eq. ( $2 \mathrm{k}-16$ ) and with laboratory measurements in which a dimensionless quantity $Q$ is used to indicate internal friction:

$$
\begin{equation*}
\frac{1}{Q}=\frac{d E}{2 \pi E}=\frac{\delta}{\pi} \tag{2k-18}
\end{equation*}
$$

[^44]where $d E=$ loss of energy per cycle in a vibrating body, $E=$ total energy, and $\delta=$ logarithmic decrement of free vibrations. $\quad 1 / Q$ has been found from longitudinal and transverse vibrations of bars to be of the order of $10^{-2}$ to $10^{-3}$ for rock samples. For elastic waves of periods $T$ traveling through the earth, the time of retardation is approximately given by
\[

$$
\begin{equation*}
\lambda_{r}=\frac{1}{p \boldsymbol{Q}} \tag{2k-19}
\end{equation*}
$$

\]

where $p=2 \pi / T$. For seismic waves with periods of a few seconds, $\lambda_{r}$ in seconds about equals $1 / Q$.

The most reliable values for the viscosity $\eta$ in the outer part of the earth's mantle ( $10^{22}$ to $10^{23}$ poises ${ }^{1}$ ) result from the observed time of relaxation $\lambda$ ( $8,000 \pm$ years) in Fennoscandia which is rising to restore the equilibrium disturbed by the melting of the Pleistocene ice masses (maximum thickness about $2 \frac{1}{2} \mathrm{~km}$ ). $\quad \eta$ may decrease below $10^{20}$ poises at a depth of $700 \pm \mathrm{km}$, if the discontinuance of earthquakes below this depth is due to decrease in viscosity. Jeffreys ${ }^{2}$ estimates that inside the core $\eta$ is not over $10^{8}$ and is probably nearer $10^{5}$ poises. For numerical values of $\nu, \eta, \tau$ in the earth, see Table $2 \mathrm{k}-18$.

Since 10 km high mountains do not show a noticeable change by flow, it has been concluded that their strength (resistance to flow) is $10^{9} \pm$ dynes $/ \mathrm{cm}^{2}$. This may hold ${ }^{3}$ to a depth of $25 \pm \mathrm{km}$, but it may decrease below $10^{7}$ dynes $/ \mathrm{cm}^{2}$ at $80 \pm \mathrm{km}$, since gravity observations indicate that, except for recently disturbed narrow crustal belts, there is approximately hydrostatic equilibrium at this depth, "isostasy."
Table 2k-18. Order of Magnitude of Nonelastic Constants (a) in Some Materials at the Surface of the Earth, and (b) at Selected Depths in the Interior of the Earth
(Str. = strength resisting viscous flow, in poises; $\eta=$ coefficient of viscosity, in poises; $\tau=$ corresponding time of relaxation; $\nu=$ coefficient of retarded elastic response for elastic waves with periods of 0.1 to $20 \pm \mathrm{sec}$, in poises; $\lambda_{r}=$ corresponding time of retardation, sec)

|  | Log str. | $\log \eta$ | $\log \tau$ |  | $\log \nu$ | $\log \lambda_{r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Sec | Years |  |  |
| (a) Material: |  |  |  |  |  |  |
| Solenhofen limestone. | $9 \frac{1}{2} \pm$ | $22 \pm$ | $10 \frac{1}{2} \pm$ |  |  |  |
| Gabbro. | ? | ? | ? | ? | $9 \frac{1}{4} \pm$ | $-2 \frac{1}{2} \pm$ |
| Glacier ice. | ? | 13 to 14 | $3 \pm$ | -4土 | ? | ? |
| Flowing lava. | ? | $\leq 5 \pm$ | ? | ? | ? | ? |
| Flowing mud. | ? | $\leq 4 \pm$ | ? | ? | ? | ? |
| (b) Depth: |  |  |  |  |  |  |
| 10 km (continent). | $9 \pm$ | 22 to 23 | 11 | $4 \pm$ | $9 \pm$ | -2 to -3 |
| 100. | 7 ? | $22 \pm$ | 10 | $2 \pm$ | $9 \pm$ | -2 to -3? |
| 700. | <7? | $20 \pm$ ? | 8 ? | 1? | 9 to 10? | $-3 \pm$ ? |
| 700-2,900. | $<7$ ? | $<20$ ? | $\leq 7$ ? | $\leq 0$ ? | 10? | -3? |
| >2,900. | $\ll 7$ ? | 5?? | ? | ? | ? | ? |

[^45]
# 21. Oceanographic Data ${ }^{1}$ 

R. B. MONTGOMERY<br>Chesapeake Bay Institute<br>The Johns Hopkins University

21-1. Depth, Pressure, Temperature. The surface of the earth's crust occurs at two prevailing levels, as shown by Table 2l-1. The higher of these levels is the continental platform, which, embracing sea level, includes the continental shelf and most land. The other, lying about 5 km lower, is the oceanic platform. The three less prevalent levels are mountains above the continental platform, continental slopes

## Table 21-1. Areas of Earth's Crust Classed According to Height or Depth from Sea Level. After Meinardus*

| Proportion in interval |  | Proportion above |  |
| :---: | :---: | :---: | :---: |
|  | [Highest land $\dagger$ | $8.85 \mathrm{~km}(314 \mathrm{mb} \ddagger)]$ |  |
| Land above 5 km . | 0.1\% | $5 \mathrm{~km}(540 \mathrm{mb})$. | 0.1\% |
| Land 4-5 km. | 0.4\% | 4 km ( 616 mb ) | 0.5\% |
| Land 3-4 km. | 1.1\% | 3 km ( 701 mb ) | 1.6\% |
| Land 2-3 km. | 2.2\% | $2 \mathrm{~km}(795 \mathrm{mb})$ | 3.8\% |
| Land $1-2 \mathrm{~km}$. | 4.5\% | $1 \mathrm{~km}(899 \mathrm{mb})$ | 8.3\% |
| Land 0-1 km. | 20.8\% | $0 \mathrm{~km}(1,013 \mathrm{mb})$ | 29.1\% |
| Ocean 0-1 km | 8.5\% | 1 km ( 1,010 decibars ${ }^{\text {f }}$ ) | 37.6\% |
| Ocean 1-2 km | 2.9\% | 2 km (2,024 decibars). | 40.5\% |
| Ocean 2-3 km. | 4.7\% | 3 km ( 3,045 decibars) | 45.2\% |
| Ocean 3-4 km. | . $14.1 \%$ | 4 km (4,069 decibars) | 59.3\% |
| Ocean 4-5 km. | . $23.9 \%$ | 5 km ( 5,098 decibars). | 83.2\% |
| Ocean 5-6 km. | 16.0\% | 6 km (6,132 decibars). | 99.2\% |
| Ocean 6-7 km. | 0.7\% | 7 km ( 7,169 decibars) | 99.9\% |
| Ocean below 7 km . | .. 0.1\% |  |  |
|  | Greatest depth§ | 10.86 km (11,216 decibars)] |  |

[^46]
## MECHANICS

between the two platforms, and trenches below the oceanic platform. The mean level of the crust's surface is 2.43 km below sea level.
The ocean floor is more rugged than the dry land at least in large-scale features. ${ }^{1}$ Submarine ridges and numerous seamounts as well as islands rise from the prevailing depth, while trenches extend below. The continental slopes are high and steep and are cut by deep submarine canyons.

Pressures in a standard atmosphere and ocean are included in parentheses in Table $21-1$. For the ocean, the quantity tabulated is sea pressure; the total pressure is sea pressure plus atmospheric pressure ( 10 decibars). The units are defined by

$$
10^{6} \text { dyne } / \mathrm{cm}^{2}=\text { bar }=10 \text { decibars }=10^{3} \text { millibars }
$$

The upper limit of temperature in the open ocean is rather definite at about $32^{\circ} \mathrm{C}$, although more than half the ocean surface is warmer than $20^{\circ} \mathrm{C}$. The lower limit for liquid sea water is the melting point $-2^{\circ} \mathrm{C}$. The temperature of sea ice ranges from $0^{\circ} \mathrm{C}$ down to something like $-50^{\circ} \mathrm{C}$.

The warm tropical water forms a relatively thin surface layer, which in the open ocean is underlain by cold water from high latitudes. Nearly everywhere in the open ocean the temperature at depths greater than 1 km is below $10^{\circ} \mathrm{C}$ and at depths greater than 2 km is below $4^{\circ} \mathrm{C}$.
21-2. Properties of Sea Water. Composition. Sea water, not including the suspended particles (inorganic matter, living organisms, and organic detritus), is a solution of a large number of constituents, which may be divided into four groups: water, major solids, minor solids (and liquids), and gases. The major solids are those which have appreciable influence on density. The minor solids compose only some 0.025 per cent of the total solids in typical sea water.

The major solids are composed of salts that are almost completely ionized, the proportions by mass being as follows: ${ }^{2}$

| $\mathrm{Na}^{+}$ | $30.61 \%$ | $\mathrm{Cl}^{-}$ | $55.04 \%$ | $\mathrm{H}_{3} \mathrm{BO}_{3}$ | $0.07 \%$ |
| :--- | :---: | :--- | :---: | :--- | :--- |
| $\mathrm{Mg}^{++}$ | 3.69 | $\mathrm{SO}_{4}{ }^{-}$ | 7.68 |  |  |
| $\mathrm{Ca}^{++}$ | 1.16 | $\mathrm{HCO}_{3}{ }^{-}$ | 0.41 |  |  |
| $\mathrm{~K}^{+}$ | 1.10 | $\mathrm{Br}^{-}$ | 0.19 |  |  |
| $\mathrm{Sr}^{++}$ | 0.04 |  |  |  |  |

These proportions have been found to be highly constant throughout the ocean except where the water is nearly fresh (the salt in river water is very different from sea salt). Hence, the measurement of the concentration of any of the major solids in sea water permits the calculation of the concentration of total solids.

The constituent commonly measured (by chemical titration) is the sum of the halide ions $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right)$. The quantity chlorinity is approximately the ratio, by mass, of halides to total sample of sea water, but for the precise technical definition the reader is referred elsewhere. ${ }^{3}$ Similarly, salinity is approximately the ratio of total solids to total sample of sea water, but the definition ${ }^{4}$ used in practice is the one given by the empirical formula

$$
\begin{equation*}
\text { Salinity }=0.00003+1.805 \times \text { chlorinity } \tag{2l-1}
\end{equation*}
$$

[^47]Both chlorinity and salinity are customarily expressed in per mille, meaning $10^{-3}$.
The salinity of most water in the open ocean lies between 33 and 37 per mille, and 35 per mille is often chosen as standard.

Because the major solids are uniform in composition, the density and some other physical properties of sea water depend on only three variables: temperature, salinity, and pressure. Some of these properties at a pressure of 1 atm are shown in Fig. 21-1.

Density and Melting Point. Density at 1 atm is shown in Fig. 2l-1a. ${ }^{1}$ The effect of pressure on the density of sea water of salinity 35 per mille at temperature $0^{\circ} \mathrm{C}$ is as follows:

| Sea pressure, decibars..... | 0 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Density, $\mathrm{g} / \mathrm{ml} \ldots \ldots \ldots \ldots$ | 1.02813 | 1.03748 | 1.04640 | 1.05495 | 1.06315 | 1.07104 |

Water that is more saline or warmer is less compressible.
The temperature of maximum density, shown for 1 atm on the graph, decreases as pressure increases. For pure water at 1 atm the decrease is $2.22^{\circ} \mathrm{C}$ per thousand decibars. ${ }^{2}$

The melting point decreases with increasing salinity or pressure. The melting point depression at 1 atm equals $56.90^{\circ} \mathrm{C}$ times the salinity according to Miyake ${ }^{3}$ and is shown as the dotted line on the graphs. The decrease with pressure for pure water at 1 atm is $0.742^{\circ} \mathrm{C}$ per thousand decibars. ${ }^{4}$

Many tables and other aids have been prepared for the routine calculation of density and specific volume of sea water. A selection follows.

## References on Calculation of Density and Specific Volume of Sea Water

## Density at a Pressure of 1 Atm

Knudsen, Martin: "Hydrographical Tables," Copenhagen, 63 pp ., 1901. (Range - 2 to $33^{\circ} \mathrm{C}$, salinity 2 to 41 per mille.) Part of Knudsen's can be replaced with the following more detailed tables: Matthews, D. J.: "Tables for the Determination of the Density of Seawater under Normal Pressure, $\sigma_{t}$," Andr. Fred. Høst \& Fils, Copenhagen, 56 pp., 1932.
Kalle, Kurt, und Hermann Thorade: Tabellen und Tafeln für die Dichte des Seewassers ( $\sigma_{t}$ ), Arch. deut. Seewarte Marineobs. 60 (2), 49 pp . (1940). (Range -2 to $30^{\circ} \mathrm{C}$, salinity 0 to 41.5 per mille.)
Ennis, C. C.: Note on computation of density of sea water and on corrections for deepsea reversing thermometers, Carnegie Inst. Wash. Publ. 545A, 23-45 (1944). (Range -2 to $30^{\circ} \mathrm{C}$, salinity 34 to 36 per mille.)
LaFond, E. C.: Processing Oceanographic Data (Table X), U.S. Navy Hydrographic Office, H. O. Pub. 614, 1951. (Range -2 to $30^{\circ} \mathrm{C}$, salinity 30 to 38 per mille.)
U.S. Navy Hydrographic Office: "Tables for Sea Water Density," H.O. Pub. 615, $265 \mathrm{pp} ., 1952$ (range -2 to $30^{\circ} \mathrm{C}$, salinity 0 to 40 per mille.) Recomputed from same empirical formulas as preceding tables but expressed to one more decimal place $\left(10^{-6} \mathrm{~g} / \mathrm{ml}\right)$ and tabulated for each $0.01^{\circ} \mathrm{C}$ of temperature argument.
Bein, Willy: Physikalische und chemische Konstanten des Meerwassers (pp. 102-103), Veröffentl. Inst. Meeresk. Univ. Berlin, neue Folge, A, 28, 36-190 (1935). The arguments are temperature ( $0,1, \ldots, 40^{\circ} \mathrm{C}$ ) and the ratio of density at $17.5^{\circ} \mathrm{C}$ to density of pure water at $17.5^{\circ} \mathrm{C}(1.000,1.002, \ldots, 1.032)$. This table is based on Bein's own measurements, the most recent. Argument converted to salinity by

[^48](a)




(e)
(b)
(c)



Fig. 2l-1. Temperature-salinity diagrams for sea water at 1 atm pressure: (a) density, (b) refractive index for sodium light ( 0.5893 micron) relative to air, (c) sound speed, ( $d$ ) conductivity, ( $e$ ) concentration of nitrogen in equilibrium with 1 atm ( 1013.25 mb ) of air saturated with aqueous vapor, $(f)$ concentration of oxygen under same equilibrium conditions. Freezing point is shown by dotted line; values below it pertain to undercooled water.
G. Dietrich, Landolt-Börnstein Zahlenwerte und Funktionen, Ozeanographie 6 Auflage, 3, 428 (1952). (Temperature 0, 1, . ., $32^{\circ} \mathrm{C}$, salinity 0, 5, . . , 40 per mille.)

## Specific Volume at a Pressure of 1 Atm

LaFond, above, Table V. (Range $-2^{\circ}$ to $30^{\circ} \mathrm{C}$, salinity 21 to 38 per mille)
Density at Greater Pressures
Ekman, V. W.: Tables for Sea Water under Pressure, Pabl. Circ. Cons. int. Explor. Mer $49,48 \mathrm{pp} ., 1910$. [The arguments are density at 1 atm and $0^{\circ} \mathrm{C}$, pressure ( 0 to 10,000 decibars), and temperature.]

## Specific Volume at Greater Pressures

Bjerknes, Vilhelm: Hydrographic Tables, Carnegie Inst. Wash. Publ. 88, 1A-36A (1910). (Range -2 to $30^{\circ} \mathrm{C}$, salinity 0 to 40 per mille, 0 to 10,000 decibars.)

Subow, N. N., S. W. Brujewicz, and W. W. Shoulejkin: "Oceanographical Tables," Moscow, 208 pp., 1931.
Matthews, D. J.: "Tables for Calculating the Specific Volume of Seawater under Pressure," Andr. Fred. Høst \& Fils, Copenhagen, 67 pp., 1938. [The arguments are density at 1 atm , pressure ( 0 to 12,000 decibars), and temperature.]
Sverdrup, H. U., M. W. Johnson, and R. H. Fleming: "The Oceans," Appendix, Prentice-Hall, Inc., New York, 1942. [The arguments are density at 1 atm , pressure ( 0 to 10,000 decibars), temperature, and salinity.]
LaFond, above, Tables IV-VII. (Range -2 to $30^{\circ} \mathrm{C}$, salinity 21 to 38 per mille, 0 to 10,000 decibars.)
Refractive Index. For given wavelength, temperature, and pressure the relation between refractive index and salinity is very nearly linear. The graph of refractive index for sodium light in Fig. 2l-1b is based on the formulas of Utterback et al. ${ }^{1}$ The formulas have been adjusted slightly to agree at zero chlorinity with the measurements of Tilton and Taylor. ${ }^{2}$ Measurements by Bein ${ }^{3}$ give values higher than those of Utterback et al. by as much as $\mathbf{0 . 0 0 0 1 2}$. The effect of pressure is roughly such that, if $n$ is refractive index and $\rho$ is density, $(n-1) / \rho$ is constant for given temperature, salinity, and wavelength. ${ }^{4}$

Sound Speed. The graph of sound speed in Fig. 2l-1c at 1 atm represents Del Grosso's ${ }^{5}$ formula based on his new laboratory measurements. Since there were no measurements at salinities between 0 and 19 per mille, this area on the graph is uncertain. Only pure water has been studied at temperatures below $0^{\circ} \mathrm{C} .{ }^{6}$
For greater pressures, Matthews ${ }^{7}$ and Kuwahara ${ }^{8}$ have computed the sound speed $c$

[^49]from $c^{2}=(d p / d \rho)_{s}$, which is the adiabatic change of pressure with density and can be expressed in terms of known properties (isothermal compressibility, thermal expansion, specific heat, temperature, and specific volume). Some values for $0^{\circ} \mathrm{C}$ and salinity 35 per mille are as follows: ${ }^{1}$

| Sea pressure, decibars.... | 0 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Sound speed, $\mathrm{m} / \mathrm{sec} \ldots \ldots$ | $1,448.6$ | $1,484.4$ | $1,519.7$ | $1,554.2$ | $1,587.7$ | $1,620.0$ |

Electrical Conductivity. The graph shown in Fig. 2l-1d is based on measurements by Thomas. ${ }^{2}$ Somewhat different results were obtained by Bein. ${ }^{3}$ Measurements have been confined in temperature to the range 0 to $25^{\circ} \mathrm{C}$ and in pressure to 1 atm .

Dissolved Nitrogen and Oxygen. The two principal atmospheric gases are differently distributed in the ocean. Because nitrogen is highly inert, its concentration is determined entirely by contact with the atmosphere. Oxygen is both released and consumed by biological processes, so that its concentration is much more variable. Right at the sea surface, there is equilibrium between the two phases; the nitrogen and oxygen in the liquid phase depend on their partial pressures in the gaseous phase, while the partial pressure of aqueous vapor depends on the salinity of the liquid phase (see below).

Figures $2 \mathrm{l}-1 e$ and $f$ show the concentrations of nitrogen and oxygen in equilibrium with saturated air at a pressure of 1 atm . For a given temperature, solubility decreases linearly with increasing salinity. The nitrogen graph has been calculated from Fox's ${ }^{4}$ table for pure water and from Rakestraw and Emmel's ${ }^{5}$ data for sea water. The oxygen graph is based on Fox's ${ }^{6}$ table. For temperatures below $\theta^{\circ} \mathrm{C}$ and for part of the high-temperature areas, the graphs depend on extrapolation.

The equilibrium concentration of dissolved nitrogen or oxygen is proportional to its partial pressure in the gaseous phase (Henry's law) up to several atmospheres. As the partial pressure increases to $1,000 \mathrm{~atm}$, however, the concentration attains only about half the value given by simple proportionality. ${ }^{7}$ Sea water has not been studied at pressures greater than 1 atm.

Vapor Pressure. The vapor-pressure lowering of an aqueous solution is related to the melting-point depression. At the melting point of the solution the vapor pressure is the same as the vapor pressure of ice.

Let $e$ be the vapor pressure of sea water of given salinity and temperature, and let $e_{0}$

[^50]be the vapor pressure of pure water at the same temperature. Then
\[

$$
\begin{equation*}
\frac{e_{0}-e}{e_{0}}=0.537 \times \text { salinity } \tag{2l-2}
\end{equation*}
$$

\]

so the vapor pressure for salinity 35 per mille is 98.12 per cent of that for pure water. This formula by Witting ${ }^{1}$ is satisfactory for the range of conditions occurring at the natural ocean surface, but for greater salinity or higher temperature the results of recent measurements should be consulted. ${ }^{2}$

Latent Heats and Specific Heat. The latent heats of fusion and vaporization are practically the same for sea water as for pure water.

The specific heat at constant pressure depends on salinity as follows at $17.5^{\circ} \mathrm{C}$ and 1 atm : $^{3}$

| Salinity, per mille. | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $c_{p}$, cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \ldots$ | 1.000 | 0.982 | 0.968 | 0.958 | 0.951 | 0.945 | 0.939 | 0.932 | 0.926 |

The changes with temperature and pressure have not been measured. The effect of pressure can be computed by use of the thermodynamic formula

$$
\begin{equation*}
\left(\frac{d c_{p}}{d p}\right)_{T}=-T\left(\frac{d^{2} v}{d T^{2}}\right)_{p} \tag{21-3}
\end{equation*}
$$

where $v$ is specific volume and $T$ is absolute temperature. The following values of the decrease in specific heat at $0^{\circ} \mathrm{C}$ and salinity 35 per mille are from Ekman's ${ }^{4}$ table:

| Sea pressure, decibars......... | 0 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\left(c_{p}\right)_{0}$ decibars $-c_{p}$, cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{C}^{-1} \ldots$ | 0 | 0.0159 | 0.0291 | 0.0401 | 0.0492 | 0.0566 |

Adiabatic Temperature Change. This quantity is computed from the thermodynamic formula

$$
\begin{equation*}
\left(\frac{d T}{d p}\right)_{s}=\frac{T}{c_{p}}\left(\frac{d v}{d T}\right)_{p} \tag{21-4}
\end{equation*}
$$

The following values for $0^{\circ} \mathrm{C}$ and salinity 35 per mille are converted from Ekman's paper:

| Sea pressure, decibars........... | 0 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $(d T / d p)_{s},{ }^{\circ} \mathrm{C} / 1,000$ decibars $\ldots$. | 0.035 | 0.072 | 0.104 | 0.133 | 0.159 | 0.181 |

Transport Phenomena. The values for a pressure of 1 atm are assembled in Table 21-2. Measurements with sea water are restricted to viscosity; the other properties tabulated under sea water are from measurements with sodium chloride solutions. The diffusivities of nitrogen and oxygen are especially uncertain and may be incorrect by as much as 15 per cent.

[^51]Dynamic and kinematic viscosities and thermal conductivity change linearly with salinity. In contrast, both thermal diffusivity (associated with specific heat) and diffusivity of sodium chloride go through minima at salinities less than 35 per mille.

Table 2l-2. Transport Phenomena in Water at a Pressure of 1 Atm

| Name, symbol, units | Pure water |  | Sea water, salinity 35 per mille |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| Dynamic viscosity, $\eta, \mathrm{g} \mathrm{cm}^{-1} \mathrm{sec}^{-1}=$ poise. | $0.01787{ }^{\text {a }}$ | $0.01002{ }^{\text {b }}$ | $0.01877^{a}$ | $0.01075{ }^{\text {a }}$ |
| Thermal conductivity, $k$, watt $\mathrm{cm}^{-1}{ }^{\circ} \mathrm{C}^{-1}$. | $0.00566^{\circ}$ | $0.00599^{\text {c }}$ | $0.00563^{\circ}$ | $0.00596{ }^{\text {c }}$ |
| Kinematic viscosity, $\nu=\eta / \rho, \mathrm{cm}^{2} \sec ^{-1}$. | 0.01787 | 0.01004 | 0.01826 | 0.01049 |
| Thermal diffusivity, ${ }^{\text {d }} \kappa=k / c_{p \rho}, \mathrm{~cm}^{2} \mathrm{sec}^{-1}$. | 0.00134 | 0.00143 | 0.00139 | 0.00149 |
| Diffusivity, $D, \mathrm{~cm}^{\mathbf{2}} \mathrm{sec}^{-1}$ : |  |  |  |  |
| NaCl . | $0.0000074{ }^{e}$ | $0.0000141^{f}$ | $0.0000068{ }^{\text {e }}$ | 0.0000129 f |
| $\mathrm{N}_{2}$. | $0.0000106^{\circ}$ | $0.0000169^{\circ}$ |  |  |
| $\mathrm{O}_{2}$ |  | $0.000021^{\text {h }}$ |  |  |
| Prandtl number, $N_{P}=\nu / \kappa \ldots \ldots \ldots \ldots \ldots .$. | 13.3 | 7.0 | 13.1 | 7.0 |

${ }^{a}$ Yasuo Miyake and Masami Koizumi, The Measurement of the Viscosity Coefficient of Sea Water, J. Marine Research 7, 63-66 (1948). Values taken from their Table I and reduced by 0.00007 poise to agree with Swindells et al. (Table III presents smoothed values for $0,1, \ldots, 30^{\circ} \mathrm{C}$, chlorinity $0,1, . . ., 20$ per mille.)
${ }^{6}$ J. F. Swindells, J. R. Coe, Jr., and T. B. Godfrey, Absolute Viscosity of Water at $20^{\circ} \mathrm{C}, \mathrm{J}$. Research Natl. Bur. Standards 48, 1-31 (1952).
${ }^{c}$ L. Riedel, Die Wärmeleitfähigkeit von wässrigen Lösungen starker Elektrolyte, Chem.-Ing.-Technik 23, 59-64 (1951).
${ }^{d}$ Thermal diffusivity is also called thermometric conductivity.

- Values for $0^{\circ} \mathrm{C}$ calculated from those at $20^{\circ} \mathrm{C}$ by use of temperature coefficient of L . W. Öholm, Über die Hydrodiffusion der Elektrolyte, Z. physik. Chem. 50, 309-349 (1904).
${ }^{f}$ A. R. Gordon, The Diffusion Constant of an Electrolyte, and Its Relation to Concentration, J. Chem. Phys. 5, 522-526 (1937). Gordon used measurements by B. W. Clack, On the Study of Diffusion in Liquids by an Optical Method, Proc. Phys. Soc. (London) 36, 313-335 (1924). R. H. Stokes, The Diffusion Coefficients of Eight Uni-univalent Electrolytes in Aqueous Solution at $25^{\circ}$, J. Am. Chem. Soc. 72, 2243-2247 (1950).
- Gustav Tammann und Vitus Jessen, Über die Diffusionskoeffizienten von Gasen in Wasser und ihre Temperaturabhängigkeit, $Z$. anorg. Chem. 179, 125-144 (1929).
${ }^{h}$ Tor Carlson, The Diffusion of Oxygen in Water, J. Am. Chem. Soc. 33, 1027-1032 (1911); I. M. Kolthoff and C. S. Miller, The Reduction of Oxygen at the Dropping Mercury Electrode, J. Am. Chem. Soc. 63, 1013-1017 (1941); H. A. Laitinen and I. M. Kolthoff, Voltammetry with Stationary Microelectrodes of Platinum Wire, J. Phys. Chem. 45, 1061-1079 (1941).

For pure water, pressure increasing to 10,000 decibars has a nonlinear effect on the dynamic viscosity, which decreases at $0^{\circ} \mathrm{C}$ by 8 per cent and increases at $30^{\circ} \mathrm{C}$ by 5 per cent. ${ }^{1}$ The thermal conductivity at $30^{\circ} \mathrm{C}$ increases linearly with pressure and becomes 6 per cent greater at 10,000 decibars. ${ }^{2}$

21-3. Gravity Waves. Wave Speed. Most of the ocean is stabilized by a downward increase of density, so that internal waves as well as surface waves are common. Only surface waves are discussed here.

Let $L$ be wavelength, $T$ be period, and $c$ be wave speed. Then $L=T c$. Let $h$ be the depth of water (undisturbed surface to bottom) and $g$ be gravity.

For a uniform train of long-crested sinusoidal waves of small amplitude in an ideal liquid of uniform depth, in general ${ }^{3}$

$$
\begin{equation*}
c^{2}=\frac{g L}{2 \pi} \tanh 2 \pi \frac{h}{L} \tag{21-5}
\end{equation*}
$$

For $h / L \gg 1$, deep-water waves, the general formula reduces to $c^{2}=g L / 2 \pi$, and the

[^52]group speed equals half the wave speed. For $h / L \ll 1$, shallow-water waves, $c^{2}=g h$, and group speed equals wave speed (there is no dispersion, and any wave form of small amplitude is propagated unchanged at this speed). Within 5 per cent, sufficient accuracy for many problems, the deep-water formula holds if $h / L \sim h / L_{0}>\frac{1}{3}$ and the shallow-water formula holds if $h / L<\frac{1}{1 I}$ or $h / L_{0}<\frac{1}{22} ; L_{0}$ is defined below.

Table 21-3. Selected Tidal Constituents

| $\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$ | Name | Argument | Period | Speed, degrees per hour | Rela- <br> tive <br> co- <br> efficient <br> of <br> equilib- <br> rium <br> tide |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sa | Solar annual | $h$ | 1.0 year | 0.0411 | 0.012 |
| Ssa | Solar semiannual | $2 h$ | 0.5 year | 0.0821 | 0.073 |
| Mm | Lunar monthly | $s-p$ | 27.55 day | 0.5444 | 0.083 |
| Mf | Lunar fortnightly | 2 s | 13.66 day | 1.0980 | 0.156 |
| $\mathrm{K}_{1}$ | Lunisolar declinational diurnal | $T+h-90^{\circ}$ | 23.93 hr | 15.0411 | 0.531 |
| $\mathrm{O}_{1}$ | Lunar declinational diurnal | $T+h-2 s+90^{\circ}$ | 25.82 hr | 13.9430 | 0.377 |
| $\mathrm{P}_{1}$ | Solar declinational diurnal | $T-h+90^{\circ}$ | 24.07 hr | 14.9589 | 0.176 |
| Q1 | Lunar diurnal | $T+h-3 s+p+90^{\circ}$ | 26.87 hr | 13.3987 | 0.072 |
| $\mathrm{M}_{2}$ | Principal lunar semidiurnal | $2 T+2 h-2 s$ | 12.42 hr | 28.9841 | 0.908 |
| $\mathrm{S}_{2}$ | Principal solar semidiurnal | $2 T$ | 12.00 hr | 30.0000 | 0.423 |
| $\mathrm{N}_{2}$ | Larger lunar elliptic semidiurnal | $2 T+2 h-3 s+p$ | 12.66 hr | 28.4397 | 0.174 |
| $\mathrm{K}_{2}$ | Lunisolar declinational semidiurnal | $2 T+2 h$ | 11.97 hr | 30.0821 | 0.115 |

Change in depth along wave rays changes the speed and length of sufficiently long waves. Near shore, therefore, waves often experience refraction and accompanying convergence and divergence. Such phenomena are conveniently treated by relating the speed and length of waves of any given period to the speed and length for the same period in deep water, $c_{0}$ and $L_{0}$. As $T=L / c=L_{0} / c_{0}$ and $c_{0}{ }^{2}=g L_{0} / 2 \pi$, (21-5) may be written

$$
\begin{equation*}
\frac{c}{c_{0}}=\frac{L}{L_{0}}=\tanh 2 \pi \frac{h}{L_{0}} \frac{L_{0}}{L} \tag{2l-6}
\end{equation*}
$$

Functions of $h / L_{0}$ have been presented in an extensive table, ${ }^{1}$ from which the following values are extracted:

| $h / L_{0} \ldots \ldots \ldots$ | 0 | 0.001 | 0.01 | 0.02 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $c / c o=L / L_{0 .}$ | 0 | 0.0792 | 0.2480 | 0.3470 | 0.5310 | 0.7093 | 0.8884 | 0.9611 | 0.9877 | 0.9964 | 1.0000 |

[^53]These elementary results are not suitable for direct application to the irregular aperiodic waves in areas of generation by wind.

Tidal Constituents. ${ }^{1}$ The gravitational fluctuations that produce tides can be resolved into harmonic constituents. Some are listed in Table 21-3, their periods being determined by the constant rates of change of four angles:
$T=$ hour angle of mean sun (increasing by $15^{\circ} / \mathrm{hr}$ )
$h=$ mean celestial longitude of sun (increasing by $0.0411^{\circ} / \mathrm{hr}$ )
$s=$ mean celestial longitude of moon (increasing by $0.5490^{\circ} / \mathrm{hr}$ )
$p=$ mean celestial longitude of lunar perigee (increasing by $0.0046^{\circ} / \mathrm{hr}$ )

# 2m. Meteorological Data ${ }^{2}$ 

R. J. LIST<br>United States Weather Bureau

## 2m-1. List of Symbols

| $c_{p}$ | specific heat of dry air at constant pressure |
| :--- | :--- |
| $c_{v}$ | specific heat of dry air at constant volume |
| $d$ | coefficient of molecular diffusion |
| $D$ | coefficient of eddy diffusion |
| $f$ | Coriolis parameter |
| $g$ | acceleration of gravity |
| $n$ | distance; spacing |
| $p$ | pressure |
| $r$ | radius of curvature |
| $R$ | gas constant for dry air |
| $T$ | temperature |
| $T_{v}$ | virtual temperature |
| $T_{m v}$ | mean virtual temperature |
| $v$ | speed |
| $V_{\sigma}$ | geostrophic wind speed |
| $V$ | gradient wind speed |
| $Z, z$ | height |
| $\gamma$ | lapse rate of temperature |
| $\zeta$ | mean molecular speed; mixing velocity |

${ }^{1}$ Paul Schureman, Manual of Harmonic Analysis and Prediction of Tides, U.S. Coast and Geodetic Survey, Special Publication 98, rev. ed., 1940; A. T. Doodson and H. D. Warburg, "Admiralty Manual of Tides," H. M. Stationery Office, London, 1941.
${ }^{2}$ All material not otherwise credited is abstracted from R. J. List, ed., "Smithsonian Meteorological Tables," 6th ed., Smithsonian Institution, Washington, D.C., 1951. This publication should be consulted for more complete explanations and additional references. For an encyclopedic summary of the current status of knowledge in the principal fields of meteorology and atmospheric physics, including extensive references, see T. F. Malone, ed., "Compendium of Meteorology," American Meteorological Society, Boston. 1951.
$\omega \quad$ angular velocity of the earth

## 2m-2. Physical Constants

Pressure at mean sea level, 1 atmosphere

$$
=1,013.250 \text { millibars }(\mathrm{mb})=1.013250 \times 10^{6} \text { dynes } \mathrm{cm}^{-2}
$$

$=760 \mathrm{~cm} \mathrm{Hg}$ (at standard gravity of $980.665 \mathrm{~cm}^{2} \mathrm{sec}^{-2}$ and temperature of $0^{\circ} \mathrm{C}$ )
Mass of the atmosphere $=5.14 \times 10^{21} \mathrm{~g}$
Apparent molecular weight of dry air $M=28.966$
Gas constant for 1 g of dry air, $R=2.8704 \times 10^{6} \mathrm{erg} \mathrm{gm}^{-1}{ }^{\circ} \mathrm{K}^{-1}$

$$
=6.8557 \times 10^{-2} \mathrm{ITcal}^{1} \mathrm{gm}^{-1}{ }^{\circ} \mathrm{K}^{-1}
$$

Specific heat of dry air at constant pressure $c_{p}=\frac{7 R}{2}=0.240 \mathrm{ITcal} \mathrm{gm}^{-1}{ }^{\circ} \mathrm{K}^{-1}$
Specific heat of dry air at constant volume $c_{v}=\frac{5 R}{2}=0.171$ ITcal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}$

## 2m-3. Composition of the Atmosphere

Table 2m-1. Composition of Dry Air up to About 25 Km Altitude*

| Constituent gas | Formula | Mole fraction, \% | Molecular wt. |
| :---: | :---: | :---: | :---: |
| Nitrogen | $\mathrm{N}_{2}$ | 78.09 | 28.016 |
| Oxygen | $\mathrm{O}_{2}$ | 20.95 | 32.000 |
| Argon. | Ar | 0.93 | 39.944 |
| Carbon dioxide $\dagger$ | $\mathrm{CO}_{2}$ | 0.03 | 44.010 |
| Neon. | Ne | $1.8 \times 10^{-3}$ | 20.183 |
| Helium | He | $5.24 \times 10^{-4}$ | 4.003 |
| Krypton | Kr | $1.0 \times 10^{-4}$ | 83.7 |
| Hydrogen | $\mathrm{H}_{2}$ | $5.0 \times 10^{-5}$ | 2.0160 |
| Xenon. | Xe | $8.0 \times 10^{-6}$ | 131.3 |
| Ozone $\ddagger$. | $\mathrm{O}_{3}$ | $1.0 \times 10^{-6}$ | 48.000 |
| Radon 1 | Rn | $6.0 \times 10^{-18}$ | 222 |

[^54]$2 \mathrm{~m}-4$. Geopotential. The geopotential $\Phi$ of a point at a height $z$ above mean sea level is the work which must be done against gravity in raising a unit mass from sea level to height $z$.
\[

$$
\begin{equation*}
\Phi=\int_{0}^{z} g d z \tag{2m-1}
\end{equation*}
$$

\]

where $g$ is the local acceleration of gravity at height $z$. For most meteorological work geopotential is measured in terms of the geopotential meter (gpm). By definition, $1 \mathrm{gpm}=9.8 \times 10^{4} \mathrm{~cm}^{2} \mathrm{sec}^{-2}$. For almost all practical purposes, $1 \mathrm{gpm}=1$ geometric
${ }^{1}$ ITcal refers to the "International Steam Tables" calorie, which is equivalent to ${ }^{\frac{1}{6} \%} \times 10^{-3}$ mean international kilowatthours.

## MECHANICS

meter. Table $2 \mathrm{~m}-2$ shows the relationship between geopotential and geometric height as a function of latitude.

Table 2m-2. Relation of Geopotential to Geometric Height

| Latitude | Geopotential meters (gpm) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10,000 | 20,000 | 30,000 | 40,000 | 50,000 | 100,000 | 200,000 | 300,000 | 400,000 | 500,000 | 600,000 |
|  | m | m | m | m | m | m | m | m | m | m | m |
| $0^{\circ}$ | 10,036 | 20,104 | 30, 204 | 40,336 | 50,500 | 101,811 | 206,948 | 315,577 | 427,874 | 544, 029 | 664,243 |
| $30^{\circ}$ | 10,023 | 20,077 | 30, 163 | 40,282 | 50,432 | 101,672 | 206,656 | 315,115 | 427, 225 | 543,174 | 663, 161 |
| $45^{\circ}$ | 10,009 | 20,050 | 30, 123 | 40,228 | 50,365 | 101,534 | 206,363 | 314,653 | 426,576 | 542,318 | 662,080 |
| $60^{\circ}$ | 9,996 | 20,024 | 30,083 | 40, 174 | 50,297 | 101,395 | 206,071 | 314, 191 | 425,927 | 541,465 | 661,000 |
| $90^{\circ}$ | 9,983 | 19,997 | 30,043 | 40, 120 | 50,229 | 101,256 | 205,779 | 313,730 | 425,280 | 540,613 | 659,923 |
|  |  |  |  |  |  |  |  |  |  |  |  |

2m-5. Hypsometry. The differential form of the hydrostatic equation, the equation expressing the relationship of pressure $p$, density $\rho$, and height $z$, in the atmosphere, is

$$
\begin{equation*}
d p=-\rho g d z \tag{2~m-2}
\end{equation*}
$$

Introducing the definition of geopotential, the hydrostatic equation becomes

$$
\begin{equation*}
d p=-\rho d \Phi \tag{2~m-3}
\end{equation*}
$$

Substituting the equation of state for dry air, introducing the concept of virtual temperature (see below), and integrating, Eq. ( $2 \mathrm{~m}-3$ ) becomes

$$
\begin{equation*}
\Delta \Phi=R T_{m v} \log _{e} \frac{p_{1}}{p_{2}} \tag{2m-4}
\end{equation*}
$$

where $\Delta \Phi$ is the geopotential difference between levels having pressures $p_{1}$ and $p_{2}$, $T_{m v}$ is the mean ${ }^{1}$ virtual temperature of the layer of air between $p_{1}$ and $p_{2}$, and $R$ is the gas constant for dry air. For temperatures in ${ }^{\circ} \mathrm{K}$ and geopotential in gpm (i.e., geometric meters for most practical purposes) Eq. (2m-4) becomes

$$
\begin{equation*}
\Delta \Phi=67.442 T_{m v} \log _{10} \frac{p_{1}}{p_{2}} \tag{2m-5}
\end{equation*}
$$

2m-6. Virtual Temperature. The concept of virtual temperature is introduced to take into account the decreased density of moist air when compared with dry air of the same temperature. By definition, $T_{v}$ is the temperature which dry air must have at a given barometric pressure in order to have the same density as the moist air at the same pressure but at temperature $T$ and with a specified moisture content, provided the dry and moist air behave in accordance with the perfect-gas equation of state. (The deviation of moist air from perfect-gas behavior can be neglected in most practical problems. ${ }^{2}$ ) Table $2 \mathrm{~m}-3$ gives the virtual-temperature increment for saturated air $\Delta T_{v}$, where $T_{v}=T+\Delta T_{v}$. For unsaturated moist air with relative humidity $U$ (per cent), $T_{v}=T+(U / 100) \Delta T_{v}$, to a close approximation.
$\mathbf{2 m - 7}$. Lapse Rates. The lapse rate $\gamma$ in the atmosphere is defined as the rate of decrease of temperature with increasing height (or geopotential), $\gamma=-d T / d z . \quad \gamma$ is ordinarily expressed in ${ }^{\circ} \mathrm{C}$ per 100 m (or 100 gpm ).

[^55]Dry-adiabatic Lapse Rate. Dry air, or moist air in which the water vapor enters into no change of state, which ascends (or descends) adiabatically in the atmosphere will decrease (or increase) in temperature at the rate of $0.98^{\circ} \mathrm{C}$ per 100 m . The dryadiabatic lapse rate is therefore $0.98^{\circ} \mathrm{C} / 100 \mathrm{~m}$.

Table 2m-3. Virtual-temperature Increment of Saturated Air, ${ }^{\circ} \mathrm{C}$

| Temp., ${ }^{\circ} \mathrm{C}$ | Pressure, mb |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1000 | 900 | 800 | 700 | 600 | 500 | 400 | 300 | 200 |
| -40 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.06 | 0.08 |
| -20 | 0.12 | 0.13 | 0.15 | 0.17 | 0.20 | 0.24 | 0.30 | 0.40 | 0.60 |
| 0 | 0.64 | 0.70 | 0.79 | 0.91 | 1.06 | 1.27 | 1.59 | 2.12 | 3.19 |
| 10 | 1.32 | 1.47 | 1.66 | 1.90 | 2.21 | 2.66 | 3.33 | 4.46 | 6.73 |
| 20 | 2.62 | 2.92 | 3.29 | 3.76 | 4.40 | 5.29 | 6.64 | 8.92 | 13.57 |
| 30 | 4.97 | 5.53 | 6.23 | 7.14 | 8.36 | 10.08 | 12.70 |  |  |
| 40 | 9.03 | 10.06 | 11.36 | 13.05 | 15.33 | 18.57 |  |  |  |
| 50 | 15.90 | 17.76 | 20.11 | 23.18 |  |  |  |  |  |
| 60 | 27.32 | 30.62 |  |  |  |  |  |  |  |

Table 2m-4. Pseudoadiabatic Lapse Rate for the Water Stage, ${ }^{\circ} \mathrm{C} / 100 \mathrm{M}$

| Temp., ${ }^{\circ} \mathrm{C}$ | Pressure, mb |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1000 | 900 | 800 | 700 | 600 | 500 | 400 | 300 | 200 | 100 |
| -50 | 0.966 | 0.965 | 0.963 | 0.961 | 0.959 | 0.955 | 0.951 | 0.943 | 0.928 | 0.886 |
| -40 | 0.950 | 0.947 | 0.944 | 0.939 | 0.934 | 0.925 | 0.913 | 0.896 | 0.863 | 0.775 |
| -30 | 0.917 | 0.910 | 0.903 | 0.893 | 0.882 | 0.866 | 0.842 | 0.807 | 0.746 | 0.615 |
| -20 | 0.855 | 0.844 | 0.830 | 0.814 | 0.794 | 0.767 | 0.730 | 0.677 | 0.596 | 0.454 |
| -10 | 0.763 | 0.745 | 0.725 | 0.701 | 0.672 | 0.637 | 0.592 | 0.532 | 0.452 | 0.335 |
| 0 | 0.645 | 0.624 | 0.601 | 0.573 | 0.542 | 0.505 | 0.462 | 0.409 | 0.345 | 0.262 |
| 10 | 0.527 | 0.506 | 0.483 | 0.457 | 0.429 | 0.398 | 0.362 | 0.323 | 0.276 |  |
| 20 | 0.426 | 0.408 | 0.389 | 0.368 | 0.346 | 0.322 | 0.296 |  |  |  |
| 30 | 0.352 | 0.338 | 0.323 | 0.307 | 0.291 | 0.273 |  |  |  |  |
| 40 | 0.301 | 0.290 | 0.279 | 0.267 |  |  |  |  |  |  |
| 50 | 0.267 | 0.259 |  |  |  |  |  |  |  |  |

Pseudoadiabatic Lapse Rate. Saturated air ascending adiabatically in the atmosphere, so that all condensation of water vapor is into liquid water which falls out immediately and all latent heat of condensation is realized in warming the air, decreases in temperature at the pseudoadiabatic (or moist-adiabatic) lapse rate for the water stage. Table $2 \mathrm{~m}-4$ gives the pseudoadiabatic lapse rate for the water stage as a function of temperature and pressure.

2m-8. Standard Atmosphere, Lower Atmosphere. A revised standard atmosphere for levels up to 20 km was approved by the Council of the International Civil Aviation Organization (ICAO) in November, 1952, and has been adopted by the National Advisory Committee on Aeronautics (NACA) to supersede the earlier NACA standard atmosphere. The values of pressure, temperature, and density are in fairly good agreement with the average annual values observed at $40^{\circ} \mathrm{N}$ in North America.

## MECHANICS

Basic Assumptions. The temperature at altitude ${ }^{1} 0$ (mean sea level) is $288.16^{\circ} \mathrm{K}$ $\left(15^{\circ} \mathrm{C}\right)$. The lapse rate of temperature in the troposphere is $0.65^{\circ} \mathrm{C}$ per 100 m . The temperature at the tropopause is $216.66^{\circ} \mathrm{K}$, which makes the altitude of the tropopause 11 km . The temperature above 11 km is constant, $216.66^{\circ} \mathrm{K}$. It is assumed that the

Table $2 \mathrm{~m}-5$. Standard Atmosphere, Lower Atmosphere*

| Altitude, m | $\begin{aligned} & \text { Temp., } \\ & { }^{\circ} \mathrm{K} \end{aligned}$ | Pressure, mb | Density, $\mathrm{kg} \mathrm{m}^{-3}$ | Viscosity, poises | Speed of sound, $\mathrm{m} \mathrm{sec}{ }^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -5,000 | 320.660 | 1776.88 | 1.9305 | $1.9497 \times 10^{-4}$ | 359.114 |
| -4,000 | 314.160 | 1595.55 | 1.7694 | 1.9191 | 355.455 |
| -3,000 | 307.660 | 1429.51 | 1.6187 | 1.8881 | 351.759 |
| -2,000 | 301.160 | 1277.74 | 1.4781 | 1.8568 | 348.023 |
| -1,000 | 294.660 | 1139.29 | 1.3470 | 1.8252 | 344.247 |
| 0 | 288.160 | 1013.25 | 1.2250 | 1.7932 | 340.429 |
| 1,000 | 281.660 | 898.74 | 1.1117 | 1.7609 | 336.567 |
| 2,000 | 275.160 | 794.95 | 1.0065 | 1.7283 | 332.661 |
| 3,000 | 268.660 | 701.08 | 0.90913 | 1.6953 | 328.709 |
| 4,000 | 262.160 | 616.40 | 0.81914 | 1.6620 | 324.708 |
| 5,000 | 255.660 | 540.20 | 0.73612 | 1.6282 | 320.657 |
| 6,000 | 249.160 | 471.81 | 0.65970 | 1.5941 | 316.555 |
| 7,000 | 242.660 | 410.61 | 0.58950 | 1.5596 | 312.398 |
| 8,000 | 236.160 | 356.00 | 0.52517 | 1.5247 | 308.186 |
| 9,000 | 229.660 | 307.42 | 0.46635 | 1.4893 | 303.915 |
| 10,000 | 223.160 | 264.36 | 0.41271 | 1.4536 | 299.583 |
| 11,000 | 216.660 | 226.32 | 0.36392 | 1.4174 | 295.188 |
| 12,000 | 216.660 | 193.30 | 0.31083 | 1.4174 | 295.188 |
| 13,000 | 216.660 | 165.10 | 0.26548 | 1.4174 | 295.188 |
| 14,000 | 216.660 | 141.02 | 0.22675 | 1.4174 | 295.188 |
| 15,000 | 216.660 | 120.45 | 0.19367 | 1.4174 | 295.188 |
| 16,000 | 216.660 | 102.87 | 0.16542 | 1.4174 | 295.188 |
| 17,000 | 216.660 | 87.867 | 0.14129 | 1.4174 | 295.188 |
| 18,000 | 216.660 | 75.048 | 0.12068 | 1.4174 | 295.188 |
| 19,000 | 216.660 | 64.100 | 0.10307 | 1.4174 | 295.188 |
| 20,000 | 216.660 | 54.749 | 0.088035 | 1.4174 | 295.188 |

* Manual of the ICAO Standard Atmosphere, NACA Tech. Note, Washington, D.C., May, 1954.
air is dry, obeys the perfect gas law, and is in hydrostatic equilibrium. (The other necessary physical constants used are given in Sec. 2m-2.)
$\mathbf{2 m - 9}$. Properties of the Upper Atmosphere. The average temperature in January and July in the Northern Hemisphere in the lowest 20 km of the atmosphere as a function of latitude and height is given by the thin lines in Fig. 2m-1. ${ }^{2}$ The heavy lines

[^56]
show the mean height of the tropopause. These lines do not imply that the tropopause is a continuous surface from tropical to polar regions. There may be more than one tropopause over a given point during certain meteorological conditions; during others it may be indistinct or missing altogether.

Schematic representations of the structure of the upper atmosphere, indicating the typical heights at which various phenomena have been observed, are shown in Figs. $2 \mathrm{~m}-2$ and $2 \mathrm{~m}-3$.


Fig. 2m-2. Structure of the upper atmosphere. (Prepared in collaboration with W.W. Kellogg.)

2m-10. Dynamical Relationships. Coriolis Parameter. The apparent force per unit mass acting upon a particle whose motion is described in a coordinate system fixed to the surface of the earth, due to the rotation of the earth in space, is proportional to the Coriolis parameter $f=2 \omega \sin \phi$, where $\omega$ is the angular velocity of the earth ( $\omega=7.292 \times 10^{5}$ radians $\mathrm{sec}^{-1}$ ) and $\phi$ is latitude. If $v$ is the speed of a particle of unit mass, the apparent force is equal to $f v$. This force is directed to the right of the direction of motion in the Northern Hemisphere and to the left in the Southern Hemisphere.

Geostropic Wind. Steady, straight, frictionless air motion in an unchanging pressure field, with gravity as the only external force acting, such that the horizontal pressuregradient force is balanced by the apparent force due to the earth's rotation (the Coriolis force), is called the geostrophic wind. The geostrophic wind blows perpendicular to the direction of the pressure gradient with low pressure to the left in the Northern Hemisphere, to the right in the Southern Hemisphere.

On a surface of constant pressure, the equation for the speed of the geostropic wind $V_{g}$ is given by

$$
\begin{equation*}
V_{g}=\frac{1}{f} \frac{\partial \Phi}{\partial n} \tag{2m-6}
\end{equation*}
$$



Fig. 2m-3. Diurnal and seasonal variation in the structure of the ionosphere. (Prepared by W. W. Kellogg.)

| Table 2m-6. Value of the Coriolis Parameter $f$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Latitude | $f$, <br> $\mathrm{sec}^{-1}$ | Latitude | $f$, <br> $\mathrm{sec}^{-1}$ |
| $0^{\circ}$ | 0 | $50^{\circ}$ | $1.1172 \times 10^{-4}$ |
| $10^{\circ}$ | $0.2533 \times 10^{-4}$ | $60^{\circ}$ | $1.2630 \times 10^{-4}$ |
| $20^{\circ}$ | $0.4988 \times 10^{-4}$ | $70^{\circ}$ | $1.3705 \times 10^{-4}$ |
| $30^{\circ}$ | $0.7292 \times 10^{-4}$ | $80^{\circ}$ | $1.4363 \times 10^{-4}$ |
| $40^{\circ}$ | $0.9375 \times 10^{-4}$ | $90^{\circ}$ | $1.4584 \times 10^{-4}$ |
| $45^{\circ}$ | $1.0313 \times 10^{-4}$ |  |  |

where $-\partial \Phi / \partial n$ is the gradient of geopotential on the constant-pressure surface normal to the direction of the geostrophic wind. For contours drawn at intervals of 100 gpm on a constant-pressure map, Eq. (2m-6) reduces to

$$
\begin{equation*}
V_{g}=\frac{0.01712}{f \Delta n} \quad \text { knots } \tag{2m-7}
\end{equation*}
$$

where $\Delta n$ is the spacing between successive contours measured normal to the direction of the geostrophic wind component in units of degrees of latitude. For contours drawn at intervals of 200 geopotential feet

$$
\begin{equation*}
V_{\mathrm{o}}=\frac{0.01044}{f \Delta n} \quad \text { knots } \tag{2m-8}
\end{equation*}
$$

On a constant-level surface,

$$
\begin{equation*}
V_{g}=\frac{1}{f_{\rho}} \frac{\partial p}{\partial n} \tag{2~m-9}
\end{equation*}
$$

where $\rho$ is the density of the air and $-\partial p / \partial n$ is the horizontal pressure gradient normal to the geostrophic wind component. For a 3-mb isobaric interval and an air density of $10^{-3} \mathrm{gm} \mathrm{cm}^{-3}$,

$$
\begin{equation*}
V_{g}=\frac{0.005241}{f \Delta n} \quad \mathrm{knots} \tag{2m-10}
\end{equation*}
$$

Gradient Wind. To improve the approximation of the geostrophic wind to the true wind in the free atmosphere, other terms may be included in the equation of motion. The most common additional term is that which expresses the acceleration arising from the curvature of the path of the moving air parcel. The addition of this term to the expression for the geostrophic wind speed gives the gradient wind speed $V$.

$$
\begin{equation*}
V=\frac{r f}{2}\left[-1+\left(1+\frac{4 V_{g}}{r f}\right)^{\frac{1}{2}}\right] \tag{2m-11}
\end{equation*}
$$

where $r$ is the radius of curvature of the trajectory of the air parcel and the following sign convention is used: for cyclonic curvature $r f>0$, for anticyclonic curvature $r f<0$.

2m-11. Radiation. Solar Constant. ${ }^{1}$ The solar constant, the mean values of the total solar radiation, at normal incidence, outside the atmosphere at the mean solar distance $=2.00 \mathrm{~g}$-cal $\mathrm{cm}^{-2} \mathrm{~min}^{-1}$ ( $\mathrm{pe}=2$ per cent). The solar-illuminance constant $=13.67$ lumens $\mathrm{cm}^{-2}$.

Insolation. Figure 2m-4 shows the average daily solar radiation received on a square centimeter of horizontal surface at the ground during January and July on cloudless days ${ }^{2}$ (solid lines) and on days with average cloudiness ${ }^{3}$ (dotted lines). The units are gram-calories per square centimeter per day.

Albedo. Table $2 \mathrm{~m}-7$ gives a range of albedo measurements ${ }^{4}$ observed for various types of surfaces.

Table 2m-7. Albedo Measurements

$$
\%
$$

Forest..................................................... . . . . . $3-10$
Fields, grass, etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

Snow, fresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-90
Snow, old.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45-70
Whole earth, visible spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 39
Whole earth, total spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Water (reflectivity values are given in the following table) $\dagger$

| Elevation of sun. | $90^{\circ}$ | $70^{\circ}$ | $50^{\circ}$ | $40^{\circ}$ | $30^{\circ}$ | $20^{\circ}$ | $10^{\circ}$ | $5^{\circ}$ | $0^{\circ}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: | :---: |
| Reflectivity, $\% \ldots$ | 2.0 | 2.1 | 2.5 | 3.4 | 6.0 | 13.4 | 34.8 | 58.4 | 100.0 |

[^57]

Fig. 2m-4. Average daily solar insolation (geal cm ${ }^{-2}$ day $^{-1}$ ) at the ground on cloudless days (solid lines) and on days of average cloudiness (dotted lines). (After Fritz.)


Fig. 2m-5. Cloud drop-size spectra. (Prepared by H. J. aufm Kampe.)
Table 2m-8. Average Water Content of Typical Clouds

| Cloud type................... Cirrus* | Cumulus <br> congestus <br> 4 | Fair-weather <br> cumulus <br> 1 | Stratus | Strato- <br> cumulus <br> 0.2 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Water content, $\mathrm{gm} \mathrm{m}^{-3} \ldots$ | $0.01-0.05$ | 4 | 0.3 | 0.2 |

[^58]2m-12. Clouds. ${ }^{1}$ The drop-size spectra of typical cloud types are given in Fig. 2m-5.

2m-13. Climatology. Space limitations preclude the presentation of climatological data. In addition to standard climatological texts, the following sources of such data are suggested:
U. S. Department of Agriculture, Yearbook of Agriculture: "Climate and Man," Government Printing Office, Washington, 1941.
Glenn A. Greathouse, and Carl J. Wessel, ed.: "Deterioration of Materials, Causes, and Preventative Techniques," Chap. I, Climate and Deterioration, Reinhold Publishing Corporation, New York, 1954.
U.S. Weather Bureau: Climatological Data, National Summary (issued monthly, with an annual summary).
${ }^{1}$ Data furnished by Dr. H. J. aufm Kampe, Signal Corps Engineering Laboratories, Ft. Monmouth, N.J.

Note: Also available from the U.S. Weather Bureau are more detailed climatological summaries for individual states and local climatological data for individual cities, as well as many unpublished data.
$\mathbf{2 m - 1 4}$. Atmospheric Diffusion. ${ }^{1}$ In most meteorological problems, the effects of molecular diffusion are far outweighed by the turbulent eddies present in the atmosphere. One approach to this problem is to treat the phenomenon in a manner analogous to that of molecular diffusion. The coefficient of diffusion in such applications is a function of the size of the turbulent eddies and is therefore dependent on the time and space scale being considered. Figure $2 \mathrm{~m}-\mathbf{6}^{2}$ gives the magnitude of the

$$
\lambda(C M)
$$



D AT HEIGHT $z$ IS DENOTED bY CHARACTERISTIC AREAS ON THE DIFFUSION DIAGRAM:


| \#\#\#\#\# | $0-1 \mathrm{KM}$ |
| :--- | :--- |
| $+_{+}^{+}$ | $25-35 \mathrm{KM}$ |
| -- | $45-80 \mathrm{KM}$ |

$x_{2} \times$ HORIZONTAL GROSS - AUSTAUSCH OF THE GENERAL CIRCULATION Fig. 2m-6. Diffusion diagram. (From Lettau.)
coefficient of eddy diffusion $D$ as a function of the characteristics of the eddies, as well as the variation of the coefficient of molecular diffusion $d$ with height. In Fig. 2m-6, each point of the $\lambda, \zeta$ plane determines a diffusion coefficient $\left(\mathrm{cm}^{2} \mathrm{sec}^{-1}\right)$. In molecular diffusion, $\lambda \approx$ free path and $\zeta \approx$ mean molecular speed; $d=\lambda \zeta$ is fixed by the density and temperature of the atmosphere; consequently, the height variation of $d$ is marked by a curve. In eddy diffusion, $\lambda \approx$ mixing length and $\zeta \approx$ mixing velocity; owing to the variability of these elements, $D=\lambda \zeta$ and its variation with height are denoted by characteristic areas when the possible variability of $D$ is narrowed by the consideration of limiting values of eddy accelerations ( $\zeta^{2} / \lambda$ ) and time terms ( $\lambda / \zeta$ ).

For another approach to the problem of turbulent diffusion, especially in dealing with the diffusion of contaminants in the lower atmosphere, see Sutton. ${ }^{3}$

[^59]
# 2n. Density and Compressibility of Liquids 

ROBERT LINDSAY ${ }^{1}$<br>Southern Methodist University

2n-1. Density of Liquids. Introduction. The density of a homogeneous liquid is defined as the mass per unit volume. Density can be expressed either in absolute units or on a relative scale. The conventional absolute units are grams per milliliter and grams per cubic centimeter. A milliliter is defined as $1 / 1,000$ liter where the liter is the volume occupied by one kilogram of pure air-free water at its temperature of maximum density $\left(3.98^{\circ} \mathrm{C}\right)$ and under atmospheric pressure ( 760 mm Hg ). From this definition the density of pure water is $1.0000 \mathrm{~g} / \mathrm{ml}$ at $3.98^{\circ} \mathrm{C}$. The conversion from $\mathrm{g} / \mathrm{ml}$ to $\mathrm{g} / \mathrm{cm}^{3}$ is given by $1 \mathrm{~g} / \mathrm{ml}=0.999973 \mathrm{~g} / \mathrm{cm}^{3}$. For expressing densities on a relative scale the specific gravity is used. The specific gravity gives the ratio of the density of a liquid at a particular temperature to the density of a standard liquid (usually pure water) at a standard temperature. When the standard temperature is $3.98^{\circ} \mathrm{C}$, the specific gravity with respect to water is numerically equal to the absolute density in $\mathrm{g} / \mathrm{ml}$. The conventional symbol for absolute density is $\rho$ or $d$. The former will be used in this set of tables. The conventional symbol for specific gravity is $d_{t 2}^{t 1}$ where $t_{1}$ is the temperature of the liquid and $t_{2}$ is the temperature of the standard.
$\mathbf{2 n - 2}$. Methods of Measurement. The pycnometer method is most commonly used when precise density measurements on a particular liquid are desired at fixed temperatures. ${ }^{2}$ A pycnometer is a vessel made of glass with a low coefficient of expansion whose volume can be determined very precisely in terms of its capacity for a standard liquid. Most pycnometers have a capacity of about 30 ml . The general procedure consists of filling the pyenometer with the unknown liquid, thermostating the system at the desired temperature, determining the volume of the pycnometer occupied by the liquid, and then weighing the pycnometer. For determining densities of the same sample over a range of temperatures, the dilatometer method is sometimes used. In one variation of this method a secondary standard liquid such as mercury is placed in contact with the liquid sample. As the temperature is raised the secondary liquid is displaced out of the dilatometer. The weight of the displaced secondary liquid is a measure of the change in volume of the unknown liquid. Another variation of this method involves the observation of the change in level of the unknown liquid in a narrow calibrated capillary attached to the main flask. The measurements of densities of liquefied gases at or near their boiling points are more complicated, since a closed system may have to be used and significant corrections must be made for the density of the vapor in equilibrium with the liquid. ${ }^{3}$

[^60]2n-3. Reliability. The reliability of the density measurements tabulated is variable. This compilation does not pretend to evaluate for extreme accuracy. Such factors as uncertainty in the temperature scale, possible impurities of the samples, and in some cases even changes in atomic weights must be taken into consideration when applying a critical analysis. The data are given as reported in the original literature or in other standard works and are to be interpreted in the spirit of being representative values. Reference to the original literature is recommended in cases of doubt. Among the organic liquids there are some very recent and complete investigations to examine. Among many of the inorganic liquids data are both old and scarce.

## 2n-4. Standard Reference Works with Density Data

"International Critical Tables," McGraw-Hill Book Company, Inc., New York, 1928.
Landolt-Börnstein: "Physikalisch-Chemische Tabellen," 5th ed. and supplements, Springer-Verlag OHG, Berlin, 1923-1935 (Edwards Bros. Inc., Ann Arbor, Mich., 1943).

Timmermans, J.: "Physico-chemical Constants of Pure Organic Compounds," Elsevier Press, Inc., New York, 1950.
Mellor, J. F.: "Comprehensive Treatise of Inorganic and Theoretical Chemistry," Longmans, Green \& Co., Inc., New York, 1921-1929.
Simons, J. H., ed.: "Fluorine Chemistry," Academic Press, Inc., New York, 1950.
2n-5. Density of Water. A rather complete analysis of all the investigations of the physical properties of water is given by N. Ernest Dorsey. ${ }^{1}$ He points out that the data from which the density tables are made up do not take into consideration the isotope effect. Because of this there may be uncertainties of the order of 8 parts in $10^{7}$ introduced when the densities of samples from various sources are considered. Fractional distillation of $\mathrm{D}_{2}$ has revealed differences of the order of 20 parts in $10^{6}$ in deuterium content in different samples. There is also some reason to believe that the polymerization is a factor in the variability of the physical properties of water. Values of the density of water as a function of temperature are presented in Table 2n-1. Similar data for other liquids follow in Tables $2 n-2$ through 2n-11.

[^61]Table 2n-1. Density of Pure Air-free $\mathrm{H}_{2} \mathrm{O}$ at Atmospheric Pressure

$$
\left(\rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}\right)
$$

Range $0-40^{\circ} \mathrm{C}$ *

| $t$ | $\rho$ | $t$ | $\rho$ | $\rho$ | $\rho$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 0 | 0.9998676 | 5 | 0.9999919 | 10 | 0.9997281 |
| 1 | 0.9999265 | 6 | 0.9999683 | 11 | 0.9996336 |
| 2 | 0.9999678 | 7 | 0.9999297 | 12 | 0.9995261 |
| 3 | 0.9999922 | 8 | 0.9998765 | 13 | 0.9994059 |
| 4 | 1.0000 | 9 | 0.9998092 | 14 | 0.9992732 |


| $t$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 0.9991286 | 1134 | 0982 | 0828 | 0674 | 0518 | 0360 | 0202 | 0043 | 9882 |
| 16 | 0.9989721 | 9558 | 9394 | 9229 | 9062 | 8895 | 8726 | 8557 | 8386 | 8214 |
| 17 | 0.9988041 | 7867 | 7691 | 7515 | 7337 | 7158 | 6979 | 6798 | 6616 | 6433 |
| 18 | 0.9986248 | 6063 | 5877 | 5689 | 5501 | 5311 | 5120 | 4928 | 4735 | 4541 |
| 19 | 0.9984346 | 4150 | 3953 | 3754 | 3555 | 3355 | 3153 | 2950 | 2747 | 2542 |
| 20 | 0.9982336 | 2130 | 1922 | 1713 | 1503 | 1292 | 1080 | 0867 | 0653 | 0438 |
| 21 | 0.9980221 | 0004 | 9786 | 9567 | 9346 | 9125 | 8903 | 8679 | 8455 | 8230 |
| 22 | 0.9978003 | 7776 | 7547 | 7318 | 7088 | 6856 | 6624 | 6390 | 6156 | 5921 |
| 23 | 0.9975684 | 5447 | 5208 | 4969 | 4729 | 4487 | 4245 | 4002 | 3758 | 3512 |
| 24 | 0.9973266 | 3019 | 2771 | 2522 | 2272 | 2021 | 1769 | 1516 | 1262 | 1007 |
| 25 | 0.9970751 | 0494 | 0237 | 9978 | 9718 | 9458 | 9196 | 8934 | 8671 | 8406 |


| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | 0.9968141 | 31 | 0.9953722 | 36 | 0.9937159 |
| 27 | 0.9965437 | 32 | 0.9950575 | 37 | 0.9933604 |
| 28 | 0.9962642 | 33 | 0.9947344 | 38 | 0.9929970 |
| 29 | 0.9959757 | 34 | 0.9954030 | 39 | 0.9926260 |
| 30 | 0.9956783 | 35 | 0.9950635 | 40 | 0.9922473 |

Range $40-100^{\circ} \mathrm{C} \dagger$

| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 0.99224 | 65 | 0.98059 | 90 | 0.96534 |
| 45 | 0.99024 | 70 | 0.97781 | 95 | 0.96192 |
| 50 | 0.98807 | 75 | 0.97489 | 100 | 0.95838 |
| 55 | 0.98573 | 80 | 0.97183 |  |  |
| 60 | 0.98324 | 85 | 0.96865 |  |  |

Range $100-370^{\circ} \mathrm{C} \ddagger$

| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.95841 | 190 | 0.87639 | 280 | 0.75063 |
| 110 | 0.95099 | 200 | 0.86492 | 290 | 0.73237 |
| 120 | 0.94317 | 210 | 0.85290 | 300 | 0.71266 |
| 130 | 0.93494 | 220 | 0.84031 | 310 | 0.69118 |
| 140 | 0.92629 | 230 | 0.82712 | 320 | 0.66747 |
| 150 | 0.91721 | 240 | 0.81330 | 330 | 0.64095 |
| 160 | 0.90771 | 250 | 0.79881 | 340 | 0.61071 |
| 170 | 0.89776 | 260 | 0.78368 | 350 | 0.57497 |
| 180 | 0.88733 | 270 | 0.76769 | 360 | 0.52872 |

[^62]Table 2n-1. Density of Pure Air-free $\mathrm{H}_{2} \mathrm{O}$ at
Atmospheric Pressure (Continued)

| Range 0 to $-13^{\circ} \mathrm{C}$ व |  |  |  |  |  |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| 0 | 0.999868 | -5 | 0.999176 | -10 | 0.997935 |
| -1 | 0.999773 | -6 | 0.998950 | -11 | 0.997636 |
| -2 | 0.999673 | -7 | 0.998720 | -12 | 0.997292 |
| -3 | 0.999553 | -8 | 0.998501 | -13 | 0.997292 |
| -4 | 0.999380 | -9 | 0.998249 |  |  |

* L. W. Tilton and J. K. Taylor, J. Research Natl. Bur. Standards 18, 205 (1937).
$\dagger$ V. Stott and P. H. Bigg, "International Critical Tables," vol. 3, p. 24, McGraw-Hill Book Company, Inc., New York, 1928.
$\ddagger$ F. G. Keyes and L. B. Smith, Mech. Eng. 63, 132 (1931).
TI J. F. Mohler, Phys. Rev. 35, 236 (1912).
Table 2 n -2. Density of $\mathrm{D}_{2} \mathrm{O}\left(100 \% \mathrm{D}_{2} \mathrm{O}\right.$ with Normal Oxygen Isotope Composition)

| $\left(\rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}\right)$ <br> Range $3.8-20^{\circ} \mathrm{C}$ |  |
| :---: | :---: |
| $t$ | $\rho$ |
| 3.8 | 1.10533 |
| 5 | 1.10549 |
| 10 | 1.10588 |
| 15 | 1.10577 |
| 20 | 1.10527 |
| Range $20-100^{\circ} \mathrm{C} \dagger$ |  |


| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 1.10530 | 50 | 1.09562 | 80 | 1.07815 |
| 25 | 1.10437 | 55 | 1.09316 | 85 | 1.07467 |
| 30 | 1.10315 | 60 | 1.09051 | 90 | 1.07104 |
| 35 | 1.10167 | 65 | 1.08766 | 95 | 1.06729 |
| 40 | 1.09989 | 70 | 1.08466 | 100 | 1.06339 |
| 45 | 1.09786 | 75 | 1.08148 |  |  |

Range $90-250^{\circ} \mathrm{C} \ddagger$

| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| ---: | :--- | :--- | :--- | :--- | :--- |
| 9 | 1.0708 | 150 | 1.0167 | 210 | 0.943 |
| 100 | 1.0630 | 160 | 1.0058 | 220 | 0.928 |
| 110 | 1.0547 | 170 | 0.9950 | 230 | 0.913 |
| 120 | 1.0459 | 180 | 0.9826 | 240 | 0.897 |
| 130 | 1.0366 | 190 | 0.970 | 250 | 0.881 |
| 140 | 1.0268 | 200 | 0.957 |  |  |

* T. L.-Chang and J. Y. Chien, J. Am. Chem. Soc. 63, 1709 (1941).
$\dagger$ R. Schrader and K. Wirtz, Z. Naturforsch. 6a, 220 (1951).
$\ddagger$ J. R. Heiks, M. K. Barnett, L. V. Jones, and E. Orban, J. Phys. Chem. 68, 488 (1954).
The maximum density of $\mathrm{D}_{2} \mathrm{O}$ has been determined to be $1.10596 \mathrm{~g} / \mathrm{ml}$ at $11.23^{\circ} \mathrm{C}$. K. Stokland, E. Ronaess, and L. Tronstad, Trans. Faraday Soc. 35, 312 (1938). This is based on a value for $d_{25}^{25}$ of 1.10764. L. Tronstad and Brun, Trans. Faraday Soc. 34, 766 (1938). See H. L. Johnston, J. Am. Chem. Soc. 61, 878 (1939), for a discussion of these values.

The density of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$ at $370^{\circ} \mathrm{C}$ are approximately the same. $\mathrm{E} . \mathrm{H}$. Riesenfield and T . L.-Chang, Z. physik. Chem. B30, 61 (1935); B28, 408 (1935).

Table 2n-3. Density of Mercury (Hg)
$\left(\rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}\right)$
Range - 38.87 to $100^{\circ} \mathrm{C}^{*}$

| $t$ | $\rho$ | $t$ | $\rho$ |
| :---: | :---: | :---: | :---: |
| -38.87 | $13.691_{9}$ | 24 | $13.536_{4}$ |
| -30 | $13.669_{8}$ | 25 | $13.534_{0}$ |
| -20 | $13.645_{0}$ | 30 | $13.51_{8}$ |
| -10 | $13.620_{2}$ | 35 | $13.59_{6}$ |
| 0 | $13.595_{5}$ | 40 | $13.497_{3}$ |
| 5 | $13.583_{2}$ | 45 | $13.485_{1}$ |
| 10 | $13.570_{9}$ | 50 | $13.472_{9}$ |
| 15 | $13.558_{6}$ | 55 | $13.460_{8}$ |
| 16 | $13.556_{2}$ | 60 | $13.448_{6}$ |
| 17 | $13.553_{7}$ | 65 | $13.436_{5}$ |
| 18 | $13.551_{3}$ | 70 | $13.424_{3}$ |
| 19 | $13.548_{8}$ | 75 | $13.412_{2}$ |
| 20 | $13.546_{3}$ | 80 | $13.400_{1}$ |
| 21 | $13.543_{9}$ | 85 | $13.388_{0}$ |
| 22 | $13.541_{3}$ | 90 | $13.375_{9}$ |
| 23 | $13.538_{9}$ | 95 | $13.363_{9}$ |
|  |  | 100 | $13.351_{8}$ |

Range $100-360^{\circ} \mathrm{C} \dagger$

| $t$ | $\rho$ | $t$ | $\rho$ | $t$ | $\rho$ |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 100 | 13.3518 | 200 | 13.113 | 300 | 12.875 |
| 120 | 13.304 | 220 | 13.065 | 320 | 12.827 |
| 140 | 13.256 | 240 | 13.018 | 340 | 12.779 |
| 160 | 13.208 | 260 | 12.970 | 357.1 | 12.737 |
| 180 | 13.160 | 280 | 12.922 |  |  |

[^63]Table 2n-4. Density of Methyl Alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
( $\rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}$ )
Density at Fixed Points

| $t$ | $\rho$ |
| ---: | :---: |
| 0 | $0.809985^{*}$ |
| 5 | $0.80535^{*}$ |
| 25 | $0.78654^{*}$ |
| 25 | $0.7865 \dagger^{*}$ |
| 30 | $0.78181^{*}$ |

Table 2n-4. Density of Methyl Alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (Continued)
Density as a Function of Temperature

| Range $0-60^{\circ} \mathrm{C} \ddagger$ |  |
| ---: | ---: |
| $\boldsymbol{t} \ddagger$ | $\rho$ |
| 0 | 0.80999 |
| 5 | 0.80536 |
| 10 | 0.80070 |
| 15 | 0.79602 |
| 20 | 0.79132 |
| 25 | 0.78660 |
| 30 | 0.78186 |
| 35 | 0.77710 |
| 40 | 0.77232 |
| 45 | 0.76753 |
| 50 | 0.76270 |
| 60 | 0.75300 |

These data fit a formula

$$
\begin{gather*}
\rho=0.80999-0.0009253 t-0.00000041 t^{2}  \tag{2n-1}\\
\text { Range }-94.5 \text { to } 15^{\circ} \mathrm{C} \llbracket
\end{gather*}
$$

$$
\rho=0.81015-0.0010041 t-0.000001802 t^{2}-0.00000001657 t^{3} \quad(2 \mathrm{n}-2)
$$

* A. Rakowski and A. B. Frost, Trans. Inst. Pure Chem. Reagents U.S.S.R. 9 (334), 95 (1930). $\dagger$ R. E. Gibson, J. Am. Chem. Soc. 57, 1551 (1935).
$\ddagger$ Brunel and Van Bibber, "International Critical Tables," vol. 3, p. 27, McGraw-Hill Book Company, Inc., New York, 1928.

IT J. Timmermans, Sci. Proc. Roy. Dublin Soc. 13, 310 (1912).

## MECHANICS

## Table 2n-5. Density of Ethyl Alcohol ( $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ) ( $\rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}$ )

Density at Fixed Points

| $t$ | $\rho$ |
| :---: | :--- |
| 0 | $0.806306^{*}$ |
| 25 | $0.785063^{*}$ |
| 25 | $0.78506 \dagger$ |
| 50 | $0.763137^{*}$ |

Density as a Function of Temperature

| Range |  |
| :---: | :---: |
| $\boldsymbol{0}-40^{\circ} \mathrm{C} \ddagger$ |  |
| $t$ | $\rho$ |
| 10 | 0.79784 |
| 15 | 0.79360 |
| 20 | 0.78934 |
| 25 | 0.78506 |
| 30 | 0.78075 |
| 35 | 0.77641 |
| 40 | 0.77203 |

These data fit a formula
$\rho=0.78506-0.0008591(t-25)-0.00000056(t-25)^{2}-0.000000005(t-25)^{3}$
Range $40-78^{\circ} \mathrm{C} \Phi$

| $t$ | $\rho$ |
| :---: | :---: |
| 45 | 0.76773 |
| 50 | 0.76329 |
| 60 | 0.75423 |
| 70 | 0.74491 |
| 78 | 0.73720 |

These data fit a formula

$$
\begin{equation*}
\rho=0.80625-0.0008461 t+0.000000160 t^{2}-0.0000000085 t^{3} \tag{2n-4}
\end{equation*}
$$

Range below $0^{\circ} \mathrm{C} \S$

| $t$ | $\rho$ |
| :---: | :---: |
| -59 | 0.856 |
| -78 | 0.872 |

[^64]
## Table 2n-6. Densities of Selected Inorganic Liquids

(Range $0-50^{\circ} \mathrm{C} ; \rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}$; pressure atmospheric)

| Substance | Formula | $t$ | $\rho$ | Year | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Arsenic trichloride. | $\mathrm{AsCl}_{3}$ | 20 | 2.161 | 1880 | 1 |
| Arsenic trifluoride. | $\mathrm{AsF}_{3}$ | 20 | 2.590 | 1880 | 1 |
| Bromine pentafluoride. | $\mathrm{BrF}_{5}$ | 25 | 2.4604 | 1954 | 2 |
| Bromine trifluoride | $\mathrm{BrF}_{3}$ | 25 | 2.8030 | 1954 | 2 |
| Carbon disulfide. | $\mathrm{CS}_{2}$ | 0 | 1.29272 | 1923 | 3 |
|  |  | 20 | 1.2632 | 1926 | 4 |
| Carbonyl chloride. | $\mathrm{COCl}_{2}$ | 0 | 1.4187 | 1946 | 5 |
| Chlorine trifluoride | $\mathrm{ClF}_{3}$ | 0 | 1.891 | 1950 | 6 |
| Chromium oxychloride. | $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ | 20 | 1.923 | 1880 | 1 |
| Hydrazine. | $\mathrm{NH}_{2} \mathrm{NH}_{2}$ | 0 | 0.9816 | 1950 | 7 |
| Hydrogen fluoride. | HF | 0 | 1.0015 | 1933 | 8 |
| Hydrogen peroxide. | $\mathrm{H}_{2} \mathrm{O}_{2}$ | 19.90 | 1.4419 | 1920 | 9 |
| Hydrogen disulfide. | $\mathrm{H}_{2} \mathrm{~S}_{2}$ | 25 | 1.3270 | 1930 | 10 |
| Iodine pentafluoride. | IF 5 | 0 | 3.29 | 1933 | 16 |
| Iron penta-carbonyl. | $\mathrm{Fe}(\mathrm{CO})_{5}$ | 18 | 1.4644 | 1891 | 11 |
| Nickel carbonyl.... | $\mathrm{Ni}(\mathrm{CO})_{4}$ | 20 | 1.310 | 1891 | 1 |
| Nitric acid (100\%) | $\mathrm{HNO}_{3}$ | 20 | 1.502 | 1919 | 1 |
| Nitrogen dioxide. | $\mathrm{NO}_{2}$ | 20 | 1.348 | 1919 | 1 |
| Dinitrogen oxide. | $\mathrm{N}_{2} \mathrm{O}_{3}$ | 0 | 1.450 | 1888 | 1 |
| Phosphorus tribromide. | $\mathrm{PBr}_{3}$ | 20 | 2.877 | 1845 | 1 |
| Phosphorus trichloride. | $\mathrm{PCl}_{3}$ | 20 | 1.575 | 1880 | 1 |
| Phosphorus oxychloride | $\mathrm{POCl}_{3}$ | 20 | 1.675 | 1880 | 1 |
| Selenium tetrafluoride. | $\mathrm{SeF}_{4}$ | 20 | 2.77 | 1928 | 12 |
| Silicon tetrachloride. | $\mathrm{SiCl}_{4}$ | 20 | 1.483 | 1880 | 1 |
| Stannic chloride. | $\mathrm{SnCl}_{4}$ | 20 | 2.231 | 1880 | 1 |
| Sulfur chloride. | $\mathrm{S}_{2} \mathrm{Cl}_{2}$ | 20 | 1.678 | 1880 | 1 |
| Sulfuric acid (100\%) | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | 20 | 1.834 | 1923 | 1 |
| Sulfur trioxide. | $\mathrm{SO}_{3}$ | 20.46 | 1.9207 | 1941 | 13 |
| Sulfuryl chloride. | $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ | 20 | 1.673 | 1897 | 1 |
| Sulfuryl chlorofluoride. | $\mathrm{SO}_{2} \mathrm{FCl}$ | 0 | 1.623 | 1936 | 14 |
| Thiocarbonyl tetrabromide. | $\mathrm{CSBr}_{4}$ | 20 | 3.0240 | 1929 | 15 |
| Thiocarbonyl tetrachloride. | $\mathrm{CSCl}_{4}$ | 20 | 1.6996 | 1929 | 15 |
| Thionyl chloride. | $\mathrm{SOCl}_{2}$ | 20 | 1.638 | 1880 | 1 |
| Vanadium oxytrichloride.. | $\mathrm{VOCl}_{3}$ | 20 | 1.828 | 1910 | 1 |

## References for Table 2n-6

1. Baxter, G. P.: "International Critical Tables," vol. 3, p. 22, McGraw-Hill Book Company, Inc., New York, 1928.
2. Stein, L., R. C. Vogel, and W. H. Ludewig: J. Am. Chem. Soc. 76, 4287 (1954).
3. Timmermans, J.: Bull. soc. chim. Belges 32, 299 (1923).
4. Mathews, J. H.: J. Am. Chem. Soc. 48, 562 (1926).
5. Davies, C. N.: J. Chem. Phys. 14, 48 (1946).
6. Simons, J. H., ed.: "Fluorine Chemistry," Academic Press, Inc., New York, 1950 (private communication to editor from C. F. Swinehart and F. J. Burton, Jr.).
7. Hough, E. W., D. M. Mason, and B. H. Sage: J. Am. Chem. Soc. 72, 5774 (1950).
8. Simons, J. H., and J. W. Bouknight: J. Am. Chem. Soc. 54, 129 (1932); J. Am. Chem. Soc. 55, 1458 (1933).
9. Maass, O., and W. H. Hatcher: J. Am. Chem. Soc. 42, 2548 (1920).
10. Butler, K. H., and O. Maass: J. Am. Chem. Soc. 52, 2184 (1930).
11. Mond and Langer: J. Chem. Soc. (London) 59, 1090 (1891).
12. Prideaux, E. B. R., and C. B. Cox: J. Chem. Soc. (London) 133, 1603 (1928).
13. Westrink, R.: Acad. Proefschrift Univ. Amsterdam, N. V. Drukkerij en Uitgeversgaak de Mercuur, Hilversum, 1941.
14. Booth, H. S., and C. V. Herrmann: J. Am. Chem. Soc. 58, 63 (1936).
15. Briscoe, H. T., J. B. Peel, and P. L. Robinson: J. Chem. Soc. (London) 1929, 1048.
16. Ruff, O., and A. Braida: Z. anorg. u. allgem. Chem. 206, 63 (1932); 214, 91 (1933).

Table 2n-7. Liquid Densities of Elementary and Inorganic Substances Which Are Normally Gaseous under Standard Conditions (Range below $0^{\circ} \mathrm{C} ; \rho=\mathrm{g} / \mathrm{ml} ; \boldsymbol{t}={ }^{\circ} \mathrm{C}$; pressure atmospheric ${ }^{*}$ )

| Substance | Formula | $t$ | $\rho$ | Year | Ref |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Air. | 20.9\% Oxygen | -194 | 0.92 |  | 1 |
|  | 53.6\% Oxygen | -194 | 1.015 |  | 1 |
|  | 72.15\% Oxygen | -194 | 1.068 |  | 1 |
|  | 94.4\% Oxygen | -194 | 1.133 |  | 1 |
| Ammonia. | $\mathrm{NH}_{4}$ | -40 | 0.6900 | 1923 | 24 |
| Argon. | A | -189.38 (T.P.) | 1.4195 | 1940 | 2 |
|  |  | -183.15 | 1.3740 | 1912 | 14 |
| Boron trifluoride | $\mathrm{BF}_{3}$ | -101.0 (N.B.P.) | 1.595 | 1932 | 3 |
| Diborane. | $\mathrm{B}_{2} \mathrm{H}_{6}$ | -108.2 | 0.4542 | 1941 | 4 |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | -56.6 (T.P.) | 1.179 | 1928 | 5 |
| Carbon monoxide | CO | $\begin{aligned} & -195.08 \text { (ortho- } \\ & \text { baric) } \end{aligned}$ | 0.80640 | 1936 | 6 |
| Chlorine | $\mathrm{Cl}_{2}$ | -33.7 (N.B.P.) | 1.568 | 1909 | 7 |
|  |  | -40 | 1.574 | 1926 | 8 |
| Fluorine. | $\mathrm{F}_{2}$ | -195.94 | $1.562_{2}$ | 1954 | 9 |
| Hydrogen bromide. | HBr | -68.7 | 2.157 | 1906 | 10 |
| Hydrogen chloride. | HCl | -85.8 | 1.1937 | 1906 | 10 |
| Hydrogen iodide. | HI | -35.7 (N.B.P.) | 2.799 | 1906 | 10 |
| Hydrogen selenide. | $\mathrm{H}_{2} \mathrm{Se}$ | -42 | 2.12 | 1902 | 13 |
|  |  | -27 (orthobaric) | 1.961 | 1932 | 12 |
| Hydrogen sulfide | $\mathrm{H}_{2} \mathrm{~S}$ | -60.1 (N.B.P.) | 0.964 | 1906 | 10 |
|  |  | -63 | 0.9539 | 1932 | 11 |
| Hydrogen telluride. | $\mathrm{H}_{2} \mathbf{T e}$ | -17.7 | 2.701 | 1932 | 12 |
| Krypton. | Kr | -157.21 (T.P.) | 2.4525 | 1940 | 2 |
| Neon. | Ne | -245.9 (N.B.P.) | 1.204 | 1915 | 14 |
| Nitric oxide. | NO | -150.2 (N.B.P.) | 1.269 | 1910 | 16 |
|  |  | -153.6 | 1.227 | 1932 | 17 |
| Nitrogen | $\mathrm{N}_{2}$ | -195.84 (N.B.P.) | 0.8084 | 1915 | 14 |
|  |  | -198.3 | 0.8297 | 1902 | 15 |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | -89.4 (N.B.P.) | 1.2257 | 1904 | 18 |
| Dinitrogen oxide. | $\mathrm{N}_{2} \mathrm{O}_{3}$ | -8 | 1.464 | 1888 | 19 |
| Oxygen... | $\mathrm{O}_{2}$ | -182.97 (N.B.P.) | $1.144_{7}$ | 1911 | 14 |
|  |  | -182.5 | 1.1181 | 1904 | 20 |
|  |  | -195.0 | 1.1953 | 1930 | 21 |
| Ozone. | $\mathrm{O}_{3}$ | -112.4 (N.B.P.) | 1.63 | 1924 | 14 |
| Radon. | Rn | -62 (N.B.P.) | 4.40 | 1912 | 14 |
| Silicane. | $\mathrm{SiH}_{4}$ | -185 | 0.68 | 1916 | 22 |
| Disilicane. | $\mathrm{Si}_{2} \mathrm{H}_{6}$ | -25 | 0.69 | 1916 | 22 |
| Sulfur dioxide. | $\mathrm{SO}_{2}$ | -10 | 1.4601 | 1899 | 22 |
| Uranium hexafluoride | UF。 | -209.11 (T.P.) | 3.630 | 1949 | 23 |
| Xenon. | Xe | $\begin{aligned} & -111.80 \text { (T.P.) } \\ & -1069 \text { (N P P ) } \end{aligned}$ | $3.0506$ | $1932$ | 2 14 |

[^65]
## References for Table 2n-7

1. Landolt-Börnstein: "Physikalisch-Chemische Tabellen," 5th ed., Springer-Verlag OHG, Berlin, 1923 (Edwards Bros., Inc., Ann Arbor, Mich., 1943).
2. Clusius, K., and K. Wiegand: Z. physik. Chem. B46, 1 (1940).
3. Ruff, O., A. Braida, O. Breitschneider, W. Menzel, and H. Plaut: Z. anorg. u. allgem. Chem. 206, 59 (1932).
4. Laubengayer, A. W., R. P. Ferguson, and A. W. Newkirk: J. Am. Chem. Soc. 63, 559 (1941).
5. Keyes, F. G.: "International Critical Tables," vol. 3, p. 235, McGraw-Hill Book Company, Inc., New York, 1928.
6. Timmermans, J.: "Physico-Chemical Constants of Pure Organic Compounds," p. 366, Elsevier Press, Inc., New York, 1950; Mathias, E., and C. A. Crommelin: Comm. Inst. Intern. Froid. (le comm. 12th rap.) 1936.
7. Johnson, F. M. G., and D. McIntosh: J. Am. Chem. Soc. 31, 1138 (1909).
8. Van Aubel: Bull. acad. Belges 12 (5), 374 (1926).
9. White, D., J. H. Hu, and H. L. Johnston: J. Am. Chem. Soc. 76, 2584 (1954).
10. McIntosh, S., B. D. Steele, and E. H. Archibald: Z. physik Chem. 55, 129 (1906).
11. Klemenc, A., and O. Bankowski: Z. anorg. u. allgem. Chem. 208, 348 (1932);
Z. Elektrochem. 38, 592 (1932).
12. Robinson, P. L., and W. E. Scott: J. Chem. Soc. (London) 1932, 972.
13. Fonzes-Diacon, H.: Compt. rend. 134, 171 (1902).
14. Porter, A. W.: "International Critical Tables," vol. 3, p. 20, McGraw-Hill Book Company, Inc., New York, 1928.
15. Inglis and Coates: J. Chem. Soc. (London) 89, 886 (1902).
16. Adwentowski: Chem. Zentr. 1910I, 1107.
17. Cheesman, G. H.: J. Chem. Soc. (London) 1932, 889.
18. Grunmach: Berlin Sitzber. 1904, 1198; Ann. Physik 15, 401 (1904).
19. Geuther: Liebigs Ann. Chem. 1888, 245.
20. Dewar: Proc. Roy. Soc. (London) 73, 251 (1904).
21. Biltz, Fischer, and Wunnenberg: Z. anorg. u. allgem. Chem. 193, 358 (1930).
22. Baxter, G. P.: "International Critical Tables," vol. 3, p. 22, McGraw-Hill Book Company, Inc., New York, 1928.
23. Hoge, J., and M. T. Wechsler: J. Chem. Phys. 17, 617 (1949).
24. Timmermans, J.: Bull. Soc. Belges 32, 299 (1923).

Table 2n-8. Densities of Cryogenic Liquids
Helium (isotope 4) ${ }^{a}$
N.B.P. $=4.216^{\circ} \mathrm{K}$

$$
\begin{aligned}
T & =4.20^{\circ} \mathrm{K} ; \text { pressure }=1 \mathrm{~atm} ; \rho=0.1251 \mathrm{~g} / \mathrm{ml} \\
T_{\lambda} & =2.186^{\circ} \mathrm{K} ; \text { pressure }=38.3 \mathrm{~mm} \mathrm{Hg} ; \rho=0.1462 \mathrm{~g} / \mathrm{ml} \\
T_{\lambda} & =2.178^{\circ} \mathrm{K} ; \text { pressure }=1 \mathrm{~atm} . ; \rho=0.1473 \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

Helium (isotope 3) ${ }^{\text {b }}$

$$
T=3.20^{\circ} \mathrm{K}(\text { N.B.P. }) ; \rho=0.057_{0} \mathrm{~g} / \mathrm{ml}
$$

Normal hydrogen (isotope 1) ${ }^{c}$

$$
T=20.39^{\circ} \mathrm{K} \text { (N.B.P.) } ; \rho=0.07098 \mathrm{~g} / \mathrm{ml}
$$

Parahydrogen (isotope 1) ${ }^{d}$

$$
T=20.27^{\circ} \mathrm{K} \text { (N.B.P.) } ; \rho=0.07076 \mathrm{~g} / \mathrm{ml}
$$

Hydrogen deuteride (HD) ${ }^{e}$

$$
T=16.604^{\circ} \mathrm{K} \text { (T.P.); pressure }=92.8 \mathrm{~mm} \mathrm{Hg} ; \rho=0.1234 \mathrm{~g} / \mathrm{ml}
$$

Deuterium (isotope 2) ${ }^{f}$

$$
T=18.72^{\circ} \mathrm{K}(\mathrm{~T} . \mathrm{P} .) ; \text { pressure }=128.5 \mathrm{~mm} \mathrm{Hg} ; \rho=0.1739 \mathrm{~g} / \mathrm{ml}
$$

Tritium (isotope 3) ${ }^{g}$

$$
T=25.04^{\circ} \mathrm{K} \text { (N.B.P.) } \rho=0.2571 \mathrm{~g} / \mathrm{ml}
$$

N.B.P. $=$ normal boiling point; T.P. $=$ triple point.

For a discussion of the provisional temperature scale in the liquid-hydrogen region see ref. $e$ and H. J. Hoge and F. G. Brickwedde, J. Research Natl.' Bur. Standards 22, 351 (1939).
${ }^{a}$ W. H. Keesom, "Helium," pp. 240, 207, 226, Elsevier Press, Inc., New York, 1940. The temperature scale in the liquid-helium range must be considered when evaluating the reported results of density measurements. A discussion of the problems involved and the most recent conventions adopted is given in C. F. Squire, "Low Temperature Physics," p. 25, McGraw-Hill Book Company, Inc., 1953. ${ }^{\text {b E E R }}$. Grilly, E. F. Hammel, S. G. Sydoriak, Phys. Rev. 75, 1103 (1949). Interpolated value by private communication.
c R. B. Scott and F. G. Brickwedde, J. Research Natl. Bur. Standards 19, 237 (1937).
${ }^{d}$ R. B. Scott and F. G. Brickwedde, J. Research Natl. Bur. Standards 19, 237 (1937).
$\varepsilon$ H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Natl. Bur. Standards 41,379 (1948).
$f$ K. Clusius and E. Bartholome, Z. phys. Chem. B30, 1237 (1935).
o E. R. Grilly, J. Am. Chem. Soc. 73, 5307 (1951). Interpolated value by private communication.

Table 2n-9. Densities of Selected Organic Liquids (Range 0 to $25^{\circ} \mathrm{C} ; \rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathrm{C}$; pressure atmospheric)


## References for Table 2n-9

1. Bureau d'Etalons (International Bureau of Physico-Chemical Standards), Brussels, 1930.
2. Zmaczynski, M. A.: J. Chim. phys. 27, 503 (1930).
3. Bureau d'Etalons, 1932.
4. Brunjes, A. S., and M. J. P. Bogart: Ind. Eng. Chem. 35, 256 (1943).
5. Hatem, S.: Compt. rend. 1949, 601.
6. Olsen, A. L., and E. R. Washburn: J. Am. Chem. Soc. 57, 303 (1935).
7. Dreisbach, R. R., and R. A. Martin: Ind. Eng. Chem. 41, 2875 (1949).
8. Forziati, A. F., A. R. Glasgow, Jr., C. B. Willingham, and F. D. Rossini: J. Research Natl. Bur. Standards 36, 129 (1946).
9. Zmaczynski, M. A.: J. chim. phys. 27, 503 (1930).
10. Desreux, V.: Bull. soc. chim. Belges 44, 249 (1935).
11. Bureau d'Etalons, 1928.
12. Michielewicz, C.: Roczniki Chem. 18, 718 (1938).
13. Bureau d'Etalons, 1928.
14. Wojciechowski, M., and E. Smith: Roczniki Chem. 17, 118 (1937).
15. Bureau d'Etalons, 1932.
16. Albright, P. S.: J. Am. Chem. Soc. 59, 2098 (1937).
17. Bureau d'Etalons, 1937.
18. Vogel, A. I.: J. Chem. Soc. (London) 1946, 133.
19. Wibaut, J. P., and H. Geldof: Rec. trav. chim. 65, 125 (1946).
20. Lowry, T. M., and S. T. Henderson: Proc. Roy. Soc. (London), ser. A, 136, 474 (1932).
21. Bureau d'Etalons, 1932.
22. Bekkadahl, N., L. A. Wood, and M. Wocjiechowski: J. Research. Natl. Bur. Standards 17, 883 (1936).
23. Bureau d'Etalons, 1934.
24. Lowry, T. M., and B. K. Singh: Compt. rend. 181, 909 (1925).
25. Coates, G. E., and J. E. Coates: J. Chem. Soc. (London) 1944, 77.
26. Peterson, J. M.: J. Am. Chem. Soc. 52, 3669 (1930).
27. Howard, F. L., T. W. Mears, A. Fookson, P. Pomerantz, and D. B. Brooks: J. Research Natl. Bur. Standards 38, 365 (1947).
28. Gibbons, L. C., J. F. Thomson, T. W. Reynolds, J. I. Wright, H. H. Chanau, J. M. Lamberti, H. F. Hipsher, and J. V. Karabinas: J. Am. Chem. Soc. 68, 1130 (1946).

Table 2n-10. Densities of Selected Fluorocarbon and Chloro-fluoro Liquids
(Range all temperatures; $\rho=\mathrm{g} / \mathrm{ml} ; t={ }^{\circ} \mathbf{C}$ )

| Substance | Index | $t$ | $\rho$ | Year | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n$-Butforane. | $\mathrm{C}_{4} \mathrm{~F}_{10}$ | 20.8 | 1.47 (orthobaric) | 1939 | 1 |
| Cyclopentforane. | $\mathrm{C}_{5} \mathrm{~F}_{10}$ | 20 | 1.648 | 1947 | 2 |
| Ethforane. | $\mathrm{C}_{2} \mathrm{~F}_{6}$ | $-78.2$ | 1.61 | 1933 | 3 |
| Ethforene | $\mathrm{C}_{2} \mathrm{~F}_{4}$ | $-76.3$ | 1.519 | 1933 | 3 |
| Fluoroform | $\mathrm{CF}_{3} \mathrm{H}$ | -84.4 | 1.465 | 1936 | 4 |
| Freon-11 | $\mathrm{CCl}_{3} \mathrm{~F}$ | 15 | 1.4995 | 1940 | 5 |
| Freon-12. | $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ | 20 | 1.326 (orthobaric) | 1942 | 6 |
| Freon-13. | $\mathrm{CClF}_{3}$ | $-130^{\circ}$ | 1.726 | 1931 | 7 |
| Freon-21. | $\mathrm{CHCl}_{2} \mathrm{~F}$ | 15 | 1.3906 (orthobaric) | 1940 | 5 |
| Freon-22. | $\mathrm{CHClF}_{2}$ | 20 | 1.2130 | 1940 | 5 |
| Freon-112. | $\mathrm{C}_{2} \mathrm{Cl}_{4} \mathrm{~F}_{2}$ | 25 | 1.6447 | 1934 | 8 |
| Hexforanes (mixture) | $\mathrm{C}_{6} \mathrm{~F}_{14}$ | 20 | 1.697 | 1947 | 2 |
| Methforane. | $\mathrm{CF}_{4}$ | $-130$ | 1.62 | 1933 | 3 |
| Octforanes (mixture). | $\mathrm{C}_{8} \mathrm{~F}_{18}$ | 20 | 1.802 | 1947 | 2 |
| $n$-Pentforane. | $\mathrm{C}_{5} \mathrm{~F}_{12}$ | 20 | 1.634 | 1947 | 2 |
| Propforane. | $\mathrm{C}_{3} \mathrm{~F}_{8}$ | 0.2 | 1.45 (orthobaric) | 1939 | 1 |
| Benzo trifluoride. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$ | 30 | 1.1762 | 1953 | 9 |
| $p$-Fluorotoluene . . . . . | $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$ | 30 | 0.9869 | 1953 | 9 |
| $p$-Fluorobromobenzene. . | $\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{~F}$ | 30 | 1.5859 | 1953 | 9 |

General reference: J. H. Simons, ed., "Fluorine Chemistry," vol. I, Academic Press, Inc., New York, 1950.

Pressure is atmospheric unless indicated as orthobaric conditions.

## References for Table 2n-10

1. Simons, J. H., and L. P. Block: J. Am. Chem. Soc. 61, 2962 (1939); 59, 1407 (1937).
2. Simons, J. H., ed., "Fluorine Chemistry," vol. I, p. 412, Academic Press, Inc., New York, 1950.
3. Ruff, O. and O. Breitschneider: Z. anorg. u. allgem. Chem. 210, 173 (1933).
4. Ruff, O., O. Breitschneider, W. Luchsinger, and G. Millschitzky: Ber. 69, 299 (1936).
5. Simons, J. H., ed.: "Fluorine Chemistry," vol. I, Academic Press, Inc., New York, 1950; Benning, A. F., and R. C. McHarness: Ind. Eng. Chem. 31, 912 (1939); 32, 814 (1940).
6. Benning, A. F., and W. H. Markwood, Jr.: "Thermodynamic Properties of Freon 12," Kinetic Chemicals, Inc., Wilmington, Del., 1942.
7. Ruff, O., and R. Keim: Z. anorg. u. allgem. Chem. 201, 255 (1931).
8. Locke, E. G., W. R. Brode, and A. L. Henne: J. Am. Chem. Soc. 56, 1726 (1934).
9. Rutledge, G. P., and W. T. Smith, Jr.: J. Am. Chem. Soc. 75, 5762 (1953).

Table 2n-11. Specific Gravities of Selected Vegetable and Animal Oils* (Range $15-25^{\circ} \mathrm{C} ; t={ }^{\circ} \mathrm{C} ; d_{t_{2}}^{t_{1}}=$ ratio of density of oil at temperature $t_{1}$ to density of water at temperature $t_{2}$.)

| Substance | $t_{1}$ $t_{2}$ | $d_{t 2}^{t_{1}}$ |
| :---: | :---: | :---: |
| Castor oil. | 15 | 0.960-0.967 |
|  | 15 |  |
| Cod-liver oil. | 15 | 0.922-0.931 |
|  | 15 |  |
| Coconut oil. | 15 | 0.926 |
|  | 15 |  |
| Cottonseed oir. | 25 | 0.917-0.918 |
|  | 25 |  |
| Lard oil. | 15 | 0.913-0.915 |
|  | 15 |  |
| Linseed oil. | 15 | 0.930-0.938 |
|  | 15 |  |
| Neat's-foot oil . | 15 | 0.913-0.918 |
|  | 15 |  |
| Olive. | 20 | 0.91268 |
|  | 4 |  |
| Shark | 15 | 0.918 |
|  | 15 |  |
| Sperm. | 15 | 0.878 |
|  | 15 |  |
| Tallow | 15 | 0.914-0.919 |
|  | 15 |  |
| Tung. | 15 | 0.94 |
|  | 15 |  |

* C. A. Mitchell, "International Critical Tables," vol. 3, p. 201, McGraw-Hill Book Company, Inc., New York, 1928.

2n-6. Volume of Liquids as a Function of Pressure and Temperature. Introduction. When pressure is applied to a confined liquid, the volume of the liquid decreases. In the following tables the volumes of several representative liquids are listed at a number of pressures and temperatures. These data were all determined by experimental measurement. The range of pressures is from 1 to $50,000 \mathrm{~atm}$ (or to the freezing point). The range of temperatures is from 0 to $200^{\circ} \mathrm{C}$ (in a few cases there are points outside this range). In addition a compilation of many other liquids for which high-pressure data are available is given with references.

In the tables the volume as a function of pressure and temperature is expressed in one of three ways:

1. Specific volume at a pressure and temperature. Units, $\mathrm{ml} / \mathrm{g}$.
2. Relative volume $v / v_{0}$, where $v$ is the volume at the particular pressure and temperature and $v_{0}$ is the volume in the reference state (usually $0^{\circ} \mathrm{C}$ and 760 mm ).
3. The change in volume of a given mass of liquid from a reference pressure of $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$ along each experimental isotherm. All the data in the very-highpressure range ( 5,000 to $50,000 \mathrm{~kg} / \mathrm{cm}^{2}$ ) are expressed in this way.

Several thermodynamically important parameters can be derived from these data. The isothermal instantaneous compressibility is defined by

$$
\begin{equation*}
\kappa_{\text {iso }}=-\frac{1}{v}\left(\frac{\partial v}{\partial p}\right)_{T} \tag{2n-5}
\end{equation*}
$$

A good approximation of this quantity can be obtained from the shape of the isotherms. The coefficient of instantaneous cubical expansion is defined by

$$
\begin{equation*}
\beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{p} \tag{2n-6}
\end{equation*}
$$

This quantity can also be derived from the experimental data. The second derivative of the volume with respect to the temperature $\partial^{2} v / \partial T^{2}$ is an especially important parameter in the theory of liquids. Other quantities which can be derived from the data are the work of compression and the pressure coefficient. The work of compression is given by

$$
\begin{equation*}
W=-\int p\left(\frac{\partial v}{\partial p}\right)_{T} d p \tag{2n-7}
\end{equation*}
$$

The pressure coefficient is the ratio of the thermal expansion to the isothermal compressibility:

$$
\begin{equation*}
\frac{(\partial v / \partial T)_{p}}{(\partial v / \partial p)_{T}} \tag{2n-8}
\end{equation*}
$$

2n-7. Experimental Methods for Studying Compressibility of Liquids. A thorough description of the techniques employed in the experimental determination of the volume of liquids as a function of pressure and temperature is given by P. W. Bridgman in his text. ${ }^{1}$ Even more extensive details are given in his original publications. The sylphon method, which was used in the pressure range 1 to $12,000 \mathrm{~atm}$, is described in Proc. Am. Acad. Arts Sci. 66, 185 (1931). The differential method, which was used in the pressure range 5,000 to $50,000 \mathrm{~atm}$, is described in Proc. Am. Acad. Arts Sci. 74, 21 (1940); and 74, 399 (1942).

[^66]
## MECHANICS

## 2n-8. General Features of the Behavior of Liquids under Pressure ${ }^{1}$

1. Mercury is the least compressible of all the liquids (in range -30 to $200^{\circ} \mathrm{C}$ ). In the nonmetallic group glycerin is the least compressible liquid.
2. At pressures above $10,000 \mathrm{~atm}$, the relative volume change for all liquids is about the same.
3. The melting curve appears to exist up to the highest pressures experimentally obtainable with no indication of either a critical point or a maximum. However, at very high pressures, the viscosity of some liquids becomes so large that internal changes take place infinitely slowly and a subcooling phenomenon appears.
4. The difference in volume between the solid and the liquid phase tends to decrease with increasing pressure but does not tend to become zero at any finite pressure.
5. Differences in specific volumes among isomers (i.e., compounds having the same chemical formula but different structural formulas) tend to disappear at around $12,000 \mathrm{~atm}$.
6. The sign of $\left(\partial^{2} v / \partial T^{2}\right)_{p}$ changes from plus to minus with increasing temperature at constant pressure at pressures above about 3,000 to $4,000 \mathrm{~atm}$.
7. The quantity $(\partial p / \partial T)_{v}$ is not a function of volume alone.

## Table 2n-12. Volume of Pure Air-free $\mathrm{H}_{2} \mathrm{O}$ as a Function of Pressure and Temperature

> Temp. range -20 to $100^{\circ} \mathrm{C} ; *$ pressure range $1-12,000 \mathrm{~kg} / \mathrm{cm}^{2}$; specific volume in $\mathrm{ml} / \mathrm{g}$

| $\underset{\mathrm{kg} / \mathrm{cm}^{2}}{p,}$ | $-20^{\circ} \mathrm{C}$ | $-15^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ | $-5^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  | 1.0001 | 1.0018 | 1.0079 | 1.0171 | 1.0284 | 1.0435 |
| 500 |  |  |  |  | 0.9770 | 0.9819 | 0.9880 | 0.9959 | 1.0063 | 1.0183 |
| 1,000 |  |  |  | 0.9566 | 0.9576 | 0.9632 | 0.9706 | 0.9786 | 0.9883 | 0.9993 |
| 1,500 |  | 0.9370 | 0.9380 | 0.9394 | 0.9409 | 0.9476 | 0.9550 | 0.9632 | 0.9724 | 0.9826 |
| 2,000 | 0.9203 | 0.9214 | 0.9228 | 0.9246 | 0.9261 | 0.9328 | 0.9408 | 0.9492 | 0.9582 | 0.9679 |
| 2,500 | 0.9061 | 0.9080 | 0.9097 | 0.9116 | 0.9132 | 0.9199 | 0.9282 | 0.9365 | 4.9453 | 0.9545 |
| 3,000 |  | 0.8959 | 0.8977 | 0.9000 | 0.9015 | 0.9084 | 0.9167 | 0.9020 | 9.9334 | 0.9424 |
| 3,500 |  | 0.8851 | 0.8871 | 0.8892 | 0.8909 | 0.8984 | 0.9062 | 0.7912 | 0.9225 | 0.9312 |
| 4,000 |  |  | 0.8771 | 0.8794 | 0.8812 | 0.8888 | 0.8966 | 0.9044 | 0.9126 | 0.9208 |
| 5,000 |  |  | 0.8596 | 0.8622 | 0.8639 | 0.8709 | 0.8796 | 0.8874 | 0.8949 | 0.9028 |
| 6,000 |  |  |  |  | 0.8489 | 0.8565 | 0.8645 | 0.8721 | 0.8794 | 0.8871 |
| 7,000 |  |  |  |  |  |  | 0.8515 | 0.8586 | 0.8659 | 0.8731 |
| 8,000 |  |  |  |  |  |  | 0.8396 | 0.8564 | 0.8534 | 0.8604 |
| 9,000 |  |  |  |  |  |  | 0.82870 | 0.8354 | 0.8422 | 0.8490 |
| 10,000 |  |  |  |  |  |  | 0.8186 | 0.8252 | 0.8318 | 0.8385 |
| 11,000 |  |  |  |  |  |  | 0.8090 | 0.8157 | 0.8222 | 0.8385 |
| 12,000 |  |  |  |  |  |  | 0.8006 | 0.8070 | 0.8134 | 0.8199 |

Table 2n-12. Volume of Pure Air-free $\mathrm{H}_{2} \mathrm{O}$ as a Function of Pressure and Temperature (Continued)
Temp. range $25-175^{\circ} \mathrm{C}$; $\dagger$ pressure range $5,000-36,560$
$\mathrm{kg} / \mathrm{cm}^{2} ; \Delta v$ in $\mathrm{cm}^{2} / 1.000 \mathrm{~g}$ from $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $175^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: | :---: | :---: |
| 5,000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 9,800 | $\underline{0.057}$ |  |  |  |
| 10,000 |  | 0.063 | 0.066 | 0.070 |
| 15,000 | Ice VI | 0.105 | 0.112 | 0.120 |
| 20,000 |  | 0.136 | 0.146 | 0.157 |
| 21,430 |  | $\underline{0.144}$ |  |  |
| 25,000 |  |  | 0.173 | 0.185 |
| 28,140 |  | Ice VII | 0.186 |  |
| 30,000 |  |  |  | 0.207 |
| 35,000 |  |  | Ice VII | 0.226 |
| 36,560 |  |  |  | $\underline{0.231}$ |
|  |  |  |  |  |
|  |  |  |  | Ice VII |

Temp. range $0-360^{\circ} \mathrm{C} ; \ddagger$ pressure range $1-350 \mathrm{~atm}$; specific volume in $\mathrm{ml} / \mathrm{g}$

| $p$, atm | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |  | $0^{\circ} \mathrm{C}$ | $120^{\circ} \mathrm{C}$ | $140^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0002 | 1.0020 | 1.0079 | 91.01 |  | 891. |  |  |  |
| 25 | 0.9991 | 1.0009 | 1.0068 | 81.01 | 591.0 | 2771. | . 0421 | 1.0590 | 1.0785 |
| 50 | 0.9980 | 0.9998 | 1.0057 | 71.01 | 471.0 | 2651. | . 0408 | 1.0576 | 1.0769 |
| 75 | 0.9968 | 0.9987 | 1.0046 | 61.01 | 361.0 | 2531. | . 0396 | 1.0562 | 1.0754 |
| 100 | 0.9957 | 0.9976 | 1.0034 | 41.01 | 241.0 | 2411. | 0383 | 1.0548 | 1.0738 |
| 125 | 0.9946 | 0.9965 | 1.0024 | 41.01 | 131.0 | 2301. | . 0370 | 1.0535 | 1.0723 |
| 150 | 0.9935 | 0.9955 | 1.0013 | 31.01 | 021.0 | 218 | . 0358 | 1.0521 | 1.0708 |
| 175 | 0.9935 | 0.9944 | 1.0002 | 21.00 | 1.0 | 2071. | . 0346 | 1.0508 | 1.0694 |
| 200 | 0.9914 | 0.9934 | 0.9992 | 21.00 | 801.0 | 1951. | . 0334 | 1.0495 | 1.0679 |
| 250 | 0.9893 | 0.9913 | 0.9971 | 11.00 | 591.0 | 173 | . 0310 | 1.0469 | 1.0650 |
| 300 | 0.9873 | 0.9893 | 0.9950 | 1.00 | 1. | 151 | . 0286 | 1.0444 | 1.0622 |
| 350 | 0.9853 | 0.9873 | 0.9930 | 01.00 | 171.0 | 1291. | . 0264 | 1.0419 | 1.0595 |
| $p$, atm | $160^{\circ} \mathrm{C}$ | $180^{\circ} \mathrm{C}$ | $200^{\circ} \mathrm{C}$ | $220^{\circ} \mathrm{C}$ | $240^{\circ} \mathrm{C}$ | $260^{\circ} \mathrm{C}$ | $280^{\circ} \mathrm{C}$ | $300^{\circ} \mathrm{C}$ | $320^{\circ} \mathrm{C}$ |
| 1 |  |  |  |  |  |  |  |  |  |
| 25 | 1.1007 | 1.1262 | 1.1155 | 1.1897 |  |  |  |  |  |
| 50 | 1.0989 | 1.1241 | 1.1530 | 1.1866 | 1.2264 | 1.2747 | 1.3285 |  |  |
| 75 | 1.0972 | 1.1221 | 1.1506 | 1.1836 | 1.2225 | 1.2694 | 1.3213 |  |  |
| 100 | 1.0954 | 1.1200 | 1.1482 | 1.1806 | 1.2187 | 1.2644 | 1.3146 | 1.3965 |  |
| 125 | 1.0937 | 1.1181 | 1.1458 | 1.1778 | 1.2150 | 1.2596 | 1.3082 | 1.3860 | 1.4882 |
| 150 | 1.0920 | 1.1161 | 1.1435 | 1.1749 | 1.2115 | 1.2549 | 1.3020 | 1.3764 | 1.4712 |
| 175 | 1.0904 | 1.1142 | 1.1412 | 1.1722 | 1.2080 | 1.2505 | 1.2962 | 1.3675 | 1.4563 |
| 200 | 1.0887 | 1.1123 | 1.1390 | 1.1694 | 1.2047 | 1.2461 | 1.2962 | 1.3591 | 1.4428 |
| 250 | 1.0855 | 1.1086 | 1.1346 | 1.1642 | 1.1982 | 1.2379 | 1.2854 | 1.3438 | 1.4192 |
| 300 | 1.0824 | 1.1050 | 1.1304 | 1.1592 | 1.1921 | 1.2302 | 1.2754 | 1.3303 | 1.3992 |
| 350 | 1.0793 | 1.1015 | 1.1263 | 1.1544 | 1.1862 | 1.2230 | 1.2662 | 1.3181 | 1.3816 |

## Table 2n-12. Volume of Pure Air-free $\mathrm{H}_{2} \mathrm{O}$ as a Function of

 Pressure and Temperature (Continued)Temp. range $0-360^{\circ} \mathrm{C} ; \ddagger$ pressure range $1-350 \mathrm{~atm}$; specific volume in $\mathrm{ml} / \mathrm{g}$

| $p, \mathrm{~atm}$ | $340^{\circ} \mathrm{C}$ | $360^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: |
| 1 |  |  |
| 150 | 1.6287 |  |
| 175 | 1.5943 |  |
| 200 | 1.5671 | 1.8140 |
| 250 | 1.5243 | 1.6905 |
| 300 | 1.4908 | 1.6232 |
| 350 | 1.4631 | 1.5758 |

* N. F. Dorsey, "Properties of Ordinary Water Substance," Reinhold Publishing Corporation, New York, 1948. Based on data of P. W. Bridgman, J. Chem. Phys. 3, 597 (1936). See Dorsey for a further discussion of the factors involved in the interpretation of these data.
$\dagger$ P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 74, 419 (1942). These data were taken directly from the original publication.
$\ddagger$ L. B. Smith and F. G. Keyes, Proc. Am. Acad. Arts Sci. 69, 285 (1934). See Dorsey for a comment on these data.

Table 2n-13. Volume of $99.9 \% \mathrm{D}_{2} \mathrm{O}$ as a Function of Pressure and Temperature*

Temp. range -20 to $100^{\circ} \mathrm{C}$; pressure range $1-12,000 \mathrm{~kg} / \mathrm{cm}^{2}$; specific volume in $\mathrm{ml} / \mathrm{g}$

| $\begin{gathered} p \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$ | $-20^{\circ} \mathrm{C}$ | $-15^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ | $-5^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  | 0.9048 | 0.9049 | 0.9087 | 0.9169 | 0.9272 |  |
| 500 |  |  |  |  | 0.8833 | 0.8857 | 0.8905 | 0.8979 | 0.9074 | 0.9187 |
| 1,000 |  |  |  | 0.8642 | 0.8652 | 0.8690 | 0.8744 | 0.8820 | 0.8912 | 0.9011 |
| 1,500 |  |  | 0.8475 | 0.8485 | 0.8495 | 0.8543 | 0.8605 | 0.8680 | 0.8769 | 0.8864 |
| 2,000 |  | 0.8318 | 0.8331 | 0.8344 | 0.8359 | 0.8415 | 0.8479 | 0.8553 | 0.8639 | 0.8731 |
| 2,500 | 0.8178 | 0.8193 | 0.8208 | 0.8222 | 0.8239 | 0.8298 | 0.8365 | 0.8440 | 0.8521 | 0.8613 |
| 3,000 | 0.8066 | 0.8082 | 0.8099 | 0.8116 | 0.8132 | 0.8194 | 0.8260 | 0.8335 | 0.8413 | 0.8502 |
| 3,500 |  | 0.7982 | 0.8001 | 0.8019 | 0.8036 | 0.8096 | 0.8165 | 0.8240 | 0.8317 | 0.8400 |
| 4,000 |  | 0.7892 | 0.7910 | 0.7928 | 0.7946 | 0.8009 | 0.8078 | 0.8153 | 0.8227 | 0.8305 |
| 5,000 |  |  |  | 0.7772 | 0.7789 | 0.7854 | 0.7924 | 0.7996 | 0.8064 | 0.8143 |
| 6,000 |  |  |  |  | 0.7665 | 0.7722 | 0.7787 | 0.7860 | 0.7926 | 0.8000 |
| 7,000 |  |  |  |  |  | 0.7597 | 0.7668 | 0.7736 | 0.7801 | 0.7870 |
| 8,000 |  |  |  |  |  | 0.7490 | 0.7559 | 0.7625 | 0.7690 | 0.7755 |
| 9,000 |  |  |  |  |  | 0.7391 | 0.7461 | 0.7526 | 0.7588 | 0.7653 |
| 10,000 |  |  |  |  |  |  | 0.7373 | 0.7432 | 0.7493 | 0.7558 |
| 11,000 |  |  |  |  |  |  | 0.7293 | 0.7348 | 0.7407 | 0.7470 |
| 12,000 |  |  |  |  |  |  | 0.7216 | 0.7271 | 0.7328 | 0.7393 |

[^67]
## Table 2n-14. Volume of Mercury as a Function of Pressure and Temperature

Temp. range -30 to $20^{\circ} \mathrm{C}$;* pressure range $1-12,000 \mathrm{~atm}$; specific volume in $\mathrm{ml} / \mathrm{g}$

| $p$, atm | $-30^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $10^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 0.073288 | 0.073421 | 0.073554 | 0.073687 | 0.073820 |
| 1,000 | 0.072888 | 0.073016 | 0.073143 | 0.073270 | 0.073397 | 0.073524 |
| 2,000 | 0.072626 | 0.072748 | 0.072871 | 0.072993 | 0.073115 | 0.073237 |
| 3,000 |  | 0.072487 | 0.072605 | 0.072724 | 0.072842 | 0.072961 |
| 4,000 |  | 0.072233 | 0.072348 | 0.072463 | 0.072579 | 0.072696 |
| 5,000 |  |  | 0.072101 | 0.072213 | 0.072372 | 0.072440 |
| 6,000 |  |  | 0.071863 | 0.071973 | 0.072085 | 0.072196 |
| 7,000 |  |  |  | 0.071744 | 0.071853 | 0.071962 |
| 8,000 |  |  |  |  | 0,071632 | 0.071740 |
| 9,000 |  |  |  |  | 0.071422 | 0.071528 |
| 10,000 |  |  |  |  | 0.071223 | 0.071328 |
| 11,000 |  |  |  |  |  | 0.071140 |
| 12,000 |  |  |  |  |  |  |

Temp. range $30-300^{\circ} \mathrm{C} ; \dagger$ pressure range $1-350 \mathrm{~atm}$

| $p$, atm | $30^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $150^{\circ} \mathrm{C}$ | $200^{\circ} \mathrm{C}$ | $250^{\circ} \mathrm{C}$ | $300^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-50 | $3.873 \times 10^{-6}$ | $4.259 \times 10^{-6}$ | $4.518 \times 10^{-6}$ | $4.879 \times 10^{-8}$ | $5.551 \times 10^{-8}$ | $6.970 \times 10^{-6}$ |
| 1-100 | 3.859 | 4.231 | 4.480 | 4.835 | 5.461 | 6.413 |
| 1-150 | 3.850 | 4.208 | 4.447 | 4.798 | 5.375 | 6.004 |
| 1-200 | 3.843 | 4.188 | 4.417 | 4.762 | 5.292 | 5.757 |
| 1-250 | 3.834 | 4.165 | 4.384 | 4.724 | 5.206 | 5.608 |
| 1-300 | 3.823 | 4.140 | 4.348 | 4.683 | 5.117 | 5.520 |
| 1-350 | 3.809 | 4.112 | 4.311 | 4.641 | 5.026 | 5.422 |

[^68]Table 2n-15. Volume of Methyl Alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ as a Function of Pressure and Temperature
The Relative Volumes in Terms of the Volume at $0^{\circ} \mathrm{C}$ and $760 \mathrm{~mm} *$
Temp. range $20-80^{\circ} \mathrm{C}$; pressure range $1-12,000 \mathrm{~atm} ; v / v_{0} ; v=$ volume at $(p, t)$; $v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p, \mathrm{~atm}$ | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0238 | 1.0483 | 1.0737 | 1.1005 |
| 500 | 0.9811 | 0.9987 | 1.0182 | 1.0400 |
| 1,000 | 0.9494 | 0.9651 | 0.9808 | 0.9993 |
| 1,500 | 0.9256 | 0.9393 | 0.9526 | 0.9672 |
| 2,000 | 0.9064 | 0.9189 | 0.9306 | 0.9429 |
| 2,500 | 0.8906 | 0.9019 | 0.9124 | 0.9231 |
| 3,000 | 0.8763 | 0.8870 | 0.8966 | 0.9065 |
| 3,500 | 0.8636 | 0.8733 | 0.8824 | 0.8915 |
| 4,000 | 0.8523 | 0.8613 | 0.8700 | 0.8782 |
| 4,500 | 0.8420 | 0.8505 | 0.8587 | 0.8663 |
| 5,000 | 0.8325 | 0.8407 | 0.8487 | 0.8559 |
| 6,000 | 0.8163 | 0.8240 | 0.8314 | 0.8381 |
| 7,000 | 0.8023 | 0.8099 | 0.8163 | 0.8231 |
| 8,000 | 0.7907 | 0.7973 | 0.8039 | 0.8102 |
| 9,000 | 0.7797 | 0.7859 | 0.7920 | 0.7981 |
| 10,000 | 0.7696 | 0.7756 | 0.7816 | 0.7875 |
| 11,000 | 0.7605 | 0.7664 | 0.7728 | 0.7785 |
| 12,000 | 0.7527 | 0.7587 | 0.7652 | 0.7709 |

The Change in Volume in $\mathrm{cm}^{3}$ per 0.792 g from a Reference Pressure of $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$ along Each Isotherm $\dagger$

Temp. range $25-175^{\circ} \mathrm{C}$; pressure range $5,000-50,000 \mathrm{~kg} / \mathrm{cm}^{2} ; \Delta v$ in $\mathrm{cm}^{3} / 0.792 \mathrm{~g}$

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $175^{\circ} \mathrm{C}$ |
| ---: | :--- | :--- | :--- | :--- |
| 5,000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 10,000 | 0.062 | 0.066 | 0.073 | 0.082 |
| 15,000 | 0.099 | 0.106 | 0.117 | 0.128 |
| 20,000 | 0.125 | 0.135 | 0.139 | 0.161 |
| 25,000 | 0.145 | 0.157 | 0.174 | 0.187 |
| 30,000 | $0.161 \ddagger$ | 0.173 | 0.194 | 0.208 |
| 35,000 | 0.173 | 0.187 | 0.210 | 0.226 |
| 40,000 | 0.183 | 0.198 | 0.223 | 0.240 |
| 45,000 | 0.191 | 0.208 | 0.234 | 0.253 |
| 50,000 | 0.199 | 0.218 |  |  |

[^69]Table 2n-16. Volume of Ethyl Alcohol ( $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ ) as a Function of Pressure and Temperature
The Relative Volumes in Terms of the Volume at $0^{\circ} \mathrm{C}$ and $760 \mathrm{~mm} *$
Temp. range $20-80^{\circ} \mathrm{C}$; pressure range $1-12,000 \mathrm{~atm} ; v / v_{0} ; v=$ volume at $(p, t)$; $v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p, \mathrm{~atm}$ | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0212 | 1.0438 | 1.0679 | 1.0934 |
| 500 | 0.9782 | 0.9943 | 1.0121 | 1.0319 |
| 1,000 | 0.9479 | 0.9608 | 0.9760 | 0.9922 |
| 1,500 | 0.9247 | 0.9358 | 0.9482 | 0.9615 |
| 2,000 | 0.9059 | 0.9159 | 0.9266 | 0.9280 |
| 2,500 | 0.8899 | 0.8991 | 0.9088 | 0.9187 |
| 3,000 | 0.8760 | 0.8848 | 0.8935 | 0.9025 |
| 3,500 | 0.8634 | 0.8718 | 0.8800 | 0.8884 |
| 4,000 | 0.8517 | 0.8599 | 0.8678 | 0.8756 |
| 4,500 | 0.8410 | 0.8491 | 0.8567 | 0.8640 |
| 5,000 | 0.8314 | 0.8394 | 0.8467 | 0.8536 |
| 6,000 | 0.8149 | 0.8225 | 0.8291 | 0.8354 |
| 7,000 | 0.8009 | 0.8080 | 0.8139 | 0.8196 |
| 8,000 | 0.7888 | 0.7953 | 0.8005 | 0.8060 |
| 9,000 | 0.7776 | 0.7836 | 0.7884 | 0.7940 |
| 10,000 | 0.7671 | 0.7726 | 0.7776 | 0.7830 |
| 11,000 | 0.7574 | 0.7626 | 0.7682 | 0.7734 |
| 12,000 | 0.7485 | 0.7535 | 0.7600 | 0.7648 |

The Change in Volume in $\mathrm{cm}^{3}$ per 0.789 g from a Reference Pressure of $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$ along Each Isotherm $\dagger$

| Temp. range $25-175^{\circ} \mathrm{C}$; pressure range $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$ to $45,000 \mathrm{~kg} / \mathrm{cm}$ |
| :--- |
| per 0.789 g |
|      <br> $p, \mathrm{~kg} / \mathrm{cm}^{2}$ $25^{\circ} \mathrm{C}$ $75^{\circ} \mathrm{C}$ $125^{\circ} \mathrm{C}$ $175^{\circ} \mathrm{C}$ <br> 5,000 0.000 0.000 0.000 0.000 <br> 10,000 0.063 0.069 0.071 0.076 <br> 15,000 0.100 0.109 0.113 0.119 <br> 20,000 $0.128 \ddagger$ 0.137 0.144 0.151 <br> 25,000  0.159 0.168 0.175 <br> 28,700  $0.174 \ddagger$   <br> 30,000   0.187 0.195 <br> 35,000   0.203 0.211 <br> 40,000   0.217 0.225 <br> 45,000   0.230 0.238 |

[^70]Table 2n-17. Volume of Acetone ( $\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}$ ) as a Function of Pressure and Temperature*
The Relative Volumes in Terms of the Volume at $0^{\circ} \mathrm{C}$ and 760 mm
Temp. range $20-80^{\circ} \mathrm{C}$; pressure range $1-12,000 \mathrm{~atm} ; v / v_{0} ; v=$ volume at ( $p, t$ ); $v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p$, atm | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: | :---: | :---: |
| 1 | 1.0279 | 1.0585 | 1.0925 |  |
| 500 | 0.9819 | 1.0032 | 1.0282 |  |
| 1,000 | 0.9526 | 0.9706 | 0.9894 | 1.0082 |
| 1,500 | 0.9286 | 0.9441 | 0.9594 | 0.9736 |
| 2,000 | 0.9076 | 0.9217 | 0.9347 | 0.9467 |
| 2,500 | 0.8900 | 0.9028 | 0.9141 | 0.9253 |
| 3,000 | 0.8748 | 0.8868 | 0.8968 | 0.9073 |
| 3,500 | 0.8619 | 0.8729 | 0.8821 | 0.8920 |
| 4,00 | 0.8504 | 0.8607 | 0.8694 | 0.8786 |
| 4,500 | 0.8402 | 0.8498 | 0.8583 | 0.8666 |
| 5,000 | 0.8309 | 0.8398 | 0.8482 | 0.8558 |
| 6,000 | 0.8143 | 0.8225 | 0.8306 | 0.8370 |
| 7,000 | 0.7997 | 0.8072 | 0.8148 | 0.8209 |
| 8,000 | 0.7866 | 0.7935 | 0.8003 | 0.8066 |
| 9,000 | $\cdots \cdots$ | 0.7815 | 0.7876 | 0.7939 |
| 10,000 | $\cdots \cdots$ | 0.7707 | 0.7764 | 0.7821 |
| 11,000 | Freezes | 0.7607 | 0.7665 | 0.7715 |
| 12,000 | $\cdots \cdots$ | 0.7515 | 0.7577 | 0.7617 |

* P. W. Bridgman, "International Critical Tables," vol. 3, p. 42, McGraw-Hill Book Company, Inc., New York, 1928.

Table 2n-18. Volume of Benzene ( $\mathrm{C}_{6} \mathrm{H}_{6}$ ) as a Function of Pressure and Temperature*

Pressure range $1-3,500 \mathrm{~kg} / \mathrm{cm}^{2} ; v / v_{0} ; v=$ volume at $(p, t) ; v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: |
| 0 | 1.0630 | 1.1295 |
| 500 | 1.0160 |  |
| 1,000 | 0.9841 | 1.0201 |
| 1,500 | 0.9591 | 0.9916 |
| 2,000 |  | 0.9684 |
| 2,500 |  | 0.9494 |
| 3,000 |  | 0.9325 |
| 3,500 |  | 0.9177 |

* P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 66, 210 (1931). Phase diagram of benzene given in P. W. Bridgman, Phys. Rev. 3, 171 (1914).

Table 2n-19. Volume of Carbon Bisulfide ( $\mathrm{CS}_{2}$ ) as a Function of Pressure and Temperature
The Relative Volumes in Terms of the Volume at $0^{\circ} \mathrm{C}$ and $760 \mathrm{~mm} *$
Temp. range $20-80^{\circ} \mathrm{C}$; pressure range $1-12,000 \mathrm{~atm} ; v / v_{0} ; v=$ volume at $(p, t)$; $v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p$, atm | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: | :---: | :---: |
|  | 1.0235 | 1.0490 | 1.0774 | 1.1092 |
| 500 | 0.9854 | 1.0051 | 1.0243 | 1.0458 |
| 1,000 | 0.9567 | 0.9734 | 0.9887 | 1.0061 |
| 1,500 | 0.9338 | 0.9483 | 0.9615 | 0.9762 |
| 2,000 | 0.9151 | 0.9277 | 0.9397 | 0.9592 |
| 2,500 | 0.8994 | 0.9105 | 0.9215 | 0.9327 |
| 3,000 | 0.8852 | 0.8953 | 0.9055 | 0.9154 |
| 3,500 | 0.8730 | 0.8820 | 0.8916 | 0.9003 |
| 4,000 | 0.8620 | 0.8702 | 0.8790 | 0.8870 |
| 4,500 | 0.8521 | 0.8596 | 0.8679 | 0.8754 |
| 5,000 | 0.8429 | 0.8501 | 0.8578 | 0.8649 |
| 6,000 | 0.8265 | 0.8337 | 0.8405 | 0.8468 |
| 7,000 | 0.8119 | 0.8196 | 0.8258 | 0.8316 |
| 8,000 | 0.7990 | 0.8070 | 0.8130 | 0.8188 |
| 9,000 | 0.7875 | 0.7954 | 0.8014 | 0.8071 |
| 10,000 | 0.7774 | 0.7844 | 0.7906 | 0.7962 |
| 11,000 | 0.7686 | 0.7741 | 0.7802 | 0.7857 |
| 12,000 | 0.7609 | 0.7646 | 0.7706 | 0.7758 |

The Change in Volume in $\mathrm{cm}^{3}$ per 1.261 g from a Reference Pressure of $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$ along Each Isotherm $\dagger$

Temp. range $25-175^{\circ} \mathrm{C}$; pressure range $5,000-30,000 \mathrm{~kg} / \mathrm{cm}^{2} ; \Delta v$ in $\mathrm{cm}^{3}$ per 1.261 g

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $25^{\circ} \mathrm{C}$ |  | $75^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ |
| ---: | :--- | :--- | :--- | :--- |
| 5,000 | 0.000 | 0.000 | 0.000 | $175^{\circ} \mathrm{C}$ |
| 10,000 | 0.063 | 0.068 | 0.073 | 0.000 |
| 12,600 | $0.086 \ddagger$ |  |  |  |
| 15,000 |  | 0.110 | 0.118 | 0.126 |
| 18,300 |  | $0.131 \ddagger$ |  |  |
| 20,000 |  |  | 0.148 | 0.159 |
| 24,400 |  |  | $0.170 \ddagger$ |  |
| 25,000 |  |  |  | 0.184 |
| 30,000 |  |  |  | 0.204 |
| 30,700 |  |  |  | $0.206 \ddagger$ |

[^71]Table 2n-20. Volume of Carbon Tetrachloride ( $\mathrm{CCl}_{4}$ ) as a Function of Pressure and Temperature*
The Relative Volumes in Terms of the Volume at $50^{\circ} \mathrm{C}$ and 760 mm Pressure
Pressure range $1-3,500 \mathrm{~kg} / \mathrm{cm}^{2} ; v / v_{0} ; v=$ volume at $(p, t) ; v_{0}=$ volume at $50^{\circ} \mathrm{C}$ and 760 mm

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ |
| ---: | :--- | :--- |
| 0 | 1.000 |  |
| 500 | 0.9519 | 0.9928 |
| 1,000 | 0.9192 | 0.9540 |
| 1,500 | 0.8962 | 0.9362 |
| 2,000 | $\cdots \cdots$ | 0.9049 |
| 2,500 | $\cdots \cdots$ | 0.8872 |
| 3,000 | $\cdots \cdots$ | 0.8762 |
| 3,500 | $\cdots \cdots$ | 0.8603 |

* P. W. Bridgman, Proc. Am. Acad. Arts Sci. 66, 212 (1931).

Table 2n-21. Volume of Chloroform $\left(\mathrm{CHCl}_{3}\right)$ as a Function of Pressure and Temperature*
The Change in Volume in $\mathrm{cm}^{3}$ per 1.489 g from a Reference Pressure of 5,000 $\mathrm{kg} / \mathrm{cm}^{2}$ along Each Isotherm

Temp. range $25-175^{\circ} \mathrm{C}$; pressure range $5,000-18,400 \mathrm{~kg} / \mathrm{cm}^{2} ; \Delta v$ in $\mathrm{cm}^{3}$ per $1,489 \mathrm{~g}$ from a reference pressure of $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $25^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $175^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| 5,000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 6,200 | $0.016 \dagger$ |  |  |  |
| 10,000 |  | $0.067 \dagger$ | 0.073 | 0.079 |
| 14,000 |  |  | $0.109 \dagger$ |  |
| 15,000 |  |  |  | 0.124 |
| 18,400 |  |  |  | $0.148 \dagger$ |

* P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 413 (1941). $\dagger$ Solid below this.

Table 2n-22. Volume of Ether ( $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ ) as a Function of Pressure and Temperature*
The Relative Volumes in Terms of the Volume at $0^{\circ} \mathrm{C}$ and 760 mm
Temp. range $20-80^{\circ} \mathrm{C}$, pressure range $1-12,000 \mathrm{~atm} ; v / v_{0} ; v=$ volume at $(p, t)$; $v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p$, atm | $20^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: | :---: | :---: |
|  | 1 | 1.0315 | 1.0669 |  |
| 500 | 0.9668 | 0.9884 | 1.0123 |  |
| 1,000 | 0.9337 | 0.9498 | 0.9683 | 0.989 |
| 1,500 | 0.9070 | 0.9195 | 0.9336 | 0.9484 |
| 2,000 | 0.8850 | 0.8952 | 0.9069 | 0.9189 |
| 2,500 | 0.8663 | 0.8756 | 0.8860 | 0.8962 |
| 3,000 | 0.8503 | 0.8594 | 0.8688 | 0.8776 |
| 4,000 | 0.8246 | 0.8329 | 0.8407 | 0.8481 |
| 5,000 | 0.8044 | 0.8121 | 0.8189 | 0.8252 |
| 6,000 | 0.7883 | 0.7953 | 0.8017 | 0.8070 |
| 7,000 | 0.7743 | 0.7806 | 0.7865 | 0.7917 |
| 8,000 | 0.7613 | 0.7670 | 0.7725 | 0.7779 |
| 9,000 | 0.7492 | 0.7545 | 0.7597 | 0.7652 |
| 10,000 | 0.7380 | 0.7431 | 0.7482 | 0.7535 |
| 11,000 | 0.7275 | 0.7325 | 0.7377 | 0.7427 |
| 12,000 | 0.7178 | 0.7225 | 0.8280 | 0.7326 |

[^72]Table 2n-23. Volume of Glycerin $\left(\mathrm{CH}_{2} \mathrm{OHCHOHCH} 2 \mathrm{OH}\right)$ as a Function of Pressure and Temperature*
The Relative Volumes in Terms of the Volume at $0^{\circ} \mathrm{C}$ and 760 mm
Temp. range $0-95^{\circ} \mathrm{C}$; pressure range $1-12,000 \mathrm{~kg} / \mathrm{cm}^{2} ; v / v_{0} ; v=$ volume at $(p, t)$; $v_{0}=$ volume at $0^{\circ} \mathrm{C}$ and 760 mm

| $p, \mathrm{~kg} / \mathrm{cm}^{2}$ | $0^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ |
| ---: | :---: | :---: | :---: |
| 1 | 1.000 | 1.0266 |  |
| 500 | 0.9900 | 1.0136 |  |
| 1,000 | 0.9806 | 1.0025 | 1.0240 |
| 1,500 | 0.9721 | 0.9930 | 1.0125 |
| 2,000 | 0.9641 | 0.9843 | 1.0024 |
| 3,000 | 0.9501 | 0.9688 | 0.9853 |
| 4,000 | 0.9373 | 0.9548 | 0.9700 |
| 5,000 | 0.9264 | 0.9423 | 0.9565 |
| 6,000 | 0.9157 | 0.9310 | 0.9447 |
| 7,000 | 0.9057 | 0.9211 | 0.9342 |
| 8,000 | 0.8958 | 0.9121 | 0.9244 |
| 9,000 | 0.8867 | 0.9036 | 0.9152 |
| 10,000 | 0.8783 | 0.8955 | 0.9070 |
| 11,000 | 0.8712 | 0.8879 | 0.8994 |
| 12,000 | 0.8648 | 0.8800 | 0.8925 |

* P. W. Bridgman, Proc. Am. Acad. Arts Sci. 67, 10 (1932).

Table 2n-24. Isothermal Compressibility of Sulfuric and Nitric Acids*

| Mean compressibility coefficient $\beta=\frac{10^{6}}{v_{1}}\left(\frac{v_{1}-v_{2}}{p_{2}-p_{1}}\right)$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Substance | $t,{ }^{\circ} \mathrm{C}$ | $p_{1}, p_{2}$, atm | $\beta$ |
| Sulfuric acid | 12.6 | 1, 161 | $\sim 33$ |
| Nitric acid | 0 | 1, 32 | $\sim 35$ |

* L. Decombe and J. Decombe, "International Critical Tables," vol. 3, p. 35, McGraw-Hill Book Company, Inc., New York, 1928.

Table 2n-25. Isothermal Compressibility of Liquefied Gases*
Pressure range 1-14,500 atm; mean compressibility coefficient $\beta=\frac{10^{6}}{v_{1}}\left(\frac{v_{1}-v_{2}}{p_{2}-p_{1}}\right)$

| Substance | $t,{ }^{\circ} \mathrm{C}$ | $p_{1}, p_{2}, \mathrm{~atm}$ | $\beta$ |
| :---: | :---: | :---: | :---: |
| Bromine. | 20 | 100, 200 | $\sim 57$ |
| Carbon dioxide. | 0 | 95.1 | $430 \dagger$ |
| Chlorine. | 20 | 100, 200 | 108 $\ddagger$ |
| Helium | -271.6 | 1, 14,500 | $>38$ |
| Hydrogen. | -260 | 1, 14,500 | $>31$ |
| Nitrogen. | -205 | 1, 14,500 | $>15$ |

* L. Decombe and J. Decombe, "International Critical Tables," vol. 3, p. 35, McGraw-Hill Book Company, Inc., New York, 1928.
$\dagger$ Instantaneous compressibility coefficient $\beta=-\frac{10^{6}}{v_{1}}\left(\frac{\partial v}{\partial P}\right)_{T}$.
$\ddagger$ Estimated value.


## 2n-9. References to Compressibility Data for Other Substances

Reference: P. W. Bridgman, Proc. Am. Acad. Arts Sci. 67, 6 (1932)
Pressure range: 0 to $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$
Substances:
Ethylene glycol
Trimethylene glycol
Propylene glycol
Diethylene glycol
Tri-o-cresyl phosphate
Tri-acetin
Ethyl dibenzyl malonate

Reference: P. W. Bridgman, Proc. Am. Acad. Arts Sci. 66, 198 (1931)
Pressure range: 0 to $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$
Substances:

Normal pentane Isopentane 2-Methyl pentane 3-Methyl pentane 2-2-Dimethyl butane 2-3-Dimethyl butane<br>Normal Heptane<br>Normal Octane<br>Normal Decane

Methyl oleate
Tri-caproin
n-Butyl phthalate
Eugenol
Isooctane (2,2,4 tri-methyl pentane)
Isoprene

Chlorobenzene
Bromobenzene
Bromoform
Isopropyl alcohol
Normal-butyl alcohol
Normal-hexyl alcohol

Reference: P. W. Bridgman, Proc. Am. Acad. Arts Sci. 68, 1 (1933)
Pressure range: 0 to $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$
Substances:
Triethanolamine
Normal-propyl chloride Normal-propyl bromide Normal-propyl iodide Normal-butyl chloride Normal-butyl bromide Normal-butyl iodide Normal-amyl chloride

Normal-amyl bromide
Normal-amyl iodide
Octanol-3
2-methyl heptanol-3
2-methyl heptanol-5
2-methyl heptanol-1
3-methyl heptanol-4

Reference: P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 403 (1942)
Pressure range: $5,000 \mathrm{~kg} / \mathrm{cm}^{2}$ to $50,000 \mathrm{~kg} / \mathrm{cm}^{2}$
Substances:

Normal-propyl alcohol Isopropyl alcohol Normal-butyl alcohol Normal-amyl alcohol Ethyl bromide Normal-propyl bromide Normal-butyl bromide Ethyl acetate Normal-amyl ether

Chloroform
Chlorobenzene
Methylene chloride
Ethylene bromide
Cyclohexane
Methyl cyclohexane
$p$-Xylene
Benzene

Reference: P. W. Bridgman, "International Critical Tables," vol. 3, p. 40, McGrawHill Book Company, Inc., New York, 1928.
Pressure range: 1 to $12,000 \mathrm{~atm}$
Substances:

> Phosphorous trichloride
> Ethyl iodide
> Ethyl chloride
> Isobutyl alcohol

Reference: R. S. Jessup, Natl. Bur. Standards (U.S.) Research Paper 244, 1930.
Pressure range: 1 to $50 \mathrm{~kg} / \mathrm{cm}^{2}$
Temperature range, $0^{\circ}$ to $300^{\circ} \mathrm{C}$
Substances: 14 petroleum oils
Reference: F. R. Russell and H. C. Hottel, Ind. Eng. Chem. 30, 372 (1938)
Pressure range: 1 to $400 \mathrm{~kg} / \mathrm{cm}^{2}$. Max. temperature: $425^{\circ} \mathrm{C}$
Substance: Liquid naphthalene
2n-10. Adiabatic and Isothermal Compressibilities of Liquids. The adiabatic compressibilities $\beta_{\mathrm{ad}}$ of a great many organic liquids at room temperature are available from measurements of the velocity of sound. ${ }^{1}$

$$
\begin{equation*}
c=\sqrt{\frac{1}{\beta_{\mathrm{ad}} p}} \tag{2n-9}
\end{equation*}
$$

The isothermal compressibility $\beta_{\text {iso }}$ can be obtained from the adiabatic compressibility by the thermodynamic relation

$$
\begin{equation*}
\beta_{\mathrm{iso}}=\beta_{\mathrm{ad}}+\frac{T \alpha^{2}}{p c_{p}} \tag{2n-10}
\end{equation*}
$$

in which $\alpha=$ thermal coefficient of volume expansion, $T=$ Kelvin temperature, and $c_{p}=$ specific heat at constant pressure.
${ }^{1}$ G. L. Bergmann, "Der Ultraschall," 6th ed., pp. 375ff., Stuttgart, 1954.

Table 2n-26. Adiabatic and Isothermal Compressibilities of Certain Organic Liquids
All values in $\mathrm{cm}^{2} /$ dyne at $20^{\circ} \mathrm{C}$ unless otherwise stated; data were obtained in fashion described in text

| Liquid | $\beta_{\text {ad }} \times 10^{12}$ | $\beta_{\text {iso }} \times 10^{12}$ | Remarks |
| :---: | :---: | :---: | :---: |
| Acetic acid. | 75 | 91 | * |
| Acetone. | 90.6 | 125.6 | $\dagger$ |
| Aniline. | 36 | 45 | * |
| Benzene. | 65.8 | 95.4 | $\dagger$ |
| Carbon bisulfide | 59.8 | 92.7 | $\dagger$ |
| Carbon tetrachloride | 72.8 | 105.8 | $\dagger$ |
| Chlorobenzene. | 55 | 74 | * |
| Chloroform. | 67.8 | 100.7 | $\dagger$ |
| Cyclohexane | 83 | 110 | 25** |
| Ether.... | 140.6 | 186.8 | $\dagger$ |
| Ethyl acetate. | 82 | 113 | * |
| Ethyl alcohol. | 94.1 | 111.3 | $\dagger$ |
| Ethylene chloride. | 55 | 80 | * |
| Heptane.. | 111:4 | 143.9 | $\dagger$ |
| Methyl alcohol. | 101.9 | 123.4 | $\dagger$ |
| Nitrobenzene. . | 40 | 49 | * |
| Toluene. | 66.4 | 90.6 | $\dagger$ |

* Data from "International Critical Tables," McGraw-Hill Book Company, Inc., New York, 1928. $\dagger$ Data from Tables annuelles de constantes et donnees numeriques, vol. IX. (Gauthier-Villars \& Cie, Paris, and McGraw-Hill Book Company, Inc., New York, 1929.)

Table 2n-27. Isothermal Compressibilities of Aqueous Solutions All values in $\mathrm{cm}^{2} /$ dyne at $20^{\circ} \mathrm{C}$ unless otherwise stated

| Solution | Concentration, $\%$ of solute | $\beta_{\text {iso }} \times 10^{12}$ | Remarks |
| :---: | :---: | :---: | :---: |
| Ammonium nitrate. | $\begin{aligned} & 11.50 \\ & 28.00 \end{aligned}$ | $\begin{aligned} & 42.21 \\ & 36.90 \end{aligned}$ |  |
| Calcium chloride. | $\begin{gathered} 4.095 \\ 20.22 \end{gathered}$ | $\begin{aligned} & 41.4 \\ & 31.2 \end{aligned}$ | $30^{\circ} \mathrm{C}$ |
| Hydrochloric acid. | $\begin{array}{r} 7.15 \\ 21.92 \end{array}$ | $\begin{aligned} & 43.42 \\ & 40.58 \end{aligned}$ |  |
| Potassium chloride. | $\begin{array}{r} 2.51 \\ 22.19 \end{array}$ | $\begin{aligned} & 42.9 \\ & 32.8 \end{aligned}$ | $30^{\circ} \mathrm{C}$ |
| Potassium nitrate. | $\begin{gathered} 6.25 \\ 21.8 \end{gathered}$ | $\begin{aligned} & 43.25 \\ & 35.90 \end{aligned}$ |  |
| Pure water....... | $\ldots$ | 45.80 |  |
| Sodium sulfate. . | $\begin{array}{r} 2.55 \\ 11.90 \end{array}$ | $\begin{aligned} & 43.60 \\ & 35.70 \end{aligned}$ |  |

All values are taken from Tables annuelles de constantes et donnees numeriques, vol. IX, 1929.

# 20. Viscosity of Liquids 

WLADIMIR PHILIPPOFF

Franklin Institute

The viscosity $\eta$ of a liquid is defined as the ratio between the shearing stress in dynes $/ \mathrm{cm}^{2}$ and the rate of shear in $\sec ^{-1}$ according to Newton's law. The unit is dynes $\cdot \mathrm{sec} / \mathrm{cm}^{2}=1$ poise, and 0.01 poise $=1$ centipoise (cp). One often uses the kinematic viscosity $\nu=\eta / \rho$ in stokes or 0.01 stokes $=1 \mathrm{cs}$, where $\rho$ is the density in grams/cc. A practical unit is the Reyn; 1 Reyn in psi $\cdot \sec =69,000$ poises. Sometimes the reciprocal unit, the fluidity $\phi=1 / \eta$ in Rhes is used.

Viscosity is measured with a large variety of viscometers. Often the shearing stress is given by the hydrostatic head of the liquid itself; in this case the instruments measure $\nu$. Such an instrument is the technical Saybolt viscometer that measures the viscosity in seconds Saybolt Universal (SSU) or seconds Saybolt Furol (SSF). The relation between these units and cgs units is given in tables. ${ }^{1}$ For the calibration of viscometers the calculation of the viscosity from the dimensions is difficult. The best standard is water, which has been rechecked recently. ${ }^{2}$ In the calibration of capillary viscometers, the values have to be corrected for the kinetic energy of the emerging liquid. Faster flow causes turbulence. In a standardization of viscometers for higher viscosities, a calibration with higher-viscosity liquids such as the National Bureau of Standards (NBS) oils as secondary standards, listed in the tables below, can be used.

Viscosity increases exponentially with hydrostatic pressure. Most complete tables are given in an ASME report (1953) for oils and P. W. Bridgman ${ }^{3}$ for organic liquids. Also, viscosity depends strongly on temperature; generally, the higher the viscosity, the higher is the temperature dependence. Values for oils can usually be plotted as a straight line in the Refutas chart (ASTM chart) according to the empirical Walther equation $\log -\log (\nu+0.8)=m \log T$, where $\nu$ is in centistokes and $T$ is the absolute temperature in ${ }^{\circ} \mathrm{K}$.

The viscosity of the usual oils is constant from the smallest rate of shear up to at least $10^{5} \mathrm{sec}^{-1}$. Solutions of high polymers or greases have viscosities that are strongly dependent on the applied shearing stress or rate of shear. The former can be considered to be non-Newtonian liquids, which means that their viscosity changes from a high value at low rates of shear to a low value at high rates of shear. Greases have yield values below which no flow exists.

The viscosity of solutions of polymers depends very strongly on the concentration of the solute, reaching enormous values for high concentrations. Empirical formulas are used to describe this in a wide range of variables. In describing the viscosity of a solution, the relative viscosity $\eta_{\text {rel }}$ is used. It is defined as viscosity of solution/ viscosity of solvent. Solutes are characterized by their "intrinsic viscosity,"

[^73]Table 2o-1. Viscosity of Common Liquids

|  | $-40^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C}$ | $-20^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $10^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $120^{\circ} \mathrm{C}$ | $140^{\circ} \mathrm{C}$ | $160^{\circ} \mathrm{C}$ | $180^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | 1.22 | 1.04 | 0.90 | 0.79 | 0.70 | 0.56 | 0.46 |  |  |  |  |
| Acetone ${ }^{\text {a }}$. . | 0.66 | 0.57 | 0.50 | 0.442 | ${ }_{10.2}^{0.395}$ | 0.356 6.5 | ${ }_{4.40}$ | ${ }_{3.12}^{0.293}$ | ${ }_{2.30}^{0.268}$ | 0.246 1.80 | 1.50 | 1.10 | 0.80 |  |  |  |  |
| Aniline ${ }_{\text {Bene }}{ }^{\text {a }}$. ${ }^{\text {a }}$. |  |  |  |  | ${ }^{10.91}$ | ${ }_{0.76}$ | 4.40 0.65 | 0.56 | 0.492 | 0.436 | 0.390 | 0.316 | 0.261 | 0.219 | 0.185 | 0.156 | 0.132 |
| Bromobenzene ${ }^{\text {a }}$ |  |  |  |  | 1.52 | 1.31 | ${ }_{0}^{1.13}$ | 1.00 | 0.89 | 0.79 | 0.72 | ${ }_{0} .60$ | 0.52 0.304 |  |  |  |  |
| Butyl acetate ${ }^{\text {a }}$. |  |  |  |  | 1.004 | 0.851 3.87 | 0.732 2.95 | 0.637 2.28 | 0.563 1.78 | 1.41 | 0.448 | 0.366 0.76 | 0.304 0.54 |  |  |  |  |
| Butyl alcohol ${ }^{a}$ Carbon disulfide ${ }^{a}$. | 22.4 | 14.6 | 10.3 | ${ }_{0.495}$ | 5.43 0.43 | ${ }_{0}^{3.896}$ | ${ }_{0.366}$ | ${ }_{0.341}$ | 0.319 | 1.41 |  |  |  |  |  |  |  |
| Carbon tetrachloride ${ }^{a}$. |  |  |  | 1.68 | 1.35 | 1.13 | 0.97 | 0.84 | 0.74 | 0.65 | 0.59 | 0.472 | 0.387 | 0.323 | 0.276 | 0.234 | 0.201 |
| Castor oilb....... |  |  | 87,600 | 22,520 | 6,406 | 2,383 | 961 | 456.5 | 224.2 | 120.5 | 72.0 | 33.1 | 16.9 |  |  |  |  |
| Chlorobenzene ${ }^{\text {a }}$ |  |  |  |  | ${ }_{0}^{1.06}$ | 0.91 | 0.80 0.57 | 0.71 0.51 | ${ }_{0.64}^{0.466}$ | ${ }_{0}^{0.57}$ | 0.52 0.390 | 0.435 | 0.370 | 0.320 | 0.275 | 0.240 | 0.210 |
| Chloroform ${ }^{\text {a }}$ - ${ }^{\text {a }}$, |  |  |  |  | ${ }_{95} 0.70$ | ${ }_{44} 0.63$ | 21 |  | ${ }_{6.2}$ | 4.4.4 <br> 1 | 3.2 | 2.1 | 1.6 |  |  |  |  |
| Cyclohexane ${ }^{\text {a }}$ |  |  |  |  |  |  | 0.97 | 0.82 | 0.71 | 0.61 | 0.54 |  |  |  |  |  |  |
| Cyclohexanola |  |  |  |  |  | 2.51 | 68.0 | ${ }^{36.1}$ | ${ }^{20.3}$ | 12.1 | ${ }_{1} 7.8$ | 3.5 |  |  |  |  |  |
| Cyclohexanone |  |  |  |  |  | 2.51 | 2.19 2.40 |  | 1.52 | 1.28 | 1.09 |  |  |  |  |  |  |
| Decane ${ }^{\text {d }}$ |  | 2.15 | 1.852 | 1.556 | 1.291 | 1.081 | 0.920 | 0.796 | 0.697 | 0.615 | 0.546 | 0.441 | 0.364 | 0.304 | 0.257 | 0.219 |  |
| Dioxane ${ }^{\text {a }}$ |  |  |  |  |  |  | 1.268 | 1.06 | 0.917 | 0.778 | 0.685 | ${ }_{0}^{0.539}$ |  |  |  |  |  |
| Dodecaned. |  |  |  | 2.87 | 2.578 | 1.816 | 1.488 0.449 | 1.248 0.400 | 1.066 0.360 | 0.9215 0.326 | 0.8046 0.297 | 0.6320 0.248 | 0.210 | 0.422 | 0. 152 | ${ }_{0} 0.297$ | $\begin{aligned} & 0.253 \\ & 0.109 \end{aligned}$ |
| Ethyl alcohol | 4.79 | 3.65 | 2.38 | 2.23 | 1.78 | 1.46 | 1.19 | 1.00 | 0.825 | 0.701 | 0.591 | 0.435 | 0.326 | 0.248 | 0.190 |  |  |
| Ethyl ether ${ }^{\text {a }}$ | 0.47 | 0.41 | 0.364 | 0.328 | 0.296 | 0.268 | 0.243 | 0.220 | 0.199 |  | 0.166 | 0.140 | 0.118 |  |  |  |  |
| Ethylene glyc |  |  |  |  |  |  | 19.9 |  | 9.13 |  | 4.95 | 3.02. | 1.99 |  |  |  |  |
| Formic acid ${ }_{\text {aly }}{ }^{\text {a }}$ |  |  |  |  |  | 2.25 | 1.78 | ${ }_{624} 1.46$ | 1.22 | 1.03 | 0.89 | 0.68 | 0.54 |  |  |  |  |
| Glycerin ${ }^{\text {a }}$ c | 0.865 | 0.770 | $1.34 \times 10^{5}$ 0.682 | 31,600 0.600 | ${ }_{0}^{12,100}$ | 3,950 0.458 | 1,499 0.409 | ${ }^{624} 0.367$ | 0.332 | 0.301 | 0.275 | 0.231 |  |  |  |  |  |
| $\mathrm{Hexan}^{\text {a }}{ }^{\text {d }}$ | 0.611 | 0.545 | 0.486 | 0.432 | 0.397 | 0.355 | 0.320 | 0.290 | 0.264 | 0.241 | 0.221 |  |  |  |  |  |  |
| Isopropyl alcohol ${ }^{\text {a }}$ | 23.2 | 14.9 | 10.1 | 6.8 | 4.60 | 3.26 | ${ }_{0.381}^{2.39}$ | 1.76 0.344 | 1.33 |  | 0.80 | 0.52 |  |  |  |  |  |
| Methyl acetate ${ }^{\text {a }}$ |  |  |  | 0.970 |  |  | 0.381 0.584 | 0.344 | 0.312 0.450 | 0.284 | 0.258 0.351 | 0.217 | 0.182 | 0.154 | 0.130 |  |  |
| Methyl alcohola <br> $i$-Pentane ${ }^{a}$. | 1.75 | 1.39 | 1.16 | 0.970 | 0.872 | 0.646 | 0.233 | 0.202 | 0.450 | 0.396 | 0.351 |  |  |  |  |  |  |
| $n$-Pentane ${ }^{\text {d }}$ | 0.432 | 0.385 | 0.345 | 0.309 | 0.2766 | 0.2496 | 0.2259 | 0.2052 | 0.187 |  |  | 0. |  |  |  |  |  |
| Propyl acetate ${ }^{\text {a }}$ |  |  |  |  | 0.77 | 0.67 | ${ }_{0}^{0.58}$ | 0.51 0.83 | 0.46 0.73 | 0.41 | 0.368 | 0.304 | 0.250 |  |  |  |  |
| ${ }_{\text {Prinidine }}{ }_{\text {Petralin }}$. |  |  |  |  | 1.33 | 1.12 | 0.95 2.02 | 0.83 | 0.73 | 1.3 | 0.58 | 0.482 |  |  |  |  |  |
| Toluene ${ }^{\text {a }}$ |  |  |  |  | 0.768 | 0.667 | 0.586 | 0.522 | 0.466 | 0.420 | 0.381 | 0.319 | 0.271 | 0.231 | 0.199 | 0.150 |  |
| Trichlorethylene ${ }^{\text {a }}$. |  |  |  | 0.79 | 0.71 | 0.64 | 0.58 0.620 | 0.53 0.545 | ${ }_{0.487}^{0.48}$ | 0.45 0.443 | $0.41$ |  |  |  |  |  |  |
| $\underset{\boldsymbol{c}}{\boldsymbol{m} \text {-Xylene }{ }^{\text {- }} \text {. }}$. |  |  |  |  | 0.806 1.105 | 0.700 0.953 | 0.620 0.810 | 0.545 0.710 | 0.497 | 0.56 | 0.40 | 0.411 | 0.346 | 0.294 | 0.254 |  |  |
| $p$-X ylen |  |  |  |  |  | 0.750 | 0.648 | 0.573 | 0.513 | 0.456 | 0.414 | 0.345 | 0.292 | 0.251 |  |  |  |
| Watere |  |  |  |  | 1.7834 | 1.3022 | 1.0019 | 0.7995 | 0.6513 | 0.5481 | 0.4687 | 0.3545 | 0.2813 |  |  |  |  |

a J. D'Ans and E. Lax, "Taschenbuch, Für Chemiker und Physiker," Springer-Verlag OHG, Berlin, 1943 (mean values from original sources). ""Handbook of Chemistry and Physics," 34th ed., Chemical Rubber Publishing Company.
i J. F. Swindells, J. R. Coee, and T. B. Godfrey, J. Research Natl. Bur. Standards 48, 1-31 (1952).
i
$[\eta]=\left[\left(\eta_{\text {rel }}-1\right) / c\right]_{c \rightarrow 0}$ where $c$ is the concentration in $\mathrm{g} / 100-\mathrm{ml}$ solution. This quantity is connected with the molecular weight or degree of polymerization of the polymer.
The quoted values for the viscosity of organic compounds depend on their chemical purity. They must be regarded as reference values only, as in many cases the exact chemical purity is not stated.
Table 2o-1 contains values of the viscosity in centipoises of a series of well-known liquids as function of temperature in the range from -40 to $180^{\circ} \mathrm{C}$. Superscripts refer to the accompanying bibliography.

Table 20-2. Secondary Standards of Viscosity. Approximate Viscosities of NBS Oils for Calibrating Viscometers

| Oil | Absolute, poises |  |  | Kinematic, stokes |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $37.78^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ |  | $20^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ |
|  |  |  | $37.78^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ |  |  |  |
| D | 0.020 | 0.018 | 0.014 | 0.026 | 0.023 | 0.019 |
| H | 0.074 | 0.063 | 0.044 | 0.091 | 0.078 | 0.055 |
| I | 0.12 | 0.10 | 0.066 | 0.14 | 0.12 | 0.081 |
| J | 0.21 | 0.17 | 0.11 | 0.25 | 0.21 | 0.13 |
| K | 0.41 | 0.32 | 0.18 | 0.48 | 0.38 | 0.22 |
| L | 1.0 | 0.74 | 0.37 | 1.1 | 0.84 | 0.43 |
| M | 3.0 | 2.1 | 1.0 | 3.4 | 2.4 | 1.1 |
| N | 14 | 9.6 | 4.0 | 16 | 11 | 4.6 |
| OB | 330 | 210 | $62^{*}$ | 380 | 240 | $70^{*}$ |
| P | $480 \dagger$ | $200^{*}$ | $95 \ddagger$ | $540 \dagger$ | $230^{*}$ | $110 \ddagger$ |

These oils are not intended for use as permanent standards. They are not suitable for stockroom items and should be ordered only for immediate use in 1-1b samples. The exact viscosities are listed by the NBS for each sample. The National Bureau of Standards should be consulted about these oils.
$* 40^{\circ} \mathrm{C}$.
$+30^{\circ} \mathrm{C}$.
$\ddagger 50^{\circ} \mathrm{C}$.
Table 2o-3. Secondary Standards of Viscosity. Approximate Viscosities of NBS Oils for Calibrating Saybolt Viscometers.

| Oil | Temp., ${ }^{\circ} F$ | Viscosity | $\nu$, cs |
| :--- | :---: | :---: | :---: |
| SB | 100 | 300 SSU | 65 |
| SC | 130 | 300 SSU | 65 |
| SF | 122 | 170 SSF | 360 |

[^74]Table 20-4. Viscosities of Industrial Oils and Lubricants

| Grade | $100^{\circ} \mathrm{F}$ |  | $210^{\circ} \mathrm{F}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | SUS | cs | SUS | cs |
| Typical automotive crankcase lubricants (Mid-Continent crude):* |  |  |  |  |
| SAE 10. | 165 | 35.4 | 44 | 5.44 |
| SAE 20. | 340 | 73.5 | 54 | 8.48 |
| SAE 30. | 550 | 119 | 64 | 11.3 |
| SAE 40. | 850 | 184 | 77 | 14.8 |
| SAE 50. | 1,200 | 260 | 94 | 19.0 |
| Typical turbine oil characteristics (steam turbines): $\dagger$ |  |  |  |  |
| Light. . . . | 150 | 32.1 | 43 | 5.12 |
| Medium . | 300 | 64.9 | 51 | 7.60 |
| Heavy. | 400 | 86.6 | 58 | 9.65 |
| Synthetic crankcase oil (polyalkylene glycol derivative-Prestone motor oil) $\ddagger$ |  |  |  |  |
| NO 200. | 175 | 37.6 | 48 | 6.68 |
| NO 300. | 300 | 64.9 | 62 | 10.8 |
| Silicone synthetic fluids:¢ |  |  |  |  |
| DC-200-350. | 1,617 | 350 | 651.2 | 140 |
| DC-200-20. | 77.2 | 15 | 49.0 | 7 |
| Light mineral hydraulic oil§. | 125 | 26.4 | 42 | 4.82 |

* "Physical Properties of Lubricants," American Society of Lubricating Engineers, 1951.
$\dagger$ Forbes, Pope, and Everett, "Lubrication of Industrial and Marine Machinery," p. 211, John Wiley \& Sons, Inc., New York, 1954.
$\ddagger$ Wilson, Synthetic Engine Lubs Found Economical, SAE J., October, 1947, p. 25.
II Dow Corning Catalog.
§"Physical Properties of Materials," American Society of Lubricating Engineers, 1951.
Table 2o-5. Aircraft-engine Lubricating-oil Specifications (Reciprocating) Government Specifications Mil-0-6082*

| Grade | Temp., ${ }^{\circ} \mathrm{F}$ | Viscosity, SUS | Viscosity, cs |
| :--- | :---: | :---: | :---: |
| $65(1065)$ | 210 | $62-68$ | $10.8-12.4$ |
| $80(1080)$ | 210 | $76-84$ | $14.5-16.6$ |
| $100(1100)$ | 210 | $93-103$ | $18.8-21.2$ |
| $120(1120)$ | 210 | $115-125$ | $23.9-26.2$ |

Aircraft Gas-turbine Lubricating Oils-Typical Tests $\dagger$

| AN-0-9 grade (1010) | -40 | 12,936 |  |
| :--- | :---: | :---: | :---: |
| AN-0-9 grade (1010) | 100 | 59.4 | 10.2 |
| AN-0-9 grade (1010) | 210 | 34.5 | 2.46 |
| AN-0-8 grade (1065) | 100 | 530 | 115 |
| AN-0-8 grade (1065) | 210 | 67 | 12.2 |

[^75]Table 2o-6. Viscosity of Plasticizers and Other Organic Liquids at Room Temperature

|  | Temp., ${ }^{\circ} \mathrm{C}$ | Viscosity, cp |
| :---: | :---: | :---: |
| Dioctyl phthalate*. | 20 | 81.4 |
| Dibutyl phthalate $\dagger$. | 25 | 15.8 |
| Diethyl phthalate $\ddagger$ | 25 | 10.0 |
| Dimethyl phthalate $\ddagger$. | 20 | 17.1 |
| Octyl alcohol*. | 25 | 7.07 |
| Tricresyl phosphate $\ddagger$. | 20 | 106 |
| Dioctyl adipate $\ddagger$. | 20 | 12.9 |
| Dioctyl sebacate $\ddagger$ | 20 | 17.9 |

* Carbide and Carbon Chemical Co.
$\dagger$ Commercial Solvents Corp.
$\ddagger$ D. N. Buttrey, " Plasticizers."
Table 20-7. Viscosity of Mercury in Centipoises*

| $-20^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $10^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.855 | 1.764 | 1.685 | 1.615 | 1.554 | 1.499 | 1.450 | 1.407 | 1.367 | 1.298 | 1.240 |

[^76]
# 2p. Tensile Strength and Surface Tension of Liquids 

ARTHUR F. SCOTT<br>Reed College<br>FRED D. AYRES<br>Reed College<br>WESLEY L. NYBORG<br>Brown University

2p-1. Tensile Strength. Historical and General. The maximum negative pressure (tensile strength) that a liquid can withstand has been the object of numerous investigations. Experimental values are quite discordant among themselves and are generally much lower than the theoretical estimates. The tensile strength of a liquid, measured in a device known as a tonometer, is taken as that stress (negative pressure) under which the liquid ruptures. A point of concern has been the possibility that
rupture occurs at the wall of the container rather than in the body of the liquid and that therefore the observed negative pressure is a measure of adhesive force rather than of the assumed cohesive force.

Table 2p-1. Tensile Strength of Liquids by Various Methods

| Liquid and method | Max <br> negative pressure, atm | Ref. | Liquid and method | Max negative pressure, atm | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Water: |  |  | Ether: |  |  |
| A-1* | 50-150 | 1 | A-2 | 72 | 1 |
| A-1 $\dagger$ | 157 | 2 | B-1 | 2.2 | 1 |
| A-1 $\ddagger$ | 17-56 | 3 | Mineral oil: |  |  |
| A-1 | 68 | 4 | A-1 | 119 | 2 |
| A-2 | 34 | 1 | A-19 | 24 | 2 |
| A-3 | 17 | 1 | A-4 | 7.8 | 7 |
| B-1 | 1.5 | 4 | B-1 | 2.9 | 1 |
| B-2 | 0.2-0.5 | 1 | Acetic acid, C-3 | 288 | 8 |
| B-3 | 4 | 1, 8 | Benzene, C-3 | 150 | 8 |
| C-1 | 4.8 | 1 | Aniline, C-3 | 300 | 8 |
| C-1 | 6.0 | 5 | Carbon tetrachloride, C-3 | 276 | 8 |
| C-2 | 5.6 | 5 | Chloroform, C-3 | 317 | 8 |
| C-3 | 277 | 6 | Mercury, C-3 | 425 | 9 |
| Alcohol: |  |  |  |  |  |
| A-2 | 40 | 1 |  |  |  |
| A-3 | 17 | 1 |  |  |  |
| B-1 | 2.4 | 1 |  |  |  |
| C-1 | 7.9 | 1 |  |  |  |

* Values reported prior to 1941.
$\dagger$ Tubes boiled for 8 hr to expel air.
$\ddagger$ Tubes filled by vacuum technique to eliminate air.
I Tube sealed by liquid frozen in capillary side arm.


## References for Table 2p-1

1. Vincent, R. S.: Proc. Phys. Soc. 53, 141 (1941).
2. Vincent, R. S., and G. H. Simmonds, Proc. Phys. Soc. 55, 376 (1943).
3. Scott, A. F., D. P. Shoemaker, K. N. Tanner, and J. G. Wendel, J. Chem. Phys. 16, 495 (1948).
4. Scott, A. F., and G. M. Pound, J. Chem. Phys. 9, 726 (1941).
5. Temperly, H. N. V., and L. G. Chambers, Proc. Phys. Soc. 58, 420 (1946).
6. Briggs, Lyman J.: J. Appl. Phys. 21, 721 (1950).
7. Vincent, R. S.: Proc. Phys. Soc. 55, 41 (1943).
8. Briggs, Lyman J.: J. Chem. Phys. 19, 970 (1951).
9. Briggs, Lyman J.: J. Appl. Phys. 24, 488 (1953).

Methods of Measuring Tensile Strength. Brief descriptions of these methods are given below, arranged according to the means used to produce the stress in the liquid. Each method is given a code designation for identification in Table 2p-1.
A. stress produced by cooling and thus contracting the liquid: In Berthelot's method (A-1) the liquid, sealed in a thick-walled capillary tube, is first warmed until it just fills the tube and is then cooled until the liquid "breaks." The maximum negative pressure is calculated from the known mechanical properties of the liquid, assuming its extensibility to be the same as its compressibility. In Meyer's method
(A-2) a spiral glass capillary is part of the tonometer and indicates the pressure exerted by the liquid, which completely fills the vessel. Meyer calibrated his spiral manometers under both positive and reduced pressure. Worthington, in a single experiment (A-3), measured the tension by means of a mercury-in-glass dilatometer, the bulb of which was enclosed within the tonometer. The calibration curve of the dilatometer, obtained previously by applying positive pressure, was extrapolated into the negative region. Vincent used a viscosity tonometer (A-4) in which the liquid completely filled a glass bulb and a fine capillary tube attached to it. By controlled cooling of the bulb, a gradually increasing tension is exerted on the liquid, measured at any time by the rate of flow through the capillary. The maximum tension can be calculated from the observed rates of flow before and after the liquid ruptures.
B. stress produced by expanding the volume of tonometer: Vincent has described a new method (B-1) which employs a metal bellows completely filled with the liquid. Extension of the bellows exerts a pull on the contained liquid. An early method (B-2) involved the use of a long ( $2-\mathrm{m}$ ) tube closed at one end with a semipermeable membrane. After being filled with air-free water the tube is inverted and the open end is placed in a mercury trough. Evaporation of the water through the membrane causes the mercury to rise in the tube. The tension is estimated from the length of the column in excess of normal barometric height. Hulett (1903), in connection with an experiment of this type, observed a marked decrease in rate of evaporation as the mercury column rose and called attention to the analogy between negative pressure and osmotic pressure. This relationship forms the basis of a method for measuring the osmotic pressure of a solution. Budgett (B-3) measured the force required to pull apart flat steel surfaces wetted by a thin film of the liquid.
C. stress produced by centrifugal force: Several experiments have been reported in which tension is developed by rotation of the tube containing the liquid. Reynolds (C-1) used U tubes sealed at both ends, with one arm longer than the other. One arm is filled completely with liquid; the other arm is only partially filled with liquid under its own vapor pressure. The tube is rotated about an axis positioned somewhat above the open part of the U. Temperly used a similar method (C-2), except that the short arm was open to the atmosphere. Recently Briggs (C-3) employed a Z-shaped capillary tube, open at both ends, rotating in the Z plane about an axis passing through the center of the Z and perpendicular to the plane. The liquid menisci are located in the bent-back short arms of the $Z$. The speed of rotation is increased gradually until the liquid in the capillary "breaks."

A fairly complete summary of the experimental measurements of the tensile strength of pure liquids is tabulated below. Information and references pertaining to work prior to 1941 are to be found in ref. 1, a paper which also gives an account of method B-1. This tabulation does not include the results of those experiments in which materials such as wood or steel were introduced into a glass tonometer in an effort to ascertain the adhesive forces between the liquid and these materials; nor does it include the results of measurements with aqueous solutions.

The tensile strength of liquids has been considered in connection with the rise of sap in trees ${ }^{1}$ and bubble formation in supersaturated liquids. ${ }^{2}$ Recently, tonometerlike devices have been described ${ }^{3}$ for the purpose of detecting cosmic particles. In one such "bubble chamber," provided with a movable piston inserted through an O ring, the liquid is stressed by retracting the piston. This particular chamber is filled with isopentane and operates at a negative pressure of approximately 6 atm. ${ }^{4}$ The fact

[^77]that cosmic particles can act to produce bubbles in liquids under tension and so break the stress casts serious doubts on the significance of all measurements of tensile strength. For it is conceivable that the limit to the observed maximum tension attainable in any particular tonometer is not simply the cohesive or adhesive forces, but the chance release of the tension resulting from the passage of a cosmic particle.

2p-2. Surface Tensions and Surface Energy of Liquids. ${ }^{3}$ Definitions. Owing to molecular attraction two fluids in contact adjust themselves so that the area of their

Table 2p-2. Surface Tension of Water against Air*

| Temp., <br> ${ }^{\circ} \mathrm{C}$ | Surface <br> tension, <br> dynes/cm | Temp., <br> ${ }^{\circ} \mathrm{C}$ | Surface <br> tension, <br> dynes/cm | Temp., <br> ${ }^{\circ} \mathrm{C}$ | Surface <br> tension, <br> dynes/cm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -8 | 77.0 | 15 | 73.49 | 40 | 69.56 |
| -5 | 76.4 | 18 | 73.05 | 50 | 67.91 |
| 0 | 75.6 | 20 | 72.75 | 60 | 66.18 |
| 5 | 74.9 | 25 | 71.97 | 70 | 64.4 |
| 10 | 74.22 | 30 | 71.18 | 80 | 62.6 |
|  |  |  |  | 100 | 58.9 |

* General reference: "Handbook of Chemistry and Physics," 37th ed., Chemical Rubber Publishing Company, Cleveland, 1955.

Table 2p-3. Surface Tension of Various Liquids

| Name | Formula | $\begin{gathered} \text { In } \\ \text { contact } \\ \text { with } \end{gathered}$ | $\underset{{ }^{\circ} \mathrm{C}}{\text { Temp., }}$ | Surface tension, dynes/cm | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Acetic acid | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$ | Vapor | 10 | 28.8 | $\mathrm{AC}(22,23,25)$; |
| Acetic acid | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ | Vapor | 50 | 24.8 | $\begin{aligned} & \mathrm{GC}(1) ; \mathrm{JS}(14) ; \\ & \operatorname{tPRS}(1) ; \mathrm{ZC}(1,6) \end{aligned}$ |
| Acetone. | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ | Air or vapor | 0 | 26.21 | $\begin{aligned} & \mathrm{AC}(20,24,25) ; \\ & \mathrm{AdC}(1) ; \mathrm{BF}(1) \end{aligned}$ |
| Acetone. | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ | Air or vapor | 40 | 21.16 | $\begin{aligned} & \mathrm{JP}(5) ; \mathrm{JS}(4,14) \\ & \mathrm{ZC}(6) \end{aligned}$ |
| Ammonia | $\mathrm{NH}_{3}$ | Vapor | 11.1 | 23.4 | JP(7) |
| Ammonia | $\mathrm{NH}_{3}$ | Vapor | 34.1 | 18.1 | JP(7) |
| Argon | A | Vapor | $-188$ | 13.2 | JS(15) |
| Benzene | $\mathrm{C}_{6} \mathrm{H}_{6}$ | Air | 10 | 30.22 | $\mathrm{AC}(3,5,31,32,34)$; |
| Benzene. | $\mathrm{C}_{6} \mathrm{H}_{4}$ | Air | 30 | 27.56 | $\begin{aligned} & \mathrm{BF}(2) ; \mathrm{JP}(5) ; \\ & \mathrm{JS}(4,9,10,11,14) ; \\ & \mathrm{PRS}(2) ; \operatorname{tRIA}(1) ; \\ & \operatorname{tPRS}(1) ; \mathrm{ZC}(4,5) \end{aligned}$ |
| Benzophenone. | $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}$ | Air or vapor | 20 | 45.1 | $\begin{aligned} & \mathrm{AC}(27) ; \mathrm{AS}(1) ; \\ & \mathrm{ZC}(5) \end{aligned}$ |
| Bromine. | $\mathrm{Br}_{2}$ | Air or vapor | 20 | 41.5 | $\begin{aligned} & \mathrm{AC}(17) ; \operatorname{AdP}(3) ; \\ & \mathrm{GC}(1) \end{aligned}$ |
| $n$-Butyric acid.. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | Air | 20 | 26.8 | $\begin{aligned} & \mathrm{AC}(27) ; \mathrm{GC}(1) ; \\ & \mathrm{JS}(4) \end{aligned}$ |

[^78]Table 2p-3. Surface Tension of Various Liquids (Continued)

| Name | Formula | In contact with | $\underset{{ }^{\circ} \mathrm{C}}{\text { Temp., }}$ | Surface tension, dynes/cm | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon bisulfide. | $\mathrm{CS}_{2}$ | Vapor | 20 | 32.33 | $\mathrm{AC}(17,28) ; \mathrm{GC}(1)$; BF(2); JS(14); PRS(2), ZC(6) |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | Vapor | 20 | 1.16 | VK(1,2) |
| Carbon dioxide | $\mathrm{CO}_{2}$ | Vapor | -25 | 9.13 | VK(1,2) |
| Carbon monoxide | CO | Vapor | -193 | 9.8 | JS(15) |
| Carbon tetrachloride | $\mathrm{CCl}_{4}$ | Vapor | 20 | 26.95 | AC(3,5,6,28,31); |
| Carbon tetrachloride | $\mathrm{CCl}_{4}$ | Vapor | 200 | 6.53 | PRS(1,2); ZC(5) |
| Chlorine. | $\mathrm{Cl}_{2}$ | Vapor | 20 | 18.4 | $\mathrm{AC}(11)$; JP(3) |
| Chlorine. | $\mathrm{Cl}_{2}$ | Vapor | -60 | 31.2 | AC(11); JP(3) |
| Chlorobenzene. | $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{Cl}$ | Vapor | 20 | 33.56 | $\begin{aligned} & \text { AC(6,20,28); } \\ & \text { JP(5); JS(11); } \\ & \text { PRS(2); tRIA(1); } \\ & \text { tPRS(1); ZC(5) } \end{aligned}$ |
| Chloroform. | $\mathrm{CHCl}_{3}$ | Air | 20 | 27.14 | $\begin{aligned} & \operatorname{AC}(6,28,31) ; \\ & \text { AdC(1); PRS(2); } \\ & \text { tRIA(1); ZC(6) } \end{aligned}$ |
| Cyclohexane. | $\mathrm{C}_{6} \mathrm{H}_{12}$ | Air | 20 | 25.5 | PRS(1); ZA(1) |
| Ethyl acetate. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | Air | 0 | 26.5 | AC( 26,33 ); |
| Ethyl acetate. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | Air | 50 | 20.2 | $\begin{aligned} & \operatorname{AdC}(1) ; \operatorname{AS}(2) ; \\ & \mathrm{JP}(5) ; \operatorname{tPRS}(1) ; \\ & \operatorname{ZC}(6) \end{aligned}$ |
| Ethyl alcohol. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | Air | 0 | 24.05 | AC(22,23,25,32); |
| Ethyl alcohol. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | Vapor | 30 | 21.89 | $\begin{aligned} & \operatorname{BF}(2) ; \mathrm{JP}(5) ; \\ & \text { tRIA(1); } \\ & \text { tPRS(1) } \end{aligned}$ |
| Ethyl ether. | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | Vapor | 20 | 17.01 | AC(4,15,28,31); |
| Ethyl ether | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | Vapor | 50 | 13.47 | $\operatorname{AdC}(1) ; \operatorname{tPRS}(1)$ |
| Glycerol. | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ | Air | 20 | 63.4 | JR(1); MB(1); |
| Glycerol. | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ | Air | 150 | 51.9 | ZA(1); ZC(3) |
| Helium. | He | Vapor | -269 | 0.12 | cUL(2); PRA(2) |
| Helium. | He | Vapor | -271.5 | 0.353 | cUL(2); PRA(2) |
| $n$-Hexane. | $\mathrm{C}_{6} \mathrm{H}_{14}$ | Air | 20 | 18.43 | $\begin{aligned} & \operatorname{AC}(5,6,16) ; \\ & \operatorname{AdC}(1) ; \operatorname{AS}(1) \end{aligned}$ |
| Hydrogen. | $\mathrm{H}_{2}$ | Vapor | -255 | 2.31 | cUL(1); PRA(1) |
| Hydrogen peroxide. | $\mathrm{H}_{2} \mathrm{O}_{2}$ | Vapor | 18.2 | 76.1 | AC(13) |
| Methyl alcohol. | $\mathrm{CH}_{4} \mathrm{O}$ | Air | 0 | 24.49 | $\mathrm{AC}(22,23,25,32)$; |
| Methyl alcohol. | $\mathrm{CH}_{4} \mathrm{O}$ | Vapor | 50 | 20.14 | tPRS(1) |
| Neon. | Ne | Vapor | -248 | 5.50 | cUL(3); PRA(3) |
| Nitric acid (98.8\%) | $\mathrm{HNO}_{3}$ | Air | 11.6 | 42.7 | JS(2) |
| Nitrogen. | $\mathrm{N}_{2}$ | Vapor | -183 | 6.6 | JS(15) |
| Nitrogen. | $\mathrm{N}_{2}$ | Vapor | -203 | 10.53 | JS(15) |
| Nitrogen tetra oxide | $\mathrm{N}_{2} \mathrm{O}_{4}$ | Vapor | 19.8 | 27.5 | JS(4) |
| $n$-Octane. | $\mathrm{C}_{8} \mathrm{H}_{18}$ | Vapor | 20 | 21.80 | AC(4,5,34); JS(4) |
| $n$-Octyl alcohol. | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$ | Air | 20 | 27.53 | $\mathrm{AC}(4,5)$ |
| Oxygen.. | $\mathrm{O}_{2}$ | Vapor | -183 | 13.2 | JS(15) |

Table 2p-3. Surface Tension of Various Liquids (Continued)

| Name | Formula | In contact with | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Surface tension, dynes/cm | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Oxygen | $\mathrm{O}_{2}$ | Vapor | -203 | 18.3 | JS(15) |
| Phenol. | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$ | Air or vapor | 20 | 40.9 | $\begin{aligned} & \mathrm{AC}(18,19,25) ; \\ & \mathrm{JS}(2,6,13) ; \mathrm{JP}(4) \end{aligned}$ |
| Phosphorus trichloride. . | $\mathrm{PCl}_{3}$ | Vapor | 20 | 29.1 | $\begin{gathered} \text { AC(17); GC(1); } \\ \text { JP(2); JS(4) } \end{gathered}$ |
| $n$-Propylamine. | $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ | Air | 20 | 22.4 | GC(1) ; JS(3) |
| Sulfuric acid (98.5\%) . . | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | Air or vapor | 20 | 55.1 | $\begin{aligned} & \mathrm{AC}(17 \mathrm{a}) ; \\ & \operatorname{AdP}(7) ; \mathrm{JS}(2) \end{aligned}$ |
| Toluene. | $\mathrm{C}_{7} \mathrm{H}_{8}$ | Vapor | 10 | 27.7 | AC(4,17,20,31) |
| Toluene... . . . . . . . . . . . | $\mathrm{C}_{7} \mathrm{H}_{8}$ | Vapor | 30 | 27.4 | $\begin{aligned} & \mathrm{JP}(5) ; \operatorname{PRS}(2) \\ & \mathrm{ZC}(5,6) \end{aligned}$ |

* General reference: "Handbook of Chemistry and Physics," 37th ed., Chemical Rubber Publishing Company, Cleveland, 1955. A reference key is on pp. 2-176 and 2-178.

Table 2p-4. Surface Tension of Metals

| Substance |  | Gas | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Surface tension, dynes/cm | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name | Symbol |  |  |  |  |
| Aluminum. | Al | Air | 700 | 840 | CR(1) |
| Antimony | Sb | $\mathrm{H}_{2}$ | 750 | 368 | ZA(4) |
| Antimony | Sb | $\mathrm{H}_{2}$ | 640 | 350 | PM(1) |
| Bismuth.. | Bi | $\mathrm{H}_{2}$ | 300 | 388 | PM(1) |
| Bismuth. | Bi | $\mathrm{H}_{2}$ | 583 | 354 | ZA(4) |
| Bismuth. | Bi | CO | 700-800 | 346 | AdP(2) |
| Cadmium | Cd | $\mathrm{H}_{2}$ | 320 | 630 | AC(10) |
| Copper. | Cu | $\mathrm{H}_{2}$ | 1131 | 1,103 | ZA(4) |
| Gallium. | Ga | $\mathrm{CO}_{2}$ | 30 | 358 | AC(30) |
| Gold. | Au | $\mathrm{H}_{2}$ | 1070 | 580-1,000 | AdP(1); $\operatorname{AdP}(2) ; \mathrm{JI}(1)$ |
| Lead. | Pb | $\mathrm{H}_{2}$ | 350 | 453 | PM(1) |
| Lead. | Pb | $\mathrm{H}_{2}$ | 750 | 423 | ZA(4) |
| Mercury | Hg | Vacuum | 0 | 480.3 | AC(7) |
| Mercury | Hg | Air | 15 | 487 | $\begin{gathered} \operatorname{AC}(9) ; \operatorname{AdP}(5) ; \\ \operatorname{AdP}(6) ; \operatorname{CR}(2) \end{gathered}$ |
| Mercury | Hg | $\mathrm{H}_{2}$ | 19 | 470 | PM(1) |
| Mercury . | Hg | Vacuum | 60 | 467.1 | AC(7) |
| Platinum | Pt | Air | 2000 | 1,819 | $\operatorname{AdP}(2)$ |
| Potassium. | K | $\mathrm{CO}_{2}$ | 62 | 411 | AdP(3) |
| Silver.. | Ag | Air | 970 | 800 | $\operatorname{AdP}(2) ; \operatorname{AdP}(4) ; \mathrm{JI}(1)$ |
| Sodium | Na | $\mathrm{CO}_{2}$ | 90 | 294 | $\operatorname{AdP}(3)$ |
| Sodium . | Na | Vacuum | 100 | 206.4 | PR(1) |
| Sodium. | Na | Vacuum | 250 | 199.5 | PR(1) |
| Tin. | Sn | $\mathrm{H}_{2}$ | 253 | 526 | PM(1) |
| Tin. | Sn | $\mathrm{H}_{2}$ | 878 | 508 | ZA(4) |
| Zinc. | Zn | $\mathrm{H}_{2}$ | 477 | 753 | AC(10) |
| Zinc....... | Zn | Air | 590 | 708 | JI(1) |

[^79]interface is a minimum consistent with other requirements. The work required to extend the surface by unit area is called the "free surface energy." In solving problems it is convenient to replace the concept of free surface energy by that of a hypothetical tension, acting parallel to the surface. Named the surface tension and its value denoted by $\gamma$, this is defined as the normal tensile force per unit of length across any line traced on the surface. The free surface energy and the surface tension have the same dimensions. $\left(M T^{-2}\right)$ and are numerically equal; the units of $\gamma$ may be given as either dynes $/ \mathrm{cm}$ or as $\mathrm{ergs} / \mathrm{cm}^{2}$.

Table 2p-5. Surface Tensions of Aqueous Solutions against Air-Organic*

| Substance | ${ }^{\circ} \mathrm{C}$ | $\gamma=$ surface tension for concentrations indicated |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetic acid. | 30 | \% | 1.000 | 2.475 | 5.001 | 10.01 | 30.09 | 49.96 | 69.91 | 100.00 |
|  |  | $\gamma$ | 68.0 | 64.4 | 60.1 | 54.6 | 43.6 | 38.4 | 34.3 | 26.6 |
| Acetone | 25 | \% | 5.00 | 10.0 | 20.00 | 25.00 | 50.00 | 75.0 | 95.0 | 100.00 |
|  |  | $\gamma$ | 55.5 | 48.9 | 41.1 | 38.3 | 30.4 | 26.8 | 24.2 | 23.0 |
| Ethyl alcohol. | 30 | \% | 0.979 | 2.143 | 4.994 | 10.39 | 25.00 | 50.00 | 75.06 | 100.00 |
|  |  | $\gamma$ | 66.1 | 61.6 | 54.2 | 45.9 | 34.1 | 27.5 | 24.7 | 21.5 |
| Sucrose | 25 | \% | 10.0 | 20.0 | 30.0 | 40.0 | 55.0 |  |  |  |
|  |  | $\gamma$ | 72.5 | 73.0 | 73.4 | 74.1 | 75.7 |  |  |  |

* General reference: "Handbook of Chemistry and Physics," 37 th ed., Chemical Rubber Publishing Company, Cleveland, 1955.

Formulas Involving Surface Tension. When the interfacial surface between two fluids is curved the pressure $p_{1}$ on the concave side exceeds that, $p_{2}$, on the convex side by the amount

$$
\begin{equation*}
\left(p_{1}-p_{2}\right)=\gamma\left(R_{1}^{-1}+R_{2}^{-1}\right) \tag{2p-1}
\end{equation*}
$$

where $R_{1}, R_{2}$ are the principal radii of curvature. The pressure $p$ due to surface tension within a. liquid drop or gas bubble of radius $R$ surrounded by liquid is

$$
\begin{equation*}
p=\frac{2 \gamma}{R} \tag{2p-2}
\end{equation*}
$$

The velocity $v$ of sinusoidal ripples on the surface of a liquid of great depth is given by ${ }^{1}$

$$
\begin{equation*}
v^{2}=\frac{g \lambda}{2 \pi}+\frac{2 \pi \gamma}{\rho \lambda} \tag{2p-3}
\end{equation*}
$$

where $\lambda$ is the wavelength of the ripples, $g$ is the acceleration due to gravity, and $\rho$ is the density of the liquid (cf. Sec. 2a).

Methods of Measuring the Surface Tension of a Liquid Relative to a Gas Phase. 1. Capillary-height method. If a vertical capillary tube whose bore radius $r$ is sufficiently small rests with its lower end below a liquid surface the liquid in it will rise to a height $h$

[^80]given approximately by
\[

$$
\begin{equation*}
h=\frac{2 \gamma \cos \theta}{g r\left(\rho-\rho_{v}\right)} \tag{2p-4}
\end{equation*}
$$

\]

where $\rho_{v}$ is the density of the gas above the liquid, and $\theta$ is the contact angle of the meniscus with the tube wall ( $\theta$ is often zero). If the tube is not sufficiently small, corrections must be applied to the above formula. ${ }^{1}$
2. Maximum-bubble-pressure method. If a bubble is blown at the lower end of a tube of small bore dipping into a liquid the pressure in the bubble reaches a maximum value given by

$$
\begin{equation*}
p=\frac{2 \gamma}{r} \tag{2p-5}
\end{equation*}
$$

where $r$, as before, is the bore radius. If $r$ is not sufficiently small, corrections must be applied to the above formula. ${ }^{1}$
3. Drop-weight method. The weight $\omega$ of a drop falling from the tip of a vertical tube is given by

$$
\begin{equation*}
W=\frac{r \gamma}{F} \tag{2p-6}
\end{equation*}
$$

where $F$ is an empirical function ${ }^{1}$ of $\left(V / r^{3}\right), V$ being the drop volume. When $\left(V / r^{3}\right)$ is $5,000, F$ is 0.172 ; as $\left(V / r^{3}\right)$ decreases to $1.55, F$ increases steadily to 0.26 ; further decrease of $\left(V / r^{3}\right)$ causes $F$ to oscillate slightly around $\mathbf{0 . 2 5}$.

## Reference Key to Surface-tension Data

AC. Journal of the American Chemical Society. (1) Baker and Gilbert, 62, 2479-2480 1940. (2) H. Brown, 56, 2564-2568 (1938). (3) Harkins and Brown, 41, 449 (1919). (4) Harkins, Brown, and Davies, 39, 354 1917. (5) Harkins and Cheng, 43, 35 (1921). (6) Harkins, Clark, and Roberts, 42, 700 (1920). (7) Harkins and Ewing, 42, 2539 (1920). (8) Harkins and Feldman, 44, 2665 (1922). (9) Harkins and Grafton, 42, 2534 (1920). (10) Hogness, 43, 1621 (1921). (11) Johnson and McIntosh, 31, 1139 (1909). (12) Maass and Boomer, 44, 1709 (1922). (13) Maass and Hatcher, 42, 2548 (1920). (14) Maass and McIntosh, 31, 1139 (1909). (15) Maass and Wright, 43, 1098 (1921). (16) Morgan and Chazel, 35, 1821 (1913). (17) Morgan and Daghlian, 33, 672 (1911). (17a) Morgan and Davis, 38, 555 (1916). (18) Morgan and Egloff, 38, 844 (1916). (19) Morgan and Evans, 39, 2151 (1917). (20) Morgan and Griggs, 39, 2261 (1917). (21) Morgan and Kramer, 35, 1834 (1913). (22) Morgan and McAfee, 33, 1275 (1911). (23) Morgan and Neidle, 35, 1856 (1913). (24) Morgan and Owen, 33, 1713 (1911). (25) Morgan and Scarlett, 39, 2275 (1917). (26) Morgan and Schwartz, 33, 1041 (1911). (27) Morgan and Stone, 35, 1505 (1913). (28) Morgan and Thomssen, 33, 657 (1911). (29) Morgan and Woodward, 35, 1249 (1913). (30) Richards and Boyer, 43, 274 (1921). (31) Richards and Carver, 43, 827 (1921). (32) Richards and Coombs, 37, 1656 (1915). (33) Richards and Matthews, 30, 8 (1908). (34) Richards, Speyers, and Carver, 46, 1196 (1924).
AD. Atti della reale accademia nazionale dei Lincei. (1) Magini, 1911, 184, 10. AdC. Annalen der Chemie, Justus Liebigs. (1) Schiff, 223, (47) 84.
AdP. Annalen der Physik. (1) Heydweiller, 62, 694 (1897). (2) Quincke, 134, 356 (1868). (3) Quincke, 135, 621 (1868). (4) Gradenwitz, 67, 467 (1899). (5) Meyer, 66, 523 (1898). (6) Stöckle, 66, 499 (1898). (7) Röntgen and Schneider, 29, 165 (1886).*

[^81]
## Table 2p-6. Surface Tension of Aqueous Solutions against AirInorganic*

( $f=$ gram formula weights per $1,000 \mathrm{~g}$ of solvent)
For these aqueous solutions the values of $\Delta \gamma$ are given. $\Delta \gamma$ is the difference between the surface tension of the solution and that of the solvent at the same temperature. Positive values of $\Delta \gamma$ mean that the surface tension of the solution is greater than that of the solvent; negative values the reverse. For convenience in computing the surface tension, the current accepted value for the surface tension of water at the stated temperature is given in the second column.

| Formula | $\begin{gathered} { }^{\circ} \mathrm{C} \\ \left(\gamma \mathrm{H}_{2} \mathrm{O}\right) \end{gathered}$ | $\Delta \gamma$ for concentrations indicated |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CaCl}_{2}$ | 25 | $f$ | 0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 11.2 |  |
|  | (71.97) | $\Delta \gamma$ | 0.35 | 1.5 | 3.2 | 6.9 | 11.0 | 18.4 | 35 |  |
| HCl . | 20 | $f$ |  | 0.5 | 1.0 | 2.0 | 4.0 | 6.0 | 9.0 | 17.7 |
|  | (72.75) | $\Delta \boldsymbol{\gamma}$ |  | -0.2 | $-0.3$ | $-0.5$ | $-0.9$ | $-1.3$ | -2.2 | $-7$ |
| $\mathrm{NH}_{4} \mathrm{OH}$. | 18 | $f$ |  | 0.5 | 1.0 | 1.5 | 3.0 | 6.0 | 15.0 | 34.0 |
|  | (73.05) | $\Delta \boldsymbol{\gamma}$ |  | -1.4 | -2.4 | $-3.1$ | $-5.2$ | $-7.8$ | $-12.0$ | $-16.0$ |
| $\mathrm{HNO}_{3}$. | $20$ | $f$ |  | 0.7 | 1.5 | 2.8 |  |  | 8.5 |  |
|  | (72.75) | $\Delta \gamma$ |  | $-0.6$ | $-1.1$ | $-1.8$ |  |  | -4 |  |
| KCl . | 20 | $f$ | 0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 4.0 | 4.4 |  |
|  | (72.75) | $\Delta \gamma$ | 0.16 | 0.70 | 1.4 | 2.8 | 4.2 | 5.5 | 6.0 |  |
| KOH. | 18 | $f$ |  | 0.5 | 1.0 | 2.0 | 3.8 |  |  |  |
|  | (73.05) | $\Delta \gamma$ |  | 0.9 | 1.8 | 3.5 | 6.7 |  |  |  |
| $\mathbf{M g C l} \mathbf{2}$. | $20$ | $f$ | 0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 3.65 |  |  |
|  | $(72.75)$ | $\Delta \gamma$ | 0.32 | 1.52 | 3.0 | 6.4 | 10.2 | 13.0 |  |  |
| $\mathrm{MgSO}_{4}$. | $20$ | $f$ | 0.1 | 0.5 | 1.0 | 2.0 | 2.7 |  |  |  |
|  | (72.75) | $\Delta \gamma$ | 0.26 | 1.03 | 2.1 | 4.6 | 6.5 |  |  |  |
| NaBr . | 20 | $f$ | $\cdots$ | 0.5 | 1.0 | 1.5 | 2.9 |  |  |  |
|  | (72.75) | $\Delta \boldsymbol{\gamma}$ |  | 0.7 | 1.3 | 2.0 | 3.8 |  |  |  |
| NaCl . | 20 | $f$ | 0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | $6.0$ |  |
|  | (72.75) | $\Delta \gamma$ | 0.17 | 0.82 | 1.64 | 3.3 | 4.9 | 8.2 | 9.8 |  |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}$. | $20$ | $f$ | 0.25 | 0.5 | 1.0 | 1.5 |  |  |  |  |
|  | (72.75) | $\Delta \gamma$ | 0.7 | 1.3 | 2.7 | 4.0 |  |  |  |  |
| $\mathrm{NaNO}_{3}$ | 20 | $f$ | 0.1 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 12.2 |
|  | (72.75) | $\Delta \gamma$ | 0.12 | 0.60 | 1.2 | 2.4 | 3.5 | 5.6 | 7.5 | 11.3 |
| NaOH | $18$ | $f$ |  | 0.7 | 1.5 |  |  | 5.0 | 11.0 | $14.0$ |
|  | (73.05) | $\Delta \gamma$ |  | 1.3 | 2.8 |  |  | 10.0 | 23 | 28 |
| $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | 20 |  | 0.2 | 0.5 | 1.0 |  |  |  |  |  |
|  | (72.75) | $\Delta \gamma$ | 0.5 | 1.4 | 2.7 |  |  |  |  |  |

[^82]
## MECHANICS

AS. Archives des sciences physiques et naturelles. (1) Dutoit and Friederich, 9, 105 (1900). (2) Guye and Baud, 11, 449 (1901). (3) Herzen, 14, 232 (1902).

BD. Berichte der deutschen chemischen Gesellschaft. (1) Lorenz and Kauffler, 41, 3727 (1908). (2) Schenck and Ellenberger, 37, 3443 (1904).
BF. Bulletin de la societé chimique de France. (1) Dutoit and Friederich, 19, 321 (1898). (2) Santis Ann. Univ. Grenoble, 27, 593 (1904).

CR. Comptes rendus. (1) A. Portevin and P. Bastien, 202, 1072-1074 (1936). (2) Popesco, 172, 1474 (1921).
cUL. Communications from the Physical Laboratory at the University of Leiden. (1) No. 142. (2) No. 179a. (3) No. 182b.
GC. Gazzetta chimica italiana. (1) Schiff, 14, 368 (1884). (2) A. Giacolone and D. DiMaggio, 3, 198-206 (1939).
JI. Journal of the Institute of Metals. (1) Smith, 12, 168 (1914).
JP. Journal de chimie physique. (1) Dutoit and Fath, 1, 358 (1903). (2) Dutoit and Mojoiu, 7, 169 (1909). (3) Marchand, 11, 573 (1913). (4) Bolle and Guye, 3, 38 (1905). (5) Renard and Guye, 5, 81 (1907). (6) Berthoud, 21, 143 (1924). (7) Berthoud, 16, 429 (1918). (8) Homfray and Guye, 1, 505 (1903). (9) Przyluska, 7, 511 (1909).
JR. Journal of the Russian Physical Chemical Society. (1) Elisseev and Kurbatov, 41, 1426 (1909).
JS. Journal of the Chemical Society (London). (1) Kellas, 113, 903 (1918). (2) Aston and Ramsay, 65, 167 (1894). (3) Turner and Merry, 97, 2069 (1910). (4) Ramsay and Shields, 63, 1089 (1893). (5) Sugden, Reed, and Wilkins, 127, 1525 (1925). (6) Hewitt and Winmill, 91, 441 (1907). (7) Smith, 105, 1703 (1914). (8) Atkins, 99, 10 (1911). (9) Sugden, 119, 1483 (1921). (10) Sugden, 121, 858 (1922). (11) Sugden, 125, 32 (1924). (12) Sugden, 125, 1167 (1924). (13) Worley, 105, 260 (1914). (14) Worley 105, 273 (1914). (15) Baly and Donnan, 81, 907 (1902).
JSG. Jahresberichte Schles. Ges. Vaterl. Kultur. (1) Wilborn, 1912, 56.
MB. Metron. Beit. (1) Weinstein, no. 6, 89.
MfC. Monatschefte für Chemie und verwandte Teile anderer Wissenscheften. (1) Kremann and Meingast, 35, 1323 (1914).
PM. The London, Edinburgh \& Dublin Philosophical Magazine and Journal of Science. (1) Bircumshaw, 2, 341 (1926); 3, 1286 (1927). (2) R. C. Brown, 13, 578-584 (1932). (3) A. E. Bate, 28, 252-255 (1939).

PR. The Physical Review. (1) Poindexter, 27, 820 (1926).
PRA. Proceedings of the Royal Academy of Sciences of Amsterdam. (1) Kamerlingh, Onnes, and Kuypers, 17, 528 (1914). (2) Van Urk, Keesom, and Onnes, 28, 958, (1925). (3) Van Urk, Keesom, and Nijhoff, 29, 914 (1926). (4) Jaeger and Kahn, 18, 75 (1915).
PRS. Proceedings of the Royal Society (London). (1) Hardy, 88, 303 (1913). Ramsay and Aston, 56, 162, 182 (1894).
tPRS. Philosophical Transactions of the Royal Society of London, Series A. (1) Ramsay and Shields, 184, 647 (1893).
tRIA. Royal Irish Academy Transactions. (1) Ramsay and Aston, 32A, 93 (1902).
VK. Verslag koninklijke Akademie van Wetenschappen te Amsterdam. (1) Verschaffelt, no. 18, 74 (1895). (2) Verschaffelt, no. 28, 94 (1896).
WN. Wissenschaftliche Natuurk, Tydschr. (1) Verschaffelt, 2, 231 (1925).
ZA. Zeitschrift für anorganische und allegeime Chemie. (1) Jaeger, 101, 1 (1917). (2) Motylewski, 38, 410 (1904). (3) Lorenz, Liebmann, and Hochberg, 94, 301 (1916). (4) Sauerwald and Drath, 154, 79 (1926).

ZC. Zeitschrift für physikalische Chemie. (1) Bennett and Mitchell, 84, 475 (1913). (2) Walden and Swinne, 82, 271 (1913). (3) Drucker, 52, 641 (1905). (4) Walden, 75, 555 (1910). (5) Walden and Swinne, 79, 700 (1912). (6) Whatmough, 39, 129 (1902).
ZE. Zeitschrift für Elektrochemie und angewandte physikalische Chemie. (1) Bredig and Tiechmann, 31, 449 (1925).
ZK. Kolloid-Zeitschrift. (1) N. Jermolanko, 48, 14-146 (1929).

# 2q. Fluid-flow Properties of Porous Media and Viscosity of Suspensions 

R. W. MORSE<br>Brown University

## 2q-1. List of Symbols

| $P$ | percentage porosity |
| :--- | :--- |
| $k$ | permeability |
| $v$ | volume of fluid crossing unit area per unit time |
| $\eta$ | shear viscosity |
| $k^{\prime}$ | $k / \eta$ |
| $R$ | Reynolds number |
| $r$ | flow resistance |
| $p$ | fluid pressure |
| $\eta_{a}$ | shear viscosity of suspensoid |
| $\eta_{0}$ | shear viscosity of suspending fluid |
| $c$ | concentration of particles |
| $f$ | ratio of semimajor to semiminor axis of ellipsoid |

2q-2. Percentage Porosity. $P$ is a measure of the fluid capacity of a porous medium. It is defined as the percentage volume of voids per unit total volume. In dealing with the flow properties of a porous medium one is concerned with the percentage porosity actually available during flow, i.e., the relative amount of interconnected pore space. Therefore, the available porosity (quoted in Table $2 q-1$ ) may be somewhat less than the total porosity calculated from the density of the medium.

2q-3. Permeability. $k$ is a measure of the ease with which a fluid flows through a porous medium under the influence of a pressure gradient. It is defined from the empirical relation known as Darcy's law in the following way: If $v$ is the volume of fluid crossing unit area per unit time under the pressure gradient $d p / d x$, for small values of $v$ (to be specified below), one finds empirically that

$$
\begin{equation*}
k^{\prime} \frac{d p}{d x}=v \tag{2q-1}
\end{equation*}
$$

where $k^{\prime}$ is a constant dependent on both the fluid and the medium. It.is found, further, that the constant $k^{\prime}$ can be written as $k^{\prime}=k / \eta$, where $\eta$ is the coefficient of shear viscosity of the fluid, and $k$ is by definition the permeability. Defined in this way, $k$ is practically independent of the properties of the fluid and depends only upon the character of the porous structure.

If a Reynolds number is defined as $R=a v \rho / \eta$ (where $\rho$ is the fluid density and $a$ is a length characteristic of the porous structure, such as the average pore size), it is found empirically that Darcy's law as given above holds for $R$ less than about 5 .

Many attempts have been made to calculate permeabilities in terms of more funda-
mental properties of the medium, but in general this has not met with success, and $k$ is usually looked upon as a parameter which can be known only by direct measurement. One exception to this is Kozeny's equation which gives a good approximation to the permeability of powders having a negligible number of "blind" pores. In particular, it agrees well with experiment for a given medium in which the porosity is changed by alteration of packing. The equation is

$$
\begin{equation*}
k=\frac{1}{5}\left[\frac{P^{3}}{(1-P)^{2} S^{2}}\right] \tag{2q-2}
\end{equation*}
$$

where $P$ is the fractional porosity (percentage porosity/100) and $S$ is the total surface area of the particles contained in a unit volume of the medium.

Table $2 q-1$. Typical Flow Parameters of Some Porous Materials*

| Material | \% porosity | Permeability, darcys |
| :---: | :---: | :---: |
| Graded sand: |  |  |
| 30-40 mesh. | 40 | 345 |
| 40-50 mesh. | 40 | 66 |
| 50-60 mesh. | 40 | 44 |
| 60-70 mesh. | 40 | 31 |
| 70-80 mesh. | 40 | 26 |
| 80-100 mesh. | 40 | 11 |
| 100-120 mesh. | 40 | 10 |
| 120-140 mesh | 40 | 9 |
| Fine heterogeneous sands. | 30-35 | 1-10 |
| Silts. | 35-45 | 5-180 |
| Fine powders. | 35-70 | 0.01-0.1 |
| Sandstones. | 10-20 | 0.01-1.0 |
| Acoustic absorbing materials. | 90-95 | 35-180 |
| Hair felt. | 95 | 900 |

[^83] ences at the end of this section.

In geophysical work the most common unit of permeability is the darcy; this is the unit that results when length is measured in centimeters, time in seconds, viscosity in centipoises, and pressure in atmospheres. Consequently a porous structure will have a permeability of 1 darcy if, for a fluid of 1 centipoise viscosity, the volume flow is $1 \mathrm{cc} / \mathrm{cm}^{2}$ area under a pressure gradient of $1 \mathrm{~atm} / \mathrm{cm}$.
In acoustical transmission in which air is the fluid medium and where the flow properties of a material determine its acoustic impedance, the constant usually specified is the flow resistance $r=\eta / k$, where $\eta$ is the viscosity of air ( $1.8 \times 10^{\mathbf{- 2}} \mathbf{~} \mathbf{p}$ at room temperature).

Permeability measured in darcys can be converted to a self-consistent cgs system of units by the relation

$$
1 \text { darcy }=9.8697 \times 10^{-9} \text { poise }(\mathrm{cm} / \mathrm{sec}) /\left(\text { dynes } / \mathrm{cm}^{2}\right)
$$

2q-4. Viscosity of Suspensions. The suspension of small numbers of solid particles in a liquid affects the apparent viscosity of the mixture in a predictable way for that
class of suspensions known as lyophobic sols, or "suspensoids." These are systems in which the principal forces between particles are of a mechanical nature (i.e., viscous). In suspensoids the particles are microscopic in size and precipitation is easy and is irreversible in the sense that a purely chemical change will not make the coagulum go back into suspension. In lyophilic sols (gels), on the other hand, coagulation is reversible and a submicroscopic structure usually exists. Here small changes in the state of the system can lead to large alterations of gross physical properties. Only the class known as lyophobic sols, or suspensoids, will be discussed here (cf. Sec. 2 g for gels).

For spherical particles, and for small concentrations of particles, it has been found possible to express the apparent-shear-viscosity coefficient $\eta_{a}$ of a suspensoid in terms of the shear-viscosity coefficient of the fluid $\eta_{0}$ and the volume concentration of particles $c$ by the expression first derived by Einstein:

$$
\begin{equation*}
\eta_{a}=\eta_{0}\left(1+\frac{5}{2} c\right) \tag{2q-3}
\end{equation*}
$$

This result is independent of particle-size distribution. Einstein's equation gives fair agreement with measurements for concentrations up to about 1 per cent.

Various other expressions have been proposed for higher concentrations. One that fits measurements quite well up to about 30 per cent concentration, again for spherical particles, is

$$
\begin{equation*}
\eta_{a}=\eta_{0}(1-c)^{\frac{\pi}{2}} \tag{2q-4}
\end{equation*}
$$

To some extent the viscosity of suspensoids having particles of nonspherical shape can be approximated. In general one has for small concentrations

$$
\begin{equation*}
\eta_{a}=\eta_{0}(1+\phi c) \tag{2q-5}
\end{equation*}
$$

where $\phi$ depends upon the shape of the individual particles but not upon their size distribution. For ellipsoids where $f$ is the ratio of semimajor to semiminor axes, Eisenschitz gives, for the case where $f$ is large compared with unity and where the particles are large enough so that Brownian motion is negligible,

$$
\begin{equation*}
\phi=\frac{1.15}{\pi} \frac{f}{\log 2 f} \tag{2q-6}
\end{equation*}
$$

Again for long particles, but when Brownian motion of the particles is large, one has

$$
\begin{equation*}
\phi=\frac{f^{2}}{15(\log 2 f-1.5)} \tag{2q-7}
\end{equation*}
$$

## References

Muskat, M.: "The Flow of Homogeneous Fluids through Porous Media," McGrawHill Book Company, Inc., New York, 1937.
Rose, H. E.: "The Measurement of Particle Size," Constable \& Co., Ltd., London,
1953.
Traxler and Baum : Physics 7, 9 (1936).
Morse and Bolt: Revs. Modern Phys. 16, 69 (1944).
Andrade, E. N. da C.: "Viscosity and Plasticity," W. Heffer \& Sons, Ltd., Cambridge, England, 1947.
Burgers, J. M.: 2nd Report on Viscosity and Plasticity, Koninkl. Ned. Akad. Verband. (Eersti Sectie), D1, 16, 113 (1938).
The Physics of Particle Size Analysis, suppl. 3, Brit. J. Appl. Phys. 5 (1954).

# 2r. Cavitation in Flowing Liquids 

PHILLIP EISENBERG

Office of Naval Research

2r-1. Introduction-Status of Available Data. Although the possibility of occurrence of cavitation in hydrodynamic systems was recognized as long ago as 1754 by Euler, ${ }^{1}$ significant researches on the physical phenomena have been developed only during the first half of the present century. This has resulted from the growing importance of the effects of cavitation (both useful and detrimental) in such diverse fields as underwater propulsion and hydraulic machinery (loss of efficiency, damage to materials, noise), underwater signaling (background noise, absorption of acoustical power), hydroballistics (increased drag and instability of missiles), medicine (divers' bends, bullet wounds), and chemical processing (acceleration of reactions and mixing processes, industrial cleaning). Because of the complexities of the phenomenahydrodynamical and physicochemical-in cavitated regions, research activity continues to emphasize understanding and description of events. Consequently, this section is restricted to brief descriptions of the various factors involved in the cavitation process and to the presentation of data which, while consistent within themselves, are intended primarily to illustrate the text. In all cases, reference should be made to the original source for guidance in judging the limits of accuracy and applicability of these data.

The discussion given here is concerned particularly with phenomena associated with flowing liquids and excludes cavitation produced by heat addition (boiling) and acoustical pressure waves as well as problems of pure liquids (e.g., ultimate tensile strength). Rather complete discussions of cavitation in flowing liquids (and about forms moving through stationary liquids) have been given by Ackeret ${ }^{2}$ and Eisenberg, ${ }^{3}$ and extensive bibliographies will be found in the papers of these authors and in a compilation by Raven et al. ${ }^{4}$

## 2r-2. Definitions and Nomenclature

$\sigma=\frac{P-p_{v}}{\frac{1}{2} \rho U^{2}} \quad$ cavitation number

## $P \quad$ ambient pressure

${ }^{1}$ Leonhard, Euler, Théorie plus complète des machines, qui sont mises en mouvement par la réaction de l'éau, Historie de l'Academie Royale des Sciences et Belles Lettres, Classe de Philosophie Experimentale, Mem. 10, pp. 227-295, 1754 (Berlin, 1756).
${ }^{2}$ J. Ackeret, Kavitation (Hohlraumbildung), Handbuch der Experimentalphysik IV (1), 461-486 (Leipzig, 1932).
${ }^{3}$ Phillip Eisenberg, Kavitation, Forschungshefte für Schiffstechnik 3, 111-124, 1953; 4, 155-168 (1953) ; 5, 201-212 (1954); On the Mechanism and Prevention of Cavitation, David Taylor Model Basin, U.S. Navy Dept. Rept. 712, July, 1950; A Brief Survey of Progress on the Mechanics of Cavitation, David Taylor Model Basin, U.S. Navy Dept. Rept. 842, June, 1953.
${ }^{4}$ F. A. Raven, A. M. Feiler, and Anna Jesperson, An Annotated Bibliography of Cavitation, David Taylor Model Basin, U.S. Navy Dept. Rept. R-81, December, 1947.

| $p_{v}$ | vapor pressure or actual pressure within a cavity |
| :---: | :---: |
| $\rho$ | mass density of liquid |
| $U$ | stream velocity |
| $\sigma_{i}$ or $K$ | cavitation number for inception of cavitation ("critical" cavitation number) |
| $R e=\frac{U d}{\nu}$ | Reynolds number |
| $\nu$ | kinematic viscosity |
| $d$ | diameter of a body of revolution |
| $d_{m}$ | maximum diameter of steady-state cavity |
| $l$ | length of a steady-state cavity |
| $R$ | radius of a transient cavity |
| $h$ | altitude of a cone |
| $C_{D}=\frac{D}{\frac{1}{2} \rho U^{2} A}$ | drag coefficient |
| D | drag |
| A | area of body in plane normal to stream or cross-sectional area of circular cylinder |
| $C_{D}(\sigma)$ | drag coefficient at cavitation number $\sigma$ |
| $\boldsymbol{\alpha}$ | total absolute air content |
| $\alpha_{s}$ | total saturation air content |

2r-3. Inception of Cavitation. It is now generally agreed that cavitation originates with the growth of undissolved vapor or gas nuclei existing in the liquid or trapped on microscopic foreign particles. It is well known that the rupture forces of very clean and carefully degassed liquids are of the order of those predicted by kinetic theoretical formulations. Experimental evidence has also been obtained that water saturated with air, but denucleated by application of very high pressures, exhibits large tensile strength (of the order of several hundred atmospheres). ${ }^{1}$ Thus the presence of nuclei is evidently necessary for the inception of cavitation at pressures of the order of vapor pressure. In supersaturated liquids, it is easy to account for the presence and stability of such nuclei, but in saturated and undersaturated liquids, the situation is not clear, and the presence of nuclei is usually accounted for on the basis that they are stabilized on suspended particles. ${ }^{2}$ As a consequence, depending upon the size and number of these nuclei, cavitation may be expected to begin above as well as below the vapor pressure. The effect of total air content was shown in experiments of Crump ${ }^{3}$ using a venturi nozzle having a diffuser of $5^{\circ}$ included angle. Figure 2r-1 shows that in the undersaturated liquid it was possible to obtain tensions as the air content was reduced. Results in a nozzle with an abrupt expansion, however, show opposite trends in the pressures required for inception, ${ }^{4}$ although here too tensions were obtained. Comparable results for sea water ${ }^{5}$ are shown in Fig. 2r-2; since the

[^84]

Fig. 2r-1. Cavitation inception in fresh water of varying air content. (After Crump.)


Fig. 2r-2. Critical pressure for inception of cavitation in sea water. (After Crump.)
water is supersaturated, thus presumably containing a large number of undissolved nuclei, bursts of cavitation are observed at pressures well above vapor pressure.

Properties of the liquid such as viscosity and surface tension influence the growth of nuclei and, consequently, the inception pressures. In this connection, the presence of surface-active materials (detergents, etc.) affect inception pressures through alteration of surface tension.


Fig. 2r-3. Critical cavitation number for first change in minimum pressure coefficient of bodies of revolution and minimum pressure coefficient vs. caliber of rounding. (After Rouse and McNown.)

Environmental factors which must be considered when attempting to predict inception include not only the average pressure and pressure-gradient conditions determined by the flow boundaries (such as bounding walls or a moving body) but also the magnitude and duration of pressure fluctuations in turbulent regions and boundary-layer effects including flow in zones of separation. An example of the effects of the boundary layer and, in particular, local separation is shown in Fig. 2r-3 from the work of Rouse and McNown. ${ }^{1}$ In this figure are compared the minimum pressure coefficients with the cavitation numbers at which the pressure distribution first showed a change. This change is attributed to microscale cavitation in locally separated flows and served to define the critical cavitation number. Effect of model size on inception has been studied by Kermeen ${ }^{2}$ and others. ${ }^{3}$ While the mechanisms are still only incompletely understood, trends are fairly well established and are con-

[^85]sistent with the concept of nuclei and the role of the boundary layer. ${ }^{1}$ An example of Kermeen's results is shown in Fig. 2r-4 wherein the average values of a large number of data are plotted for models of various diameters.

2r-4. Transient (Bubble) Cavities. These are small individual bubbles which grow, sometimes oscillate, and eventually collapse and disappear. Of particular interest here are the pressures produced in the vicinity of such cavities when they collapse. From studies of damage and acoustic radiation produced by such cavities, it is known that pressures of the order of thousands of atmospheres are developed.


Fig. 2r-4. Cavitation number $K$ for incipient cavitation (as defined by value at which noise disappears) as a function of Reynolds number for bodies with hemispherical heads and cylindrical middle bodies. (The $1 / 4-\mathrm{in}$. A model was more accurately constructed than the 1/4-in. B model.) (After Kermeen.)

However, since the maximum pressure rise is confined to durations of the order of a microsecond, definitive measurements have not yet been achieved. The motion of such cavities depends not only upon the ambient pressure conditions but also upon the amount of permanent gas in the bubble and the condensation rates of the vapor as well as the properties of the liquid-compressibility, viscosity, surface tension. Except for surface tension, all these factors tend to decrease the rate of collapse; in addition, distortion from spherical shape caused by pressure gradients or bubble-wall instability tends to result in reduced collapse rates and thus reduced pressures.
Plesset, ${ }^{2}$ employing Rayleigh's ${ }^{3}$ theoretical formulation for collapse of a spherical cavity in incompressible inviscid fluid but including effect of surface tension and

[^86]comparing with the experimental results of Knapp and Hollander, ${ }^{1}$ has shown that, in the region from maximum radius down to about one-quarter the maximum radius, the motion can be predicted with fair accuracy as long as the bubble is approximately spherical. This idealized theory, which predicts that the bubble-wall velocity is of the order of $R^{-\frac{3}{2}}$ as $R \rightarrow 0$ (and that the maximum pressure is infinite) is, of course, inadequate for the final stages of collapse where the effects mentioned above become important. For example, a further approximation carried out by Gilmore ${ }^{2}$ shows that the effect of compressibility of the liquid is to reduce the wall velocity to the order of $R^{-\frac{1}{2}}$.
2r-5. Steady-state Cavities. Such cavities (also referred to as "fixed" and "sheet") are large stationary cavities observed behind blunt obstacles and on hydrofoil profiles with relatively sharp leading edges. While such cavities are, especially at low cavitation numbers, usually filled only with vapor phase and other gas, they are often observed to contain a mixture of individual bubbles and liquid phase. The surface usually oscillates, and often parts or the entire cavity are observed to grow and collapse; the average envelope, however, behaves essentially as the boundary of a time-independent flow. ${ }^{3}$

Reliable measurements of cavity shape have been made up to now only for axisymmetric cavities. Data for the principal dimensions of cavities formed behind truncated forms with the apex upstream (disks, cones, hemispheres, semiellipsoids, ogives) have been reported by Reichardt ${ }^{4}$ and Eisenberg and Pond. ${ }^{5}$ Such measurements for cavities about bodies of revolution composed of cylindrical middle bodies and various head shapes have been reported by Rouse and McNown. ${ }^{6}$ Reichardt's data are particularly of interest, since they extend to the lowest cavitation numbers yet attained (as low as 0.013).
For the truncated forms for which the leading edge of the cavity is essentially fixed at the trailing edge of the form (cones, disks), measurements of the principal dimensions can be represented within the experimental error by formulas given by Reichardt. ${ }^{7}$ The ratio of maximum cavity diameter to diameter of disk or base of cone is

$$
\begin{align*}
\frac{d_{m}}{d} & =\sqrt{C_{D}(0) \frac{1+\sigma}{\sigma f}}  \tag{2r-1}\\
f & =1-0.132 \sigma^{\frac{2}{2}} \tag{2r-2}
\end{align*}
$$

where
and values of $C_{D}(0)$ are given in Table $2 \mathrm{r}-1$. The ratio of maximum cavity diameter to cavity length is

$$
\begin{equation*}
\frac{d_{m}}{1}=\frac{(0.066+1.70 \sigma)}{\sigma+0.008} \tag{2r-3}
\end{equation*}
$$

2r-6. Drag in Cavitating Flow. Available data indicate that, for the truncated bodies discussed above, the drag coefficient is a linear function of the cavitation num-

[^87]ber. Available data may be represented by ${ }^{1}$
\[

$$
\begin{equation*}
C_{D}(\sigma)=C_{D}(0)(1+\beta \sigma) \tag{2r-4}
\end{equation*}
$$

\]

where the value of $\beta$ is given in Table $2 \mathrm{r}-1$. This formula can also be used to represent available data for a circular cylinder with its axis normal to the flow. The value of $C_{D}(0)$ for the disk is the average of the extrapolated values of Reichardt ${ }^{2}$ and Eisenberg and Pond. ${ }^{3}$ The results for the cones are from Reichardt; the results for the hemisphere, semiellipsoid, and ogive are from Eisenberg and Pond. In each of these cases, the values of $C_{D}(0)$ are extrapolated from the experimental data from

Table 2r-1. Values of $\beta$ in Eq. 2r-4

| Model | $C_{\text {d }}(0)$ | Range of $\sigma$ | $\beta$ | Reynolds No. |
| :---: | :---: | :---: | :---: | :---: |
| Disk, $h / d=0$. | 0.80 | 0.038-0.56 | 1.0 | $2.6-7.9 \times 10^{5 *}$ |
| Cones: |  |  |  |  |
| $h / d=\frac{1}{4}$ | 0.63 | 0.033-0.125 | 1.0 |  |
| $h / d=\frac{1}{2}$. | 0.5 | 0.032-0.118 | 1.0 |  |
| $h / d=1$. | 0.32 | 0.026-0.069 | 1.0 |  |
| $h / d=2$. | 0.15 | 0.013-0.086 | 1.0 |  |
| Hemisphere. | 0.241 | 0.168-0.38 | 2.024 | $3-8.3 \times 10^{5}$ |
| 2:1 semiellipsoid and 2 caliber ogive. | 0.114 | 0.133-0.394 | 3.65 | $\approx 3-9 \times 10^{5}$ |
| Circular cylinder. . . . . . . | $\approx 0.55$ |  | 0.81 | $2.72 \times 10^{5}$ |
|  |  |  | 0.68 | $1.75 \times 10^{5}$ |
|  |  |  | 0.73 | $2-6 \times 10^{5}$ |

* Phillip Eisenberg and Hartley L. Pond, Water Tunnel Investigations of Steady State Cavities, David Taylor Model Basin, U.S. Navy Dept. Rept. 668, October, 1948.
which the values of $\beta$ were also obtained. The value of $C_{D}(0)$ for the circular cylinder is from a computation of Brodetsky. ${ }^{4}$ The value of $\beta=0.73$ for the circular cylinder is given by Birkhoff ${ }^{5}$ based on experiments of Martyrer. The other values of $\beta$ for the circular cylinder are based on Kanstantinov's ${ }^{6}$ experiments, which show differences depending on Reynolds number (based on cylinder diameter). It should be noted that Kanstantinov's results are for constant Reynolds number, whereas in Martyrer's tests the Reynolds number varied as the cavitation number was varied. There may be a question, however, as to the accuracy of Kanstantinov's results, since the forces were found by integrating pressure distributions rather than by direct measurement.

2r-7. Nonstationary Cavities and Other Topics. A third type of flow which may be defined as part of a general classification of cavitating flows is the "nonstationary" (or "unsteady") cavity. This is a cavity resembling steady-state cavities but varying in time as in the air-water entry of an air-dropped missile or as in the motion of an initially submerged but accelerating body. Although all three are free-boundary

[^88]flows, in the transient cavity, the pressure at the boundary varies with time; in the steady-state cavity, the boundaries are free streamlines; and, in the third, the boundaries are such that the material lines are not necessarily free streamlines. The nomenclature used here was chosen to provide a consistent representation for both the physical phenomena and the corresponding mathematical descriptions. Further discussions of nonstationary cavities and references will be found in Eisenberg ${ }^{1}$ and Birkhoff. ${ }^{1}$

For problems of lift in cavitating flows and of damage produced by cavitation, reference may be made to Eisenberg ${ }^{2}$ and Raven, Feiler, and Jesperson ${ }^{3}$ and the bibliographies therein.

# 2s. Diffusion in Liquids 

L. G. LONGSWORTH<br>Rockefeller Institute for Medical Research

The diffusion coefficient in liquid solutions is defined as the coefficient $D$ in Fick's diffusion equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \tag{2s-1}
\end{equation*}
$$

in which $c$ is the concentration of the solution and $D$ is a function of the concentration. This coefficient is sometimes called the differential value of the diffusion. In the tables of this section it is always these values which are tabulated. The units of $D$ throughout are $\mathrm{cm}^{2} \mathrm{sec}^{-1}$ multiplied by $10^{5}$. The methods employed and the average deviations of the reported data from smooth interpolation curves are indicated by the following abbreviation scheme:
C. conductance ( $\pm 0.2 \%$ )
D. diaphragm cell $( \pm 0.2 \%)$
G. Gouy interference $( \pm 0.1 \%)$
L. Layer analysis $( \pm 0.2 \%)$
R. Rayleigh interference ( $\pm 0.1 \%$ )

[^89]Table 2s-1. Diffusion Coefficients of Dilute Aqueous Solutions of Electrolytes at $25^{\circ} \mathrm{C}$
(Concentration, moles/liter)

| Electrolyte | 0.000 | 0.0006 | 0.001 | 0.002 | 0.003 | 0.005 | 0.007 | 0.010 | Ref. | Method |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LiCl | 1.366 | 1.349 | 1.345 | 1.337 | 1.331 | 1.323 | 1.318 | 1.312 | 10 | C |
| NaCl | 1.612 |  | 1.586 | 1.576 | 1.570 | 1.561 | 1.554 | 1.545 | 10 | C |
| KCl | 1.994 |  | 1.964 | 1.952 | 1.944 | 1.933 | 1.924 | 1.915 | 10 | C |
| RbCl | 2.057 |  | 2.024 | 2.012 | 2.003 | 1.991 | 1.983 | 1.972 | 10 | C |
| CsCl . | 2.046 |  | 2.013 | 2.001 | 1.992 | 1.978 | 1.969 | 1.958 | 10 | C |
| $\mathrm{KNO}_{3}$. | 1.931 |  | 1.899 | 1.887 | 1.879 | 1.866 | 1.856 | 1.844 | 10 | C |
| $\mathrm{AgNO}_{3}$ | 1.767 |  |  |  | 1.720 | 1.708 | 1.699 |  | 10 | C |
| $\mathrm{MgCl}_{2}$ | 1.251 |  | 1.189 | 1.172 | 1.161 |  |  |  | 9 | C |
| $\mathrm{CaCl}_{2}$. | 1.335 |  | 1.249 | 1.224 | 1.206 | 1.180 |  |  | 1 | C |
| $\mathrm{SrCl}_{2}$. | 1.336 |  | 1.269 | 1.249 | 1.236 | 1.219 | 1.210 |  | 8 | C |
| $\mathrm{BaCl}_{2}$. | 1.387 | 1.332 | 1.320 | 1.299 | 1.285 | 1.264 |  |  | 9 | C |
| $\mathrm{Li}_{2} \mathrm{SO}_{4}$. | 1.041 | 1.000 | . 990 | 0.975 | 0.965 | 0.950 |  |  | 2 | C |
| $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | 1.230 |  | 1.175 | 1.159 | 1.145 | 1.124 |  |  |  | C |
| $\mathrm{Cs}_{2} \mathrm{SO}_{4}$ | 1.569 |  | 1.487 | 1.460 | 1.442 | 1.418 |  |  | 7 | C |
| $\mathrm{MgSO}_{4}$ | 0.849 | 0.784 | 0.767 | 0.741 | 0.726 | 0.708 | 0.700 |  | 6 | C |
| $\mathrm{ZnSO}_{4}$ | 0.849 |  | 0.741 | 0.734 | 0.723 | 0.706 |  |  | 3 | C |
| $\mathrm{LaCl}_{3}$. | 1.294 |  | 1.173 | 1.144 | 1.125 | 1.102 | 1.087 |  | 4 | C |
| $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$. | 1.473 |  |  |  | 1.211 | 1.183 |  |  | 5 | C |

## References

1. Harned, H. S., and A. L. Levy: J. Am. Chem. Soc. 71, 2781 (1949).
2. Harned, H. S., and C. A. Blake, Jr.: J. Am. Chem. Soc. 73, 2448 (1951).
3. Harned, H. S., and R. M. Hudson: J. Am. Chem. Soc. 73, 3781 (1951).
4. Harned, H. S., and C. A. Blake, Jr.: J. Am. Chem. Soc. 73, 4255 (1951).
5. Harned, H. S., and R. M. Hudson: J. Am. Chem. Soc. 73, 5083 (1951).
6. Harned, H. S., and R. M. Hudson: J. Am. Chem. Soc. 73, 5880 (1951).
7. Harned, H. S., and C. A. Blake, Jr.: J. Am. Chem. Soc. 73, 5882 (1951).
8. Harned, H. S., and F. M. Polestra: J. Am. Chem. Soc. 75, 4168 (1953).
9. Harned, H. S., and F. M. Polestra: J. Am. Chem. Soc. 76, 2064 (1954).
10. Harned, H. S.: Proc. Natl. Acad. Sci. U.S. 40, 551 (1954).

DIFFUSION IN LIQUIDS
Table 2s-2. Diffusion Coefficients of Concentrated Aqueous Solutions of Electrolytes at $25^{\circ} \mathrm{C}$

| Electrolyte | 0.00 | 0.05 | 0.1 | 0.2 | 0.3 | 0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 5.0 | 6.0 | 8.0 | Ref. | Method |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HCl . | 3.337 | 3.073 | 3.050 | 3.064 | 3.093 | 3.184 | 3.286 | 3.436 | 3.743 | 4.046 | 4.337 | 4.658 | 4.920 | 5.17 |  |  |  | 4 | D |
| LiCl . | 1.366 | 1.280 | 1.269 | 1.267 | 1.269 | 1.278 | 1.288 | 1.302 | 1.331 | 1.363 | 1.397 | 1.430 | 1.464 |  |  |  |  | 4 | D |
| NaCl | 1.612 | 1.506 | 1.484 | 1.478 | 1.477 | 1.474 | 1.475 | 1.483 | 1.495 | 1.514 | 1.529 | 1.544 | 1.559 | 1.584 |  |  |  | 4 | D |
| KCl . | 1.994 | 1.863 | 1.848 | 1.835 | 1.826 | 1.835 | 1.846 | 1.876 | 1.951 | 2.011 | 2.064 | 2.110 | 2.152 |  |  |  |  | 4 | D |
| KCl . |  | 1.864 | 1.847 | 1.839 | 1.839 | 1.850 | 1.865 | 1.892 | 1.943 | 1.999 | 2.057 | 2.112 | 2.160 | 2.204 |  |  |  | 2 | G |
| $\mathrm{NH}_{4} \mathrm{Cl}$ |  |  | 1.838 | 1.836 | 1.841 | 1.861 | 1.883 | 1.921 | 1.986 | 2.051 | 2.113 | 2.164 | 2.203 | 2.235 | 2.264 |  |  | 3 | G |
| HBr . | 3.402 | 3 . 156 | 3.146 | 3.190 | 3.249 | 3.388 | 3.552 | 3.869 |  |  |  |  |  |  |  |  |  | 4 | D |
| LiBr. | 1.377 | 1.300 | 1.279 | 1.285 | 1.296 | 1.328 | 1.360 | 1.404 | 1.473 | 1.542 | 1.597 | 1.650 | 1.693 |  |  |  |  | 4 | D |
| NaBr | 1.627 | 1.533 | 1.517 | 1.507 | 1.515 | 1.542 | 1.569 | 1.596 | 1.629 | 1.668 | 1.702 |  |  |  |  |  |  | 4 | D |
| KBr | 2.017 | 1.892 | 1.874 | 1.870 | 1.872 | 1.885 | 1.917 | 1.975 | 2.062 | 2.132 | 2.199 | 2.280 | 2.354 | 2.434 |  |  |  | 4 | D |
| NaI | 1.616 | 1.527 | 1.520 | 1.532 | 1.547 | 1.580 | 1.612 | 1.662 | 1.751 | 1.846 | 1.925 | 1.992 |  |  |  |  |  | 1 | D |
| KI. | 2.000 | 1.891 | 1.865 | 1.859 | 1.884 | 1.955 | 2.001 | 2.065 | 2.166 | 2.254 | 2.347 | 2.440 | 2.533 |  |  |  |  | 1 | D |
| $\mathrm{LiNO}_{3}$ | 1.337 |  | 1.240 | 1.243 |  | 1.260 |  | 1.293 | 1.317 | 1.332 | 1.336 | 1.332 |  | 1.292 | 1.238 | 1.157 |  | 5 | G |
| $\mathrm{NH}_{4} \mathrm{NO}_{3}$ | 1.928 |  | 1.769 | 1.749 |  | 1.724 |  | 1.690 | 1.661 | 1.633 | 1.605 | 1.578 |  | 1.524 | 1.472 | 1.421 | 1.320 | 5 | G |
| $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ | 1.527 | 0.802 | 0.825 | 0.867 |  | 0.938 |  | 1.011 | 1.047 | 1.069 | 1.088 | 1.106 |  |  |  |  |  | 5 | G |
| $\mathrm{CaCl}_{2}$ | 1.335 |  | 1.110 | 1.111 | 1.118 | 1.140 | 1.166 | 1.203 | 1.263 | 1.307 | 1.306 | 1.265 | 1.195 |  |  |  |  | 3 | G |

[^90]Table 2s-3. Diffusion Coefficients of Aqueous Solutions of Nonelectrolytes at $25^{\circ} \mathrm{C}$
(Gouy interference method)

| Concentration, $p$ $\mathrm{g} / 100 \mathrm{ml}$ | Nonelectrolyte |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Urea | Glycolamide | Glycine | $n$-Butyl alcohol | $\alpha$-Alanine | Sucrose |
| 0.00 | 1.3817 | 1.1423 | 1.0635 | 0.9720 | 0.9145 | 0.5233 |
| 0.25 |  |  | 1.0571 | 0.9610 | 0.9105 |  |
| 0.50 |  | 1.1359 | 1.0507 | 0.9500 | 0.9065 | 0.5194 |
| 0.75 | 1.3720 | 1.1328 | 1.0443 | 0.9390 | 0.9026 | 0.5175 |
| 1.00 | 1.3688 | 1.1296 | 1.0379 | 0.9282 | 0.8987 | 0.5155 |
| 2 | 1.3561 | 1.1171 | 1.0122 | 0.8854 | 0.8834 | 0.5078 |
| 3 | 1.3437 | 1.1047 | 0.9866 | 0.8436 | 0.8686 | 0.5001 |
| 5 | 1.3197 | 1.0804 | 0.9353 | 0.7629 | 0.8405 | 0.4846 |
| 10 | 1.2642 | 1.0222 | . . . . . | . ..... | 0.7787 |  |
| 15 | 1.2151 | 0.9676 | $\ldots .$. |  | 0.7292 |  |
| 20 | 1.1725 | 0.9167 |  |  |  |  |
| 25 | 1.1363 | 0.8694 |  |  |  |  |
| 30 |  | 0.8257 |  |  |  |  |
| Ref. | 3 | 1 | 5 | 6 | 4 | 2 |

The data from which this table was prepared may be represented analytically as follows:

Urea: $\quad D \times 10^{5} \pm 0.05 \%=1.3817-0.01304 p+0.0001288 p^{2}$ for $p \leq 25$
Glycolamide: $\quad D \times 10^{5} \pm 0.08 \%=1.1423-0.01274 p+0.0000729 p^{2}$ for $p \leq 30$
Glycine: $\quad D \times 10^{5} \pm 0.08 \%=1.0635-0.02563 p \quad$ for $p \leq 5$
$n$-Butyl alcohol: $D \times 10^{5} \pm 0.03 \%=0.9720-0.04430 p+0.000496 p^{2} \quad$ for $p \leq 5$
$\alpha$-Alanine: $\quad D \times 10^{5} \pm 0.09 \%=0.9145-0.01603 p+0.0002449 p^{2}$ for $p \leq 15$
Sucrose: $\quad D \times 10^{5} \pm 0.04 \%=0.5233-0.007745 p \quad$ for $p \leq 5$

## References

1. Dunlop, P. J., and L. J. Gosting: J. Am. Chem. Soc. 75, 5073 (1953).
2. Gosting, L. J., and M. S. Morris: J. Am. Chem. Soc. 71, 1998 (1949).
3. Gosting, L. J., and D. F. Akeley: J. Am. Chem. Soc. 74, 2058 (1952).
4. Gutter, F. J., and G. Kegeles: J. Am. Chem. Soc. 75, 3893 (1953).
5. Lyons, M. S., and J. V. Thomas: J. Am. Chem. Soc. 72, 4506 (1950).
6. Lyons, P. A., and C. L. Sandquist: J. Am. Chem. Soc. 75, 3896 (1953).

Table 2s-4. Diffusion of Organic Compounds in Dilute Aqueous
Solution at $25^{\circ} \mathrm{C}^{*}$

| Compound | Wt. \% | $D \times 10^{5}$ | Compound | Wt. \% | $D \times 10^{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Methyl alcohol | 0.00 | $1.587 \dagger$ | Glycylglycylglycine . | 0.29 | 0.6652 |
| Ethyl alcohol | 0.00 | $1.24{ }_{8} \dagger$ | Leucylglycylglycine | 0.30 | 0.5507 |
| Propyl alcohol | 0.59 | $1.02{ }_{2} \dagger$ | $o$-Aminobenzoic acid | 0.24 | 0.840 |
| Isopropyl alcohol. | 0.59 | $1.02{ }_{0} \dagger$ | $m$-Aminobenzoic acid | 0.24 | 0.774 |
|  |  |  | $p$-Aminobenzoic acid | 0.23 | 0.842 |
| Butyl alcohol. | 0.49 | $0.95{ }_{2} \dagger$ |  |  |  |
| Isobutyl alcohol | 0.49 | $0.93{ }_{3} \dagger$ | Proline. | 0.32 | 0.8789 |
| Sec. isobutyl alcohol | 0.49 | $0.92{ }_{2} \dagger$ |  |  |  |
| Tert. isobutyl alcohol | 0.47 | $0.87{ }_{9} \dagger$ | Hydroxyproline. | 0.32 | 0.8255 |
| Glycine. | 0.30 | 1.0554 | Histidine. . . . . . . . . . . . | 0.28 | 0.7328 |
| Glycolamide. | 0.30 | $1.1385 \ddagger$ |  |  |  |
|  |  |  | Phenylalanine. | 0.25 | 0.7047 |
| $\alpha$-Alanine | 0.32 | 0.9097 |  |  |  |
| $\beta$-Alanine | 0.31 | 0.9327 |  | 0.23 | 0.6592 |
| Sarcosine | 0.32 | 0.9674 |  |  |  |
|  |  |  | $d(-)$ Ribose | 0.41 | 0.7769 |
| Serine . . . . . . . . . . . . . . | 0.31 | 0.8802 | $l(+)$ Arabinose | 0.39 | 0.7599 |
|  |  |  | $d(-)$ Lyxose | 0.40 | 0.7591 |
| $\alpha$-Aminobutyric acid. | 0.31 | 0.8288 | $d(+)$ Xylose | 0.40 | 0.7462 |
| $\beta$-Aminobutyric acid | 0.32 | 0.8367 |  |  |  |
| $\gamma$-Aminobutyric acid. | 0.32 | 0.8259 | $d(-)$ Levulose | 0.39 | 0.6944 |
| $\alpha$-Amino isobutyric acid . | 0.32 | 0.8130 | $d(+)$ Mannose | 0.39 | 0.6875 |
|  |  |  | $l(-)$ Sorbose. | 0.39 | 0.6791 |
| Threonine. | 0.32 | 0.7984 | $d(+)$ Dextrose | 0.39 | 0.6728 |
|  |  |  | $d(+)$ Galactose . . . . . . . . . | 0.38 | 0.6655 |
| Valine | 0.31 | 0.7725 |  |  |  |
| Norvaline. | 0.32 | 0.7682 | $\begin{aligned} & d(+) \text { Sucrose } \ldots . \\ & d(+) \text { Lactose } \cdot \mathrm{H}_{2} \mathrm{O} \end{aligned}$ | 0.39 | 0.5209 |
|  |  |  |  | 0.40 | 0.5076 |
| Leucine | 0.32 | 0.7255 | $d(+)$ Cellobiose | 0.38 | 0.5039 |
| Norleucine. | 0.32 | 0.7249 | $\begin{aligned} & d(+) \text { Melibiose } \cdot 2 \mathrm{H}_{2} \mathrm{O} \ldots \\ & d(+) \text { Maltose } \cdot \mathrm{H}_{2} \mathrm{O} \ldots \ldots \end{aligned}$ | $\begin{aligned} & 0.41 \\ & 0.40 \end{aligned}$ | $\begin{aligned} & 0.5022 \\ & 0.4929 \end{aligned}$ |
|  |  |  |  |  |  |
| Asparagine . . . . . . . . . . | 0.29 | 0.8300 |  |  |  |
| Glycylglycine. . . . . . . . . | 0.29 | 0.7909 | $d(+)$ Melezitose $\cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$. <br> $d(+)$ Raffinose $\cdot \mathbf{5} \mathrm{H}_{2} \mathrm{O} \ldots$ | $\begin{aligned} & 0.40 \\ & 0.45 \end{aligned}$ | $\begin{aligned} & 0.4478 \\ & 0.4339 \end{aligned}$ |
|  |  |  |  |  |  |
| Glutamine | 0.34 | 0.7623 |  |  |  |
| Glycylalanine. | 0.30 | 0.7221 | Cycloheptaamylose..... <br> Bovine plasma albumin | 0.39 | 0.3224 |
| Alanylglycine. | 0.30 | 0.7207 |  |  |  |
|  |  |  |  | 0.25 | 0.0670 |
| Glycylleucine. | 0.29 | 0.6231 |  |  |  |
| Leucylglycine | 0.31 | 0.6129 |  |  |  |

[^91]Table 2s-5. Diffusion Coefficients in Aqueous Solution at Different Temperatures

| Solute | $\left\|\begin{array}{c} \mathrm{Wt} . \\ \% \end{array}\right\|$ | $5^{\circ} \mathrm{C}$ | $15^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $35^{\circ} \mathrm{C}$ | $45^{\circ} \mathrm{C}$ | $55^{\circ} \mathrm{C}$ | Ref. | Method |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}^{+}$. | 0.00 | 6.208 | 7.737 | 9.313 | 10.919 | 12.538 | 14.150 | 2 | * |
| $\mathrm{Li}^{+}$. | 0.00 | 0.5654 | 0.7769 | 1.0286 | 1.3197 | 1.6483 | 2.0142 | 2 |  |
| $\mathrm{Na}^{+}$ | 0.00 | 0.7524 | 1.0218 | 1.3349 | 1.6928 | 2.0959 | 2.5439 | 2 |  |
| $\mathrm{K}^{+}$ | 0.00 | 1.1604 | 1.5335 | 1.9565 | 2.4265 | 2.9403 | 3.4943 | 2 |  |
| $\mathrm{Cl}^{+}$. | 0.00 | 1.1796 | 1.5801 | 2.0324 | 2.5368 | 3.0935 | 3.7031 | 2 |  |
| $\mathrm{Br}^{+}$ | 0.00 | 1.2233 | 1.6259 | 2.0808 | 2.5869 | 3.1426 | 3.7465 | 2 |  |
| $\mathrm{I}^{-}$. | 0.00 | 1.2066 | 1.6007 | 2.0457 | 2.5409 | 3.0850 | 3.6762 | 2 |  |
| $\mathrm{Ca}^{++}$ | 0.00 |  | 0.6043 | 0.7919 | 1.0078 | 1.2528 |  | 1 |  |
| $\mathrm{H}^{1} \mathrm{H}^{2} \mathrm{O}^{16}$ | 0.00 | 1.294 | 1.743 | 2.261 |  |  |  | 3 | R |
| Urea | 0.38 | 0.790 | 1.063 | 1.377 | 1.731 |  |  | 3 | R |
| Glycine. | 0.30 | 0.593 | 0.806 | 1.054 | 1.337 |  |  | 3 | R |
| Alanine. | 0.32 | 0.500 | 0.688 | 0.909 | 1.164 |  |  | 3 | R |
| Dextrose. | 0.38 | 0.3640 | 0.5038 | 0.6713 | 0.867 |  |  | 3 | R |
| Cycloheptaamylose.. | 0.38 | 0.1738 | 0.2418 | 0.3225 | 0.4160 |  |  | 3 | R |
| Bovine plasma albumin. | 0.25 | 0.0356 | 0.0493 | 0.0657 |  |  |  | 3 | R |

* $D$ for ions computed from ionic conductances $\lambda$, with the aid of the relation $D=R T \lambda / Z F^{2}$, where
 equivalent.

$$
D_{\text {salt }}=\frac{\left(Z_{+}+Z_{-}\right) D_{+} D_{-}}{Z_{+} D_{+}+Z_{-} D_{-}}
$$

Since the Stokes radius $r_{s}=k T / 6 \pi \eta D$ varies but little with temperature, a plot of $r_{s}$ vs. $t$ affords precise interpolation. Here $k=1.3712 \times 10^{-8} \mathrm{erg} / \mathrm{degree}$, and $\eta$ is the viscosity of the solvent in poises.

## References

1. Benson, G. C., and A. R. Gordon: J. Chem. Phys. 13, 470 (1945).
2. Harned, H. S., and B. B. Owen: "Physical Chemistry of Electrolytic Solutions," 2d ed., p. 590, Reinhold Publishing Corporation, New York, 1950.
3. Longsworth, L. G.: J. Phys. Chem. 58, 770 (1954).

Table 2s-6. Diffusion Coefficients in Nonaqueous Solutions

| Solvent | Solute | Conen., moles/liter | $\begin{gathered} t, \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $D \times 10^{5}$ | Ref. | Method |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hexane. . | Iodine | 0.00 | 25 | 4.05 |  |  |
| Heptane............. | Iodine | 0.00 | 25 | 3.42 | 4 | D |
| Carbon tetrachloride. | Iodine | 0.00 | 25 | 1.50 | 4 | D |
| Carbon tetrachloride. | Carbon tetrabromide | 0.00 | 25 | 1.074 | 2 | R |
| Dioxane. | Iodine | 0.00 | 25 | 1.07 | 4 | D |
| Benzene. | Iodine | 0.00 | 25 | 2.13 | 4 | D |
| Benzene. | Diphenyl | 0.00 | 25 | 1.558 | 4 3 | ${ }_{\text {G }}$ |
| Benzene. | Diphenyl | 0.00 | 35 | 1.847 | 3 | G |
| Toluene... | Iodine | 0.00 | 25 | 2.13 | 4 | D |
| $m$-Xylene.. | Iodine | 0.00 | 25 | 1.89 | 4 | D |
| Mesitylene. | Iodine | 0.00 | 25 | 1.49 | 4 | D |
| Tetrachlorethane (sym.) . | Tetrabromethane (sym.) | 0.03 | 0.44 | 0.351 | 1 | L |
| Tetrachlorethane (sym.) . | Tetrabromethane (sym.) | 0.03 | 7.70 | 0.419 | 1 | L |
| Tetrachlorethane (sym.). | Tetrabromethane (sym.) | 0.03 | 15.00 | ${ }^{0.496}$ | 1 | L |
| Tetrachlorethane (sym.). | Tetrabromethane (sym.) | 0.03 | 25.00 | 0.611 | 1 | L |
| Tetrachlorethane (sym.). | Tetrabromethane (sym.) | 0.03 | 35.61 | 0.741 | 1 | L |
| Tetrachlorethane (sym.). | Tetrabromethane (sym.) | 0.03 | 51.10 | 0.954 | 1 | L |

## References

1. Cohen, E., and H. R. Bruin: Z. physik. Chem. 103, 404 (1923).
2. Longsworth, L. G.: previously unpublished data.
3. Sandquist, C. L., and P. A. Lyons: J. Am. Chem. Soc. 76, 4641 (1954).
4. Stokes, R. H., P. J. Dunlop, and J. R. Hall: Trans. Faraday Soc. 49, 886 (1953).

## 2t. Liquid Jets

W. L. NYBORG<br>Brown University

2t-1. Circular Jet. We first deal with the laminar flow due to a circular jet of viscous fluid issuing from a point orifice into a space filled with the same fluid.

## Symbols

$$
\begin{array}{ll}
J & \text { momentum crossing a plane normal to the axis of the jet per second } \\
u, v & x, y \text { components, respectively, of fluid velocity in the jet } \\
x & \text { distance parallel to the axis of the jet } \\
y & \text { distance perpendicular to the axis of the jet } \\
\rho & \text { fluid density } \\
\nu & \text { kinematic viscosity of the fluid }
\end{array}
$$

The flow-velocity components in the jet are given by the following formulas due to Schlichting ${ }^{1}$
wisere

$$
\begin{gather*}
u=\frac{3}{8 \pi} \frac{K}{\nu x} \frac{1}{\left(1+\epsilon^{2} / 4\right)^{2}}  \tag{2t-1}\\
v=\frac{1}{4} \sqrt{\frac{3 K}{\pi}} \frac{1}{x} \frac{\epsilon\left(1-\epsilon^{2} / 4\right)}{\left(1+\epsilon^{2} / 4\right)^{2}} \\
\epsilon=\frac{1}{4} \sqrt{\frac{3 K}{\pi} \frac{1}{\nu} \frac{y}{x}}  \tag{2t-2}\\
K=\frac{J}{\rho}
\end{gather*}
$$

The formulas (2t-1) have been checked experimentally by Andrade and Tsien, ${ }^{2}$ who found good agreement between the theory and experimental results for a jet of finite


Fig. 2t-1. Streamlines for a circular jet from a point orifice.
radius $a$ at a distance of 8 jet diameters or more from the orifice, provided the $x$ in ( $2 \mathrm{t}-1$ ) is given by

$$
\begin{equation*}
x=x_{o}+0.16 u_{o} \frac{a^{2}}{\nu} \tag{2t-3}
\end{equation*}
$$

where $x_{0}$ is the actual distance to the real orifice, and $x$ may be interpreted as the distance to an effective point orifice upstream from the real one.
Figure $2 \mathrm{t}-1$ shows a family of streamlines for a circular jet from a point orifice plotted from Eq. (2t-1). (For reasons of clarity the figure is expanded in the $y$ direction.) Typical velocity profiles (plots of $u$ vs. $y$ ) are also given for two distances $x$ from the orifice.
${ }^{1}$ L. Schlichting, Z. angew. Math. Mech. 13, 260 (1933).
${ }^{2}$ E. N. da C. Andrade and L. C. Tsien, Proc. Phys. Soc. (London) 49, 381 (1937).

2t-2. Plane Jet. Laminar flow due to a plane jet of viscous fluid issuing from a line orifice into a space filled with the same fluid is described by the following formulas
where

$$
\begin{align*}
& u=0.4543\left(\frac{K^{2}}{\nu x}\right)^{\frac{1}{3}} \operatorname{sech}^{2} \epsilon \\
& v=0.5503\left(\frac{K \nu}{x^{2}}\right)^{\frac{1}{2}}\left(2 \epsilon \operatorname{sech}^{2} \epsilon-\tanh \epsilon\right) \tag{2t-4}
\end{align*}
$$

$$
\begin{aligned}
\epsilon & =0.2751\left(\frac{K}{\nu^{2}}\right)^{\frac{1}{3}} y x^{-\frac{1}{2}} \\
K & =\frac{J}{\rho}
\end{aligned}
$$

Here $x$ is distance from the line source, measured parallel to the plane of symmetry of the jet and $y$ is measured normal to this plane; all other symbols have meanings analogous to those used in Eq. (2t-1). This theoretical result due to Bickley ${ }^{1}$ has been checked experimentally by Andrade ${ }^{2}$ and found to be valid for jets from slits of finite width $w$, provided that $x$ in Bickley's formula is given by

$$
\begin{equation*}
x=x_{o}+\frac{0.65 K w}{v \nu} \tag{2t-5}
\end{equation*}
$$

# 2u. Density of Gases at Standard Temperature and Pressure 

ROBERT LINDSAY

Trinity College

2u-1. Introduction. The normal density of a gas is defined as the mass per unit volume under standard conditions. Standard conditions are defined to be a temperature of $0^{\circ} \mathrm{C}$ and a pressure of 760 mm of mercury (at $0^{\circ} \mathrm{C}$ and sea level in a latitude of $45^{\circ}$ ). The conventional absolute units are grams per liter, grams per cubic centimeter, and grams per milliliter. In this compilation the unit $g$ /liter will be used and will be symbolized by $d$.

2u-2. Methods of Measurement. Several methods have been utilized to measure densities of gases. In the so-called direct method a mass determination is made of the amount of gas occupying a known volume in a glass flask. This method and various refinements on it were used by the early workers in the field such as Ramsay, Leduc, Rayleigh, and Morley (ref. 1). The buoyancy-type balance is a more recent development (ref. 2). In this method a balance assembly is enclosed within a gastight chamber. The pressure of the gas in the chamber is adjusted until the system is in equilibrium. Dry purified air is then admitted to the chamber after the gas has been flushed out and a new equilibrium point obtained. The specific gravity of the gas with respect to the air can then be determined. For extreme accuracy a correc-
${ }^{1}$ W. G. Bickley, Phil. Mag. 23, 727 (1937).
${ }^{2}$ E. N. da C. Andrade, Proc. Phys. Soc. (London) 51, 784 (1939).
tion for the compressibility factor (deviation from ideal behavior) for both the air and the unknown gas must be made. Descriptions of these and other methods for determining the densities of gases are included in refs. 1 and 2.

2u-3. Reliability. The reliability of the density measurements tabulated is variable. The following compilation has not been evaluated for extreme accuracy. In some instances the values recorded are taken from the tables of Landolt and Börnstein (ref. 3), who have recalculated original data. These recalculations were undertaken in cases where better values for certain contributing factors such as the density of water, the acceleration of gravity, and coefficients of expansion of mercury and glass became known subsequent to the date of original data. In such cases the original experimental reference is given as well as a notation indicating the compilation from which it was taken. For a good general critique of the philosophy to be employed in examining groups of experimental data, reference is made to Timmermans (ref. 4). Unless otherwise noted it is felt that the values can be considered accurate in the next to last place.

## References

1. Reilly, J., and W. N. Rae: "Physico-Chemical Methods," vol. II, p. 52, D. Van Nostrand Company, Inc., New York, 1939.
2. Bauer, N.: "Encyclopedia of Chemical Technology," vol. 4, p. 890, Interscience Publishers, Inc., New York, 1949.
3. Landolt-Börnstein, "Physikalisch-Chemische Tabellen," 5th ed. and suppl., Springer-Verlag OHG, Berlin, 1927.
4. Timmermans, J.: "Physico-Chemical Constants of Pure Organic Compounds," Elsevier Press, Inc., New York, 1950.
5. "International Critical Tables," McGraw-Hill Book Company, Inc., New York, 1928.
6. Mellor, J. F.: "Comprehensive Treatise of Inorganic and Theoretical Chemistry," Longmans, Green \& Co., Inc., New York, 1921.
7. Simons, J. H., ed.: "Fluorine Chemistry," Academic Press, Inc., New York, 1950. Standard reference works which have data on the density of gases are refs. 3 to 7 .
Table 2u-1. Density of Elementary Gases under Standard Conditions ( $t=0^{\circ} \mathrm{C}$; pressure $=760 \mathrm{~mm}$ of mercury)

| Gas | Formula | $d, \mathrm{~g} /$ liter | Year | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| Air. | Dry $\mathrm{CO}_{2}$-free atmospheric air | 1.29284 | 1927 | 1 |
| Argon. | A | 1.78364 | 1928 | 2 |
| Chlorine. | $\mathrm{Cl}_{2}$ | 3.214 | 1913 | 3 |
| Deuterium. | $\mathrm{D}_{2}$ | 0.1796 | 1948 | 4 |
| Fluorine. | $\mathrm{F}_{2}$ | 1.696 | 1904 | 5 |
| Helium. | He | $0.17846_{7}$ | 1940 | 6 |
| Hydrogen. . | $\mathrm{H}_{2}$ | 0.089888 | 1948 | 7 |
| Krypton.. | Kr | 3.743 | 1934 | 8 |
| Neon.... | Ne | 0.89990 | 1928 | 2 |
| Nitrogen. | $\mathrm{N}_{2}$ | 1.25036 | 1926 | 9 |
| Oxygen. . | $\mathrm{O}_{2}$ | 1.42896 | 1926 | 9 |
| Radon. | Ra | 9.96 | 1910 | 10 |
| Xenon. | Xe | 5.896 | 1934 | 11 |

## References for Table 2u-1

1. Landolt-Börnstein: "Physikalisch-Chemische Tabellen," 5th ed., 1st suppl., p. 160, Springer-Verlag OHG, Berlin, 1927 (based on a value at sea level at Barcelona, Spain, determined by C. O. E. Moles and M. Paya).
2. Baxter, G. P., and H. W. Starkweather: Proc. Natl. Acad. Sci. 14, 57 (1928).
3. Jaquerod, A., and M. Tourpaian: J. chim. phys. 11, (2) 269 (1913).
4. Calculated value from formula given in H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Natl. Bur. Standards 41, 379 (1948).
5. Moissan, H.: Compt. rend. 138, 728 (1904).
6. Baxter, G. P., and H. W. Starkweather: Proc. Natl. Acad. Sci. U.S. 12, 20 (1926); recalculated by W. H. Keesom, "Helium," p. 27, Elsevier Press, Inc., New York, 1940.
7. Woolley, H. W., R. B. Scott, and F. G. Brickwedde: ref. 4 (value used in their correlation).
8. Heuse, W., and J. Otto: Phys. Z. 35, 57 (1934).
9. Baxter, G. P., and H. W. Starkweather: Proc. Natl. Acad. Sci. U.S. 12, 703 (1926).
10. Ramsay, W., and R. W. Gray: Compt. rend. 151, 126 (1910); recalculated by editors of Landolt-Börnstein, 5th ed., 1st suppl., p. 162, Springer-Verlag OHG, Berlin, 1927.
11. Heuse, W., and J. Otto: Phys. Z. 35, 628 (1934).

Table 2u-2. Density of Selected Inorganic Gases under Standard Conditions
( $t=0^{\circ} \mathrm{C}$; pressure $=760 \mathrm{~mm}$ of mercury)

| Gas | Formula | $d$, $\mathrm{g} / \mathrm{liter}$ | Year | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| Ammonia | $\mathrm{NH}_{3}$ | 0.77126 | 1933 | 1 |
| Antimony hydride (stibine) | $\mathrm{SbH}_{3}$ | $5.30\left(15^{\circ} \mathrm{C}, 754 \mathrm{~mm}\right)$ | 1904 | 2 |
| Arsenic trihydride (arsine). | $\mathrm{AsH}_{3}$ | 3.48 | 1826 | 3 |
| Boron trifluoride. | $\mathrm{BF}_{3}$ | 3.065 | 1933 | 4 |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | 1.9769 | 1938 | 5 |
| Carbon monoxide. | CO | 1.25004 | 1932 | 6 |
| Carbon tetrafluoride | $\mathrm{CF}_{4}$ | 3.94 | 1932 | 7 |
| Carbonyl sulfide. | COS | 2.721 | 1901 | 8 |
| Chlorine fluoride. | CIF | 2.425 | 1928 | 9 |
| Disilicane. | $\mathrm{Si}_{2} \mathrm{H}_{6}$ | 2.85 | 1916 | 10 |
| Freon-12. | $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ | 5.083 | 1932 | 29 |
| Germanium tetrafluoride | $\mathrm{GeF}_{4}$ | 6.650 | 1932 | 11 |
| Hydrogen chloride. | HCl | 1.6392 | 1909 | 12 |
| Hydrogen bromide. | HBr | 3.6443 | 1925 | 13 |
| Hydrogen iodide. | HI | 5.7888 | 1927 | 14 |
| Hydrogen selenide. | $\mathrm{H}_{2} \mathrm{Se}$ | 3.6643 | 1924 | 16 |
| Hydrogen sulfide. | $\mathrm{H}_{2} \mathrm{~S}$ | 1.5392 | 1932 | 15 |
| Hydrogen telluride | $\mathrm{H}_{2} \mathrm{Te}$ | 5.76 | 1900 | 17 |
| Nitric oxide. | NO | 1.3402 | 1914 | 18 |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 1.9804 | 1931 | 19 |
| Nitrosyl chloride. | NOCl | 2.9919 | 1912 | 20 |
| Oxygen difluoride. | $\mathrm{OF}_{2}$ | 2.421 | 1932 | 27 |
| Phosphorus hydride (phosphine). | $\mathrm{PH}_{3}$ | 1.5307 | 1930 | 21 |
| Phosphorus oxyfluoride. | $\mathrm{POF}_{3}$ | 4.8 | 1886 | 22 |
| Phosphorus pentafluoride. | $\mathrm{PF}_{5}$ | 5.80 | 1906 | 23 |
| Phosphorus trifluoride. | $\mathrm{PF}_{3}$ | 3.922 | 1922 | 24 |
| Selenium hexafluoride. | $\mathrm{SeF}_{6}$ | 8.687 | 1932 | 7 |
| Silicon hydride | $\mathrm{SiH}_{4}$ | 1.44 | 1916 | 10 |
| Silicon tetrafluoride. | $\mathrm{SiF}_{4}$ | 4.684 | 1917 | 25 |
| Sulfur dioxide. | $\mathrm{SO}_{2}$ | 2.9262 | 1914 | 26 |
| Sulfur hexafluoride. | $\mathrm{SF}_{6}$ | 6.602 | 1930 | 28 |
| Tellurium hexafluoride. | TeF6 | 10.915 | 1932 | 7 |

## References for Table 2u-2

1. Dietrichson, G., L. J. Bircher, and J. J. O'Brien: J. Am. Chem. Soc. 55, 1 (1933)
2. Stock, A., and O. Guttman: Ber. deut. chem. Ges. 37, 885 (1904).
3. Dumas: Ann. chim. et phys. 33, 337 (1826).
4. Fischer, W., and W. Wiedemann: Z. anorg. u. allgem. Chem. 213, 106 (1933).
5. Moles, C. O. E., and A. Escribano; Compt. rend. 207, 66 (1938).
6. Moles, C. O. E., and M. T. Salazar: Anales soc. españ. fís. quím. 30, 182 (1932).
7. Klemm, W., and P. Henkel: Z. anorg. u. allgem. Chem. 207, 75 (1932).
8. Hempel, W., Z. angew. Chem. 14, 866 (1901).
9. Ruff, O., E. Ascher, and F. Laass; Z. anorg. u. allgem. Chem. 176, 258 (1928).
10. Stock, A., and C. Somieski: Ber. deut. chem. Ges. 49, 111 (1916).
11. Biltz, W., L. LeBoucher, and W. Fischer: Z. anorg. u. allgem. Chem. 207, 67 (1932).
12. Gray, R. W., and F. P. Burt: J. Chem. Soc. 95, 1633 (1909) (recalculated by C. O. E. Moles; see Landolt-Börnstein, 5th ed., 1st suppl., p. 161).
13. Moles, C. O. E.: Z. physik. Chem. 115, 61 (1925).
14. Landolt-Börnstein, "Physikalisch-Chemische Tabelen," 5th ed., 1st suppl., p. 162, Springer-Verlag OHG, Berlin, 1927 (based on a value reported to editors by C. O. E. Moles and R. Miravelles).
15. Klemenc, A., and O. Bankowski: Z. anorg. u. allgem. Chem. 208, 348 (1932).
16. Bruylants, P., F. Lafortune, and L. Verbruggen: Bull. soc. chim. Belges 33, 587 (1927).
17. Ernyei, E.: Z. anorg. Chem. 25, 317 (1900) (recalculated by editors of LandoltBörnstein, 5th ed., 3d suppl., p. 248).
18. Scheuer, O.: Wien. Ber. 123 (2a), 1 (1914).
19. Batuecas, T.: Z. physik. Chem. (Bodenstein volume) 78, (1931).
20. Wourtzel, E.: Compt. rend. 34, 155 (1912).
21. Ritchie, M.: Proc. Roy. Soc. (London), ser. A, 128, 551 (1930).
22. Moissan, H.: Compt. rend. 102, 1245 (1886).
23. Moissan, H.: Compt. rend. 138, 789 (1906) (recalculated by editors of LandoltBörnstein, 5th ed., 1st suppl., p. 162).
24. Ebel, F., and E. Bretscher: Helv. Chim. Acta 12, 450 (1929).
25. Germann, A. F. O., and H. S. Booth: J. Phys. Chem. 21, 81 (1917).
26. Scheuer, O.: Wien Ber. 123 (2a), 1 (1914) [recalculated by C. O. E. Moles, Rec. trav. chim. 48, 864 (1929)].
27. Ruff, O., W. Menzel, and W. Neumann: Z. anorg. u. allgem. Chem. 208, 294 (1932).
28. Schumb, W. C., and E. L. Gamble: J. Am. Chem. Soc. 52, 4302 (1930).
29. Booth, H. S., and K. S. Wilson: Ind. Eng. Chem., Anal. Ed. 4, 427 (1932).

Table 2u-3. Density of Selected Organic Gases under Standard Conditions

$$
\left(t=0^{\circ} \mathrm{C} ; \text { pressure }=760 \mathrm{~mm} \text { of mercury }\right)
$$

| Gas | Formula | $d, \mathrm{~g} /$ liter | Year | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| Acetylene. | $\mathrm{C}_{2} \mathrm{H}_{2}$ | 1.17910 | 1920 | 1 |
| $n$-Butane. | $n-\mathrm{C}_{4} \mathrm{H}_{10}$ | 2.5185 (710 mm) | 1930 | 2 |
| iso-Butane. | iso- $\mathrm{C}_{4} \mathrm{H}_{10}$ | 2.673 | 1909 | 3 |
| Ethane. | $\mathrm{C}_{2} \mathrm{H}_{6}$ | 1.3562 | 1909 | 4 |
| Ethylene. | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 1.26036 | 1938 | 5 |
| Methane. | $\mathrm{CH}_{4}$ | 0.7168 | 1909 | 4 |
| Methyl amine. | $\mathrm{CH}_{3} \mathrm{NH}_{2}$ | 1.396 | 1910 | 6 |
| Methyl bromide. | $\mathrm{CH}_{3} \mathrm{Br}$ | $3.9739\left(25^{\circ} \mathrm{C}\right)$ | 1938 | 7 |
| Methyl chloride. | $\mathrm{CH}_{3} \mathrm{Cl}$ | 2.3075 | 1926 | 8 |
| Methyl fluoride. | $\mathrm{CH}_{3} \mathrm{~F}$ | 1.5451 | 1920 | 9 |
| Propane. | $\mathrm{C}_{3} \mathrm{H}_{8}$ | 2.02000 | 1920 | 10 |
| Propene. | $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}$ | 1.9149 | 1934 | 11 |

## References for Table 2u-3

1. Stahrfoss, R.: J. Chim. phys. 16, 175 (1918).
2. Beckers, M.: Bull. soc. chim. Belges 39, 470 (1930).
3. Ouedinoff: Bull. soc. chim. France 23, 266 (1909).
4. Baume, G., and F. L. Perrot: J. chim. phys. 7, 369 (1909); Compt. rend. 148, 39 (1909).
5. Moles, C. O. E., M. T. Toral, and A. Escribano: Compt. rend. 207, 1044 (1938).
6. Muller, J. A.: Ann. chim. et phys. 20, 116 (1910).
7. Egan, C. J., and J. D. Kemp: J. Am. Chem. Soc. 60, 2097 (1938).
8. Batuecas, T.: Anales soc. españ. fis. quim. 24, 528 (1926).
9. Moles, C. O. E., and T. Batuecas: J. chim. phys. 18, 353 (1920).
10. Timmermans, J.: J. chim. phys. 18, 133 (1920).
11. Batuecas, T.: J. chim. phys. 31, 165 (1934).

# 2v. Viscosity of Gases 

J. KESTIN<br>Brown University

2v-1. Definitions. The viscosity of a fluid is defined in relation to a macroscopic system which is 'assumed to possess the properties of a continuum. To obtain an elementary definition of viscosity (Fig. $2 \mathrm{v}-1$ ) consider two infinite flat plates, $a$ at rest and $b$ moving at a constant velocity $u$, the space between them being filled with the fluid under consideration. In the resulting shear flow the velocity distribution is linear with a constant transverse gradient $d u / d y$. It is assumed (Newton's law of fluid friction) that the shearing stress $\tau_{0}$ at either wall is proportional to the velocity gradient

$$
\begin{equation*}
\tau_{0}=\mu \frac{d u}{d y} \tag{2v-1}
\end{equation*}
$$

The coefficient of proportionality $\mu$ is known as the viscosity, or more precisely, as the dynamic or absolute viscosity of the fluid. The various units of viscosity and their conversion factors are given in Table $2 \mathrm{v}-1$.

The ratio

$$
\begin{equation*}
\nu=\frac{\mu}{\rho} \tag{2v-2}
\end{equation*}
$$

is known as the kinematic viscosity; the respective units and conversion factors are given in Table $2 \mathrm{v}-2$.
Table 2v-1. Absolute Viscosity $\mu$; Units and Conversion Factors

| * | $\mathrm{kg} \mathrm{sec} / \mathrm{m}^{2}$ | $\mathrm{kg} \mathrm{hr} / \mathrm{m}^{2}$ | $\mathrm{g}^{* / \mathrm{cm} \mathrm{sec}}$ (poise) | kg*/m hr | $\mathrm{lb} \mathrm{sec/ft}{ }^{\text {2 }}$ | $\mathrm{lb} \mathrm{hr} / \mathrm{ft}^{2}$ | lb*/ft sec |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{kg} \mathrm{sec} / \mathrm{m}^{2}$. | 1 | $277.8 \times 10^{-6}$ | 98.1 | $3.5316 \times 10^{4}$ | 0.2048 | $56.89 \times 10^{-6}$ |  |
| kg ${ }^{\text {c }} \mathrm{hr} / \mathrm{m}^{2}$. | 3,600 | 1 | $0.3316 \times 10^{6}$ | $127.1 \times 10^{6}$ | 737.28 | 0.2048 | $2.373 \times 104$ |
| $\mathrm{g}^{*} / \mathrm{cm}$ sec (poise). | 0.01019 | $2.833 \times 10^{-6}$ | 1 | 360 | $2.088 \times 10^{-3}$ | $0.58 \times 10^{-6}$ | 0.08721 |
| $\mathrm{kg} * / \mathrm{mhr}$. | $2.831 \times 10^{-5}$ | $7.8655 \times 10^{-9}$ | $2.788 \times 10^{-8}$ | 1 | $5.798 \times 10^{-8}$ | $1.6107 \times 10^{-9}$ | $0.1866 \times 10^{-3}$ |
| $\mathrm{lb} \mathrm{sec/ft}{ }^{2}$. | 4.882 | $1.356 \times 10^{-3}$ | 478.96 | $0.1724 \times 10^{6}$ | 1 | $277.7 \times 10^{-6}$ | 32.185 |
| $\mathrm{lb} \mathrm{hr/ft}{ }^{2}$... | $1.7578 \times 10^{4}$ | 4.882 | $1.7244 \times 10^{6}$ | $620.8 \times 10^{6}$ | 3,600 | 1 | $11.587 \times 10^{4}$ |
| lb */ft sec.. | 0.1517 | $42.139 \times 10^{-6}$ | 14.882 | $5.358 \times 10^{3}$ | 0.03107 | $8.631 \times 10^{-6}$ | 1 |

From British Standard Code B.S. 1042: 1943 amended March, 1946.

* Asterisks denote mass units. For more extensive tables see Hawkins, Solberg, and Sibbitt, Power Plant Eng. 45, 62 (November, 1941).

Table 2v-2. Kinematic Viscosity $\nu$; Units and Conversion Factors

|  | $\mathrm{m}^{2} / \mathrm{sec}$ | $\mathrm{m}^{2} / \mathrm{hr}$ | $\mathrm{cm}^{2}$ /sec (stokes) | ft / $/ \mathrm{sec}$ | $\mathrm{ft} 2 / \mathrm{hr}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m}^{2} / \mathrm{sec}$. | 1 | 3,600 | $1 \times 10^{4}$ | 10.7639 | $3.875 \times 10^{4}$ |
| $\mathrm{m}^{2} / \mathrm{hr}$. | $277.8 \times 10^{-6}$ | 1 | 2.778 | $299.9 \times 10^{-4}$ | 10.7639 |
| $\mathrm{cm}^{2} / \mathrm{sec}$ (stokes) | $1 \times 10^{-4}$ | 0.36 | 1 | $10.7639 \times 10^{-4}$ | 3.875 |
| $\mathrm{ft} 2 / \mathrm{sec}$. | 0.092903 | 334.45 | 929.03 | 1 | 3,600 |
| ft / hr .. | $25.806 \times 10^{-6}$ | 0.092903 | 0.25806 | $277.8 \times 10^{-6}$ | 1 |

From British Standard Code B.S. 1042: 1943 amended March, 1946.
In a general field of flow, $u_{1}, u_{2}, u_{3}$ of a homogeneous Newtonian incompressible fluid the shearing stresses are proportional to the respective rates of change of strain (Stokes' law). The symmetric stress tensor $t_{i j}$ is assumed to be a linear function of the rate of strain tensor $e_{i j}$. Taking into account that in a fluid at rest the stress is an isotropic tensor, we put

$$
t_{i j}=-p \delta_{i j}+\lambda \delta_{i j} e_{k k}+2 \mu e_{i j}
$$

where $\delta_{i j}$ is the Kronecker symbol ( $\delta=1$ for $i=j$ and $\delta=0$ for $i \neq j$ ) and $p$ is arbitrary. Since $t_{i j}=0$ for $e_{i j}=0$, we have $t_{i i}=-3 p$ and $3 \lambda+2 \mu=0$. Consequently

$$
\begin{equation*}
t_{i j}=-p \delta_{i j}-\frac{2}{3} \mu \delta_{i i^{\wedge} k k}+2 \mu e_{i j} \tag{2v-3}
\end{equation*}
$$

where now $p$ denotes the hydrostatic pressure. The scalar $\mu$ is defined as the absolute viscosity of the fluid.

The viscosity is assumed to be a function of the thermodynamic state of the fluid and independent of the velocity field. For a homogeneous fluịd $\mu$ is a function of two properties. It is customary to use either of the following two alternative representations:

$$
\mu=\mu(p, T) \quad \text { or } \quad \mu=\mu(\rho, T)
$$

where $T$ is the absolute temperature, $p$ is the pressure, and $\rho$ is the density of the fluid.

Numerical values of viscosity cannot be calculated with the aid of the equations of thermodynamics. They must be measured directly, the measurement being usually very difficult, particularly at higher pressures and temperatures. In principle, values of viscosity can be


Fig. 2v-2. Kinetic interpretation of viscosity. calculated by the methods of the kinetic theory of gases and statistical and quantum mechanics.

In relation to a microscopically defined system the viscosity of a gas is assumed to be due to a transfer of momentum effected by molecules, their velocity being composed of the molecular (random) velocity and the macroscopic (ordered) velocity. In shear flow (Fig. 2v-2) the shearing stress acting on a small element of area $a a$ is equal to the integral of the change in momentum effected by the particles moving across, both from above and from below it, the integral extending over all particles crossing.

2v-2. Variation of Viscosity with Temperature and Pressure. The calculation of the viscosity of gases has so far met with only limited success, extensive experimental determinations still forming the basis for practical applications. The calculation
of the viscosity of gases must make use of a molecular model for the gas, increasing refinements being possible.

On the simplest assumption of infinitely small, perfectly elastic molecules with zero fields of force (Maxwell) it is found that the absolute viscosity of a gas is independent of pressure and that it increases in proportion to $T^{\frac{1}{2}}$ :

$$
\begin{array}{ll}
\mu=K_{1} T^{\frac{1}{2}} & \left(\frac{\partial \mu}{\partial p}\right)_{T}=0  \tag{2v-4}\\
\nu=K_{2} T^{\frac{3}{2}} & p=\mathrm{const}
\end{array}
$$

where $K_{1}$ and $K_{2}$ are empirical constants.
On the assumption of hard elastic spheres with a weak attraction force (Sutherland), it is found that

$$
\begin{equation*}
\mu=\frac{K T^{\frac{1}{2}}}{C+\tau} \quad \tau=\frac{1}{T} \tag{2v-5}
\end{equation*}
$$

where $K$ and $C$ are empirical constants. Sutherland's equation ( $2 \mathrm{v}-5$ ), as well as experimental results, show the increase with temperature to be faster than that in Maxwell's equation ( $2 \mathrm{v}-4$ ).

This behavior can be understood if it is realized that in gases the effects of molecular motion dominate over those due to intermolecular forces. In liquids cohesion forces are more important, and since the molecular bonds in a liquid are loosened as the temperature is increased, the absolute viscosity of a liquid decreases with temperature; that for a gas increases with temperature.

Sutherland's equation ( $2 \mathrm{v}-5$ ) is inadequate for the correlation of experimental data over large temperature intervals. A more suitable semiempirical equation was given by Keyes:

$$
\begin{equation*}
\mu=\frac{a_{0} T \frac{1}{2}}{1+a \tau \times 10^{-a_{1} \tau}} \tag{2v-6}
\end{equation*}
$$

where $a_{0}, a$, and $a_{1}$ are empirical constants. These have been listed for several gases in Table 2v-3.

In problems of compressible fluid flow it is customary to use the empirical relation

$$
\begin{equation*}
\frac{\mu}{\mu_{0}}=\left(\frac{T}{T_{0}}\right)^{\omega} \tag{2v-7}
\end{equation*}
$$

where $\mu_{0}$ is the value of $\mu$ at a reference temperature $T_{0}$ and $\omega$ is an empirical constant ranging over 0.6 to 1.5. This correlation is less precise than that in Keyes' equation (2v-6).

All preceding formulas relate to gases at low pressures (say, atmospheric). Experimental results (which are still very scarce) show that the viscosity of gases at constant temperature increases with pressure, the increase being of the order of 20 to 40 per cent per $1,000 \mathrm{~atm}$. For moderate pressure ranges it is possible to use a linear interpolation formula

$$
\begin{equation*}
\frac{\mu}{\mu_{a}}=1+k p \tag{2v-8}
\end{equation*}
$$

where $\mu_{a}$ is the viscosity at temperature $T$, but at atmospheric pressure, $k$ is an empirical constant, and $p$ is the excess of pressure over atmospheric.

In recent times attempts have been made to calculate the viscosity of gases with the aid of the methods of statistical mechanics and to obtain a unified theory with that for virial coefficients (see Sec. 4i). The calculations are made on the basis of assumed semiempirical force potentials. For nonpolar gases the most widely used
potentials have been the Lennard-Jones six-twelve potential, the nine-six potentia and the exp-six potential; that used for polar gases is the Stockmeyer potentialThese methods have not yet met with complete success.

Table 2v-3. Constants in Keyes' Equation (2v-6) for Several Gases*

| Gas | Symbol | $a_{0} \times 10^{5}$ | $a$ | $a_{1}$ | Temp. range, ${ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Air |  | 1.488 | 122.1 | 5 | 79-1845 |
| Ammonia | $\mathrm{NH}_{3}$ | 1.715 | 667.1 | 20 | 194-680 |
| Argon $\dagger$ | A |  |  |  |  |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | 1.554 | 246.0 | 3 | 198-1686 |
| Carbon monoxide. | CO | 1.495 | 143.2 | 6 | 80-550 |
| Helium $\dagger$. | He |  |  |  |  |
| Hydrogen $\dagger$. | $\mathrm{H}_{2}$ |  |  |  |  |
| Methane. | $\mathrm{CH}_{4}$ | 1.103 | 232.5 | 12.5 | 78-373 |
| Nitric oxide $\ddagger$ | NO | 1.587 | 127.6 | 0 | 118-300 |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 1.531 | 239.4 | 2 | 185-550 |
| Nitrogen | $\mathrm{N}_{2}$ | 1.418 | 116.4 | 5 | 81-1695 |
| Oxygen . | $\mathrm{O}_{2}$ | 1.739 | 142.0 | 5 | 72-550 |
| Steam (water vapor) $\ddagger$. | $\mathrm{H}_{2} \mathrm{O}$ | 1.501 | 446.8 | 0 | 373-873 |

[^92]1. Argon, range $55-273^{\circ} \mathrm{K}: \quad \quad 10^{5} \mu=\frac{2.173 T^{\frac{1}{2}}}{1+218.4 \tau \times 10^{-14 \tau}}$
(deviation $2.2 \%$ at $55^{\circ} \mathrm{K}$; otherwise about $0.6 \%$; max deviation for data by Johnston and Grilly, $\mathbf{0 . 3 6 \%}$ )
Range $180-1873^{\circ} \mathrm{K}: \quad \quad 10^{5} \mu=\frac{1.910 T^{\frac{1}{2}}}{1+136.6 \tau}$
(largest deviation from data by Kopsch $1.5 \%, 140-294^{\circ} \mathrm{K}$ )
2. Helium, range $1.64-20^{\circ} \mathrm{K}: \quad 10^{5} \mu=\frac{0.848 T^{\frac{1}{2}}}{1+1.593 \tau}$

Range $20-140^{\circ} \mathrm{K}$ :
Range $104-373^{\circ} \mathrm{K}$ :
$10^{5} \mu=1.722+0.6268 \log T$
$10^{5} \mu=\frac{1.805 T^{\frac{1}{2}}}{1+253 \tau \times 10^{-50 \tau}}$
3. Hydrogen, range $14-90^{\circ} \mathrm{K}$ :
$10^{5} \mu=\frac{0.507 T^{\frac{1}{2}}}{1+21.8 \tau}$
$10^{5} \mu=\frac{0.623 T^{\frac{1}{2}}}{1+70.8 \tau \times 10^{-17.3 \tau}}$
$\ddagger$ Sutherland's formula gives sufficiently good correlation.
$\mathbf{2 v - 3}$. Mixtures of Gases. The viscosity of a gaseous mixture cannot be deduced from the knowledge of its composition and of the viscosities of its components by macroscopic methods, and methods of statistical mechanics must be used. In any case it should be noted that the viscosity of a mixture is not equal to the weighted mean of the viscosity of its components, it being possible for the viscosity of a mixture to be higher than that of its components. For example, a mixture of argon ( $\mu_{\mathrm{A}}=$ $222 \times 10^{-6}$ poise) and helium ( $\mu_{\mathrm{He}}=195 \times 10^{-6}$ poise) containing 40 per cent He and 60 per cent A has a viscosity of $\mu=230$ poises.

On the simplest assumptions the viscosity of a mixture is a measure of the sum of the momenta contributed by each molecular species on crossing an elementary surface $a a$ (Fig. 2v-2). From this it is found that

$$
\begin{equation*}
\mu=\sum_{i} \frac{\mu_{i}}{1+\sum_{j \neq i} \xi_{i j}\left(n_{j} / n_{i}\right)} \quad \xi_{i j}=\frac{S_{i j}\left(1+M_{i} / M_{j}\right)^{\frac{1}{2}}}{\sqrt{2}} \tag{2v-9}
\end{equation*}
$$

where $n_{i}$ denotes the volumetric (molar) concentrations, $M_{i}$ the molecular weights, $S_{i}$ is the equivalent cross section for collisions within a species, and $S_{i j}$ is that between species.

In the case of binary mixtures this leads to

$$
\begin{equation*}
\mu=\frac{\mu_{1}}{1+\xi_{12}\left(n_{2} / n_{1}\right)}+\frac{\mu_{2}}{1+\xi_{21}\left(n_{1} / n_{2}\right)} \tag{2v-10}
\end{equation*}
$$

where the two factors $\xi_{12}$ and $\xi_{21}$ can be interpreted as empirical constants. They are independent of composition and characteristic of the pair of gases.

A more complete analysis due to Chapman leads to a formula with four adjustable constants $\mu_{12}, a_{1}, a_{2}, b$ :

$$
\begin{equation*}
\mu=\frac{a_{1} n_{1}{ }^{2} \mu_{1}+n_{1} n_{2} \mu_{12}+a_{2} n_{2}{ }^{2} \mu_{2}}{a_{1} n_{1}{ }^{2}+b n_{1} n_{2}+a_{2} n_{2}{ }^{2}} \tag{2v-11}
\end{equation*}
$$

With the meager experimental data available at present a definite choice between the two formulas is not possible. For practical purposes the following simple quadratic formula containing one empirical constant may be used:

$$
\begin{gather*}
\mu=\mu_{1}\left(\frac{n_{1}}{n}\right)^{2}+\frac{\mu_{12} n_{1} n_{2}}{n^{2}}+\mu_{2}\left(\frac{n_{2}}{n}\right)^{2}  \tag{2v-12}\\
n=n_{1}+n_{2}
\end{gather*}
$$

$\mathbf{2 v - 4}$. Tables of Viscosity. The variation of the viscosity of several gases at low pressure with temperature has been correlated by Keyes (1952) and the results are given in Table $2 \mathrm{v}-3$. Table $2 \mathrm{v}-4$ contains the best available data on the absolute viscosity $\mu$ of gases at $20^{\circ} \mathrm{C}$ and atmospheric pressure together with temperature increment $(\Delta \mu)_{T}$ and the pressure increment $(\Delta \mu)_{p}$ at that point. Table $2 \mathrm{v}-5$ lists the same values for the kinematic viscosity $\nu$ with the values of density $\rho$ from Sec. $2 u$. The values have been carefully selected in each case, either mean values or preferred values having been chosen depending on the merits of the available experimental material. The estimated uncertainties are also based on a critical assessment of available data and are, to a certain extent, arbitrary. Experimental results for both high pressures and temperatures are, for all intents and purposes, nonexistent.

The dynamic and kinematic viscosity of steam is given in Tables $2 \mathrm{v}-6$ and $2 \mathrm{v}-7$. At present large discrepancies between measured values at higher pressures and temperatures still exist, discrepancies reaching values of just over 60 per cent. The values quoted in the tables are those measured by Timroth et al., and interpolated by Vukalovitch (1951). The values for steam in Table $2 \mathrm{v}-6$ are well represented by the formula

$$
\begin{equation*}
\mu=\xi \mu_{a} \tag{2v-13}
\end{equation*}
$$

where $\mu_{a}$ is the viscosity at temperature $T$ and zero pressure. This in turn can be calculated with reference to the ice-point viscosity $\mu_{0}$ with the aid of Sutherland's
VISCOSITY OF GASES
2-207

| Gas | Symbol | $\mu \times 10^{7}$ poises | Estimated uncertainty $\pm \Delta \mu \times 10^{7}$ poises | Temp. increment $(\Delta \mu)_{T} \times 10^{7}$ poises/ ${ }^{\circ} \mathrm{C}$ | Pressure increment $(\Delta \mu)_{P} \times 10^{7}$ poise/atm | Source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetylene | $\mathrm{C}_{2} \mathrm{H}_{2}$ | 935 (at $0^{\circ} \mathrm{C}$ ) | 1 | 4.78 |  | "International Critical Tables" |
|  |  | 1,813 |  |  | 2.4 | Wtd. mean of 15 values |
| Ammonia | $\mathrm{NH}_{3}$ | $\begin{array}{r}974 \\ \hline\end{array}$ | 30 | 4.25 |  | Wtd. mean of 2 values |
| Argon.... | A | 2,225 | 15 | 6.37 | 3.0 | Wtd. mean of 11 values |
| Isobutane | $\mathrm{C}_{4} \mathrm{H}_{10}$ | 748 |  | 2.37 |  | Ishida, Phys. Rev. 21, 550 (1923) |
| $n$-Butane <br> Carbon dioxide Carbon monoxide Chlorine. | $\mathrm{CO}_{2}$ | 1,463 |  | $3.00$ | $\cdots$ | Kuenen and Visser, Amsterdam Acad. Sci. 22, 336 (1913) |
|  |  |  | 15 | 4.50 | 3.6 | Wtd. mean of 11 values |
|  | $\mathrm{CO}_{2}$ | 1,753 1,330 | 1 | 4.74 |  | Wtd. mean of 4 values |
| Ethane.... . . . . . . | $\mathrm{C}_{2} \mathrm{H}_{6}$ | 1,330 910 |  | 4.51 2.77 |  | Rankine, Proc. Roy. Soc. (London), ser. A, 86, 162 (1912) |
| Ethane.. | $\mathrm{C}_{2} \mathrm{H}_{6}$ $\mathrm{C}_{2} \mathrm{H}_{4}$ | 9101,000 | 8 | $\begin{aligned} & 2.77 \\ & 8.20 \end{aligned}$ | . | Wtd. mean of 2 values van Cleave and Mass, Can. J. Research 13B, 140 (1935) |
|  | He |  |  |  |  |  |
| Hydrogen | $\mathrm{He}^{\text {He}}$ | 1,953 | 5 | 4.64 | 0.22 | Wtd. mean of 12 values |
|  | Kr | 2,4741,090 | . | 7.35 | $\ldots$ | (1910) <br> Rankine, Proc. Roy. Soc. (London), ser. A, 83, 516 |
| Methane |  |  |  |  |  |  |
| Methyl chloride. | $\mathrm{CH}_{3} \mathrm{Cl}$ | 1,070 | 13 | $3.30$ | $\cdots$ | Wtd. mean of 5 values |
| Neon.......... . | Ne |  |  | 4.25 6.97 | . . . | Breitenbach, Ann. Phys. 5, 166 (1901) |
| Nitric oxide. | NO | 1,898 | 30 | 5.38 | $\cdots$ | Wtd. mean of 5 values <br> Wtd. mean of 3 values |
| Nitrogen..... | $\mathrm{N}_{2}$ | 1,750 | 4 | $\begin{aligned} & 4.55 \\ & 4.75 \end{aligned}$ | 2.28 | Wtd. mean of 8 values |
| Nitrous oxide . | $\mathrm{N}_{2} \mathrm{O}$ | 1,456 |  |  |  | Wtd. mean of 8 values <br> Johnston and McCloskey, J. Phys. Chem. 44, 1038 (1940) |
| Oxygen. | $\mathrm{O}_{2}$ | 2,031 | 4 | 5.87 |  | Wtd. mean of 6 values |
| Xenon.. | Xe | 2,246 | - | 7.25 |  | Rankine, Proc. Roy. Soc. (London), ser. A, 84, 181 (1911) |

Table 2v-5. Kinematic ${ }^{\prime}$ Viscosity $\nu$ of Gases in Stokes ( $\mathrm{cm}^{2} / \mathrm{sec}$ )* (At $20^{\circ} \mathrm{C}$ and 1 atm )

| Gas | Symbol | $\underset{\text { stokes }}{\nu \times 10^{\mathbf{3}}}$ | Estimated uncertainty $\pm \Delta \nu \times 10^{3}$ stokes | Temp increment $(\Delta \nu) r \times 10^{3}$ stokes $/{ }^{\circ} \mathrm{C}$ | Pressure $\dagger$ increment $(\Delta \nu)_{P} \times 10^{3}$ stokes/atm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Acetylene | $\mathrm{C}_{2} \mathrm{H}_{2}$ | $79.71\left(0^{\circ} \mathrm{C}\right)$ |  |  |  |
| Air. . . . . |  | 150.46 | 0.08 | 0.909 | $-150.26$ |
| Ammonia. | $\mathrm{NH}_{3}$ | 135.58 | 4.00 | 1.044 |  |
| Argon. | A | 133.96 | 0.91 | 0.843 | -133.69 |
| Isobutane | $\mathrm{C}_{4} \mathrm{H}_{10}$ | 30.03 | ..... | 0.198 |  |
| $n$-Butane. | $\mathrm{C}_{4} \mathrm{H}_{10}$ | 33.50 | ..... | 0.232 |  |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | 79.42 | 0.81 | 0.516 | -79.23 |
| Carbon monoxide | CO | 150.60 | 0.086 | 0.924 |  |
| Chlorine | $\mathrm{Cl}_{2}$ | 44.40 | .... | 0.302 |  |
| Ethane. | $\mathrm{C}_{2} \mathrm{H}_{6}$ | 71.99 | 0.63 | 0.464 |  |
| Ethylene. | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 85.18 | .... | 0.989 |  |
| Helium... | He | 1,176.50 | 3.0 | 7.035 | -1,174.25 |
| Hydrogen. | $\mathrm{H}_{2}$ | 1,053.70 | 1.2 | 6.037 | -1,052.97 |
| Krypton. | Kr | 71.77 | ..... | 0.457 |  |
| Methane. | $\mathrm{CH}_{4}$ | 163.17 | 1.95 | 1.056 |  |
| Methyl chloride. | $\mathrm{CH}_{3} \mathrm{Cl}$ | 49.77 |  | 0.367 |  |
| Neon. | Ne | 370.90 | 3.57 | 2.113 |  |
| Nitric oxide. | NO | 151.96 | 0.08 | 0.942 |  |
| Nitrogen. | $\mathrm{N}_{2}$ | 149.96 | 0.35 | 0.904 | - 149.76 |
| Oxygen. | $\mathrm{O}_{2}$ | 179.73 | 0.35 | 1.124 |  |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 79.00 | ..... | 0.528 |  |
| Xenon. | Xe | 41.19 |  | 0.273 |  |

* The values of kinematic viscosity $\nu$ in this table have been obtained by dividing the values of absolute viscosity $\mu$ from Table $2 v-4$ by the values of density $\rho$ from the tables in Sec. $2 u$.
$\dagger$ Since the rate of change of $\nu$ with $P$ is large near 1 atm , these corrections are valid for small pressure increments only.
formula

$$
\begin{align*}
\mu_{a} & =\mu_{0} \frac{1+(C / 273)}{1+(C / T)} \sqrt{\frac{T}{273}}  \tag{2v-14}\\
\mu_{0} & =8.17 \times 10^{-15} \text { poise } \quad \text { and } \quad C=961^{\circ} \mathrm{K}
\end{align*}
$$

The pressure factor $\xi$ in Eq. $(2 \mathrm{v}-13)$ can be taken for superheated steam:

$$
\begin{align*}
\xi & =\frac{1}{(1-b / v)^{2}}  \tag{2v-15}\\
b & =2.1(t-120) \times 10^{-6}
\end{align*}
$$

For saturated steam:

$$
\begin{equation*}
\xi=\frac{1}{0.955-0.00142 / v} \tag{2v-16}
\end{equation*}
$$

where $v$ is the specific volume in $\mathrm{dm}^{3} / \mathrm{g}$, and $t$ is in degrees centigrade.
The alternative values due to Sibbitt et al. can be represented by Keyes' empirical formula

$$
\begin{equation*}
\mu=\mu_{a}+\left(0.0151-5.9 \times 10^{-5} p\right) p \times 10^{-4} \tag{2v-17}
\end{equation*}
$$

where $\mu, \mu_{a}$ is in poises and $p$ in atmospheres. The value of $\mu_{a}$ at low pressure may be taken from Keyes' equation ( $2 \mathrm{v}-6$ ) with

$$
\begin{aligned}
a_{0} & =1.851 \times 10^{-5} \\
a & =680.1 \\
a_{1} & =0
\end{aligned}
$$

which differs somewhat from that given in Table 2v-3.

Table 2v-6. Viscosity of Water and Superheated Water Vapor (Timroth-Vukalovitch, 1951*)
( $10^{5} \times \mu$ poise; pressure $p, \mathrm{~kg} / \mathrm{cm}^{2}$ )

| $t,{ }^{\circ} \mathrm{C}$ | $p=1$ $\mu$ | $p=20$ | $p=40$ | $\begin{gathered} p=60 \\ \mu \\ \hline \end{gathered}$ | $\begin{gathered} p=80 \\ \mu \end{gathered}$ | $\begin{gathered} p=100 \\ \mu \end{gathered}$ | $p=150$ | $\begin{gathered} p=200 \\ \mu \end{gathered}$ | $\begin{gathered} p=250 \\ \mu \end{gathered}$ | $\begin{gathered} p=300 \\ \mu \end{gathered}$ | $t,{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 12.08 | 282.5 | 283.5 | 284.5 | 285.5 | 287.4 | 290.4 | 294.3 | 298.2 | 304.1 | 100 |
| 110 | 12.48 | 254.1 | 255.0 | 256.0 | 257.0 | 259.0 | 291.4 | 264.9 | 298.8 | 304.1 272.7 | 100 |
| 120 | 12.87 | 230.5 | 231.5 | 232.5 | 233.5 | 235.4 | 238.4 | 241.3 | 246.2 | 248.2 | 120 |
| 130 | 13.27 | 211.9 | 212.9 | 213.9 | 214.8 | 216.8 | 219.7 | 222.7 | 226.6 | 229.6 | 130 |
| 140 | 13.66 | 197.2 | 198.2 | 199.1 | 201.1 | 202.1 | 204.0 | 207.0 | 210.9 | 213.9 | 140 |
| 150 | 14.06 | 184.4 | 185.4 | 186.4 | 188.4 | 190.3 | 191.3 | 194.2 | 197.2 | 200.1 | 150 |
| 160 | 14.46 | 172.7 | 173.6 | 174.6 | 176.6 | 177.6 | 179.5 | 181.5 | 184.1 | 187.4 | 160 |
| 170 | 14.86 | 162.8 | 163.8 | 163.8 | 165.8 | 166.8 | 168.7 | 169.7 | 172.6 | 175.6 | 170 |
| 180 | 15.25 | 154.0 | 155.0 | 155.0 | 156.0 | 157.0 | 158.9 | 159.9 | 161.9 | 164.8 | 180 |
| 190 | 15.65 | 146.2 | 146.2 | 147.2 | 148.1 | 148.1 | 150.0 | 151.1 | 153.0 | 155.0 | 190 |
| 200 | 16.05 | 138.3 | 138.3 | 139.3 | 140.3 | 140.3 | 142.2 | 143.2 | 145.2 | 146.2 | 200 |
| 210 | 16.45 | 131.4 | 131.5 | 132.4 | 133.4 | 134.4 | 135.4 | 136.4 | 137.3 | 139.3 | 210 |
| 220 | 16.84 | 16.90 | 125.6 | 126.5 | 126.5 | 127.5 | 128.5 | 129.5 | 130.5 | 132.4 | 220 |
| 230 | 17.24 | 17.31 | 119.6 | 120.7 | 120.7 | 121.6 | 122.6 | 123.6 | 124.6 | 126.5 | 230 |
| 240 | 17.63 | 17.71 | 114.8 | 115.8 | 115.8 | 116.7 | 117.7 | 118.7 | 119.7 | 120.7 | 240 |
| 250 | 18.03 | 18.11 | 18.21 | 110.9 | 110.9 | 111.8 | 112.8 | 113.8 | 114.8 | 115.8 | 250 |
| 260 | 18.43 | 18.51 | 18.62 | 105.9 | 106.9 | 106.9 | 107.9 | 108.9 | 109.9 | 110.9 | 260 |
| 270 | 18.82 | 18.91 | 19.02 | 102.0 | 102.0 | 103.0 | 104.0 | 105.0 | 105.9 | 106.9 | 270 |
| 280 | 19.22 | 19.31 | 19.43 | 19.58 | 98.1 | 99.1 | 100.1 | 101.0 | 102.0 | 103.0 | 280 |
| 290 | 19.61 | 19.71 | 19.84 | 19.98 | 95.2 | 95.2 | 96.1 | 98.1 | 99.1 | 100.1 | 290 |
| 300 | 20.00 | 20.11 | 20.24 | 20.39 | 20.59 | 92.2 | 93.2 | 94.2 | 95.2 | 97.1 | 300 |
| 310 | 20.40 | 20.51 | 20.65 | 20.80 | 21.00 | 22.00 | 90.3 | 91.2 | 92.2 | 94.2 | 310 |
| 320 | 20.79 | 20.91 | 21.05 | 21.21 | 21.40 | 21.65 | 86.3 | 88.3 | 89.3 | 91.2 | 320 |
| 330 | 21.18 | 21.31 | 21.45 | 21.62 | 21.81 | 22.06 | 82.4 | 84.4 | 85.3 | 88.3 | 330 |
| 340 | 21.57 | 21.71 | 21.85 | 22.02 | 22.22 | 22.46 | 77.5 | 79.5 | 81.4 | 84.4 | 340 |
| 350 | 21.96 | 22.10 | 22.25 | 22.43 | 22.63 | 22.86 | 23.77 | 73.6 | 76.5 | 80.4 | 350 |
| 360 | 22.35 | 22.50 | 22.66 | 22.84 | 23.04 | 23.28 | 24.12 | 67.7 | 72.5 | 75.5 | 360 |
| 370 | 22.74 | 22.89 | 23.06 | 23.25 | 23.45 | 23.69 | 24.49 | 27.86 | 65.7 | 70.6 | 370 |
| 380 | 23.13 | 23.29 | 23.46 | 23.65 | 23.86 | 24.10 | 24.88 | 27.27 | 53.0 | 64.7 | 380 |
| 390 | 23.52 | 23.68 | 23.86 | 24.06 | 24.27 | 24.51 | 25.27 | 26.50 | 33.3 | 55.9 | 390 |
| 400 | 23.90 | 24.07 | 24.26 | 24.46 | 24.68 | 24.93 | 25.68 | 26.80 | 31.4 | 45.1 | 400 |
| 410 | 24.29 | 24.46 | 24.66 | 24.87 | 25.09 | 25.34 | 26.09 | 27.15 | 30.4 | 38.3 | 410 |
| 420 | 24.68 | 24.86 | 25.06 | 25.27 | 25.50 | 25.75 | 26.50 | 27.53 | 29.10 | 36.30 | 420 |
| 430 | 25.06 | 25.24 | 25.45 | 25.67 | 25.91 | 26.16 | 26.92 | 27.91 | 29.36 | 34.34 | 430 |
| 440 | 25.45 | 25.63 | 25.85 | 26.07 | 26.32 | 26.58 | 27.33 | 28.32 | 29.67 | 33.35 | 440 |
| 450 | 25.83 | 26.02 | 26.24 | 26.47 | 26.72 | 26.99 | 27.75 | 28.72 | 30.00 | 33.35 | 450 |
| 460 | 26.21 | 26.41 | 26.64 | 26.87 | 27.13 | 27.40 | 28.17 | 29.13 | 30.37 | 33.35 | 460 |
| 470 | 26.59 | 26.80 | 27.03 | 27.28 | 27.53 | 27.81 | 28.50 | 29.55 | 30.76 | 32.38 | 470 |
| 480 | 26.97 | 27.19 | 27.42 | 27.67 | 27.94 | 28.22 | 29.01 | 29.97 | 31.16 | 32.70 | 480 |
| 490 | 27.35 | 27.57 | 27.81 | 28.07 | 28.34 | 28.63 | 29.43 | 30.39 | 31.57 | 33.06 | 490 |
| 500 | 27.73 | 27.96 | 28.20 | 28.47 | 28.75 | 29.04 | 29.85 | 30.82 | 31.99 | 33.43 | 500 |
| 510 | 28.11 | 28.34 | 28.59 | 28.86 | 29.15 | 29.44 | 30.27 | 31.24 | 32.42 | 33.84 | 510 |
| 520 | 28.48 | 28.72 | 28.98 | 29.26 | 29.55 | 29.85 | 30.69 | 31.66 | 32.84 | 34.25 | 520 |
| 530 | 28.86 | 29.11 | 29.37 | 29.65 | 29.96 | 30.26 | 31.12 | 32.09 | 33.27 | 34.68 | 530 |
| 540 | 29.24 | 29.49 | 29.76 | 30.05 | 30.36 | 30.67 | 31.54 | 32.52 | 33.71 | 35.10 | 540 |
| 550 | 29.61 | 29.87 | 30.15 | 30.45 | 30.77 | 31.08 | 31.96 | 32.96 | 34.15 | 35.53 | 550 |
| 560 | 29.98 | 30.25 | 30.54 | 30.84 | 31.17 | 31.50 | 32.39 | 33.40 | 34.59 | 35.96 | 560 |
| 570 | 30.35 | 30.63 | 30.93 | 31.24 | 31.58 | 31.91 | 32.82 | 33.85 | 35.03 | 36.40 | 570 |
| 580 | 30.73 | 31.01 | 31.32 | 31.64 | 31.98 | 32.32 | 33.25 | 34.29 | 35.48 | 36.84 | 580 |
| 590 | 31.10 | 31.39 | 31.71 | 32.03 | 32.38 | 32.73 | 33.68 | 34.73 | 35.93 | 37.28 | 590 |
| 600 | 31.47 | 31.77 | 32.09 | 32.42 | 32.78 | 33.14 | 34.10 | 35.17 | 36.37 | 37.72 | 600 |
| 610 | 31.84 | 32.14 | 32.47 | 32.81 | 33.17 | 33.54 | 34.52 | 35.60 | 36.81 | 38.17 | 610 |
| 620 | 32.20 | 32.51 | 32.85 | 33.20 | 33.56 | 33.94 | 34.93 | 36.03 | 37.25 | 38.61 | 620 |
| 630 | 32.57 | 32.89 | 33.23 | 33.59 | 33.95 | 34.34 | 35.35 | 36.46 | 37.69 | 39.06 | 630 |
| 640 | 32.94 | 33.26 | 33.61 | 33.97 | 34.35 | 34.73 | 35.76 | 36.89 | 38.13 | 39.50 | 640 |
| 650 | 33.31 | 33.63 | 33.99 | 34.36 | 34.74 | 35.13 | 36.17 | 37.32 | 38.57 | 39.95 | 650 |
| 660 | 33.67 | 34.00 | 34.37 | 34.74 | 35.13 | 35.53 | 36.58 | 37.74 | 39.00 | 40.40 | 660 |
| 670 | 34.03 34.39 | 34.37 | 34.74 | 35.12 | 35.52 | 35.92 | 36.99 | 38.17 | 39.44 | 40.85 | 670 |
| 680 690 | 34.39 34.75 | 34.74 35.11 | 35.11 35.49 | 35.50 35.88 | 35.90 36.29 | 36.31 36.71 | 37.40 37.81 | 38.59 | 39.88 | 41.30 | 680 |
| 700 | 35.11 | 35.47 | 35.86 | 36.26 | 36.67 | 36.71 37.10 | 37.81 38.22 | 39.01 39.43 | 40.32 40.75 | 41.75 42.20 | 690 700 |

[^93]Table 2v-7. Kinematic Viscosity of Water and Superheated Water Vapor (Timroth-Vukalovitch, 1951*)
$\left(10^{2} \times \nu \mathrm{cm}^{2} / \mathrm{sec}\right.$; pressure $\left.p \mathrm{~kg} / \mathrm{cm}^{2}\right)$

| $\boldsymbol{p}$ | 1 | 20 | 40 | 60 | 80 | 100 | 150 | 200 | 250 | 300 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 20.90 | 0.295 | 0.296 | 0.297 | 0.298 | 0.299 | 0.301 | 0.304 | 0.308 | 0.313 |
| 110 | 22.23 | 0.267 | 0.268 | 0.269 | 0.269 | 0.271 | 0.273 | 0.276 | 0.280 | 0.283 |
| 120 | 23.55 | 0.244 | 0.245 | 0.246 | 0.247 | 0.248 | 0.251 | 0. 254 | 0.258 | 0. 260 |
| 130 | 24.92 | 0.226 | 0.227 | 0.228 | 0.229 | 0. 2317 | 0.233 0.219 | 0.221 | 0.225 | 0.242 0.227 |
| 140 | 26.31 | 0.213 | 0.214 | 0.215 | 0.216 | 0.217 |  | 0.221 | 0.225 |  |
|  | 27.77 | 0.201 | 0.202 | 0.204 | 0.205 | 0.206 | 0.207 | 0.208 | 0.212 | 0.215 |
| 150 160 | 27.77 29.25 | 0.190 | 0.191 | 0.192 | 0.194 | 0.195 | 0.196 | 0.198 | 0.200 | 0.202 |
| 170 | 30.77 | 0.182 | 0.182 | 0.182 | 0.184 | 0.185 | 0.186 | 0.187 | 0.189 | 0.191 |
| 180 | 32.31 | 0.174 | 0.174 | 0.174 | 0.175 | 0.176 | 0.177 | 0.178 | 0.180 | 0.181 |
| 190 | 33.90 | 0.167 | 0.167 | 0.167 | 0.168 | 0.168 | 0.169 | 0.171 | 0.172 | 0.172 |
|  | 35.53 | 0.160 | 0.160 | 0.161 | 0.161 | 0.162 | 0.163 | 0.163 | 0.165 | 0.165 |
| 200 | 35.53 37.21 | 0.154 | 0.154 | 0.155 | 0.156 | 0.156 | 0.157 | 0.157 | 0.158 | 0.159 |
| 220 | 38.90 | 1.763 | 0.149 | 0.150 | 0.150 | 0.151 | 0.151 | 0.152 | 0.152 | 0.154 |
| 230 | 40.63 | 1.864 | 0.145 | 0.145 | 0.145 | 0.146 | 0.147 | 0.147 | 0.147 | 0.149 |
| 240 | 42.40 | 1.962 | 0.141 | 0.141 | 0.141 | 0.142 | 0.143 | 0.143 | 0.143 | 0.144 |
|  | 44.21 | 2.061 | 0.928 | 0.138 | 0.138 | 0.139 | 0.139 | 0.139 | 0.139 | 0.140 |
| 250 | 44.21 46.07 | 2.162 | 0.987 | 0.135 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 | 0.136 |
| 270 | 47.93 | 2.263 | 1.045 | 0.133 | 0.133 | 0.133 | 0.133 | 0.133 | 0.133 | 0.133 |
| 280 | 49.88 | 2.365 | 1.103 | 0.667 | 0.131 | 0.131 | 0.131 | 0.131 | 0.131 | 0.131 |
| 290 | 51.81 | 2.470 | 1.161 | 0.712 | 0.129 | 0.129 | 0.129 | 0.130 | 0.13 | 0.13 |
| 300 | 53.80 | 2.576 | 1.219 | 0.757 | 0.515 | 0.128 | 0.128 | 0.128 | 0.13 | 0.13 |
| 310 | 55.83 | 2.683 | 1.277 | 0.800 | 0.553 | 0.410 | 0.128 | 0.128 | 0.13 | 0.13 |
| 310 320 | 55.8 57.88 | 2.789 | 1.334 | 0.843 | 0.590 | 0.430 | 0.127 | 0.127 | 0.13 | 0.13 |
| 330 | 59.98 | 2.898 | 1.392 | 0.886 | 0.626 | 0.464 | 0.127 | 0.127 | 0.13 | 0.13 |
| 340 | 62.12 | 3.009 | 1.450 | 0.928 | 0.661 | 0.496 | 0.127 | 0.126 | 0.12 | 0.13 |
| 350 | 64.28 | 3.120 | 1.509 | 0.970 | 0.696 | 0.527 | 0.285 | 0.123 | 0.12 | 0.12 |
| 360 | 64.49 | 3.235 | 1.570 | 1.012 | 0.731 | 0.558 | 0.315 | 0.125 | 0.12 | 0.12 |
| 370 | 68.72 | 3.353 | 1.630 | 1.055 | 0.765 | 0.588 | 0.342 | 0.208 | 0.123 | 0.12 |
| 380 | 70.96 | 3.472 | 1.692 | 1.098 | 0.799 | 0.617 | 0.367 | 0.237 | 0.135 | 0.12 |
| 390 | 73.26 | 3.590 | 1.754 | 1.141 | 0.833 | 0.646 | 0.391 | 0.254 | 0.171 | 0.126 |
| 400 | 75.60 | 3.712 | 1.817 | 1.185 | 0.867 | 0.676 | 0.414 | 0.277 | 0.200 | 0.136 |
| 410 | 77.97 | 3.833 | 1.881 | 1.230 | 0.902 | 0.705 | 0.437 | 0.298 | 0.218 | 0.164 |
| 420 | 80.38 | 3.958 | 1.945 | 1.274 | 0.937 | 0.734 | 0.459 | 0.318 | 0.229 | 0.188 |
| 430 | 82.80 | 4.081 | 2.010 | 1.319 | 0.972 | 0.763 0.793 | 0.482 | 0.337 | 0.248 | 0.202 0.217 |
| 440 | 85.31 | 4.208 | 2.076 | 1.364 | 1.007 | 0.793 | 0.504 | 0.356 | 0.266 | 0.217 |
| 450 | 87.80 | 4.337 | 2.142 | 1.410 | 1.043 | 0.822 | 0.526 | 0.375 | 0.284 | 0.232 |
| 460 | 90.32 | 4.469 | 2.209 | 1.456 | 1.079 | 0.852 | 0.548 | 0.394 | 0.301 | 0.247 |
| 470 | 92.88 | 4.602 | 2.277 | 1.504 | 1.115 | 0.882 | 0.570 | 0.412 | 0.317 | 0.253 |
| 480 | 95.47 | 4.734 | 2.346 | 1.551 | 1.152 | 0.912 | 0.592 | 0.430 | 0.333 | 0.268 |
| 490 | 98.10 | 4.866 | 2.416 | 1.599 | 1.189 | 0.942 | 0.614 | 0.448 | 0.348 | 0.283 |
| 500 | 100.8 | 5.005 | 2.486 | 1.647 | 1.226 | 0.973 | 0.635 | 0.466 | 0.364 | 0.297 |
| 510 | 103.5 | 5.144 | 2.557 | 1.695 | 1.264 | 1.004 | 0.658 | 0.484 | 0.380 | 0.311 |
| 520 | 106.2 | 5.284 | 2.630 | 1.744 | 1.302 | 1.035 | 0.680 | 0.502 | 0.395 | 0.324 |
| 530 | 109.0 | 5.426 | 2.703 | 1.794 | 1.340 | 1.067 | 0.702 | 0.520 | 0.411 | 0.338 |
| 540 | 111.8 | 5.568 | 2.777 | 1.844 | 1.378 | 1.098 | 0.725 | 0.538 | 0.426 | 0.353 |
| 550 | 114.6 | 5.714 | 2.851 | 1.895 | 1.417 | 1.131 | 0.748 | 0.557 | 0.442 | 0.367 |
| 560 | 117.5 | 5.862 | 2.927 | 1.947 | 1.457 | 1.163 | 0.771 | 0.575 | 0.458 | 0.381 |
| 570 | 120.4 | 6.012 | 3.003 | 2.000 | 1.498 | 1.196 | 0.795 | 0.594 | 0.474 | 0.395 |
| 580 | 123.3 | 6.164 | 3.080 | 2.053 | 1.539 | 1.230 | 0.819 | 0.613 | 0.490 | 0.409 |
| 590 | 126.2 | 6.316 | 3.158 | 2.106 | 1.580 | 1.264 | 0.843 | 0.632 | 0.506 | 0.423 |
| 600 | 129.2 | 6.468 | 3.236 | 2.159 | 1.621 | 1.298 | 0.867 | 0.652 | 0.523 | 0.438 |
| 610 | 132.3 | 6.621 | 3.315 | 2.213 | 1.662 | 1.331 | 0.891 | 0.671 | 0.539 | 0.452 |
| 620 | 135.3 | 6.776 | 3.394 | 2.267 | 1.703 | 1.365 | 0.915 | 0.690 | 0.556 | 0.466 |
| 630 | 138.4 | 6.933 | 3.474 | 2.322 | 1.745 | 1.399 | 0.939 | 0.709 | 0.572 | 0.480 |
| 640 | 141.5 | 7.091 | 3.555 | 2.377 | 1.788 | 1.434 | 0.964 | 0.728 | 0.588 | 0.495 |
| 650 | 144.6 | 7.251 | 3.637 | 2.433 | 1.830 | 1.469 | 0.988 | 0.748 | 0.604 | 0.509 |
| 660 | 147.8 | 7.412 | 3.720 | 2.489 | 1.873 | 1.504 | 1. 013 | 0.768 | 0.621 | 0.524 |
| 670 | 151.0 | 7.575 | 3.803 | 2.546 | 1.917 | 1.540 | 1.038 | 0.788 | 0.638 | 0.538 |
| 680 | 154.2 | 7.740 | 3.887 | 2.603 | 1.961 | 1.576 | 1.063 | 0.808 | 0.655 | 0.553 |
| 690 | 157.4 | 7.906 | 3.972 | 2.660 | 2.005 | 1.612 | 1.088 | 0.828 | 0.672 | 0.568 |
| 700 | 160.7 | 8.073 | 4.057 | 2.718 | 2.049 | 1.648 | 1.114 | 0.848 | 0.689 | 0.583 |

[^94] Water Vapor," Moscow, 1951, translation by General Electric Company, Schenectady, 1954.

# 2w. Diffusion of Gases 

R. C. ROBERTS

Naval Ordnance Laboratory

In the simple diffusion of one gas into another, the concentration of either component obeys the equation

$$
\begin{equation*}
\frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left(D \frac{\partial C}{\partial x}\right)+\frac{\partial}{\partial y}\left(D \frac{\partial C}{\partial y}\right)+\frac{\partial}{\partial z}\left(D \frac{\partial C}{\partial z}\right) \tag{2w-1}
\end{equation*}
$$

where $C=$ concentration of gas
$t=$ time
$x, y, z=$ position coordinates
$D=$ diffusion coefficient
Although the diffusion coefficient is, in general, a function of temperature, pressure, and concentration, it can often be considered as constant provided the variations of temperature, pressure, etc., are small. The usual cgs units for the diffusion coefficient are $\mathrm{cm}^{2} / \mathrm{sec}$.

The elementary kinetic theory of gases shows that, for a two-component mixture,

$$
\begin{equation*}
D_{12}=\frac{1}{3} \frac{n_{1} \lambda_{2} \bar{C}_{2}+n_{2} \lambda_{1} \bar{C}_{1}}{n_{1}+n_{2}} \tag{2w-2}
\end{equation*}
$$

where $n_{1,2}=$ molecular density
$\lambda_{1,2}=$ mean free path
$\bar{C}_{1,2}=$ average velocity
The more exact theories show a quite complicated behavior for $D$. For example, in a model consisting of rigid elastic spheres

$$
\begin{equation*}
D_{12}=\frac{3}{8\left(n_{1}+n_{2}\right) \sigma_{r}^{2}}\left[\frac{k T\left(m_{1}+m_{2}\right)}{2 \pi m_{1} m_{2}}\right]^{\frac{1}{2}} \tag{2w-3}
\end{equation*}
$$

where $m_{1,2}=$ mass of molecule
$n_{1,2}=$ number of molecules per cu cm
$T=$ absolute temperature
$\sigma_{r}=$ effective molecular collision diameter
$k=$ Boltzmann's constant
For most gases a convenient reduction formula may be given to reduce the diffusion coefficient to standard temperature $T$ and pressure $p$. It is

$$
\begin{equation*}
D=D_{0}\left(\frac{T}{T_{0}}\right)^{n} \frac{p_{0}}{p} \tag{2w-4}
\end{equation*}
$$

where $n$ varies between 1.75 and 2 . This is reasonably valid over•a range of normal temperature and pressure.

The following tables contain data on the diffusion coefficients for a number of gases and vapors. In Table $2 \mathrm{w}-1$ values of $n$ are given (if known) so that Eq. ( $2 \mathrm{w}-4$ ) may be used to convert the coefficients to other than standard temperature and pressure.*

* Continued on p. 2-214.

Table 2w-1. Diffusion Coefficients $D_{0}$ at Standard Temperature and Pressure

| Gas pair | $D_{0}, \mathrm{~cm}^{2} / \mathrm{sec}$ | $n$ |
| :---: | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}_{2}$. | 0.1384 | 2 |
| $\mathrm{H}_{2} \mathrm{O}$-air. | 0.219 | 1.75 |
| $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2}$ | 0.747 | 1.75 |
| Ethyl alcohol- $\mathrm{CO}_{2}$. | 0.0686 | 2 |
| Ethyl alcohol-air. | 0.099 | 2 |
| Ethyl alcohol- $\mathrm{H}_{2}$. | 0.377 | 2 |
| Ethyl ether- $\mathrm{CO}_{2}$. | 0.0541 | 2 |
| Ethyl ether-air. | 0.0786 | 2 |
| Ethyl ether- $\mathrm{H}_{2}$. | 0.299 | 2 |
| Benzene- $\mathrm{O}_{2}$. | 0.0797 | 1.75 |
| Benzene- $\mathrm{H}_{2}$. | 0.318 | 1.75 |
| $\mathrm{CCl}_{4}-\mathrm{O}_{2}$. | 0.0636 |  |
| $\mathrm{CCl}_{4}-\mathrm{H}_{2}$. | 0.293 |  |
| Acetone- $\mathrm{H}_{2}$. | 0.361 |  |
| Mercury- $\mathrm{N}_{2}$. | 0.1190 | 2 |
| Iodine- $\mathrm{N}_{2}$. | 0.070 | 2 |
| Iodine-air | 0.0692 | 2 |
| $\mathrm{He}-\mathrm{A}$. | 0.641 | 1.75 |
| $\mathrm{H}_{2}$ - $\mathrm{D}_{2}$ | 1.20 |  |
| $\mathrm{H}_{2}$ - $\mathrm{O}_{2}$. | 0.697 | 1.75 |
| $\mathrm{H}_{2}$ - $\mathrm{N}_{2}$. | 0.674 | 1.75 |
| $\mathrm{H}_{2}$-CO. | 0.651 | 1.75 |
| $\mathrm{H}_{2}-\mathrm{CO}_{2}$. | 0.550 | 1.75 |
| $\mathrm{H}_{2}-\mathrm{CH}_{4}$. | 0.625 | 1.75 |
| $\mathrm{H}_{2}-\mathrm{SO}_{2}$. | 0.480 | 1.75 |
| $\mathrm{H}_{2}-\mathrm{N}_{2} \mathrm{O}$. | 0.535 | 1.75 |
| $\mathrm{H}_{2}-\mathrm{C}_{2} \mathrm{H}_{4}$. | 0.625 | 1.75 |
| $\mathrm{H}_{2}$-A. | 0.77 ( $20^{\circ} \mathrm{C}$ ) |  |
| $\mathrm{O}_{2}-\mathrm{N}_{2}$ | 0.181 | 1.75 |
| $\mathrm{O}_{2}$ - CO . | 0.185 | 1.75 |
| $\mathrm{O}_{2}-\mathrm{CO}_{2}$. | 0.139 | 2 |
| $\mathrm{CO}-\mathrm{N}_{2}$ | 0.192 |  |
| $\mathrm{CO}-\mathrm{CO}_{2}$. | 0.137 | 1.75 |
| $\mathrm{CO}-\mathrm{C}_{2} \mathrm{H}_{4}$ | 0.116 | 1.75 |
| $\mathrm{CO}_{2}-\mathrm{N}_{2}$. | 0.144 |  |
| $\mathrm{CO}_{2}-\mathrm{CH}_{4}$. | 0.153 | 1.75 |
| $\mathrm{CO}_{2}-\mathrm{N}_{2} \mathrm{O}$. | 0.096 |  |
| $\mathrm{H}_{2}$-air. | 0.611 | 1.75 |
| $\mathrm{O}_{2}$-air. | 0.178 | 1.75 |
| $\mathrm{CO}_{2}$-air. | 0.138 | 2 |
| $\mathrm{CH}_{4}$-air | 0.196 |  |
| A- $\mathrm{N}_{2}$. | 0.20 ( $20^{\circ} \mathrm{C}$ ) |  |
| $\mathrm{A}-\mathrm{O}_{2}$. | $0.20\left(20^{\circ} \mathrm{C}\right)$ |  |
| $\mathrm{A}-\mathrm{CO}_{2}$. | $0.14\left(20^{\circ} \mathrm{C}\right)$ |  |

Table 2w-2. Dependence of Diffusion Coefficients on Concentration

| Pair of gases | $n_{1} / n_{2}$ | $D_{12}$ |
| :--- | :--- | :--- |
| First gas $\mathrm{H}_{2}$; second gas $\mathrm{CO}_{2}$ | 3 | 0.594 |
|  | 1 | 0.605 |
|  | $\frac{1}{3}$ | 0.633 |
| First gas He; second gas A | 2.65 | 0.678 |
|  | 2.26 | 0.693 |
|  | 1.66 | 0.696 |
|  | 1 | 0.706 |
|  | 0.477 | 0.712 |
|  | 0.311 | 0.731 |

Table 2w-3. Dependence of Diffusion Coefficient on Pressure

| Gas pair | D, $\mathrm{cm}^{2} / \mathrm{sec}$ | $t,{ }^{\circ} \mathrm{C}$ | $p, \mathrm{~mm} \mathrm{Hg}$ | $\frac{D p}{760}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CO}_{2}$-air | 0.1653 | 17.6 | 751 | 0.163 |
| $\mathrm{CO}_{2}$-air | 0.3376 | 15.2 | 364 | 0.162 |
| $\mathrm{CO}_{2}$-air | 0.4139 | 15.7 | 309 | 0.164 |
| $\mathrm{CO}_{2}-\mathrm{H}_{2}$ | 0.6142 | 12.8 | 757 | 0.612 |
| $\mathrm{CO}_{2}-\mathrm{H}_{2}$ | 0.9184 | 15.4 | 510 | 0.616 |
| $\mathrm{H}_{2}-\mathrm{O}_{2}$. | 0.8012 | 11.4 | 748 | 0.790 |
| $\mathrm{H}_{2}-\mathrm{O}_{2}$. | 1.1718 | 15.8 | 512 | 0.791 |

Table 2w-4. Coefficients of Self-diffusion*

| Gas | Temp, ${ }^{\circ} \mathrm{K}$ | $D, \mathrm{~cm}^{2} / \mathrm{sec}$, experimental |
| :---: | :---: | :---: |
| Hydrogen (para-hydrogen into ortho-hydrogen) | 273 | $1.285 \pm 0.0025$ |
|  | 85 | $0.172 \pm 0.008$ |
|  | 20.4 | $0.00816 \pm 0.0002$ |
| Deuterium into hydrogen | 288 | 1.24 |
| Neon | 293 | $0.473 \pm 0.002$ |
| Argon | 326.7 | $0.212 \pm 0.002$ |
|  | 295.2 | $0.180 \pm 0.001$ |
|  | 273.2 | $0.158 \pm 0.002$ |
|  | 194.7 | $0.0833 \pm 0.0009$ |
|  | 90.2 | $0.028 \pm 0.0010$ |
| Krypton | 294.0 | $0.09 \pm 0.004$ |
| Xenon | 292.1 | $0.0443 \pm 0.002$ |
| Nitrogen | 293 | $0.200 \pm 0.008$ |
| Methane ( $p=60 \mathrm{~mm} \mathrm{Hg}$ ) | 292 | $26.32 \pm 0.73$ |
| Hydrogen chloride | 295.0 | 0.1246 |
| Hydrogen bromide | 295.3 | 0.0792 |
| Uranium hexafluoride $(p=10 \mathrm{~mm} \mathrm{Hg})$ | 303 | $D \times \rho=(234 \pm 9) \times 10^{-6} \mathrm{~g} / \mathrm{cm} \times \mathrm{sec}$ |

[^95]Tables $2 \mathrm{w}-2$ and $2 \mathrm{w}-3$ give certain data on the variation of $D$ with pressure and concentration. Table $2 \mathrm{w}-4$ gives some of the latest data on self-diffusion.

Chapman and Cowling ${ }^{1}$ should be consulted for the advanced theory. A good bibliography may be found in Jost. ${ }^{2}$

## References

1. Chapman, S., and T. G. Cowling: "The Mathematical Theory of Non-uniform Gases," Cambridge University Press, London, 1939.
2. Jost, W.: "Diffusion in Solids, Liquids, Gases," Academic Press, Inc., New York, 1952.
3. Jeans, J. H.: "An Introduction to the Kinetic Theory of Gases," Cambridge University Press, New York, 1940.
4. Kennard, E. H.: "Kinetic Theory of Gases," McGraw-Hill Book Company, Inc., New York, 1938.
5. Loeb, L. B.: "Kinetic Theory of Gases," McGraw-Hill Book Company, Inc., New York, 1934.
6. "International Critical Tables," vol. 5, pp. 62-63, McGraw-Hill Book Company, Inc., New York, 1928.
7. Hirshfelder, J. O., R. B. Bird, and E. L. Spotz: Chem. Revs. 44, 205 (1949).

# 2x. Compressible Flow of Gases 

R. C. ROBERTS

Naval Ordnance Laboratory

2x-1. Basic Equations in Rectangular Coordinates. The basic equations of motion for a compressible inviscid gas may be written as follows.

Momentum Equation. By applying Newton's laws of motion the Euler momentum equation may be derived in the form

$$
\begin{gather*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}=\frac{-1}{\rho} \frac{\partial p}{\partial x}+X \\
\frac{\partial v}{\partial t}+w \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}=\frac{-1}{\rho} \frac{\partial p}{\partial y}+Y  \tag{2x-1}\\
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}=\frac{-1}{\rho} \frac{\partial p}{\partial z}+Z
\end{gather*}
$$

where $x, y, z=$ rectangular coordinates
$t=$ time
$u, v, w=$ velocity components in the direction of the $x, y$, and $z$ axes, respectively
$p=$ pressure
$\rho=$ density
$X, Y, Z=$ rectangular components of external body force
${ }^{1}$ S. Chapman and T. G. Cowling, "The Mathematical Theory of Non-uniform Gases," Cambridge University Press, London, 1939.
${ }^{2}$ W. Jost, "Diffusion in Solids, Liquids, Gases," Academic Press, Inc., New York, 1952.

Continuity Equation. The assumption that the gas is a continuous medium is expressed by the equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0 \tag{2x-2}
\end{equation*}
$$

Equation of State. For a perfect gas the relation between the pressure $p$, density $\rho$, and temperature $T$ is

$$
\begin{equation*}
p=\rho R T \tag{2x-3}
\end{equation*}
$$

In the case of isentropic flow the pressure depends only on the density, as follows:

$$
\begin{equation*}
p=K \rho \gamma \tag{2x-4}
\end{equation*}
$$

where $K$ is a constant and $\gamma=C_{p} / C_{v}$ is the ratio of the specific heat at constant pressure to the specific heat at constant volume.

Energy Equation. In the case of isentropic flow, the equation of state together with the momentum and continuity equations are sufficient to determine completely the flow. An important type of nonisentropic flow is characterized by the fact that the entropy $S$ of each fluid particle remains constant but may vary from particle to particle. This is expressed by the equation
or

$$
\begin{gather*}
\frac{\partial S}{\partial t}+u \frac{\partial S}{\partial x}+v \frac{\partial S}{\partial y}+w \frac{\partial S}{\partial z}=0 \\
\frac{\partial}{\partial t}\left(\frac{p}{\rho^{\gamma}}\right)+u \frac{\partial}{\partial x}\left(\frac{p}{\rho^{\gamma}}\right)+v \frac{\partial}{\partial y}\left(\frac{p}{\rho^{\gamma}}\right)+w \frac{\partial}{\partial z}\left(\frac{p}{\rho^{\gamma}}\right)=0 \tag{2x-5}
\end{gather*}
$$

2x-2. Dynamic Similarity and Definition of Basic Flow Parameters. In the testing of scale models, it is necessary to maintain a proper scaling of certain dynamic parameters in addition to the geometric scaling. For compressible inviscid flow there is only a single dynamic dimensionless parameter, the Mach number.

Definition of Mach Number. The local Mach number is defined as the ratio of the local flow velocity $q$ to the local sound velocity $a$, i.e.,

$$
\begin{equation*}
M=\frac{q}{a} \tag{2x-6}
\end{equation*}
$$

Thus in a nonuniform flow the Mach number will vary from point to point. It should be noted that when $M<1$, the flow velocity is less than the velocity of sound and there is subsonic flow. In the case $M>1$ there is supersonic flow. If there is a region of flow in which the Mach number is close to one, $M \simeq 1$, then the flow is said to be transsonic.

Dynamic Similarity. If the flows around two geometrically similar bodies are considered, it might be expected that the resulting flow pattern, e.g., the configuration of the streamlines, would also be similar. This last condition is satisfied for a compressible inviscid flow provided the Mach numbers of the two flows are equal. It then follows that all other dimensional coefficients such as drag coefficient and pressure coefficient are also equal.

In determining the Mach number in a flow it is necessary to know not only the flow velocity but the sound velocity as well. For a perfect gas the sound velocity is proportional to the square root of the temperature, i.e.,

$$
a=\sqrt{\gamma R T}
$$

Table $2 \mathrm{x}-1$ is based on this relationship.

2x-3. Basic Idea of One-dimensional Flow. In many cases, as in a pipe of slowly varying cross section, it is possible to make the assumption of constant flow properties across any cross section perpendicular to the pipe axis. Although strictly speaking there are no one-dimensional flows, because of viscous effects on the boundaries, it is still possible to get much valuable information of a practical nature from the assumptions.

|  | $T,{ }^{\circ} \mathrm{K}$ | $a, \mathrm{fps}$ | $a, \mathrm{~m} / \mathrm{sec}$ |
| :---: | :---: | :---: | :---: |
|  | 150 | 805 | 246 |
|  | 160 | 832 | 254 |
|  | 170 | 857 | 261 |
|  | 180 | 882 | 269 |
|  | 190 | 907 | 276 |
|  | 200 | 930 | 283 |
|  | 210 | 953 | 290 |
|  | 220 | 975 | 297 |
|  | 230 | 997 | 304 |
|  | 240 | 1,019 | 311 |
|  | 250 | 1,040 | 317 |
|  | 260 | 1,060 | 323 |
|  | 270 | 1,081 | 329 |
|  | 280 | 1,100 | 335 |
|  | 290 | 1,120 | 341 |
|  | 300 | 1,139 | 347 |
|  | 310 | 1,158 | 353 |
| , | 320 | 1,176 | 359 |
|  | 330 | 1,195 | 364 |
|  | 340 | 1,213 | 370 |
|  | 350 | 1,230 | 375 |

Basic Equations. Making the assumption of isentropic flow the equations of motion are

$$
\begin{array}{lr}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=-\frac{1}{\rho} \frac{\partial p}{\partial x} & \text { (momentum) } \\
\frac{\partial \rho}{\partial t}+\frac{1}{A} \frac{\partial}{\partial x}(\rho u A)=0 & \text { (continuity) } \tag{2x-8}
\end{array}
$$

where $A=$ cross-sectional area. For unsteady one-dimensional flow in general and in particular for an excellent treatment of flow in pipes of constant area see ref. 3. The above equations also cover the case of cylindrical and spherically symmetric flow, i.e.,

$$
\begin{array}{ll}
\frac{1}{A} \frac{\partial A}{\partial x}=\frac{1}{x} & \text { (for cylindrical flow) } \\
\frac{1}{A} \frac{\partial A}{\partial x}=\frac{2}{x} & \text { (for spherically symmetric flow) }
\end{array}
$$

In the important case of steady flow the equation can be integrated to give

$$
\begin{gather*}
\frac{\gamma}{\gamma-1} \frac{p}{\rho}+\frac{1}{2} u^{2}=\mathrm{const}  \tag{2x-9}\\
\rho u A=m=\mathrm{const} \tag{2x-10}
\end{gather*}
$$

where $m=$ mass flow. By taking logarithmic derivatives and remembering the definition of the Mach number $M$, the continuity equation may be written

$$
\begin{equation*}
\frac{d u}{u}\left(1-M^{2}\right)+\frac{d A}{A}=0 \tag{2x-11}
\end{equation*}
$$

Thus, if $d u \neq 0$ and $M=1$, we see that $d A=0$. In other words, the Mach number becomes equal to unity only in a section of the pipe where the area is a minimum. This fact is of prime importance in the design of supersonic wind tunnels.

The dependence of the various flow variables on the Mach number for steady onedimensional isentropic flow is given in Table 2x-2.

Velocity Potential and Stream Function. In many important flow problems it is convenient to introduce the velocity potential and stream functions. The velocity potential exists whenever there is a state of irrotational flow, i.e., the velocity components satisfy the equations

$$
\begin{equation*}
\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}=0 \quad \frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}=0 \quad \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=0 \tag{2x-12}
\end{equation*}
$$

Then the velocity components $u, v, w$ can be expressed as the components of the quotient of the velocity potential $\phi$. Thus

$$
\begin{equation*}
u=\frac{\partial \phi}{\partial x} \quad v=\frac{\partial \phi}{\partial y} \quad w=\frac{\partial \phi}{\partial z} \tag{2x-13}
\end{equation*}
$$

The equation of motion may be reduced to the single equation for $\phi$,

$$
\begin{array}{r}
\phi_{x x}\left(1-\frac{\phi_{x}{ }^{2}}{a^{2}}\right)+\phi_{y y}\left(1-\frac{\phi_{y}{ }^{2}}{a^{2}}\right)+\phi_{z z}\left(1-\frac{\phi_{z}{ }^{2}}{a^{2}}\right)-2 \phi_{y z} \frac{\phi_{y} \phi_{x}}{a^{2}}-2 \phi_{z x} \frac{\phi_{z} \phi_{x}}{a^{2}} \\
-2 \phi_{x y} \frac{\phi_{y} \phi_{y}}{a^{2}}=0 \tag{2x-14}
\end{array}
$$

where

$$
a^{2}=\frac{\gamma-1}{2}\left(q_{\max ^{2}}-\phi_{x}{ }^{2}-\phi_{y}{ }^{2}-\phi_{z}{ }^{2}\right)
$$

and $q_{\text {max }}$ is the velocity with which the gas flows into a vacuum.
For two-dimensional steady flow or for three-dimensional axially symmetric steady flow a stream function $\psi$ may be introduced. In two-dimensional flow

$$
\begin{equation*}
u=\frac{1}{\rho} \psi_{y} \quad v=-\frac{1}{\rho} \psi_{x} \tag{2x-15}
\end{equation*}
$$

If cylindrical coordinates $(x, r, \theta)$ are used and the flow is independent of 0 , then the function $\psi$ may be defined by

$$
\begin{equation*}
u=\frac{1}{\rho r} \psi_{r} \quad v=-\frac{1}{\rho r} \psi_{x} \tag{2x-16}
\end{equation*}
$$

Note that $u$ and $v$ are now the velocity components in the $x$ and $r$ directions and $r=\sqrt{y^{2}+z^{2}}$.

2x-4. Two-dimensional and Axially Symmetric Flow. Many important types of flow belong to the class of two-dimensional or axially symmetric flows. These include flows past wedges, cones, bodies of revolution, etc. The important distinctions to be made are those between subsonic and supersonic flow. Purely subsonic flow is qualitatively quite similar to incompressible flow, while supersonic flow exhibits many startlingly different properties. Among these are the appearance of shock waves (see Sec. 2z) and the existence of wave fronts. A general discussion of the above topics may be found in ref. 3 .

Table 2x-2. Dependence of Flow Variables on Mach Number for One-dimensional Isentropic Flow*

| $\boldsymbol{M}$ | $p / p_{0}$ | $u / a_{0}$ | A/A* | $\rho u^{2} / 2 p_{0}$ | $\rho u / \rho_{0} a_{0}$ | $\rho / \rho_{0}$ | $T / T_{0}$ | $a / a_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 1.00000 | 0.00000 | $\infty$ | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 1.00000 |
| 0.1 | 0.99303 | 0.09990 | 5.822 | 0.00695 | 0.09940 | 0.99502 | 0.99800 | 0.99900 |
| 0.2 | 0.97250 | 0.19920 | 2.9635 | 0.02723 | 0.19528 | 0.98028 | 0.99206 | 0.99602 |
| 0.3 | 0.93947 | 0.29734 | 2.0351 | 0.05919 | 0.28437 | 0.95638 | 0.98232 | 0.99112 |
| 0.4 | 0.89561 | 0.39375 | 1.5901 | 0.10031 | 0.36393 | 0.92427 | 0.96899 | 0.98437 |
| 0.5 | 0.84302 | 0.48795 | 1.3398 | 0.14753 | 0.43192 | 0.88517 | 0.95238 | 0.97590 |
| 0.6 | 0.78400 | 0.57950 | 1.1882 | 0.19757 | 0.48704 | 0.84045 | 0.93284 | 0.96583 |
| 0.7 | 0.72093 | 0.66803 | 1.0944 | 0.24728 | 0.52880 | 0.79161 | 0.91075 | 0.95433 |
| 0.8 | 0.65602 | 0.75324 | 1.0382 | 0.29390 | 0.55739 | 0.73999 | 0.88652 | 0.94155 |
| 0.9 | 0.59126 | 0.83491 | 1.0089 | 0.33524 | 0.57362 | 0.68704 | 0.86059 | 0.92768 |
| 1.0 | 0.52828 | 0.91287 | 1.00000 | 0.36980 | 0.57870 | 0.63394 | 0.83333 | 0.91287 |
| 1.1 | 0.46835 | 0.98703 | 1.0079 | 0.39670 | 0.57415 | 0.58170 | 0.80515 | 0.89730 |
| 1.2 | 0.41238 | 1.0574 | 1.0304 | 0.41568 | 0.56161 | 0.53114 | 0.77640 | 0.88113 |
| 1.3 | 0.36091 | 1.1239 | 1.0663 | 0.42696 | 0.54272 | 0.48290 | 0.74738 | 0.86451 |
| 1.4 | 0.31424 | 1.1866 | 1.1149 | 0.43114 | 0.51905 | 0.43742 | 0.71839 | 0.84758 |
| 1.5 | 0.27240 | 1.2457 | 1.1762 | 0.42903 | 0.49203 | 0.39484 | 0.68966 | 0.83045 |
| 1.6 | 0.23527 | 1.3012 | 1.2502 | 0.42161 | 0.46288 | 0.35573 | 0.66138 | 0.81325 |
| 1.7 | 0.20259 | 1.3533 | 1.3376 | 0.40985 | 0.43264 | 0.31969 | 0.63371 | 0.79606 |
| 1.8 | 0.17404 | 1.4023 | 1.4390 | 0.39476 | 0.40216 | 0.28684 | 0.60680 | 0.77904 |
| 1.9 | 0.14924 | 1.4479 | 1.5553 | 0.37713 | 0.37210 | 0.25699 | 0.58072 | 0.76205 |
| 2.0 | 0.12780 | 1.4907 | 1.6875 | 0.35785 | 0.34294 | 0.23005 | 0.55556 | 0.74535 |
| 2.1 | 0.10935 | 1.5308 | 1.8369 | 0.33757 | 0.31504 | 0.20580 | 0.53135 | 0.72894 |
| 2.2 | 0.09352 | 1.5682 | 2.0050 | 0.31685 | 0.28863 | 0.18405 | 0.50813 | 0.71283 |
| 2.3 | 0.07997 | 1.6033 | 2.1931 | 0.29614 | 0.26387 | 0.16458 | 0.48591 | 0.69707 |
| 2.4 | 0.06840 | 1.6360 | 2.4031 | 0.27579 | 0.24082 | 0.14719 | 0.46468 | 0.68168 |
| 2.5 | 0.05853 | 1.6667 | 2.6367 | 0.25606 | 0.21948 | 0.13169 | 0.44444 | 0.66667 |
| 2.6 | 0.05012 | 1.6953 | 2.8960 | 0.23715 | 0.19983 | 0.11788 | 0.42517 | 0.65205 |
| 2.7 | 0.04295 | 1.7222 | 3.1830 | 0.21917 | 0.18181 | 0.10557 | 0.40683 | 0.63784 |
| 2.8 | 0.03685 | 1.7473 | 3.5001 | 0.20222 | 0.16534 | 0.09463 | 0.38941 | 0.62403 |
| 2.9 | 0.03165 | 1.7708 | 3.8498 | 0.18633 | 0.15032 | 0.08489 | 0.37286 | 0.61062 |
| 3.0 | 0.02722 | 1.7928 | 4.2346 | 0.17151 | 0.13666 | 0.07623 | 0.35714 | 0.59761 |
| 3.1 | 0.02345 | 1.8135 | 4.6573 | 0.15774 | 0.12426 | 0.06852 | 0.34223 | 0.58501 |
| 3.2 | 0.02023 | 1.8329 | 5.1210 | 0.14499 | 0.11301 | 0.06165 | 0.32808 | 0.57279 |
| 3.3 | 0.01748 | 1.8511 | 5.6287 | 0.13322 | 0.10281 | 0.05554 | 0.31466 | 0.56094 |
| 3.4 | 0.01512 | 1.8682 | 6.184 | 0.12239 | 0.09359 | 0.05009 | 0.30193 | 0.54948 |
| 3.5 | 0.01311 | 1.8843 | 6.790 | 0.11243 | 0.08523 | 0.04523 | 0.28986 | 0.53838 |
| 3.6 | 0.01138 | 1.8995 | 7.450 | 0.10328 | 0.07768 | 0.04089 | 0.27840 | 0.52763 |
| 3.7 | 0.00990 | 1.9137 | 8.169 | 0.09490 | 0.07084 | 0.03702 | 0.26752 | 0.51723 |
| 3.8 | 0.00863 | 1.9272 | 8.951 | 0.08722 | 0.06466 | 0.03355 | 0.25720 | 0.50715 |
| 3.9 | 0.00753 | 1.9398 | 9.799 | 0.08019 | 0.05906 | 0.03044 | 0.24740 | 0.49740 |
| 4.0 | 0.00659 | 1.9518 | 10.72 | 0.07379 | 0.05399 | 0.02766 | 0.23810 | 0.48795 |
| 4.1 | 0.00577 | 1.9631 | 11.71 | 0.06788 | 0.04940 | 0.02516 | 0.22925 | 0.47880 |
| 4.2 | 0.00506 | 1.9738 | 12.79 | 0.06250 | 0.04524 | 0.02292 | 0.22084 | 0.46994 |
| 4.3 | 0.00445 | 1.9839 | 13.95 | 0.05759 | 0.04147 | 0.02090 | 0.21286 | 0.46136 |
| 4.4 | 0.00392 | 1.9934 | 15.21 | 0.05309 | 0.03805 | 0.01909 | 0.20525 | 0.45305 |
| 4.5 | 0.00346 | 2.0025 | 16.56 | 0.04898 | 0.03494 | 0.01745 | 0.19802 | 0.44499 |
| 4.6 | 0.00305 | 2.0111 | 18.02 | 0.04521 | 0.03212 | 0.01597 | 0.19113 | 0.43719 |
| 4.7 | 0.00270 | 2.0192 | 19.58 | 0.04177 | 0.02955 | 0.01464 | 0.18457 | 0.42962 |
| 4.8 | 0.00239 | 2.0269 | 21.26 | 0.03862 | 0.02722 | 0.01343 | 0.17832 | 0.42228 |
| 4.9 | 0.00213 | 2.0343 | 23.07 | 0.03572 | 0.02509 | 0.01233 | 0.17235 | 0.41516 |
| 5.0 | 0.00189 | 2.0412 | 25.00 | 0.03308 | 0.02315 | 0.01134 | 0.16667 | 0.40825 |

* A more complete table may be found in refs. 4 and 5.

Equations of Linearized Theory. For very slender two- and three-dimensional bodies it may be assumed that the flow disturbances are very small. This leads to a linearization of the nonlinear equation for the velocity potential to

$$
\begin{equation*}
\left(1-M_{\infty}^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{2x-17}
\end{equation*}
$$

In the above equation $M_{\infty}$ is the free-stream Mach number and $\phi$ is the so-called disturbance potential, i.e.,

$$
\begin{equation*}
u=U+\phi_{x} \quad v=\phi_{y} \quad w=\phi_{z} \tag{2x-18}
\end{equation*}
$$

where $U$ is the free-stream velocity. For further details, consult refs. 1 and 2.
Prandtl-Glauert Rule. For subsonic linearized flow there exists a useful correspondence between compressible and incompressible flow. In two dimensions this is given by the velocity relations

$$
\begin{align*}
u_{\mathrm{compr}} & =\frac{1}{\sqrt{1-M_{\infty}^{2}}} u_{\mathrm{incompr}}  \tag{2x-19}\\
\phi(x, y)_{\mathrm{compr}} & =\frac{1}{\sqrt{1-M_{\infty}^{2}}} \phi\left(x_{1}, y_{1}\right)_{\mathrm{incompr}} \tag{2x-20}
\end{align*}
$$

where $x_{1}=x$

$$
y_{1}=\sqrt{1-M_{\infty}^{2} y}
$$

Thus, if an incompressible flow about a given body is known in the ( $x_{1}, y_{1}$ ) plane, then the corresponding flow about the same body in the ( $x, y$ ) plane is given by the above relations; see ref. 1. A similar relation exists for axially symmetric flow. Here

$$
\phi(x, r)_{\mathrm{compr}}=\frac{1}{\beta^{2}} \phi(x, \beta r)_{\mathrm{incompr}} \quad \beta=\sqrt{1-M_{\infty}^{2}}
$$

However, in this case the comparison is not between the same bodies but one of the $r$ coordinates must be scaled by the factor $\beta$; see ref. 1.

Hypersonic Similarity Rule. In very high-speed two-dimensional linearized supersonic flow it is possible to show that the lift and drag coefficients depend solely on the Mach number and the hypersonic similarity parameter $K=M \delta / b$, where $M$ is the free-stream Mach number, $\delta$ is the maximum thickness of the body, and $b$ is the body length, i.e., $\tau=\delta / b$ is the thickness ratio. Thus

$$
\begin{align*}
& C_{D}=\frac{1}{M^{3}} f(K)  \tag{2x-21}\\
& C_{L}=\frac{1}{M^{2}} g(K) \tag{2x-22}
\end{align*}
$$

In three dimensions,

$$
\begin{equation*}
C_{D}=\frac{1}{M^{2}} h(K) \tag{2x-23}
\end{equation*}
$$

Transonic Similarity Rule. For two-dimensional transonic flows there exists a similarity parameter $H=(1-M) /(\tau \Gamma)^{\frac{2}{3}}$, where $\tau=\delta / b$ and $\Gamma=\frac{1}{2}(\gamma+1)$. The lift and drag coefficients can be shown to depend only on the thickness ratio and the transonic similarity parameter $H$. Thus

$$
\begin{align*}
& C_{D}=\frac{\tau^{\frac{3}{3}}}{\Gamma^{\frac{1}{3}}} f(H)  \tag{2x-24}\\
& C_{L}=\frac{\tau^{\frac{3}{3}}}{\Gamma^{\frac{1}{3}}} g(H) \tag{2x-25}
\end{align*}
$$

In three dimensions,

$$
\begin{equation*}
C_{D}=\tau^{2} h\left(\frac{1-M}{\tau^{2} \Gamma}\right) \tag{2x-26}
\end{equation*}
$$

## References

1. Liepmann, H. W., and A. E. Puckett: "Introduction to Aerodynamics of a Compressible Fluid," John Wiley \& Sons, Inc., New York, 1947.
2. Ferri, A.: "Elements of Aerodynamics of Supersonic Flows," The Macmillan Company, New York, 1949.
3. Courant, R., and K. O. Friedrichs: "Supersonic Flow and Shock Waves," Interscience Publishers, Inc., New York, 1948.
4. Emmons, H. W.: "Gas Dynamics Tables for Air," Dover Publications, New York, 1947.
5. Aeronautical Research Council: "Compressible Airflow Tables," Oxford University Press, New York, 1952.
6. Sears, W. R.: A Second Note on Compressible Flow about Bodies of Revolution, Quart. Appl. Math. Б, 1 (April, 1947).
7. Von Kármán, T.: The Similarity Law of Transonic Flow, J. Math. Phys. 26, 2 (July, 1947).
8. Tsien, H. S.: Similarity Laws of Hypersonic Flows, J. Math. Phys. 25, 3 (October, 1946).

# 2y. Laminar and Turbulent Flow of Gases 

R. C. ROBERTS

Naval Ordnance Laboratory
$\mathbf{2 y - 1}$. Equations of Motion. The study of the motion of any real gas or fluid must of necessity take into consideration the effects of viscosity. The transfer of momentum due to viscosity and the transformation of kinetic energy into heat must be considered in formulating the equations of motion. The following equations govern the motion of a viscous, compressible, heat-conducting gas. The viscosity and heat conductivity are assumed to be functions of the temperature only.

Momentum Equations. In rectangular coordinates, the momentum equations may be written as

$$
\begin{align*}
& \rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)= \rho X+\frac{\partial}{\partial x}\left[\frac{4}{3} \mu \frac{\partial u}{\partial x}-\frac{2}{3} \mu\left(\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)\right] \\
&+\frac{\partial}{\partial y}\left[\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)\right]+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right]-\frac{\partial p}{\partial x} \\
& \rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)= \rho Y+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right] \\
&+\frac{\partial}{\partial y}\left[\frac{4}{3} \mu \frac{\partial v}{\partial y}-\frac{2}{3} \mu\left(\frac{\partial u}{\partial x}+\frac{-\partial w}{\partial z}\right)\right]+\frac{\partial}{\partial z}\left[\mu\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)\right]-\frac{\partial p}{\partial y} \\
& \rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)= \rho Z+\frac{\partial}{\partial x}\left[\mu\left(\frac{\partial w}{\partial x}+\frac{\partial u}{\partial z}\right)\right] \\
&+ \frac{\partial}{\partial y}\left[\mu\left(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z}\right)\right]+\frac{\partial}{\partial z}\left[\frac{4}{3} \mu \frac{\partial w}{\partial z}-\frac{2}{3} \mu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\right]-\frac{\partial p}{\partial z} \quad(2 \mathrm{y}-1) \tag{2y-1}
\end{align*}
$$

where $\mu$ is the coefficient of viscosity and the other terms are as defined in Sec. 2x.

Continuity Equation. The equation of continuity is

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0 \tag{2y-2}
\end{equation*}
$$

Energy Equation. By using the first law of thermodynamics and by considering that heat conduction may take place in the gas, the following energy equation may be written

$$
\begin{align*}
& \rho\left[\frac{\partial E}{\partial t}+u \frac{\partial E}{\partial x}+v \frac{\partial E}{\partial y}+w \frac{\partial E}{\partial z}\right]+p\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right) \\
& =\frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k \frac{\partial T}{\partial z}\right)+2 \mu\left[\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial w}{\partial z}\right)^{2}\right] \\
& \quad-\frac{2}{3} \mu\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)^{2}+\mu\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)^{2}+\mu\left(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x}\right)^{2}+\mu\left(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y}\right)^{2} \tag{2y-3}
\end{align*}
$$

where $k=$ heat-conductivity coefficient
$E=$ internal energy per unit mass
$\frac{\partial Q}{\partial t}=$ external heat production rate per unit volume
Equation of State. For a perfect gas the equation of state is

$$
\begin{equation*}
p=\rho R T \tag{2y-4}
\end{equation*}
$$

Stream Function. For a steady flow in two dimensions or for axially symmetric flow a stream function may be defined as in Sec. 2x. It has great utility in boundarylayer work (see ref. 3).

2y-2. Definitions of Basic Parameters. The basic dimensionless parameters of a viscous, compressible, heat-conducting gas are usually considered to be the Mach number, the Reynolds number, the Prandtl number, and the Grashof number (see ref. 2). The Mach number has been defined in Sec. 2x. The other three parameters may be defined as follows:

Reynolds Number. In a flow with reference velocity $u$ and reference length $L$, the Reynolds number $R$ is defined as

$$
\begin{equation*}
R=\frac{u L}{\nu} \tag{2y-5}
\end{equation*}
$$

where $\nu=\mu / \rho$ is the kinematic viscosity. Two viscous flows may not be dynamically similar unless their respective Reynolds numbers are the same.

Prandtl Number. The Prandtl number is defined as

$$
\begin{equation*}
P_{r}=\frac{\mu C_{p}}{k} \tag{2y-6}
\end{equation*}
$$

where $C_{p}$ is the specific heat at constant pressure and $k$ is the heat conductivity. The Prandtl number depends only on the material properties of the gas.

The Prandtl number is primarily a function of the temperature only. For small temperature changes it is often assumed to be constant (see ref. 2). The variation of $P_{r}$ with temperature is shown in Tables $2 \mathrm{y}-1$ and $2 \mathrm{y}-2$ for air and for molecular hydrogen $\mathrm{H}_{2}$.

Grashof Number. The Grashof number may be defined as

$$
\begin{equation*}
G_{r}=\frac{L^{3} g\left(T_{1}-T_{0}\right)}{\nu^{2} T_{0}} \tag{2y-7}
\end{equation*}
$$

where $g$ is the acceleration of gravity and $T_{1}$ and $T_{2}$ are two reference temperatures. The Grashof number often appears when there is a transfer of heat through a boundary into or out of the gas.

2y-3. Exact Solutions. Because of the extreme complexity of the equations of motion, few exact solutions have been found. Nearly all of these are limited to the incompressible steady flow case. Since gases may often be assumed incompressible, these solutions may have practical importance.

Pipe Flow. The exact incompressible solution for two-dimensional or axially symmetric steady flow through a pipe of constant cross section is characterized by a

| Table 2y-1. Prandtl |  |  |  |
| :---: | :---: | :---: | :---: |
| $T,{ }^{\circ} \mathrm{K}$ | $P_{r}$ | $T,{ }^{\circ} \mathrm{K}$ | $P_{r}$ |
| 100 | 0.770 | 560 | 0.680 |
| 120 | 0.766 | 580 | 0.680 |
| 140 | 0.761 | 600 | 0.680 |
| 160 | 0.754 | 620 | 0.681 |
| 180 | 0.746 | 640 | 0.682 |
|  |  |  |  |
| 200 | 0.739 | 660 | 0.682 |
| 220 | 0.732 | 680 | 0.683 |
| 240 | 0.725 | 700 | 0.684 |
| 260 | 0.719 | 720 | 0.685 |
| 280 | 0.713 | 740 | 0.686 |
|  |  |  |  |
| 300 | 0.708 | 760 | 0.687 |
| 320 | 0.703 | 780 | 0.688 |
| 340 | 0.699 | 800 | 0.689 |
| 360 | 0.695 | 820 | 0.690 |
| 380 | 0.691 | 840 | 0.692 |
|  |  |  |  |
| 400 | 0.689 | 860 | 0.693 |
| 420 | 0.686 | 880 | 0.695 |
| 440 | 0.684 | 900 | 0.696 |
| 460 | 0.683 | 920 | 0.697 |
| 480 | 0.681 | 940 | 0.698 |
|  |  |  |  |
| 500 | 0.680 | 960 | 0.700 |
| 520 | 0.680 | 980 | 0.701 |
| 540 | 0.680 | 1000 | 0.702 |

parabolic velocity distribution. In the two-dimensional case the complete solution is given by

$$
\begin{align*}
u & =-\frac{1}{2 \mu} z(h-z) \frac{\partial p}{\partial x} \\
v & =w=0  \tag{2y-8}\\
\frac{\partial p}{\partial x} & =\text { const } \quad \frac{\partial p}{\partial y}=\frac{\partial p}{\partial z}=0
\end{align*}
$$

where the boundaries are at $z=0$ and $z=h$. In the case of flow through a circular pipe, the theoretical solution has been shown to coincide almost exactly with experiment for laminar flow.

Other Exact Solutions. There are a number of other exact solutions for the incompressible case such as steady flow between concentric cylinders and flow through tubes
of noncircular cross section. These may be found by consulting refs. 1 and 3. Hamel (ref. 5) has found a number of nontrivial exact solutions.

2y-4. Boundary Layer. When the Reynolds number of the flow is large, most of the viscous effects take place in the immediate vicinity of the boundaries. The outer flow may then be considered determined by the inviscid flow equations while in the boundary layer certain simplifications of the equation of motion may be made. For the case of two-dimensional flow past flat or slowly curving surfaces the pressure may be assumed to be completely determined by the outer flow.

## Table 2y-2. Prandtl Number for Molecular Hydrogen $\mathbf{H}_{2}$ *

| $T,{ }^{\circ} \mathrm{K}$ | $P_{r}$ | $T,{ }^{\circ} \mathrm{K}$ | $P_{r}$ |
| :---: | :---: | :---: | :---: |
| 60 | 0.713 | 440 | 0.684 |
| 80 | 0.711 | 460 | 0.681 |
|  |  |  |  |
| 100 | 0.712 | 480 | 0.678 |
| 120 | 0.715 | 500 | 0.675 |
| 140 | 0.718 | 520 | 0.671 |
| 160 | 0.719 | 540 | 0.669 |
| 180 | 0.720 | 560 | 0.667 |
|  |  |  |  |
| 200 | 0.719 | 580 | 0.665 |
| 220 | 0.717 | 600 | 0.664 |
| 240 | 0.715 | 620 | 0.663 |
| 260 | 0.712 | 640 | 0.663 |
| 280 | 0.709 | 660 | 0.662 |
|  |  |  |  |
| 300 | 0.706 | 680 | 0.661 |
| 320 | 0.703 | 700 | 0.661 |
| 340 | 0.699 | 720 | 0.661 |
| 360 | 0.696 | 740 | 0.660 |
| 380 | 0.693 | 760 | 0.660 |
|  |  |  |  |
| 400 | 0.690 | 780 | 0.660 |
| 420 | 0.687 | 800 | 0.660 |

[^96]Basic Equations. For two-dimensional steady flow as outlined above, the momentum, continuity, and energy equations are, respectively,

$$
\begin{gather*}
\rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)=\frac{\partial}{\partial y}\left(\mu \frac{\partial u}{\partial y}\right)-\frac{\partial p}{\partial x} \\
0=\frac{\partial p}{\partial y} \\
\frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)=0  \tag{2y-9}\\
\rho\left(u \frac{\partial E}{\partial x}+v \frac{\partial E}{\partial y}\right)+p\left[u \frac{\partial}{\partial x}\left(\frac{1}{\rho}\right)+v \frac{\partial}{\partial y}\left(\frac{1}{\rho}\right)\right]=\frac{\partial}{\partial y}\left(k \frac{\partial T}{\partial y}\right)+\mu\left(\frac{\partial u}{\partial y}\right)^{2}
\end{gather*}
$$

For a perfect gas the equation of state is $p=\rho R T$. In the above equations $x$ may be considered as the distance along the boundary while $y$ is the distance perpendicular
to the boundary. The velocity components $u$ and $v$ are interpreted in like manner. The equations then hold also for a slowly curving boundary.

Blasius Flow. For incompressible steady flow past a flat plate with no pressure gradient, the equations of motion are

$$
\begin{align*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =\nu \frac{\partial^{2} u}{\partial y^{2}}  \tag{2y-10}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0
\end{align*}
$$

with the boundary conditions $u=v=0$ at $y=0$ and $u=u_{1}=$ const at $y=\infty$ and at $x=0$. $\quad u_{1}$ is the free-stream velocity. Blasius solved this problem by means of the change of variable

$$
\begin{equation*}
\eta=\frac{1}{2}\left(\frac{u_{1}}{\nu x}\right)^{\frac{1}{2}} y \quad u=\frac{1}{2} u_{1} f^{\prime} \quad v=\frac{1}{2}\left(\frac{u_{1} \nu}{x}\right)^{\frac{1}{2}}\left(\eta f^{\prime}-f\right) \tag{2y-11}
\end{equation*}
$$

This reduces the problem to the ordinary differential equation and boundary conditions

$$
\begin{gather*}
\frac{d^{3} f}{d \eta^{3}}+f \frac{d^{2} f}{d \eta^{2}}=0  \tag{2y-12}\\
f=f^{\prime}=0 \text { at } \eta=0 \quad \text { and } \quad f^{\prime}=2 \text { at } \eta=\infty
\end{gather*}
$$

2y-5. Turbulent Motion. For small values of the Reynolds number most flows are characterized by a certain uniformity of velocity distribution and smoothness of the streamline pattern. This condition is called laminar flow. As the Reynolds number is increased the flow will remain laminar until some critical value of $R$ is reached. At this time the small-scale motions of the flow are seen to be chaotic or random in nature and consequently difficult to follow or predict. This is called turbulent flow.

Because of the random nature of turbulent flow one usually considers or measures only average values of the flow variables. The assumption is usually made that the flow variables may be expressed as the sum of an average value plus a randomly fluctuating term, the latter term having zero as its average. In the following discussion the turbulent-flow quantities given are the average values of the flow variables.

2y-6. Data on Turbulent Flow through Pipes. The following data show the behavior of the skin friction for incompressible turbulent flow through smooth and rough pipes. These data come from Nikuradse (see refs. 7 and 8).

Smooth Pipes. The skin-friction coefficient $C_{f}$ is a function of the Reynolds number $R$, for smooth pipes,

$$
\begin{aligned}
C_{f} & =\frac{\tau_{w}}{\frac{1}{2} \rho u^{2}} \\
R_{1} & =\frac{r u_{1}}{\nu}
\end{aligned}
$$

```
where \(\quad \tau_{w}=\) wall shear stress per unit area
 \(\rho=\) density
 \(\nu=\) kinematic viscosity
 \(u_{1}=\) velocity in center of pipe
 \(r=\) pipe radius
```

The behavior of $C_{f}$ with $R_{1}$ is shown in Fig. 2y-1. An empirical curve which fits the data is also shown.

Rough Pipes. For rough pipes with average projection of the roughness $k$, the skin-friction data are shown in Fig. 2y-2. The friction factor $\lambda$ is plotted against


Fig. 2y-1. Universal wall-friction functional relation.


Fig. 2y-2. Relation between $\log (100 \lambda)$ and $\log R$ (rough pipe).


Fig. 2y-3. Relation between $\log C_{D}$ and $\log R$ (cylinder).


Fig. 2y-4. Relation between $\log C_{D}$ and $\log R$ (sphere).
Reynolds number $R$ for various surface roughnesses $r / k$,

$$
\begin{aligned}
\lambda & =4 C_{f}\left(\frac{u_{1}}{u}\right)^{2} \\
\bar{u} & =\text { average velocity across pipe } \\
d & =\text { pipe diameter } \\
\bar{r} & =\text { roughness factor } \\
r & =\text { pipe radius }
\end{aligned}
$$

2y-7. Drag Data for Spheres and Cylinders. For incompressible viscous steady flow the drag coefficient is a function of the Reynolds number only. The graphs of Figs. $2 \mathrm{y}-3$ and $2 \mathrm{y}-4$ give curves of the experimental data for $C_{D}$, the drag coefficient, for a cylinder in cross flow and for a sphere, respectively.



$$
\text { Drag of cylinder } C_{D}=\frac{\text { drag force }}{\frac{1}{2} \rho u^{2} d}
$$

where $d=$ diameter of cylinder
$u=$ free-stream velocity

$$
R=\frac{u d}{\nu}
$$

$$
\text { Drag of sphere } C_{D}=\frac{\text { drag force }}{\frac{1}{2} \rho u^{2}\left(\pi d^{2} / 4\right)}
$$

where $d=$ diameter of sphere

$$
R=\frac{u d}{\nu}
$$



Fig. 2y-6. Data for gases inside tubes compared with recommended line $A A$. Line $B B$ is obtained from the Reynolds analogy, taking $f=0.049(D G / \mu)^{-0.2}$ and $c_{p} \mu / k=0.74$. Line $B B$ also represents the Prandtl analogy for $r_{v}$ of 0.3 .

2y-8. Skin-friction Data for a Flat Plate. Figure $2 y-5$ indicates the behavior of the skin-friction coefficient $C_{f}$ with Reynolds number for a flat plate in an incompressible fluid.

$$
C_{f}=\frac{\tau_{w}}{\frac{1}{\mathbb{Z}} \rho u^{2}}
$$

where $R=\frac{u l}{\nu}$

$$
l=\text { length of plate }
$$

2y-9. Heat-transfer Data. The transfer of heat from heated surfaces to gases moving past them is of great importance. This heat transfer is often expressed in dimensionless form in terms of the $N u s s e l t$ number $K_{N}$,

$$
K_{N}=\frac{h D}{k}
$$

where $h=$ coefficient of heat transfer
$D=$ length
$k=$ thermal conductivity
For incompressible flow $K_{N}$ is a fraction of the Reynolds number only. The behavior $K_{N}$ with $R$ for pipe flow and for a flat plate is given below.


Fig. 2y-7. Comparison between theory and experiment for heat transfer from plate.


Fig. 2y-8. Variation of skin-friction ratio with Mach number for several constant values of wall-temperature ratio and $\operatorname{Re} \theta=13,500$.

Pipe Flow. The variation of $K_{N}$ with $R$ for a circular pipe is given in Fig. 2y-6, where $D$ is the pipe diameter.

$$
R=\frac{D G}{\mu}
$$

where $\boldsymbol{G}=\frac{\boldsymbol{w}}{\boldsymbol{s}}$
$w=$ mass rate of flow
$s=$ cross-sectional area of pipe

Flat Plate. For a flat plate the variation of $K_{N}$ with $R$ for small $R$ is shown in Fig. 2y-7, where $D$ is the length of the flat plate. For higher values of $R$ recourse must be made to empirical formulas converting the pipe-flow into equivalent flatplate data; see page 117 of ref. 10.

2y-10. Effect of Compressibility and Heat Transfer on Skin Friction. For a fixed Reynolds number the ratio of the local skin-friction coefficient $c_{f}$ to the corresponding incompressible value $c_{f_{i}}$ is a function of the Mach number and the heat transfer. The graph shown in Fig. 2y-8, taken from ref. 12, represents an excellent theoretical fit to data from refs. 11 and 13. The curves are plotted for zero heat transfer where $T_{e}=T_{w}$ and several different constant heat-transfer conditions. The graph is for a single representative Reynolds number $R_{\theta}$ based on momentum thickness.

$$
\begin{aligned}
T_{w} & =\text { wall temperature } \\
T_{e} & =\text { adiabatic wall temperature } \\
T_{\infty} & =\text { free-stream temperature } \\
R_{\theta} & =\frac{u_{\infty} \theta}{\nu} \\
\theta & =\text { momentum thickness }=\int_{0}^{\delta} \frac{\rho u}{\rho_{1} u_{1}}\left(1-\frac{u}{u_{1}}\right) d y \\
\delta & =\text { boundary-layer thickness } \\
\rho_{1} & =\text { density outside boundary layer } \\
u_{1} & =\text { velocity outside boundary layer }
\end{aligned}
$$

## References

1. Goldstein, S.: "Modern Developments in Fluid Dynamics," vol. I, Oxford University Press, New York, 1938.
2. Goldstein, S.: "Modern Developments in Fluid Dynamics," vol. II, Oxford University Press, New York, 1938.
3. Howarth, L.: "Modern Developments in Fluid Dynamics, High Speed Flow," vol. I, Oxford University Press, New York, 1953.
4. Howarth, L.: "Modern Developments in Fluid Dynamics, High Speed Flow," vol. II, Oxford University Press, New York, 1953.
5. Schlichting, H.: "Grenzschicht-Theorie," G. Braun, Karlsruhe, 1951.
6. "NACA Tables of Thermal Properties of Gases," Heat and Power Division, National Bureau of Standards.
7. Ross, D.: "Turbulent Flow in Smooth Pipes, A Reanalysis of Nikuradse's Experiments," Ordnance Research Laboratory, Pennsylvania State College, Serial No. NOrd 7958-246.
8. Nikuradse, J.: "Laws of Flow in Rough Pipes, NACA Tech. Mem. 1292.
9. McAdams, W. H., "Heat Transmission," 3d ed., McGraw-Hill Book Company, Inc., New York, 1954.
10. Eckert, E. R. G.: "Introduction to the Transfer of Heat and Mass," McGrawHill Book Company, Inc., New York, 1950.
11. Coles, D.: Measurements of Turbulent Friction on a Smooth Flat Plate in Supersonic Flow, J. Aeronaut. Sci. 21, 7 (July, 1954).
12. Persh, Jerome: A Theoretical Investigation of Turbulent Boundary Layer Flow with Heat Transfer at Supersonic and Hypersonic Speeds, NavOrd Rept. 3854, U.S. Naval Ordnance Laboratory.
13. Lobb, R. K., E. M. Winkler, and J. Persh: Experimental Investigation of Turbulent Boundary Layers in Hypersonic Flow, J. Aeronaut. Sci. 22, 1 (January, 1955). See also NavOrd Rept. 3880, U.S. Naval Ordnance Laboratory, by the same authors.

# 2z. Shock Waves 

ELI H. FREEDMAN<br>University of Buffalo<br>EDWARD F. GREENE<br>Brown University

## 2z-1. List of Symbols

$u$ flow velocity, measured in a coordinate system moving with the shock front
$p$ pressure
$\rho$ density
$\gamma \quad$ ratio of heat capacities $=C_{P} / C_{V}$
H enthalpy
$E \quad$ internal energy
$T$ absolute temperature
$S$ entropy
$R^{*}$ gas constant per gram
$c \quad$ local sound velocity
$M_{1} \quad$ Mach number of incident shock $=u_{1} / c_{1}$
$n \quad$ empirical constant in the Tait equation for liquids
$B(S)$ constant in the Tait equation for water
n unit vector normal to surface
u velocity vector
$M_{R} \quad$ Mach number of reflected shock $=u_{2 R} / c_{2}$
Subscripts 1,2 , and 3 on any quantity (e.g., $u_{1}, p_{2}, \rho_{3}$ ) mean that the quantity is measured in front of an incident shock, behind the incident shock, or behind a reflected shock, respectively.

Primed and double-primed quantities (e.g., $p^{\prime}, u^{\prime \prime}$ ) are measured, respectively, on the two sides of a boundary between two media.

Subscript $R$ on any quantity means that that quantity is measured in a coordinate system moving with a reflected shock.

2z-2. Introduction. Sound waves of infinitesimal amplitude in fluids always propagate without change of form (neglecting the effects of viscosity, thermal conductivity, and relaxation). For waves of finite amplitude this is no longer true; the denser regions move faster than the less dense and hence the denser regions are always catching up with less dense ones in front of them; but since the velocity increases with density the effect becomes more and more pronounced, the front of the wave becoming steeper and steeper until the density, temperature, and pressure changes across it are virtually discontinuous-a shock wave is formed. Mathematically, a shock wave is an actual discontinuity propagating with a velocity greater than the local sound velocity. Physically, although a shock transition is extremely abrupt (of the order of 10 mean free paths for a typical shock in a gas), it nevertheless is continuous, because of the action of dissipative forces. In what follows, attention will be focused exclusively on the regions behind or in front of the shock front. The relations that will be
given are of general validity (except as noted) and are in any case independent of the actual course of events within the front itself.

It might be imagined that there could be a flow in which a shock moves from a dense region to a rarefied one. However, it can be shown from the energy-conservation law that steady-state flows of this type cannot exist in any fluid having an adiabat that is concave upward, the almost universally prevailing situation.

Another type of discontinuity occurring in gas flows is called a "contact discontinuity." It differs from a shock in that there is no mass flow across it, as there is in the case of a shock. Contact discontinuities cannot occur in steady-state flows and will not be further considered.

2z-3. Steady-state One-dimensional Flow. General Relations. Consider a shock propagating steadily in a fluid. Relative to a coordinate system moving with the shock, the equations of steady compressible flow are

$$
\begin{align*}
& u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0  \tag{2z-1a}\\
& u \frac{\partial u}{\partial x}+\frac{1}{\rho} \frac{\partial p}{\partial x}=0 \tag{2z-1b}
\end{align*}
$$

Equation (2z-1a) leads to

$$
\begin{equation*}
\rho_{2} u_{2}=\rho_{1} u_{1} \tag{2z-2}
\end{equation*}
$$

From Eqs. (2z-1) and (2z-2) we have

$$
\begin{equation*}
\rho_{2} u_{2}{ }^{2}+p_{2}=\rho_{1} u_{1}{ }^{2}+p_{1} \tag{2z-3}
\end{equation*}
$$

Also, from ( $2 \mathrm{z}-1 b$ ),

$$
\begin{equation*}
\frac{1}{2} u^{2}+\int \frac{d p}{\rho}=\text { const } \tag{2z-4a}
\end{equation*}
$$

From the energy-conservation equation, it can be shown that

$$
\begin{equation*}
\frac{1}{2} u_{2}{ }^{2}+H_{2}=\frac{1}{2} u_{1}{ }^{2}+H_{1} \tag{2z-4b}
\end{equation*}
$$

These equations lead at once to the Rankine-Hugoniot relations:
and

$$
\begin{align*}
& E_{2}-E_{1}=\Delta E=\frac{1}{2}\left(p_{2}+p_{1}\right)\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)  \tag{2z-5a}\\
& H_{2}-H_{1}=\Delta H=\frac{1}{2}\left(p_{2}-p_{1}\right)\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right) \tag{2z-5b}
\end{align*}
$$

$$
\begin{equation*}
u_{1}=\frac{1}{\rho_{1}}\left[\frac{p_{2}-p_{1}}{1 / \rho_{1}-1 / \rho_{2}}\right]^{\frac{1}{2}} \tag{2z-5c}
\end{equation*}
$$

Equations (2z-5a), (2z-5b), and (2z-5c) are based solely upon hydrodynamics and thermodynamics and are valid for all fluids. Further progress can now be made only when they are supplemented by an equation of state for the fluid.

Special Cases. the ideal gas:

$$
p=\rho R^{*} T
$$

From Eqs. $(2 z-5 a),(2 z-5 b)$, and $(2 z-5 c)$ and the equation of state it can be shown that
and

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{\rho_{2}(\gamma+1)-\rho_{1}(\gamma-1)}{\rho_{1}(\gamma+1)-\rho_{2}(\gamma-1)}  \tag{2z-6a}\\
& \frac{\rho_{2}}{\rho_{1}}=\frac{p_{2}(\gamma+1)+p_{1}(\gamma-1)}{p_{1}(\gamma+1)+p_{2}(\gamma-1)}  \tag{2z-6b}\\
& \frac{T_{2}}{T_{1}}=\frac{p_{2} \rho_{1}}{p_{1} \rho_{2}} \tag{2z-6c}
\end{align*}
$$

In terms of the Mach number of the incident shock $M_{1}$,
and

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=\frac{2 M_{\mathrm{r}^{2} \gamma-\gamma+1}^{\gamma+1}}{\frac{\rho_{2}}{\rho_{1}}=\frac{M_{1}^{2}(\gamma+1)}{M_{1}^{2}(\gamma-1)+2}} \tag{2z-7a}
\end{align*}
$$

liquids: An often-used equation of state for liquids, especially water, is the Tait equation. A convenient form of it is

Approximately

$$
\begin{gather*}
p=B(S)\left[\left(\frac{\rho(T, p)}{\rho(T, 0)}\right)^{n}-1\right]  \tag{2z-8a}\\
B=\frac{\rho_{1} c_{1}^{2}}{n} \tag{2z-8b}
\end{gather*}
$$

It is a good approximation in liquids to assume that the initial and final states are connected by an adiabatic compression. With this assumption,
where

$$
\begin{gather*}
u_{1}=c_{1}\left[1+\frac{n+1}{4 c} \sigma\right]  \tag{2z-9a}\\
\sigma=\frac{2 c_{1}}{n-1}\left[\left(\frac{\rho_{2}}{\rho_{1}}\right)^{(n-1) / 2}-1\right] \tag{2z-9b}
\end{gather*}
$$

Systems Subject to Chemical Reaction. The Rankine-Hugoniot relation, Eq. (2z-5a), is plotted in the ( $p, 1 / \rho$ ) plane in Fig. $2 \mathrm{z}-1$ with an adiabat for comparison. This relation is of course valid when the system reacts chemically, if the chemical energy is included in $\Delta E$. In this case the point ( $p_{1}, \rho_{1}$ ) does not lie on the Rankine-Hugoniot curve, but either above or below it, depending on whether the chemical reaction is endothermic or exothermic. An especially interesting case, detonation, occurs when there is enough chemical energy alone to sustain the shock wave. Since the wave velocity is measured by the slope of the line through ( $p_{1, \rho_{1}}$ ) which intersects the Rankine-Hugoniot curve [see Eqs. (2z-5)], there is usually an infinite number of possible velocities. However, in a steady-state detonation the lowest possible velocity, which corresponds to a line through ( $p_{1}, \rho_{1}$ ) just tangent to the Rankine-Hugoniot curve, is the one that occurs. This is the Chapman-Jouguet condition:

$$
\begin{equation*}
u_{1_{\text {detonation }}}=\frac{1}{\rho_{1}}\left(\frac{p_{2}-p_{1}}{1 / \rho_{1}-1 / \rho_{2}}\right)_{\min }^{\frac{1}{2}} \tag{2z-10}
\end{equation*}
$$

which provides the extra relation needed so that the detonation velocity may be calculated from Eqs. (2z-5).

When mechanical as well as chemical energy is available, the velocity increases from the Chapman-Jouguet value as ( $p_{2, \rho_{2}}$ ) moves upward along the RankineHugoniot curve. There is no common physical process corresponding to the value of ( $p_{2}, \rho_{2}$ ) below the Chapman-Jouguet value. The other branch of the RankineHugoniot curve for which $p_{2}<p_{1}$ and $\rho_{2}<\rho_{1}$ corresponds to a deflagration and is a subsonic process.

2z-4. Reflection and Refraction at a Rigid Wall. At a rigid boundary, in addition to the previous Eqs. (2z-5) there must be added the condition

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{n}=0 \tag{2z-11}
\end{equation*}
$$

Normal Incidence. The use of (2z-11) along with (2z-5) for a perfect gas leads to

$$
\begin{equation*}
\frac{p_{3}}{p_{2}}=\frac{(3 \gamma-1)\left(p_{2} / p_{1}\right)-\gamma+1}{(\gamma-1)\left(p_{2} / p_{1}\right)+\gamma+1} \tag{2z-12a}
\end{equation*}
$$

and

$$
\begin{equation*}
-u_{3 R}=c_{1} \frac{2\left(p_{2} / p_{1}\right)(\gamma-1)+2}{\left\{2 \gamma\left[(\gamma+1)\left(p_{2} / p_{1}\right)+\gamma-1\right]\right\}^{\frac{1}{2}}} \tag{2z-12b}
\end{equation*}
$$

which is the velocity of the reflected shock relative to the reflecting surface.
Oblique Incidence. In this case a second condition may be imposed: the incident and reflected waves should intersect at the surface. This condition cannot always be satisfied; when it is one speaks of regular reflection. Regular reflection always occurs at a sufficiently small angle of incidence (i.e., the angle between the normal to the surface and the normal to the shock front). The two boundary conditions then completely determine the direction and strength of the reflected shock.


Fig. 2z-1. Plot of Rankine-Hugoniot relation.
There exists a critical angle of incidence above which regular reflection cannot occur. The point of intersection of the incident and reflected shocks rises above the surface and is joined to it by a third shock, called the Mach stem. This case is called "Mach reflection." Experimentally it is found that Mach reflection sets in at angles smaller than those predicted by theory.

2z-5. Reflection and Refraction at a Nonrigid Wall. There are now two boundary conditions that must be satisfied

$$
\begin{align*}
\mathbf{u}^{\prime} \cdot \mathbf{n}^{\prime} & =\mathbf{u}^{\prime \prime} \cdot \mathbf{n}^{\prime \prime}  \tag{2z-13a}\\
\boldsymbol{p}^{\prime} & =\boldsymbol{p}^{\prime \prime} \tag{2z-13b}
\end{align*}
$$

and
Normal Incidence. In order to satisfy both (2z-13a) and (2z-13b) it is necessary that there be a transmitted and a reflected wave. The transmitted wave is always a shock, but the reflected wave may be either a shock or a rarefaction wave, depending on the properties of the two media, and, in some cases, on the strength of the incident shock.

Oblique Incidence. There can occur either regular reflection or Mach reflection, of which the first case has been well investigated. It is shown that there is always a transmitted wave (i.e., total reflection of a shock wave cannot occur). If the second medium has a high acoustic impedance, the observed phenomena are similar to those found at a rigid surface; if the second medium has a low acoustic impedance, the observed phenomena are similar to those found at a free surface.

Free Surface (for Liquids Only). The condition ( $2 \mathrm{z}-13 b$ ) here becomes $\boldsymbol{p}^{\prime}=0$. For a sufficiently small angle of incidence there is always a reflected rarefaction wave intersecting the incident shock at the surface. At some critical angle of incidence, determined by the strength of the incident shock as well as the properties of the liquid, this picture no longer applies. The phenomena in this case have not yet been intensively investigated.

Table 2z-1 lists some important properties of shock waves in ideal monatomic and diatomic gases. The following values have been used for $\gamma$, the ratio of heat capacities: For the monatomic gas, $\gamma=\frac{5}{3}$; for the diatomic gas, $\gamma=\frac{7}{5}$. For both gases,

Table 2z-1. Some Properties of Shocks in Ideal Gases

|  | Monatomic |  |  |  |  | Diatomic |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{1}$ | $p_{2} / p_{1}$ |  |  |  | $\rho_{2} / \rho_{1}$ | $T_{2} / T_{1}$ | $M_{R}$ | $p_{2} / p_{1}$ |  |
|  |  | $\rho_{2} / \rho_{1}$ | $T_{2} / T_{1}$ | $M_{R}$ |  |  |  |  |  |
| 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |  |
| 1.5 | 2.562 | 1.714 | 1.495 | 1.397 | 2.458 | 1.862 | 1.320 | 1.426 |  |
| 2 | 4.750 | 2.286 | 2.078 | 1.648 | 4.500 | 2.667 | 1.688 | 1.732 |  |
| 2.5 | 7.562 | 2.703 | 2.798 | 1.808 | 7.125 | 3.333 | 2.138 | 1.949 |  |
| 3 | 11.00 | 3.000 | 3.667 | 1.915 | 10.33 | 3.857 | 2.679 | 2.104 |  |
| 4 | 19.75 | 3.368 | 5.863 | 2.041 | 18.50 | 4.571 | 4.047 | 2.297 |  |
| 5 | 31.00 | 3.571 | 8.680 | 2.104 | 29.00 | 5.000 | 5.800 | 2.408 |  |
| 6 | 44.75 | 3.692 | 12.12 | 2.142 |  |  |  |  |  |
| 8 | 79.75 | 3.821 | 20.87 | 2.182 |  |  |  |  |  |
| 10 | 124.8 | 3.884 | 32.12 | 2.201 |  |  |  |  |  |
| 15 | 281.0 | 3.947 | 71.19 | 2.220 |  |  |  |  |  |
| 20 | 499.8 | 3.970 | 125.9 | 2.227 |  |  |  |  |  |

the possibility of electronic excitation has been neglected. In addition, for the diatomic gas, the possibilities of dissociation and the activation of the vibrational heat capacity have been neglected. Since the latter assumption becomes increasingly unrealistic at high temperatures, this part of the table has not been extended beyond $M_{1}=5$.

## References

## General

Courant, R., and K. O. Friedrichs: "Supersonic Flow and Shock Waves," Interscience Publishers, Inc., New York, 1948. Comprehensive, thorough treatment of entire subject, emphasizing mathematical aspects; 198 references.
Penney, W. G., and H. H. M. Pike: Repts. Progr. in Phys. 13, 46-82 (1950). Over-all survey of problems and results, emphasizing physical aspects; 40 references.

## Special

Cole, R. H.: "Underwater Explosions," Princeton University Press, Princeton, N.J., 1946. Thorough treatment of propagation of shocks in water.

Lewis, Bernard, and Guenther von Elbe: "Combustion, Flames and Explosions of Gases," Academic Press, Inc., New York, 1951; chap. XI treats detonation waves in gases.
Taub, A. H.: Phys. Rev. 72, 51-60 (1947). Reflection and refraction of plane shocks. Bleakney, W., and A. H. Taub: Revs. Modern Phys. 21, 584-605 (1949).
Fletcher, C. H., A. H. Taub, and W. Bleakney: Revs. Modern Phys. 23, 271-286 (1951). Mach reflection considered theoretically and experimentally.

Polachek, H., and R. J. Seeger: Phys. Rev. 84, 922-929 (1951). Refraction at a gaseous interface.
See also pp. 3-37 to 3-39 of this book,"Waves of Finite Amplitude," Sec. 3c-6.

## Section 3

## ACOUSTICS

FLOYD A. FIRESTONE, Editor<br>The Journal of the Acoustical Society of America

## CONTENTS

3a. Acoustical Definitions ..... 3-2
3b. Letter Symbols and Conversion Factors for Acoustical Quantities ..... 3-18
3c. Propagation of Sound in Fluids ..... 3-25
3d. Acoustic Properties of Gases ..... 3-56
3e. Acoustic Properties of Liquids ..... 3-67
3f. Acoustic Properties of Solids ..... 3-74
3g. Properties of Transducer Materials ..... 3-89
3h. Frequencies of Simple Vibrators. Musical Scales ..... 3-100
3i. Radiation of Sound ..... 3-108
3j. Architectural Acoustics ..... 3-113
3k. Speech and Hearing ..... 3-123
31. Classical Electro-dynamical Analogies ..... 3-134
3 m . The Mobility and Classical Impedance Analogies ..... 3-140
3n. Selected References on Acoustics ..... 3-178

# 3a. Acoustical Definitions ${ }^{1}$ 

LEO L. BERANEK<br>Bolt Beranek and Newman, Inc.

## 3a-1. General

Acceleration. The acceleration of a point is the time rate of change of the velocity of the point.

Acoustic, acoustical. The qualifying adjectives acoustic and acoustical mean containing, producing, arising from, actuated by, related to, or associated with sound. Acoustic is used when the term being qualified designates something that has the properties, dimensions, or physical characteristics associated with sound waves; acoustical is used when the term being qualified does not designate explicitly something which has such properties, dimensions, or physical characteristics.
examples: Acoustic singularities manifested through acoustic impedance irregularities make possible acoustical flaw-detection methods based on acoustic flaw detection. Positive acoustical advantages can accrue from good acoustical utilization of such acoustic signals, which represent an acoustical manifestation of electricity transmitted acoustically by an acoustic medium. From the acoustical point of view, acoustic loading is an excellent method of effecting the acoustical termination of an acoustical system with an acoustic termination.

Acoustics. Acoustics is the science of sound including its production, transmission, and effects.

Anechoic Space or Chamber. An anechoic space or chamber is a bounded space in which reflected waves are sufficiently weak as to be negligible in the region of interest; more literally, echo-free space.

Antinodes (Loops). Antinodes are the points, lines, or surfaces in a standing-wave system where some characteristic of the wave field has maximum amplitude.

Note: The appropriate modifier should be used with the word "antinode" to signify the type that is intended (pressure antinode, velocity antinode, etc.).

Audio Frequency. An audio frequency is any frequency corresponding to a normally audible sound wave.

Note 1: Audio frequencies range roughly from 15 to 20,000 cycles per second.
Note 2: The word "audio" may be used as a modifier to indicate a device or system intended to operate at audio frequencies, e.g., "audio amplifier."

Band Power Level. The band power level of a sound for a specified frequency band is the acoustic power level for the acoustic power contained within the band. The width of the band and the reference power must be specified. The unit is the decibel.

Band Pressure Level. The band pressure level of a sound for a specified frequency band is the effective sound pressure level for the sound energy contained within the band. The width of the band and the reference pressure must be specified. The unit is the decibel.

[^97]Beats. Beats are periodic variations that result from the superposition of waves having different frequencies.

Compressional Wave. A compressional wave is a wave in an elastic medium which causes an element of the medium to change its volume without undergoing rotation.

Note 1: Mathematically, a compressional wave is one whose velocity field has zero curl.
Note 2: A compressional plane wave is a longitudinal wave.
Continuous Spectrum. A continuous spectrum is the spectrum of a wave the components of which are continuously distributed over a frequency region.

Decibel. The decibel is a dimensionless unit for expressing the ratio of two values of power, the number of decibels being 10 times the logarithm to the base 10 of the power ratio.

Note: With $P_{1}$ and $P_{2}$ designating two amounts of power and $n$ the number of decibels corresponding to their ratio,

$$
n=10 \log _{10} \frac{P_{1}}{P_{2}}
$$

When the conditions are such that scalar ratios of currents or of voltages (or analogous quantities in other fields such as pressures, or particle velocities in sound) are the square roots of the corresponding power ratios, the number of decibels by which the corresponding powers differ is expressed by the following formulas:

$$
\begin{aligned}
n & =20 \log _{10} \frac{I_{1}}{I_{2}} \\
n & =20 \log _{10} \frac{V_{1}}{V_{2}}
\end{aligned}
$$

where $I_{1} / I_{2}$ and $V_{1} / V_{2}$ are the given current and voltage ratios, respectively.
By extension, these relations between numbers of decibels and scalar ratios of currents or voltages are sometimes applied where these ratios are not the square roots of the corresponding power ratios; to avoid confusion, such usage should be accompanied by a specific statement of this application.

Doppler Effect. The Doppler effect is the phenomenon evidenced by the change in the observed frequency of a wave in a transmission system caused by a time rate of change in the effective length of the path of travel between the source and the point of observation.

Echo. An echo is a wave which has been reflected or otherwise returned with sufficient magnitude and delay to be perceived in some manner as a wave distinct from that directly transmitted.

Effective Particle Velocity. The effective particle velocity at a point is the root mean square of the instantaneous particle velocity (see Effective Sound Pressure for details). The unit is the meter per second (in the cgs system the unit is the centimeter per second).

Effective Sound Pressure (Root-mean-square Sound Pressure). The effective sound pressure at a point is the root-mean-square value of the instantaneous sound pressures, over a time interval at the point under consideration. In the case of periodic sound pressures, the interval must be an integral number of periods or an interval which is long compared with a period. In the case of nonperiodic sound pressures, the interval should be long enough to make the value obtained essentially independent of small changes in the length of the interval.

Note: The term "effective sound pressure" is frequently shortened to "sound pressure."
Electric Power Level, or Sound Intensity Level. The electric power level, or the acoustic intensity level, is a quantity expressing the ratio of two electric powers or of two sound intensities in logarithmic form. The unit is the decibel. Definitions are

$$
\begin{aligned}
\text { Electric power level } & =10 \log _{10} \frac{W_{1}}{W_{2}} \\
\text { Acoustic intensity level } & =10 \log _{10} \frac{I_{1}}{I_{2}}
\end{aligned}
$$

where $W_{1}$ and $W_{2}$ are two electric powers and $I_{1}$ and $I_{2}$ are two sound intensities. Extending this thought further, we see that

$$
\begin{aligned}
\text { Electric power level } & =10 \log _{10} \frac{E_{1}{ }^{2}}{R_{1}} \frac{R_{2}}{E_{2}{ }^{2}} \\
& =20 \log _{10} \frac{E_{1}}{E_{2}}+10 \log _{10} \frac{R_{2}}{R_{1}} \quad \mathrm{db}
\end{aligned}
$$

where $E_{1}$ is the voltage across the resistance $R_{1}$ in which a power $W_{1}$ is being dissipated and $E_{2}$ is the voltage across the resistance $R_{2}$ in which a power $W_{2}$ is being dissipated. Similarly,

$$
\text { Acoustic intensity level }=20 \log _{10} \frac{p_{1}}{p_{2}}+10 \log _{10} \frac{R_{s 2}}{R_{s 1}} \quad \mathrm{db}
$$

where $p_{1}$ is the pressure at a point where the specific acoustic resistance (i.e., the real part of the specific acoustic impedance) is $R_{s 1}$ and $p_{2}$ is the pressure at a point where the specific acoustic resistance is $R_{s 2}$. We note that $10 \log _{10}\left(W_{1} / W_{2}\right)=20 \log _{10}\left(E_{1} / E_{2}\right)$ only if $R_{1}=R_{2}$ and that $10 \log _{10}\left(I_{1} / I_{2}\right)=20 \log _{10}\left(p_{1} / p_{2}\right)$ only if $R_{s 2}=R_{s 1}$.

Levels involving voltage and pressure alone are sometimes spoken of with no regard to the equalities of the electric resistances or specific acoustic resistances. This practice leads to serious confusion. It is emphasized that the manner in which the terms are used always should be clearly stated by the user in order to avoid confusion.

Flutter Echo. A flutter echo is a rapid succession of reflected pulses resulting from a single initial pulse.

Free Field. A free field is a field (wave or potential) in a homogeneous isotropic medium free from boundaries. In practice it is a field in which the effects of the boundaries are negligible over the region of interest.

Note: The actual pressure impinging on an object (e.g., electroacoustic transducer) placed in an otherwise free sound field will differ from the pressure which would exist at that point with the object removed, unless the acoustic impedance of the object matches the acoustic impedance of the medium.

Infrasonic Frequency (Subsonic Frequency). An infrasonic frequency is a frequency lying below the audio-frequency range.

Note: The word "infrasonic" may be used as a modifier to indicate a device or system intended to operate at infrasonic frequencies.

Instantaneous Particle Velocity (Particle Velocity). The instantaneous particle velocity at a point is the velocity, due to the sound wave only, of a given infinitesimal part of the medium at a given instant. It is measured over and above any motion of the medium as a whole. The unit is the meter per second (in the cgs system the unit is the centimeter per second).

Instantaneous Sound Pressure. The instantaneous sound pressure at a point is the total instantaneous pressure at that point minus the static pressure at that point. The commonly used unit is the microbar.

Intensity Level. The intensity level of a sound, in decibels, is 10 times the logarithm to the base 10 of the ratio of the intensity of this sound to a reference intensity. That is,

$$
L_{I}=10 \log _{10} \frac{I}{I_{\mathrm{ref}}}
$$

In the United States the reference intensity is often taken to be $10^{-16}$ watt $/ \mathrm{cm}^{2}\left(10^{-12}\right.$ watt $/ \mathrm{m}^{2}$ ). This reference at standard atmospheric conditions in a plane or spherical progressive wave was originally selected as corresponding approximately to the reference pressure ( 0.0002 microbar).
Line Spectrum. A line spectrum is the spectrum of a wave the components of which are confined to a number of discrete frequencies.
Longitudinal Wave. A longitudinal wave is a wave in which the direction of displacement at each point of the medium is normal to the wave front.

Microbar ( $\mu \mathrm{b}$ ). A microbar is a unit of pressure commonly used in acoustics. One microbar is equal to 0.1 newton per square meter or 1 dyne per square centimeter.

Neper. The neper is a unit used to express the scalar ratio of two currents or two voltages, the number of nepers being the natural logarithm of such a ratio.

Note 1: With $I_{1}$ and $I_{2}$ designating the scalar value of two currents, and $n$ the number of nepers denoting their scalar ratio, then

$$
n=\log _{e} \frac{I_{1}}{I_{2}}
$$

When the conditions are such that the power ratio is the square of the corresponding current or voltage ratio, the number of nepers by which the corresponding voltages or currents differ may be expressed by the following formula:

$$
n=\frac{1}{2} \log _{e} \frac{P_{1}}{P_{2}}
$$

where $P_{1} / P_{2}$ is the given power ratio.
By extension, this relation between number of nepers and power ratio is sometimes applied where this ratio is not the square of the corresponding current or voltage ratio; to avoid confusion, such usage should be accompanied by a specific statement of this application.

Note 2: One neper is equal to 8.686 db .
Note 3: The neper is used in mechanics and acoustics by extending the above definition to include all scalar ratios of like quantities which are analogous to current or voltage.

Nodes. Nodes are the points, lines, or surfaces in a standing-wave system where some characteristic of the wave field has essentially zero amplitude.

Note: The appropriate modifier should be used with the word " node" to signify the type that is intended (pressure node, velocity node, etc.).

Noise. Noise is any undesired sound. By extension, noise is any unwanted disturbance within a useful frequency band, such as undesired electric waves in any transmission channel or device.

Plane Wave. A plane wave is a wave in which the wave fronts are everywhere parallel planes normal to the direction of propagation.

Power Spectrum Level. The power spectrum level of a sound at a specified frequency is the power level for the acoustic power contained in a band one cycle per second wide, centered at this specified frequency. The reference power must be specified. The unit is the decibel (see also the discussion under Pressure Spectrum Level).

Pressure Spectrum Level. The pressure spectrum level of a sound at specified frequency is the effective sound pressure level for the sound energy contained within a band one cycle per second wide, centered at this specified frequency. The reference pressure must be explicitly stated. The unit is the decibel.

Note: The concept of pressure spectrum level ordinarily has significance only for sound having a continuous distribution of energy within the frequency range under consideration. The level of a uniform band of noise with a continuous spectrum exceeds the spectrum level by

$$
C_{n}=10 \log _{10}\left(f_{b}-f_{a}\right) \quad \mathrm{db}
$$

where $f_{b}$ and $f_{a}$ are the upper and lower frequencies of the band, respectively. The level of a uniform noise with a continuous spectrum in a band of width $f_{b}-f_{a}$ cps is therefore

## ACOUSTICS

related to the spectrum level by the formula

$$
L_{n}=C_{n}+S_{n}
$$

where $L_{n}=$ sound pressure level in decibels of the noise in the band of width $f_{b}-f_{a}$; for $C_{n}$ see above, $S_{n}=$ spectrum level of the noise, and $n=$ designation number for the band being considered.

Rate of Decay. The rate of decay is the time rate at which the sound pressure level (or velocity level, or sound-energy density level) is decreasing at a given point and at a given time. The practical unit is the decibel per second.

Reverberation. Reverberation is the persistence of sound at a given point after direct reception from the source has stopped.

Note; This may be due (1) (as in the case of rooms) to repeated reflections from a small number of boundaries or to the free decay of the normal modes of vibration that were excited by the sound source, (2) (as in the case of underwater sound in the ocean) to scattering from a large number of inhomogeneities in the medium or reflection from bounding surfaces.

Shear Wave (Rotational Wave). A shear wave is a wave in an elastic medium which causes an element of the medium to change its shape without a change of volume.

Note 1: Mathematically, a shear wave is one whose velocity field has zero divergence.
Note 2: A shear plane wave in an isotropic medium is a transverse wave.
Sound-Energy Density. The sound-energy density is the sound energy in a given infinitesimal part of the gas divided by the volume of that part of the gas. The unit is the watt-second per cubic meter. (In the cgs system the unit is the erg per cubic centimeter). In many acoustic environments such as in a plane wave the soundenergy density at a point is

$$
D=\frac{p^{2}}{\rho_{0} c^{2}}=\frac{p^{2}}{\gamma P_{0}}
$$

where $\gamma$ is the ratio of specific heats for a gas and is equal to 1.4 for air and other diatomic gases. The quantity $\gamma$ is dimensionless. $P_{0}$ is the barometric pressure.

Sound Field. A sound field is a region containing sound waves.
Sound Intensity (I). The sound intensity measured in a specified direction at a point is the average rate at which sound energy is transmitted through a unit area perpendicular to the specified direction at the point considered. The unit is the watt per square meter. (In the cgs system the unit is the erg per second per square centimeter.) In a plane or spherical free-progressive sound wave the intensity in the direction of propagation is

$$
I=\frac{p^{2}}{\rho_{0} c} \quad \text { watts } / \mathrm{m}^{2} \text { or } \operatorname{erg}-\mathrm{sec}^{-1} / \mathrm{cm}^{2}
$$

Note: In the acoustical literature the intensity has often been expressed in the units of watts per square centimeter, which is equal to $10^{-7}$ times the number of ergs per second per square centimeter.
Sound Intensity Level. See Electric Power Level.
Sound Level. The sound level at a point in a sound field is the reading in decibels of a sound-level meter constructed and operated in accordance with the latest edition of American Standard Sound Level Meters for the Measurement of Noise and Other Sounds. ${ }^{1}$

The meter reading (in decibels) corresponds to a value of the sound pressure

[^98]integrated over the audible frequency range with a specified frequency weighting and integration time.

Sound Power Level. The acoustic power level of a sound source in decibels is $\mathbf{1 0}$ times the logarithm to the base 10 of the ratio of the acoustic power radiated by the source to a reference acoustic power. That is,

$$
L_{W}=10 \log _{10} \frac{W}{W_{\text {ref }}} \quad \mathrm{db}
$$

Often, $W_{\text {ref }}$ is $10^{-13}$ watt. This means that a source radiating 1 acoustic watt has a power level of 130 db .
Sound Pressure Level. The pressure level of a sound, in decibels, is 20 times the logarithm to the base 10 of the ratio of the measured effective sound pressure of this sound to a reference effective sound pressure. That is,

$$
L_{p}=20 \log _{10} \frac{p}{p_{\text {ref }}} \quad \mathrm{db}
$$

In the United States $p_{\text {ref }}$ is either (1) $p_{\text {ref }}=0.0002$ microbar $\left(2 \times 10^{-5}\right.$ newton $\left./ \mathrm{m}^{2}\right)$ or (2) $p_{\text {ref }}=1$ microbar ( 0.1 newton $/ \mathrm{m}^{2}$ ). Reference pressure (1) has been in general use for measurements dealing with hearing and for sound-level and noise measurements in air and liquids. Reference pressure (2) has gained widespread use for calibration of transducers and some types of sound-level measurements in liquids. The two reference levels are almost exactly 74 db apart. The reference pressure must always be stated explicitly.

Spectrum. The spectrum of a wave is the distribution in frequency of the magnitudes (and sometimes phases) of the components of the wave. Spectrum also is used to signify a continuous range of frequencies, usually wide in extent, within which waves have some specified common characteristic, e.g., audio-frequency spectrum, radiofrequency spectrum, etc.

Spherical Wave. A spherical wave is a wave in which the wave fronts are concentric spheres.

Standing Waves. Standing waves are periodic waves having a fixed distribution in space which is the result of interference of progressive waves of the same frequency and kind. Such waves are characterized by the existence of nodes or partial nodes and antinodes that are fixed in space.

Static Pressure ( $P_{0}$ ). The static pressure at a point in the medium is the pressure that would exist at that point with no sound waves present. At normal barometric pressure, $P_{0}$ equals approximately $10^{5}$ newtons $/ \mathrm{m}^{2}\left(10^{6}\right.$ dynes $\left./ \mathrm{cm}^{2}\right)$. This corresponds to a barometer reading of 0.751 m (29.6 in.) Hg (mercury) when the temperature of the mercury is $0^{\circ} \mathrm{C}$. Standard atmospheric pressure is usually taken to be 0.760 m Hg at $0^{\circ} \mathrm{C}$.

Stationary Waves. Stationary waves are standing waves in which the energy flux is zero at all points.

Note: Stationary waves can only be approximated in practice.
Strength of a Simple Sound Source. The strength of a simple sound source is the rms magnitude of the total air flow at the surface of a simple source in cubic meters per second (or cubic centimeters per second), where a simple source is taken to be a spherical source whose radius is small compared with one-sixth wavelength.

Ultrasonic Frequency (Supersonic Frequency). An ultrasonic frequency is a frequency lying above the audio-frequency range. The term is commonly applied to elastic waves propagated in gases, liquids, or solids.

Note: The word "ultrasonic" may be used as a modifier to indicate a device or system intended to operate at ultrasonic frequencies.

## ACOUSTICS

Velocity. The velocity of a point is the time rate of change of a position vector of that point with respect to an inertial frame.

Note: In most cases the approximation is made that axes fixed to the earth constitute an inertial frame.

Volume Velocity. The volume velocity, due to a sound wave only, is the rate of flow of the medium perpendicularly through a specified area $S$. That is, $U=u S$, where $u$ is the particle velocity and $U$ is the volume velocity. The unit is the cubic meter per second. (In the cgs system the unit is the cubic centimeter per second.)

Wave. A wave is a disturbance which is propagated in a medium in such a manner that at any point in the medium the displacement is a function of the time, while at any instant the displacement at the point is a function of the position of the point.

Any physical quantity which has the same relationship to some independent variable (usually time) that a propagated disturbance has, at a particular instant, with respect to space, may be called a wave.

Note: In this definition, displacement is used as a general term, indicating not only mechanical displacement, but also electric displacement, etc.

Wavefront. (1) The wavefront of a progressive wave in space is a continuous surface which is a locus of points having the same phase at a given instant. (2) The wavefront of a progressive surface wave is a continuous line which is a locus of points having the same phase at a given instant.

Wave Interference. Wave interference is the phenomenon which results when waves of the same or nearly the same frequency are superposed and is characterized by a spatial or temporal distribution of amplitude of some specified characteristic differing from that of the individual superposed waves.

## 3a-2. Sound Transmission and Propagation

Acoustic Attenuation Constant (Attenuation Constant). The acoustic attenuation constant is the real part of the acoustic propagation constant. The commonly used unit is the neper per section or per unit distance.

Note: In the case of a symmetrical structure, the imaginary parts of both the transfer constant and the acoustic propagation constant are identical, and hence either one may be called simply the attenuation constant.

Acoustic Compliance. The acoustic compliance of an enclosed volume of gas is equal to the magnitude of the ratio of the volume displacement of a piston forming one side of the volume to the pressure causing the displacement (units $\mathrm{cm}^{5} /$ dyne or $\mathrm{m}^{5}$ /newton).

Acoustic Impedance (American Standard Acoustic Impedance). The acoustic impedance at a given surface is defined as the complex ratio ${ }^{1}$ of effective sound pressure averaged over the surface to effective volume velocity through it. The surface may be either a hypothetical surface in an acoustic medium or the moving surface of a mechanical device. The unit is newton-sec $/ \mathrm{m}^{5}$, or the mks acoustic ohm. ${ }^{2}$ (In the cgs system the unit is dyne-sec $/ \mathrm{cm}^{5}$, or acoustic ohm.)

$$
Z_{A}=\frac{p}{U} \quad \text { newton-sec } / \mathrm{m}^{5}(\mathrm{mks} \text { acoustic ohms })
$$

Acoustic Mass (Inertance). The acoustic mass is the quantity which, when multiplied by $2 \pi$ times the frequency, gives the acoustic reactance associated with the kinetic energy of the medium (units $\mathrm{gm} / \mathrm{cm}^{4}$ or $\mathrm{kg} / \mathrm{m}^{4}$ ).

1 "Complex ratio" has the same meaning as the complex ratio of voltage and current in electric-circuit theory.
${ }_{2}$ This notation is taken from Table 12.1 of American Standard Z24.1-1951.

Acoustic Ohm. The acoustic ohm is the magnitude of an acoustic resistance, reactance, or impedance for which a sound pressure of one microbar produces a volume velocity of one cubic centimeter per second (dyne-sec/ $\mathrm{cm}^{5}$ ). When expressed in newton-sec $/ \mathrm{m}^{5}$, it is called the mks acoustic ohm.

Acoustic Phase Constant. The acoustic phase constant is the imaginary part of the acoustic propagation constant. The commonly used unit is the radian per section or per unit distance

Note: In the case of a symmetrical structure, the imaginary parts of both the transfer constant and the acoustic propagation constant are identical, and have been called the "wavelength constant."

Acoustic Propagation Constant. The acoustic propagation constant of a uniform system or of a section of a system of recurrent structures is the natural logarithm of the complex ratio of the steady-state particle velocities, volume velocities, or pressures at two points separated by unit distance in the uniform system (assumed to be of infinite length), or at two successive corresponding points in the system of recurrent structures (assumed to be of infinite length). The ratio is determined by dividing the value at the point nearer the transmitting end by the corresponding value at the more remote point.

Acoustic Resistance. Acoustic resistance is the real component of the acoustic impedance. The cgs unit is the acoustic ohm. The mks unit is the specific acoustic ohm.

Acoustic, Specific Acoustic, and Mechanical Reactance. The acoustic reactance, the specific acoustic reactance, and the mechanical reactance are, respectively, the imaginary parts of the acoustic impedance, the specific acoustic impedance, and the mechanical impedance. The units are the same, respectively, as for the real, i.e., the resistive parts.

Characteristic Impedance. The characteristic impedance is the ratio of the effective sound pressure at a given point to the effective particle velocity at that point in a free, plane, progressive sound wave. It is equal to the product of the density of the medium times the speed of sound in the medium. It is analogous to the characteristic impedance of an infinitely long, dissipationless transmission line. The unit is the mks rayl, or newton-sec $/ \mathrm{m}^{3}$. (In the cgs system, the unit is the rayl, or dyne-sec $/ \mathrm{cm}^{3}$.)

Insertion Loss. The insertion loss resulting from the insertion of a transducer in a transmission system is the ratio of the power delivered to that part of the system which will follow the transducer, before insertion of the transducer, to the power delivered to that same part of the system after insertion of the transducer.

Note 1: If the input power, the output power, or both consist of more than one component, the particular components used must be specified.

Note 2: This ratio is usually expressed in decibels.
Mechanical Compliance. The mechanical compliance of a springlike device is equal to the magnitude of the ratio of the displacement of the device to the force that produced the displacement (units $\mathrm{cm} /$ dyne or $\mathrm{m} /$ newton).

Mechanical Impedance. The mechanical impedance is the complex ratio of the effective force acting on a specified area of an acoustic medium or mechanical device to the resulting effective linear velocity through or of that area, respectively. The unit is the newton-sec $/ \mathrm{m}$, or the mks mechanical ohm. (In the cgs system the unit is the dyne-sec $/ \mathrm{cm}$, or the mechanical ohm.) That is, $Z_{M}=f / u$ newton-sec $/ \mathrm{m}$ (mks mechanical ohms).

Mechanical Ohm. The mechanical ohm is the magnitude of a mechanical resistance, reactance, or impedance for which a force of one dyne produces a linear velocity of one centimeter per second (dyne-sec $/ \mathrm{cm}$ ). When expressed in newton-sec $/ \mathrm{m}$, it is called the mks mechanical ohm.

## ACOUSTICS

Mechanical Resistance. Mechanical resistance is the real part of the mechanical impedance. The cgs unit is the mechanical ohm. The mks unit is the mks mechanical ohm.

Natural Frequency. A natural frequency of a body or system is a frequency of free oscillation.

Normal Mode of Vibration. A normal mode of vibration is a characteristic distribution of vibration amplitudes among the parts of the system, each part of which is vibrating freely at the same frequency. Complex free vibrations are combinations of these simple vibration forms.

Rayl. ${ }^{1}$ The rayl is the magnitude of a specific acoustic resistance, reactance, or impedance for which a sound pressure of one microbar produces a linear velocity of one centimeter per second (dyne-sec $/ \mathrm{cm}^{3}$ ). When expressed in newton-sec $/ \mathrm{m}^{3}$ it is called the mks rayl.

Resonance Frequency. A resonance frequency is a frequency at which resonance exists. The commonly used unit is the cycle per second.

Note: In cases where there is a possibility of confusion, it is necessary to specify the type of resonance frequency, e.g., displacement resonance frequency or velocity resonance frequency.

Specific Acoustic Compliance. The specific acoustic compliance of a springlike device or an enclosed volume of gas is equal to the magnitude of the ratio of the displacement of the device or of a piston forming one side of the volume to the pressure that produced the displacement (units $\mathrm{cm}^{3} /$ dyne or $\mathrm{m}^{3} /$ newton).

Specific Acoustic Impedance. The specific acoustic impedance is the complex ratio of the effective sound pressure at a point of an acoustic medium or mechanical device to the effective particle velocity at that point. The unit is newton-sec $/ \mathrm{m}^{3}$, or the mks rayl. (In the cgs system the unit is dyne-sec $/ \mathrm{cm}^{3}$, or the rayl.) That is, $Z_{s}=p / u$ newton-sec $/ \mathrm{m}^{3}$ (mks rayls).

Specific Acoustic Mass. The specific acoustic mass is the quantity which when multiplied by $2 \pi$ times the frequency gives the specific acoustic reactance associated with the kinetic energy of the medium (units $\mathrm{gm} / \mathrm{cm}^{2}$ or $\mathrm{kg} / \mathrm{m}^{2}$ ).

Transmission Loss. In communication, transmission loss (frequently abbreviated "loss") is a general term used to denote a decrease in power in transmission from one point to another. Transmission loss is usually expressed in decibels.

## 3a-3. Transmission Systems and Components

Acoustical Reciprocity Theorem. In an acoustic system comprising a fluid medium having bounding surfaces $S_{1}, S_{2}, S_{3}, \ldots$, and subject to no impressed body forces, if two distributions of normal velocities $v_{n}^{\prime}$ and $v_{n}^{\prime \prime}$ of the bounding surfaces produce pressure fields $p^{\prime}$ and $p^{\prime \prime}$, respectively, throughout the region, then the surface integral of ( $p^{\prime \prime} v_{n}^{\prime}-p^{\prime} v_{n}^{\prime \prime}$ ) over all the bounding surfaces $S_{1}, S_{2}, S_{3}, \ldots$, vanishes.

Note: If the region contains only one simple source, the theorem reduces to the form ascribed to Helmholtz, viz., in a region as described, a simple source at $A$ produces the same sound pressure at another point $B$ as would have been produced at $\boldsymbol{A}$ had the source been located at $B$.

Directivity Factor. (1) The directivity factor on a particular axis of a sound source is the ratio of the sound intensity at a point in the far field on the designated axis to the sound intensity that would be produced at that same point by a spherical source radiating the same total acoustic power. The frequency or the frequency band must be stated. (2) The directivity factor on a particular axis of a sound receptor (transducer, ear trumpet, etc.) is the ratio of the energy per second produced in the receptor
${ }^{1}$ Named in honor of Lord Rayleigh.
in response to a plane sound wave arriving along the designated axis to the energy per second that would be produced if plane sound waves having the same mean-square sound pressure were arriving simultaneously from all directions with random phase. The frequency or frequency band must be specified.

Directivity Index (Directional Gain). The directivity index of a transducer is an expression of the directivity factor in decibels, viz., 10 times the logarithm to the base 10 of the directivity factor.

Effective Acoustic Center. The effective acoustic center of an acoustic generator is the point from which the spherically divergent sound waves, observable at remote points, appear to diverge.

Effective Bandwidth. The effective bandwidth may be expressed mathematically as follows:

$$
\text { Effective bandwidth }=\int_{0}^{\infty} G d f
$$

where $f$ is the frequency in cycles per second and $G$ is the ratio of the power transmission at the frequency $f$, to the transmission at the frequency of maximum transmission.

Electroacoustical Reciprocity Theorem. For an electroacoustic transducer satisfying the reciprocity principle, the quotient of the magnitude of the ratio of the open-circuit voltage at the output terminals (or the short-circuit output current) of the transducer, when used as a sound receiver, to the free-field sound pressure referred to an arbitrarily selected reference point on or near the transducer, divided by the magnitude of the ratio of the sound pressure apparent at a distance $d$ from the reference point to the current flowing at the transducer input terminals (or the voltage applied at the input terminals), when used as a sound emitter, is a constant, called the "reciprocity constant," independent of the type or constructional details of the transducer.

Note: The reciprocity constant is given by

$$
\left|\frac{M_{0}}{S_{0}}\right|=\left|\frac{M_{s}}{S_{s}}\right|=\frac{2 d}{\rho f} \times 10^{-7}
$$

where $M_{0}=$ free-field voltage response as a sound receiver, in open-circuit volts per microbar, referred to the arbitrary reference point on or near the transducer
$M_{s}=$ free-field current response in short-circuit amperes per microbar, referred to the arbitrary reference point on or near the transducer
$S_{0}=$ sound pressure produced at a distance $d \mathrm{~cm}$ from the arbitrary reference point in microbars per ampere of input current
$S_{s}=$ sound pressure produced at a distance $d \mathrm{~cm}$ from the arbitrary reference point in microbars per volt applied at the input terminals
$f=$ frequency in cycles per second
$\rho=$ density of the medium in grams per cubic centimeter
$d=$ distance in centimeters from the arbitrary reference point on or near the transducer to the point at which the sound pressure established by the transducer when emitting is evaluated
Principal Axis. The principal axis of a transducer used for sound emission or reception is a reference direction for angular coordinates used in describing the directional characteristics of the transducer. It is usually an axis of structural symmetry, or the direction of maximum response; but if these do not coincide, the reference direction must be described explicitly.

Relative Response. The relative response is the ratio, usually expressed in decibels, of the response under some particular conditions to the response under reference conditions, which should be stated explicitly.

Response. The response of a device or system is a quantitative expression of the output as a function of the input under conditions which must be explicitly stated. The response characteristic, often presented graphically, gives the response as a function of some independent variable such as frequency or direction.

## 3a-4. Ultrasonics

Supersonics. Supersonics is the general subject covering phenomena associated with speed higher than the speed of sound (as in case of aircraft and projectiles traveling faster than sound).

Note: This term has been used in acoustics synonymously with "ultrasonics." Such usage is now deprecated.

Ultrasonics. Ultrasonics is the general subject of sound in the frequency range above about 15 kilocycles per second.

Ultrasonic Detector. An ultrasonic detector is a device for the detection and measurement of ultrasonic waves.

Note: Such devices may be mechanical, electrical, thermal, or optical in nature.
Ultrasonic Generator. An ultrasonic generator is a device for the production of sound waves of ultrasonic frequency.

## 3a-5. Hearing and Speech

Articulation (Per Cent Articulation) and Intelligibility (Per Cent Intelligibility). Per cent articulation or per cent intelligibility of a communication system is the percentage of the speech units spoken by a talker or talkers that is understood correctly by a listener or listeners.

The word "articulation" is customarily used when the contextual relations among the units of the speech material are thought to play an unimportant role; the word "intelligibility" is customarily used when the context is thought to play an important role in determining the listener's perception.

Note 1: It is important to specify the type of speech material and the units into which it is analyzed for the purpose of computing the percentage. The units may be fundamental speech sounds, syllables, words, sentences, etc.

Note 2: The per cent articulation or per cent intelligibility is a property of the entire communication system: talker, transmission equipment or medium, and listener. Even when attention is focused upon one component of the system (e.g., a talker, a radio receiver), the other components of the system should be specified.

Audiogram (Threshold Audiogram). An audiogram is a graph showing hearing loss, per cent hearing loss, or per cent hearing as a function of frequency.

Aural Harmonic. An aural harmonic is a harmonic generated in the auditory mechanism.

Average Speech Power. The average speech power for any given time interval is the average value of the instantaneous speech power over that interval.

Difference Limen (Differential Threshold) (Just-noticeable Difference). A difference limen is the increment in a stimulus which is just noticed in a specified fraction of the trials. The relative difference limen is the ratio of the difference limen to the absolute magnitude of the stimulus to which it is related.

Discrete Word (or Discrete Sentence) Intelligibility. Discrete word intelligibility is the per cent intelligibility obtained when the speech units considered are words (or sentences).
Electrophonic Effect. Electrophonic effect is the sensation of hearing produced when an alternating current of suitable frequency and magnitude from an external source is passed through an animal.

Hearing Loss (Deafness). The hearing loss of an ear at a specified frequency is the ratio, expressed in decibels, of the threshold of audibility for that ear to the normal threshold. ${ }^{1}$
${ }^{1}$ See also American Standard Specification for Audiometers for General Diagnostic Purposes, Z24.5-1951, or the latest revision thereof approved by the ASA.

Hearing Loss for Speech. Hearing loss for speech is the difference in decibels between the speech levels at which the average normal ear and the defective ear, respectively, reach the same intelligibility, often arbitrarily set at 50 per cent.

Instantaneous Speech Power. The instantaneous speech power is the rate at which sound energy is being radiated by a speech source at any given instant.

Loudness. Loudness is the intensive attribute of an auditory sensation, in terms of which sounds may be ordered on a scale extending from soft to loud.

Note: Loudness depends primarily upon the sound pressure of the stimulus, but it also depends upon the frequency and waveform of the stimulus.

Loudness Contours. Loudness contours are curves which show the related values of sound pressure level and frequency required to produce a given loudness sensation for the typical listener.

Loudness Level. The loudness level, in phons, of a sound is numerically equal to the sound pressure level in decibels, relative to $0.0002 \mu \mathrm{~b}$, of a simple tone of frequency $1,000 \mathrm{cps}$ which is judged by the listeners to be equivalent in loudness.

Masking. Masking is the amount by which the threshold of audibility of a sound is raised by the presence of another (masking) sound. The unit customarily used is the decibel.

Masking Audiogram. A masking audiogram is a graphical presentation of the masking due to a stated noise. This is plotted, in decibels, as a function of the frequency of the masked tone.

Mel. The mel is a unit of pitch. By definition, a simple tone of frequency, 1,000 $\mathrm{cps}, 40 \mathrm{db}$ above a listener's threshold, produces a pitch of 1,000 mels. The pitch of any sound that is judged by the listener to be $n$ times that of a 1 -mel tone is $n$ mels.

Peak Speech Power. The peak speech power is the maximum value of the instantaneous speech power within the time interval considered.

Per Cent Hearing. The per cent hearing at any given frequency is 100 minus the per cent hearing loss at that frequency.

Per Cent Hearing Loss (Per Cent Deafness). The per cent hearing loss at a given frequency is 100 times the ratio of the hearing loss in decibels to the number of decibels between the normal threshold levels of audibility and feeling.

Note 1: A weighted mean of the per cent hearing losses at specified frequencies is often used as a single measure of the loss of hearing.

Note 2: The American Medical Association has defined percentage loss of hearing for medicolegal use. ${ }^{1}$

Phon. The phon is the unit of loudness level. (See definition for Loudness Level.)
Pitch. Pitch is that attribute of auditory sensation in terms of which sounds may be ordered on a scale extending from low to high, such as a musical scale.

Note 1: Pitch depends primarily upon the frequency of the sound stimulus, but it also depends upon the sound pressure and waveform of the stimulus.

Note 2: The pitch of a sound may be described by the frequency of that simple tone, having a specified sound pressure or loudness level, which seems to the average normal ear to produce the same pitch.

Sone. The sone is a unit of loudness. By definition, a simple tone of frequency $1,000 \mathrm{cps}, 40 \mathrm{db}$ above a listener's threshold, produces a loudness of 1 sone. The loudness of any sound that is judged by the listener to be $n$ times that of the 1 -sone tone is $n$ sones.

Syllable (or Sound, or Vowel, or Consonant) Articulation. ${ }^{2}$ Syllable (or sound or

[^99]vowel or consonant) articulation is the per cent articulation obtained when the speech units considered are syllables (or fundamental sounds, or vowels, or consonants).

Threshold of Audibility (Threshold of Detectability). The threshold of audibility for a specified signal is the minimum effective sound pressure of the signal that is capable of evoking an auditory sensation in a specified fraction of the trials. The characteristics of the signal, the manner in which it is presented to the listener, and the point at which the sound pressure is measured must be specified. The threshold is usually expressed in decibels relative to $0.0002 \mu \mathrm{~b}$.

Threshold of Feeling (or Discomfort, Tickle, or Pain). The threshold of feeling (or discomfort, tickle, or pain) for a specified signal is the minimum effective sound pressure of that signal which, in a specified fraction of the trials, will stimulate the ear to a pbint such that there is the sensation of feeling (or discomfort, tickle, or pain). This threshold is customarily expressed in decibels relative to $0.0002 \mu \mathrm{~b}$.

## 3a-6. Music

Cent. A cent is the interval between two sounds whose basic frequency ratio is the twelve-hundredth root of 2.

Note: The interval, in cents, between any two frequencies is 1,200 times the logarithm to the base 2 of the frequency ratio. Thus, 1,200 cents $=12$ equally tempered semitones $=$ 1 octave.

Complex Tone. (1) A complex tone is a sound wave produced by the combination of simple sinusoidal components of different frequencies. (2) A complex tone is a sound sensation characterized by more than one pitch.

Equally Tempered Scale. An equally tempered scale is a series of notes selected from a division of the octave (usually into 12 equal intervals, see Table 3a-1).

Table 3a-1. Equally Tempered Intervals

| Name of interval | Frequency ratio | Cents |
| :---: | :---: | :---: |
| Unison. | 1:1 | 0 |
| Minor second or semitone. | 1.059463:1 | 100 |
| Major second or whole tone. | 1.122462:1 | 200 |
| Minor third | 1.189207:1 | 300 |
| Major third. | 1.259921:1 | 400 |
| Perfect fourth. | 1.334840:1 | 500 |
| Augmented fourth; diminished fifth | 1.414214:1 | 600 |
| Perfect fifth. | 1.498307:1 | 700 |
| Minor sixth. | 1.587401:1 | 800 |
| Major sixth. | 1.681793:1 | 900 |
| Minor seventh. | 1.781797:1 | 1,000 |
| Major seventh. | 1.887749:1 | 1,100 |
| Octave.... | 2:1 | 1,200 |

Fundamental Tone. (1) The funamental tone is the component in a periodic wave corresponding to the fundamental frequency. (2) The fundamental tone is the component tone of lowest pitch in a complex tone.

Harmonic. A harmonic is a partial whose frequency is an integral multiple of the fundamental frequency.

Note: The above definition is in musical terms (for the definition in physical terms, see Sound).

Harmonic Series of Sounds. A harmonic series of sounds is one in which each basic frequency in the series is an integral multiple of a fundamental frequency.

Interval. The interval between two sounds is their spacing in pitch or frequency, whichever is indicated by the context. The frequency interval is expressed by the ratio of the frequencies or by a logarithm of this ratio.

Octave. An octave is the interval between two sounds having a basic frequency ratio of 2. By extension, the octave is the interval between any two frequencies having the ratio $2: 1$.

Note: The interval, in octaves, between any two frequencies is the logarithm to the base 2 (or 3.322 times the logarithm to the base 10) of the frequency ratio.

Overtone. (1) An overtone is a physical component of a complex sound having a frequency higher than that of the basic frequency (see Partial below). (2) An overtone is a component of a complex tone having a pitch higher than that of the fundamental pitch.

Note: The term "overtone" has frequently been used in place of "harmonic," the $n$th harmonic being called the ( $n-1$ )st overtone. There is, however, ambiguity sometimes in the numbering of components of a complex sound when the word overtone is employed. Moreover, the word "tone" has many different meanings, so that it is preferable to employ terms which do not involve "tone" wherever possible.

Partial. A partial is a physical component of a sound sensation which may be distinguished as a simple tone that cannot be further analyzed by the ear and which contributes to the character of the complex sound.

Note 1: The frequency of a partial may be either higher or lower than the basic frequency and may or may not be an integral multiple or submultiple of the basic frequency (for definition of basic frequency see Basic Frequency). If the frequency is not a multiple or submultiple, the partial is inharmonic.

Note 2: When a system is maintained in steady forced vibration at a basic frequency equal to one of the frequencies of the normal modes of vibration of the system, the partials in the resulting complex tone are not necessarily identical in frequency with those of the other normal modes of vibration.

Scale. A musical scale is a series of notes (symbols, sensations, or stimuli) arranged from low to high by a specified scheme of intervals, suitable for musical purposes.

Semitone (Half Step). A semitone is the interval between two sounds whose basic frequency ratio is approximately equal to the twelfth root of 2.

Note: The interval, in equally tempered semitones, between any two frequencies, is 12 times the logarithm to the base 2 (or 39.86 times the logarithm to the base 10 ) of the frequency ratio.

Simple Tone (Pure Tone). (1) A simple tone is a sound wave, the instantaneous sound pressure of which is a simple sinusoidal function of the time. (2) A simple tone is a sound sensation characterized by its singleness of pitch.

Standard Pitch. The standard pitch is based on the tone A of 440 cps (see Table 3a-2).

Note 1: With this standard the frequency of middle C is 261.626 cps (see Table 3a-2).
Note 2: Musical instruments are to be capable of complying with this standard when played where the ambient temperature is $22^{\circ} \mathrm{C}\left(72^{\circ} \mathrm{F}\right)$.

Tone. (1) A tone is a sound wave capable of exciting an auditory sensation having pitch. (2) A tone is a sound sensation having pitch.

Whole Tone (Whole Step). A whole tone is the interval between two sounds whose basic frequency ratio is approximately equal to the sixth root of 2 .
udal Equally Tempered Scale,

| Note name | $\left\lvert\, \begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}\right.$ | Frequency, cps | $\begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}$ | Frequency, cps | $\begin{array}{\|l\|} \hline \text { Key } \\ \text { No. } \end{array}$ | Frequency, cps | $\begin{array}{\|l\|} \mathrm{Key} \\ \text { No. } \end{array}$ | Frequency, cps | $\left\lvert\, \begin{gathered} \mathrm{Key} \\ \mathrm{No} . \end{gathered}\right.$ | Frequency, cps | $\begin{gathered} \text { Key } \\ \text { No. } \end{gathered}$ | $\mathrm{cps}$ $\begin{aligned} & \text { Fre- } \\ & \text { quency, } \\ & \text { cos } \end{aligned}$ | $\\| \begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}$ | Fre- quency, cps | $\left\lvert\, \begin{aligned} & \text { Key } \\ & \text { No. } \end{aligned}\right.$ | Frequency, cps |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1 | 27.500 | 13 | 55.000 | 25 | 110.000 | 37 | 220.000 | 49 | 440.000 | 61 | 880.000 | 73 | 1,760.000 | 85 | 520.000 |
| A\#, Bb | 2 | 29.135 | 14 | 58.270 | 26 | 116.541 | 38 | 233.082 | 50 | 466.164 | 62 | 932.328 | 74 | 1,864.655 | 86 | 3,729.310 |
| B | 3 | 30.868 | 15 | 61.735 | 27 | 123.471 | 39 | 246.942 | 51 | 493.883 | 63 | 987.767 | 75 | 1,975.533 | 87 | 3,951.066 |
| C | 4 | 32.703 | 16 | 65.406 | 28 | 130.813 | 40 | 261.626 | 52 | 523.251 | 64 | 1,046.502 | 76 | 2,093.005 | 88 | 186 |
| C\#, Db | 5 | 34.648 | 17 | 69.296 | 29 | 138.591 | 41 | 277.183 | 53 | 554.365 | 65 | 1,108.731 | 77 | 2,217.461 |  |  |
| D | 6 | 36.708 | 18 | 73.416 | 30 | 146.832 | 42 | 293.665 | 54 | 587.330 | 66 | 1,174.659 | 78 | 2,349.318 |  |  |
| D\#, Eb | 7 | 38.891 | 19 | 77.782 | 31 | 155.563 | 43 | 311.127 | 55 | 622.254 | 67 | 1,244.508 | 79 | 2,489.016 |  |  |
| E | 8 | 41.203 | 20 | 82.407 | 32 | 164.814 | 44 | 329.628 | 56 | 659.255 | 68 | 1,318.510 | 80 | 2,637.021 |  |  |
| $\stackrel{\mathrm{F}}{\mathrm{F}}$ | 9 | 43.654 | 21 | 87.307 | 33 | 174.614 | 45 | 349.228 | 57 | 698.456 | 69 | 1,396.913 | 81 | 2,793.826 |  |  |
| F\#, Gb | 10 | 46.249 | 22 | 92.499 | 34 | 184.997 | 46 | 369.994 | 58 | 739.989 | 70 | 1,479.978 | 82 | 2,959.955 |  |  |
| G | 11 | 48.999 | 23 | 97.999 | 35 | 195.998 | 47 | 391.995 | 59 | 783.991 | 71 | 1,567.982 | 83 | 3,135.964 |  |  |
| G\#, Ab | 12 | 51.913 | 24 | 103.826 | 36 | 207.652 | 48 | 415.305 | 60 | 830.609 | 72 | 1,661.219 | 84 | 3,322.438 |  |  |

## 3a-7. Architectural Acoustics

Anechoic Chamber. An anechoic chamber is a bounded space in which reflected waves are sufficiently weak as to be negligible in the region of interest; more literally, echo-free space.

Attenuation Constant. See Acoustic Attenuation Constant in Sec. 3a-2.
Dead Room. A dead room is a room that subjectively sounds nonreverberant. It is commonly a room having an unusually large amount of sound absorption.

Decay Constant. The decay constant is the exponential power by which sound decays after the source is stopped (units sec ${ }^{-1}$ ).

Note: If $p_{0}$ is the effective sound pressure at $t=0, p(t)$ is the effective sound pressure at time $t$, and the two are related by

$$
p(t)=p_{0} e^{-k t}
$$

then $k$ is the decay constant.
Direct Sound Wave. A direct sound wave in an enclosure is a wave emitted from a source prior to the time it has undergone its first reflection from a boundary of the enclosure.

Note: Frequently, a sound wave is said to be direct if it contains reflections that have occurred from surfaces within about 0.05 sec after the sound was first emitted.

Live Room. A live room is a room that subjectively sounds reverberant. It is commonly a room having an unusually small amount of sound absorption.

Mean Free Path. The mean free path for sound waves in an enclosure is the average distance sound travels between successive reflections in the enclosure.

Noise Reduction. In architectural acoustics, noise reduction generally is the difference between the effective sound pressure levels (in decibels) between the noise fields on opposite sides of a noise-reducing panel, with all sources of sound being on one side of the panel.

Reverberant Sound. Reverberant sound is that part of the sound in an enclosure that has undergone one or more reflections from the boundaries of the enclosure.

Reverberation Chamber. A reverberation chamber is an enclosure in which all the surfaces have been made as sound-reflective as possible. Reverberation chambers are used for certain acoustical measurements.

Room Constant. The room constant is given by the formula

$$
R=\frac{S \bar{\alpha}}{1-\alpha}
$$

where $\bar{\alpha}$ is the average sound-absorption coefficient and $S$ is the total area of the boundaries of the room.

Sabin (Square Foot Unit of Absorption). A sabin is a measure of the sound absorption of a surface. It is the equivalent of 1 square foot of a perfectly absorptive surface.

Sound (Energy) Absorption Coefficient. (1) At a particular angle of wave incident, the sound-absorption coefficient is the ratio of the sound energy absorbed by the surface to the energy in the plane wave incident upon it. (2) For random wave incidence, the sound-absorption coefficient is the ratio of the sound energy absorbed by the surface to the energy incident upon it from a sound field in which sound waves are striking the surface equally from all angles of incidence. (3) The average soundabsorption coefficient for a room is the weighted average of the random-incidence absorption coefficients computed from the formula

$$
\bar{\alpha}=\frac{S_{1} \alpha_{1}+S_{2} \alpha_{2}+S_{3} \alpha_{3}+\cdots+S_{n} \alpha_{n}}{S_{1}+S_{2}+S_{3}+\cdots+S_{n}}
$$

where $S_{1}, S_{2}, S_{3}, \ldots$ are areas of particular surfaces in the room; $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ are the random-incidence absorption coefficients associated, respectively, with those areas; and $\bar{\alpha}$ is the average sound-absorption coefficient for the room.

Transmission Loss. In architectural acoustics, transmission loss for a wall or panel is 10 times the logarithm to the base 10 of the ratio of the sound energy incident upon the wall or panel to the sound energy transmitted through it. The transmission loss is generally measured under conditions of randomly incident sound waves. The unit is the decibel.

# 3b. Letter Symbols and Conversion Factors for Acoustical Quantities 

LEO L. BERANEK

Bolt Beranek and Newman, Inc.

| $T$ | absolute temperature, degrees Kelvin |
| :---: | :---: |
| $a$ | absorption, energy, acoustic, total in a room |
| $\boldsymbol{\alpha}$ | absorption coefficient, energy |
| $\overline{\boldsymbol{\alpha}}$ | absorption coefficient, energy, average |
| $Y_{\text {A }}$ | acoustic admittance |
| $C_{A}$ | acoustic compliance |
| $G_{\text {a }}$ | acoustic conductance |
| $x_{A}$ | acoustic excitability |
| $y_{A}$ | acoustic immobility |
| $Z_{\text {A }}$ | acoustic impedance (complex) |
| $M_{\text {A }}$ | acoustic mass (inertance) |
| $z_{A}$ | acoustic mobility |
| $W_{A}, P_{A}$ | acoustic power |
| $X_{A}$ | acoustic reactance |
| $R_{A}$ | acoustic resistance |
| $r_{A}$ | acoustic responsiveness |
| $B_{\text {A }}$ | acoustic susceptance |
| $b_{A}$ | acoustic unexcitability |
| $g_{\text {A }}$ | acoustic unresponsiveness |
| $Y_{A}$ | admittance, acoustic |
| $Y_{E}, Y$ | admittance, electric |
| $Y_{M}$ | admittance, mechanical |
| $Y_{R}$ | admittance, rotational |
| $Y_{S}$ | admittance, specific acoustic |
| $A, \Phi$ | amplitude of velocity potential |
| $\Omega$ | angle, solid |
| $\phi$ | angular displacement |
| $\omega$ | angular velocity ( $2 \pi f$ ) |


| $f_{A}$ | antiresonant frequency |
| :---: | :---: |
| $S$ | area (diaphragm, tube, room, or radiator) |
| $P_{0}, p_{0}$ | atmospheric pressure |
| $\boldsymbol{\alpha}$ | attenuation constant |
| $\overline{\boldsymbol{\alpha}}$ | average absorption coefficient, energy |
| $C_{E}$ | capacitance, electrical |
| $\rho_{0} C$ | characteristic impedance |
| $Q, q$ | charge, electric |
| $\alpha$ | coefficient of absorption |
| $C_{A}$ | compliance, acoustic |
| $C_{S}$ | compliance, specific acoustic |
| $C_{M}$ | compliance, mechanical |
| $C_{R}$ | compliance, rotational |
| $\xi, \eta, \zeta ; \xi_{x}, \xi_{y}, \xi_{z}$ | components of the particle displacement in the $x, y, z$ directions |
| ${ }_{s} u, v, w ; u_{x}, u_{y}, u_{z}$ | components of the particle velocity in $x, y, z$ directions condensation |
| $G_{A}$ | conductance, acoustic |
| $G_{E}, G$ | conductance, electric |
| $G_{M}$ | conductance, mechanical |
| $G_{R}$ | conductance, rotational |
| $G_{S}$ | conductance, specific acoustic |
| $\kappa$ | conductivity, thermal |
| $I, i$ | current, electric |
| $U$ | current, volume (volume per second) (volume velocity) |
| $\lambda, k, \delta$ | decay constant |
| D, E | density, energy |
| $\rho$ | density of the medium (instantaneous) |
| $\rho_{0}$ | density of the medium (static) |
| $\boldsymbol{\epsilon}$ | dielectric coefficient |
| $\Delta$ | dilatation |
| $D_{i}, D I$ | directivity index |
| $\boldsymbol{R}_{\boldsymbol{\theta}}$ | directivity ratio |
| $\phi$ | displacement, angular |
| $\xi_{x}, x$ | displacement, linear |
| $\xi$ | displacement, particle |
| $X$ | displacement, volume |
| $r$ | distance from source |
| $s, x_{1}$ | distance, linear |
| $\mu$ | elasticity, shear |
| $Y_{E}, Y$ | electric admittance |
| $C_{E}, C$ | electric capacitance |
| $Q, q$ | electric charge |
| $G_{E}, \boldsymbol{G}$ | electric conductance |
| $I, i$ | electric current |
| $Z_{E}, \boldsymbol{Z}$ | electric impedance (complex) |
| $P_{E}, W_{E}, P, W$ | electric power |
| $X_{E},{ }^{\prime}$ | electric reactance |
| $R_{E}, R$ | electric resistance |
| $\rho$ | electric resistivity |
| $B_{E}, B$ | electric susceptance |


| $E, e$ | electromotive force, voltage |
| :---: | :---: |
| $E$ | energy |
| $D, E$ | energy density |
| $T, E_{K}$ | energy, kinetic |
| $V, E_{p}$ | energy potential |
| $x_{A}$ | excitability, acoustic |
| $x_{M}$ | excitability, mechanical |
| $x_{R}$ | excitability, rotational |
| $x_{S}$ | excitability, specific acoustic |
| H | field strength, magnetic |
| $m$ | flare coefficient in a horn |
| $B$ | flux density, magnetic |
| Ф | flux, magnetic |
| $f_{M}, F$ | force |
| $f$ | frequency |
| $y_{A}$ | immobility, acoustic |
| $y_{M}$ | immobility, mechanical |
| $y_{R}$ | immobility, rotational |
| $y_{S}$ | immobility, specific acoustic |
| $\boldsymbol{Z}_{\boldsymbol{A}}$ | impedance, acoustic (complex) |
| $\rho_{0} C$ | impedance, characteristic |
| $Z_{E}, Z$ | impedance, electric (complex) |
| $Z_{M}$ | impedance, mechanical (complex) |
| $Z_{R}$ | impedance, rotational (complex) |
| $Z_{S}$ | impedance, specific acoustic (complex) |
| $n$ | index of refraction |
| $L$ | inductance |
| $M_{A}$ | inertance, acoustic mass |
| I | inertia, moment of |
| I | - intensity |
| $L_{I}, I L$ | intensity level, decibels |
| $\nu$ | kinematic viscosity |
| $T, E_{K}$ | kinetic energy (inductive energy) |
| $\sigma$ | leakage coefficient, magnetic |
| $l$ | length of a vibrating string, pipe, or rod |
| $L$ | level in decibels, general |
| $x, \xi$ | linear displacement |
| $s, x_{1}$ | linear distance |
| $L, N$ | loudness, sones |
| $L_{N}, L L$ | loudness level, decibels or phons |
| H | magnetic field strength |
| Ф | magnetic flux |
| $B$ | magnetic flux density |
| $\sigma$ | magnetic leakage coefficient |
| $\mathcal{F}$ | magnetomotive force |
| $K, \Delta$ | magnetostriction constant |
| $m, M_{M}$ | mass |
| $M_{A}$ | mass, acoustic |
| $M_{S}$ | mass, specific acoustic |


| $Y_{M}$ | mechanical admittance |
| :---: | :---: |
| $C_{M}$ | mechanical compliance |
| $G_{M}$ | mechanical conductance |
| $x_{M}$ | mechanical excitability |
| $y_{M}$ | mechanical immobility |
| $Z_{M}$ | mechanical impedance (complex) |
| $z_{M}$ | mechanical mobility |
| $W_{M}, P_{M}$ | mechanical power |
| $X_{M}$ | mechanical reactance |
| $R_{M}$ | mechanical resistance |
| $r_{M}$ | mechanical responsiveness |
| $B_{M}$ | mechanical susceptance |
| $b_{M}$ | mechanical unexcitability |
| $g_{M}$ | mechanical unresponsiveness |
| $z_{A}$ | mobility, acoustic |
| $z_{M}$ | mobility, mechanical |
| $z_{R}$ | mobility, rotational |
| $z_{S}$ | mobility, specific acoustic |
| $Y, E$ | modulus of elasticity |
| $I$ | moment of inertia |
| $L_{N R}, N R$ | noise reduction, decibels |
| $N$ | number of turns |
| $\xi$ | particle displacement |
| $\begin{aligned} & \xi, \eta, \zeta ; \xi_{x}, \xi_{y}, \xi_{z} \\ & u_{a} \end{aligned}$ | particle-displacement components in the $x, y, z$ directions particle velocity (average) |
| $u, v, w ; u_{x}, u_{y}, u_{z}$ | particle-velocity components in the $x, y, z$ directions |
| $u_{i}$ | particle velocity (instantaneous) |
| $u_{m}$ | particle velocity (maximum) ${ }^{1}$ |
| $u_{p}$ | particle velocity (peak) ${ }^{1}$ |
| $u$ | particle velocity (rms) |
| $P$ | perimeter |
| $T$ | period $T=1 / f$ |
| $\theta, \phi, \psi$ | phase angle |
| $\beta$ | phase constant |
| $f_{i j}, g_{i j}, d_{i j}$ | piezoelectric constants |
| $\sigma$ | Poisson's ratio |
| $Y, P$ | porosity (of an acoustical material) |
| $V, E_{p}$ | potential energy (capacitive energy) |
| $\phi$ | potential, velocity |
| $A, \Phi$ | potential, velocity, amplitude |
| $W, P$ | power |
| $W_{A}, P_{A}$ | power, acoustic |
| $W_{E}, P_{E}, P, E$ | power, electric |
| $W_{M}, P_{M}$ | power, mechanical |
| $W_{R}, P_{R}$ | power, rotational |
| $P_{0}, p_{0}$ | pressure, atmospheric |
| $p_{a}$ | pressure, sound (average) |
| $p$ | pressure, sound (rms) |
| $p_{i}$ | pressure, sound (instantaneous) |

[^100]| $p_{m}$ | pressure, sound (maximum) ${ }^{1}$ |
| :---: | :---: |
| $p_{p}$ | pressure, sound (peak) ${ }^{1}$ |
| $\gamma, \Gamma$ | propagation constant |
| $a$ | radius of a diaphragm, tube, or radiator |
| $Q$ | ratio of mass (or inductive) reactance to resistance |
| $\gamma$ | ratio of specific heats |
| $\boldsymbol{X}_{A}$ | reactance, acoustic |
| $X_{E}, X$ | reactance, electric |
| $X_{M}$ | reactance, mechanical |
| $X_{R}$ | reactance, rotational |
| $X_{S}$ | reactance, specific acoustic |
| $n$ | refraction, index of |
| $\tau$ | relaxation time |
| $\boldsymbol{R}$ | reluctance |
| $R_{\text {A }}$ | resistance, acoustic |
| $R_{E}, R$ | resistance, electric |
| $R_{M}$ | resistance, mechanical |
| $R_{R}$ | resistance, rotational |
| $R_{S}$ | resistance, specific acoustic |
| $\rho$ | resistivity, electrical |
| $r_{\text {A }}$ | responsiveness, acoustic |
| $r_{M}$ | responsiveness, mechanical |
| $r_{R}$ | responsiveness, rotational |
| $r_{S}$ | responsiveness, specific acoustic |
| $T, t_{60}$ | reverberation time |
| $R$ | room constant $\bar{\alpha} S /(1-\bar{\alpha})$ |
| $Y_{R}$ | rotational admittance |
| $C_{R}$ | rotational compliance |
| $G_{R}$ | rotational conductance |
| $x_{R}$ | rotational excitability |
| $y_{R}$ | rotational immobility |
| $Z_{R}$ | rotational impedance (complex) |
| $z_{R}$ | rotational mobility |
| $W_{R}, P_{R}$ | rotational power |
| $X_{R}$ | rotational reactance |
| $R_{R}$ | rotational resistance |
| $r_{R}$ | rotational responsiveness |
| $B_{R}$ | rotational susceptance |
| $b_{R}$ | rotational unexcitability |
| $g_{R}$ | rotational unresponsiveness |
| $L_{S}, S L$ | sensation level, decibels |
| $\mu$ | shear elasticity |
| $A, U_{0}$ | simple source strength |
| $\Omega$ | solid angle |
| $L_{W}, P W L$ | sound power level, decibels |
| $p_{a}$ | sound pressure (average) |
| $p_{i}$ | sound pressure (instantaneous) |
| $p_{M}$ | sound pressure (maximum) ${ }^{1}$ |
| $p_{p}$ | sound pressure (peak) ${ }^{1}$ |

${ }^{1}$ For definitions of "peak" and "maximum" see American Standard Acoustical Terminology (ASA Z24.1-1951).

| $p$ | sound pressure (rms) |
| :---: | :---: |
| $L_{P}, S P L$ | sound pressure level, decibels |
| $A, U_{0}$ | source, simple, strength of |
| $r$ | source, distance from |
| $Y_{S}$ | specific acoustic admittance |
| $C_{S}$ | specific acoustic compliance |
| $G_{S}$ | specific acoustic conductance |
| $x_{S}$ | specific acoustic excitability |
| $y_{S}$ | specific acoustic immobility |
| $M_{S}$ | specific acoustic mass |
| $z_{S}$ | specific acoustic mobility |
| $X_{S}$ | specific acoustic reactance |
| $R_{S}$ | specific acoustic resistance |
| $r_{S}$ | specific acoustic responsiveness |
| $B_{S}$ | specific acoustic susceptance |
| $b_{S}$ | specific acoustic unexcitability |
| $g_{S}$ | specific acoustic unresponsiveness |
| $\gamma$ | specific heats, ratio of |
| $c$ | speed of sound |
| $s, S$ | stiffness |
| $A, U_{0}$ | strength of a simple source |
| $B_{A}$ | susceptance, acoustic |
| $B_{E}, B$ | susceptance, electric |
| $B_{M}$ | susceptance, mechanical |
| $B_{R}$ | susceptance, rotational |
| $B_{S}$ | susceptance, specific acoustic |
| $G_{x}$ | system-rating constant |
| $T$ | temperature, absolute, degrees Kelvin |
| $F$ | tension (force) in a membrane or string |
| $\kappa$ | thermal conductivity |
| $t$ | thickness |
| $t$ | time |
| $\tau$ | time, relaxation |
| $T, t_{60}$ | time, reverberation |
| $f_{R}, T$ | torque |
| $a$ | total acoustical (energy) absorption in a room |
| $\tau$ | transmission coefficient, energy, barriers |
| $L_{T}, T L$ | transmission loss of building structures, decibels |
| $N$ | turns, number of |
| $b_{A}$ | unexcitability, acoustic |
| $b_{M}$ | unexcitability, mechanical |
| $b_{R}$ | unexcitability, rotational |
| $b_{S}$ | unexcitability, specific acoustic |
| $g_{A}$ | unresponsiveness, acoustic |
| $g_{M}$ | unresponsiveness, mechanical |
| $g_{R}$ | unresponsiveness, rotational |
| $g_{S}$ | unresponsiveness, specific acoustic |
| $u$ | velocity |
| $\omega$ | velocity, angular ( $2 \pi f$ ) |
| $c$ | velocity of sound |
| $u_{\text {a }}$ | velocity, particle (average) |

## ACOUSTICS

| $u_{i}$ | velocity, particle (instantaneous) |
| :---: | :---: |
| $u_{m}$ | velocity, particle (maximum) ${ }^{1}$ |
| $u_{p}$ | velocity, particle (peak) ${ }^{1}$ |
| , | velocity, particle (rms) |
| ¢ | velocity potential |
| A, $\Phi$ | velocity potential amplitude |
| $U$ | velocity, volume |
| $\eta$ | viscosity, dissipative or frictional |
| $\nu$ | viscosity, kinematic |
| $E, e$ | voltage, electromotive force |
| V | volume |
| U | volume current; volume velocity |
| $X$ | volume displacement |
| $U$ | volume velocity; volume current |
| $\lambda$ | wavelength |
| $k$ | wave number, $\frac{\omega}{c}=\frac{2 \pi f}{c}=\frac{2 \pi}{\lambda}$ |
| $w$ | width |
| $Y, E$ | Young's modulus |

Table 3b-1. Conversion Factors for Acoustical Quantities

| Multiply the number of | By | To obtain the number of | Conversely multiply by |
| :---: | :---: | :---: | :---: |
| Acoustic ohms. | $10^{5}$ | Mks acoustic ohms | $10^{-5}$ |
| Atmospheres. | 406.80 | Inches of water at $4^{\circ} \mathrm{C}$ | $2.458 \times 10^{-3}$ |
| Centimeters. | $10^{-2}$ | Meters | $10^{2}$ |
| Cubic centimeters. | $10^{-6}$ | Cubic meters | $10^{6}$ |
| Dynes. | $10^{-5}$ | Newtons | $10^{5}$ |
| Dynes/cm ${ }^{2}$. | $10^{-1}$ | Newtons per square meter | 10 |
| Ergs. | $10^{-7}$ | Joules | $10^{7}$ |
| Ergs per second | $10^{-7}$ | Watts | $10^{7}$ |
| Ergs per second/cm ${ }^{2}$ | $10^{-3}$ | Watts per square meter | $10^{3}$ |
| Gauss. | $10^{-4}$ | Webers per square meter | $10^{4}$ |
| Kilograms. | $10^{3}$ | Grams | $10^{-3}$ |
| Mechanical ohms | $10^{-3}$ | Mks mechanical ohms | $10^{3}$ |
| Meters. | $10^{2}$ | Centimeters | $10^{-2}$ |
| Microbars. | $10^{-1}$ | Newtons per square meter | 10 |
| Newtons. | $10^{5}$ | Dynes | $10^{-5}$ |
| Newtons per square meter | 10 | Dynes per square centimeter | $10^{-1}$ |
| Pounds per square foot... | 0.4882 | Grams per square centimeter | 2.0481 |
| Rayls. . . . . . . . . . . . . . | 10 | Mks rayls | $10^{-1}$ |
| Watts per square meter.. | $10^{-4}$ | Watts per square centimeter | $10^{4}$ |
| Webers per square centimeter | $10^{4}$ | Gauss | $10^{-4}$ |

[^101]
# 3c. Propagation of Sound in Fluids 

FREDERICK V. HUNT<br>Harvard University

## 3c-1. Glossary of Symbols ${ }^{1}$



## Acoustics

| $p ; p_{1}, p_{2}$ | incremental, or sound, pressure; first- and sures (25) |
| :---: | :---: |
| $P, P_{0} ; P_{m}, P_{\text {th }}$ | total pressure (7), equilibrium or reference pressure (25); mean pressure (7), thermodynamic pressure (14) |
| $P_{1}, P_{2} ; \rho$ | rms fundamental and second-harmonic pressure (49a); Prandtl number (72) |
| q, $q_{i} ;$ | heat flux vector (12); Stokes radiation coefficient (21b) |
| $q ; q^{E}, q^{L}$ | exemplar of state or condition variable (39); superscript indicates function of spatial ( $E$ ) variables, or material ( $L$ ) variables (32b) |
| R, $R$; $R_{1}, R_{2}$ | vorticity $=\frac{1}{2} \boldsymbol{\nabla} \times \mathbf{u}(11 d)$, real part of complex impedance; first- and second-order components of vorticity (57) |
| $s, s_{1}$ | specific entropy per unit mass (14), first-order condensation $=\rho_{1} / \rho_{0}$ (59) |
| $S ; S^{\prime} ; S_{\text {irr }}$ | Stokes number $=\omega \eta / \rho_{0} c_{0}{ }^{2}(72)$, total interior surface (90); frequency number for radiation $=\omega / q(72)$; entropy generated irreversibly (15a) |
| $t ; t_{i j}$ | time (2); stress tensor (6) |
| T | absolute temperature (12) |
| u, $u_{1} ; u_{1},{ }_{2}$ | particle velocity (1); velocity components |
| $\mathbf{u}_{1}, \mathbf{u}_{2}$ | first- and second-order components of particle velocity (25) |
| $v ; \bar{v}$ | specific volume $=\rho^{-1}$ (1); mean molecular velocity (86) |
| V | viscosity number $=2+\eta^{\prime} / \eta$ (10) |
| $V ; V_{i j}$ | volume (1); residual stress tensor (7) |
| $x_{1}, x_{2}, x_{3}$ | cartesian coordinates (1) |
| $X ;{ }^{\prime}$ | frequency number $=\omega \eta \mathcal{V} / \rho_{0} c_{0}^{2}$ (72), specific acoustic reactance (69); frequency number for relaxation (84) |
| $Y$ | thermoviscous number $=\kappa / \eta$ ข $C_{p}$ (72) |
| $z, Z$ | specific acoustic impedance ratio (87), a |
| $\alpha ; \alpha_{K}, \alpha_{C}$ | attenuation constant ( 69 ); "Kirchhoff" and "classical" attenuation $(79 a, b)$ |
| $\beta ; \beta_{\text {moige }}$ | coefficient of thermal expansion $=\rho(\partial v / \partial T)_{P}(22)$; spectrum level $=$ $10 \log _{10} d\left(p^{2} / p_{0}{ }^{2}\right) / d f(98)$ |
| $\gamma$ | ratio of specific heats $=C_{p} / C_{v}$ (14) |
| $\delta ; \delta_{i j} ; \Delta$ | finite increment (32); Kronecker delta (7); dilatation rate $=\boldsymbol{\nabla} \cdot \mathbf{u}$ (4) |
|  | specific internal energy per unit mass (13) |
| $\eta, \eta^{\prime}, \eta_{B}$ | coefficient of shear viscosity (10), "second" or dilatational viscosity (10), bulk viscosity (10) |
| $\theta_{1}$, | first- and second-order variational components of temperature (25) |
| ${ }_{\kappa}{ }_{1}$ | thermal conductivity (21a). |
| $\lambda ; \lambda_{0}$ | wavelength $=c / f(47) ; \lambda_{0}=c_{0}$ |
| $\nu, \nu^{\prime}, \nu_{B}$ | kinematic viscosity coefficients (10) $=\eta / \rho$, etc. ${ }^{\text {a }}$, $\quad$ arial derivative |
| $\xi ; \xi_{t}$ | displacement of particle from equilibrium (31); partial derivative with respect to subscript variable (41b) |
| $\rho, \rho_{0} ; \rho_{1}, \rho_{2}$ | densities: total, equilibrium; first- and second-order variational components |
| $\tau_{v}$ | relaxation times (83, 85) |
| $\varphi_{2} ; \phi_{\eta}, \phi_{k}$ | scalar velocity potential (55); viscous and thermal dissipation functions $(16,18)$ |
|  | complex propagation constant $=\alpha+j k$ (69) |
| $\psi$ | functional relation (71) |
| $\omega_{r}, \omega_{v}, \omega_{k}$ | angular frequency $=2 \pi f$; relaxation angular frequencies |
| $\boldsymbol{\nabla}, \boldsymbol{\nabla} \cdot \boldsymbol{\nabla} \times$ | gradient, divergence, and curl operators |
|  | time average |

3c-2. The Motion of Viscous Fluids. The motions of a fluid medium that comprise sound waves are governed by equations that include (1) a continuity equation expressing the conservation of mass, (2) a force equation expressing the conservation of momentum, (3) a heat-exchange equation expressing the conservation of energy, and (4) one or more defining equations expressing the constitutive relations that characterize the medium and its response to thermal or mechanical stress. These equations will first be presented in their complete exact form in order to provide a rigorous point of departure for the approximations that must ultimately be made in formulating the linearized, or small-signal, acoustic equations.

The transformation properties of these equations can be indicated by writing them in either vectorial or tensorial form, and both forms will be exhibited in order to facilitate contacts with the rich literature dealing with the motion of fluids. ${ }^{1}$

Cartesian spatial coordinates will be designated $x_{1}, x_{2}, x_{3}$, and the vector velocity of a material particle will be identified as $\mathbf{u}$ with components $u_{1}, u_{2}, u_{3}$. These will also be written as $x_{i}$ and $u_{i}$, where it is implied that the subscript $i, j$, or $k$ takes on successively the values $1,2,3$. The term "material particle" denotes a finite mass element of the medium small enough for the values assumed by the state variables at every interior point of the particle not to differ significantly from the "values they have at the interior reference point whose coordinates "locate" the particle.

Equation of Continuity. The conservation of mass requires that $\rho V=\rho_{0} V_{0}$, where $\rho_{0}$ and $V_{0}$ are initial and $\rho$ and $V$ are subsequent values assumed by the density and volume of a particular material element of the medium. It follows that

$$
\begin{equation*}
\rho D V+V D \rho=0 \quad \frac{D V}{V}=-\frac{D \rho}{\rho} \tag{3c-1}
\end{equation*}
$$

If $\rho_{0} V_{0}$ is set equal to $1, V_{0}$ becomes the specific volume, $v \equiv 1 / \rho$; whence the relation between the total logarithmic time derivatives of $v$ and $\rho$ is

$$
\begin{equation*}
\frac{1}{v} \frac{D v}{D t}=-\frac{1}{\rho} \frac{D \rho}{D t}=\frac{D \log v}{D t}=-\frac{D \log \rho}{D t} \tag{3c-2}
\end{equation*}
$$

where $D(\quad) / D t$ denotes the "material" derivative, i.e., one that follows the motion of a material "particle" of the medium relative to a fixed spatial coordinate system, and is defined by

$$
\begin{equation*}
\frac{D(\quad)}{D t} \equiv \frac{\partial()}{\partial t}+\mathbf{u} \cdot \operatorname{grad}(\quad) \equiv \frac{\partial()}{\partial t}+u_{i} \frac{\partial(\quad)}{\partial x_{i}} \tag{3c-3}
\end{equation*}
$$

Analysis of the rate of deformation of a volume element yields the kinematical relation

$$
\begin{equation*}
\frac{1}{v} \frac{D v}{D t}=\operatorname{div} \mathbf{u} \equiv \Delta=\frac{\partial u_{i}}{\partial x_{i}} \tag{3c-4}
\end{equation*}
$$

where $\Delta$ is the dilatation rate. Note that in the last terms of (3c-3) and (3c-4) summation is implied over all the allowable values of the subscript index. Equations (3c-2), (3c-3), and (3c-4) can be combined to yield the following equivalent forms of Euler's continuity equation:

[^102]\[

$$
\begin{align*}
\frac{D \rho}{D t}+\rho \frac{\partial u_{i}}{\partial x_{i}} & =\frac{\partial \rho}{\partial t}+u_{i} \frac{\partial \rho}{\partial x_{i}}+\rho \frac{\partial u_{i}}{\partial x_{i}}=\frac{D \rho}{D t}+\rho \operatorname{div} \mathbf{u}=0 \\
& =\frac{1}{\rho} \frac{D \rho}{D t}+\Delta=\frac{\partial \rho}{\partial t}+\mathbf{u} \cdot \operatorname{grad} \rho+\rho \operatorname{div} \mathbf{u} \\
& =\frac{\partial \rho}{\partial t}+\mathbf{u} \cdot \nabla \rho+\rho \boldsymbol{\nabla} \cdot \mathbf{u}=\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot(\rho \mathbf{u}) \tag{3c-5}
\end{align*}
$$
\]

In the last line of (3c-5), the Gibbs-Hamilton notation has been used for the differential vector operators, $\boldsymbol{\nabla} \equiv \operatorname{grad} ; \boldsymbol{\nabla} \equiv \operatorname{div} ; \boldsymbol{\nabla} \times \mathrm{curl}$.
Force Equation. The linear-momentum principle can be stated in terms of Cauchy's first law of motion,

$$
\begin{equation*}
\rho \frac{D u_{i}}{D t}=\rho F_{i}+\frac{\partial t_{i j}}{\partial x_{i}} \tag{3c-6}
\end{equation*}
$$

where the vector $F_{i}$ is an extraneous body force per unit mass, and where $t_{i j}$ is a secondrank stress tensor that represents the net mechanical action of contiguous material on a volume element of the medium due to the actual forces of material continuity. For an isotropic medium in which the stress is a linear function of the rate of deformation, as here assumed, the stress tensor can be resolved arbitrarily as the sum of a scalar, or hydrostatic, pressure function $P$ and a residual stress tensor $V_{i j}$ defined by

$$
\begin{equation*}
t_{i j}=-P \delta_{i j}+V_{i j} \quad t_{i j}=t_{i i} \tag{3c-7}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta which equals unity if $i=j$, but is zero otherwise. Unless $V_{i i}$ vanishes, $P$ is not identical with the mean pressure, $P_{m}=-\frac{1}{3} t_{i i}$. The resolution given by (3c-7) is both unique and useful, however, if $P$ is made equal to the thermodynamic pressure $P_{\text {th }}$ defined below. Then the residual stress tensor is given, to a first approximation, by the linear terms of an expansion in powers of the viscosity coefficients;

$$
\begin{equation*}
V_{i j}=\eta^{\prime} d_{k k} \delta_{i j}+2 \eta d_{i j} \quad V_{i j}=V_{i i} \tag{3c-8}
\end{equation*}
$$

in which $d_{i j}$ is the rate of deformation tensor defined by

$$
\begin{equation*}
d_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{i}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{3c-9}
\end{equation*}
$$

and where $\eta$ is the "first," or conventional shear, viscosity coefficient. In accordance with current proposals for standardization, $\eta^{\prime}$ replaces $\lambda$, the symbol used by Stokes, Rayleigh, Lamb, et al., to designate the "second," or dilatational, viscosity coefficient. The term "bulk" viscosity is reserved for $\left(\lambda+\frac{2}{3} \mu\right) \rightarrow\left(\eta^{\prime}+\frac{2}{3} \eta\right)$, the linear combination of coefficients that vanishes when the Stokes relation holds. Thus, $\eta \equiv$ first, or shear, viscosity; $\eta^{\prime} \equiv$ second, or dilatational, viscosity; $\eta_{B} \equiv \eta^{\prime}+\frac{2}{3} \eta=$ bulk viscosity; $\nu \equiv \eta / \rho ; \nu^{\prime} \equiv \eta^{\prime} / \rho ; \nu_{B} \equiv \eta_{B} / \rho$ (kinematic viscosities);

$$
\begin{gather*}
(\lambda+2 \mu) \rightarrow \eta^{\prime}+2 \eta=\eta_{B}+\frac{4}{3} \eta=\eta\left(\frac{4}{3}+\frac{\eta_{B}}{\eta}\right)=\eta^{V} \cup  \tag{3c-10}\\
\mathcal{V} \equiv \frac{4}{3}+\frac{\eta_{B}}{\eta}=2+\frac{\eta^{\prime}}{\eta} \equiv \text { viscosity number }
\end{gather*}
$$

Putting (3c-7), (3c-8), (3c-9) into (3c-6) yields the vector force equation in the following equivalent forms:

$$
\begin{align*}
& \rho \frac{\partial u_{i}}{\partial t}+\rho u_{j} \frac{\partial u_{i}}{\partial x_{j}}=\rho F_{i}-\frac{\partial P}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\eta^{\prime} d_{k k} \delta_{i j}\right.\left.+2 \eta d_{i j}\right) \\
&=\rho F_{i}-\frac{\partial P}{\partial x_{i}}+\eta^{\prime} \frac{\partial^{2} u_{k}}{\partial x_{i} \partial x_{k}}+\eta \frac{\partial}{\partial x_{j}}\left(\frac{\partial u_{i}}{\partial x_{i}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \\
&+\frac{\partial u_{k}}{\partial x_{k}} \frac{\partial \eta^{\prime}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial \eta}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}} \frac{\partial \eta}{\partial x_{j}} \tag{3c-11a}
\end{align*}
$$

$$
\begin{aligned}
& \rho \frac{D \mathbf{u}}{D t}=\rho \mathbf{F}-\operatorname{grad} P+\left(\eta^{\prime}+\eta\right) \operatorname{grad}(\operatorname{div} \mathbf{u})+\eta \nabla^{2}(\mathbf{u}) \\
& \quad+(\operatorname{div} \mathbf{u}) \operatorname{grad} \eta^{\prime}+2(\operatorname{grad} \eta \cdot \operatorname{grad}) \mathbf{u}+\operatorname{grad} \eta \times \operatorname{curl} \mathbf{u} \quad(3 \mathrm{c}-11 b) \\
& \rho \frac{\partial \mathbf{u}}{\partial t}=\rho \mathbf{F}-\rho(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla P+\left(\eta^{\prime}+2 \eta\right) \mathbf{\nabla}(\nabla \cdot \mathbf{u})-\eta \boldsymbol{\nabla} \times(\nabla \times \mathbf{u}) \\
&+(\nabla \cdot \mathbf{u}) \nabla \eta^{\prime}+2(\nabla \eta \cdot \nabla) \mathbf{u}+\nabla \eta \times(\nabla \times \mathbf{u}) \quad(3 \mathrm{c}-11 c)
\end{aligned}
$$

The vorticity, defined by $\mathbf{R}=\frac{1}{2}$ curl $\mathfrak{u}=\frac{1}{2}(\nabla \times \mathfrak{u})$, and the dilatation rate, $\Delta \equiv$ $\boldsymbol{\nabla} \cdot \mathbf{u}$, can be introduced as useful abbreviations. A somewhat more symmetrical expression in terms of the mass transport velocity $\rho \mathbf{u}$ is obtained if the last form of the continuity equation (3c-5) is multiplied by $u$ and added to ( $3 \mathrm{c}-11 c$ ), giving

$$
\begin{align*}
\frac{\partial(\rho \mathbf{u})}{\partial t}+\mathbf{u}(\nabla \cdot \rho \mathbf{u})+(\rho \mathbf{u} \cdot \nabla) \mathbf{u}=\rho \mathbf{F}-\nabla P & +\eta \boldsymbol{v} \boldsymbol{\nabla} \Delta-2 \eta \boldsymbol{\nabla} \times \mathbf{R}+\Delta \nabla \eta^{\prime} \\
& +2(\nabla \eta \cdot \nabla) \mathbf{u}+2 \boldsymbol{\nabla} \eta \times \mathbf{R} \tag{3c-11d}
\end{align*}
$$

These equations reduce to the so-called Navier-Stokes equations when it is assumed that $\eta$ and $\eta^{\prime}$ are constant $\left(\nabla \eta=\nabla \eta^{\prime}=0\right)$ and that the Stokes relation holds ( $\eta_{B}=0$, $V=\frac{4}{3}$ ); and still further simplification follows if the motion is assumed irrotational so that $\mathbf{R}=0$. If the viscosity coefficients are to be regarded as functions of one or more of the state variables, however, the gradients of the $m$ 's must be retained so that the implicit functional dependence can be introduced by writing, for example, $\nabla \eta=(\partial \eta / \partial T) \nabla T+\cdots \cdot$

Energy Relations and Equations of State. The conservation of energy requires that the following power equation be satisfied:

$$
\begin{equation*}
\frac{D\left(E_{k}+E_{I}\right)}{D t}=\int_{V} \rho F_{i} u_{i} d V+\int_{A} t_{i j} u_{j} d a_{i}-\int_{A} q_{i} d a_{i} \tag{3c-12}
\end{equation*}
$$

where $E_{k}$ is the kinetic energy associated with the material velocity, $E_{I}$ is the total internal energy, $V$ is a volume bounded by the surface $A, d a_{i}$ is the projection of a surface element of $A$ on the plane normal to the $+x_{i}$ axis, $F_{i}$ is the extraneous body force (per unit mass), and $q_{i}$ is the total heat flux vector (mechanical units). After the surface integrals are converted to volume integrals by using the divergence theorem, and with the help of (3c-6), this equation reduces to the Fourier-Kirch-hoff-C. Neumann ${ }^{1}$ energy equation,

$$
\begin{equation*}
\rho \frac{D_{\epsilon}}{D t}=t_{i j} d_{i j}-\frac{\partial q_{i}}{\partial x_{i}} \tag{3c-13}
\end{equation*}
$$

where $\epsilon$ is the local value of the specific internal energy (per unit mass) defined through $E_{I}=\int_{V} \rho \epsilon d V$. It is now postulated that the state of the fluid is completely specified by $\epsilon$ and two other local state variables, which can be taken as the specific entropy $s$ (per unit mass) and the specific volume $v=\rho^{-1}$, in terms of which the thermodynamic pressure and temperature, and the specific heats can be defined by

$$
\begin{align*}
\epsilon & =\epsilon(s, v) & P_{\mathrm{th}} \equiv-\left(\frac{\partial \epsilon}{\partial v}\right)_{s} & \\
C_{p} & \equiv T\left(\frac{\partial s}{\partial T}\right)_{p} & C_{v} \equiv T\left(\frac{\partial \epsilon}{\partial s}\right)_{v} & \equiv \bar{T})_{v}
\end{aligned} \quad \begin{aligned}
& \equiv \frac{C_{p}}{C_{v}} \tag{3c-14}
\end{align*}
$$

The second law of thermodynamics can be introduced in the form of an equality, which replaces the classical Clausius-Duhem inequality, through the expedient of accounting explicitly for the creation of entropy $S_{\text {irr }}$ (per unit volume) by irreversible

[^103]dissipative processes; ${ }^{1}$ thus
\[

$$
\begin{equation*}
\frac{D}{D t} \int_{V} \rho s d V=-\int_{A} \frac{q_{i}}{T} d a_{i}+\int_{V} \frac{D S_{\mathrm{irr}}}{D t} d V \tag{3c-15a}
\end{equation*}
$$

\]

This relation states that the increase of entropy in a material element is accounted for by the influx of heat and by the irreversible production of entropy within the element. The left-hand side of ( $3 c-15 a$ ) can also be written, with the help of the continuity relation, as $\int_{V} \rho(D s / D t) d V$. Then, after converting the surface integral to a volume integral, the second law can be given in differential form as

$$
\begin{align*}
\rho \frac{D s}{D t} & =-\frac{\partial}{\partial x_{i}} \frac{q_{i}}{T}+\frac{D S_{\mathrm{irr}}}{D t} \\
& =-\frac{1}{T} \frac{\partial q_{i}}{\partial x_{i}}+\frac{q_{i}}{T^{2}} \frac{\partial T}{\partial x_{i}}+\frac{D S_{\mathrm{irr}}}{D t} \tag{3c-15b}
\end{align*}
$$

A thermal-dissipation function $\phi_{k}$ can be defined by

$$
\begin{equation*}
\phi_{\kappa}=-\frac{q_{i}}{T} \frac{\partial T}{\partial x_{i}} \tag{3c-16}
\end{equation*}
$$

whereupon multiplying ( $3 \mathrm{c}-15 b$ ) by $T$ yields the second-law equality in the form

$$
\begin{equation*}
\rho T \frac{D s}{D t}=-\frac{\partial q_{i}}{\partial x_{i}}-\phi_{\kappa}+T \frac{D S_{\mathrm{irr}}}{D t} \tag{3c-15c}
\end{equation*}
$$

Taking the material derivative of the basic equation of state $\left(3 c-14_{1}\right)$ (where the subscript added to an equation number indicates the serial number of the equality sign to which reference is made when several relations are grouped under one marginal identification number), introducing the definitions for $P_{\mathrm{th}}$ and $T$, multiplying by $\rho$, and using (3c-4), gives

$$
\begin{equation*}
\rho T \frac{D s}{D t}=\rho \frac{D \epsilon}{D t}+P_{\mathrm{th}} \Delta \tag{3c-17}
\end{equation*}
$$

The energy equation (3c-13) can be recast, using (3c-7) and (3c-9), in the form

$$
\begin{equation*}
\rho \frac{D \epsilon}{D t}+P \Delta+\frac{\partial q_{i}}{\partial x_{i}}=V_{i j} d_{i j}=\phi_{\eta} \tag{3c-18}
\end{equation*}
$$

in which $V_{i j} d_{i j}$, the dissipative component of the stress power $t_{i j} d_{i j}$, is defined as the viscous dissipation function $\phi_{\eta}$. The usefulness of specifying the arbitrary scalar in (3c-7) as the thermodynamic pressure, so that $P^{\prime}=P_{\text {th }}$, becomes apparent when $\rho D \epsilon / D t$ is eliminated between (3c-18) and (3c-17), giving

$$
\begin{align*}
\rho T \frac{D s}{D t} & =\left(P_{\mathrm{th}}-P\right) \Delta+\phi_{\eta}-\frac{\partial q_{i}}{\partial x_{i}} \\
& =\phi_{\eta}-\frac{\partial q_{i}}{\partial x_{i}} \tag{3c-19}
\end{align*}
$$

The viscous dissipation function (dissipated energy per unit volume) is thus seen to account for either an efflux of heat or an increase of entropy. Subtracting (3c-19) from ( $3 \mathrm{c}-15 c$ ) then allows the rate of irreversible production of entropy to be evaluated directly in terms of the two dissipation functions,

$$
\begin{equation*}
T \frac{D S_{\mathrm{irr}}}{D t}=\phi_{\eta}+\phi_{\kappa} \tag{3c-20}
\end{equation*}
$$

The total heat,flux vector $q_{i}$, whose divergence is the energy transferred away from the volume element, must account for energy transport by either conduction or radi-
${ }^{1}$ Tolman and Fine, Revs. Modern Phys. 20, 51-77 (1948).
ation. The part due to conduction is given by the Fourier relation, which serves also to define the heat conductivity $\kappa$;

$$
\begin{gather*}
\left(q_{i}\right)_{\text {cond }}=-\kappa \frac{\partial T}{\partial x_{i}} \\
\frac{\partial\left(q_{i}\right)_{\text {cond }}}{\partial x_{i}}=-\frac{\partial\left(\kappa \partial T / \partial x_{i}\right)}{\partial x_{i}}=-\kappa \frac{\partial^{2} T}{\partial x_{i}{ }^{2}}-\frac{\partial T}{\partial x_{i}} \frac{\partial \kappa}{\partial x_{i}} \tag{3d-21a}
\end{gather*}
$$

The last term, containing the gradient of $\kappa$, must be retained if implicit dependence of $\kappa$ on the state variables is to be represented. On the other hand, if $\kappa$ is assumed to be constant, ( $3 \mathrm{c}-21 a$ ) reduces to the more familiar form

$$
\boldsymbol{\nabla} \cdot \mathrm{q}_{\mathrm{cond}}=-\kappa \nabla^{2} T
$$

The component of heat flux due to radiation can be approximated, for small temperature differences, by Newton's law of cooling,

$$
\begin{equation*}
\frac{\partial\left(q_{i}\right)_{\mathrm{rad}}}{\partial x_{i}}=\rho C_{v} q\left(T-T_{0}\right)=\nabla \cdot \mathbf{q}_{\mathrm{rad}} \tag{3c-21b}
\end{equation*}
$$

where ( $T-T_{0}$ ) is the local temperature excess and $q$ is a radiation coefficient introduced by Stokes. ${ }^{1}$ The foregoing thermal relations can be combined with the equations of continuity and momentum more readily if the term $T(D s / D t)$ appearing in (3c-19) is expressed in terms of the variables $\mathfrak{u}, v$, and $T$. The defining equations (3c-14) establish that $P=P(v, s)$ and $T=T(v, s)$; from which it follows that one may also write $s=s(T, v)$ or $s=s(T, P)$. Using both of the latter leads, after some manipulation, ${ }^{2}$ to the identity

$$
\begin{equation*}
\rho T \frac{D s}{D t}=\rho C_{v}\left[(\gamma-1) \frac{\Delta}{\beta}+\frac{D T}{D t}\right] \tag{3c-22}
\end{equation*}
$$

in which $\beta$ is the coefficient of thermal expansion, $\beta \equiv \rho(\partial v / \partial T)_{P}$. After (3c-22) and (3c-21) are combined with (3c-19), the energy equation can be written in the alternate forms

$$
\begin{array}{r}
\frac{\rho C_{v} D T}{D t}+\rho C_{v} \frac{\gamma-1}{\beta} \frac{\partial u_{i}}{\partial x_{i}}+\frac{\partial q_{i}}{\partial x_{i}}-\phi_{\eta}=0 \\
\rho C_{v}\left(\frac{\partial T}{\partial t}+\mathbf{u} \cdot \nabla T\right)+\frac{\rho\left(C_{p}-C_{v}\right)}{\beta} \Delta-\nabla \cdot(\kappa \nabla T)+\rho C_{v} q\left(T-T_{0}\right)-\phi_{\eta}=0  \tag{3c-23}\\
\frac{\partial T}{\partial t}+\mathbf{u} \cdot \nabla T+\frac{(\gamma-1)}{\beta} \Delta-\frac{\kappa}{\rho C_{v}} \nabla^{2} T-\frac{\nabla T \cdot \nabla \kappa}{\rho C_{v}}+q\left(T-T_{0}\right)-\frac{\phi_{\eta}}{\rho C_{v}}=0
\end{array}
$$

The viscous dissipation function $\phi_{\eta}$ can be evaluated, with the aid of (3c-8) and (3c-9) in the explicit form

$$
\begin{align*}
& \phi_{\eta}= V_{i j} d_{j i}=\eta^{\prime} d_{k k} d_{i i}+2 \eta d_{i j} d_{j i} \\
&=\eta_{B} \Delta^{2}+\frac{4}{3} \eta\left[\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial x_{3}}\right)^{2}-\frac{\partial u_{1}}{\partial x_{1}} \frac{\partial u_{2}}{\partial x_{2}}-\frac{\partial u_{2}}{\partial x_{2}} \frac{\partial u_{3}}{\partial x_{3}}-\frac{\partial u_{3}}{\partial x_{3}} \frac{\partial u_{1}}{\partial x_{1}}\right] \\
&+\eta\left[\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)^{2}+\left(\frac{\partial u_{3}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{3}}\right)^{2}\right] \quad(3 \mathrm{c}-2 \tag{3c-24a}
\end{align*}
$$

The thermal dissipation function $\phi_{\mathrm{k}}$ due to heat conduction can be evaluated, with the aid of (3c-16) and (3c-21a), in the form

$$
\begin{equation*}
\phi_{\kappa}=-\frac{q_{i}}{T} \frac{\partial T}{\partial x_{i}}=+\frac{\kappa}{T}\left(\frac{\partial T}{\partial x_{i}}\right)^{2}=\frac{\kappa}{T}(\nabla T)^{2} \tag{3c-24b}
\end{equation*}
$$

It does not appear explicitly in (3c-23), but it is there implicitly as a consequence of the heat-transfer processes described by (3c-23).
${ }^{1}$ Phil. Mag. (4) 1, 305-317 (1851).
${ }^{2}$ See, for example, Zemansky, "Heat and Thermodynamics," 3d ed., pp. 246-255, McGraw-Hill Book Company, Inc., New York, 1951.

## ACOUSTICS

Summary of Assumptions. The fluid considered is assumed to be continuous except at boundaries or interfaces, locally homogeneous and isotropic when at rest, viscous, thermally conducting, and chemically inert, and its local thermodynamic condition is assumed to be completely determined by specifying three "state" variables, any two of which determine the third uniquely through an equation of state. No structural or thermal "relaxation" mechanism has been presumed up to this point in the analysis, except to the extent that ordinary heat conduction and viscous losses may be described in such terms. Local thermodynamic reversibility has been assumed in using conventional thermodynamic identities based on the second law, but the irreversible production of entropy by dissipative processes has been accounted for explicitly. It is also assumed that the stress tensor is a linear function of the rate of deformation, and that the tractions due to viscosity can be represented by the linear terms of an expansion in powers of the viscosity coefficients. The viscosity and heat-exchange parameters of the fluid $\eta, \eta^{\prime}, \kappa$, and $\mathfrak{q}$, may depend in any continuous way on the state variables and hence may be implicit functions of time and the spatial coordinates. Within the scope thus defined the equations given are exact.

The functional dependence on time and the spatial coordinates of the condition and motion variables $P, T, \rho$, and $u$ can be evaluated, in a formal sense at least, by solving the set of four simultaneous equations connecting these variables [Eqs. (3c-5), (3c-11), (3c-23), and (3c-15) or one of its alternates]. No general solution of these complete equations has been given, however, and one or another of the least important terms are usually omitted in order to render the equations tractable for dealing with specific problems.

3c-3. The Small-signal Acoustic Equations. The physical theory of sound waves deals with systematic motions of a material medium relative to an equilibrium state and thus comprises the variational aspects of elasticity and fluid dynamics. Such perturbations of state can be described by incremental, or acoustic, variables and approximate equations governing them can be obtained by arbitrarily "linearizing" the general equations of motion. These results, as well as higher-order approximations, can be derived in an orderly way by invoking a modified perturbation analysis. ${ }^{1}$ This consists of replacing the dependent variables appearing in (3c-5), (3c-11), and (3c-23) by the sum of their equilibrium or zero-order values and their first- and secondorder variational components, and then forming the separate equations that must be satisfied by the variables of each order. Two of the composite state variables, for example $\rho$ and $T$, can be defined arbitrarily, whereupon the third, $P$, is determined by the functional equation of state. These definitions, some self-evident manipulations, and the subscript notation identifying the orders can be exhibited as follows:

$$
\begin{aligned}
& \rho \equiv \rho_{0}+\rho_{1}+\rho_{2} \quad T \equiv T_{0}+\theta_{1}+\theta_{2} \\
& \nabla \rho=\nabla \rho_{1}+\nabla \rho_{2} \quad \nabla T=\nabla \theta_{1}+\nabla \theta_{2} \\
& P(\rho, T) \equiv P_{0}\left(\rho_{0}, T_{0}\right)+p_{1}+p_{2} \\
& p_{1}+p_{2}=\left[\left(\frac{\partial P}{\partial \rho}\right)_{T}\right]_{0}\left(\rho-\rho_{0}\right)+\left[\left(\frac{\partial P}{\partial T}\right)_{\rho}\right]_{0}\left(T-T_{0}\right)+\cdots \\
& K=K_{T} \equiv \rho\left(\frac{\partial P}{\partial \rho}\right)_{T} \quad \beta \equiv-\frac{1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{P} \quad c_{0}{ }^{2} \equiv\left[\left(\frac{\partial P}{\partial \rho}\right)_{s}\right]_{0} \equiv \frac{\left(K_{s}\right)_{0}}{\rho_{0}} . \\
& \gamma=\frac{K_{s}}{K_{T}}=\frac{C_{p}}{C_{v}} \\
& p_{1}=\frac{c_{0}{ }^{2}}{\gamma}\left(\rho_{1}-+\beta_{0} \rho_{0} \theta_{1}\right) \quad p_{2}=\frac{c_{0}{ }^{2}}{\gamma}\left(\rho_{2}+\beta_{0} \rho_{0} \theta_{2}\right) \\
& \mathbf{u} \equiv 0+\mathbf{u}_{1}+\mathbf{u}_{2} \quad \boldsymbol{\nabla} \cdot \mathbf{u} \equiv \Delta \equiv \Delta_{1}+\Delta_{2}=\boldsymbol{\nabla} \cdot \mathbf{u}_{1}+\boldsymbol{\nabla} \cdot \mathbf{u}_{2} \\
& \rho \mathbf{u}=\left[\rho_{0} \mathbf{u}_{1}\right]_{1}+\left[\rho_{1} \mathbf{u}_{1}+\rho_{0} \mathbf{u}_{2}\right]_{2}+\cdots . \\
& \boldsymbol{\nabla} \cdot(\rho \mathbf{u})=\left[\rho_{0} \boldsymbol{\nabla} \cdot \mathbf{u}_{1}\right]_{1}+\left[\rho_{1} \boldsymbol{\nabla} \cdot \mathbf{u}_{1}+\mathbf{u}_{1} \cdot \nabla \rho_{1}+\rho_{0} \boldsymbol{\nabla} \cdot \mathbf{u}_{2}\right]_{2}+\cdots \cdot
\end{aligned}
$$

[^104]Terms containing $\nabla \rho_{0}$ have been omitted in writing out $\nabla \cdot(\rho u)$, on the assumption that $\rho_{0}, T_{0}$, and $P_{0}$ are constant and $\mathbf{u}_{0}=0$. The reference state need not be so restricted to one of static equilibrium provided its time and space rates of change are presumed small in comparison with the corresponding change rates of the acoustic variables. The extraneous body force $F$ will also be omitted hereafter; it would become important in cases involving electromagnetic interaction, but it usually derives from a gravitation potential and affects primarily the equilibrium configuration. ${ }^{1}$ Little generality is sacrificed by omitting $F$ and assuming a static reference, moreover, since the basic equations characterize directly the equilibrium condition and snce the "cross-modulation" effects brought in by nonlinearity are dealt with adequately through second- or higher-order approximations.

Notice that the foregoing represents a mathematical-approximation procedure that is concerned only with the precision achieved in interpreting the content of the basic equations. The accuracy with which the basic equations themselves delineate the behavior of a real fluid is an entirely different question that must be considered independently on its own merits. It follows that, while good judgment may restrain the effort, there is no impropriety involved in pursuing higher-order solutions of the acoustic equations, even though the equations themselves may embody first-order approximations to reality such as that represented by assuming linear dependence on the viscosity coefficients and the deformation rate.

When the appropriate relations from (3c-25) are substituted in (3c-5), (3c-11), and (3c-23), the first-order acoustic equations can be separated out in the form

$$
\begin{gather*}
\frac{\partial \rho_{1}}{\partial t}+\rho_{0}\left(\nabla \cdot \mathbf{u}_{1}\right)=0  \tag{3c-26a}\\
\rho_{0} \frac{\partial \mathbf{u}_{1}}{\partial t}+\frac{c_{0}^{2}}{\gamma}\left(1+\beta_{0} \rho_{0} \frac{\nabla \theta_{1}}{\nabla \rho_{1}}\right) \nabla \rho_{1}-\left(\eta_{0} \cup\right) \nabla\left(\nabla \cdot \mathbf{u}_{1}\right)+\eta_{0} \nabla \times\left(\nabla \times \mathbf{u}_{1}\right)=0  \tag{3c-26b}\\
\rho_{0} C_{v} \frac{\partial \theta_{1}}{\partial t}+\frac{\rho_{0} C_{v}(\gamma-1)}{\beta_{0}}\left(\nabla \cdot \mathbf{u}_{1}\right)-\kappa_{0} \nabla^{2} \theta_{1}+\rho_{0} C_{v} q \theta_{1}=0 \tag{3c-26c}
\end{gather*}
$$

Inasmuch as the first-order effects of both shear and dilatational viscosity and of heat conduction and radiation have been included, these equations comprehend a viscothermal theory of small-signal sound waves. The sound absorption and velocity dispersion predicted by this theory are discussed below. Note especially that taking heat exchange into account explicitly by including ( $3 \mathrm{c}-26 \mathrm{c}$ ) has precluded the conventional adiabatic assumption and denied the simplifying assumption that $P=P(\rho)$.

Adiabatic behavior would be assured, on the other hand, if it were assumed at the outset that $\kappa=q=0$, but the behavior would not at the same time be strictly isentropic so long as irreversible viscous losses are still present and accounted for. The difference between adiabatic and isentropic behavior in this case is of second order, however, as indicated by the fact that the second-order dissipation functions $\phi$ do not appear in the first-order energy equation (3c-26c), which is thereby reduced to yielding just the isentropic relation between dilatation and excess temperature. It is allowable, therefore, in this first-order approximation, to replace the quotient $\left(\nabla \theta_{1} / \nabla \rho_{1}\right)$ appearing in (3c-26b) with the isentropic derivative $(\partial T / \partial \rho)_{s}=(\gamma-1) / \rho \beta$, whereupon the first-order equation of motion for an adiabatic viscous fluid can be written as

$$
\begin{equation*}
\rho_{0} \frac{\partial \mathbf{u}_{1}}{\partial t}+c_{0}{ }^{2} \boldsymbol{\nabla} \rho_{1}-\eta_{0} \cup \nabla\left(\nabla \cdot \mathbf{u}_{1}\right)+2 \eta_{0}\left(\nabla \times \mathbf{R}_{1}\right)=0 \tag{3c-27}
\end{equation*}
$$

If the effects of viscosity, as well as of heat exchange, are to be neglected, the divergence of what is left of ( $3 \mathrm{c}-27$ ) can be subtracted from the time derivative of ( $3 \mathrm{c}-26 a$ )

[^105]to yield the typical small-signal scalar wave equation of classical acoustics,
\[

$$
\begin{equation*}
\frac{\partial^{2} \rho_{1}}{\partial t^{2}}=\left(\frac{\partial P}{\partial \rho}\right)_{s} \nabla^{2} \rho_{1} \tag{3c-28a}
\end{equation*}
$$

\]

and, with the help of the first-order isentropic relation $p_{1}=c_{0}{ }^{2}\left(\rho_{1}\right)_{s}$, this wave equation becomes, in terms of the sound pressure,

$$
\begin{equation*}
\because \frac{\partial^{2} p_{1}}{\partial t^{2}}=c_{0}^{2} \nabla^{2} p_{1} \tag{3c-28b}
\end{equation*}
$$

3c-4. The Second-order Acoustic Equations. The same substitution of composite variables that delivered ( $3 c-26 a$ ), ( $3 \mathrm{c}-26 b$ ), and ( $3 \mathrm{c}-26 c$ ) will also yield directly the second-order equations of acoustics, which can now be marshaled as follows:

$$
\begin{gather*}
\frac{\partial \rho_{2}}{\partial t}+\rho_{0}\left(\nabla \cdot \mathbf{u}_{2}\right)+\boldsymbol{\nabla} \cdot\left(\rho_{1} \mathbf{u}_{1}\right)=0  \tag{3c-29a}\\
\rho_{0} \frac{\partial \mathbf{u}_{2}}{\partial t}+\frac{\partial\left(\rho_{1} \mathbf{u}_{1}\right)}{\partial t}+\rho_{0} \mathbf{u}_{1}\left(\nabla \cdot \mathbf{u}_{1}\right)+\left(\mathbf{u}_{1} \cdot \nabla\right) \mathbf{u}_{1} \\
+\frac{c_{0}^{2}}{\gamma}\left(1+\beta_{0} \rho_{0} \frac{\nabla \theta_{2}}{\nabla \rho_{2}}\right) \nabla \rho_{2}-\eta_{0} \cup \nabla\left(\nabla \cdot \mathbf{u}_{2}\right)+2 \eta_{0}\left(\nabla \times R_{2}\right) \\
-\left(\nabla \eta_{1}^{\prime}\right)\left(\nabla \cdot \mathbf{u}_{1}\right)-2\left(\nabla \eta_{1} \cdot \nabla\right) \mathbf{u}_{1}-2\left(\nabla \eta_{1}\right) \times \mathbf{R}_{1}=0  \tag{3c-29b}\\
\frac{\partial \theta_{2}}{\partial t}+\mathbf{u}_{1} \cdot\left(\nabla \theta_{1}\right)+\frac{\gamma-1}{\beta_{0}}\left(\nabla \cdot \mathbf{u}_{2}\right)-\frac{\kappa_{0}}{\rho_{0} C_{v}} \nabla^{2} \theta_{2} \\
 \tag{3c-29c}\\
\quad+\frac{\kappa_{0}}{\rho_{0} C_{v}} \rho_{1} \nabla^{2} \theta_{1}-\frac{\nabla \theta_{1} \cdot \nabla \kappa_{1}}{\rho_{0} C_{v}}+q \theta_{2}-\frac{\phi_{\eta}}{\rho_{0} C_{v}}=0
\end{gather*}
$$

The subscripts appended to $\kappa$ and the $\eta$ 's imply that each may be expressed in the generic form

$$
\begin{equation*}
\eta(T, \rho, \cdots)=\eta_{0}\left(T_{0}, \rho_{0}, \cdots\right)+\eta_{1} \quad \eta_{1}=\frac{\partial \eta}{\partial T} \theta_{1}+\frac{\partial \eta}{\partial \rho} \rho_{1}+\cdots \tag{3c-30}
\end{equation*}
$$

No general solution of these complete second-order equations has been given, but they provide a useful point of departure for making approximations and for investigating some second-order phenomena that cannot be predicted by the first-order equations alone.

3c-5. Spatial and Material Coordinates. Equations (3c-26) and (3c-29) are couched in terms of the local values assumed by the dependent variables $\rho, P, T$, and $\mathbf{u}$ at places identified by their coordinates $x_{i}$ in a fixed spatial reference frame, commonly called Eulerian coordinates (in spite of their first use by d'Alembert). As an alternate method of representation, the behavior of the medium can be described in terms of the sequence of values assumed by the dependent condition and state variables pertaining to identified material particles of the medium no matter how these particles may move with respect to the spatial coordinate system. The independent variables in this case are the identification coordinates $a_{i}$, rather than the position coordinates; the latter then become dependent variables that describe, as time progresses, the travel history of each particle of the medium. Such a representation in terms of material coordinates is commonly called Lagrangian (in spite of its first introduction and use by Euler).

The Wave Equation in Material Coordinates. The use of material coordinates can be demonstrated by deriving the exact equations governing one-dimensional (planewave) propagation in a nonviscous adiabatic fluid. Consider a cylindrical segment of the medium of unit cross section with its axis along $+x$, the direction of propagation, and let $x$ and $x+\delta x$ define the boundaries of a thin laminar "particle" whose undisturbed equilibrium position is given by $a$ and $a+\delta a$. The difference $x-a=\xi$ defines the displacement of the $a$ particle from its equilibrium position and provides a convenient incremental, or acoustic, dependent variable in terms of which to describe
the position, velocity, and acceleration of the particle; thus

$$
\begin{equation*}
x(a, t)=a+\xi(a, t) \quad \frac{\partial x}{\partial t}=u^{L}(a, t)=\frac{\partial \xi}{\partial t} \quad \frac{\partial u^{L}}{\partial t}=\frac{\partial^{2} \xi}{\partial t^{2}} \tag{3c-31}
\end{equation*}
$$

Continuity requires that the mass of the particle remain constant during any displacement, which means that

$$
\begin{equation*}
\rho_{0} \delta a=\rho^{L} \delta x=\rho^{L}\left(\delta a+\frac{\partial \xi}{\partial a} \delta a\right) \quad \frac{\rho_{0}}{\rho^{L}}=\frac{\partial x}{\partial a}=1+\frac{\partial \xi}{\partial a} \tag{3c-32a}
\end{equation*}
$$

or, for three-dimensional disturbances and in general,

$$
\begin{equation*}
\frac{\rho_{0}}{\rho^{L}}=\frac{\partial\left(x_{1}, x_{2}, x_{3}\right)}{\partial\left(a_{1}, a_{2}, a_{3}\right)} \tag{3c-32b}
\end{equation*}
$$

in which the symbolic derivative stands for the Jacobian functional determinant. The superscript $L$ is used here and below as a reminder that the dependent variable so tagged adheres to, or "follows" in the Lagrangian sense, a specific particle, and that it is a function of the independent identification coordinates. When not so tagged, or with superscript $E$ added for emphasis, the state variables $\rho, P, T$, and the condition variable $u$ are each assumed to be functions of time and the spatial coordinate $x$.

The net force per unit mass acting on the particle at time $t$ is $-\left(\rho^{L}\right)^{-1} \partial P^{L} / \partial x$, where $\rho^{L}$ and $P^{L}$ are the density and pressure at $x$, the "now" position of the moving particle. However, inasmuch as $x$ is not an independent variable in this case, the pressure gradient must be rewritten as $\left(\partial P^{L} / \partial a\right)(\partial a / \partial x)$, from which the second factor can be eliminated by recourse to $(3 \mathrm{c}-32 a)$. The momentum equation then becomes just

$$
\begin{equation*}
\frac{\rho_{0} \partial^{2} \xi}{\partial t^{2}}=\frac{-\partial P^{L}}{\partial a} \tag{3c-33}
\end{equation*}
$$

The adiabatic assumption makes available the simplified equation of state, $P=P(\rho)$, and this relation, in turn, allows the material gradient, $\partial P^{L} / \partial a$, to be written as

$$
\begin{equation*}
\frac{-\partial P^{L}}{\partial a}=-\left(\frac{\partial P^{L}}{\partial \rho^{L}}\right), \frac{\partial \rho^{L}}{\partial a}=-c^{2} \frac{\partial \rho^{L}}{\partial a} \tag{3c-34}
\end{equation*}
$$

from which the last factor can be eliminated by using (3c-32a) again. This leads at once to the exact wave equation ${ }^{1}$

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}=\left(\frac{c \rho^{L}}{\rho_{0}}\right)^{2} \frac{\partial^{2} \xi}{\partial a^{2}}=c^{2}\left(1+\frac{\partial \xi}{\partial a}\right)^{-2} \frac{\partial^{2} \xi}{\partial a^{2}} \tag{3c-35}
\end{equation*}
$$

The pressure-density relation for a perfect adiabatic gas is $P=P_{0}\left(\rho / \rho_{0}\right)^{r}$, from which it can be deduced that

$$
\begin{equation*}
c^{2}=\left(\frac{\partial P}{\partial \rho}\right)_{s}=\frac{\gamma P_{0}}{\rho_{0}}\left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1}=c_{0}{ }^{2}\left(\frac{\rho}{\rho_{0}}\right)^{\gamma-1} \tag{3c-36}
\end{equation*}
$$

No generalization of comparable simplicity is available for liquids. ${ }^{2}$ When (3c-36) is introduced in (3c-35), the exact "Lagrangian" wave equation for an adiabatic perfect gas becomes

$$
\begin{equation*}
\frac{\partial^{2} \xi}{\partial t^{2}}=c_{0}{ }^{2}\left(\frac{\rho^{L}}{\rho_{0}}\right)^{\gamma+1} \frac{\partial^{2} \xi}{\partial a^{2}}=c_{0}^{2}\left(1+\frac{\partial \xi}{\partial a}\right)^{-(\gamma+1)} \frac{\partial^{2} \xi}{\partial a^{2}} \tag{3c-37}
\end{equation*}
$$

In the Lagrangian formulation illustrated above, the choice of $a$, the initial-position coordinate, as the independent variable is useful but any other coordinate that

[^106]identifies the particles would serve the same purpose. For example, the particle located momentarily at $x$ can be uniquely identified by the material coordinate $h \equiv \int_{0}^{x} \rho d x$, where $h$ represents the mass of fluid contained between the origin and the particle. Inasmuch as this included mass will not change as the particle moves, the use of $h$ as an independent "mass" variable automatically satisfies the requirements of continuity, with some attendant simplification in the analysis of transient disturbances. In the undisturbed condition, $\rho=\rho_{0}$ and $x=a$, whence the relation $a=h / \rho_{0}$ allows the independent variables to be interchanged by direct substitution in (3c-37).

Material and Spatial Coordinate Transforms. It is useful to have available a systematic procedure for converting a functional expression for one of the state variables from the form involving material coordinates to the corresponding form in spatial coordinates, or the inverse. One should avoid, however, the trap of referring to the state variables themselves as Lagrangian or Eulerian quantities; density and pressure, for example, are scalar point functions that can have only one value at a given place and time. On the other hand, it is of prime importance to distinguish carefully (and to specify!) the independent variables when computing the derivatives of these quantities.

The $E$ and $L$ functions are tied together by the displacement variable $\xi$, which provides a single-valued connection between the $a$ particle and its instantaneous position coordinate $x$ and which may therefore be regarded as a function of either of its terminal coordinates $a$ or $x$. This can be indicated [cf. (3c-31)] by writing $x(a, t)=a+\xi(a, t)$, or the inverse relation $a(x, t)=x-\xi(x, t)$; from which follow the alternate expressions

$$
\begin{equation*}
a=x-\xi(a, t) \quad x=a+\xi(x, t) \tag{3c-38}
\end{equation*}
$$

The desired coordinate transforms can then be established by means of Taylor series expansions, the two forms following according to whether the expansion is centered on the instantaneous particle position or spatial coordinate $x$, or on the particle's equilibrium position or material coordinate $a$. Thus, if $q$ is used to represent any one of the variables $\rho, P, T$, or $u$, one of the expansions can be based on the obvious identity

$$
\begin{align*}
q^{L}(a, t) & =q^{E}(x, t)_{x=a+\xi(x, t)} \\
& =q^{E}(x, t)_{x=a}+\left[\xi(x, t) \frac{\partial q^{E}(x, t)}{\partial x}\right]_{x=a}+\frac{1}{2}\left[\xi^{2}(x, t) \frac{\partial^{2} q^{E}(x, t)}{\partial x^{2}}\right]_{x=a}+\cdots \tag{3c-39}
\end{align*}
$$

Note that all terms on the right of (3c-39) are functions of the spatial coordinates and that each is to be evaluated at the equilibrium position coordinate $a$. This transform yields, therefore, the instantaneous value in material coordinates of the variable represented by $q$, in terms of the local value of $q$ modified by correction terms (comprising the succeeding terms of the series) based on the spatial rate of change of $q$ and the instantaneous displacement.

The inverse transform is derived in a similar way from the identity

$$
\begin{align*}
q^{E}(x, t) & =\left[q^{L}(a, t)\right]_{a=x-\xi(a, t)} \\
q^{E}(x, t) & =\left[q^{L}(a, t)\right]_{a=x}-\left[\xi(a, t) \frac{\partial q^{L}(a, t)}{\partial a}\right]_{a=x}+\frac{1}{2}\left[\xi^{2}(a, t) \frac{\partial^{2} q^{L}(a, t)}{\partial a^{2}}\right]_{a=x}-\cdots \tag{3c-40}
\end{align*}
$$

In symmetrical contrast with (3c-39), all terms on the right in (3c-40) are functions of the material coordinates and are to be evaluated for $a=x$. This transform, therefore, yields the instantaneous local value of the variable $q$ at the place $x$, in terms of the instantaneous value of $q$ for the now-displaced particle whose equilibrium position or material coordinate is $a=x$, modified by the succeeding terms of the series in accordance with the material-coordinate rate of change of $q$ and the instantaneous displacement.

The transforms (3c-39) and (3c-40) indicate that the differences between $q^{L}$ and $q^{E}$ are of second order, which explains why the troublesome distinction between spatial and material coordinates does not intrude when only first-order effects are being considered. It also follows that the first two terms of these transforms are sufficient to deliver all terms of $q^{L}$ or $q^{E}$ through the second order. The use of these transforms can be illustrated by writing them out explicitly for $u$ and $\rho$, including all second-order terms;

$$
\begin{align*}
u^{L} & \equiv \xi_{t} \quad u^{E}=u^{L}-\xi u_{a}{ }^{L}=\xi_{t}-\xi \xi_{t a}  \tag{3c-41a}\\
\rho^{L} & =\rho_{0}\left(1+\xi_{a}\right)^{-1}=\rho_{0}\left(1-\xi_{a}+\xi_{a}^{2}-\cdots\right) \\
\rho^{E} & =\rho_{0}\left(1-\xi_{a}+\xi_{a}^{2}+\xi \xi_{a a}\right)=\rho_{0}\left[1-\xi_{a}+\left(\xi \xi_{a}\right)_{a}\right] \tag{3c-41b}
\end{align*}
$$

in which the subscripts indicate partial differentiation with respect to $a$ or $t$. The product of (3c-41a) and (3c-41b) gives at once the relation between the material and spatial coordinate expressions for the mass transport $\rho u$; thus, through second order,

$$
\begin{equation*}
\rho^{E} u^{E}=\rho^{L} u^{L}-\xi\left(\rho^{L} u^{L}\right)_{a}+\xi^{2}\left(\rho_{a}{ }^{L} u_{a}^{L}\right)=\rho_{0}\left[\xi_{t}-\left(\xi \xi_{t}\right)_{a}\right]=\rho_{0}\left[\xi-\xi \xi_{a}\right]_{t} \tag{3c-42}
\end{equation*}
$$

It is then straightforward to show that, if the particle velocity $\xi_{t}$ is simple harmonic, the time average of the local mass transport $\rho^{E} u^{E}$ will vanish through the second order, even though the average value of $u^{E}$ is not zero. Note, however, that the displacement velocity $\xi_{t}$ is measured from an equilibrium position that is here assumed to be static; the average mass transport may indeed take on nonvanishing values if the wave motion as a whole leads to gross streaming (see Sec. 3c-7).
3c-6. Waves of Finite Amplitude. A distinguished tradition adheres to the study of the propagation of unrestricted compressional waves. That the particle velocity is forwarded more rapidly in the condensed portion of the wave was known early (Poisson, 1808; Earnshaw, 1858; Riemann, 1859); and that this should lead eventualy to the formation of a discontinuity or shock wave was recognized by Stokes (1848), interpreted by Rayleigh, ${ }^{1}$ discussed more recently by Fubini, ${ }^{2}$ and has been reviewed still more recently with heightened interest by modern students of blast-wave transmission. ${ }^{3}$

By virtue of the adiabatic assumption underlying $P=P(\rho)$, the speed of sound is also a function of density alone and may be approximated by the leading terms of its expansion about the equilibrium density:

$$
\begin{equation*}
c^{2} \doteq c_{0}{ }^{2}\left[1-2 \xi_{a} \frac{\rho_{0}}{c_{0}}\left(\frac{D c}{D_{\rho}}\right)_{0}+\cdots\right] \tag{3c-43}
\end{equation*}
$$

When (3c-43) is introduced in the exact wave equation in material coordinates, (3c-35), the latter can be recast in the following form, using the subscript convention for partial differentiation and retaining only, but all, terms through second order:

$$
\begin{equation*}
\xi_{t t}-c_{0}{ }^{2} \xi_{a a}=-c_{0}^{2}\left[1+\frac{\rho_{0}}{c_{0}}\left(\frac{D c}{D \rho}\right)_{0}\right]\left(\xi_{a}^{2}\right)_{a} \tag{3c-44}
\end{equation*}
$$

If it is then assumed that an arbitrary plane displacement $\xi(0, t)=f(t)$ is impressed at the origin, it can be verified by direct substitution that a solution of (3c-44) is

$$
\begin{equation*}
\xi(a, t)=f\left(t-\frac{a}{c_{0}}\right)+\frac{a}{2 c_{0}{ }^{2}}\left[1+\frac{\rho_{0}}{c_{0}}\left(\frac{D c}{D_{\rho}}\right)_{0}\right]\left[f^{\prime}\left(t-\frac{a}{c_{0}}\right)\right]^{2} \tag{3c-45}
\end{equation*}
$$

The density variations associated with these displacements are to be found by entering (3c-45) in (3c-32), and the variational pressure can then be evaluated in terms of the adiabatic compressibility of the medium.

Relatively more attention has been devoted to the analysis of solutions of (3c-37) for the case of an adiabatic perfect gas. For an arbitrary initial displacement, as

[^107]above, the solution of the corresponding wave equation (3c-37), again including all terms through second order, is
\[

$$
\begin{equation*}
\xi(a, t)=f\left(t-\frac{a}{c_{0}}\right)+\frac{a}{2 c_{0}^{2}} \frac{\gamma+1}{2}\left[f^{\prime}\left(t-\frac{a}{c_{0}}\right)\right]^{2} \tag{3c-46}
\end{equation*}
$$

\]

Technological interest in this problem centers on the generation of spurious harmonics, which can be studied by assuming the initial displacement to be simple harmonic, viz., $f(t)=\xi_{0}(1-\cos \omega t)$ at the origin. The solution then takes the explicit form

$$
\begin{equation*}
\xi(a, t)=\xi_{0}\left[1-\cos \left(\omega t-k_{0} a\right)\right]+\frac{\gamma+1}{8} k_{0}^{2} \xi_{0}^{2} a\left[1-\cos 2\left(\omega t-k_{0} a\right)\right] \tag{3c-47}
\end{equation*}
$$

in which $k_{0}$ is written for the phase constant, $k_{0}=\omega / c_{0}=2 \pi / \lambda_{0}$.
The most striking feature of the solutions (3c-45) and (3c-47) is the appearance of the material coordinate $a$ in the coefficient of the second-harmonic term. As a consequence, the condensation wave front becomes progressively steeper as the wave propagates, the energy supplied at fundamental frequency being gradually diverted toward the higher harmonic components. The compensating diminution of the fundamental-frequency component would be exhibited explicitly if third-order terms had been retained in (3c-46) and (3c-47) inasmuch as all odd-order terms include a "contribution" to the fundamental. When such higher terms are retained it is predicted that propagation will always culminate in the formation of a shock wave at a distance from the source given approximately by $a \doteq 2 \xi_{0} /(\gamma+1) M^{2}$, where $M$ is the peak ${ }_{4}^{\prime \prime}$ value of the particle-velocity Mach number. ${ }^{1}$ On the other hand, when dissipative mechanisms are taken into account, the fact that attenuation increases with frequency for either liquids or gases leads to the result that, except for very large initial disturbances, a stable value of wave-front steepness will be reached at which the rate of energy conversion to higher frequencies by nonlinearity is just compensated by the increase of absorption at higher frequencies. If attention is centered on the fundamental component, however, such diversion of energy to higher frequencies appears as an attenuation and accounts for the relatively more rapid absorption sometimes observed near a sound source. ${ }^{2}$

The variational or acoustic pressure, in material coordinates, can be expressed generally as a function of the displacement gradients by using the adiabatic pressuredensity relation $P^{L}=P_{0}\left(\rho^{L} / \rho_{0}\right)^{\gamma}$ in conjunction with the continuity relation (3c-32); thus,

$$
\begin{equation*}
P^{L}-P_{0}=p^{L}=\gamma P_{0}\left[-\xi_{a}+\frac{1}{2}(\gamma+1) \xi_{a}^{2}\right]=\left\langle p^{L}\right\rangle+p_{1}{ }^{L}+p_{2}{ }^{L} \tag{3c-48}
\end{equation*}
$$

in which the last member identifies the steady-state alteration of the average pressure and the fundamental and second-harmonic components of sound pressure. When the harmonic solution (3c-47) is introduced in (3c-48), the two alternating components of pressure for $a^{2} \gg(\lambda / 4 \pi)^{2}$ can be shown, after some algebraic manipulation, to be

$$
\begin{align*}
& p_{1}^{L}=+\gamma P_{0} M \sin \left(\omega t-k_{0} a\right)=+\sqrt{2} P_{1} \sin \left(\omega t-k_{0} a\right)  \tag{3c-49a}\\
& p_{2}^{L}=\gamma P_{0} M^{2} k_{0} a \frac{1}{4}(\gamma+1) \sin 2\left(\omega t-k_{0} a\right)=\sqrt{2} P_{2} \sin 2\left(\omega t-k_{0} a\right) \tag{3c-49b}
\end{align*}
$$

in which $P_{1}$ and $P_{2}$ are the rms values of the fundamental and second-harmonic sound pressures, and $M=k_{0} \xi_{0}=\omega \xi_{0} / c_{0}$ is again the peak value of the particle-velocity Mach number at the origin. The relative magnitude of $P_{2}$ increases linearly with distance from the origin and is directly proportional to the peak Mach number, as may be deduced from ( $3 \mathrm{c}-49 a$ ) and ( $3 c-49 b$ ); thus

$$
\begin{equation*}
\frac{P_{2}}{P_{1}}=\frac{1}{4}(\gamma+1) M k_{0} a \quad P_{2}=\frac{P_{1}{ }^{2} k_{0} a(\gamma+1)}{2 \sqrt{2}{ }_{\gamma} P_{0}} \tag{3c-50}
\end{equation*}
$$

${ }^{1}$ Fubini, Alta Frequenza 4, 530-581 (1935).
${ }^{2}$ Fox and Wallace, J. Acoust. Soc. Am. 26, 994-1006 (1954).

Various experimental studies of second-harmonic generation have given results in reasonably good agreement with the predictions of (3c-50). ${ }^{1}$
The sound-induced alteration of mean total pressure, or "average" acoustic pressure, is given by the time-independent terms yielded by the substitution of (3c-47) in (3c-48), viz.,

$$
\begin{equation*}
\left\langle p^{L}\right\rangle=+\frac{\gamma P_{0} M^{2}(\gamma+1)}{8} \tag{3c-51}
\end{equation*}
$$

Note that this pressure increment is given as a function of the material coordinates, which means that it pertains to a moving element of the fluid. The local value of the pressure change can be found by means of the transform (3c-40), which gives, through second-order terms, the following replacement for (3c-48);

$$
\begin{equation*}
p^{E}=p^{L}-\xi \frac{\partial p^{L}}{\partial a}=\gamma P_{0}\left[-\xi_{a}+\frac{1}{2}(\gamma+1) \xi_{a}^{2}+\xi \xi_{a a}\right] \tag{3c-52}
\end{equation*}
$$

When (3c-47) is introduced in (3c-52), the time-independent terms give the local change in mean pressure as

$$
\begin{equation*}
\left\langle p^{E}\right\rangle=+\frac{\gamma P_{0} M^{2}(\gamma-3)}{8} \tag{3c-53}
\end{equation*}
$$

and since $\gamma$ is usually less than 2 , it follows that the local value of mean pressure will be reduced by the presence of the sound wave, in striking contrast to the increase of mean pressure that would be observed when following the motion of a particle of the medium. Negative pressure increments as large as 10 newtons $\mathrm{m}^{-2}\left(100\right.$ dynes $\left.\mathrm{cm}^{-2}\right)$ have been reported experimentally, in reasonably good agreement with (3c-53).

The mean value of the material particle velocity, $u^{L} \equiv \xi_{t}$, vanishes, as may be seen by differentiating (3c-47). The local particle velocity that would be observed at a fixed spatial position does not similarly vanish, however, and may be shown, by using the transform (3c-40) again, to be

$$
\begin{equation*}
u^{E}=\xi_{t}-\xi \xi_{t a} \quad\left\langle u^{E}\right\rangle=-\frac{1}{2} c_{0} M^{2}=-\frac{\rho_{0} c_{0} \omega^{2} \xi_{0}{ }^{2}}{2 \rho_{0} c_{0}{ }^{2}}=-\left(\rho_{0} c_{0}\right)^{-1}\langle J\rangle \tag{3c-54}
\end{equation*}
$$

where $\langle J\rangle$ is the average sound energy flux, or sound intensity. ${ }^{2}$
3c-7. Vorticity and Streaming. As suggested above, and with scant respect for the traditional symmetry of simple-harmonic motion, sound waves are found experimentally to exert net time-independent forces on the surfaces on which they impinge, and there is often aroused in the medium a pattern of steady-state flow that includes the formation of streams and eddies. The exact wave equation considered in the preceding section has been solved only for one-parameter waves (i.e., plane or spherical), and these solutions do not embrace some of the gross rotational flow patterns that are observed to occur. It is necessary, therefore, to revert for the study of these phenomena to the perturbation procedures introduced by the first- and second-order equations ( $3 \mathrm{c}-26$ ) and ( $3 \mathrm{c}-29$ ).

It is plausible that vortices and eddies should arise, if there is any net transport at all, inasmuch as material continuity would require that any net flow in the direction of sound propagation must be made good in the steady state by recirculation toward the source. Streaming effects can be studied most usefully, therefore, in terms of the generation and diffusion of circulation, or vorticity. More specifically, the time average of the second-order velocity ${\mathbf{u}_{2}}^{2}$ will be a first-order measure of the streaming

[^108]velocity. The vector function describing $\mathbf{u}_{2}$ can always be resolved into solenoidal and lamellar components defined by
\[

$$
\begin{equation*}
\mathbf{u}_{2} \equiv-\nabla \varphi_{2}+\boldsymbol{\nabla} \times \mathbf{A}_{2} \quad \nabla^{2} \varphi_{2} \equiv-\boldsymbol{\nabla} \cdot \mathbf{u}_{2} \quad \nabla^{2} \mathbf{A}_{2}=-\left(\boldsymbol{\nabla} \times \mathbf{u}_{2}\right) \tag{3c-55}
\end{equation*}
$$

\]

The irrotational component that represents the compressible, or acoustic, part of the fluid motion is derived from the scalar potential $\varphi_{2}$. The vector potential $\mathrm{A}_{2}$ is associated with the rotational component comprising the incompressible circulatory flow that is of primary interest in streaming phenomena.

The failure of the first-order equations to predict streaming can be demonstrated by writing directly the curl of the first-order force equation (3c-26b). The gradient terms are eliminated by this operation, since $\boldsymbol{\nabla} \times \boldsymbol{\nabla}() \equiv 0$, leaving just

$$
\begin{equation*}
\frac{\partial \mathbf{R}_{1}}{\partial t}-\nu_{0} \boldsymbol{\nabla}^{2} \mathbf{R}_{1}=0 \tag{3c-56}
\end{equation*}
$$

Thus the first-order vorticity, $\mathbf{R}_{1} \equiv \frac{1}{2}\left(\boldsymbol{\nabla} \times \mathbf{u}_{1}\right)$, if it has any value other than zero, obeys a typical homogeneous diffusion equation. On the other hand, it would appear to follow that, if $\mathbf{R}_{1}$ were ever zero everywhere, its time derivative would also vanish everywhere and $\mathbf{R}_{1}$ would be constrained always thereafter to remain zero. This is not a valid proof of the famous Lagrange-Cauchy proposition on the permanence of the irrotational state, but the absence of any source terms on the right-hand side of (3c-56) does indicate correctly ${ }^{1}$ that first-order vorticity cannot be generated in the interior of a fluid even when viscosity and heat conduction are taken into account. Instead, first-order vorticity, if it exists at all, must diffuse inward from the boundaries under control of (3c-56).

A notably different result is obtained when the second-order equations are dealt with in the same way. It is useful, before taking the curl of (3c-29b), to eliminate the second and third terms of this equation by subtracting from it the product of ( $\rho_{1} / \rho_{0}$ ) and ( $3 \mathrm{c}-26 b$ ), and the product of $\mathbf{u}_{1}$ and ( $3 \mathrm{c}-26 a$ ). In effect this raises the first-order equations to second order and then combines the information in both sets. The augmented second-order force equation can then be arranged in the form

$$
\begin{align*}
& \rho_{0} \frac{\partial \mathbf{u}_{2}}{\partial t}+2 \eta_{0}\left(\nabla \times \mathbf{R}_{2}\right)+\nu_{0} \ddots_{\rho_{1}} \boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \mathbf{u}_{1}\right)-2 \nu_{0} \rho_{1}\left(\nabla \times \mathbf{R}_{1}\right)-2 \rho_{0}\left(\mathbf{u}_{1} \times \mathbf{R}_{1}\right) \\
&-2\left[\left(\nabla \eta_{1} \cdot \boldsymbol{\nabla}\right) \mathbf{u}_{1}+\nabla \eta_{1}\right.\left.\times\left(\boldsymbol{\nabla} \times \mathbf{u}_{1}\right)\right]+2\left(\nabla \eta_{1} \times \mathbf{R}_{1}\right)+\rho_{0} \boldsymbol{\nabla}\left(\frac{1}{2} \mathbf{u}_{1} \cdot \mathbf{u}_{1}\right)+B_{2} \boldsymbol{\nabla} \rho_{2} \\
&-B_{1} \boldsymbol{\nabla}\left(\frac{1}{2} \rho_{1}^{2}\right)-\eta_{0} \mho \boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \mathbf{u}_{2}\right)-\nabla \eta_{1}^{\prime}\left(\boldsymbol{\nabla} \cdot \mathbf{u}_{1}\right)=0 \tag{3c-57}
\end{align*}
$$

The following abbreviations have been used for the coefficients of $\boldsymbol{\nabla} \rho_{1}$ in (3c-26b) and of $\boldsymbol{\nabla} \rho_{2}$ in (3c-29b):

$$
\begin{equation*}
B_{1} \equiv \frac{c_{0}^{2}}{\gamma}\left[1+\beta_{0} \rho_{0}\left(\frac{D \theta_{1}}{D \rho_{1}}\right)_{0}\right] \quad B_{2} \equiv \frac{c_{0}^{2}}{\gamma}\left[1+\beta_{0} \rho_{0}\left(\frac{D \theta_{2}}{D \rho_{2}}\right)_{0}\right] \tag{3c-58}
\end{equation*}
$$

in which the quotients $\left(\nabla \theta_{1} / \nabla \rho_{1}\right)$ and $\left(\nabla \theta_{2} / \nabla \rho_{2}\right)$ have been replaced by the corresponding material derivatives $D \theta / D \rho$, which must be evaluated, of course, for the particular conditions of heat exchange satisfying the energy equations ( $3 \mathrm{c}-26 c$ ) and ( $3 c-29 c$ ). This evaluation can be evaded temporarily (at the cost of neglecting $\nabla B_{1}$ and $\nabla B_{2}$ ) by observing that each of the last five terms of ( $3 \mathrm{c}-57$ ) contains a gradient. These disappear on taking the curl of (3c-57), whereupon the vorticity equation emerges as

$$
\begin{align*}
& \frac{\partial \mathbf{R}_{2}}{\partial t}-\nu_{0} \nabla^{2} \mathbf{R}_{2}=\frac{1}{2} \nu_{0} v\left(\nabla s_{1} \times \nabla \frac{\partial s_{1}}{\partial t}\right)+\rho_{0}^{-1} \boldsymbol{\nabla} \times\left(\mathbf{u}_{1} \cdot \boldsymbol{\nabla}\right) \nabla \eta_{1}+\nu_{0} s_{1} \nabla^{2} \mathbf{R}_{1} \\
&-\nu_{0} \boldsymbol{\nabla} s_{1} \times\left(\nabla \times \mathbf{R}_{1}\right)-\nabla \times\left(\mathbf{u}_{1} \times \mathbf{R}_{1}\right) \leftarrow \rho_{0}^{-1} \boldsymbol{\nabla} \times\left(\nabla \eta_{1} \times \mathbf{R}_{1}\right) \tag{3c-59}
\end{align*}
$$

${ }^{1}$ St. Venant, Compt. rend. 68, 221-237 (1869).
in which $s_{1}$ has been introduced as an abbreviation for the first-order condensation, $s_{1}=\rho_{1} / \rho_{0}$. This inhomogeneous diffusion equation puts in evidence various secondorder sources of vorticity: four vanish if the first-order motion is irrotational ( $\left.\mathbf{R}_{1}=0\right)$, and two drop out when the shear viscosity is constant $\left(\boldsymbol{\nabla} \eta_{1}=0\right)$. It is notable that the dilatational viscosity $\eta^{\prime}$ does not appear in any of these source terms except through the ratio $\eta^{\prime} / \eta$ that forms part of the dimensionless viscosity number $\mathcal{V} \equiv$ $2+\left(\eta^{\prime} / \eta\right)$.

Except for the third source term, which (3c-56) shows to be one order smaller than the change rate of $\mathbf{R}_{1}$, all the vorticity sources would vanish-and the streaming would "stall"-if the wave front were strictly plane with $\mathbf{u}_{1}, s_{1}$, and $\eta$ functions of only one space coordinate. Wave fronts cannot remain strictly plane at grazing incidence, however, ${ }^{1}$ and rapid changes in the direction and magnitude of $\mathbf{u}_{1}$ will occur near reflecting surfaces, in the neighborhood of sound-scattering obstacles, and in thin viscous boundary layers. As a consequence, the "surface" source terms containing $\mathbf{R}_{1}$ become relatively more important in these cases. ${ }^{2}$ In other circumstances, when the sound field is spatially restricted by source directionality, the first source term in (3c-59) dominates and leads to a steady-state streaming velocity proportional to the ratio of the dilatational and shear viscosity coefficients-and hence to a unique independent method of measuring this moot ratio. ${ }^{3}$ Both the force that drives the fluid circulation and the viscous drag that opposes it are proportional to the kinematic viscosity, which does not therefore control the final value of streaming velocity but only the time constant of the motion, i.e., the time required to establish the steady state. ${ }^{4}$

Evaluating the second-order vorticity source terms in any specific case requires that the first-order velocity field be known, and this calls in the usual way for solutions that satisfy the experimental boundary conditions and the wave equation. Unusual requirements of exactness are imposed on such solutions, moreover, by the fact that even the second-order acoustic equations yield only a first approximation to the mean particle velocity.

The analysis of vorticity can be recast, by skillful abbreviation and judicious regrouping of the elements of (3c-57), in such a way as to yield a general law of rotational motion, according to which the average rate of increase of the moment of momentum of a fluid element responds to the difference between the sound-induced torque and a viscous torque arising from the induced flow. ${ }^{5}$ A close relation has also been shown to exist in some cases between the streaming potential and the attenuation of sound by the medium without regard for whether the attenuation is caused by viscosity, heat conduction, or by some relaxation process; in effect the average momentum of the stream "conserves" the momentum diverted from the sound wave by absorption. ${ }^{6}$ This principle has so far been established rigorously only for the adiabatic assumption under which $P=P(\rho)$, and under restrictive assumptions on the variability of $\eta$ and $\vartheta$, but its prospective importance would appear to justify efforts to extend the generalization.

3c-8. Acoustical Energetics and Radiation Pressure. If the kinetic energy density that appeared briefly in (3c-12) is restored to (3c-18), the change rate of the specific

[^109]total energy density (per unit mass), $E / \rho$, can be formulated in terms of
\[

$$
\begin{align*}
\rho \frac{D(E / \rho)}{D t} & =\rho \frac{D\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)}{D t}+\rho \frac{D \epsilon}{D t} \\
& =\rho \frac{D\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)}{D t}-\rho P \frac{D v}{D t}-\mathbf{\nabla} \cdot \mathbf{q}+\phi_{\eta} \tag{3c-60}
\end{align*}
$$
\]

Material derivatives are used here so that the energy balance reckoned for a particular volume element will continue to hold as the derivatives "follow" the motion of the material particles. The mechanical work term on the right in (3c-60) can be resolved into two components by writing $P=P_{0}+p$, where the excess, or sound, pressure $p$ now represents the sum of the variational components of all orders

$$
\left(p=p_{1}+p_{2}+\cdots\right)
$$

Thus

$$
\begin{equation*}
\rho \frac{D(E / \rho)}{D t}=\rho \frac{D\left(\frac{1}{2} \mathbf{u} \cdot \mathfrak{u}\right)}{D t}-\rho p \frac{D v}{D t}+\rho P_{0} \frac{D v}{D t}-\nabla \cdot \mathbf{q}+\phi_{\eta} \tag{3c-61}
\end{equation*}
$$

A second equation involving the first two terms on the right of (3c-61) can be formed by multiplying the continuity equation (3c-5) by $p$ and adding it to the scalar product of the vector $u$ and the vector force equation (3c-11b); thus

$$
\begin{align*}
\rho \mathbf{u} \cdot \frac{D \mathbf{u}}{D t}+\mathbf{u} \cdot \boldsymbol{\nabla} p+p\left(\frac{1}{\rho} \frac{D \rho}{D t}+\boldsymbol{\nabla} \cdot \mathbf{u}\right) & =\mathbf{u} \cdot f_{v}\left(\eta, \eta^{\prime}, \mathbf{u}\right) \\
& =\rho \mathbf{u} \cdot \frac{D \mathbf{u}}{D t}-p \rho \frac{D v}{D t}+\mathbf{u} \cdot \nabla p+p \boldsymbol{\nabla} \cdot \mathbf{u} \tag{3c-62}
\end{align*}
$$

where $f_{v}$ stands for the sum of the five viscosity terms that appear on the right-hand side of ( $3 \mathrm{c}-11 \mathrm{~b}$ ). Combining this result with (3c-61) gives

$$
\begin{gather*}
\rho \frac{D\left(\frac{1}{2} \mathbf{u} \cdot \mathbf{u}\right)}{D t}-\rho p \frac{D v}{D t}+\boldsymbol{\nabla} \cdot(p \mathbf{u})=+\mathbf{u} \cdot \mathrm{f}_{v}  \tag{3c-63}\\
\rho \frac{D(E / \rho)}{D t}+\boldsymbol{\nabla} \cdot(p \mathbf{u})=-\rho P_{0} \frac{D v}{D t}-\nabla \cdot \mathbf{q}+\phi_{\eta}+\mathbf{u} \cdot \mathrm{f}_{v}
\end{gather*}
$$

The significance of this result can be made more apparent by using the continuity equation again, this time in the form $(E / \rho)[\partial \rho / \partial t+\nabla \cdot(\rho \mathbf{u})]=0$. Adding this "zero" to the left-hand side of (3c-63), after first using (3c-3) to express the material derivative in terms of fixed spatial coordinates, allows the continuity of acoustic energy to be expressed by

$$
\begin{align*}
\rho \frac{D(E / \rho)}{D t}+\nabla \cdot(\rho \mathbf{u})=\rho \frac{\partial(E / \rho)}{\partial t}+\rho \mathbf{u} \cdot \nabla \frac{E}{\rho}+\nabla \cdot & (p \mathbf{u}) \\
& +\left[\frac{E}{\rho} \frac{\partial \rho}{\partial t}+\frac{E}{\rho} \nabla \cdot(\rho \mathbf{u})\right] \\
\frac{\partial E}{\partial t}=-\nabla \cdot(p \mathbf{u}+E \mathbf{u})- & P_{0} \Delta-\nabla \cdot \mathbf{q}+\mathbf{u} \cdot \mathbf{f}_{v}+\phi_{\eta} \tag{3c-64}
\end{align*}
$$

The acoustic energy-flux vector can be identified as $p \mathbf{u}=\mathbf{J}$, inasmuch as this term represents the instantaneous rate at which one portion of the medium does mechanical work on a contiguous portion in the process of forwarding the sound energy. The time average of the sound-energy flux through unit area normal to $\mathbf{u}$ is defined as the sound intensity, $\langle\mathrm{J}\rangle \equiv \mathrm{I}$. Ordinarily it is only the time average of each term of (3c-64) that is of interest, but the equation itself holds at every instant and asserts that growth of the total energy density of a volume element is accounted for by the influx of acoustic and thermal energy across the boundaries of the element, by the energy dissipated in viscous losses, and by the work done by the equilibrium pressure on the
volume element during condensation. The latter component is represented by ( $-P_{0} \Delta$ ) and by a corresponding linear term contained implicitly in $E$ [cf. (3c-19)]. It is omitted in most textbook descriptions of acoustic energy density, the neglect being justified if at all on the grounds that the stored energy varies linearly with the dilatation and hence will have a vanishing net value when averaged over an integral number of periods or wavelengths, or over the entire region occupied by the sound field. Care must be taken to ensure that it does indeed vanish rigorously on the average inasmuch as the peak values of this component of energy storage are larger than the acoustic energy in the ratio $P_{0} / p$.

Acoustic Radiation Pressure. The appearance of the product $E \mathbf{u}$ as an additive term in the first right-hand member of (3c-64) is notable and represents the net energy density carried across the boundary of a volume element by convection, the net flow being measured by the divergence of the particle velocity. ${ }^{1}$ No approximations have been made in deducing (3c-64), which holds, therefore, within the scope of validity of the basic assumptions.

It is significant to remark the fact that $E$ is directly additive to $p$ when the divergence term is written as $\nabla \cdot(p+E) \mathbf{u}$, thereby identifying the additive term as a radiation pressure whose magnitude at every instant is just equal to the total energy density, $E=\frac{1}{2} \rho \mathbf{u} \cdot \mathbf{u}+\rho \epsilon$. This interpretation can be fortified by revising (3c-64) by expanding $\boldsymbol{\nabla} \cdot(E \mathbf{u})=E(\boldsymbol{\nabla} \cdot \mathbf{u})+\mathbf{u} \cdot \boldsymbol{\nabla} E$. The last term can be used to restore the material time derivative of $E$ and the other can be merged with the linear term in $P_{0}$, yielding a revised power equation in the form

$$
\begin{equation*}
\frac{D E}{D t}=-\nabla \cdot(p \mathbf{u})-\left(P_{0}+E\right) \Delta-\nabla \cdot \mathbf{q}+\phi_{\eta}+\mathbf{u} \cdot \mathbf{f}_{v} \tag{3c-65}
\end{equation*}
$$

The role of $E$ as an additive, or radiation pressure is thus retained in (3c-65) where its time-independent part is now exhibited appropriately as a slight change in the equilibrium pressure.

When seeking to evaluate the net mechanical force due to radiation pressure on a material obstacle or screen exposed to a sound field, care must be taken to specify the boundary conditions and to account for all the reaction forces involved, including the steady-state interaction of the obstacle with the medium as well as the dynamic interaction of the obstacle with the sound field itself. Thus, for example, if a long tube is "filled" with a progressive plane wave, the walls of the tube, which interact only with the medium, would experience only the mean increment of the equilibrium pressure [cf. (3c-53)], and this would disappear if the walls were permeable to the medium, but not to the sound wave (e.g., with capillary holes). On the other hand, if a sound-absorbing screen were freely suspended athwart the wavefronts, it would experience just the pressure $E$ shown by (3c-64) to be additive to $p$; but if the screen were to form an impermeable termination of the tube it would experience both components of pressure, including changes due to the enhancement of $\langle E\rangle$ by the reflected wave. ${ }^{2}$

3c-9. Sound Absorption and Dispersion. The basic manifestation of the absorption or attenuation of sound is the conversion of organized systematic motions of the particles of the medium into the uncoordinated random motions of thermal agitation.

[^110]
## ACOUSTICS

Various agencies of conversion can be identified as viscosity, heat conduction, or as some other mechanism that gives rise to a delay in the establishment of thermodynamic equilibrium; but all are mechanisms of interaction that lead to the same result, viz. that the energy of mass motion imparted intermittently to the medium by the sound source becomes increasingly disordered and "unavailable." Describing this in terms of the irreversible production of entropy leads to the definition of dissipation functions and paves the way for formulating an acoustic energy balance.
Equation of Continuity for Acoustic Energy. This may take the form of a statement that the mean net influx of sound energy across the boundaries of a volume element situated in a sound field must just balance the average time rate at which this energy is degraded, or made unavailable, throughout the volume element by irreversible increase of entropy; thus, by extension of (3c-20),

$$
\begin{equation*}
-\int_{A} J_{i} d a_{i}=\int_{V} \frac{D E_{\mathrm{diss}}}{D t} d V=\int_{V} T \frac{D S_{\mathrm{irr}}}{D t} d V=\int_{V}\left(\phi_{k}+\phi_{\eta}\right) d V \tag{3c-66}
\end{equation*}
$$

where the sound energy flux vector is $J_{i}=p u_{i}$, and $E_{\text {diss }}$ is the degraded component of internal energy associated with the irreversible entropy $S_{\text {irr }}$.
The differential form of (3c-66) can be obtained in the usual way by using the divergence theorem to convert the surface integral to a volume integral. Then, after introducing the explicit forms of the dissipation functions, (3c-24a) and (3c-24b), the acoustic energy continuity relation becomes

$$
\begin{align*}
-\nabla \cdot \mathrm{J}=-\frac{\partial\left(p u_{i}\right)}{\partial x_{i}}=\phi_{\kappa}+\phi_{\eta}=\frac{\kappa}{T} & \left(\frac{\partial T}{\partial x_{i}}\right)^{2}+\eta^{\prime} \frac{\partial u_{k}}{\partial x_{k}} \frac{\partial u_{i}}{\partial x_{i}} \\
& +\frac{1}{2} \eta\left[\left(\frac{\partial u_{i}}{\partial x_{j}}\right)^{2}+\left(\frac{\partial u_{j}}{\partial x_{i}}\right)^{2}+2 \frac{\partial u_{i}}{\partial x_{i}} \frac{\partial u_{i}}{\partial x_{i}}\right] \tag{3c-67a}
\end{align*}
$$

where it is understood that only the time-independent parts of each side of (3c-67a) are to be retained. The algebraic complexity of dealing with ( $3 \mathrm{c}-67 a$ ) is considerably abated by considering only plane waves, for which case the running subscripts each reduce to unity and can be dropped. The plane-wave form of the acoustic-energy relation then becomes, after introducing $P$ as an implicit variable in $\nabla T$,

$$
\begin{equation*}
-\frac{\partial(p u)}{\partial x}=\frac{\kappa}{T}\left(\frac{D T}{D P}\right)^{2}\left(\frac{\partial p}{\partial x}\right)^{2}+\eta \cup\left(\frac{\partial u}{\partial x}\right)^{2} \tag{3c-67b}
\end{equation*}
$$

in which $\eta^{\boldsymbol{V}}$ has been written for $\eta^{\prime}+2 \eta$ [cf. (3c-10)]. The thermal dissipation term can then be maneuvered into more suggestive form by further manipulation involving the equation of state $T=T(P, \rho)$ and various thermodynamic identities including the useful relation that holds for all fluids, $T \beta^{2} c^{2}=C_{p}(\gamma-1)$. This leads, still without approximation, and with the time average explicitly indicated, to

$$
\begin{equation*}
\left\langle-\frac{\partial(p u)}{\partial x}\right\rangle=\left\langle\eta \cup\left(\frac{\partial u}{\partial x}\right)^{2}\right\rangle+\left\langle\frac{\kappa}{\rho C_{p}} \frac{\left[\left(\rho c^{2} / K_{T}\right)-1\right]^{2}}{(\gamma-1) \rho c^{2}}\left(\frac{\partial p}{\partial x}\right)^{2}\right\rangle \tag{3c-68}
\end{equation*}
$$

It can now be observed that $p, u$, and their derivatives must be known throughout the sound field in order to evaluate the sound energy flux and the dissipation functions that make up ( $3 \mathrm{c}-67 a$ ) or its reduced form (3c-68). On the other hand, if these field variables are known explicitly, the effects of dissipation will already be in evidence without recourse to (3c-68). Such a continuity equation for acoustic energy is therefore redundant, as might have been expected inasmuch as the conservation of energy has already been incorporated in the basic equations (3c-5), (3c-15), and (3c-23). Nevertheless, (3c-68) retains some logical utility as an auxiliary relation, even though it no longer needs to be relied on for the pursuit of absorption measures, at least for plane waves.

Exact Solution of the First-order Equations. An exact solution of the complete first-order equations ( $3 \mathrm{c}-26 a$ ), ( $3 \mathrm{c}-26 b$ ), ( $3 \mathrm{c}-26 c$ ) for the plane-wave case, and a definitive discussion of its implications, have been given recently by Truesdell. ${ }^{1}$ The specific problem considered is that of forced plane damped waves in a viscous, conducting fluid medium. It is assumed that each of the first-order incremental state and field variables can be described by the real parts of

$$
\begin{equation*}
u_{1}=u_{10} e^{j \omega t} e^{-(\alpha+j k) x} \tag{3c-69}
\end{equation*}
$$

and of similar equations for $\rho_{1}, p_{1}, \theta_{1}$. It is assumed that $\left(u_{1}\right)_{x=0}=u_{10} e^{j \omega t}$ is the simple-harmonic velocity imparted to the medium by the vibrating surface of a source located at $x=0$, but the other amplitude coefficients may be complex in order to embody the phase angles by which these variables lead or lag $u_{1}$. The exponent expressing time dependence is written $+j \omega t$, as required in order to preserve both the conventional form $R+j X$ for complex impedances and the positive sign for inductive or mass reactance. The attenuation constant $\alpha$ and the phase constant $k \equiv \omega / c$, or $k_{0} \equiv \omega / c_{0}$, are the real and imaginary parts of the complex propagation constant $\chi \equiv \alpha+j k$; and $c_{0} \equiv(\partial P / \partial \rho)_{s^{\frac{1}{2}}}$ is the reference value of sound speed.

When the assumed solutions (3c-69) are systematically introduced in (3c-26a), ( $3 \mathrm{c}-26 b$ ), and ( $3 \mathrm{c}-26 c$ ), three algebraic equations in $\rho_{1}, u_{1}, \theta_{1}$ are obtained, as follows:

$$
\begin{array}{rcr}
\rho_{0}(\alpha+j k) u_{1} & -j \omega \rho_{1} & =0 \\
{\left[j \omega \rho_{0}-\eta \mathcal{V}(\alpha+j k)^{2}\right] u_{1}} & -(\alpha+j k)\left[\frac{c_{0}{ }^{2}}{\gamma}\left(\rho_{1}+\beta_{0} \rho_{0} \theta_{1}\right)\right] & =0  \tag{3c-70}\\
-\frac{\gamma-1}{\beta_{0}}(\alpha+j k) u_{1} & +\left[j \omega-\frac{\kappa}{\rho_{0} C_{v}}(\alpha+j k)^{2}+\mathfrak{q}\right] \theta_{1} & =0
\end{array}
$$

If these equations are indeed to admit solutions of the assumed form (3c-69), the determinant of the coefficients of $u_{1}, \rho_{1}$, and $\theta_{1}$ must vanish. The characteristic or secular equation formed in this way (Kirchhoff, for perfect gases, 1868; extended to any fluid with arbitrary equation of state by F . Langevin ${ }^{2}$ ) turns out to be a biquadratic in the dimensionless complex propagation variable $(\alpha+j k) / k_{0}$. Writing this out in full, however, will be facilitated by first considering the question of how best to specify the properties of the medium.

Dimensional Analysis and Absorption Measure. Examination of (3c-70) reveals that, in addition to $(\alpha+j k) / k_{0}$ and the three independent variables, there are 10 parameters that pertain to the behavior of the medium at the angular frequency $\omega$. One of these could be eliminated, in principle at least, by using the relation $T \beta^{2} c^{2}=$ $(\gamma-1) C_{p}$, leaving 9 that are independent: $C_{p}, C_{v}, \eta, \eta^{\prime}, \kappa, \rho_{0}, c_{0}, \mathfrak{q}$, and $\omega$. Then, since each of these can be expressed in terms of 4 basic dimensional units (e.g., mass, length, time, and temperature), it follows from the pi theorem of dimensional analysis ${ }^{3}$ that just 5 independent dimensionless ratios can be formed out of combinations of these 9 parameters. This leads to a functional expression of the absorption measure in the symbolic form

$$
\begin{equation*}
\frac{\alpha+j k}{k_{0}}=\psi\left(\frac{C_{p}}{C_{v}}, \frac{\eta^{\prime}}{\eta}, \frac{\eta C_{p}}{\kappa}, \frac{\omega \eta}{\rho_{0} c_{0}{ }^{2}}, \frac{q}{\omega}\right) \tag{3c-71}
\end{equation*}
$$

The first two ratios have already been incorporated in $\gamma$ and the viscosity number $\mathcal{V} \equiv 2+\eta^{\prime} / \eta$; the third is the Prandtl number $\odot \equiv \eta C_{p} / \kappa$, and the fourth and fifth can be identified as Stokes numbers $S \equiv \omega \eta / \rho_{0} c_{0}{ }^{2}$ and $S^{\prime} \equiv \omega / \mathrm{q}$. The present purpose

[^111]is served somewhat better by substituting for the third and fourth ratios their products with the dimensionless viscosity number, thus defining a frequency number $X$ and thermoviscous number $Y$ through
\[

$$
\begin{equation*}
X \equiv V S=\frac{\omega \eta V}{\rho_{0} c_{0}^{2}} \quad Y \equiv(P V)^{-1}=\frac{\kappa}{\eta \mathcal{U} C_{p}} \quad X Y=\frac{\omega \kappa}{\rho_{0} c_{0}^{2}} \tag{3c-72}
\end{equation*}
$$

\]

The frequency parameter $X$ also provides a natural criterion for designating frequencies as "low," "medium," or "high" according to whether $X$ is much less than, comparable with, or much greater than unity. It may also be noted that, for nearly perfect gases, $\rho_{0} c_{0}{ }^{2} \doteq \gamma P_{0}$, from which it follows that $X_{\text {gas }} \doteq\left(\omega / P_{0}\right)(\eta V / \gamma)$. Hence variation of pressure may be used to extend in effect the accessible range of frequency in measurements on gases, and the ratio $\omega / P_{0}$ is a proper parameter in terms of which to report such results.

Solutions of the Characteristic Equation. If the dimensionless ratios discussed above are now introduced in the expanded determinant of the coefficients of (3c-70), the resulting Kirchhoff-Langevin secular equation can be written as

$$
\begin{align*}
\left(1-\frac{j}{S^{\prime}}\right)+\left(\frac{\alpha+j k}{k_{0}}\right)^{2}[1+j X(1+\gamma Y) & \left.+\frac{\gamma X-j}{\gamma S^{\prime}}\right] \\
& +\left(\frac{\alpha+j k}{k_{0}}\right)^{4} X Y(j-\gamma X)=0 \tag{3c-73}
\end{align*}
$$

The standard "quadratic formula" can be used at once to solve (3c-73) for the reciprocal square of the propagation constant;

$$
\begin{align*}
&-2\left(1-\frac{j}{S^{\prime}}\right)\left(\frac{k_{0}}{\alpha+j k}\right)^{2}=1+\frac{X}{S^{\prime}}+j\left[X(1+\gamma Y)-\frac{1}{\gamma S^{\prime}}\right] \\
& \pm\left[\left(1+\frac{X}{S^{\prime}}\right)^{2}-\left[X(1-\gamma Y)-\frac{1}{\gamma S^{\prime}}\right]^{2}\right. \\
&\left.+2 j\left\{X[1-(2-\gamma) Y]+X^{2} \frac{1-\gamma Y}{S^{\prime}}-\frac{\left[1+\left(X / S^{\prime}\right)\right]}{\gamma S^{\prime}}\right\}\right]^{\frac{1}{2}} \tag{3c-74a}
\end{align*}
$$

Skillful abbreviation might allow this complete solution to be carried somewhat further but no algebraic magic can lighten very much the burden of depicting the behavior of $\alpha$ and $k$ as a function of four independent parameters-and it might have been five but for the welcome fact that $V$ does not appear except as embodied in $X$ and $Y$. Moreover, each parameter that does appear in (3c-74a) occurs in one or more product combinations, and hence it can not be assumed in general that the effects of viscosity and heat exchange will be linearly additive. The common practice of assessing these one at a time and then superimposing the results must therefore be considered unreliable unless justified explicitly and quantitatively. Nevertheless, something must give, and it is customary to abandon first the radiant-heat exchange, at least temporarily, by letting $S^{\prime}$ become infinite in (3c-74a). With this simplification, and with some new abbreviations, (3c-74a) becomes

$$
\begin{align*}
-2\left(\frac{k_{0}}{\alpha+j k}\right)^{2} & =1+j X(1+\gamma Y) \pm\left\{1-X^{2}(1-\gamma Y)^{2}+j 2 X[1-(2-\gamma) Y]\right\}^{\frac{1}{2}} \\
& \equiv G+j H=1+j X(1+\gamma Y) \pm(E+j F)^{\frac{1}{2}}  \tag{3c-74b}\\
E & \equiv 1-X^{2}(1-\gamma Y)^{2} \quad F \equiv 2 X[1-(2-\gamma) Y]
\end{align*}
$$

This equation has two pairs of noncoincident complex roots, but only the one of each pair that has a nonnegative real part corresponding to real attenuation is to be retained. These two physical solutions comprise the two branches of a complex square root; one branch pertains to typical compressional sound waves identified as type $I$, the other to so-called thermal waves identified as type II. It is an unwarranted oversimplification, however, to describe these simply as "pressure" waves and "thermal" waves
inasmuch as all the state and condition variables-pressure, density, velocity, temperature, heat flux, etc.-are simultaneously entrained and propagated by each wavetype, and waves of both types are always excited simultaneously by any source. On the other hand, the absorption and dispersion measures for waves of type I and type II will, in general, be quite different and will vary differently with the frequency parameter $X$ and with the thermoviscous parameters $\gamma$ and $Y$ that characterize the fluid. For example, type II waves are so rapidly attenuated in ordinary fluids at accessible frequencies that they cannot be observed, whereas in strongly conducting liquids such as mercury (and perhaps in liquid helium II) the absorption for type II waves becomes less than for type I waves when the frequency is high enough for $X$ to exceed $\frac{1}{3}$.

It should be noticed, parenthetically, that if the basic first-order equations (3c-70) had not been restricted to plane waves, the last term of ( $3 \mathrm{c}-26 b$ ) would not have dropped out. Instead, there would have turned up eventually in (3c-70) a pair of terms in the first-order vector velocity potential $\mathbf{A}_{1}$ [see (3c-55)] on the basis of which it would have been predicted that still another type of allowed wave motion can exist in viscous fluids-a transverse viscous wave that is propagated by virtue of the transverse shear reactions due to viscosity. ${ }^{1}$

Viscothermal Absorption and Dispersion Measures. The problem of branch determination arising in the solution of (3c-64b) has been discussed thoroughly by Truesdell. ${ }^{2}$ One view of it can be expressed by writing the formal solution in the explicit form

$$
\begin{gathered}
\frac{\alpha}{k} \equiv \frac{A}{2 \pi}=\frac{H}{+\left(G^{2}+H^{2}\right)^{\frac{1}{2}}+G} \quad\left(\frac{c}{c_{0}}\right)^{2}=\frac{2\left(G^{2}+H^{2}\right)}{+\left(G^{2}+H^{2}\right)^{\frac{1}{2}}+G} \\
2 G=1 \pm f(h)\left(+E^{\frac{1}{2}}\right) \quad 2 H=X(1+\gamma Y) \pm(\operatorname{sgn} F) g(h)\left(+E^{\frac{1}{2}}\right)
\end{gathered}
$$

(3c-75a)
(upper signs yield type I waves, lower signs type II waves)

$$
\begin{align*}
h \equiv \frac{F}{E} & f(h) \equiv+\sqrt{2}\left[+\left(1+h^{2}\right)^{\frac{1}{2}}+1\right]=+\cosh \frac{1}{2}\left(\sinh ^{-1} h\right)  \tag{3c-75b}\\
& g(h) \equiv+\sqrt{2}\left[+\left(1+h^{2}\right)^{\frac{1}{2}}-1\right]=+\sinh \frac{1}{2}\left(\sinh ^{-1} h\right)
\end{align*}
$$

where the plus signs associated with roots denoted by fractional exponents indicate that the principal or positive root is to be used. The solution ( $3 \mathrm{c}-75 a$ ) can now be attacked frontally, either by means of power-series expansions for large or small values of $X$, or by resorting to brute-force numerical computation for intermediate frequencies. The several square-root operations on complex quantities required by the latter procedure are often facilitated by using the $f$ and $g$ functions defined by (3c-75b), for which the principal values have been tabulated. ${ }^{3}$

The clue to a basis for classifying fluids according to their viscothermal behavior is afforded by noting that the algebraic sign of $F$ appears in (3c-75a) in such a way as to interchange the wave types when $F$ changes sign, and that this occurs when $(2-\gamma) Y$ passes through unity. On this basis, one may categorize fluids as strong conductors if $Y$ is greater than $(2-\gamma)^{-1}$. The contrary alternative can be further subdivided usefully ${ }^{2}$ into weak conductors for which $Y$ is less than $\gamma^{-1}$, and moderate conductors for which $Y$ has intermediate values. Most liquids (including the liquefied noble gases) qualify as weak conductors, most gases as moderate conductors. On the other hand, the fact that mercury, the molten metals, and liquid helium II rank as strong

[^112]conductors emphasizes the value of including a wide range of parameter values in any general survey of thermoviscous behavior.

For weak or moderate conductors, the absorption and dispersion measures for type I waves at moderately low frequencies can be expressed with any desired precision by means of power-series expansions in the frequency number $X$ :

$$
\begin{aligned}
&\left(\frac{c}{c_{0}}\right)^{2}= 1+\frac{1}{4} X^{2}\left[3+10(\gamma-1) Y-(\gamma-1)(7-3 \gamma) Y^{2}\right]+0\left(X^{4}\right) \\
& \frac{\alpha}{k_{0}} \equiv \frac{A_{0}}{2 \pi}=\frac{1}{2} X\left\{1+(\gamma-1) Y-\frac{1}{8} X^{2}\left[5+35(\gamma-1) Y+(\gamma-1)(35 \gamma-63) Y^{2}\right.\right. \\
&\left.\left.\quad+(\gamma-1)\left(5 \gamma^{2}-30 \gamma+33\right) Y^{3}\right]\right\}+O\left(X^{5}\right)
\end{aligned} \begin{array}{r}
(3 c-76) \\
\frac{\alpha}{k} \equiv \frac{A}{2 \pi}=\frac{1}{2} X\left\{1+(\gamma-1) Y-\frac{1}{4} X^{2}\left[1+11(\gamma-1) Y-(\gamma-1)(23-11 \gamma) Y^{2}\right.\right. \\
\left.\left.\quad+(\gamma-1)\left(\gamma^{2}-10 \gamma+13\right) Y^{3}\right]\right\}+O\left(X^{5}\right)
\end{array}
$$

Note that $\alpha / k \equiv \alpha \lambda / 2 \pi \equiv A / 2 \pi$, where $A$ is the amplitude attenuation per wavelength, and that $\alpha / k_{0}$ is similarly related to the attenuation per reference wavelength $\lambda_{0}$. The series (3c-76) can be used with confidence for almost any values of $\gamma$ and $Y$ so long as the frequency is low enough to keep $X<0.1$, and for a somewhat wider range of $X$ when certain restrictions on $\gamma$ and $Y$ are satisfied. ${ }^{1}$

On the other hand, for frequencies high enough to make $X^{-2} \ll 1$, the absorption and dispersion are given, within $O\left(X^{-2}\right)$, by

$$
\begin{align*}
\frac{\left(c / c_{0}\right)^{2}}{2 X} & =\frac{\alpha}{k} \equiv \frac{A}{2 \pi}=\frac{A_{0}^{2} X}{2 \pi^{2}}=\left(\frac{\alpha}{k_{0}}\right)^{2} 2 X \\
& =1-\frac{1-Y}{(1-\gamma Y) X} \tag{3c-77}
\end{align*}
$$

It can be inferred at once from (3c-77) that, for sufficiently high frequencies, dispersion is always anomalous (i.e., speed increases with frequency) regardless of $\gamma$ and $Y$; that $\alpha / k=A / 2 \pi$ approaches the limit 1 , and that $\alpha / k_{0}$ and $A_{0}$ recede to zero as the actual wavelength decreases with respect to the reference wavelength $\lambda_{0}$. It also follows, from comparison of this result with ( $3 c-76_{3}$ ), that as frequency increases, $\alpha=A / \lambda=A_{0} / \lambda_{0}$ will always have at least one maximum that is characteristic of viscothermal resonance. The frequency at which this resonance occurs lies in the range $X=1$ to 1.7 , but the peak is relatively broad and flat and often cannot be located experimentally with high precision.

It can also be deduced from (3c-77) that the asymptotic speed of sound at very high frequencies will always be determined by viscosity alone, without regard for the form of the equation of state; thus,

$$
\begin{equation*}
\left(c^{2}\right)_{x \rightarrow \infty}=\frac{2 \omega \eta U}{\rho} \tag{3c-78a}
\end{equation*}
$$

Under the same limiting conditions, the asymptotic speed of type II, or "thermal," waves is similarly determined by thermal conductivity alone, according to

$$
\begin{equation*}
\left(c^{\prime 2}\right)_{X \rightarrow \infty}=\frac{2 \omega K}{\rho_{0} C_{p}} \tag{3c-78b}
\end{equation*}
$$

The steady increase of $c^{\prime}$ with $\omega^{\frac{1}{2}}$ predicted by (3c-78b) has sometimes been cited as a basis for denying that second sound in helium II, which displays small dispersion and low attenuation, ${ }^{2}$ can be a type II thermal wave of the sort predicted by viscothermal

[^113]theory. This conclusion is probably correct but the argument is faulty inasmuch as the vanishing viscosity of the superfluid would make it more appropriate to use as a type criterion the behavior predicted for the limiting condition $X \rightarrow 0$. Thus, if the Kirchhoff-Langevin secular equation (3c-73) is reduced by letting $X \rightarrow 0$ while $X Y$ is held fixed, and if $X Y$ is then allowed to increase indefinitely as required by the superconductivity of helium II, what is left of (3c-73) does have a pair of roots for which the attenuation vanishes and the speed is nondispersive, viz., $\alpha=A_{0}=0$, and $c=c_{0} / \gamma^{\frac{1}{2}}$. This result looks, at first sight, like just an isothermal velocity for type I waves, as might be expected to prevail if uniform temperature were enforced by infinite conductivity. On the other hand, the wave types would be expected to interchange, according to (3c-75a), as $Y$ becomes very large; and one has also to deal with the standing conclusion that any viscosity however small will eventually take over control of dispersion when $X$ departs sufficiently from zero. These remarks are intended to emphasize primarily the fact that the problem of branch determination, or type identification, under such extreme circumstances needs probably to be attacked by considering the relative rates at which the various limiting conditions are approached. Other considerations need also to be taken into account, of course, in dealing with the two-fluid-mixture theory of liquid helium; but it seems clear that further inquiry is warranted concerning the relevance of classical viscothermal concepts now that a more exact theory of these effects is available.

The Kirchhoff approximation for weak or moderate conductors at low frequencies can be obtained directly from (3c-76) by neglecting terms in $X^{2}$ or higher. The dispersion is thereby predicted to be negligible, so that $c \doteq c_{0}$; and the "Kirchhoff" attenuation $\alpha_{K}$ is given by

$$
\begin{align*}
\alpha_{K} & =\frac{1}{2} k_{0}[X+(\gamma-1) X Y]=\frac{1}{2} k_{0} S\left(\vartheta+\frac{\gamma-1}{\rho}\right) \\
& =\frac{\omega^{2}}{2 \rho_{0} c_{0}^{3}}\left[\eta \cup+\frac{(\gamma-1) \kappa}{C_{p}}\right] \tag{3c-79a}
\end{align*}
$$

If the Stokes relation is then presumed, by setting $v=\frac{4}{3}$ (which neither Kirchhoff nor Stokes himself did in this connection), (3c-79a) becomes

$$
\begin{equation*}
\alpha_{C}=\frac{1}{2} k_{0} S\left(\frac{4}{3}+\frac{\gamma-1}{\rho}\right)=\frac{\omega^{2}}{2 \rho_{0} c_{0}^{3}}\left[\frac{4}{3} \eta+\frac{(\gamma-1)_{\kappa}}{C_{p}}\right] \tag{3c-79b}
\end{equation*}
$$

The absorption predicted by ( $3 \mathrm{c}-79 \mathrm{~b}$ ) is commonly, but not very appropriately, referred to as "classical"; but such an emasculated theoretical prediction neither accounts adequately for the attenuation observed experimentally, except in the case of a few monatomic gases, nor does it do justice to the essential content of the classical theory of viscous conducting fluids.

Even when terms through $X^{2}$ are included, no change occurs in the odd function $\alpha / k_{0}$, but dispersion is then predicted according to (3c-76 $6_{1}$ ) which accounts for the second-order effects of both compressional and shear viscosity, heat conduction, and their interaction. This dispersion is anomalous for weak or moderate conductors (small $Y$ ) but becomes normal if the speed-reducing influence of thermal conductivity becomes large enough to make $(7-3 \gamma) Y>10$. On the other hand, if heat exchange were to be ignored altogether, the first two terms of ( $3 \mathrm{c}-76_{1}$ ) would give, for the dispersion due to viscosity alone,

$$
\begin{align*}
\left(\frac{c}{c_{0}}\right)^{2} & \doteq 1+\frac{3}{4} X^{2}=1+\frac{3}{4}\left(\frac{\omega_{\eta} \mathcal{V}}{\rho_{0} c_{0}^{2}}\right)^{2} \\
c & \doteq c_{0}\left[1+\frac{3}{8}\left(\frac{\omega_{\eta} V}{\rho_{0} c_{0}^{2}}\right)^{2}\right] \tag{3c-80}
\end{align*}
$$

Absorption and Dispersion Due to Heat Radiation. The effects of heat exchange by radiation, which were abandoned above in order to make (3c-74) more manageable,
can now be assessed by reverting to (3c-73). The nonlinear interaction between radiation and viscosity will be neglected, for the sake of expediency, even though (3c-74) suggests that it may be as large as second order. The primary effects of viscosity and heat conduction can be eliminated from (3c-73) by letting both $X$ and $X Y$ go to zero while holding the frequency variable $S^{\prime}=\omega / q$ finite. This reduces the characteristic secular equation to the simple quadratic form

$$
\begin{equation*}
\gamma\left(S^{\prime}-j\right)+\left(\frac{\alpha+j k}{k_{0}}\right)^{2}\left(\gamma S^{\prime}-j\right)=0 \tag{3c-81}
\end{equation*}
$$

which can be solved directly to yield the following exact expressions for the attenuation and dispersion due to radiation alone:

$$
\begin{align*}
\frac{A}{2 \pi}\left(\frac{c_{0}}{c}\right)^{2} & =\frac{\alpha}{k}\left(\frac{c_{0}}{c}\right)^{2}=\gamma S^{\prime} \frac{\gamma-1}{2\left[1+\left(\gamma S^{\prime}\right)^{2}\right]} \\
\left(\frac{A_{0}}{2 \pi}\right)^{2} & =\left(\frac{\alpha}{k_{0}}\right)^{2}=\frac{1}{2} \gamma \frac{\left(1+S^{\prime}\right)^{\frac{1}{2}}\left(1+\gamma^{2} S^{\prime 2}\right)^{\frac{1}{2}}-\left(1+\gamma S^{\prime 2}\right)}{1+\left(\gamma S^{\prime}\right)^{2}}  \tag{3c-82}\\
\left(\frac{c}{c_{0}}\right)^{2} & =\frac{2}{\gamma_{-}\left(1+\gamma S^{\prime 2}\right)+\left(1+S^{\prime 2}\right)^{\frac{1}{2}}\left(1+\gamma^{2} S^{\prime 2}\right)^{\frac{1}{2}}}
\end{align*}
$$

These equations indicate that both attenuation and dispersion become vanishingly small for either very large or very small values of $S^{\prime}$, and that a maximum of attenuation occurs in mid-range, near the single point of inflection of the dispersion curve. This absorption peak is characterized by

$$
\begin{gather*}
\left(\frac{\alpha}{k}\right)_{\max }=\frac{\gamma^{\frac{1}{2}}-1}{\gamma^{\frac{1}{2}}+1} \quad S_{\max A}^{\prime}=\gamma^{-\frac{1}{2}} \quad \tau_{\text {rad }}=\frac{2 \pi \gamma^{\frac{1}{2}}}{q} \\
\left(\frac{\alpha}{k_{0}}\right)_{\max }=\frac{A_{0}}{2 \pi}=\frac{\gamma-1}{[8(\gamma+1)]^{\frac{1}{2}}} \quad S_{\max A 0}^{\prime}=\gamma^{-1} \frac{(3 \gamma+1)^{\frac{1}{2}}}{(\gamma+3)^{\frac{1}{2}}} \tag{3c-83}
\end{gather*}
$$

There is a curious dearth of quantitative information concerning the radiation coefficient $q$, and little is added to this by noticing the low attenuation and negligible dispersion observed for a wide range of audible sounds in air since these might correspond to values of $S^{\prime}$ either far above or far below the resonance peak described by (3c-83). The choice $S^{\prime} \gg 1$ is unambiguously dictated, however, by the fact that the observed speed of sound is very close to the isentropic value $c_{0}$, whereas ( $3 c-82_{5}$ ) indicates that the isothermal speed $c_{0} / \gamma^{\frac{1}{2}}$ would prevail if $q$ were large enough to make $S^{\prime}$ small for all audio frequencies. Truesdell ${ }^{1}$ has pointed out that these conclusions leave still in effect a prediction that at some lower subaudible frequency a peak of attenuation should appear with a magnitude $A_{0}=0.185 \pi$ ( $\approx 5 \mathrm{db}$ per reference wavelength). This absorption peak has not been observed yet, at least deliberately, although its possible bearing on the acoustical character of thunder might be worth investigating.

Relaxation Processes and Sound Absorption. The foregoing analysis of heat exchange by radiation puts in evidence the first example of what would now be called a typical relaxation process. The characteristic feature of such a process, in so far as the gross hydrodynamical response of the medium is concerned, is the existence of two relations among the state variables, one of which prevails asymptotically for slow variations, the other for rapid changes. Such bivalent behavior is typical of fluid mixtures containing two interacting components, such as a partly dissociated gas ${ }^{2}$ or an ionic solution. ${ }^{3}$ In these cases the relative concentrations of the two components either follow faithfully, in quasi-static equilibrium, the dictates of slowly changing external variables, or else, at the other asymptotic limit, they do not change at all

[^114]when the finite reaction rate is such that the external variables can complete cyclic changes too rapidly for the concentrations to "follow." A different but comparable kind of mixture is exemplified by an ensemble of atoms or molecules capable of being excited to different energy levels, of which the most common example is a diatomic gas in which the rotational degrees of freedom may or may not share the cyclic work of compression depending on whether an appropriately normalized frequency variable is "low" or "high."

The physical problem of characterizing the rate-dependent properties of mixtures can be studied without regard for its acoustical consequences, and various approaches to this problem have turned on the assignment of two or more different internal or "partial" temperatures, different compressibilities, specific heats, etc. All the physical theories of pure relaxation appear to converge, however, in predicting the same acoustical behavior; viz., at low frequencies an asymptotic speed of sound $c^{0}$, a transition region of anomalous dispersion ( $d c / d \omega>0$ ) within which a maximum of attenuation occurs, and at high frequencies an asymptotic sound speed $c^{\infty}$ which can be related to $c^{0}$ by writing $K \equiv c^{0} / c^{\infty} \leq 1$, where $K$ is a material constant of the twocomponent medium. It follows then that, when the constant $K$ and a dimensionless frequency variable $X^{\prime}$ can be properly identified and interpreted in terms of the physical mechanism involved, the acoustical behavior for any pure relaxation process will be described exactly by the following expressions derived from (3c-82) and (3c-83) by substitution:

$$
\begin{align*}
\left(\frac{c}{c^{0}}\right)^{2} & =\frac{2\left(1+X^{\prime 2}\right)}{1+K^{2} X^{\prime 2}+\left[\left(1+K^{4} X^{\prime 2}\right)\left(1+X^{\prime 2}\right)\right]^{\frac{1}{2}}} \\
& \doteq \frac{1+X^{\prime 2}}{1+K^{2} X^{\prime 2}} \\
\frac{\alpha}{k}\left(\frac{c^{0}}{c}\right)^{2} & =\frac{1}{2} \frac{\left(1-K^{2}\right) X^{\prime}}{1+X^{\prime 2}}  \tag{3c-84}\\
\left(\frac{\alpha}{k}\right)_{\max } & =\frac{1-K}{1+K} \quad\left(\frac{\alpha}{k_{0}}\right)_{\max }=\frac{1-K^{2}}{\left[8\left(1+K^{2}\right)\right]^{\frac{1}{2}}} \\
X_{\max \mathrm{A}}^{\prime} & =K^{-1}=\frac{c^{\infty}}{c^{0}} \quad X_{\max \mathrm{A}_{0}}^{\prime}=\left(\frac{3+K^{2}}{1+3 K^{2}}\right)^{\frac{1}{2}}
\end{align*}
$$

These equations revert exactly to (3c-82) and (3c-83) when the substitutions $K^{2}=\gamma^{-1}$, and $X^{\prime}=\gamma S^{\prime}$, are made, and when a factor $\gamma^{-1}$ is introduced to convert the lowfrequency reference speed $c^{0}$ to the usual isentropic reference $c_{0}$.

The "resonance" frequency characterizing a relaxation process is usually defined as the angular frequency at which the maximum attenuation per wavelength, $A=\alpha \lambda$, occurs; thus, $\omega_{r} \equiv 2 \pi / \tau_{r}=\left(\omega / X^{\prime}\right) X^{\prime}{ }_{\text {max } A}$, where $\tau_{r}$ is the related "relaxation period." It has been pointed out that any mechanism of sound absorption can be interpreted as a relaxation phenomenon by suitably defining its relaxation time. For example, viscosity and heat-conduction "relaxation times" and their associated "resonance frequencies" can be defined by writing

$$
\begin{equation*}
\tau_{v}=\frac{2 \pi}{\omega_{v}}=\frac{X}{\omega} \frac{4}{3 V}=\frac{\frac{4}{3} \eta}{\rho_{0} c_{0}{ }^{2}} \quad \tau_{\kappa}=\frac{2 \pi}{\omega_{\kappa}}=\frac{X Y}{\omega}=\frac{\kappa}{\rho_{0} c_{0}^{2} C_{p}} \tag{3c-85}
\end{equation*}
$$

Note that $\omega_{v}$ is specified in such a way that it reduces to $\omega / X$ when $V$ has the Stokesrelation value $\frac{4}{3}$. When these relaxation frequencies are introduced in (3c-79) and (3c-80), the second-order dispersion and the Kirchhoff linear approximation for attenuation become

$$
\begin{align*}
c & \doteq c_{0}\left[1+\frac{3}{8}(2 \pi)^{2}\left(\frac{3 V}{4}\right)^{2} \frac{\omega^{2}}{\omega_{v}^{2}}\right] \\
\alpha_{K} & =\pi k_{0}\left[\frac{3 V}{4} \frac{\omega}{\omega_{v}}+(\gamma-1) \frac{\omega}{\omega_{K}}\right] \tag{3c-86}
\end{align*}
$$

When the fluid medium consists of an ideal monatomic gas, the physical significance of the relaxation times $\tau_{v}$ and $\tau_{\kappa}$ can readily be interpreted as the time required for subsidence of a momentary departure from the equilibrium distribution of energy among the translational degrees of freedom. In the classical kinetic theory of gases, this recovery time is shown to be approximately $L / \bar{v}$, the mean free path divided by the mean molecular velocity. ${ }^{1}$ The conformity of the definitions (3c-85) with this concept can then be verified by recalling the kinetic-theory evaluations of viscosity $\left[\eta \doteq \frac{1}{2} \rho \bar{v} L\right]$, thermal conductivity $\left[\left(\kappa / C_{p}\right) \doteq(5 / 4 \gamma) \rho \bar{v} L\right]$, and the speed of sound $[c \doteq 0.74 \bar{v}]$. These considerations show, incidentally, that for such a gas the attenuation per reference wavelength is contributed almost equally by viscosity and heat conduction, and is proportional to the ratio of mean free path to wavelength.

The precise physical significance of $\tau_{v}$ and $\tau_{\kappa}$ is less obvious for polyatomic gases and liquids; but if this is glossed over, the frequency ratios $\frac{3}{2} \pi V \omega / \omega_{v}, \frac{4}{3} \omega_{v} / \omega_{\kappa} V$, and $2 \pi \omega / \omega_{\kappa}$ can be substituted directly for $X, Y$, and $X Y$ in any of the viscothermal relations deduced above. Merely introducing these "relaxation" frequencies, however, does not invest heat conduction or viscosity with any new or different relaxation-like properties, and the exact viscothermal theory, in whatever symbols expressed, continues to predict that sound speed will increase indefinitely with frequency, that $A_{0}$ will display a typical broad maximum for some $X$ in the range 1 to 1.7 (depending on the thermoviscous parameters $\gamma$ and $Y$ ), that $\left(A_{0}\right)_{\max }$ will always have about the same magnitude ( $\alpha / k_{0} \approx \frac{1}{3}$ ), and that the peak in $A_{0}$ can be made to occur at any chosen actual frequency by suitable assignment of the viscosity number V. [cf. (3c-72), (3c-85)]. In contrast with this behavior, a pure relaxation phenomenon would call for the sound speed to level off at the high-frequency limit given by $K^{-1}$, and would display a maximum in $A_{0}$ that increases in height and retreats toward higher frequencies as the speed increment $c^{\infty}-c^{0}$ increases and $K$ varies from 1 toward zero.

Allusion has already been made to the established fact that measured values of attenuation usually exceed the "classical" prediction (3c-79b) and often exhibit one or more maxima at finite frequencies. As a matter of fact, even when the complete consequences of the classical theory are taken into account, and when the viscosity number is adjusted to make the predicted attenuation at low frequencies correspond with experiment, the classical viscothermal theory still fails to account for all the experimental facts, but for a reason that is just the opposite of that usually advanced, namely, because it then predicts too much attenuation at the resonance peak and at higher frequencies! In spite of this latent contradiction, the alleged failure of "classical" theory as represented by (3c-79b) (which is, after all, only part of an approximate solution of the linearized first-order equations) has stimulated widespread efforts to repair its deficiency by invoking a wide variety of relaxation and other theories, ${ }^{2}$ many of which have been marred by an $a d$ hoc flavor that renders them little more than examples of ingenuity in curve fitting.

Measurements of absorption and dispersion in rarefied helium gas over a wide range of the frequency variable $S$ have confirmed in all essential details the pattern of behavior predicted by the exact viscothermal theory. ${ }^{3}$ Unless the classical concepts of viscosity and heat conduction are to be abandoned altogether, therefore, logic demands that the exact viscothermal theory be accepted as the foundation on which to erect any more complete analysis of sound absorption in media less idealized than rarefied

[^115]helium. A good many "honest" relaxation neechanisms do exist and must be accounted for, but in the accounting these effects should presumably be regarded as factors perturbing the fundamental thermoviscous behavior rather than the converse. The two-fluid-mixture theory of relaxation effects seems best adapted for inclusion in such a compound analysis, and a start in this direction has already been made. ${ }^{1}$ Much remains to be done, however, before this basic acoustical problem can be said to be understood.

3c-10. Characteristic Acoustic Impedance of a Thermoviscous Medium. When the first-order sound pressure $p_{1}$ is put back into ( $3 \mathrm{c}-70_{2}$ ) [by tracing its last term back through (3c-25 ${ }_{11}$ )], this equation of motion can be rewritten at once in terms of the specific acoustic impedance, as follows:

$$
\begin{gather*}
{\left[j \omega \rho_{0}-(\alpha+j k)^{2} \eta \mathcal{U}\right] u_{1}-(\alpha+j k) p_{1}=0} \\
\frac{p_{1}}{u_{1}} \equiv Z=j k \rho_{0} c(\alpha+j k)^{-1}-\eta \mathcal{V}(\alpha+j k) \\
=\rho_{0} c\left(1-j \frac{\alpha}{k}\right)^{-1}-j \rho_{0} c \frac{\omega \eta \mathcal{V}}{\rho_{0} c_{0}^{2}}\left(\frac{c_{0}}{c}\right)^{2}\left(1-j \frac{\alpha}{k}\right) .  \tag{3c-87}\\
\frac{p_{1}}{\rho_{0} c u_{1}} \equiv z=\left(1-j \frac{\alpha}{k}\right)^{-1}-j X\left(\frac{c_{0}}{c}\right)^{2}\left(1-j \frac{\alpha}{k}\right)
\end{gather*}
$$

The normalized specific impedance, or specific impedance ratio, $\left(p_{1} / \rho_{0} c u_{1}\right) \equiv z$, which would be unity in the nondissipative case, is now in a form to be evaluated by direct substitution of the series expansions (3c-76). After some manipulation, and retaining only terms through $X^{2}$ and $Y^{2}$, the impedance ratio can be put in the form

$$
\begin{align*}
\frac{p_{1}}{\rho_{0} c u_{1}}= & 1-\frac{\alpha}{k}\left[\frac{\alpha}{k}+X\left(\frac{c_{0}}{c}\right)^{2}\right]+j\left[\frac{\alpha}{k}-X\left(\frac{c_{0}}{c}\right)^{2}\right] \\
= & 1-\frac{1}{4} X^{2}\left[3+4(\gamma-1) Y+(\gamma-1)^{2} Y^{2}\right]+O\left(X^{4}\right) \\
& -j\left\{\frac{1}{2} X[1-(\gamma-1) Y]+O\left(X^{3}\right)\right\} \tag{3c-88}
\end{align*}
$$

It follows that sound pressure lags the particle velocity when $(\gamma-1)_{\kappa} / \eta \nu C_{p}$ is less than unity, as it is for the common fluids under ordinary conditions; but pressure leads the particle velocity when the ratio of heat conductivity to viscosity is high enough to make $(\gamma-1) \kappa>{ }_{\eta} \mathcal{V} C_{p}$.

3c-11. Thermal Noise in the Acoustic Medium. The mode of motion that is heat furnishes a restless background of noise that underlies all acoustical phenomena. The magnitude and nature of this thermal noise can be assessed by appealing to concepts drawn from such apparently unrelated sources as architectural acoustics, elementary quantum theory, and the classical kinetic theory of gases.
The scheme of analysis can be described simply: the thermoacoustic noise energy density, as measured by the mean-square sound pressure, is set equal to the density of the internal energy of thermal agitation associated with the translational degrees of freedom of the molecules composing the medium. It is then postulated that these molecular motions of thermal agitation can be regarded as a vector summation of the motions associated with a three-dimensional manifold of compressional standing waves, each behaving as it would in an ideal continuous medium having the same gross mechanical and elastic properties that characterize the actual medium. Each of these standing-wave systems thus constitutes an allowed, thermally excited, normal mode of vibration, or degree of freedom, to which can be assigned, in accordance with elementary quantum theory, the average energy

[^116]\[

$$
\begin{equation*}
\frac{\text { Energy }}{\text { Mode }}=\frac{h f}{\exp (h f / k T)-1} \tag{3c-89}
\end{equation*}
$$

\]

where $h$ is Planck's constant, $k$ is Boltzmann's constant, $T$ is the absolute temperature, and $f$ is the frequency in cycles per second.

The incremental number of such energy-bearing modes of vibration is given by the count of normal frequencies lying between $f$ and $f+d f$; and this is given, as in the theory of room acoustics, ${ }^{1}$ by

$$
\begin{equation*}
d N=\left(\frac{4 \pi V f^{2}}{c^{3}}+\frac{\pi S f}{2 c^{2}}+\frac{L}{2 c}\right) d f \tag{3c-90}
\end{equation*}
$$

where $V$ is the volume, $S$ the total surface, and $L$ the sum of the three dimensions of the region under consideration, and where the three terms represent, respectively, the normal-frequency "points" distributed throughout the volume, over the coordinate planes, and along the coordinate axes of an octant of frequency space. If the three dimensions of the region are not too disparate, $S$ can be approximated by 6 V , and $L$ by $3 V^{\frac{1}{3}}$, giving

$$
\begin{equation*}
d N=\frac{4 \pi V f^{2} d f}{c^{3}}\left[1+\frac{3 \lambda}{4 V^{\frac{1}{3}}}+\frac{3 \lambda^{2}}{8 \pi V^{2}}\right] \tag{3c-91}
\end{equation*}
$$

For sufficiently high frequencies, this reduces to the classical expression (Rayleigh, 1900; Jeans, 1905) for the distribution of normal frequencies,

$$
\begin{equation*}
d N=\frac{4 \pi V f^{2} d f}{c^{3}} \tag{3c-92}
\end{equation*}
$$

an aymptotic form that can be shown (Weyl, 1911) to be independent of the shape of $V$ and rigorously valid in the limit when $\lambda=c / f$ becomes small in comparison with $V^{\frac{1}{3}}$.
If attention is confined for the moment to finite frequency bands that do not include the lower frequencies, the incremental translational energy density of thermal agitation will be given by the product of (3c-89) and (3c-92). Then, by hypothesis, this can be set equal to the incremental energy density of the diffuse sound field, which is given by $d\left(\left\langle p^{2}\right\rangle / \rho c^{2}\right)$, where $p$ is the rms sound pressure; thus

$$
\begin{align*}
d \frac{\left\langle p^{2}\right\rangle}{\rho c^{2}} & =\frac{\left(4 \pi f^{2} d f / c^{3}\right) h f}{\exp (h f / k T)-1}  \tag{3c-93}\\
& =\frac{\left(4 \pi k T / c^{3}\right) f^{2} d f(h f / k T)}{\exp (h f / k T)-1} \\
& =\frac{4 \pi k T}{c^{3}} f^{2} d f\left[1-\frac{1}{2} \frac{h f}{k T}+\frac{1}{12}\left(\frac{h f}{k T}\right)^{2}-\cdots\right],\left(\frac{h f}{k T}\right)^{2}<4 \pi^{2} \tag{3c-94}
\end{align*}
$$

The total energy density associated with all the allowed modes of vibration is then to be found by extending the integral of (3c-94) over all frequencies less than the upper limiting frequency for which the mode count [by (3c-92)] is just equal to three times $n_{V}$, the total number of molecules in unit volume. This upper frequency limit, $f_{\text {lim }}$, is given, for either liquids or gases, by the integral of (3c-92);

$$
\begin{equation*}
\frac{N_{\mathrm{lim}}}{V}=\frac{4 \pi f_{\mathrm{limm}^{3}}}{3 c^{3}}=3 n_{V}=3 A \frac{\rho}{M} \quad f_{\mathrm{lim}^{3}}=\frac{9 c^{3} A \rho}{4 \pi \bar{M}} \tag{3c-95}
\end{equation*}
$$

where $A$ is Avogadro's number ( $6.025 \times 10^{26}$ molecules $/ \mathrm{kg}$ mole), $\rho$ is in $\mathrm{kg} / \mathrm{m}^{3}$, and $M$ is the molecular weight (numeric, $\mathbf{0}_{2}=32$ ). At ordinary room temperature, $f_{\text {lim }} \approx 2 \times 10^{10} \mathrm{c} / \mathrm{s}$ for air, $\approx 4 \times 10^{12} \mathrm{c} / \mathrm{s}$ for water. These frequencies are well outside the range so far accessible for acoustical experimentation and need not be
${ }^{1}$ Maa, J. Acoust. Soc. Am. 10, 235-238 (1939) ; Bolt, J. Acoust. Soc. Am. 10, 228-234 (1.939).
considered further except when the foregoing notions are used as the basis for a theory of specific heats, in which case it is necessary also to take into account vibrational and rotational degrees of freedom, and to reexamine the equilibrium statistics that underlie (3c-89). Note in passing that the phonon of specific-heat theory merely identifies the burden of internal energy carried by each of the normal modes of vibration postulated above.

Within the ranges of frequency and temperature ordinarily of interest in the assessment of thermal noise, the exponent $h f / k T$ is so small that even the linear term in the series expansion of (3c-94) can be omitted. This amounts to a reversion to the classical analysis of energy partition in continuous media ${ }^{1}$ and to the assignment of an energy $k T$ to each allowed mode of vibration. With this simplification, (3c-94) can be integrated at once to yield the mean-square sound pressure, in the frequency band $f_{2}-f_{1}$, as

$$
\begin{equation*}
\left\langle\boldsymbol{p}^{2}\right\rangle=\frac{4}{3} \pi k T \frac{\rho}{c}\left(f_{2^{3}}-f_{1}{ }^{3}\right) \quad\left(\text { newtons } / \mathrm{m}^{2}\right)^{2} \tag{3c-96}
\end{equation*}
$$

in which Boltzmann's constant $k=1.380 \times 10^{-23}$ joule/deg Kelvin, $T$ is in degrees Kelvin, $\rho$ in $\mathrm{kg} / \mathrm{m}^{3}$, and $c$ in $\mathrm{m} / \mathrm{sec}$. To facilitate computation, it is useful to rearrange (3c-96) in the following forms:

$$
\begin{aligned}
p_{\text {rms }} & =1.3 \times 10^{-12}\left(\frac{\rho}{c}\right)^{\frac{1}{2}}\left[\frac{T}{293}\left(f_{2}{ }^{3}-f_{1}{ }^{3}\right)\right]^{\frac{1}{2}} & \text { newtons } / \mathrm{m}^{2} & (3 \mathrm{c}-97 a) \\
\left(p_{\mathrm{rms}}\right)_{\text {air }} & =0.76 \times 10^{-10}\left[\frac{T}{293}\left(f_{2}{ }^{3}-f_{1}{ }^{3}\right)\right]^{\frac{1}{2}} & \text { dynes } / \mathrm{cm}^{2}=\mu \mathrm{b} & (3 \mathrm{c}-97 b) \\
\left(p_{\mathrm{rms}}\right)_{\text {sea water }} & =10.6 \times 10^{-10}\left[\frac{T}{293}\left(f_{2}{ }^{3}-f_{1}{ }^{3}\right)\right]^{\frac{1}{2}} & \mu \mathrm{~b} & (3 \mathrm{c}-97 \mathrm{c})
\end{aligned}
$$

in which the constants have been adjusted to make the temperature factor reduce to unity at $20^{\circ} \mathrm{C}$, and where $\rho / c$ has been taken as 0.00345 for air and 0.67 for sea water. It follows, for example, that the rms thermal noise pressure, for the wide-range audio-frequency band extending to $19 \mathrm{kc} / \mathrm{s}$ in air, is just equal to the reference sound pressure, $p_{0}=0.0002 \mu \mathrm{~b}$.
The power spectrum of thermal noise can be deduced from either (3c-94) or (3c-97b) and may be expressed as a sound spectrum level by writing

$$
\begin{align*}
\beta_{\mathrm{noise}} & =10 \log _{10}\left(\frac{d\left(\left\langle p^{2}\right\rangle / p_{0}{ }^{2}\right)}{d f}\right)=10 \log _{10} \frac{4 \pi k T f^{2} \rho}{c p_{0}{ }^{2}} \\
& =10 \log _{10}\left[4.33 \times 10^{-7}\left(f_{\mathrm{kc} / \mathrm{s}}\right)^{2} \frac{T}{293}\right] \\
& =-63.6+20 \log _{10} f_{\mathrm{kc} / \mathrm{s}}+10 \log _{10} \frac{T}{293} \mathrm{db} \tag{3c-98}
\end{align*}
$$

Note that this noise spectrum is not "white" but has instead a uniform positive slope of $6 \mathrm{db} /$ octave, corresponding to an rms thermal-noise sound pressure that is directly proportional to frequency. On the other hand, for frequencies low enough to make the additive "correction" terms of (3c-91) significant, the noise spectrum level tends increasingly to lie above the +6 db /octave line as the frequency approaches the lowfrequency cutoff at which only the gravest mode of vibration can be excited. The noise spectrum level can also be expected to vary erratically as the low-frequency limit is approached and the population of normal frequencies becomes sparse, in much the same way that the steady-state pressure response of small rooms varies irregularly with frequency when only a few normal modes of vibration are available for excitation. It does not follow, however, that thermal noise in such a small enclosure could be

[^117]"quieted" by the application of sound absorbents. The boundary surfaces, without regard for their acoustical character, will always reach the same radiative equilibrium with the interior medium if both are at the same temperature; otherwise there would be a net flow of thermal "noise" energy across the boundaries in the guise of ordinary heat transfer.

The possibility that thermal noise might be the factor that limits human hearing acuity can be assessed with the help of (3c-98). If the critical-band theory of masking by wide-band noise continues to hold for subliminal stimuli, the effective masking level of thermal noise can be found by adding, at any frequency, the critical bandwidth (expressed as $10 \log _{10} \Delta f_{c}$ ) and the spectrum level given by ( $3 c-98$ ). Comparing this result with the binaural threshhold for random incidence then leads to the conclusion that thermal noise remains about 11 to 13 db below threshhold at the frequency of greatest vulnerability ( $c a .3$ to 5 kcs ), even for young people with exceptionally acute hearing. On this basis human hearing might be assigned a "noise figure" of approximately 12 db . It is probable that some at least of this failure to achieve ideal function can be ascribed to internal noise of physiological origin. The near miss on thermal noise limiting gives comforting reassurance, however, that not more than a few decibels of additional hearing acuity could be utilized effectively by humans even if biological adaptation were to make it available.

# 3d. Acoustic Properties of Gases 

LEO L. BERANEK<br>Bolt Beranek and Newman, Inc.

A number of the physical properties of a gas are important in determining its acoustic characteristics. These include density, pressure, temperature, specific heats, coefficients of viscosity, etc. These properties, and others, are presented and discussed below in detail.

3d-1. Density. The density $\rho_{0}$ of a number of common gases at standard temperature and pressure is given in Table 3d-1. The density at any temperature and pressure can be obtained from the expression

$$
\rho=\rho_{0}\left(\frac{P}{760}\right)\left(\frac{273.16}{T}\right)
$$

where $P$ is the barometric pressure in millimeters of mercury and $T$ is the absolute temperature in degrees Kelvin.

3d-2. Atmospheric Pressure and Temperature. The atmospheric pressure and air temperatufes, and consequently the air density, vary with elevation above the surface of the earth. Table 3d-2 gives the air pressure, temperature, and density as a function of elevation as compiled by Humphreys ${ }^{1}$ and others where indicated.

1 "Handbook of Chemistry and Physics," 37th ed. Chemical Rubber Publishing Company, Cleveland, 1954-1955.

Table 3d-1. Density $\rho_{0}\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$

| Gas | Formula | $\rho_{0}, \mathrm{~g} /$ liter | $\rho_{0}, \mathrm{lb} / \mathrm{ft}^{3}$ |
| :---: | :---: | :---: | :---: |
| Air. | $\mathrm{NH}_{3}$ | 1.2929 | 0.08071 |
|  |  | 1.2920 S | 0.0806 S |
| Ammonia. |  | 0.7710 | 0.04813 |
|  |  | 0.7598 S | 0.04742 S |
|  |  | 0.7708 C | 0.0482 C |
| Argon. | A | 1.7837 | 0.11135 |
|  |  | 1.782 S | 0.1112 S |
|  |  | 1.7828 C | 0.1114 C |
| Carbon dioxide | $\mathrm{CO}_{2}$ | 1.9769 | 0.12341 |
|  |  | 1.9630 S | 0.1225 S |
| Carbon monoxide. | CO | 1.2504 | 0.07806 |
|  |  | 1.2492 S | 0.0779 S |
| Chlorine. | $\mathrm{Cl}_{2}$ | 3.214 | 0.2006 |
|  |  | 3.1638 S | 0.1974 S |
|  |  | 3.2204 C | 0.2011 C |
| Ethane. | $\mathrm{C}_{2} \mathrm{H}_{6}$ | 1.3566 | 0.08469 |
| Ethylene. | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 1.2604 | 0.07868 |
| Helium. | He | 0.17847 | 0.01114 |
| Hydrogen. | $\mathrm{H}_{2}$ | 0.08988 | 0.005611 |
| Hydrogen sulfide. | $\mathrm{H}_{2} \mathrm{~S}$ | 1.539 | 0.09608 |
|  |  | 1.5203 S | 0.0949 S |
| Methane. | $\mathrm{CH}_{4}$ | 0.7168 | 0.04475 |
|  |  | 0.7152 S | 0.04462 S |
| Neon. | Ne | 0.90035 | 0.05621 |
|  |  | 0.8713 C | 0.9544 C |
| Nitric oxide. | NO | 1.3402 | 0.08367 |
|  |  | 1.3388 S | 0.0836 S |
| Nitrogen. | $\mathrm{N}_{2}$ | 1.25055 | 0.07807 |
|  |  | 1.2568 S (atm) | 0.07846 S |
|  |  | 1.2499 S (chem) | 0.07803 S |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 1.9778 | 0.1235 |
| Oxygen. | $\mathrm{O}_{2}$ | 1.42904 | 0.08921 |
|  |  | 1.4277 S | 0.08915 S |
| Propane. | $\mathrm{C}_{3} \mathrm{H}_{8}$ | 2.0096 | 0.1254 |
|  |  | 2.020 S | 0.1261 S |
| Sulfur dioxide. | $\mathrm{SO}_{2}$ | 2.9269 | 0.1827 |
|  |  | 2.858 S | 0.1784 S |
| Steam ( $100^{\circ}$ ). | $\mathrm{H}_{2} \mathrm{O}$ | 0.5980 | 0.0373 |

$\mathrm{S}=$ Smithsonian Tables, 9th ed., 1954.
C = J. H. Perry, "Chemical Engineers' Handbook," 3d ed., McGraw-Hill Book Company, Inc., New York, 1950.

At $0^{\circ} \mathrm{C}$ a $760-\mathrm{mm}$ column of mercury exerts a pressure of $1.01325 \times 10^{6} \mathrm{dynes} / \mathrm{cm}^{2}$. This is standard atmospheric pressure. When determining the atmospheric pressure using a mercury barometer, account must be taken of the thermal expansion of mercury, and the thermal expansions of the glass container and metallic scale.

3d-3. Specific Heat. For several common gases the values of $C_{p}$, the specific heat at constant pressure, and $\gamma$, the ratio of $C_{p}$ to $C_{v}$, are given in Table 3d-3. $C_{v}$ is the specific heat at constant volume. $\quad C_{p}$ is expressed in calories per gram.

Table 3d-2. Atmospheric Pressure, Temperature, and Density as a Function of Elevation* $\dagger$

| Elevation |  | Summer |  |  | Winter |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Km | Miles | Temp., ${ }^{\circ} \mathrm{C}$ | Pressure, mm Hg | Density dry air, $\mathrm{g} / \mathrm{cm}^{3}$ | Temp., ${ }^{\circ} \mathrm{C}$ | Pressure, mm Hg | Density dry air, $\mathrm{g} / \mathrm{cm}^{3}$ |
| 20.0 | 12.4 | -51.0 | 44.1 | 0.000092 | -57.0 | 39.5 | 0.000085 |
| 19.0 | 11.8 | $-51.0$ | 51.5 | 0.000108 | -57.0 | 46.3 | 0.000100 |
| 18.0 | 11.2 | -51.0 | 60.0 | 0.000126 | -57.0 | 54.2 | 0.000117 |
| 17.0 | 10.6 | -51.0 | 70.0 | 0.000146 | $-57.0$ | 63.5 | 0.000137 |
| 16.0 | 9.9 | $-51.0$ | 81.7 | 0.000171 | $-57.0$ | 74.0 | 0.000160 |
| 15.0 | 9.3 | -51.0 | 95.3 | 0.000199 | -57.0 | 87.1 | 0.000187 |
| 14.0 | 8.7 | -51.0 | 111.1 | 0.000232 | $-57.0$ | 102.1 | 0.000220 |
| 13.0 | 8.1 | -51.0 | 129.6 | 0.000270 | $-57.0$ | 119.5 | 0.000257 |
| 12.0 | 7.5 | -51.0 | 151.2 | 0.000316 | $-57.0$ | 140.0 | 0.000301 |
| 11.0 | 6.8 | -49.5 | 176.2 | 0.000366 | -57.0 | 164.0 | 0.000353 |
| 10.0 | 6.2 | -45.5 | 205.1 | 0.000419 | -54.5 | 192.0 | 0.000408 |
| 9.0 | 5.6 | $-37.8$ | 237.8 | 0.000470 | -49.5 | 224.1 | 0.000466 |
| 8.0 | 5.0 | -29.7 | 274.3 | 0.000524 | -43.0 | 260.6 | 0.000526 |
| 7.0 | 4.3 | -22.1 | 314.9 | 0.000583 | -35.4 | 301.6 | 0.000590 |
| 6.0 | 3.7 | -15.1 | 360.2 | 0.000649 | $-28.1$ | 347.5 | 0.000659 |
| 5.0 | 3.1 | - 8.9 | 410.6 | 0.000722 | -21.2 | 398.7 | 0.000735 |
| 4.0 | 2.5 | - 3.0 | 466.6 | 0.000803 | -15.0 | 455.9 | 0.000821 |
| 3.0 | 1.9 | + 2.4 | 528.9 | 0.000892 | - 9.3 | 519.7 | 0.000915 |
| 2.5 | 1.6 | + 5.0 | 562.5 | 0.000942 | - 6.7 | 554.3 | 0.000967 |
| 2.0 | 1.2 | + 7.5 | 598.0 | 0.000990 | - 4.7 | 590.8 | 0.001023 |
| 1.5 | 0.9 | $+10.0$ | 635.4 | 0.001043 | - 3.0 | 629.6 | 0.001083 |
| 1.0 | 0.6 | +12.0 | 674.8 | 0.001100 | - 1.3 | 670.6 | 0.001146 |
| 0.5 | 0.3 | +14.5 | 716.3 | 0.001157 | 0.0 | 714.0 | 0.001215 |
| 0.0 | 0.0 | +15.7 | 760.0 | 0.001223 | + 0.7 | 760.0 | 0.001290 |

* "Handbook of Chemistry and Physics," 37 th ed.
$\dagger$ See also Sec. 2m-8, pp. 2-127 to 2-128.
3d-4. Viscosity. The coefficient of viscosity $\eta$ of a number of gases is given in Table 3d-4. The units of $\eta$ are dyne-seconds per square centimeter or poises.

The ratio $\eta / \rho$ of viscosity to density occurs frequently and is known as the kinematic viscosity coefficient. It is usually designated by the letter $\nu$, and has the dimensions square centimeters per second, in the cgs system. For air, $\nu=0.151 \cdot \mathrm{~cm}^{2} / \mathrm{sec}$ at $18^{\circ} \mathrm{C}$ and 760 mm of mercury.

For a plane acoustic wave propagating in an unbounded gas a small attenuation will occur because of viscosity. The attenuation factor is $e^{-\alpha_{\eta}^{x}}$ for the pressure (or particle velocity) and

$$
\alpha_{\eta}=\frac{2}{3} \frac{\eta}{\rho} \frac{\omega^{2}}{c^{3}}=\frac{2}{3} \nu \frac{\omega^{2}}{c^{3}}
$$

where $c$ is the speed of sound and $\omega$ the angular frequency of the wave.
3d-5. Thermal Conductivity. The thermal conductivity $\kappa$ of a number of gases is given in Table 3d-5. The units of $\kappa$ are calories per centimeter-second-degree.

The quantity $\kappa / \rho C_{v}$ frequently appears in heat-conduction equations. It is often designated by the symbol $\alpha$, and is called the coefficient of temperature exchange.

Table 3d-3. Specific Heat at Constant Pressure $C_{p}$ and the Ratio $\gamma$ of $C_{p}$ to the Specific Heat at Constant Volume $C_{v}{ }^{*}$ [ $C_{p}(\mathrm{cal} / \mathrm{g} \mathrm{deg}) ; \gamma=C_{p} / C_{v}$ ]

| Gas | Temp., ${ }^{\circ} \mathrm{C}$ | $C_{p}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\gamma$ |
| :---: | :---: | :---: | :---: | :---: |
| Air. | -120 (10 atm) | 0.2719 | -118 (1 atm) | 1.415 |
|  | (20 atm) | 0.3221 |  |  |
|  | (40 atm) | 0.4791 | +17 (1 atm) | 1.403 |
|  | (70 atm) | 0.7771 | - 78 (1 atm) | 1.408 |
|  | - 50 (10 atm) | 0.2440 | - 79 (25 atm) | 1.57 |
|  | (20 atm) | 0.2521 | - 79 (100 atm) | 2.20 |
|  | (40 atm) | 0.2741 |  |  |
|  | (70 atm) | 0.3121 |  |  |
|  | $0(1 \mathrm{~atm})$$(20 \mathrm{~atm})$$(60 \mathrm{~atm})$ | 0.2398 | 0 (1 atm) | 1.403 |
|  |  | 0.2484 | 0 (25 atm) | 1.47 |
|  |  | 0.2652 | 0 (50 atm) | 1.53 |
|  | $50(20 \mathrm{~atm})$$(100 \mathrm{~atm})$$(220 \mathrm{~atm})$ | 0.2480 | 0 (75 atm) | 1.59 |
|  |  | 0.2719 | 17 (1 atm) | 1.403 |
|  |  | 0.2961 | 20 (3 atm) | 1.41 |
|  | 100 (1 atm) | 0.2404 | 100 (1 atm) | 1.401 |
|  | (20 atm) | 0.2471 |  |  |
|  | (100 atm) | 0.2600 | 200 (1 atm) | 1.398 |
|  | (220 atm) | 0.2841 |  |  |
|  | $400(1 \mathrm{~atm})$$1000(1 \mathrm{~atm})$ | 0.2430 | 400 ( 1 atm ) | 1.393 |
|  |  | 0.2570 | 1000 (1 atm) | 1.365 |
|  | 1400 (1 atm) | 0.2699 | 1400 (1 atm) | 1.341 |
|  | $1800(1 \mathrm{~atm})$$15(1 \mathrm{~atm})$ | 0.2850 | 1800 (1 atm) | 1.316 |
| Ammonia. |  | 0.5232 | 15 (1 atm) | 1.310 |
| Argon.... | 15 (1 atm) | 0.1253 | 15 (1 atm) | 1.668 |
| Carbon dioxide. | 15 (1 atm) | 0.1989 | 15 (1 atm) | 1.304 |
| Carbon monoxide | 15 (1 atm) | 0.2478 | 15 (1 atm) | 1.404 |
| Chlorine. | 15 (1 atm) | 0.1149 | 15 (1 atm) | 1.355 |
| Ethane... | 15 (1 atm) | 0.3861 | 15 (1 atm) | 1.22 |
| Ethylene. | 15 (1 atm) | 0.3592 | 15 (1 atm) | 1.255 |
| Helium. | -180 (1 atm) | 1.25 | -180 ( 1 atm ) | 1.660 |
| Hydrogen. | 15 (1 atm) | 3.389 | 15 (1 atm) | 1.410 |
| Hydrogen sulfide. | 15 (1 atm) | 0.2533 | 15 (1 atm) | 1.32 |
| Methane. | 15 (1 atm) | 0.5284 | 15 (1 atm) | 1.31 |
| Neon. |  |  | 19 (1 atm) | 1.64 |
| Nitric oxide. | 15 (1 atm) | 0.2329 | 15 (1 atm) | 1.400 |
| Nitrogen..... | 15 (1 atm) | 0.2477 | 15 (1 atm) | 1.404 |
| Nitrous oxide. | 15 (1 atm) | 0.2004 | 15 (1 atm) | 1.303 |
| Oxygen. | 15 (1 atm) | 0.2178 | 15 (1 atm) | 1.401 |
| Propane. | . .............. |  | 16 (0.5 atm) | 1.13 |
| Steam..... | 100 (1 atm) | 0.4820 | 100 (1 atm) | 1.324 |
| Sulfur dioxide. | 15 (1 atm) | 0.1516 | 15 (1 atm) | 1.29 |

[^118]The reciprocal of $\alpha$ is often called diffusivity. In the cgs system the units of $\alpha$ are square centimeters per second. For air $\alpha=0.27 \mathrm{~cm}^{2} / \mathrm{sec}$ at $18^{\circ} \mathrm{C}$ and 760 mm of mercury.

A plane acoustic wave propagating in an unbounded gas will be attenuated slightly

Table 3d-4. Coefficient of Viscosity $\eta$ for Different Gases as a Function of Temperature*


* "Handbook of Chemistry and Physics," 37th ed., and "International Critical Tables."
because of thermal-conduction effects. The attenuation constant $\alpha_{T}$ is

$$
\alpha_{T}=\frac{\kappa(\gamma-1) \omega^{2}}{\gamma \rho C_{v} c^{3}}
$$

where $\kappa / \rho C_{v}$ is the coefficient of temperature exchange, $\gamma$ the ratio of specific heats, $c$ the propagation velocity, and $\omega$ the angular frequency of the wave.

3d-6. Speed (Velocity) of Propagation. The speed of sound for small sound amplitudes can be written exactly as ${ }^{1}$
where

$$
\begin{gathered}
c=\left[\frac{R T}{M}\left(f+\frac{g R}{h C_{V}^{\infty}}\right)\right]^{\frac{1}{2}} \\
f=-\frac{V^{2}}{R T}\left(\frac{\partial p}{\partial V}\right)_{T} \\
g=\left(\frac{V}{R} \frac{\partial p}{\partial T}\right)_{V}^{2} \\
h=\frac{C_{v}}{C_{v}}=1+\frac{T}{C_{v}{ }^{\infty}} \int_{\infty}^{V}\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{v} d V
\end{gathered}
$$

$C_{v}{ }^{\infty}$ is the specified heat for constant volume as the volume approaches infinity; $M$, the molecular weight of the gas, has been substituted for $\rho V$; and $R$, the gas constant, puts the equation in a useful form. The quantities $f, g, h$ are dimensionless and differ only slightly from unity as determined by the imperfection of the gas.

Table 3d-5. Thermal Conductivity $\kappa$ of Gases at $0^{\circ} \mathrm{C}^{*}$

| Gas | Formula | Thermal conductivity $\kappa$ at $0^{\circ} \mathrm{C}$ (cal/cm-sec-deg) |
| :---: | :---: | :---: |
| Air. |  | $0.0548 \times 10^{-3}$ |
| Argon. | A | $0.0387 \times 10^{-3}$ |
| Carbon dioxide | $\mathrm{CO}_{2}$ | $0.0340 \times 10^{-3}$ |
| Helium. | He | $0.344 \times 10^{-3}$ |
| Hydrogen. | $\mathrm{H}_{2}$ | $0.416 \times 10^{-3}$ |
| Neon. | Ne | $0.1104 \times 10^{-3}$ |
| Nitrogen. | $\mathrm{N}_{2}$ | $0.0566 \times 10^{-3}$ |
| Oxygen. | $\mathrm{O}_{2}$ | $0.0573 \times 10^{-3}$ |
| Steam (100. ${ }^{\circ}$ ) | $\mathrm{H}_{2} \mathrm{O}$ | $0.0551 \times 10^{-3}\left(100^{\circ} \mathrm{C}\right)$ |

* Kennard, " Kinetic Theory of Gases," McGraw-Hill Book Company, Inc., New York, 1938.

Thus if the molecular weight, the specific heat, and the equation of state are known, the velocity of sound under any conditions can be calculated.

For an ideal gas, where $P V=R T$ one can write

$$
c=\left[\frac{R T}{M}-\left(1+\frac{R}{C_{v}}\right)\right]^{\frac{1}{2}}=\left(\frac{R T \gamma}{M}\right)^{\frac{1}{2}}=\left(\frac{\gamma p}{\rho}\right)^{\frac{1}{2}}
$$

where $\gamma=\frac{C_{p}}{C_{v}}$
The accepted value of $c_{0}$, the velocity at standard conditions of temperature and pressure, for a number of gases is given in Table 3d-6.

The accepted value of the speed of sound in air, $c$, as calculated and checked on the average by several reported determinations is ${ }^{1}$

$$
\begin{aligned}
& c_{0}=33,145 \pm 5 \mathrm{~cm} / \mathrm{sec} \\
& c_{0}=1,087.42 \pm 0.16 \mathrm{fps}
\end{aligned}
$$

under the conditions (1) audible frequency range, (2) temperature at $0^{\circ} \mathrm{C}$, (3) 1 atm pressure, (4) 0.03 mole per cent content of $\mathrm{CO}_{2}$, (5) 0 per cent water content. To

[^119]Table 3d-6. Speed (Velocity) of Sound in Gases*

| Gas | Formula | Speed, m/sec at $0^{\circ} \mathrm{C}$ | Speed, fps at $0^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| Air. |  | 331.45 | 1,087.42 |
| Ammonia. | $\mathrm{NH}_{3}$ | 415 | 1,361 |
| Argon. | A | 319 | 1,046 |
| Carbon monoxide. | CO | 337.1 | 1,106 |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | 258.0 (low freq.) <br> 268.6 (high freq.) $\dagger$ | 846 (low freq.) <br> 881 (high freq.) $\dagger$ |
| Carbon disulfide. | $\mathrm{CS}_{2}$ | 189 | 606 |
| Chlorine. | $\mathrm{Cl}_{2}$ | 205.3 | 674 |
| Ethylene. | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 314 | 1,030 |
| Helium. | He | 970 | 3,182 |
| Hydrogen. | $\mathrm{H}_{2}$ | 1,269.5 | 4,165 |
| Illuminating gas. |  | 490.4 | 1,609 |
| Methane. | $\mathrm{CH}_{4}$ | 432 | 1,417 |
| Neon. | Ne | 435 | 1,427 |
| Nitric oxide. | NO | 325 | 1,066 |
| Nitrogen. | $\mathrm{N}_{2}$ | 337 | 1,096 |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 261.8 | 859 |
| Oxygen.. | $\mathrm{O}_{2}$ | 317.2 | 1,041 |
| Steam ( $100^{\circ} \mathrm{C}$ ). | $\mathrm{H}_{2} \mathrm{O}$ | 404.8 | 1,328 |

[^120]calculate the speed of sound at various temperatures one can write
\[

$$
\begin{aligned}
c & =\left(\frac{R_{\gamma}}{M} 273.16\right)^{\frac{1}{2}} \sqrt{\frac{T}{273.16}} \\
& =33,145 \sqrt{\frac{T}{273.16}} \quad \mathrm{~cm} / \mathrm{sec} \\
& =33,145\left(1+\frac{{ }^{\circ} \mathrm{C}}{273.16}\right) \quad \mathrm{cm} / \mathrm{sec} \quad\left(\frac{{ }^{\circ} \mathrm{C}}{273.16} \ll 1\right)
\end{aligned}
$$
\]

where $T=$ absolute temperature
${ }^{\circ} \mathrm{C}=$ temperature, ${ }^{\circ} \mathrm{C}$
If the gas is made up of a mixture of gases or if water vapor is present the expression

$$
c=\left[\frac{R T}{M}\left(1+\frac{R}{C_{v}}\right)\right]^{\frac{1}{2}}
$$

can still be used to calculate the velocity. The molecular weight $M$ of the mixture can be calculated, or, realizing that $R T / M=p / \rho$, the density of the mixture can be used.

In addition to correcting $M$ (or $\rho$ ) it is necessary to correct $C_{v}$ also. It is incorrect to take the weighted average of the ratio of the specific heats, $\gamma$. The weighted average of the specific heats themselves must be used.

For rough calculations of the variation with humidity or composition, it is probably sufficient merely to correct for the density of the mixture.

3d-7. Characteristic Impedance. The characteristic impedance is equal to the ratio of the sound pressure to the particle velocity in a plane wave traveling in an unbounded medium. It is equal to the density times the velocity of propagation,
that is, $\rho c$. The variation of $\rho c$ with temperature can be calculated from the expression

$$
\rho c=\rho_{0} c_{0}\left(\frac{273.16}{T}\right)^{\frac{1}{2}} \frac{P}{760} \quad \text { rayls }
$$

where $\rho_{0} c_{0}$ is the value at $0^{\circ} \mathrm{C}$ and 1 atm pressure. For air $\rho_{0} c_{0}=42.86 \mathrm{dyne} \mathrm{sec} / \mathrm{cm}^{3}$. Table 3d-7 contains values of $\rho_{0} c_{0}$ for several common gases.

Table 3d-7. Characteristic Impedance $\rho_{0} c$ of Common Gases at $0^{\circ} \mathrm{C}$ ( $273.16^{\circ}$ K) Temperature and 760 mm Hg Barometric Pressure

| Gas | Formula | $\rho_{0} c_{0}$, dyne-sec $/ \mathrm{cm}^{3}$ at $0^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$ |
| :---: | :---: | :---: |
| Air. |  | 42.86 |
| Argon. | A | 56.9 |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | 50.8 |
| Carbon monoxide | CO | 42.1 |
| Helium. | He | 17.31 |
| Hydrogen. | $\mathrm{H}_{2}$ | 11.41 |
| Neon. | Ne | 38.5 |
| Nitric oxide. | NO | 43.5 |
| Nitrogen. | $\mathrm{N}_{2}$ | 42.1 |
| Nitrous oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 51.8 |
| Oxygen. | $\mathrm{O}_{2}$ | 45.3 |

3d-8. Attenuation. In addition to the dispersion of sound due to wind, turbulence in the atmosphere, and temperature gradients, two properties of the medium combine to attenuate a wave which is propagated in free space. The first of these attenuations is caused by molecular absorption and dispersion in polyatomic gases involving an exchange of translational and vibrational energy between colliding molecules. The second is due to viscosity and heat conduction in the medium.

Knudsen ${ }^{1}$ says that "the attenuation of sound is greatly dependent upon location and weather conditions, that is, upon the humidity and temperature of the air. The cold air of the arctic is acoustically transparent; the attenuation of sound is not much more than that attributable to viscosity and heat conductivity; . . . for the hot and relatively dry summer air of the desert, such as at Greenland Ranch, Inyo County, California, where the relative humidity may drop as low as 2.4 per cent, the attenuation at 3000 cps is $0.14 \mathrm{db} / \mathrm{m}$, and at 10,000 cycles it is $0.48 \mathrm{db} / \mathrm{m}$."

Data on the absorption of audible sound in air are valuable because they are needed to calculate the reverberation time for high-frequency sound in rooms, for determining the amplification characteristics of public-address systems for use outdoors, and for predicting the range of effectiveness of apparatus for sound signaling and sound ranging in the atmosphere.

Kneser ${ }^{1}$ has treated analytically the problem of absorption and dispersion of sound by molecular collision. He summarized his results in the form of a nomogram which has been reprinted along with comments by Pielemeier. ${ }^{3}$ Pielemeier observes that for

[^121]molecular absorption Kneser's theoretical values are lower than Knudsen's ${ }^{1}$ experimental values for reasons not fully understood.

Kneser's nomogram is reproduced in Fig. 3d-1. By means of it, the attenuation due to the molecular absorption can readily be found for any ordinary set of conditions of temperature, humidity, and frequency. For example, if the temperature is $15^{\circ} \mathrm{C}$, and relative humidity is 50 per cent, first locate $15^{\circ}$ on the temperature axis, trace left to the 50 per cent mark, then upward to the middle of the shaded area (upper left), then to the right to the proper frequency curve ( 3 kc in this case), then downward to the $K$ scale. Next begin another tracing at $15^{\circ} \mathrm{C}$ toward the right until the lower right curve is reached, then trace upward to the $\log (M)+7$ scale. Then join the


Fig. 3d-1. Nomogram for determining the attenuation in air caused by molecular absorption. (From L. L. Beranek, "Acoustics Measurement," John Wiley \& Sons, Inc., New York, 1949; after Kneser.)
end points of the two tracings with a straight line. The value of the molecular attenuation $\alpha_{m}$ as read on that scale will be $12 \mathrm{db} / \mathrm{km}$ or $3.7 \times 10^{-3} \mathrm{db} / \mathrm{ft}$. The half width of the shaded band in the $\log X$ chart of Fig. 3d-1 represents the uncertainty in the $\log X$ values. Note that the band changes position slightly with temperature.

The attenuation caused by heat conduction and viscosity of the air $\alpha_{c}$ is not known so accurately. The classical absorption due to these causes has been thoroughly described by Lord Rayleigh ${ }^{2}$ and was first derived by Kirchhoff and Stokes as the relation

$$
\alpha_{0}=\alpha_{\eta}+\alpha_{T}=\frac{\omega^{2}}{2 \rho_{0} c^{3}}\left[\frac{4 \eta}{3}+(\gamma-1) \frac{\kappa}{C_{p}}\right] \quad \text { nepers } / \mathrm{cm}
$$

where $\omega / 2 \pi=$ frequency in cycles per second; $\rho_{0}=$ density in grams per centimeter

[^122]cubed; $c=$ speed of sound in centimeters per second; $\eta=$ coefficient of viscosity in poises; $\gamma=$ ratio of specific heats; $\kappa=$ coefficient of thermal conductivity in calories per second-degree-centimeter; and $C_{p}$ is the specific heat at constant pressure in calories per gram-degree.

Recent papers by Sivian ${ }^{1}$ and Krasnooshkin ${ }^{2}$ have led to somewhat higher values for the absorption caused by viscosity. The data from these three sources are given by Fig. 3d-2 and the equations
For $\lambda$ in feet,

$$
\alpha_{c}=0.143 \frac{A}{\lambda^{2}} \quad \mathrm{db} / \mathrm{ft}
$$

For $\lambda$ in meters,

$$
\alpha_{c}=0.0437 \frac{A}{\lambda^{2}} \quad \mathrm{db} / \mathrm{m}
$$

where $\lambda$ is the wavelength and $A$ is given in the curve in Fig. 3d-2.


Fig. 3d-2. Plot of $A$ in centimeters as a function of temperature: $A=\alpha_{c} \lambda^{2} / 0.0437$, where $\lambda=$ wavelength in meters, and $\alpha_{c}$ is the attenuation constant in db per meter for a freetraveling plane wave. The upper line (Sivian) obtained by multiplying the Stokes value by 1.5, lies closer to measured values than does either of the other two. (From L. L. Beranek, "Acoustic Measurements," John Wiley \& Sons, Inc., New York, 1949.)

The total attenuation $\alpha_{A}$ due to both types of absorption is therefore

$$
\alpha_{A}=\alpha_{m}+\alpha_{c} \quad \mathrm{db} / \mathrm{ft}(\mathrm{or} \mathrm{db} / \mathrm{m})
$$

These high values of attenuation appear to come from the $\mathrm{H}_{2} \mathrm{O}$ vapor content of the air, although they cannot be calculated accurately by the Kneser nomogram. At frequencies above 100 kc for undried air and at all frequencies for dried air, and oxygen and nitrogen, the measured attenuation is about 1.5 times that predicted by the Stokes relation.

[^123]
## ACOUSTICS

Some experimental values by Knudsen and Harris ${ }^{\wedge}$ for the total attenuation $\alpha_{A}$ at room temperature and for various values of relative humidity are given in Fig. 3d-3.

An empirical equation, which describes the measured values of Knudsen and Harris with good accuracy for relative humidities above 30 per cent and at a temperature of $20^{\circ} \mathrm{C}$, is given by Cremer ${ }^{2}$

$$
\alpha_{A}=\left(\frac{f}{1,000}\right)^{\frac{3}{2}} \frac{0.28}{20+\phi_{20}} \quad \mathrm{db} / \mathrm{m}
$$

where $\phi_{20}$ is the relative humidity at $20^{\circ} \mathrm{C}$ and $f$ is the frequency. For temperatures


Fra. 3d-3. Measured values of the energy attenuation constant $m$ as a function of relative humidity for different frequencies, $I(x)=I_{0} \exp (-m x)$. The temperature is assumed to be about $68^{\circ}$ F. (From L. L. Beranek, "Acoustics," McGraw-Hill Book Company, Inc., New York, 1954: after V. O. Knudsen and C. M. Harris, Acoustical Designing in Architecture, p. 160, Fig. 8.10, John Wiley \& Sons, Inc., New York, 1950.)
differing slightly from $20^{\circ} \mathrm{C}$, the measured value of relative humidity should be corrected to give a value of $\phi_{20}$ to be used in the above equation;

$$
\phi_{20}=\phi_{t}(1+0.067 \Delta t)
$$

where $\Delta t$ denotes temperature departure from $20^{\circ} \mathrm{C}$. The quantity $\alpha_{A}$ is 4.34 m , in the same units of distance.
${ }^{1}$ V. O. Knudsen and C. M. Harris, "Acoustical Designing in Architecture," p. 160 Fig. 8.10, John Wiley \& Sons, Inc., New York, 1950.
${ }^{2}$ Lothar Cremer, "Die wissenschaftlichen Grundlagen der Raumakustik" (The Scientific Foundations of Room Acoustics), vol. III, S. Hirzel Verlag, Leipzig, 1950.

# 3e. Acoustic Properties of Liquids 

R. D. FAY<br>Acoustics Laboratory<br>Massachusetts Institute of Technology

3e-1. Symbols and Definitions. Unless otherwise specified, cgs units are used.

```
 density
 adiabatic compressibility
 frequency
 \(2 \pi f\)
 speed of propagation of plane (or spherical) waves (velocity of sound), \(c=(1 / \rho k)^{\frac{3}{2}}\)
 characteristic impedance
 coefficient of absorption, nepers/cm
 For viscous absorption \(\alpha \simeq \omega^{2}\left(2 n+n^{\prime}\right) / 2 \rho c^{3}\) where \(n=\) shear viscosity and
 \(n^{\prime}=\) dilatational viscosity.
\(\alpha / f^{2} \quad\) absorption constant
\(\mathrm{db} / \mathrm{dd}\) intensity loss in decibels if distance from source is doubled. This unit is
 usually used only when loss is due to the geometry of the sound field as in
 spherical or cylindrical waves.
```

3e-2. Acoustical Comparison between Liquids and Gases. The acoustical behavior of liquids is fundamentally identical to that of gases, but the great differences in the magnitudes of the basic properties, density and compressibility, give rise to notable differences in the nature of practical sound fields in the two media. Thus the techniques which have been developed for the study of sound in gases cannot generally be applied successfully to the study of sound in liquids.

Numerically, the characteristic impedance $\rho c$ of liquids is three to four orders of magnitude greater than that of gases. Thus a liquid-gas interface appears as a substantially rigid boundary to a sound in the gas but as an effective pressure-release surface to a sound in the liquid. Even a thin film of gas, or a multiplicity of gaseous bubbles, generally prevents the existence of appreciable sound pressure in the neighboring liquid.

The compliance of solid boundaries is usually negligible compared with the compressibility of gases but is usually appreciable compared with the compressibility of liquids. Thus the simple types of sound field which are readily obtained in a gaseous medium by virtue of effectively rigid boundaries are extremely difficult to realize in a liquid medium. Types of sound fields from which acoustical properties of liquids can be determined have usually been obtained in the laboratory at high frequencies. Most of the published data on such properties were obtained in the megacycle frequency region.

3e-3. Sound Transmission in Large Bodies of Water. Sound transmission at sea is influenced largely by three factors: the geometry of the sound field, the nature of the upper and lower boundaries, and refraction. At short ranges, if source and receiver
are at sufficient depths, spherical spreading of sonic energy is approximated and the intensity varies nearly as the inverse square of the range ( $6 \mathrm{db} / \mathrm{dd}$ ). At long ranges, the field roughly approximates a two-dimensional continuum producing cylindrical spreading whereby the intensity tends to vary as the inverse first power of the range $(3 \mathrm{db} / \mathrm{dd})$. There is an intermediate range in which the controlling factor may be the interference between the direct sound and the sound reflected from the surface. For sinusoidal sound this interference produces the Lloyd-mirror effect. For broad bands the intensity tends to vary as the inverse fourth power of the range ( $12 \mathrm{db} / \mathrm{dd}$ ).

These trends have been observed. They are dependent on such factors as source depth, receiver depth, depth of water, smoothness of surface, smoothness and reflectivity of bottom, frequency spectrum, and directivities of transducers. The trends are modified-sometimes completely masked-by the effects of refraction.

Refraction is caused by gradients in temperature, salinity, density, and currents. A major effect is a nonuniform distribution of sonic energy, frequently resulting in shadow zones and skip distances. At times sound channels are formed, i.e., layers within which the sound is trapped by virtue, for example, of downward refraction near the surface due to a temperature gradient and upward refraction in deeper water due to the density gradient.

Reverberation in water is produced by the scattering of sound by minute particles of suspended matter, marine life, and other inhomogeneities. Reverberation due to that portion of the sound which is scattered by the top and bottom surfaces is sometimes called "surface reverberation."

3e-4. Cavitation. The American Standard Acoustical Terminology gives the definition (Z24.1, 9.035): "Cavitation is the formation of local cavities in a liquid as a result of the reduction of total pressure." Cavitation may occur as the result of a sound-wave rarefaction, such as is produced in the negative pressure cycle of an underwater transmitting transducer, or as the result of the reduction of pressure due to hydrodynamic flow, such as is produced by the movement at high speed of a propeller underwater. Broad-band noise is generated by cavitation; a large amount of evidence indicates that this noise is associated with the collapse of cavitation bubbles. In many instances the noise of cavitation has been observed to begin before the cavitation bubbles have been visible to the unaided eye.

In shallow water depths, since atmospheric pressure corresponds to but a low hydraulic head in liquids, cavitation may occur at moderate sound intensities. Numerically, at a static pressure of $N \mathrm{~atm}$, the intensity of a sinusoidal plane (or spherical) wave in water at which the total pressure becomes zero at a negative peak is $I \simeq N^{2} / 3$ watts $/ \mathrm{cm}^{2}$.

The observed cavitation threshold corresponds in many cases to a substantial negative pressure, usually reported to have a very variable value. Many degassed liquids show a tensile strength of the order of an atmosphere. Over very short time intervals this figure is much higher. The threshold of acoustically produced cavitation thus depends on the frequency. It also depends on gas content, ion content, and suspended matter (all cavity-producing nuclei), temperature, viscosity, cleanliness of the container, and the past history of the liquid.

Since cavitation bubbles reduce the sound that is radiated by a transducer, transformer oils and castor oil, which do not cavitate readily, are sometimes used to transmit sound from the transducer face to an outer radiating surface at which the intensity has been spreduced by reading.

3e-5. Dispersion. There is no firm evidence that the speed of propagation of sound in a simple liquid is dependent on frequency.

3e-6. Water and Aqueous Solutions. Table 3e-1, taken from the American Standards Association Acoustical Terminology (Z24.1-1951, Table 9.1), gives various properties of fresh and sea water under representative water conditions.

ACOUSTIC PROPERTIES OF LIQUIDS
Table 3e-1. Properties of Fresh and Sea Water

|  | Fresh water |  | Sea water |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Salinity (parts per 1,000 ). | 0 |  | 30 |  | 36 |  |
| Temp., ${ }^{\circ} \mathrm{C}$. | 4 | 25 | 5 | 20 | 15 | 25 |
| Velocity, m/sec. | 1,418.3 | 1,493.2 | 1,461.0 | 1,513.2 | 1,505.0 | 1,532.8 |
| Density $\mathrm{g} / \mathrm{cm}^{3}$. | 1.00000 | 0.99707 | 1.02375 | 1.02099 | 1.02677 | 1.02412 |
| Characteristic impedance $\times 10^{-5}$ (cgs units)...... | 1.4183 | 1.4888 | 1.4957 | 1.5450 | 1.5453 | 1.5698 |

Hydrostatic pressure increases the velocity by $0.018 \mathrm{~m} /$ second per meter of depth. It also increases the density by approximately $0.0000045 \mathrm{~g} / \mathrm{cm}^{3}$ per meter of depth.

The velocities listed in Table 3e-1 are from Kuwaharara's tables. ${ }^{1}$ More recent measurements indicate that the velocity in sea water is 3 to $4 \mathrm{~m} / \mathrm{sec}$ higher. ${ }^{2}$

Up to $1,000 \mathrm{Mc}$, no measurable effect of frequency on velocity has been found.
The attenuation in the pressure amplitude of a plane progressive wave is expressed by $p(x)=p_{0} e^{-\alpha x}$. The theoretical value of $\alpha$ (Stokes-Kirchhoff) for viscous absorp-


TEMPERATURE IN ${ }^{\circ} \mathrm{C}$
Fig. 3e-1. Theoretical absorption in water as a function of temperature. (After Hall.)
tion depends on $f^{2}$. The measured value of $\alpha / f^{2}=21.5 \times 10^{-17} \mathrm{~cm}^{-1}$ reported by Fox and Rock ${ }^{3}$ for water has generally ${ }^{4}$ been found to hold within experimental limits at room temperature over a very wide range of frequencies. This number has been

[^124]shown by Hall ${ }^{1}$ to correspond to the Stokes-Kirchhoff expression if bulk (dilatational) viscosity as well as shear viscosity is taken into account.

Hall's analysis includes the theoretical effect of temperature on attenuation. The values plotted in Fig. 3e-1 have been verified by several experiments.

Absorption in organic liquids shows no observable relation to the viscosity. The increments in sound velocity due to dissolved salts at the low concentrations found in sea water are found to be proportional to the molar concentration for each salt and to be additive (see Fig. 3e-2) for a number of salts.


Fig. 3e-2. Effect of dissolved salts on sound velocity. (After Weissler and Del Grosso.)
The effect on absorption of dissolved solids frequently exhibits relaxation phenomena. The absorption in sea water at frequencies above 1 Mc is substantially that in fresh water. Below 70 kc the observed value of $\alpha$ is about 10 times greater in sea water. In the transition region from 70 to $1,000 \mathrm{kc}, \alpha$ is not proportional to $f^{2}$ (see Fig. 3e-3). This additional attenuation has been variously attributed to the high concentration (and hence partial dissociation) of NaCl and to the presence of $\mathrm{MgSO}_{4} .{ }^{2}$

Figure 3e-3 indicates the observed values of absorption in sea water in the transition range.

Sound velocity and absorption in liquid mixtures exhibit two distinct types of behavior. Mixtures of organic liquids tend to have values for $c$ and for $\alpha$ which vary unidirectionally (not necessarily uniformly) with the relative proportions of the
${ }^{1}$ Hall Phys. Rev. 73, 775 (1948).
${ }_{2}$ Liebermann, J. Aco ust. Soc. Am. 20, 868 1948).


Fig. 3e-3. Sound absorption coefficients for sea water and fresh water. (After Liebermann.) To convert to decibels per kiloyard, multiply $2 \alpha$ by $3.97 \times 10^{5}$.

Table 3e-2. Velocity under $1,100 \mathrm{~m} /$ sec. Listing in Order of Increasing Velocity

| Material | Formula | Density | Velocity, $\mathrm{m} / \mathrm{sec}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\underset{\operatorname{cgs}}{\rho c \times 10^{-5}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ethyl bromide. | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}$ | 1.428 | 892 | 28 | 1.27 |
| Carbon tetrachloride. | $\mathrm{CCl}_{4}$ | 1.596 | 928.5 | 23 | 1.48 |
| Bromoform. | $\mathrm{CHBr}_{3}$ | 2.889 | 929 | 23.5 | 2.68 |
| Butyl iodide ( $n$ ). | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$ | 1.616 | 959 | 28 | 1.55 |
| Methylene bromide. | $\mathrm{CH}_{2} \mathrm{Br}_{2}$ | 2.453 | 971 | 24 | 2.38 |
| Methylene iodide. | $\mathrm{CH}_{2} \mathrm{I}_{2}$ | 3.323 | 977 | 24 | 3.25 |
| Butyl chloride, | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ | 0.84 | 985 | 25 | 0.83 |
| Chloroform. | $\mathrm{CHCl}_{3}$ | 1.487 | 1,001 | 23.5 | 1.49 |
| Acetyl tetrabromide. | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{4}$ | 2.962 | 1,007 | 28 | 2.98 |
| Ethylene bromide. | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ | 2.178 | 1,014 | 24 | 2.21 |
| Butyl bromide ( $n$ ). | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ | 1.272 | 1,016 | 28 | 1.29 |
| Acetylene dichloride.. | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ | 1.262 | 1,025 | 25 | 1.29 |
| Pentane. | $\mathrm{C}_{5} \mathrm{H}_{12}$ | 0.632 | 1,052 | 18 | 0.66 |
| Allyl chloride. | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$ | 0.937 | 1,088 | 28 | 1.02 |

liquids. Solutions of organic liquids in water tend to show peaks in both $c$ and $\alpha$ at some concentration. The velocity peaks are typically 5 to 10 per cent higher than that in either pure liquid, but the attenuation peak may show an increase of an order of magnitude over that of the organic liquid. ${ }^{1}$

Gases in actual solution in water are generally reported to have negligible effect on sound velocity and absorption.

[^125] Burton, J. Acoust. Soc. Am. 20, 186 (1948).

Table 3e-3. Velocity over $1,600 \mathrm{~m} /$ sec. Listing in Order of Decreasing Velocity

| Material | Formula | Density | Velocity, $\mathrm{m} / \mathrm{sec}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\underset{\text { cgs }}{\rho c \times 10^{-5}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Glycerin. | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ | 1.260 | 1,986 | 22 | 2.50 |
| Ethylene glycol. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ | 1.103 | 1,721 | 24 | 1.90 |
| Aniline. | $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$ | 1.018 | 1,682 | 24 | 1.71 |
| Toluidine. | $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ | 0.994 | 1,669 | 22.5 | 1.66 |
| Quinoline. | $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ | 1.090 | 1,643 | 22 | 1.79 |
| Resorcin monomethyl ether | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ | 1.145 | 1,629 | 26 | 1.86 |
| Cyclohexanol. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ | 0.946 | 1,622 | 23.5 | 1.53 |
| Formamide. | $\mathrm{CH}_{3} \mathrm{NO}$ | 1.13 | 1,610 | 25 | 1.82 |

Table 3e-4. Saturated Hydrocarbons and Alcohols; Acetates

| Material | Formula | Density | Velocity, <br> $\mathrm{m} / \mathrm{sec}$ | $\rho c \times 10^{-5}$ <br> cgs |
| :---: | :---: | :---: | :---: | :---: |

A. Saturated Hydrocarbons

| Pentane.......... | $\mathrm{C}_{5} \mathrm{H}_{12}$ | 0.622 | 1,052 | 0.65 |
| :--- | :--- | :--- | :--- | :--- |
| Hexane........ | $\mathrm{C}_{6} \mathrm{H}_{14}$ | 0.658 | 1,113 | 0.73 |
| Heptane....... | $\mathrm{C}_{7} \mathrm{H}_{16}$ | 0.681 | 1,165 | 0.79 |
| Octane......... | $\mathrm{C}_{8} \mathrm{H}_{18}$ | 0.702 | 1,238 | 0.87 |

B. Saturated Alcohols

| Methyl............. | $\mathrm{CH}_{3} \mathrm{OH}$ | 0.792 | 1,130 | 0.89 |
| :--- | :--- | :--- | :--- | :--- |
| Ethyl.......... | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ | 0.786 | 1,207 | 0.95 |
| Propyl......... | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ | 0.801 | 1,234 | 0.99 |
| Butyl........... | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ | 0.808 | 1,315 | 1.06 |
| Amyl............ | $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$ | 0.813 | 1,347 | 1.09 |

C. Acetates

| Methyl. | $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ | 0.928 | 1,211 | 1.12 |
| :---: | :---: | :---: | :---: | :---: |
| Ethyl | $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ | 0.898 | 1,187 | 1.07 |
| Propyl. | $\mathrm{CH}_{3} \mathrm{COOC}_{3} \mathrm{H}_{7}$ | 0.891 | 1,182 | 1.05 |
| Butyl. | $\mathrm{CH}_{3} \mathrm{COOC}_{4} \mathrm{H}_{9}$ | 0.871 | 1,179 | 1.03 |
| Amyl. | $\mathrm{CH}_{3} \mathrm{COOC}_{5} \mathrm{H}_{11}$ | 0.875 | 1,168 | 1.02 |

Gas bubbles in water are known to have a marked effect on both velocity and absorption. ${ }^{1}$ The effect of air mixed in the surface water at sea by virtue of "white caps" has been found to persist after 48 hr of calm. Underwater sound measurements in the laboratory may be affected for many days by the air released from solution in tap water if not degassed.

3e-7. Acoustical Properties of Organic Liquids. The sound velocity in pure organic liquids covers little more than a $2: 1$ range; the lowest reported is for ethyl bromide ( $892 \mathrm{~m} / \mathrm{sec}$ ) and the highest is for glycerin ( $1,986 \mathrm{~m} / \mathrm{sec}$ ). With few excep-
${ }^{1}$ A. B. Wood, "A Textbook of Sound," The Macmillan Company, New York, 1941; D. T. Laird and P. M. Kendis, J. Acoust. Soc. Am. 24, 29 (1952).

Table 3e-5. Absolute Values of the Absorption Constant for a Number of Organic Liquids. Listing in Order of Decreasing Absorption (Temperature between 23 and $27^{\circ} \mathrm{C}$ )

| Material | Formula | Absorption $\alpha / f^{2} \times 10^{15}$ | Density | Velocity, $\mathrm{m} / \mathrm{sec}$ | $\begin{gathered} \rho c \times 10^{-5} \\ \operatorname{cgs} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Carbon disulfide. | $\mathrm{CS}_{2}$ | 74 | 1.26 | 1,149 | 1.45 |
| Glycerol. | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ | 26 | 1.26 | 1,986 | 2.50 |
| 2, 3-Butanediol. | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$ | 20 | 1.05 |  |  |
| Benzene. | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 8.3(9.15) | 0.87 | 1,295(1,310) | 1.13 |
| Carbon tetrachloride. | $\mathrm{CCl}_{4}$ | 5.7 | 1.59 | 930(928) | 1.48 |
| Cyclohexanol. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ | 5.0 | 0.96 | 1,622 | 1.56 |
| Acetylene dichloride. | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ | 4.0 | 1.26 | 1,025 | 1.29 |
| Chloroform. | $\mathrm{CHCl}_{3}$ | 3.8(4.74) | 1.49 | $995(1,001)$ | 1.48 |
| 3-Methyl cyclohexanol resid. | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ | 3.5 | 0.92 | 1,400 | 1.29 |
| $t$-Amyl alcohol. | $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ | 3.3 | 0.81 | 1,204 | 0.975 |
| Mesityl oxide | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$ | 3.3 | 0.85 | 1,310 | 1.11 |
| Bromoform | $\mathrm{CHBr}_{3}$ | 2.3 | 2.89 | 908(929) | 2.62 |
| $t$-Butyl chloride. | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ | 1.9 | 0.84 | 985 | 0.83 |
| Chlorobenzene. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 1.7 | 1.10 | 1,302 | 1.43 |
| Turpentine |  | 1.5 | 0.88 | 1,255 | 1.10 |
| Isopentane. | $\mathrm{C}_{5} \mathrm{H}_{12}$ | 1.5 | 0.62 | 985 | 0.61 |
| $d$-Fenchone. | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | 1.4 | 0.94 | 1,320 | 1.24 |
| Ethyl ether. | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | 1.4(0.55) | 0.71 | 985 | 0.70 |
| Dioxane. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | 1.3 | 1.03 | 1,380 | 1.42 |
| Alkazene 13 | $\mathrm{C}_{15} \mathrm{H}_{24}$ | 1.3 | 0.86 | 1,310 | 1.13 |
| Kerosene. |  | 1.1 | 0.81 | 1,315 | 1.06 |
| Methyl acetate. | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ | 1.09 | 0.93 | 1,211 | 1.13 |
| Ethyl acetate. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | 1.1(0.77) | 0.90 | 1,145(1,187) | 1.03 |
| Naphtha. |  | 1.0 | 0.76 | 1,225 | 0.93 |
| Toluol. | $\mathrm{C}_{7} \mathrm{H}_{8}$ | 0.9(0.85) | 0.86 | 1,300(1,320) | 1.12 |
| Nitrobenzene | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ | 0.9 | 1.20 | 1,490 | 1.79 |
| 1, 3-Dichloro-isobutane. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$ | 0.9 | 1.14 | 1,230 | 1.40 |
| Nitromethane | $\mathrm{CH}_{3} \mathrm{NO}_{2}$ | 0.9 | 1.13 | 1,335 | 1.51 |
| Ethyl alcohol. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | 0.9 | 0.79 | 1,150 | 0.91 |
| Methyl alcohol | $\mathrm{CH}_{4} \mathrm{O}$ | 0.9 | 0.79 | 1,105(1,130) | 0.87 |
| Acetonitrile. | $\mathrm{CH}_{3} \mathrm{CN}$ | 0.8 | 0.78 | 1,280(1,275) | 1.00 |
| $m$-Xylol. | $\mathrm{C}_{8} \mathrm{H}_{10}$ | $0.78(0.74)$ | 0.86 | 1,325(1,328) | 1.14 |
| Acetone. | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ | $0.64(0.32)$ | 0.79 | 1,170(1,203) | 0.925 |
| Alkazene 25. | $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Cl}_{2}$ | 0.6 | 1.20 | 1,300 | 1.56 |
| Formamide. | $\mathrm{CH}_{3} \mathrm{NO}$ | 0.57 | 1.13 | 1,610 | 1.82 |
| 2, 5-Hexanedione. | $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2}$ | 0.50 | 0.96 | 1,400 | 1.34 |
| Water (distilled) | $\mathrm{H}_{2} \mathrm{O}$ | $0.33(0.25)$ | 1.00 | 1,500(1,494) | 1.50 |
| Mercury. | Hg* | 0.66 |  | 1,450 |  |

[^126]tions, the range is from 1,000 to $1,500 \mathrm{~m} / \mathrm{sec}$. (It is a matter of interest that mercury also falls in this range, $1,450 \mathrm{~m} / \mathrm{sec}$.)
In contrast, the absorption constant $\alpha / f^{2}$ varies over a wide range, about 300:1. Numerically the highest reported absorption constant for a simple liquid is about one order of magnitude lower than that for dry air.
The characteristic impedances of organic liquids $\rho c$ are distributed over the range from about 60,000 to 180,000 egs units. Carbon tetrachloride with the $\rho c$ value of 148,000 and sound velocity of $930 \mathrm{~m} / \mathrm{sec}$ is well suited for acoustic lenses in water in that the characteristic impedances are nearly matched and the velocity ratio is reasonably high, about $62: 100$.
The values of the properties of organic liquids reported from different sources are seldom in agreement within experimental errors. The discrepancies are presumably due to slight impurities; in the few cases in which mixtures have been investigated large effects from small concentrations have been observed.

The liquids which have been selected for tabulation are:

1. Liquids having sound velocities outside the range 1,100 to $1,600 \mathrm{~m} / \mathrm{sec}$.
2. Liquids in certain chemical groups
3. Liquids for which absorption data have been reported

The data for Tables 3e-2, 3e-3, and 3e-4 were taken from Bergman's "Ultrasonics," and for Table 3e-3 from an article by Willard. ${ }^{1}$ It will be noted that all the organic liquids (except pentane) which have a sound velocity less than $1,100 \mathrm{~m} / \mathrm{sec}$ are halogen compounds. Table $3 \mathrm{e}-2$ shows that there are consistent trends within each group but inconsistent trends between groups.

In Table 3e-5 the absolute values of the absorption constant may be in error by a factor of 1.5 . The relative values for liquids having nearly like properties ( $\alpha / f^{2}$ and $c$ ) should be correct within 10 per cent.

# 3f. Acoustic Properties of Solids 

W. P. MASON<br>Bell Telephone Laboratories, Inc.

3f-1. Elastic Constants, Densities, Velocities, and Impedances. Solids are used for conducting acoustic waves in such devices as delay lines useful for storing information, and as resonating devices for controlling and selecting frequencies. Acousticwave propagation in solids has been used to determine the elastic constants of single crystals and polycrystalline materials. Changes in velocity with frequency and changes in attenuation with frequency have been used to analyze various intergrain, interdomain, and imperfection motions as discussed in Sec. 3f-2.
In an infinite isotropic solid and also in a finite solid for which the wave front is a large number of wavelengths, plane and nearly plane longitudinal and shear waves can

[^127]exist which have the velocities
\[

$$
\begin{equation*}
v_{\text {long }}=\sqrt{\frac{\lambda+2 \mu}{\rho}} \quad v_{\text {shear }}=\sqrt{\frac{\mu}{\rho}} \tag{3f-1}
\end{equation*}
$$

\]

where $\mu$ and $\lambda$ are the two Lamé elastic moduli, $\mu$ is the shearing modulus, and $\lambda+2 \mu$ has been called the plate modulus. For a rod whose diameter is a small fraction of a wavelength, extensional and torsional waves can be propagated with velocities
where

$$
\begin{gather*}
v_{\mathrm{ext}}=\sqrt{\frac{Y_{0}}{\rho}} \quad v_{\mathrm{tor}}=\sqrt{\frac{\mu}{\rho}} \\
Y_{0}=\mu\left(\frac{3 \lambda+2 \mu}{\lambda+\mu}\right) \tag{3f-2}
\end{gather*}
$$

For anisotropic media, three waves will, in general, be propagated, but it is only in special cases that the particle motions will be normal and perpendicular to the direction of propagation. The three velocities satisfy an equation ${ }^{1}$

$$
\left|\begin{array}{lll}
\lambda_{11}-\rho v^{2} & \lambda_{12} & \lambda_{13}  \tag{3f-3}\\
\lambda_{12} & \lambda_{22}-\rho v^{2} & \lambda_{23} \\
\lambda_{13} & \lambda_{23} & \lambda_{33}-\rho v^{2}
\end{array}\right|=0
$$

where $\rho$ is the density, $v$ the velocity, and the $\lambda$ 's are related to the elastic constants of the crystal by the formulas

```
\(\lambda_{11}=l^{2} c_{11}+m^{2} c_{66}+n^{2} c_{55}+2 m n c_{56}+2 n l c_{15}+2 l m c_{16}\)
\(\lambda_{12}=l^{2} c_{16}+m^{2} c_{26}+n^{2} c_{45}+m n\left(c_{46}+c_{25}\right)+n l\left(c_{14}+c_{56}\right)+l m\left(c_{12}+c_{66}\right)\)
\(\lambda_{13}=l^{2} c_{15}+m^{2} c_{46}+n^{2} c_{33}+m n\left(c_{45}+c_{36}\right)+n l\left(c_{13}+c_{55}\right)+\operatorname{lm}\left(c_{14}+c_{56}\right)\)
\(\lambda_{23}=l^{2} c_{56}+m^{2} c_{24}+n^{2} c_{34}+m n\left(c_{44}+c_{23}\right)+n l\left(c_{36}+c_{45}\right) l m\left(c_{25}+c_{46}\right)\)
\(\lambda_{22}=l^{2} c_{66}+m^{2} c_{22}+n^{2} c_{44}+2 m n c_{24}+2 n l c_{46}+2 l m c_{26}\)
\(\lambda_{33}=l^{2} c_{55}+m^{2} c_{44}+n^{2} c_{33}+2 m n c_{34}+2 n l c_{35}+2 l m c_{45}\)
```

In these formulas $c_{11}$ to $c_{68}$ are the 21 elastic constants and $l, m, n$ the direction cosines of the direction of propagation with respect to the crystallographic $x, y$, and $z$ axes which are related to the $a, b, c$ crystallographic axes as discussed in an IRE publication. ${ }^{2}$

In Eq. (3f-3), we solve for the quantity $\rho v^{2}$. It was shown by Christoffel ${ }^{2}$ that the direction cosines for the particle motion $\xi$, i.e., $\alpha, \beta, \gamma$, are related to the $\lambda$ constants and a solution of $\rho v^{2}$ by the equations

$$
\begin{equation*}
\alpha \lambda_{11}+\beta \lambda_{12}+\gamma \lambda_{13}=\alpha \rho v_{i}^{2} \quad \alpha \lambda_{12}+\beta \lambda_{22}+\gamma \lambda_{23}=\beta \rho v_{i}{ }^{2} \quad \alpha \lambda_{13}+\beta \lambda_{23}+\gamma \lambda_{33}=\gamma \rho v_{i}{ }^{2} \tag{3f-5}
\end{equation*}
$$

where $i=1,2,3$. Hence, solutions of Eq. (3f-3) are related to particle motions by the equations of (3f-5).

Most metals crystallize in the cubic and hexagonal systems. Furthermore, when a metal is produced by rolling, an alignment of grains occurs such that the rolling direction is a unique axis. This type of symmetry, known as transverse isotropy, results in the same set of constants as that for hexagonal symmetry. For cubic crystals, the resulting elastic constants are

$$
\begin{equation*}
c_{11}=c_{22}=c_{33} \quad c_{12}=c_{13}=c_{23} \quad c_{44}=c_{55}=c_{66} \tag{3f-6}
\end{equation*}
$$

while for hexagonal symmetry or transverse isotropy, the resulting elastic constants are

$$
\begin{equation*}
c_{11}=c_{22} \quad c_{12} \quad c_{13}=c_{23} \quad c_{44}=c_{65} \quad c_{66}=\frac{c_{11}-c_{12}}{2} \tag{3f-7}
\end{equation*}
$$

[^128]
## ACOUSTICS

For cubic symmetry, the waves transmitted along the [100] direction and the [110] direction have purely longitudinal and shear components with the elastic-constant values and particle direction $\xi$ given by [100] direction

$$
v_{\text {long }}=\sqrt{\frac{c_{11}}{\rho}} \quad \xi \text { along }[100] \quad v_{\text {shear }}=\sqrt{\frac{c_{44}}{\rho}}
$$

$\xi$ along any direction in the [100] plane
[110] direction

$$
\begin{array}{cc}
v_{\text {long }}=\sqrt{\frac{c_{11}+c_{12}+2 c_{44}}{2 \rho}} & \xi \text { along }[110] \\
v_{1 \text { dhear }}=\sqrt{\frac{c_{44}}{\rho}} \quad \begin{array}{c}
\xi \text { along }[001] \\
\xi \text { along }[1 \overline{1} 0]
\end{array} & v_{2 \text { shear }}=\sqrt{\frac{c_{11}-c_{12}}{2 \rho}}
\end{array}
$$

For hexagonal or transverse isotropy, waves transmitted along the unique axis and any axis perpendicular to this will have the values [001] direction

$$
v_{\text {long }}=\sqrt{\frac{c_{33}}{\rho}} \quad \xi \text { along [001] } \quad v_{\text {shear }}=\sqrt{\frac{c_{44}}{\rho}}
$$

$\xi$ along any direction in the [001] plane
[100] direction

$$
\begin{gathered}
v_{\text {long }}=\sqrt{\frac{c_{11}}{\rho}} \quad \xi \text { along }[100] \quad v_{1 \text { shear }}=\sqrt{\frac{c_{44}}{\rho}} \\
\xi \text { along [001] } \quad v_{2 \text { shear }}=\sqrt{\frac{c_{11}-c_{12}}{2 \rho}} \quad \xi \text { along }[010]
\end{gathered}
$$

The fifth constant is measured by transmitting a wave 45 deg between the [100] and [001] directions, i.e., $l=n=1 / \sqrt{2} ; m=0$. For this case

$$
\begin{gather*}
\lambda_{11}=\frac{c_{11}+c_{44}}{2} \quad \lambda_{12}=\lambda_{23}=0 \quad \lambda_{13}=\frac{c_{13}+c_{44}}{2} \quad \lambda_{22}=\frac{c_{11}-c_{12}+2 c_{44}}{4} \\
\lambda_{33}=\frac{c_{44}+c_{33}}{2} \tag{3f-8}
\end{gather*}
$$

The three solutions of Eq. (3f-3) are

$$
\begin{align*}
& \rho v_{1}{ }^{2}=\frac{c_{11}-c_{12}+2 c_{44}}{4} \\
& \rho v_{2,3^{2}}=\frac{\left[\left(c_{11}+c_{33}+2 c_{44}\right) / 2\right] \pm \sqrt{\left[\left(c_{11}-c_{33}\right) / 2\right]^{2}+\left(c_{13}+c_{44}\right)^{2}}}{2} \tag{3f-9}
\end{align*}
$$

For these three velocities, the particle velocities have the direction cosines
For $v_{1}$,

$$
\beta=1
$$

For $v_{2}$,

$$
\begin{equation*}
\alpha=\gamma\left\{\frac{c_{11}-c_{33}}{2\left(c_{13}+c_{44}\right)}+\sqrt{1+\left[\frac{c_{11}-c_{33}}{2\left(c_{13}+c_{44}\right)}\right]}\right\} \tag{3f-10}
\end{equation*}
$$

For $v_{z}$,

$$
\alpha=-\gamma\left\{\frac{c_{33}-c_{11}}{2\left(c_{13}+c_{44}\right)}+\sqrt{1+\left[\frac{\left(c_{11}-c_{33}\right)^{2}}{2\left(c_{13}+c_{44}\right)}\right]}\right\}
$$

Hence; unless $c_{11}$ is nearly equal to $c_{33}$, a longitudinal or shear crystal will generate both types of waves. Experimentally, however, it is found that a good discrimination can be obtained against the type of wave that is not primarily generated and a single velocity can be measured. A resonance technique can also be used to evaluate all the elastic constants of a crystalline material.

Table 3f-1. Densities of Glasses, Plastics, and Metals in Polycrystalline and Crystalline Form (X-ray Densities for Crystals)*

| Materials | Composition | $\underset{{ }^{\circ} \mathrm{C}}{\mathrm{Temp}} .$ | $\begin{gathered} \text { Density, } \\ \mathrm{kg} / \mathrm{m}^{3} \times 10^{3} \\ \text { or } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Aluminum |  |  |  |
| Hard-drawn. |  | 20 | 2.695 |
| Crystal. |  | 25 | 2.697 |
| Aluminum and copper. | $10 \mathrm{Al}, 90 \mathrm{Cu}$ |  | 7.69 |
|  | $5 \mathrm{Al}, 95 \mathrm{Cu}$ |  | 8.37 |
|  | $3 \mathrm{Al}, 97 \mathrm{Cu}$ |  | 8.69 |
| Beryllium. |  | 20 | 1.87 |
| Crystal. |  | 18 | 1.871 |
| Brass: |  |  |  |
| Yellow. | $70 \mathrm{Cu}, 30 \mathrm{Zn}$ |  | 8.5-8.7 |
| Red. | $90 \mathrm{Cu}, 10 \mathrm{Zn}$ |  | 8.6 |
| White. | $50 \mathrm{Cu}, 50 \mathrm{Zn}$ |  | 8.2 |
| Bronze. | $90 \mathrm{Cu}, 10 \mathrm{Sn}$ |  | 8.78 |
|  | $85 \mathrm{Cu}, 15 \mathrm{Sn}$ | . | 8.89 |
|  | $80 \mathrm{Cu}, 20 \mathrm{Sn}$ |  | 8.74 |
|  | $75 \mathrm{Cu}, 25 \mathrm{Sn}$ |  | 8.83 |
| Chromium. Crystal. |  | 20 | 6.92-7.1 |
|  |  | 18 | 7.193 |
| Cobalt....Crystal. |  | 21 | 8.71 |
|  |  |  | 8.788 |
| Constantine. | $60 \mathrm{Cu}, 40 \mathrm{Ni}$ |  | 8.88 |
| Copper... |  | . | 8.3-8.93 |
|  |  | 18 | 8.936 |
| Duralumin. | $17 \mathrm{ST}=4 \mathrm{Cu}, 0.5 \mathrm{Mg}, 0.5 \mathrm{Mn}$ | . | 2.79 |
| Germanium. Crystal. |  |  | 5.3 |
|  |  | 20 | 5.322 |
| German silver | 26.3 Cu, 36.6 Zn, 36.8 Ni | . | 8.30 |
|  | $52 \mathrm{Cu}, 26 \mathrm{Zn}, 22 \mathrm{Ni}$ |  | 8.45 |
|  | $59 \mathrm{Cu}, 30 \mathrm{Zn}, 11 \mathrm{Ni}$ | $\ldots$ | 8.34 |
|  | $63 \mathrm{Cu}, 30 \mathrm{Zn}, 6 \mathrm{Ni}$ |  | 8.30 |
| Gold. | . . . . . . . . . . . . . . . . . . . . . . . |  | 18.9-19.3 |
| Crystal. |  | 20 | 19.32 |
| Indium...Crystal |  | . | 7.28 |
|  |  | . | 7.31 |
| Invar... | $63.8 \mathrm{Fe}, 36 \mathrm{Ni}, 0.20 \mathrm{C}$ |  | 8.0 |
| Iron. |  | 20 | 7.6-7.85 |
| Crystal. |  | 20 | 7.87 |
| Lead... |  | 20 | 11.36 |
| Crystal. . |  | 18 | 11.34 |
| Lead and tin. | $87.5 \mathrm{~Pb}, 12.5 \mathrm{Sn}$ | . | 10.6 |
|  | $84 \mathrm{~Pb}, 16 \mathrm{Sn}$ |  | 10.33 |
|  | $72.8 \mathrm{~Pb}, 22.2 \mathrm{Sn}$ | $\cdots$ | 10.05 |
|  | $63.7 \mathrm{~Pb}, 36.3 \mathrm{Sn}$ | . | 9.43 |
|  | $46.7 \mathrm{~Pb}, 53.3 \mathrm{Sn}$ | . | 8.73 |
|  | $30.5 \mathrm{~Pb}, 69.5 \mathrm{Sn}$ | . | 8.24 |

## Table 3f-1. Densities of Glasses, Plastics, and Metals in Polycrystalline and Crystalline Form (X-ray Densities for Crystals) (Continued)

| Materials | Composition | $\underset{{ }^{\circ} \mathrm{C}}{\text { Temp., }}$ | Density, $\mathrm{kg} / \mathrm{m}^{3} \times 10^{3}$ or $\mathrm{g} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: | :---: |
| Magnesium. |  |  | 1.74 |
| Crystal. |  | 25 | 1.748 |
| Manganese |  |  | 7.42 |
| Crystal. |  |  | 7.517 |
| Mercury |  | 20 | 13.546 |
| Monel metal. | $71 \mathrm{Ni}, 27 \mathrm{Cu}, 2 \mathrm{Fe}$ | . . | 8.90 |
| Molybdenum. |  |  | 10.1 |
| Crystal. |  | 25 | 10.19 |
| Nickel. |  |  | 8.6-8.9 |
| Crystal, |  | 25 | 8.905 |
| Phosphor bronze. | $79.7 \mathrm{Cu}, 10 \mathrm{Sn}, 9.5 \mathrm{Sb}, 0.8 \mathrm{P}$ |  | 8.8 |
| Platinum. | ............................ . . | 20 | 21.37 |
| Crystal. |  | 18 | 21.62 |
| Silicon. |  | 15 | 2.33 |
| Crystal. |  | 25 | 2.332 |
| Silver. |  |  | 10.4 |
| Crystal. |  | 25 | 10.49 |
| 347 stainless steel. |  | . | 7.91 |
| Tin. . |  | . | 7-7.3 |
| Crystal. |  |  | 7.3 |
| Tungsten. |  |  | 18.6-19.1 |
| Crystal. |  | 25 | 19.2 |
| Zinc.... |  |  | 7.04-7.18 |
| Crystal. |  | 25 | 7.18 |
| Fused silica. |  | . | 2.2 |
| Pyrex glass (702). | . . . . . . | . | 2.32 |
| Heavy silicate flint. |  | . | 3.879 |
| Light borate crown |  | . | 2.243 |
| Lucite.. |  | $\cdots$ | 1.182 |
| Nylon 6-6. |  | $\cdots$ | 1.11 |
| Polyethylene. |  | $\cdots$ | 0.90 |
| Polystyrene.. |  | . | 1.056 |

* See also Tables 26-1 through 26-13.

When a longitudinal or shear wave is reflected at an angle from a plane surface, both a longitudinal and a shear wave will in general be reflected from the surface, the angles of reflection and refraction satisfying Snell's law

$$
\begin{equation*}
\frac{\sin \beta}{v_{S}}=\frac{\sin \alpha}{v_{l}} \tag{3f-11}
\end{equation*}
$$

where $\alpha$ and $\beta$ are the angles of incidence and refraction with respect to a normal to the reflecting surface. Exceptions to this rule occur if a shear wave has its direction of particle displacement parallel to the reflecting surface, in which case only a pure shear
wave is reflected, with the angle of reflection being equal to the angle of incidence. Use is made of this result in constructing delay lines which can be contained in a small volume. When the angle of incidence is 90 deg , the transmitted wave is reflected without change of mode. If the transmitting medium is connected to another medium with different properties, the transmission and reflection factors are determined by the relative impedances of the two media. The impedance is given by the formula

$$
\begin{equation*}
Z=\rho v=\sqrt{\overline{E \rho}} \tag{3f-12}
\end{equation*}
$$

where $E$ is the appropriate elastic stiffness and $\rho$ the density. The reflection and transmission coefficients between medium 1 and medium 2 are given by the equations

$$
\begin{equation*}
R=\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}} \quad T=1-R=\frac{2 Z_{2}}{Z_{1}+Z_{2}} \tag{3f-13}
\end{equation*}
$$

Tables $3 \mathrm{f}-1$ to $3 \mathrm{f}-4$ list the densities, elastic constants, velocities, and impedances for a number of materials used in acoustic-wave propagation.

3f-2. Attenuation Due to Thermal Effects, Relaxations, and Scattering. When sound is propagated through a solid, it suffers a conversion of mechanical energy into heat. While all the causes of conversion are not known, a number of them are, and tables for these effects are given in this section.

3f-3. Loss Due to Heat Flow. When a sound wave is sent through a body, a compression or rarefaction occurs which heats or cools the body. This heat causes thermal expansions which alter slightly the elastic constants of the material. Since the compressions and rarefactions occur very rapidly, there is not time for much heat to flow and the elastic constants measured by sound propagation are the adiabatic constants. For an isotropic material, the adiabatic constants are related to the isothermal constants by the formulas ${ }^{1}$

$$
\begin{equation*}
\lambda^{\sigma}=\lambda^{\theta}+\frac{9 \alpha^{2} B^{2} \Theta}{\rho C_{v}} \quad \mu^{\sigma}=\mu^{\theta} \quad Y_{0}{ }^{\sigma}=Y_{0}^{\theta}+\left(\frac{\mu}{\lambda+\mu}\right)^{2} \frac{9 \alpha^{2} B^{2} \Theta}{\rho C_{v}} \tag{3f-14}
\end{equation*}
$$

where the superscripts $\sigma$ and $\theta$ indicate adiabatic and isothermal constants, $\alpha$ is the linear temperature coefficient of expansion, $B$ the bulk modulus ( $B=\lambda+\frac{2}{3} \mu$ ), $\theta$ the absolute temperature in degrees Kelvin, $\rho$ the density, and $C_{v}$ the specific heat at constant volume. Table 3f-5 shows these quantities for a number of materials.

The difference between $\lambda^{\sigma}$ and $\lambda^{\theta}$ should be taken account of when one compares the elastic constants measured by ultrasonic means with those measured by static means. From the data given in Table 3f-5, it is evident that this effect can produce errors as high as 10 per cent in the case of zinc. Adiabatic elastic cqnstants are measured from frequencies somewhat greater than those for which thermal equilibrium is established during the cycle to a frequency ${ }^{1} f \doteq\left(\rho C_{v} v^{2} / 2 \pi K\right)$ for which wave propagation again takes place isothermally. This frequency is approximately $10^{12}$ cycles for most metals.

When account is taken of the energy lost by heat flow between the hot and cool parts, this adds an attenuation for longitudinal waves equal to

$$
\begin{equation*}
A=\frac{2 \pi f^{2}}{\rho v^{3}}\left[\frac{K}{C_{v}}\left(\frac{E^{\sigma}-E^{\theta}}{E^{\theta}}\right)\right] \quad \text { nepers } / \mathrm{m} \tag{3f-15}
\end{equation*}
$$

where $f$ is the frequency, $v$ the velocity, $K$ the heat conductivity, and $E$ the appropriate elastic constant for the mode of propagation considered. Since $Q=B / 2 A$, it becomes

$$
\begin{equation*}
Q=\frac{\rho C_{v} v^{2}}{2 f K\left[\left(E^{\sigma}-E^{\theta}\right) / E^{\theta}\right]} \tag{3f-16}
\end{equation*}
$$

[^129]Table 3f-2. Elastic Constants, Wave Velocities, and Characteristic Impedances of Metals, Glasses, and Plastics

|  |  <br>  |
| :---: | :---: |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  <br>  |
|  |  00000000000000000000000000 |
|  |  <br>  |
|  |  |
|  |  |
|  |  |

ACOUSTIC PROPERTIES OF SOLIDS
Table 3f-3. Elastic Constants of Cubic Single Crystals*
( $s=$ compliance modulus, $\mathrm{m}^{2} /$ newton; $c=$ stiffness modulus, newtons $/ \mathrm{m}^{2}$; for cgs units of dynes $/ \mathrm{cm}^{2}$, multiply the $c$ constants by 10 ; divide the $s$ constants by 10 to obtain $\mathrm{cm}^{2} /$ dyne)

| Crystal | $8_{11} \times 10^{11}$ | $s_{12} \times 10^{11}$ | $844 \times 10{ }^{11}$ | $\mathrm{c}_{11} \times 10^{-10}$ | $c_{12} \times 10^{-10}$ | ${ }_{44} \times 10^{-10}$ | $B=\left[\left(c_{11}+2 c_{12}\right) / 3\right] \times 10^{-10}$ | Anisotropy $2 c_{44} /\left(c_{11}-c_{12}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ag. | 2.32 | -0.993 | 2.29 | 11.9 | 8.94 | 4.37 | 9.93 | 2.95 |
| Al. | 1.59 | -0.58 | 3.52 | 10.82 | 6.13 | 2.85 | 7.69 | 1.24 |
| Au. | 2.33 | -1.07 | 2.38 | 19.6 | 16.45 | 4.20 | 17.5 | 2.67 |
| Cu | 1.49 | -0.625 | 1.33 | 17.02 | 12.3 | 7.51 | 13.9 | 3.18 |
| Fe | 0.757 | -0.282 | 0.862 | 23.7 | 14.1 | 11.6 | 17.3 | 2.37 |
| Ge | 0.964 | $-0.260$ | 1.49 | 12.92 | 4.79 | 6.70 | 7.50 | 1.65 |
| K. | 83.3 | -37.0 | 38.0 | 0.416 | 0.333 | 0.263 | 0.361 | 6.34 |
| $\mathrm{Na} .$. | 48.3 | -20.9 | 16.85 | 0.615 | 0.469 | 0.592 | 0.518 | 8.11 |
| Ni (sat.). | 0.80 | -0.312 | 0.844 | 25.0 | 16.0 | 11.85 | 19.0 | 2.63 |
| Pb . | 9.30 | -4.26 | 6.94 | 4.85 | 4.09 | 1.44 | 4.34 | 3.79 |
|  | 0.768 | $-0.214$ | 1.26 | 16.57 | 6.39 | 7.956 | 9.783 | 1.56 |
| W... | 0.257 | -0.073 | 0.66 | 50.2 | 19.9 | 15.15 | 30.0 | 1.0 |
| Diamond NaCl . | 0.0958 | $-0.01$ | 0.174 | 107.6 | 12.5 | 57.6 | 44.2 | 1.21 |
| NaCl. | 2.4 | -0.50 | 7.8 | 0.49 | 0.124 | 0.126 | 0.25 | 0.688 |
| KBr. | 4.0 | -1.2 | 7.5 | 0.35 | 0.058 | 0.050 | 0.16 | 0.342 |
| KCl . | 2.7 | -0.3 | 15.6 | 0.40 | 0.062 | 0.062 | 0.17 | 0.361 |


| Alloy | Atom \% of second | Elastic Constants of Copper Alloys $\ddagger$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CuZn | 4.53 | 1.59 | -0.671 | 1.348 | 16.34 | 11.92 | 7.42 | 13.39 | 3.36 |
| CuAl. | 4.81 | 1.59 | -0.674 | 1.335 | 16.58 | 12.16 | 7.49 | 13.63 | 3.39 |
|  | 9.98 | 1.67 | -0.711 | 1.305 | 15.95 | 11.77 | 7.66 | 13.16 | 3.66 |
| CuGa. | 1.58 | 1.55 | -0.65 | 1.346 | 16.49 | 11.93 | 7.43 | 13.45 | 3.25 |
|  | 4.15 | 1.59 | -0.672 | 1.349 | 16.51 | 12.10 | 7.41 | 13.57 | 3.36 |
| CuSi. | 4.17 | 1.61 | -0.685 | 1.336 | 16.78 | 12.42 | 7.48 | 13.87 | 3.43 |
|  | 5.16 | 1.67 | -0.709 | 1.335 | 16.09 | 11.88 | 7.49 | 13.28 | 3.56 |
|  | 7.69 | 1.73 | -0.745 | 1.350 | 16.64 | 12.60 | 7.41 | 13.95 | 3.67 |
| CuGe. | 1.03 | 1.52 | -0.637 | 1.333 | 16.66 | 12.00 | 7.50 | 13.62 | 3.29 |
|  | 1.71 | 1.57 | -0.663 | 1.333 | 16.30 | 11.83 | 7.50 | 13.32 | 3.35 |

[^130]$\ddagger$ Data from C. S. Smith.
Table 3f-4. Elastic Constants of Hexagonal Crystals

| Crystal | $s_{11} \times 10^{11}$ | $s_{12} \times 10^{11}$ | $s_{13} \times 10^{11}$ | $s_{33} \times 10^{11}$ | $s_{44} \times 10^{11}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cd | 1.23 | -0.15 | -0.93 | 3.55 | 5.40 |  |
| Mg | 2.21 | -0.77 | -0.49 | 1.97 | 6.03 |  |
| Zn . | 0.84 | +0.11 | -0.78 | 2.87 | 2.64 |  |
| Co. | 0.473 | -0.231 | -0.07 | 0.319 | 1.325 |  |
|  | $c_{11} \times 10^{-10}$ | $c_{12} \times 10^{-10}$ | $c_{18} \times 10^{-10}$ | $c_{33} \times 10^{-10}$ | $c_{44} \times 10^{-10}$ | $B=\frac{1}{2\left(s_{11}+s_{12}\right)+s_{33}+4 s_{13}} \times 10^{-10}$ |
| Cd | 12.12 | 4.81 | 4.42 | 4.45 | 1.85 | 5.03 |
| Mg | 5.86 | 2.49 | 2.08 | 6.60 | 1.65 | 3.46 |
| Zn . | 16.35 | 2.64 | 5.17 | 5.31 | 3.78 | 8.26 |
| Co. | 30.71 | 16.5 | 10.27 | 35.81 | 7.55 | 19.01 |

Table 3f-5. Adiabatic Isothermal Elastic Constants and Attenuation Due to Heat Flow

| Material | Density, $\mathrm{kg} / \mathrm{m}^{3} \times 10^{-3}$ | $\begin{gathered} C_{v} \\ \text { joules } / \mathrm{kg} /{ }^{\circ} \mathrm{C} \\ \times 10^{-3} \end{gathered}$ | $\begin{gathered} \alpha, \\ \times 10^{6} /{ }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} K, \\ \text { watts } / \mathrm{m}^{2} / \mathrm{m} /{ }^{\circ} \mathrm{C} \\ \times 10^{-2} \end{gathered}$ | $\begin{gathered} \lambda^{\theta}, \\ \text { newtons } / \mathrm{m}^{2} \\ \times 10^{-10} \end{gathered}$ | $\begin{gathered} \mu, \\ \text { newtons } / \mathrm{m}^{2} \\ \times 10^{-10} \end{gathered}$ | $\begin{gathered} \lambda^{\sigma}-\lambda^{\theta}, \\ \text { newtons } / \mathrm{m}^{2} \\ \times 10^{-9} \end{gathered}$ | $\begin{gathered} Y_{0}{ }^{\sigma}-Y_{0}{ }^{\theta}, \\ \text { newtons } / \mathrm{m}^{2} \\ \times 10^{-8} \end{gathered}$ | $A / f^{2}$, nepers/m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum. | 2.699 | 0.9 | 23.9 | 2.22 | 6.1 | 2.5 | 3.8 | 3.2 | $2.3 \times 10^{-16}$ |
| Beryllium. | 1.82 | 2.17 | 12.4 | 1.58 | 1.6 | 14.7 | 1.4 | 11.4 | $2.1 \times 10^{-18}$ |
| Copper. | 8.96 | 0.384 | 16.5 | 3.93 | 13.1 | 4.6 | 5.5 | 3.7 | $4.45 \times 10^{-16}$ |
| Gold. | 19.32 | 0.13 | 14.2 | 2.97 | 15.0 | 2.85 | 6.1 | 1.5 | $1.95 \times 10^{-15}$ |
| Iron. | 7.87 | 0.46 | 11.7 | 0.75 | 11.3 | 8.2 | 2.7 | 4.8 | $1.88 \times 10^{-17}$ |
| Lead. | 11.4 | 0.128 | 29.4 | 0.344 | 3.3 | 0.54 | 2.12 | 0.36 | $2.95 \times 10^{-15}$ |
| Magnesium. | 1.74 | 1.04 | 26 | 1.59 | 2.56 | 1.62 | 1.3 | 2.1 | $2.0 \times 10^{-16}$ |
| Nickel. | 8.90 | 0.44 | 13.3 | 0.92 | 16.4 | 8.0 | 5.7 | 6.1 | $3.8 \times 10^{-17}$ |
| Silver. | 10.49 | 0.234 | 19.7 | 4.18 | 8.55 | 2.7 | 4.5 | 2.6 | $1.95 \times 10^{-15}$ |
| Tin.. | 7.3 | 0.225 | 23 | 0.67 | 4.04 | 2.08 | 3.5 | 4.0 | $9.7 \times 10^{-16}$ |
| Tungsten. | 19.3 | 0.134 | 4.3 | 2.0 | 31.3 | 13.4 | 3.1 | 2.8 | $5.0 \times 10^{-17}$ |
| Zinc. | 7.1 | 0.382 | 29.7 | 1.12 | 4.2 | 4.2 | 4.3 | 10.7 | $3.8 \times 10^{-16}$ |
| Fused silica. | 2.2 | 0.92 | 0.5 | 0.01 | 1.61 | 3.12 | 0.00045 | 0.002 | $2.6 \times 10^{-22}$ |


where $Q$ is the ratio of $2 \pi$ times the energy stored to energy dissipated per cycle and $B$ is the phase shift per unit length. Table $3 \mathrm{f}-5$ shows the attenuation for a number of solids due to thermal loss.

3f-4. Loss Due to Intergrain Heat Flow. A related thermal loss that occurs in polycrystalline material is the thermoelastic relaxation loss which arises from heat flow from grains that have received more compression or extension in the course of the wave motion than do adjacent grains. The $Q$ from this source has been shown to be ${ }^{1}$

$$
\begin{equation*}
\frac{1}{Q}=\frac{C_{p}-C_{v}}{C_{v}} R \frac{f_{0} f}{f_{0}{ }^{2}+f^{2}} \tag{3f-17}
\end{equation*}
$$

where $R$ is that fraction of the total strain energy which is associated with the fluctuations of dilations, and $f_{0}$, the relaxation frequency, is approximately

$$
\begin{equation*}
f_{0}=\frac{D}{L_{c}{ }^{2}}=\frac{K}{\rho C_{p} L_{c}{ }^{2}} \tag{3f-18}
\end{equation*}
$$

where $L_{c}$ is the mean diameter of the crystallites and $D$ the diffusion constant.


Fig. 3f-1. Elastic constants and $Q$ for single-crystal and polycrystal aluminum. (After Ké.)

- For most materials, the relaxation frequencies are under 100 kc . Table $3 \mathrm{f}-6$ gives the product $\left[\left(C_{p}-C_{v}\right) / C_{v}\right] R$ for a number of metals.

3f-5. Loss Due to Grain Rotation. Another source of loss due to grain structure in metals is the loss due to the viscosity of the boundary layer between grains. This allows a relative rotation of grains provided the relaxation time is comparable with the time of the applied force. Figure $3 \mathrm{f}-1$ shows the elastic modulus and the associated $Q$ of a polycrystalline aluminum rod in torsional vibration at a frequency of 0.8 cycle as compared with similar measurements for a single crystal. The relaxation time for grain-boundary rotation is a function of temperature according to the equation

$$
\begin{equation*}
\tau=\tau_{0} e^{H / k T} \tag{3f-19}
\end{equation*}
$$

${ }^{1}$ C. Zener, "Elasticity and Anelasticity of Metals," p. 84, University of Chicago Press, Chicago, 1948.
( where $H$, the activation energy, is of the same order as that found for creep and self-diffusion.

3f-6. Loss Due to Grain Scattering of Sound. Another effect of grain structure in solids is a loss of energy from the main wave due to the scattering of sound when the sound wavelength is of the same order as the grain size. This scattering occurs because adjacent grains have different orientations, and a reflection of sound occurs because of the resulting impedance difference between grains. An approximate formula ${ }^{1}$ holding when the wavelength is larger than three times the grain size, and multiple scattering is neglected, is

$$
\begin{equation*}
\alpha_{s} \doteq \frac{8 \pi^{4} L_{c} f^{4}}{9 v^{4}} S \quad \text { nepers } / m \tag{3f-20}
\end{equation*}
$$

where $L_{c}$ is the average grain diameter, $f$ the frequency, $v$ the velocity, and $S$ a scattering factor related to the anisotropy of the metal. Table $3 f-7$ shows a relative estimate of the scattering factors for longitudinal and shear waves for a number of metals. For shorter wavelengths, the attenuation changes less rapidly with frequency, ${ }^{2}$ and for wavelengths shorter than the grain size, the loss is independent of the frequency. A formula applicable for all wavelengths is

$$
\begin{equation*}
\alpha_{s}=\frac{S}{2 L_{c}}\left(\frac{Q_{s}}{A}\right) \tag{3f-21}
\end{equation*}
$$

where $Q_{s} / A$ is the ratio of the scattering area of the sphere to the actual cross-sectional area. For low frequencies $Q_{S} / A=\frac{18}{9}\left(\pi L_{c} / \lambda\right)^{4}=\frac{16}{9}\left(\pi L_{c} f / v\right)^{4}$ while for very high frequencies $Q_{S} / A=2$. Intermediate values of cross-sectional areas can be obtained from calculations given by Morse. ${ }^{3}$ Because of elongations of grains in the direction of rolling, most materials have different scattering areas for propagation along the rolling axis and perpendicular to the axis.

3f-7. Acoustic Losses in Ferromagnetic and Ferroelectric Materials. Stresses in ferromagnetic and ferroelectric materials can cause motion of domain walls or rotation of domain directions. These occur in such a manner that domains are strengthened in directions parallel, antiparallel, or perpendicular to the direction of the stress. The increased polarization in the direction of the stress produces increased strains which are the same sign in both parallel and antiparallel domains since magnetostriction and electrostriction are square-law effects and hence the elastic stiffnesses of demagnetized materials are less than those of completely magnetized materials. For polarizations directed along cube axes, the difference in elastic constants for the saturated and depolarized states, i.e., the $\Delta E$ effect, is ${ }^{4}$

$$
\begin{equation*}
\frac{\Delta E}{E_{D}}=\frac{9 \mu \lambda_{s}{ }^{2} E_{\mathrm{s}}}{20 \pi P_{s}{ }^{2}} \tag{3f-22}
\end{equation*}
$$

where $\mu$ is the initial permeability or dielectric constant, $\lambda_{s}$ the saturated change in length along a polycrystalline rod, $E_{s}$ and $E_{D}$ the saturated and demagnetized elasticstiffness constant and $P_{s}$ the saturated magnetic or electric polarization. When the polarization lies along a cube diagonal-as in nickel- $\lambda_{8}$ is replaced by $\frac{2}{3} \lambda_{111}\left[5 c_{44} /\right.$ ( $c_{11}-c_{12}+3 c_{44}$ )] where $\lambda_{111}$ is the saturated increase in length along the [111] direction and $5 c_{44} /\left(c_{11}-c_{12}+3 c_{44}\right)$ is a ratio of elastic constants.

[^131]The motion of walls or the rotation of domains in metallic ferromagnetic materials generates eddy currents and hence causes an acoustic loss. It has been shown that the permeability follows a relaxation equation

$$
\begin{equation*}
\mu=\mu_{0} \frac{\left(1-j f / f_{0}\right)}{1+f^{2} / f_{0}^{2}} \tag{3f-23}
\end{equation*}
$$

where $f_{0} \doteq 4 R / 25 \mu_{0} L_{c}{ }^{2}, R=$ resistivity, and $L_{c}=$ domain diameter. For a distribution of domain sizes

$$
\begin{equation*}
\mu=\mu_{0} \sum_{i=1}^{m} \frac{V_{i}}{V} \frac{1-j f / f_{i}}{1+f^{2} / f_{i}{ }^{2}} \tag{3f-24}
\end{equation*}
$$

where $V_{i}$ is the volume occupied by domains of size $L_{i}$ and $V$ the total volume.


Fig. 3f-2. Decrement and $\Delta E$ effect for polycrystal nickel rod as a function of frequency. (After Bozorth, Mason, and McSkimin; Johnson rnd Rogers; and Levy and Truell.)

Inserting in Eq. (3f-22) the $\Delta E / E_{D}$ and $Q$ are given by

$$
\begin{equation*}
\frac{\Delta E}{E_{D}}=\frac{9 \lambda_{s}{ }^{2} E_{s}}{20 \pi P_{s}{ }^{2}}\left(\sum_{i=1}^{m} \frac{V_{i} / V}{1+f^{2} / f_{i}{ }^{2}}\right) \quad \frac{1}{\bar{Q}}=\frac{9 \lambda_{s}{ }^{2} E_{s}}{20 \pi P_{s}{ }^{2}}\left[\sum \frac{\left(V_{i} / V\right)\left(f / f_{i}\right)}{1+\left(f / f_{i}\right)^{2}}\right] \tag{3f-25}
\end{equation*}
$$

Figure 3f-2 shows measurements of the $\Delta E$ effect and the decrement $\delta=\pi / Q$ plotted over a frequency range, for a polycrystalline nickel rod.

Another effect causing losses in ferromagnetic and ferroelectric materials is the microhysteresis effect. In this effect the domain walls or domain rotations lag behind the applied stress and produce a hysteresis loop. Hence the initial susceptibility has a hysteresis component which is a function of the amount of stress. Average values of the parameters can be written in the form

$$
\begin{equation*}
\mu=\mu_{0}[1-j f(A)] \tag{3f-26}
\end{equation*}
$$

where $f(A)$ is a function of the amplitide. Inserting this value of $\mu$ in Eq. (3f-22), the value of the microhysteresis loss is given. This type of loss is present in ferroelectric materials and is the principal cause of the low mechanical $Q$.

3f-8. Other Types of Losses. In addition to these recognized types of losses, other types exist which have not been accounted for quantitatively. Figure $3 \mathrm{f}-3$ shows the $Q$ of a number of materials measured in a frequency range for strains under $10^{-5} .^{1}$ Except for nickel and iron rods whose decrease in $Q$ with frequency is accounted for by microeddy-current effects, the materials have a $Q$ independent of frequency. It has


Fig. 3f-3. Values of $Y_{0} / Q$ and $\mu / Q$ as a function of frequency for a number of polycrystalline materials. (After Wegel and Walther.)
been suggested that these losses are caused by elastic-hysteresis effects due to cyclic displacements of dislocations in the body or grain boundaries of metals. Some evidence $^{2}$ for this is shown in Fig. 3f-4, which shows the $Q$ of a copper rod as a function of temperature and degree of annealing. Losses in annealed specimens having smaller numbers of dislocations are smaller than those in cold-worked specimens. At low

[^132]

Fig. 3f-4. Attenuation peak in polycrystalline and single-crystal copper. (After Bordoni.)


Fig. 3f-5. Decrement as a function of amplitude in a copper single crystal. (After Nowick.)
temperatures, a relaxation of dislocation motions appears to occur. Other work ${ }^{1}$ shows that losses increase as a function of the amplitude, as shown by Fig. 3f-5. These losses have an activation energy similar to that shown by Fig. 3f-4 and are increased by cold work.
${ }^{1}$ A. S. Nowick, Phys. Rev. 80, 249 (1950).

# 3g. Properties of Transducer Materials 

W. P. MASON<br>Bell Telephone Laboratories, Inc.

To determine the acoustic properties of gases, liquids, and solids and to utilize them in acoustic systems, it is necessary to generate the appropriate waves by means of transducer materials which convert electrical energy into mechanical energy and vice versa. For liquids and solids, the most common types of materials are piezoelectric crystals, ferroelectric materials of the barium titanate type, and magnetostrictive materials.

3g-1. Piezoelectric Crystals. The static relations for a piezoelectric quartz crystal producing a single longitudinal mode are for rationalized mks units

$$
\begin{equation*}
S_{2}=s_{22}^{E} T_{2}+d_{21} E_{x} \quad D_{x}=d_{21} T_{2}+\epsilon_{1}^{T} E_{x} \tag{3~g-1}
\end{equation*}
$$

where $S_{2}$ and $T_{2}$ are the longitudinal strain and stress, respectively, $s_{22}{ }^{E}$ the elastic compliance along the length measured at constant electric field, $d_{21}$ the piezoelectric constant relating the strain with the applied field $E_{x}, D_{x}$ the electric displacement, and $\epsilon_{1}{ }^{\boldsymbol{T}}$ the dielectric constant measured at constant stress. Equations of this type suffice to determine the static and low-frequency behavior of piezoelectric crystals. Using the first equation, one finds that the increase in length for no external stress and the external force for no increase in length are, respectively,

$$
\begin{equation*}
\Delta l=d_{21} \frac{V l}{t} ; \quad F=T_{2} t w=-d_{21} \frac{V w}{s_{22} E} \tag{3~g-2}
\end{equation*}
$$

where $V$ is the applied potential, $l, w$, and $t$ are the length, width, and thickness of the crystal, and $F$ is the force which is considered positive for an extensional stress. From the second equation one finds that the open-circuit voltage and the short-circuited charge for a given applied force are, respectively,

$$
\begin{equation*}
V=-\left(\frac{d_{21}}{\epsilon^{T}}\right) \frac{l F}{t w} \quad Q=\int_{0}^{l} \int_{0}^{w} D_{x} d l d w=d_{21} \frac{F l}{t} \tag{3~g-3}
\end{equation*}
$$

Another important criterion for transducer use is the electromechanical-coupling factor $k$ whose square is defined as the ratio of the energy stored in mechanical form to the total input electrical energy. Using Eqs. (3g-1), this can be shown to be

$$
\begin{equation*}
k^{2}=\frac{d_{21}{ }^{2}}{s_{22} E^{E} \epsilon^{T}} \tag{3~g-4}
\end{equation*}
$$

It is readily shown that the clamped dielectric constant $\epsilon^{s}$, obtained by setting $S_{2}=0$, and the constant-displacement elastic compliance $s^{D}$, obtained by setting $D_{x}=0$, are related to the constant-stress dielectric constant $\epsilon^{T}$ and the constant-field elastic compliance $s_{22}{ }^{E}$ by the equations

$$
\begin{equation*}
\frac{\epsilon_{1} S}{\epsilon_{1} T}=\frac{s_{22} D}{s_{22} E}=1-k^{2} \tag{3g-5}
\end{equation*}
$$

3-89

Equivalent circuits in which the properties of the crystal are expressed in terms of equivalent electrical elements are often useful (see Secs. 31 and 3 m ). An equivalent circuit for a piezoelectric crystal for static conditions is shown by Fig. 3g-1A. In this network the compliance $C_{1}=s_{22}{ }^{E} l / w t$ represents the compliance of the crystal with the electrodes short-circuited, the capacitance $C_{0}$ is the capacitance of the clamped crystal, i.e., $C_{0}=l w \epsilon_{1} s / t$, while the transformer shown is a perfect transformer, i.e., a transformer having no loss between zero frequency and the highest frequency for which the piezoelectric effect is operative, having a turns ratio of $\varphi$ to 1 where

$$
\begin{equation*}
\varphi=-d_{21} \frac{w}{s_{22} E} \tag{3g-6}
\end{equation*}
$$

The fact that this equivalent circuit presents the same information as Eq. (3g-1) is readily verified by substitution and integration over the area of the crystal.


Fig. 3g-1. Equivalent circuit for a piezoelectric crystal for clamped and free conditions.
As an example of the use of such a network, one can calculate from it the efficiency of transformation of mechanical to electrical energy, or vice versa, under various conditions. Suppose that we clamp one end of the crystal and apply a force through the sending-end mechanical resistance $R_{M}$ and receive the power generated into an electrical resistance $R_{E}$. Solving the network equations and obtaining the conditions for maximum power output, it is readily shown that the maximum power is obtained if

$$
\begin{equation*}
R_{M}=\frac{1}{\omega C_{1} \sqrt{1-k^{2}}} \quad R_{E}=\frac{\sqrt{1-k^{2}}}{\omega C_{0}} \tag{3g-7}
\end{equation*}
$$

where $\omega=2 \pi$ times the frequency $f$. With these values the power in the termination is

$$
\begin{equation*}
P_{0}=\frac{F^{2} k^{4}}{4 \varphi^{2} R_{E}} \tag{3~g-8}
\end{equation*}
$$

The available power that can be obtained from a source having an open-circuit force $F$ with an internal impedance $R_{M}$ is maximum when $\varphi^{2} R_{E}=R_{M}$. This power is then

$$
\begin{equation*}
i_{2}{ }^{2} R_{E}=\frac{F^{2}}{4 \varphi^{2} R_{E}} \tag{3~g-9}
\end{equation*}
$$

and hence the power-conversion efficiency is

$$
\begin{equation*}
P_{E}=k^{4} \tag{3g-10}
\end{equation*}
$$

Hence, unless the coupling is high, the efficiency of conversion by static means is low.
This efficiency can be improved by resonating the capacity $C_{0}$ by an electric coil $L_{0}$ at the frequency of operation and can be further improved by mechanically resonating the static compliance of the crystal. The simplest way to analyze these circuits for their optimum conditions is to observe that, if the perfect transformer is moved to the end of the circuit, both equivalent sections are half sections of wellknown filters. Equation ( $3 \mathrm{~g}-11$ ) gives the element values of the first filter resonated by an electrical coil, while Eq. (3g-14) gives the element values for the section tuned on both ends.

$$
\begin{align*}
& C_{1}^{\prime}=\frac{s_{22}{ }^{E} l}{w t}\left(\frac{d_{21} w}{s_{22}{ }^{E}}\right)^{2}=\frac{l w}{t} \frac{d_{21}{ }^{2}}{s_{22^{E}}{ }^{2}}=\frac{f_{1}+f_{2}}{2 \pi f_{1} f_{2} Z_{0}^{\prime}}=\frac{1}{4 \pi f_{1} Z_{0}}, \\
& C_{0}=\frac{\epsilon^{S} l w}{t}=\frac{f_{1}}{2 \pi f_{2}\left(f_{2}-f_{1}\right) Z_{0}^{\prime}}=\frac{f_{1}}{2 \pi\left(f_{2}^{2}-f_{1}^{2}\right) Z_{0}}  \tag{3~g-11}\\
& L_{0}=\frac{\left(f_{2}-f_{1}\right) Z_{0}^{\prime}}{2 \pi f_{1} f_{2}}=\frac{\left(f_{2}{ }^{2}-f_{1}{ }^{2}\right) Z_{0}}{2 \pi f_{1} f_{2}{ }^{2}}
\end{align*}
$$

where $f_{1}$ is the lower cutoff, $f_{2}$ the upper cutoff, $Z_{0}$ the mid-shunt impedance occurring on the electrical side, and $Z_{0}^{\prime}$ the mid-series impedance occurring on the mechanical side. Solving for $f_{1}, f_{2}, Z_{0}$, and $Z_{0}^{\prime}\left(\varphi^{2}\right)$, i.e., the actual mechanical resistance, we find

$$
\begin{align*}
& f_{2}=\frac{1}{2 \pi \sqrt{L_{0} C_{0}}} \quad f_{1}=\frac{\sqrt{1-k^{2}}}{2 \pi \sqrt{L_{0} C_{0}}} \quad Z_{0}= R_{E}=\frac{1-k^{2}}{2 \pi f_{1} C_{0}} \\
& R_{M}=\varphi^{2} Z_{0}^{\prime}=\frac{1+\sqrt{1-k^{2}}}{2 \pi f_{1}\left(l s_{22}{ }^{2} / t w\right)} \tag{3~g-12}
\end{align*}
$$

Hence, if there is no dissipation in the elements of the crystal, perfect power conversion can be obtained but only over a bandwidth of

$$
\begin{equation*}
\frac{f_{2}-f_{1}}{f_{2}}=1-\sqrt{1-k^{2}} \tag{3~g-13}
\end{equation*}
$$

The other section of Fig. $3 \mathrm{~g}-2$ is a wider bandpass filter having the element values

$$
\begin{align*}
& C_{1}^{\prime}=\frac{l w}{t} \frac{d_{21}{ }^{2}}{s_{22} E}=\frac{f_{2}-f_{1}}{2 \pi f_{1} f_{2} Z_{0}} \quad L_{1}^{\prime}=\frac{\rho l t}{w}\left(\frac{s_{22} E}{d_{21}}\right)^{2}=\frac{Z_{0}}{2 \pi\left(f_{2}-f_{1}\right)} \\
& C_{0}=\frac{\epsilon^{S} l w}{t}=\frac{1}{2 \pi\left(f_{2}-f_{1}\right) Z_{0}} \quad L_{0}=\frac{\left(f_{2}-f_{1}\right) Z_{0}}{2 \pi f_{1} f_{2}} \tag{3g-14}
\end{align*}
$$

Solving for the bandwidth and the impedances

$$
\begin{gather*}
\frac{f_{2}-f_{1}}{f_{m}}=\frac{k}{\sqrt{1-k^{2}}} \quad f_{m}=\sqrt{{f_{1} f_{2}}^{2}}=\frac{1}{2 \pi \sqrt{L_{0} C_{0}}}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}} \\
Z_{0}=R_{E}=\frac{\sqrt{1-k^{2}}}{2 \pi f_{m} C_{0} k} \quad R_{M}=\varphi^{2} Z_{0}=\frac{k}{\sqrt{1-k^{2}}} \frac{1}{2 \pi f_{m} s_{22} E} \frac{w t}{l} \tag{3~g-15}
\end{gather*}
$$

This filter section can efficiently transform mechanical into electrical energy and vice versa with a loss determined only by the dissipation in the elements of the crystal.

The simplest method for mechanically resonating the crystal is to use it near its natural mechanical resonance. An exact equivalent circuit for a vibrating crystal is shown by Fig. 3g-1B. Near the first resonant frequency, the equivalent circuit for a clamped quarter-wave crystal is shown by Fig. $3 \mathrm{~g}-1 C$ while the equivalent circuit for a half-wave crystal is shown by Fig. $3 \mathrm{~g}-1 D$. When the half-wave crystal resonated by a shunt coil is applied to converting electrical into mechanical energy, the same formulas given in Eqs. (3g-14) and (3g-15) and applicable except that $k^{2} /\left(1-k^{2}\right)$ is replaced by $\left(8 / \pi^{2}\right)\left[k^{2} /\left(1-k^{2}\right)\right]$. By using the complete representation of Fig. $3 \mathrm{~g}-1 B$ the effect can be calculated by using various backing plates on the radiation from the front surface.

The general form of Eq. (3g-1) holds for any single mode whether it is longitudinal or transverse as long as the appropriate constants are used. For longitudinal thickness modes when the radiating surface is a number of wavelengths in diameter, $s_{22}{ }^{E}$ is replaced by $1 / c_{11}{ }^{E}$ and $d_{21}$ by $e_{21} / c_{11}{ }^{E}$, the appropriate thickness piezoelectric constant. For a thickness shear mode, the appropriate shear stiffness ( $c_{44}, c_{55}$, or $c_{66}$ )


Frg. 3g-2. Use of equivalent circuit in determining the optimum conditions for energy transmission.
replaces $1 / s_{22}$ and the appropriate shear piezoelectric constant replaces $d_{21}$. Table $3 \mathrm{~g}-1$ lists the constants in mks units for a number of standard crystal cuts.

3g-2. Electrostrictive and Magnetostrictive Materials. Other types of materials that have been used in transducers are ferroelectric crystals and ceramics of the barium titanate type and ferromagnetic crystals, polycrystals, and sintered materials of the ferrite type. All these materials have changes in lengths proportional to squares and even powers of the polarization and to obtain a linear response they have to be polarized. These polarized materials have relations between stresses, strains, electric and magnetic fields, and electric displacement and magnetic flux similar to those for a piezoelectric crystals shown by Eq. (3g-1) and hence these materials can be said to have "equivalent" constants which depend not only on the material but also on the degree of poling and in some cases on aging effects. The dielectric and permeability constants are those associated with the polarized medium as are also the elastic constants.

To obtain these equivalent piezoelectric and piezomagnetic constants, one can start with the more fundamental potential equations which have the same form for either electrostrictive or magnetostrictive materials. For polycrystalline or sintered materials, these potential equations can be written in the form
Table 3g-1. Properties of Piezoelectric Crystals in mis Units

| Crystal and cut | Mode | $\begin{gathered} \text { Elastic } \\ \text { constant, } \\ \mathrm{m}^{2} / \text { newton } \\ \times 10^{11} \end{gathered}$ | Piezoelectric constant $d$, coulombs/newton $\times 10^{12}$ | Dielectric capacitivity $\epsilon$, farads/m $\times 10^{11}$ | Electromechanical coupling k | Open-circuit voltage $g=d / \epsilon$, $\mathrm{m}^{2} /$ newton | Force factor $d / s$, newtons/volt $\times w$ | Density, $\mathrm{kg} / \mathrm{m}^{3}$ $\times 10^{-3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Quartz $X$ cut, length $Y$ | L.L. | $s_{22}{ }^{E}=1.27$ | $d_{21}=2.25$ | 4.06 | 0.099 | 0.055 | 0.177 | 2.65 |
| $X$ cut | T.L. | $\frac{1}{c_{11} E}=1.16$ | $\frac{e_{11}}{c_{11}{ }^{E}}=-2.04$ | 4.06 | 0.093 | 0.050 | 0.175 | 2.65 |
| $Y$ cut | T.S. | $\frac{1}{c_{66}{ }^{E}}=2.57$ | $\frac{e_{26}}{c_{66}{ }^{E}}=+4.4$ | 4.06 | 0.137 | 0.108 | 0.171 | 2.65 |
| Rochelle salt, 45-deg $X$ cut | L.L. | $s_{22}^{\prime}=6.7$ | $\frac{d_{14}}{2}=435$ | 444.0 | 0.78 | 0.098 | 6.5 | 1.77 |
| 45-deg $Y$ cut | L.L. | $s_{11}^{\prime E}=9.89$ | $\frac{d_{25}}{2}=-28.4$ | 9.85 | 0.288 | 0.29 | 0.287 | 1.77 |
| ADP; 45-deg $Z$ cut | L.L. | $s_{11}^{E^{\prime}}=5 . .3$ | $\frac{d_{36}}{2}=24.6$ | 13.8 | 0.29 | 0.178 | 0.465 | 1.804 |
| KDP; $45-\operatorname{deg} Z$ cut | L.L. | $s_{11}^{E^{\prime}}=4.85$ | $\frac{d_{36}}{2}=10.7$ | 19.6 | 0.12 | 0.058 | 0.22 | 2.31 |
| EDT; $Y$ cut, length $X$ | L.L. | $s_{11}{ }^{E}=3.88$ | $d_{21}=11.3$ | 7.4 | 0.215 | 0.152 | 0.29 | 1.538 |
| DKT; 45-deg $Z$ cut | L.L. | $s_{11}^{E^{\prime}}=4.25$ | $d_{31}^{\prime}=-12.2$ | 5.8 | 0.245 | 0.21 | 0.287 | 1.988 |
| L.H.; $Y$ cut | T.L. | $\frac{1}{c_{22}{ }^{E}}=2$ | $\frac{e_{22}}{c_{22}{ }^{\text {E }}}=15$ | 9.15 | 0.35 | 0.165 | 0.75 | 2.06 |
| Hydrostatic | H. |  | $d_{21}+d_{22}+d_{23}=13$ | 9.15 |  | 0.143 |  |  |
| Tourmaline, $Z$ cut | T.L. | $\frac{1}{c_{33}{ }^{E}}=0.61$ | $\frac{e_{33}}{c_{33^{E}}}=-1.84$ | 6.65 | 0.092 | 0.0275 | 0.3 | 3.1 |
| Hydrostatic | H. |  | $d_{31}+d_{33}=-2.16$ | 6.65 |  | 0.0325 |  |  |

[^133]
## ACOUSTICS

$$
\begin{align*}
& G^{*}=-\frac{1}{2}\left[s_{11}{ }^{D}\left(T_{1}{ }^{2}+T_{2}{ }^{2}+T_{3}{ }^{2}\right)+2 s_{12}{ }^{D}\left(T_{1} T_{2}+T_{1} T_{3}+T_{2} T_{3}\right)\right. \\
& \left.+2\left(s_{11}{ }^{D}-s_{12}{ }^{D}\right)\left(T_{4}{ }^{2}+T_{5}{ }^{2}+T_{6}{ }^{2}\right)\right]-\left\{Q_{11}\left(D_{1}{ }^{2} T_{1}+D_{2}{ }^{2} T_{2}+D_{8}{ }^{2} T_{3}\right)\right. \\
& +Q_{12}\left[T_{1}\left(D_{2}{ }^{2}+D_{3}{ }^{2}\right)+T_{2}\left(D_{1}^{2}+D_{3}{ }^{2}\right)+T_{3}\left(D_{1}^{2}+D_{2}{ }^{2}\right)\right] \\
& \left.+2\left(Q_{11}-Q_{12}\right)\left(T_{4} D_{2} D_{3}+T_{5} D_{1} D_{3}+T_{6} D_{1} D_{2}\right)\right\}+\frac{1}{2} \beta_{11}{ }^{T}\left(D_{1}{ }^{2}+D_{2}{ }^{2}+D_{3}{ }^{2}\right) \\
& +K_{11}{ }^{T}\left(D_{1}{ }^{4}+D_{2}{ }^{4}+D_{3}{ }^{4}\right)+K_{12}{ }^{T}\left(D_{1}{ }^{2} D_{2}{ }^{2}+D_{1}{ }^{2} D_{3}{ }^{2}+D_{2}{ }^{2} D_{3}{ }^{2}\right) \\
& +K_{111}{ }^{T}\left(D_{1}{ }^{6}+D_{2}{ }^{6}+D_{3}{ }^{6}\right)+K_{112}{ }^{T}\left[D_{1}{ }^{4}\left(D_{2}{ }^{2}+D_{3}{ }^{2}\right)+D_{2}{ }^{4}\left(D_{1}{ }^{2}+D_{3}{ }^{2}\right)\right. \\
& \left.+D_{3}{ }^{4}\left(D_{1}{ }^{2}+D_{2}{ }^{2}\right)\right]+K_{123}{ }^{T} D_{1}{ }^{2} D_{2}{ }^{2} D_{3}{ }^{2} \tag{3g-16}
\end{align*}
$$

where $T_{1}, T_{2}, T_{3}$ are the three extensional stresses, $T_{4}, T_{5}, T_{6}$ the three shearing stresses, $D_{1}, D_{2}, D_{3}$ the three components of the electrical displacement for ferroelectric materials or the three components of the magnetic flux $B$ for ferromagnetic materials, the $s$ constants are the compliance constants for an isotropic material measured at constant electric or magnetic displacement, the $Q$ 's are the electrostrictive or magnetostrictive constants, $\beta_{11}{ }^{T}$ the inverse of the initial dielectric constant or permeability measured at constant stress, and the $K^{T}$ 's are constants determining the total energy stored for higher polarizations. The static equations can be obtained by differentiation of $G$ according to the relations

$$
\begin{equation*}
S_{i}=-\frac{\partial G}{\partial T_{i}} \quad E_{m}=\frac{\partial G}{\partial D_{m}} \tag{3g-17}
\end{equation*}
$$

Since linear equations are obtained only if a permanent polarization $P_{0}$ is introduced, we assume that

$$
\begin{equation*}
D_{3}=P_{0}+D_{3}^{*} \tag{3~g-18}
\end{equation*}
$$

where $D_{3}{ }^{*}$ is a small variable component superposed on $P_{0}$. Also, $D_{1}$ and $D_{2}$ are small so that their squares and higher powers can be neglected compared with $P_{0}$. Introducing these into ( $3 \mathrm{~g}-16$ ) and differentiating, we have

$$
\begin{align*}
& S_{1}=s_{11} D T_{1}+s_{12} D\left(T_{2}+T_{1}\right)+Q_{12}\left(P_{0}{ }^{2}+2 P_{0} D_{3}{ }^{*}\right) \\
& S_{2}=s_{11} D T_{2}+s_{12} D\left(T_{1}+T_{3}\right)+Q_{12}\left(P_{0}{ }^{2}+2 P_{0} D_{3}{ }^{*}\right) \\
& S_{3}=s_{11} D T_{3}+s_{12} D\left(T_{1}+T_{2}\right)+Q_{11}\left(P_{0}{ }^{2}+2 P_{0} D_{3}{ }^{*}\right) \\
& S_{4}=2\left(s_{11} D-s_{12}{ }^{D}\right) T_{4}+2\left(Q_{11}-Q_{12}\right) P_{0} D_{2} \\
& S_{5}=2\left(s_{11} D-s_{12} D\right) T_{5}+2\left(Q_{11}-Q_{12}\right) P_{0} D_{1}  \tag{3~g-19}\\
& S_{6}=2\left(s_{11} D-s_{12} D\right) T_{6} \\
& E_{1}=-2\left(Q_{11}-Q_{12}\right) P_{0} T_{5}+D_{1}\left(\beta_{11} T+2 K_{12} T^{T} P_{0}{ }^{2}+2 K_{112}{ }^{T} P_{0}{ }^{4}\right) \\
& E_{2}=-2\left(Q_{11}-Q_{12}\right) P_{0} T_{4}+D_{2}\left(\beta_{11} T+2 K_{12} T P_{0}{ }^{2}+2 K_{112}{ }^{T} P_{0}{ }^{4}\right) \\
& E_{3}=-2 Q_{11} P_{0} T_{3}-2 Q_{12} P_{0}\left(T_{1}+T_{2}\right)+D_{3}{ }^{*}\left(\beta_{11}{ }^{T}+12 K_{11}{ }^{T} P_{0}{ }^{2}+30 K_{111}{ }^{T} P_{0}{ }^{4}\right)
\end{align*}
$$

It is obvious that the variable components of Eq. (3g-19) follow the same rule as for a piezoelectric crystal. There are three longitudinal modes and a shearing mode. The length longitudinal mode has the following constants:
L.L. mode $s_{11^{E}}=s_{11}{ }^{D}\left[1+\frac{4 Q_{12}{ }^{2} P_{0}{ }^{2}}{\beta_{33}{ }^{T}\left(P_{0}\right) s_{11}{ }^{D}}\right] \quad d_{31}=\frac{2 Q_{12} P_{0}}{\beta_{33^{T}}\left(P_{0}\right)}$

$$
\begin{equation*}
\epsilon_{33}{ }^{T}\left(P_{0}\right)=\frac{1}{\beta_{33}\left(P_{0}\right)} \tag{3g-20}
\end{equation*}
$$

where $\beta_{33}{ }^{T}\left(P_{0}\right)=\left(\beta_{11}{ }^{T}+12 K_{11}{ }^{T} P_{0}{ }^{2}+30 K_{111}{ }^{T} P_{0}{ }^{4}\right)$ is the dielectric impermeability of the ceramic when it has a permanent polarization $P_{0}$
L.T. bar $s_{11}{ }^{E}=s_{11} D\left[1+\frac{4 Q_{11}{ }^{2} P_{0}{ }^{2}}{\beta_{33} T\left(P_{0}\right) s_{11} D}\right] \quad d_{33}=\frac{2 Q_{11} P_{0}}{\beta_{33}{ }^{T}\left(P_{0}\right)}$

$$
\begin{equation*}
\epsilon_{33}{ }^{T}\left(P_{0}\right)=\frac{1}{\beta_{33} T\left(P_{0}\right)} \tag{3g-21}
\end{equation*}
$$

[^134]Table $3 \mathrm{~g}-2$. Properties of Ceramics at $25^{\circ} \mathrm{C}$

| Material | $\begin{gathered} d_{31} \text { eff, } \\ \text { coulombs } / \text { newton } \\ \times 10^{11} \end{gathered}$ | $\begin{array}{\|c\|} d_{33} \text { eff, } \\ \text { coulombs } / \text { newton } \\ \times 10^{11} \end{array}$ | ${ }_{\boldsymbol{\epsilon}_{3}{ }^{T}\left(P_{0}\right)}$ farads/m $\times 10^{11}$ | $\begin{gathered} Y_{0}{ }^{B}=1 / s^{B} \\ \text { newtons } / \mathrm{m}^{2} \\ \times 10^{11} \end{gathered}$ | Shear stiffness $G^{B}=\frac{1}{\left.2\left(8_{11}\right)^{-}-8_{12} B^{B}\right)}$newtons $/ \mathrm{m}^{2} \times 10^{11}$ | Numerics |  |  | $\begin{gathered} \text { Energy stored } \\ \frac{1}{2}\left(d_{33^{2}} / \epsilon\right) \\ \text { joules } / \mathrm{m} \\ \text { newton }{ }^{2} \times 10^{12} \end{gathered}$ | Open-circuit voltage $g=d_{33} / \epsilon^{T}$ volts $\times$ $\mathrm{m} /$ newton | Force factor $d_{33} Y_{0}{ }^{E} \times 10^{22}$ newton/volts $\times \mathrm{m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $k_{31}$ | ${ }_{33}$ | $k_{15}$ |  |  |  |
| Commercial $\mathrm{BaTiO}_{3}$ ceramic. | -(5.6) | 13-16 | 1,200-1,500 | 1.18 | 0.46 | 0.17 | 0.45 | 0.41 | 0.85 | 0.0108 | 13.5 |
| $97 \% \mathrm{BaTiO}_{3}, 3 \% \mathrm{CaTiO}_{3}$. | -(5.3) | 13.5 | 1,230 | 1.22 | 0.47 | 0.17 | 0.43 | 0.39 | 0.75 | 0.0111 | 11.0 |
| $96 \% \mathrm{BaTiO}_{3}, 4 \% \mathrm{PbTiO}_{3}$. | -(3.8) | 10.5 | 880 | 1.14 | 0.44 | 0.14 | 0.39 | 0.34 | 0.63 | 0.012 | 9.2 |
| $90 \% \mathrm{BaTiO}_{3}, 4 \% \mathrm{PbTiO}_{3}, 6 \% \mathrm{CaTiO}_{3}$ | -(4.0) | 11.5 | 710 | 1.24 | 0.48 | 0.167 | 0.48 | 0.43 | 0.93 | 0.016 | 9.3 |
| $84 \% \mathrm{BaTiO}_{3}, 8 \% \mathrm{PbTiO}_{3}, 8 \% \mathrm{CaTiO}_{3}$. | -(2.7) | 8.0 | 530 | 1.31 | 0.50 | 0.124 | 0.4 | 0.35 | 0.60 | 0.015 | 6.1 |
| $80 \% \mathrm{BaTiO}_{3}, 12 \% \mathrm{PbTiO}_{3}, 8 \% \mathrm{CaTiO}_{3}$ | -(2.0) | 6.0 | 400 | 1.28 | 0.49 | 0.113 | 0.34 | 0.3 | 0.45 | 0.015 | 4.7 |
|  | Data on Brush Ceramics* |  |  |  |  |  |  |  |  |  |  |
| Ceramic A. | -7.8 | 19.0 | 1,520 | 1.10 | 0.423 | 0.214 | 0.52 | 0.49 | 1.2 | 0.0126 | 20.9 |
| $5 \% \mathrm{CaTiO}_{3}$ | -5.8 | 15.0 | 1,050 | 1.16 | 0.445 | 0.193 | 0.5 | $\ldots$ | 1.07 | 0.0142 | 17.4 |
| $5 \% \mathrm{PbTiO}_{3}$ | -5.3 | 12.9 | 1,040 | 1.10 | 0.423 | 0.172 | 0.410 | $\ldots$ | 0.80 | 0.0124 | 14.2 |
| 9\% $\mathrm{CaTiO}_{3}$. | -4.1 | 11.8 | 805 | 1.25 | 0.481 | 0.162 | 0.466 | $\ldots$ | 0.865 | 0.0147 | 14.8 |

[^135]
## ACOUSTICS

These formulas hold for a bar which is long in the direction of vibration compared with the cross-sectional dimensions. When a plate is used which is a number of wavelengths across, the sidewise motions $S_{1}$ and $S_{2}$ are zero and the constants are
L.T. plate

$$
\begin{equation*}
\frac{1}{c_{11} E} \quad d_{33}^{\prime} \quad \epsilon_{33}^{\prime}\left(P_{0}\right) \tag{3g-22}
\end{equation*}
$$

where

$$
\begin{array}{r}
\frac{1}{c_{11} E}=\frac{1}{c_{11}^{P}}+d_{33}^{\prime 2} \epsilon_{33}^{\prime}\left(P_{0}\right) \quad d_{33}^{\prime}=2 P_{0}\left(Q_{11}-\frac{2 s_{12} D}{s_{11}^{D}+s_{12} D} Q_{12}\right) \epsilon_{33}^{\prime}\left(P_{0}\right) \\
\epsilon_{33}^{T^{\prime}}\left(P_{0}\right)=\frac{1}{\beta_{33} T\left(P_{0}\right)+\left[4 Q_{12}^{2} P_{0}^{2} /\left(s_{11}^{D}+s_{12}^{D}\right)\right] \quad \text { and } c_{11}^{D}} \\
=\frac{s_{11}^{D}+s_{12} D}{\left(s_{11}^{D}-s_{12}^{D}\right)\left(s_{11}^{D}+2 s_{12}^{D}\right)}
\end{array}
$$

The thickness shear mode has the fundamental constants $2\left(s_{11}{ }^{E}-s_{12}{ }^{E}\right) ; d_{14} ; \epsilon_{11}{ }^{T}\left(P_{0}\right)$,


Fig. 3g-3. Properties of barium, lead, calcium titanate
i.e., the dielectric constant perpendicular to the poling direction, where
$d_{14}=\frac{2\left(Q_{11}-Q_{12}\right) P_{0}}{\epsilon_{11}^{T}\left(P_{0}\right)} \quad 2\left(s_{11}{ }^{E}-s_{12}^{E}\right)=2\left(s_{11}^{D}-s_{12}^{D}\right)+\frac{4\left(Q_{11}-Q_{12}\right)^{2} P_{0}{ }^{2}}{\beta_{11}^{T}\left(P_{0}\right)}$

$$
\begin{equation*}
\epsilon_{11}^{T}\left(P_{0}\right)=\frac{1}{\left(\beta_{11}^{T}+2 K_{12}^{T} P_{0}^{2}+2 K_{112}^{T} P_{0}^{4}\right)} \tag{3~g-23}
\end{equation*}
$$

Two other modes have been used in electrostrictive and magnetostrictive materials,


ceramics as functions of temperature and composition.

## ACOUSTICS

the radial mode and the torsional mode. The first is driven by polarizing the disk perpendicular to the major surface and involves the same fundamental constants as the length longitudinal mode of Eq. (3g-20). It has been shown ${ }^{1}$ that the effective coupling and the resonant frequency of such disks are given by the equations

$$
\begin{equation*}
k^{2}=\frac{2}{1-\sigma}\left(\frac{4 Q_{11}{ }^{2} P_{0}{ }^{2} \epsilon^{T}\left(P_{0}\right)}{s_{11} E^{E}}\right) \quad f_{R}=\frac{2.03}{2 \pi a} \sqrt{\frac{1}{s_{11}{ }^{E} \rho\left(1-\sigma^{2}\right)}} \tag{3g-24}
\end{equation*}
$$

where $\sigma$ is Poisson's ratio which is approximately 0.3 for barium titanate ceramics. The torsional mode is generated in electrostrictive and magnetostrictive materials when the alternating displacement is at right angles to the polarization. This is easily accomplished for a magnetostrictive material by polarizing a cylinder radially by one set of windings and driving the cylinder by a set of windings coaxial with the cylinder. In an electrostrictive material, a torsional vibration can be obtained by inducing a permanent polarization in different directions on two sides of the cylinder and driving the cylinder by a set of two electrodes with the two gaps between them coming in the region of greatest permanent polarization. The fundamental elastic constant is the shear constant $\left(s_{44}{ }^{E}=s_{55}{ }^{E}\right.$ ) while the fundamental piezoelectric constant is the shear piezoelectric constant $d_{15}$ or the similar magnetostrictive constants.

Table $3 \mathrm{~g}-2$ gives some typical constants for a number of barium titanate compositions with lead and calcium titanate additions. Figure $3 \mathrm{~g}-3$ shows how the fundamental constants vary with temperature over a wide temperature range. Table $3 \mathrm{~g}-3$ gives some typical constants for a number of magnetostrictive materials.

3g-3. Equivalent Circuits for Magnetostrictive Transducers. The energy equation ( $3 \mathrm{~g}-16$ ) is the same for magnetostrictive and electrostrictive materials, provided the electric field and displacement are replaced by the magnetic field $H$ and the magnetic flux density $B$. Hence the equivalent circuit of Fig. 3g-1 also applies to a magnetostrictive material, provided we replace $E$ and $i$ by $\int_{0}^{l} H_{i} d l=U$, the magnetomotive force and $\dot{B} S=\dot{\Phi}$ where $S$ is the cross-sectional area, $\Phi$ the total flux through the magnetostrictive transducer, and $\dot{\Phi}$ the time rate of change of this flux. Hence all the fundamental quantities and coupling factors can be expressed in terms of the analogous quantities as shown by Table $3 \mathrm{~g}-3$. These hold for materials having a closed magnetic circuit such as a ring or a rod with closing magnetic circuit having a reluctance small compared with that for the rod. If this is not true, demagnetizing factors and additional reluctance values have to be taken account of and the value of $\Phi$ is the average value determined by all these factors.

In a transducer, however, it is not $U$ and $\dot{\Phi}$ that we deal with, but rather the input voltage and current. These quantities are related by equations of the type

$$
\begin{equation*}
E=N \frac{d \Phi}{d t} \quad U=N i \tag{3g-25}
\end{equation*}
$$

where $N$ is the number of turns and the voltage, current, flux, and magnetomotive forces are directed as shown by Fig. 3g-4. These are the equations of a gyrator, shown by the symbol of Fig. $3 \mathrm{~g}-4$, which does not satisfy the reciprocity relationship. If we call $Z_{M}$ the magnetic impedance defined by

$$
\begin{equation*}
Z_{M}=\frac{U}{d \Phi / d t} \tag{3g-26}
\end{equation*}
$$

it is evident that the electrical impedance at the terminals of the transducer is equal to

$$
\begin{equation*}
Z_{E}=\frac{E}{i}=\frac{N^{2}}{Z_{M}} \tag{3g-27}
\end{equation*}
$$

${ }^{1}$ W. P. Mason, "Piezoelectric Crystals and Their Application to Ultrasonics," chap. XII, D. Van Nostrand Company, Inc., New York, 1950.
Table 3g-3. Magnetostrictive Properties of Metals and Ferrites


Hence the effect of the gyrator coupling is to invert all the elements of the equivalent circuit. Hence one should determine the element values of Fig. 3g-4 for the appropriate terminating conditions and then invert the values in accordance with Eq. (3g-27) to determine the elements of a magnetostrictive transducer. The values


Fig. 3g-4. Equivalent circuit of a magnetostrictive rod.
given in Fig. 3g-4 are for a longitudinally vibrating rod where $S$ is the cross-sectional area and $l$ the length. $\mu^{s}$ is the average value of the permeability in the equations for the reluctance $R$

$$
\begin{equation*}
R=\frac{l}{\mu^{S} S} \tag{3g-28}
\end{equation*}
$$

where $\mu^{S}$ is for the constant stress condition.

# 3h. Frequencies of Simple Vibrators. Musical Scales 

ROBERT W. YOUNG

U.S. Navy Electronics Laboratory

3h-1. Strings. The fundamental frequency of vibration of an ideal string is

$$
\begin{equation*}
f_{0}=\frac{1}{2 l} \sqrt{\frac{F}{m}} \tag{3h-1}
\end{equation*}
$$

where $f_{0}$ is the frequency, $l$ is the free length, $F$ is the force (tension) stretching the string, and $m$ is the mass per unit length. Values of $m$ for steel and gut strings are given in Table 3h-1.

In addition to the vibration in a single loop which gives rise to the fundamental frequency, the ideal string may vibrate in harmonics whose frequencies are

$$
\begin{equation*}
f_{n}=n f_{0} \tag{3h-2}
\end{equation*}
$$

FREQUENCIES OF SIMPLE VIBRATORS. MUSICAL SCALES 3-101
Table 3h-1. Mass per Unit Length of Steel and Gut Strings*

| Diam |  | Steel, $\mathrm{g} / \mathrm{m}$ | Gut, $\mathrm{g} / \mathrm{m}$ | Diam |  | Steel, $\mathrm{g} / \mathrm{m}$ | Gut, g/m | Diam |  | Steel, $\mathrm{g} / \mathrm{m}$ | Gut, $\mathrm{g} / \mathrm{m}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | in. |  |  | mm | in. |  |  | mm | in. |  |  |
| 0.20 | 0.0079 | 0.25 | 0. | 1.00 | 0.0394 | 6.15 | 1.10 | 1.80 | 0.0709 | 19.9 | 3.56 |
| 0.22 | 0.0087 | 0.30 | 0.05 | 1.02 | 0.0402 | 6.40 | 1.14 | 1.82 | 0.0717 | 20.4 | 3.64 |
| 0.24 | 0.0094 | 0.35 | 0.06 | 1.04 | 0.0409 | 6.65 | 1.19 | 1.84 | 0.0724 | 20.8 | 3.72 |
| 0.26 | 0.0102 | 0.42 | 0.07 | 1.06 | 0.0417 | 6.91 | 1.24 | 1.86 | 0.0732 | 21.3 | 3.80 |
| 0.28 | 0.0110 | 0.48 | 0.09 | 1.08 | 0.0425 | 7.17 | 1.28 | 1.88 | 0.0740 | 21.7 | 388 |
| 0.30 | 0.0118 | 0.55 | 0.10 | 1.1 | 0.0433 | 7.44 | 1.33 | 1.90 | 0.0748 | 22.2 | 3.97 |
| 0.32 | 0.0126 | 0.63 | 0.11 | 1.12 | 0.0441 | 7.71 | 1.38 | 1.92 | 0.0756 | 22.7 | 4.05 |
| 0.34 | 0.0134 | 0.71 | 0.13 | 1.14 | 0.0449 | 7.99 | 1.43 | 1.94 | 0.0764 | 23.1 | 4.14 |
| 0.36 | 0.0142 | 0.80 | 0.14 | 1.16 | 0.0457 | 8.27 | 1.48 | 1.96 | 0.0772 | 23.6 | 4.22 |
| 0.38 | 0.0150 | 0.89 | 0.16 | 1.18 | 0.0465 | 8.56 | 1.53 | 1.98 | 0.0780 | 24.1 | 4.31 |
| 0.40 | 0.0157 | 0.98 | 0.18 | 1.20 | 0.0472 | 8.86 | 1.58 | 2.00 | 0.0787 | 24.6 | 4.40 |
| 0.42 | 0.0165 | 1.08 | 0.19 | 1.22 | 0.0480 | 9.15 | 1.64 | 2.02 | 0.0795 | 25.1 | 4.49 |
| 0.44 | 0.0173 | 1.19 | 0.21 | 1.24 | 0.0488 | 9.46 | 1.69 | 2.04 | 0.0803 | 25.6 | 4.58 |
| 0.46 | 0.0181 | 1.30 | 0.23 | 1.26 | 0.0496 | 9.76 | 1.75 | 2.06 | 0.0811 | 26.1 | 4.67 |
| 0.48 | 0.0189 | 1.42 | 0.25 | 1.28 | 0.0504 | 10.1 | 1.80 | 2.08 | 0.0819 | 26.6 | 4.76 |
| 0.50 | 0.0197 | 1.54 | 0.27 | 1.30 | 0.0512 | 10.4 | 1.86 | 2.10 | 0.0827 | 27.1 | . 85 |
| 0.52 | 0.0205 | 1.66 | 0.30 | 1.32 | 0.0520 | 10.7 | 1.92 | 2.12 | 0.0835 | 27.6 | 4.94 |
| 0.54 | 0.0213 | 1.79 | 0.32 | 1.34 | 0.0528 | 11.1 | 1.97 | 2.14 | 0.0843 | 28.2 | 5.04 |
| 0.56 | 0.0220 | 1.93 | 0.34 | 1.36 | 0.0535 | 11.4 | 2.03 | 2.16 | 0.0850 | 28.7 | 5.13 |
| 0.58 | 0.0228 | 2.07 | 0.37 | 1.38 | 0.0543 | 11.7 | 2.09 | 2.18 | 0.0858 | 29.2 | 5.23 |
| 0.60 | 0.0236 | 2.21 | 0.40 | 1.40 | 0.0551 | 12.1 | 2.16 | 2.20 | 0.0866 | 29.8 | 5.32 |
| 0.62 | 0.0244 | 2.36 | 0.42 | 1.42 | 0.0559 | 12.4 | 2.22 | 2.22 | 0.0874 | 30.3 | 5.42 |
| 0.64 | 0.0252 | 2.52 | 0.45 | 1.44 | 0.0567 | 12.8 | 2.28 | 2.24 | 0.0882 | 30.9 | 5.52 |
| 0.66 | 0.0260 | 2.68 | 0.48 | 1.46 | 0.0575 | 13.1 | 2.34 | 2.26 | 0.0890 | 31.4 | 5.62 |
| 0.68 | 0.0268 | 2.84 | 0.51 | 1.48 | 0.0583 | 13.5 | 2.41 | 2.28 | 0.0898 | 32.0 | 5.72 |
| 0.70 | 0.0276 | 3.01 | 0.54 | 1.50 | 0.0591 | 13.8 | 2.47 | 2.30 | 0.0906 | 32.5 | 5.82 |
| 0.72 | 0.0283 | 3.19 | 0.57 | 1.52 | 0.0598 | 14.2 | 2.54 | 2.32 | 0.0913 | 33.1 | 5.92 |
| 0.74 | 0.0291 | 3.37 | 0.60 | 1.54 | 0.0606 | 14.6 | 2.61 | 2.34 | 0.0921 | 33.7 | 6.02 |
| 0.76 | 0.0299 | 3.55 | 0.64 | 1.56 | 0.0614 | 15.0 | 2.68 | 2.36 | 0.0929 | 34.3 | 6.12 |
| 0.78 | 0.0307 | 3.74 | 0.67 | 1.58 | 0.0622 | 15.4 | 2.74 | 2.38 | 0.0937 | 34.8 | 6.23 |
| 0.80 | 0.0315 | 3.94 | 0.70 | 1.60 | 0.0630 | 15.7 | 2.81 | 2.40 | 0.0945 | 35.4 | 6.33 |
| 0.82 | 0.0323 | 4.14 | 0.74 | 1.62 | 0.0638 | 16.1 | 2.89 | 2.42 | 0.0953 | 36.0 | 6.44 |
| 0.84 | 0.0331 | 4.34 | 0.78 | 1.64 | 0.0646 | 16.5 | 2.96 | 2.44 | 0.0961 | 36.6 | 6.55 |
| 0.86 | 0.0339 | 4.55 | 0.81 | 1.66 | 0.0654 | 16.9 | 3.03 | 2.46 | 0.0968 | 37.2 | 6.65 |
| 0.88 | 0.0346 | 4.76 | 0.85 | 1.68 | 0.0661 | 17.4 | 3.10 | 2.48 | 0.0976 | 37.8 | 6.76 |
| 0.90 | 0.0354 | 4.98 | 0.89 | 1.70 | 0.0669 | 17.8 | 3.18 | 2.50 | 0.0984 | 38.4 | 6.87 |
| 0.92 | 0.0362 | 5.20 | 0.93 | 1.72 | 0.0677 | 18.2 | 3.25 | 2.52 | 0.0992 | 39.1 | 6.98 |
| 0.94 | 0.0370 | 5.43 | 0.97 | 1.74 | 0.0685 | 18.6 | 3.33 | 2.54 | 0.1000 | 39.7 | 7.09 |
| 0.96 | 0.0378 | 5.67 | 1.01 | 1.76 | 0.0693 | 19.0 | 3.41 | 2.56 | 0.1008 | 40.3 | 7.21 |
| 0.98 | 0.0386 | 5.91 | 1.06 | 1.78 | 0.0701 | 19.5 | 3.48 | 2.58 | 0.1016 | 40.9 | 7.32 |

[^136]where $n$ is the integer denoting the particular mode of vibration. The length of each vibration loop is $l / n$. These successive lengths and the corresponding periods of vibration (i.e., the reciprocals of the frequencies) constitute a harmonic series according to the strict mathematical definition; nowadays, however, the frequencies themselves are usually said to make up a harmonic series.
The frequencies of actual strings depart somewhat from the frequencies computed from the simple formula because actual strings are stiff, they may be partially clamped at the ends, they are not infinitely thin, the tension increases with amplitude of vibration, the mass per unit length is not exactly uniform, there is internal damping and damping due to the surrounding air and supports, and the supports are not infinitely rigid. In the formulas which follow damping has been neglected.

For an actual string set

$$
\begin{equation*}
f=n f_{0}(1+G) \tag{3h-3}
\end{equation*}
$$

where the factor $(1+G)$ is a measure of the departure (i.e., the inharmonicity) from the ideal harmonic values. Table $3 \mathrm{~h}-2$ lists values of $G$ for various small perturbations. The approximations are valid only when $G$ is small.

Table 3h-2. Perturbation in Frequency of a String

| Cause | $\boldsymbol{G}$ | Explanation |
| :---: | :---: | :---: |
| Stiffness | $\frac{n^{2} \pi^{3} d^{4} Y}{128 l^{2} F}$ | $Y$ is Young's modulus, $d$ is the diam- <br> eter of the string <br> The support consists of a mass $M$ on a <br> spring of transverse force constant $K$. <br> Multiply by 2 if there are two such <br> supports <br> The mass per unit length is $m=$ <br> $m_{0}[1+g(x)]$ where $m_{0}$ is the mean <br> value over the string and $x$ is the dis- <br> tance from one end of the string; the <br> function $g(x)$ must be small in com- <br> parison with unity |
| Variable density | $-\frac{4 m l}{4 \pi^{2} n^{2} M-K / f_{0}{ }^{2}}$ |  |

For musical purposes it is often convenient to give the inharmonicity in cents (hundredths of an equally tempered semitone) by setting

$$
\begin{equation*}
1+G=2^{\delta / 1,200}=e^{\delta / 1,731} \tag{3h-4}
\end{equation*}
$$

where $\delta$ is the inharmonicity. To a usually acceptable approximation, $\delta=1,731 G$.
If the stiff string listed in Table $3 \mathrm{~h}-2$ is of steel music wire, $Y / \rho=25.5 \times 10^{6}$ $\mathrm{m}^{2} / \sec ^{2}, Y$ being Young's modulus and $\rho$ the density. The tension is very nearly $F=l^{2} \rho f_{0}{ }^{2} \pi d^{2}$. Thus for steel wire, and by virtue of the stiffness formula, the inharmonicity in cents is $\delta=3.4 \times 10^{13} d^{2} / f_{0}{ }^{2} l^{4}$, provided that the diameter and length are in centimeters.

3h-2. Air Columns and Rods. The air within a simple tube of constant cross section, open at both ends or closed at both ends, vibrates freely at a frequency near

$$
\begin{equation*}
f=\frac{n c}{2 l} \tag{3h-5}
\end{equation*}
$$

where $n$ is an integer (mode of vibration number), $c$ is the speed of sound in the contained air, and $l$ is the length of the tube (see Sec. 3d for speed of sound in air and its dependence on temperature). The diameter of the tube must be relatively small;
plane sound waves propagated longitudinally are assumed. The same formula applies to thin rods vibrating longitudinally and suitably supported (say, at distances $l / 2 n$ from the ends) so that the vibration is not inhibited (see Sec. 3 f for speed of sound in solids).

Open organ pipe is an example of a doubly open tube of constant cross section. To calculate its frequency adequately it must be recognized, however, that the air beyond the physical ends of the tube partakes of the vibration and adds inertia to the vibrating system. (This does not mean, however, that there is a velocity antinode beyond the end of the tube.) The necessary corrections to the simple formula are usually introduced as empirical "end corrections" to be added to the geometrical length; thus

$$
\begin{equation*}
f=\frac{n c}{2\left(l+x_{1}+x_{2}\right)} \tag{3h-6}
\end{equation*}
$$

where $x_{1}=0.3 d$ is the correction for the unimpeded end ( $d$ being the inside diameter of the pipe) and $x_{2}=1.4 d$ is the correction for the mouth of the pipe. These are rough approximations; the literature on the end correction is extensive. ${ }^{1}$

The air inside a cylindrical tube that is closed at one end and open at the other vibrates at frequency

$$
\begin{equation*}
f=\frac{n c}{4(l+x)} \tag{3h-7}
\end{equation*}
$$

where $x=x_{1}$ if the open end is unimpeded. In the case of the "closed" organ pipe (meaning closed at one end only), $x=x_{2}$.

The air in a conical tube is resonant in some cases at the same frequencies as a doubly open cylindrical tube of the same length, but there is the important difference that the contained sound waves are spherical rather than plane. Table $3 \mathrm{~h}-3$ gives equations ${ }^{2}$ to be solved for each combination of end conditions; $k=2 \pi f / c$. "Closedopen," for example, means that the smaller end of the truncated cone is closed while the larger end is open; $r_{1}$ is the slant distance from the extrapolated apex of the cone to the smaller end and $r_{2}$ is the slant distance to the larger end. The slant length of the resonator is thus $r_{2}-r_{1}$. When $r_{1}=0$, the length is $r_{2}$ and the cone is complete to the apex. Formulas for computing frequency when the cone is complete are shown at the right of Table $3 \mathrm{~h}-3$. As in the case of cylindrical tubes, the length should be

Table 3h-3. Frequencies of Conical Resonators

| Ends | Equation | For $r_{1}=0$ |
| :---: | :---: | :---: |
| Closed-closed <br> Closed-open <br> Open-closed <br> Open-open | $\begin{aligned} k r_{2}-\tan ^{-1} k r_{2} & =k r_{1}-\tan ^{-1} k r_{1} \\ \tan k\left(r_{2}-r_{1}\right) & =-k r_{1} \\ \tan k\left(r_{2}-r_{1}\right) & =k r_{2} \\ f & =\frac{n c}{2\left(r_{2}-r_{1}\right)} \end{aligned}$ | $\begin{aligned} \tan k r_{2} & =k r_{2} \\ f_{1} & =\frac{n c}{2 r_{2}} \\ \tan k r_{2} & =k r_{2} \\ f & =\frac{n c}{2 r_{2}} \end{aligned}$ |

slightly modified by end corrections. As the angle of the cone increases the correction decreases and may even become negative. ${ }^{3}$

3h-3. Volume Resonators. The Helmholtz resonator consists of a nearly closed cavity of volume $V$ with an opening of acoustical conductance $C$. If the opening is

[^137]in a thin wall the conductance is simply $d$, the diameter of the hole. If the opening is through a short neck of length $l$, approximately
\[

$$
\begin{equation*}
C=\frac{\pi d^{2}}{4(l+0.8 d)} \tag{3h-8}
\end{equation*}
$$

\]

The natural frequency of the resonantor is

$$
\begin{equation*}
f=\frac{c}{2 \pi} \sqrt{\frac{C}{V}} \tag{3h-9}
\end{equation*}
$$

the velocity of sound in the opening being $c$. The equation is valid for wavelengths large in comparison with the dimensions of the resonator.

The ocarina may be recognized as an instrument of the resonator type because the position of an open hole of given size is immaterial; when the holes are all equal they may be opened in any order to give the same scale. The total conductance for use in the formula given above is the sum of the conductance of individual holes, provided that they are separated far enough that there is no interaction.

3h-4. Bars. A long thin bar clamped and/or free at the end(s) can vibrate transversely at the fundamental frequencies listed in Table $3 \mathrm{~h}-4$ under mode 1. The length of the bar is $l, Y$ is Young's modulus, $\rho$ is the density, and $\kappa$ is the radius of gyration about the neutral axis of the cross section. For a round bar $\kappa=d / 4$, where $d$ is the diameter. For a flat bar of thickness $t$ (in the plane of vibration) $\kappa=t / \sqrt{12}$; the width is immaterial. The frequency of a bar clamped at both ends is the same as that of a bar free at both ends. The frequency of a higher mode of vibration can be found by multiplying the fundamental frequency by the ratio indicated in Table $3 \mathrm{~h}-4$;

Table 3h-4. Frequencies of Transverse Vibration of Bars

| Ends | Frequency | Ratio |  |  | Cents |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mode $\rightarrow 1$ | 2 | 3 | 4 | 2 | 3 | 4 |
| Clamped-free | $f_{1}=\frac{0.5597 \kappa}{l^{2}} \sqrt{\frac{Y}{\rho}} 6$ | 6.267 | 17.548 | 34.387 | 3,177 | 4,960 | 6,124 |
| Free-free, or clamped-clamped | $f_{1}=\frac{3.561 \kappa}{l^{2}} \sqrt{\frac{\bar{Y}}{\rho}}$ | 2.756 | 5.404 | 8.933 | 1,755 | 2,921 | 3,791 |

the intervals in cents corresponding to these ratios are given at the extreme right of the table. These are the classic ${ }^{1}$ values for thin bars; the frequencies of actual bars are lowered slightly as a consequence of rotatory inertia, lateral inertia, and shear. ${ }^{2}$ For example, for a steel bar whose length is 40 times the thickness, the frequencies of the first four modes of vibration are expected to be $0.997,0.992,0.984$, and 0.974 times the corresponding "thin" values (i.e., lowered 5, 14, 28, and 46 cents, respectively).

The simple tuning fork may be recognized as an example of dual clamped-free bars. The frequency of a tuning fork made of ordinary steel may be computed approximately from

$$
\begin{equation*}
f=\frac{80,000 t}{l^{2}} \tag{3h-10}
\end{equation*}
$$

${ }^{1}$ Lord Rayleigh, "Theory of Sound," vol. I, p. 280, Macmillan \& Co., Ltd., London, 1894. The interval erroneously given as 2.4359 octaves has been corrected here to 2.4340 octaves $=2,921$ cents.
${ }_{2}$ William T. Thomson, J. Acoust. Soc. Am. 11, 199-204 (1939). There is an error: $m=\beta /\left[1+\beta^{2}(k / L)^{2}\right]^{\frac{1}{2}}, \operatorname{not} m=\beta /\left[1+\beta^{2}(k / L)^{2}\right]$.

Table 3h-5. Frequencies of the Equally Tempered Scale, Based on the
International Standard $\mathrm{A}=440 \mathrm{cps}$

| Note | $S$ | $f$ | $2 \pi f$ | Note | $S$ | $f$ | $2 \pi f$ | Note | $S$ | $f$ | $2 \pi f$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{0}$ | 0 | 16.352 | 102.74 | $\mathrm{C}_{3}$ | 36 | 130.81 | 821.92 | $\mathrm{C}_{6}$ | 72 | 1,046.5 | 6,575.4 |
|  | 1 | 17.324 | 102.74 |  | 37 | 138.59 | 870.79 |  | 73 | 1,108.7 | 6,966.4 |
| $\mathrm{D}_{0}$ | 2 | 18.354 | 115.32 | $\mathrm{D}_{3}$ | 38 | 146.83 | 922.58 | D6 | 741 |  | 7,380.6 |
|  | 3 | 19.445 | 122.18 |  | 39 | 155.56 | 977.43 |  | 75 | 1,244.5 | 7,819.5 |
| $\mathrm{E}_{0}$ | 4 | 20.602 | 129.44 | $\mathrm{E}_{3}$ | 40 | 164.81 | 1,035.6 | $\mathrm{E}_{6}$ | 76 | 1,318.5 | 8,284.4 |
| $\mathrm{F}_{0}$ | 5 | 21.827 | 137.14 | $\mathrm{F}_{3}$ | 41 | 174.61 | 1,097.1 | $\mathrm{F}_{6}$ | 771 | 1,396.9 | 8,777.1 |
|  | 6 | 23.125 | 145.30 |  | 42 | 185.00 | 1,162.4 |  | 78 | 1,480.0 | 9,299.0 |
| $\mathrm{G}_{0}$ | 7 | 24.500 | 153.93 | $\mathrm{G}_{3}$ | 43 | 196.00 | 1,231.5 | $\mathrm{G}_{6}$ | 791801 | 1,568.0 | 9,851.9 |
|  | 8 | 25.957 | 163.09 |  | 44 | 207.65 | 1,304.7 |  |  |  | 10,438 |
| $\mathrm{A}_{0}$ | 9 | 27.500 | 172.59 | $\mathrm{A}_{3}$ | 45 | 220.00 | 1,382.3 | $\mathbf{A}_{6}$ | 8111 | 1,760.0 |  |
|  | 10 | 29.135 | 183.06 |  | 46 | 233.08 | 1,464.5 |  |  | 1,864.7 | 11,716 |
| $\mathrm{B}_{0}$ | 11 | 30.868 | 193.95 | $\mathrm{B}_{\beta}$ | 47 | 246.94 | 1,551.6 | $\mathrm{B}_{6}$ | 831 | 1,975.5 | 12,413 |
| $\mathrm{C}_{1}$ | 12 | 32.703 | 205.48 | $\mathrm{C}_{4}$ | 48 | 261.63 | 1,643.8 | $\mathrm{C}_{7}$ | 84 <br> 85 <br> 2 | 2,093.0 | 13,151 |
|  | 13 | 34.648 | 217.70 |  | 49 | 277.18 | 1,741.6 |  |  | 2,217.5 | 13,933 |
| $\mathrm{D}_{1}$ | 14 | 36.708 | 230.64 | $\mathrm{D}_{4}$ | 50 | 293.66 | 1,845.2 | $\mathrm{D}_{7}$ |  | $2,349.3$$2,489.0$ |  |
|  | 15 | 38.891 | 244.36 |  | 51 | 311.13 | 1,954.9 |  | 87 |  | 15,639 |
| $\mathrm{E}_{1}$ | 16 | 41.203 | 258.89 | $\mathrm{E}_{4}$ | 52 | 329.63 | 2,071.1 | $\mathrm{E}_{7}$ | 882 | 2,637.0 | 016,569 |
| $\mathrm{F}_{1}$ | 17 | 43.654 | 274.28 | $\mathrm{F}_{4}$ | 53 | 349.23 | 2,194.3 | $\mathrm{F}_{7}$ | 89 | 2,793.8 | 17,554 |
|  | 18 | 46.249 | 290.59 |  | 54 | 369.99 | 2,324.7 |  | 90 | 2,960.0 | 18,598 |
| $\mathrm{G}_{1}$ | 19 | 48.999 | 307.87 | $\mathrm{G}_{4}$ | 55 | 392.00 | 2,463.0 | $\mathrm{G}_{7}$ | $913,136.0$ |  | 19,704 |
|  | 20 | 51.913 | 326.18 |  | 56 | 415.30 | 2,609.4 |  | 92 | 3,322.4 | 20.875 |
| $\mathbf{A}_{1}$ | 21 | 55.000 | 345.58 | $\mathrm{A}_{4}$ | 57 | 440.00 | 2,764.6 | $\mathbf{A}_{7}$ | 93943 | $\left\lvert\, \begin{aligned} & 3,520.0 \\ & 3,729.3 \end{aligned}\right.$ | 22,117 |
|  | 22 | 58.270 | 366.12 |  | 58 | 466.16 | 2,929.0 |  |  |  | 23,432 |
| $\mathrm{B}_{1}$ | 23 | 61.735 | 387.90 | $\mathrm{B}_{4}$ | 59 | 493.88 | 3,103.2 | $\mathrm{B}_{7}$ | 95 | $3,951.1$ | 24,825 |
| $\mathrm{C}_{2}$ | 24 | 65.406 | 410.96 | $\mathrm{C}_{5}$ | 60 | 523.25 | 3,287.7 | $\mathrm{C}_{8}$ | 96 | $\begin{aligned} & 4,186.0 \\ & 4,434.9 \end{aligned}$ | $26,301$ |
|  | 25 | 69.296 | 435.40 |  | 61 | 554.37 | 3,483.2 |  |  |  | $27,865$ |
| $\mathrm{D}_{2}$ | 26 | 73.416 | 461.29 | $\mathrm{D}_{5}$ | 62 | $\begin{aligned} & 587.33 \\ & 622.25 \end{aligned}$ | 3,690.3 | $\mathrm{D}_{8}$ | $\begin{array}{l\|l} 98 & 4 \\ 99 & 4 \end{array}$ | $\begin{aligned} & 4,698.6 \\ & 4,978.0 \end{aligned}$ | $\begin{aligned} & 29,522 \\ & 31,278 \end{aligned}$ |
|  | 27 | 77.782 | 488.72 |  | 63 |  | 3,909.7 |  |  |  |  |
| $\mathrm{E}_{2}$ | 28 | 82.407 | 517.78 | $\begin{aligned} & \mathrm{E}_{5} \\ & \mathrm{~F}_{5} \end{aligned}$ | 64 | 659.26 | 4,142.2 | E88 F | 1005 | $5,274.0$ | 33,138 |
| $\mathrm{F}_{2}$ | 29 | 87.307 | 548.57 |  | 65 | 698.46 | 4,388.5 | $\mathrm{F}_{8}$ | 1015 | 5,587.7 | 35,108 |
|  | 30 | 92.499 | 581.19 | $\mathrm{G}_{5}$ | 66 | 739.99 | 4,649.5 | $\mathrm{G}_{8}$ | 102 | 5,919.9 | 37,196 |
| $\mathrm{G}_{2}$ | 31 | 97.999 | 615.74 |  | $\begin{aligned} & 67 \\ & 68 \end{aligned}$ | $\left\|\begin{array}{l} 783.99 \\ 830.61 \end{array}\right\|$ | $\begin{aligned} & 4,926.0 \\ & 5,218.9 \end{aligned}$ |  | $\begin{aligned} & 103 \\ & 104 \end{aligned}$ | $\begin{aligned} & 6,271.9 \\ & 6,644.9 \end{aligned}$ | $\begin{aligned} & 9 \\ & 99,408 \\ & 41,751 \end{aligned}$ |
|  | 32 | 103.83 | 652.36 |  |  |  |  |  |  |  |  |
| $\mathrm{A}_{2}$ | 33 | 110.00 | 691.15 | $\mathrm{A}_{5}$ | $\begin{aligned} & 69 \\ & 70 \\ & \hline \end{aligned}$ | $\left\|\begin{array}{l} 880.00 \\ 932.33 \end{array}\right\|$ | $\begin{aligned} & 5,529.2 \\ & 5,858.0 \end{aligned}$ | $\mathrm{A}_{8}$ | $\begin{aligned} & 105 \\ & 106 \end{aligned}$ | $\begin{aligned} & 7,040.0 \\ & 7,458.6 \end{aligned}$ | $\left\lvert\, \begin{aligned} & 44,234 \\ & 46,864 \end{aligned}\right.$ |
|  | 34 | 116.54 | 732.25 |  |  |  |  |  |  |  |  |
| $\mathrm{B}_{2}$ | 35 | 123.47 | 775.79 | $\mathrm{B}_{5}$ | 71 | 987.77 | 6,206.3 | $\mathrm{B}_{8}$ | 1077 | 7,902.1 49,6 |  |

Numerous subscript notations have been employed to distinguish the notes of one octave from those of another. The particular scheme used here assigns to $\mathrm{C}_{0}$ a frequency which corresponds roughly to the lowest pitch. $S$ is the number of semitones counted from this $\mathrm{C}_{0}$.

## ACOUSTICS

provided that the thickness $t$ and length $l$ of the prongs are given in centimeters.
It is evident from Table 3h-4 that the different modes of vibration of a uniform bar are inharmonic. However, the cross section of the bar in the modern xylophone or marimba is often given an empirical lengthwise "undulation" such that the second mode of vibration of the free-free bar is changed in frequency to 3 or 4 times the fundamental frequency. ${ }^{1}$ The frequencies of the higher modes of vibration are also modified

## Table 3h-6. Intervals in Cents Corresponding to Certain frequency Ratios

| Name of interval | Frequency ratio | Cents |
| :---: | :---: | :---: |
| Unison. | 1:1 | 0 |
| Minor second or semitone. | 1.059463:1 | 100 |
| Semitone. | 16:15 | 111.731 |
| Minor tone or lesser whole tone. | 10:9 | 182.404 |
| Major second or whole tone. | 1.122462:1 | 200 |
| Major tone or greater whole tone. | 9:8 | 203.910 |
| Minor third. | 1.189207:1 | 300 |
| Minor third. | 6:5 | 315.641 |
| Major third | 5:4 | 386.314 |
| Major third | 1.259921:1 | 400 |
| Perfect fourth. | 4:3 | 498.045 |
| Perfect fourth. | 1.334840:1 | 500 |
| Augmented fourth. | 45:32 | 590.224 |
| Augmented fourth. | 1.414214:1 | 600 |
| Diminished fifth. | 1.414214:1 | 600 |
| Diminished fifth. | 64:45 | 609.777 |
| Perfect fifth. | 1.498307:1 | 700 |
| Perfect fifth. | 3:2 | 701.955 |
| Minor sixth. | 1.587401:1 | 800 |
| Minor sixth. | 8:5 | 813.687 |
| Major sixth. | 5:3 | 884.359 |
| Major sixth. | 1.681793:1 | 900 |
| Harmonic minor seventh. | 7:4 | 968.826 |
| Grave minor seventh | 16:9 | 996.091 |
| Minor seventh. | 1.781797:1 | 1,000 |
| Minor seventh. | 9:5 | 1,017.597 |
| Major seventh. | 15:8 | 1,088.269 |
| Major seventh. | 1.887749:1 | 1,100 |
| Octave. | 2:1 | 1,200.000 |

by variation in cross section for special purposes such as the simulation of the sound of a bell. ${ }^{2}$

3h-5. Musical Scales. By international agreement the standard tuning frequency for musical performance is the A of 440 cps . The frequencies of the equally tempered scale based on this frequency appear in Table 3h-5. Middle C thus has a frequency of 261.6 cps . The $C$ of 256 cps , frequently used in the past for demonstrations in physics, has never been adopted for practical musical performance.

[^138]For many calculations with musical intervals it is convenient to deal with logarithmic units that can be added instead of the ratios which must be multiplied. The octave is equal to 1,200 logarithmic cents, and the equally tempered semitone is 100 cents. The interval in cents corresponding to any two frequencies $f_{1}$ and $f_{2}$ is $1,200 \log _{2}\left(f_{2} / f_{1}\right)=3,986 \log _{10}\left(f_{2} / f_{1}\right)$. Table $3 \mathrm{~h}-6$ lists certain common intervals in cents, and the corresponding ratios; the frequency ratios for intervals up to 100 cents are given in Table 3h-7.

Table 3h-7. Ratios for Intervals to 100 Cents

| Cents | Ratio | Cents | Ratio | Cents | Ratio | Cents | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1.000000 | 25 | 1.014545 | 50 | 1.029302 | 75 | 1.044274 |
|  | 1.000578 | 26 | 1.015132 | 51 | 1.029896 | 76 | 1.044877 |
| 2 | 1.001158 | 27 | 1.015718 | 52 | 1.030492 | 77 | 1.045481 |
| 3 | 1.001734 | 28 | 1.016305 | 53 | 1.031087 | 78 | 1.046085 |
| 4 | 1.002313 | 29 | 1.016892 | 54 | 1.031683 | 79 | 1.046689 |
|  |  |  |  |  |  |  |  |
| 5 | 1.002892 | 30 | 1.017480 | 55 | 1.032079 | 80 | 1.047294 |
| 6 | 1.003472 | 31 | 1.018068 | 56 | 1.032876 | 81 | 1.047899 |
| 7 | 1.004052 | 32 | 1.018656 | 57 | 1.033473 | 82 | 1.048505 |
| 8 | 1.004632 | 33 | 1.019244 | 58 | 1.034070 | 83 | 1.049111 |
| 9 | 1.005212 | 34 | 1.019833 | 59 | 1.034667 | 84 | 1.049717 |
|  |  |  |  |  |  |  |  |
| 10 | 1.005793 | 35 | 1.020423 | 60 | 1.035265 | 85 | 1.050323 |
| 11 | 1.006374 | 36 | 1.021012 | 61 | 1.035863 | 86 | 1.050930 |
| 12 | 1.006956 | 37 | 1.021602 | 62 | 1.036462 | 87 | 1.051537 |
| 13 | 1.007537 | 38 | 1.022192 | 63 | 1.037060 | 88 | 1.052145 |
| 14 | 1.008120 | 39 | 1.022783 | 64 | 1.037660 | 89 | 1.052753 |
|  |  |  |  |  |  |  |  |
| 15 | 1.008702 | 40 | 1.023374 | 65 | 1.038259 | 90 | 1.053361 |
| 16 | 1.009285 | 41 | 1.023965 | 66 | 1.038859 | 91 | 1.053970 |
| 17 | 1.009868 | 42 | 1.024557 | 67 | 1.039459 | 92 | 1.054579 |
| 18 | 1.010451 | 43 | 1.025149 | 68 | 1.040060 | 93 | 1.055188 |
| 19 | 1.011035 | 44 | 1.025741 | 69 | 1.040661 | 94 | 1.055798 |
|  |  |  |  |  |  |  |  |
| 20 | 1.011619 | 45 | 1.026334 | 70 | 1.041262 | 95 | 1.056408 |
| 21 | 1.012204 | 46 | 1.026927 | 71 | 1.041864 | 96 | 1.057018 |
| 22 | 1.012789 | 47 | 1.027520 | 72 | 1.042466 | 97 | 1.057629 |
| 23 | 1.013374 | 48 | 1.028114 | 73 | 1.043068 | 98 | 1.058240 |
| 24 | 1.013959 | 49 | 1.028708 | 74 | 1.043671 | 99 | 1.058851 |

# 3i. Radiation of Sound 

FRANK MASSA<br>Massa Laboratories, Incorporated

3i-1. Introduction. Radiation of sound may take place in a number of ways but, basically, all sound generators cause an alternating pressure to be set up in the fluid medium within which the sound energy is established. The sound energy that is set up in a medium depends not only on the physical characteristics of the medium and the oscillatory volume displacement of the fluid set up by the vibrating source but also upon the size and shape of the generator. The acoustic power generated by any vibrating source can be expressed by

$$
\begin{equation*}
P=U^{2} R_{A} \times 10^{-7} \quad \text { watts } \tag{3i-1}
\end{equation*}
$$

where $U=$ rate of volume displacement of the fluid, cc/sec
$R_{A}=$ acoustic radiation resistance of the source, acoustic ohms
If the rate of volume displacement is taken in peak cc/sec, Eq. (3i-1) will yield peak watts of power. If the volume displacement is taken in $\mathrm{rms} \mathrm{cc} / \mathrm{sec}$, the power will be given in rms watts.

Of the many possible methods for generating sound, two types of generators will effectively serve to classify most of them. These basic generators are (1) pulsating sphere, and (2) vibrating piston.

Each type of generator has a different acoustic impedance characteristic which depends on the dimensions of the source and on the frequency of vibration.

3i-2. Acoustic Impedance. Pulsating Sphere. The specific acoustic impedance of a pulsating sphere is given by

$$
\begin{equation*}
z=\frac{\rho c}{1+[1 /(\pi D / \lambda)]^{2}}+j \frac{\rho c /(\pi D / \lambda)}{1+[1 /(\pi D / \lambda)]^{2}} \quad \text { acoustic ohms } / \mathrm{cm}^{2} \tag{3i-2}
\end{equation*}
$$

where $\rho=$ density of the medium, $\mathrm{g} / \mathrm{cc}$
$c=$ velocity of sound in the medium, $\mathrm{cm} / \mathrm{sec}$
$D=$ diameter of the sphere, cm
$\lambda=c / f$
$f=$ frequency, cps
It can be seen from inspection that at high frequencies, where $D / \lambda$ becomes very large, the specific acoustic impedance becomes a pure resistance equal to $\rho c$ and the reactance term vanishes. At low frequencies, where $D / \lambda$ is small, the specific acoustic impedance becomes

$$
\begin{equation*}
z=\rho c\left(\frac{\pi D}{\lambda}\right)^{2}+j \rho c \frac{\pi D}{\lambda} \quad \text { acoustic ohms } / \mathrm{cm}^{2} \tag{3i-3}
\end{equation*}
$$

A plot of the specific acoustic resistance and reactance of a pulsating sphere as a function of $D / \lambda$ is shown in Fig. 3i-1. To obtain the total acoustic radiation resistance
$\boldsymbol{R}_{\mathbf{A}}$ of the sphere, it is necessary to divide the specific acoustic resistance by the total surface area of the sphere in $\mathrm{cm}^{2}$. The value of $R_{A}$ thus determined, when substituted in Eq. (3i-1), will give the actual acoustic watts being generated by the spherical source.

Vibrating Piston. The specific acoustic impedance of a circular piston set in an infinite rigid baffle and radiating sound from one of its surfaces is given by

$$
\begin{equation*}
z=\rho c\left[1-\frac{J_{1}(2 \pi D / \lambda)}{\pi D / \lambda}\right]+j \rho c \frac{K_{1}(2 \pi D / \lambda)}{2(\pi D / \lambda)^{2}} \quad \text { acoustic ohms } / \mathrm{cm}^{2} \tag{3i-4}
\end{equation*}
$$

where $D$ is the diameter of the piston in centimeters, $J_{1}$ and $K_{1}$ are Bessel functions, and the remaining symbols are defined under Eq. (3i-2).


Fra. 3i-1. Specific acoustic resistance $R$ and reactance $X$ of a pulsating sphere (dashed curves) and a vibrating piston set in an infinite baffle (solid curves). To obtain magnitude of $R$ or $X$ multiply ordinates by $\rho c$ of the medium.

At high frequencies, where $D / \lambda$ is large, Eq. (3i-4) reduces to a pure resistance equal to $\rho c$. At low frequencies, where $D / \lambda$ is small, the specific acoustic impedance for a piston set in an infinite baffle with one side radiating becomes

$$
\begin{equation*}
z=\frac{\rho c(\pi D / \lambda)^{2}}{2}+j \rho c \frac{8 D}{3 \lambda} \quad \text { acoustic ohms } / \mathrm{cm}^{2} \tag{3i-5}
\end{equation*}
$$

A plot of the specific acoustic resistance and reactance for a vibrating piston mounted in an infinite baffle is shown in Fig. 3i-1. To obtain the total acoustic radiation resistance of the piston, it is necessary to divide the specific resistance by the piston area in $\mathrm{cm}^{2}$. The value of $\boldsymbol{R}_{A}$ so determined, when substituted in Eq. (3i-1), will give the actual acoustic watts being generated by a piston.

Summary of Radiation Impedance Characteristics. In Table 3i-1 are shown the magnitudes of the acoustic radiation resistance and reactance for a sphere and piston for both low-frequency ( $D / \lambda$ small) and high-frequency ( $D / \lambda$ large) operation.

## Table 3i-1. Tabulated Values of the Total Acoustic Radiation Resistance and Reactance of a Sphere and Piston in Acoustic Ohms

|  | $D / \lambda \ll 1$ |  | $D / \lambda \gg 1$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $R_{\text {A }}$ | $X_{A}$ | $R_{\text {A }}$ | $X_{4}$ |
| Pulsating sphere | $\rho c \frac{\pi}{4 \lambda^{2}}$ | $\frac{\rho c}{\pi D \lambda}$ | $\frac{\rho C}{A}$ | 0 |
| Vibrating piston (in infinite baffle) | $\rho c \frac{\pi}{2 \lambda^{2}}$ | $\rho c \frac{8}{3 \pi D \lambda}$ | $\frac{\rho C}{A}$ | 0 |

$\rho=$ density of the medium, $\mathrm{g} / \mathrm{cm}^{2}$
$c=$ velocity of sound in the medium, $\mathrm{cm} / \mathrm{sec}$
$\lambda=$ wavelength of sound in the medium, cm
$\lambda=c / f$
$f=$ frequency of the sound vibration, cps
$D=$ diameter of sphere or pistion, cm
$A=$ surface area of sphere or piston, $\mathrm{cm}^{2}$

3i-3. Directional Radiation of Sound. Whenever sound energy is generated from a source whose dimensions are small compared with the wavelength of the vibration in the medium, the intensity will be uniform in all angular directions and the generator is generally defined as a point source. When the dimensions of the vibrating surface are large compared with the wavelength, phase interferences will be experienced at different points in space due to the differences in time arrival of the vibrations originating from different portions of the surface, which results in a nonuniform directional radiation pattern. Practical use is made of this phenomena when it is desired to produce special directional patterns by arranging the geometry and size of the vibrating surfaces of a sound generator to create the desired characteristic.

In many instances, a transmitter is designed so that the sound is radiated in a relatively sharp beam so that the energy is concentrated only within a specific desired angular region. When such a directional structure is employed as a receiver, the transducer will be more capable of picking up weak signals from a specified direction than would be the case from a nondirectional transducer. The reason for this improvement is the reduced sensitivity of the directional receiver to random background noises that will be present in all directions from the source. The number of decibels by which the signal-to-noise ratio is improved by a directional receiver over a nondirectional receiver is known as the directivity index of the transducer. It will be defined more fully later. The following will show the directional radiation characteristics of several common structures.

Uniform Line Source. If a uniform long line is vibrating at uniform amplitude, the radiated sound intensity will be a maximum in a plane which is the perpendicular bisector of the line. At angles removed from the perpendicular bisector of the line, the intensity will fall off to a series of nulls and secondary maxima of diminishing amplitudes as the angle of incidence to the axis of the line deviates from the normal bisector of the line. For a line of length $L$ vibrating uniformly over its entire length
at a frequency corresponding to a wavelength of sound $\lambda$ in the medium, the ratio of the sound pressure $p_{\theta}$ produced at an angle $\theta$ removed from the normal axis of maximum response to the sound pressure $p_{0}$ on the normal axis is given by

$$
\begin{equation*}
\frac{p_{\theta}}{p_{0}}=\frac{\sin [(\pi L / \lambda) \sin \theta]}{(\pi L / \lambda) \sin \theta} \tag{3i-6}
\end{equation*}
$$

If $L$ is large compared with $\lambda$, the response as a function of $\theta$ will go through a series of nulls and secondary maxima of successively diminishing amplitudes.


Fig. 3i-2. Total beam angle for a piston, ring, and line source as a function of size of source to wavelength of sound being radiated. $A$, thin ring of diameter $D$. $B$, uniform line of length $L . C$, piston of diameter D. (Curves A and C from Massa, "Acoustic Design Charts," The Blakiston Division, McGraw-Hill Book Company, Inc., New York, 1942.)

Circular Piston in Infinite Baffe. The directional radiation pattern from a large circular piston vibrating at constant amplitude and phase and set into an infinite rigid baffle may be obtained from the expression

$$
\begin{equation*}
\frac{p_{\theta}}{p_{0}}=\frac{2 J_{1}[(\pi D / \lambda) \sin \Theta]}{(\pi D / \lambda) \sin \theta} \tag{3i-7}
\end{equation*}
$$

where $p_{\theta}=$ sound pressure at an angle $\theta$ from the normal axis of the piston
$p_{0}=$ sound pressure on normal axis of piston
$D=$ diameter of piston
$\lambda=$ wavelength of sound
$J_{1}=$ Bessel function of order 1
From this equation, it can be seen that, as $D / \lambda$ increases, the beam width becomes smaller and the sound pressure goes through a series of nulls and secondary maxima as $\theta$ progressively departs from the normal axis to the piston.

Thin Circular Ring. The directional radiation pattern from a large narrow circular ring of diameter $D$ vibrating at constant amplitude and fitted into an infinite plane
baffle may be obtained from the expression

$$
\begin{equation*}
\frac{p_{\theta}}{p_{0}}=J_{0}\left(\frac{\pi D}{\lambda} \sin \Theta\right) \tag{3i-8}
\end{equation*}
$$

where $J_{0}=$ Bessel function of order zero and all other symbols are defined under Eq. (3i-7).
Beam Width for Line, Piston, and Ring. From Eqs. (3i-6), (3i-7), and (3i-8), the total beam width has been computed for the radiation from each of the three types of sound generators. The total beam width is here defined as the angle $2 \theta$ at which the pressure $p_{\theta}$ is reduced 10 db in magnitude from the maximum on axis response $p_{0}$. By setting $p_{\Theta} / p_{0}$ equal to -10 db or 0.316 in magnitude in these equations, the three curves plotted in Fig. 3i-2 were computed.


Fig. 3i-3. Directivity index of a piston or ring as a function of total beam angle where beam angle is defined as the included angle of the main beam between the 10-decibel-down points in the directional response. (Computed from Massa, "Acoustic Design Charts," The Blakiston Division, McGraw-Hill Book Company, Inc., New York, 1942.)

3i-4. Directivity Index. It has already been mentioned that a directional transducer has an advantage over a nondirectional structure whenever it is desired to send or receive signals from a particular localized direction only. The fact that the directional transducer is less sensitive to sounds coming from random undesired directions makes it possible for it to detect weaker signals than would be possible with a nondirectional unit. The measure of this improvement in decibels corresponds to the directivity index of the transducer. The directivity index of a transducer is defined as the ratio of the total power radiated by a transducer to the total power required by a nondirectional transducer to produce the same peak intensity as is produced by the directional transducer on its axis of maximum response.

The directivity index of a transducer is expressed in decibels, and a plot of the directivity index as a function of beam width for a piston or ring is shown in Fig. 3i-3.

# 3j. Architectural Acoustics 

CYRIL M. HARRIS<br>Columbia University

3j-1. Sound-absorptive Materials. When sound waves strike a surface, the energy may be divided into three portions: the incident, reflected, and absorbed energy. Suppose plane waves are incident on a surface of infinite extent. For this case, the absorption coefficient $\alpha$ of the surface may be defined as

$$
\begin{equation*}
\alpha=\frac{\int_{s} \mathrm{I}_{p} \cdot \mathrm{ds}}{\int_{s} \mathrm{I}_{A} \cdot \mathrm{ds}} \tag{3j-1}
\end{equation*}
$$

where $I_{p}$ is the time average of the intensity vector of the sound field at the absorptive surface; $d s$ is the vector surface element-the positive direction being into the material from the incident side; and $I_{A}$ is the time average of the intensity vector which would exist at the surface element if the surface were removed. The absorption coefficient defined above is a function of angle of incidence and frequency.
For acoustical designing in architecture it is convenient to use an "average" absorption coefficient $\alpha$ which is assumed to depend only on the physical characteristics of the material and not on the sound field. These are the values of absorption that are given in this section. A surface having an absorption coefficient $\alpha$ and area $S$ square feet is said to have an absorption of $\alpha S$ sabins. Thus the sabin (sometimes called a square-foot unit of absorption) is the absorption equivalent of 1 sq ft of material having an absorption coefficient of unity.

A quantity which describes the acoustical properties of a material that is more fundamental than absorption coefficient is its acoustic impedance, defined as the complex ratio of sound pressure to the corresponding particle velocity at the surface of the material. Because of the complexities involved in the solutions to problems of room acoustics by boundary-value theory in terms of boundary impedances, ${ }^{1}$ the simpler concept of absorption coefficient is usually employed in calculating the acoustical properties of rooms, as indicated in the following section.

Most manufactured acoustical materials depend largely on their porosity for their acoustic absorption, the sound waves being converted into heat as they are propagated into the interstices of the material and also by vibration of the small fibers of the material. Another important mechanism of absorption is panel vibration; when sound waves force a panel into motion the resulting flexual vibration converts a fraction of the incident sound energy into heat.

The average value of absorption coefficient of a material varies with frequency. Tables usually list the values of $\alpha$ at $125,250,500,1,000$, and $4,000 \mathrm{cps}$, or at 128,256 ,

[^139]$512,1,024,2,048$, and $4,096 \mathrm{cps}$, which for practical purposes are identical. In comparing materials which are used for noise-reduction purposes in offices, banks, corridors, etc., it is sometimes useful to employ a single figure called the noise-reduction coefficient (abbreviated NRC) of the material which is the average of the absorption coefficients at $250,500,1,000$, and $2,000 \mathrm{cps}$, to the nearest multiple of 0.05 .

Figures $3 \mathrm{j}-1$ through $3 \mathrm{j}-4$ give the absorption coefficient vs. frequency for several types of acoustical material. ${ }^{1}$ The absorption-frequency characteristics of regularly perforated cellulose fiber tile $\frac{3}{4}$ in. thick is shown in Fig. $3 \mathrm{j}-1$. These curves represent average coefficients for materials of the same type, thickness, and method of mounting but of different manufacture. Similar data are shown in Fig. 3j-2 for fissured mineral tile $\frac{13}{16}$ in. thick. Values of noise-reduction coefficient are shown to the right of the graph. Values of absorption coefficient for various types of building materials are


Frg. 3j-1. The absorption vs. frequency characteristic for regularly perforated cellulose fiber acoustical tile. These data represent average values for $\frac{3}{4}-\mathrm{in}$. tile having the same thickness and mounted in the same way but of different manufacture. (After H.J. Sabine.)
given in Table $3 \mathrm{j}-1 .{ }^{2}$ The equivalent absorption of individuals and seats, expressed in sabins, is given in Table $3 \mathrm{j}-2$. More complete data, and data for other types of material, are given in Knudsen and Harris. ${ }^{3}$ Sound-absorptive materials and structures may be classified in the following way: (1) prefabricated units, including acoustical tile, tile boards, and certain mechanically perforated units backed with absorptive material; (2) acoustical plasters; (3) acoustical blankets, consisting of mineral wool, glass fibers, hair felt, or wood fibers held together in blanket form by a suitable binder; (4) panel absorbers, including panels of plywood, paperboard, and pressed-wood fiber; (5) membrane absorbers consisting of a membrane of negligible stiffness backed by an enclosed air space; (6) resonator absorbers of the Helmholtz type; and (7) special types.

[^140]

Fig. 3j-2. The absorption vs. frequency characteristic for fissured mineral tile. These data represent average values for $\frac{13}{16}$-in. tile having the same thickness and mounted in the same way but of different manufacture. (After H. J. Sabine.)


Fig. 3j-3. The absorption vs. frequency characteristic for regularly perforated cellulose fiber acoustical tile which has been spot-cemented to a rigid surface. These data represent the average value for tiles of different manufacture, mounted in the same way and having different thickness. (After H. J. Sabine.)

3j-2. Reverberation-time Calculations. After sound has been produced in or enters an enclosed space it will be reflected by the boundaries of the enclosure. Although some energy is lost at each reflection, several seconds may elapse before the sound decays to inaudibility. This prolongation of sound after the original source has stopped is called reverberation, a certain amount of which is found to add a pleasing

Table 3j-1. Absorption Coefficients for Building Materials*

| Material | Coefficients |  |  |
| :---: | :---: | :---: | :---: |
|  | 125 cps | 500 cps | 2,000 cps |
| Brick wall, painted. | 0.012 | 0.017 | 0.023 |
| Same, unpainted. | 0.024 | 0.03 | 0.049 |
| Carpet, unlined. | 0.09 | 0.20 | 0.27 |
| Same, felt-lined. | 0.11 | 0.37 | 0.27 |
| Fabrics, hung straight: |  |  |  |
| Light, $10 \mathrm{oz} / \mathrm{sq}$ yd. | 0.04 | 0.11 | 0.30 |
| Medium, $14 \mathrm{oz} / \mathrm{sq}$ yd. | 0.06 | 0.13 | 0.40 |
| Heavy, draped, $18 \mathrm{oz} / \mathrm{sq}$ yd. | 0.10 | 0.50 | 0.82 |
| Floors: |  |  |  |
| Concrete or terrazzo. | 0.01 | 0.015 | 0.02 |
| Wood. . | 0.05 | 0.03 | 0.03 |
| Linoleum, asphalt, rubber or cork tile on concrete. |  | 0.03-0.08 |  |
| Glass. | 0.035 | 0.027 | 0.02 |
| Marble or glazed tile. | 0.01 | 0.01 | 0.015 |
| Openings: |  |  |  |
| Stage, depending on furnishings. |  | 0.25-0.75 |  |
| Deep balcony, upholstered seats. |  | 0.50-1.00 |  |
| Grills, ventilating...... |  | 0.15-0.50 |  |
| Plaster, gypsum, or lime, smooth finish on tile or brick. | 0.013 | 0.025 | 0.04 |
| Same, on lath. | 0.02 | 0.03 | 0.04 |
| Plaster, gypsum, or lime, rough finish on lath.. | 0.039 | 0.06 | 0.054 |
| Wood paneling... | 0.08 | 0.06 | 0.06 |

* From AMA Bull. XV, no. 2.

Table 3j-2. Absorption of Seats and Audience*
(In sabins per person or unit of seating)

|  | 125 cps | 500 cps | $2,000 \mathrm{cps}$ |
| :---: | :---: | :---: | :---: |
| Audience, seated, depending on character of seats, etc. | 1.0-2.0 | 3.0-4.3 | 3.5-6.0 |
| Chairs, metal or wood. . . . . . . . | 0.15 | 0.17 | 0.20 |
| Wood pews. |  | 0.40 |  |
| Pew cushions (without pews). | 0.75-1.1 | $1.45-1.90$ | 1.4-1.7 |
| Theater and auditorium chairs: Wood-veneer seat and back. |  | 0.25 |  |
| Upholstered in leatherette. . . . . . . . . . . |  | 1.6 |  |
| Heavily upholstered in plush or mohair. |  | 2.6-3.0 |  |

[^141]characteristic to the acoustical qualities of a room. On the other hand, excessive reverberation can ruin the acoustical properties of an otherwise well-designed room.

Because of the importance of the proper control of reverberation in rooms, a standard of measure called reverberation time (abbreviated $t_{60}$ ) has been established. It is one of the important parameters in architectural acoustics. This is the time required for a specified sound to die away to one-thousandth of its initial pressure, a drop in sound pressure level of 60 db . It is given by the following equation:

$$
\begin{equation*}
t_{60}=\frac{0.049 V}{S\left[-2.30 \log _{10}(1-\bar{\alpha})\right]+4 m V} \quad \mathrm{sec} \tag{3j-2}
\end{equation*}
$$



Fig. 3j-4. Values of the attenuation coefficient $m$ as a function of relative humidity for different frequencies. (After V.O. Knudsen and C. M. Harris.)
and when $\bar{\alpha}$ is small compared with unity,

$$
\begin{equation*}
t_{60}=\frac{0.049 V}{S \bar{\alpha}+4 m V} \quad \sec \tag{3j-3}
\end{equation*}
$$

where $V=$ volume of the room, cu ft
$S=$ total surface area, sq ft
$\bar{\alpha}=$ average absorption coefficient given by
$\bar{\alpha}=\frac{\alpha_{1} S_{1}+\alpha_{2} S_{2}+\alpha_{3} S_{3}+\cdots}{S_{1}+S_{2}+S_{3}+\cdots}=\frac{a}{S}$
$\alpha_{1}=$ absorption coefficient of area $S_{1}$, etc.
$a=$ total absorption in the room, sabins

## ACOUSTICS

The quantity $m$ is the attenuation coefficient for air given by Fig. 3j-4. ${ }^{1}$ For relatively small auditoriums and frequencies below $2,000 \mathrm{cps}$, the $m V$ term can usually be neglected so that Eq. (3j-3) reduces to

$$
\begin{equation*}
t_{60}=\frac{0.049 V}{S \bar{\alpha}} \quad \mathrm{sec} \tag{3j-5}
\end{equation*}
$$

3j-3. Optimum Reverberation Time. A certain amount of reverberation in a room adds a pleasing quality to music. Since the reverberation time one would consider to be optimum is a matter of personal preference, it is not a quantity that can be calculated from a formula. On the other hand, useful engineering-design data may be obtained from a critical evaluation of empirical data based upon the preference evaluations of large groups of individuals. The results of such information from all available sources considered reliable, in this country and abroad, have been carefully


Fig. 3j-5. Optimum reverberation time at 512 cps for different types of rooms as a function of room volume. This figure should be used in conjunction with Fig. $3 \mathrm{j}-6$ to obtain optimum reverberation time as a function of frequency. (After V. O. Knudsen and C. M. Harris.)
evaluated by Knudsen and Harris, ${ }^{1}$ who have published the curves for optimum reverberation time shown in Figs. $3 \mathrm{j}-5$ and $3 \mathrm{j}-6$. The data in Fig. $3 \mathrm{j}-5$ give the optimum reverberation times at 512 cps as a function of volume for rooms and auditoriums that are used for different purposes. Since the optimum reverberation time for music depends on the type of music, it is represented by a broad band. The optimum reverberation time for a room used primarily for speech is considerably shorter; a reverberation time longer than those shown results in a decrease in speech intelligibility.

The optimum reverberation times at frequencies other than 512 cps is obtained by multiplying the values given in Fig. $3 \mathrm{j}-5$ by the ratio $R$ from Fig. $3 \mathrm{j}-6$ for the desired frequency. These data indicate that below 512 cps the optimum reverberation time may fall anywhere in a wide range shown by the crosshatched band; smaller rooms usually have preferred ratios that are in the lower part of the band.
${ }^{1}$ Ibid.

3j-4. Air-borne Sound Transmission through Partitions. The fraction of incident sound energy transmitted through a partition is called its transmission coefficient $\tau$. In rating the noise-insulating value of partitions, windows, and doors, it is generally convenient to employ a logarithmic quantity, transmission loss T.L., which is equal to the number of decibels by which sound energy that is incident on a partition is reduced in transmission through it. The two quantities are related by the equation

$$
\begin{equation*}
\text { T.L. }=10 \log \frac{1}{\tau} \quad \mathrm{db} \tag{3j-6}
\end{equation*}
$$

Air-borne sound is transmitted through a so-called "rigid" partition, such as a wall of concrete or brick, by forcing it into vibration; then the vibrating partition becomes a secondary source, radiating sound to the side opposite the original source. Over a large portion of the audible range, such a partition, on the average, approximates a mass-controlled system so that its transmission loss should increase 6 db each time the weight of the partition is doubled. In most actual partitions the increase is usually less, say 4 to 5 db for the average frequency,range between 128 and $2,048 \mathrm{cps}$.


Fig. 3j-6. Chart for computing optimum reverberation time as a function of frequency The time at any frequency is given in terms of a ratio $R$ which should be multiplied by the optimum time at 512 cps (from Fig. $3 \mathrm{j}-5$ ) to obtain the optimum time at that frequency. (After V. O. Knudsen and C. M. Harris.)

This is illustrated by Fig. 3j-7, which gives the transmission loss (averaged over frequency in the range from 128 to $4,096 \mathrm{cps}$ ) as a function of weight of the partition in pounds per square foot of surface area. The straight line represents the calculated transmission loss assuming that the values of T.L. increase 6 db for each doubling of the weight. The transmission loss for a partition is not constant with frequency, increasing usually 3 to 6 db /octave.

Note that a compound-wall construction can yield relatively high sound insulation with relatively low mass per unit wall area. The double-wall construction is one such example. It is important that the separation between the walls be as complete as possible-structural ties will greatly reduce the effectiveness of such a structure.

Values of transmission loss for various types of walls and floors employed in ordinary building construction are given in Table $3 \mathrm{j}-3$ and Fig. 3j-7. ${ }^{1}$

3j-5. Noise Level within a Room. The sound level of noise which is transmitted into a room from the outside depends on (1) the noise-insulating properties of its

[^142]bounding surfaces, (2) the total absorption in the room, and (3) the characteristics of the noise source. The following formula gives a rating of the over-all noise reduction provided by the enclosure. It represents, approximately, the difference between the noise level outside a room and the noise level inside a room.
\[

$$
\begin{equation*}
\text { Noise-insulation factor }=10 \log \frac{a}{T} \quad \mathrm{db} \tag{3j-7}
\end{equation*}
$$

\]

where $a$ represents the total absorption in the room in sabins defined by Eq. (3j-4), and $T$ represents the total transmittance of the enclosure given by

$$
\begin{equation*}
T=\tau_{1} S_{1}+\tau_{2} S_{2}+\tau_{3} S_{3}+\cdots \tag{3j-8}
\end{equation*}
$$

where $\tau_{1}$ is equal to the transmission coefficient of area $S_{1}$, etc.


Fig. 3j-7. Transmission loss, average over frequency in the range from 128 to $4,096 \mathrm{cps}$, as a function of weight of the parts in pounds per square foot of surface area.

If a source of noise is within a room, then at distances near to the source the sound pressure decreases inversely with increasing distance from the source; there is a decrease in sound pressure level of 6 db for each doubling of the distance from the source, just as if the source were in the open air. However, at every point in the room there will be an additional contribution to the total pressure as a result of reflections from the walls. As one recedes from the source the reflected contributions become more and more important until direct sound from the source becomes negligible by comparison.
Then if the sound field is diffuse (perfect diffusion is said to exist if the sound pressure everywhere in the room is the same, and it is equally probable that the waves are traveling in every direction) the sound pressure level in the room will be given approximately by

$$
\begin{equation*}
L_{p}=10 \log \frac{W}{a}+136.4 \quad \mathrm{db} \tag{3j-9}
\end{equation*}
$$

if a value of $\rho c=40.8$ rayls is assumed for air, and
where $W=$ power of the sound source, watts
$a=$ total absorption of the room, sabins
A copsideration of the above formula shows that, if the acoustic-power output of the noise source remains constant, and if the total absorption in the room is increased from $a_{1}$ to $a_{2}$ the reduction in noise level is given by

$$
\begin{equation*}
\text { Noise reduction }=10 \log \frac{a_{2}}{a_{1}} \quad \mathrm{db} \tag{3j-10}
\end{equation*}
$$

Table 3j-3. Values of Transmission Loss T.L. vs. Frequency for Various Types of Wall and Floor Construction*

| Construction | Weight, <br> lb/sq ft | Average, 1284,096 | $\begin{aligned} & 128 \\ & \mathrm{cps} \end{aligned}$ | $\begin{aligned} & 256 \\ & \text { cps } \end{aligned}$ | $\begin{aligned} & 512 \\ & \mathrm{cps} \end{aligned}$ | $\begin{gathered} 1,024 \\ \mathrm{cps} \end{gathered}$ | $\begin{array}{\|c} 2,048 \\ \text { cps } \end{array}$ | $\begin{gathered} 4,096 \\ \text { cps } \end{gathered}$ | Authority $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wood studs 2 by 4 in., 16 in. o.c.: |  |  |  |  |  |  |  |  |  |
| With lime plaster $\frac{7}{8}$ in. thick on metal lath | 19.8 | 44 | 26 | 41 | 44 | 52 | 56 | 58 | N.B.S. |
| With gypsum plaster $\frac{1}{2} \mathrm{in}$. thick on $\frac{3}{4}$-in. gypsum lath. | 15.2 | 41 | 33 | 31 | 39 | 46 | 49 | 66 | N.B.S. |
| Wood studs, 2 by 4 in., staggered; $\frac{7}{8}$-in. gypsum plaster on metal lath. ..... | 19.8 | 50 | 44 | 47 | 47 | 50 | 52 | 63 | N.B.S. |
| Staggered wood studs 1 by 3 in., $\frac{1}{4}$-in. plywood glued to both sides. | 2.6 | 26 | 14 | 20 | 28 | 33 | 40 | 30 | N.B.S. |
| Two sets of 2 - by 2 -in. wood studs, $\frac{1}{4}$-in. plywood sheet inserted in $\frac{1}{4}$-in. space between studs, $\frac{1}{4}$-in. plywood faces, slightly compressed paperbacked mineral wood inserted in both air spaces, total panel thickness $4 \frac{3}{4}$ in. | 5.1 | 37 | 20 | 31 | 37 | 41 | 49 | 50 | N.B.S. |
| Steel studs, 3 in., 16 in. o.c., $\frac{7}{8}$-in. gypsum plaster on expanded metal lath. | 19.6 | 37 | 30 | 28 | 35 | 40 | 43 | 53 | N.B.S. |
| Brick, laid on edge; gypsum plaster on both sides. | 31.6 | 42 |  | 40 | 37 | 49 | 59 |  | N.B.S. |
| Tile, hollow partition, 4 in. thick, pumice-cement block, two cells 4 by 8 by 16 in., no plaster. $\qquad$ | 15.5 | 11 | 8 | 5 | 9 | 14 | 19 | 17 | N.B.S. |
| Same, but one side plastered. | 20.4 | 35 | 31 | 27 | 35 | 36 | 40 | 47 | N.B.S. |
| Same, but both sides plastered. | 25.3 | 37 | 32 | 34 | 36 | 39 | 42 | 52 | N.B.S. |
| Cinder block, hollow partition 3 by 8 by 16 in., plaster on both sides.... | 32.2 | 45 | 34 | 37 | 42 | 51 | 57 | 64 | N.B.S. |
| Multiple-block partition; two leaves, each of 3 -in. hollow blocks, separated by 2 -in. cavity and built on opposite sides of gap separating rooms; outer faces plastered (two partitions of nominally the same construction). | 28 | 9 | 54 | 38 | 47 | 49 | 69 | 77 | N.P.L. |
| Wood joints, 2 by 8 in., $\frac{1}{2}$-in. fiberboard lath and $\frac{1}{2}$-in. gypsum plaster ceiling; 1 -in. pine subflooring and 1-in. pine finish flooring. | 14.3 | 45 | 23 | 34 | 47 | 55 | 54 | 69 | N.B.S. |
| Same joists and ceiling as above; 1-in. pine subfloor; $\frac{1}{2}$-in. fiberboard, 1 - by 3 -in. sleepers, and 1 -in. pine finish floor. | 16.2 | 50 | 30 | 37 | 50 | 57 | 65 | 79 | N.B.S. |

[^143] $\dagger$ N.B.S. denotes National Bureau of Standards; N.P.L. denotes National Physical Laboratory.

## ACOUSTICS

According to this equation, which should be regarded as an engineering approximation to actual conditions, if the absorption in a room is increased by a factor of 4 the noise reduction will be 6 db . It shows that the addition of absorption level in a room will provide substantial noise reduction in average level in a room that is relatively bare but little decrease level in a highly damped room. The reduction will be different at different frequencies since the total absorption is a function of frequency. However, it is sometimes convenient to employ the noise-reduction coefficient of a material to obtain a single noise-reduction figure. Besides reducing the steady-state level, the addition of absorptive treatment in a room also provides beneficial effects by reducing the reverberation time in the room and by localizing the source of noise to the area in which it originates-thereby minimizing unexpected noises.

## Table 3j-4. Recommended Acceptable Average Noise Levels in Unoccupied Rooms*

|  | Decibels |
| :---: | :---: |
| Radio, recording, and television studios. | 25-30 |
| Music rooms. | 30-35 |
| Legitimate theaters. | 30-35 |
| Hospitals. | 35-40 |
| Motion-picture theaters, auditoriums. | 35-40 |
| Churchės | 35-40 |
| Apartments, hotels, homes. | 35-45 |
| Classrooms, lecture rooms | 35-40 |
| Conference rooms, small offices. | 40-45 |
| Courtrooms. | 40-45 |
| Private offices. | 40-45 |
| Libraries. | 40-45 |
| Large public offices, banks, stores, etc | 45-55 |
| Restaurants | 50-55 |

The levels given in this table are "weighted"; i.e., they are the levels measured with a standard soundlevel meter incorporating an " $A$ " ( $40-\mathrm{db}$ ) frequency-weighting network.

* V. O. Knudsen and C. M. Harris, "Acoustical Designing in Architecture," John Wiley \& Sons, Inc., New York, 1950.

3j-6. Acceptable Noise Levels for Various Types of Room. Table $3 \mathrm{j}-4$ gives values of recommended acceptable average noise levels for unoccupied rooms with the ventilation system in operation. These values are used for design purposes, for example, in computing the amount of over-all noise insulation that should be provided for a room. They hold for typical room-noise spectra. Although even lower noise levels than those which are listed may provide some advantage under certain circumstances, and may be desirable if cost is not a factor, this table gives values which represent a combination of acceptability and economic practicality. For certain types of room the values which are recommended are lower than those which are commonly found.

# 3k. Speech and Hearing 

EDWIN B. NEWMAN ${ }^{1}$

Harvard University

The data concerning hearing are, without exception, empirical in derivation. Consequently, the values reported always represent some parameter of a population, most often a mean, and the reader is warned to bear constantly in mind the many sources of variability that attach to any particular measurement.

## 3k-1. Physical Dimensions of the Ear

## Table 3k-1. Physical Dimensions of the Ear*

Pinna:
Mean length, young men, 65.0 mm
Range, $52-79 \mathrm{~mm}$
Auditory meatus:
Cross section, $0.3-0.5 \mathrm{~cm}^{2}$
Diameter, 0.7 cm
Length, 2.7 cm
Volume, 1.0 cc
Tympanic membrane:
Area, $0.5-0.9 \mathrm{~cm}^{2}$ (roughly circular)
Thickness, about 0.1 mm
Volume elasticity for 10 cps , equivalent to about 8 cc air
Displacement amplitude for $1,000-\mathrm{cps}$ tone (at threshold), $10^{-9} \mathrm{~cm}$
Displacement amplitude for low-frequency tones (threshold of feeling), about $10^{-2} \mathrm{~cm}$

Middle ear:
Total volume, about 2 cc Malleus:

Weight, 23 mg
Length, $5.5-6.0 \mathrm{~mm}$
Incus: weight, 27 mg
Stapes:
Weight, 215 mg
Length of footplate, 3.2 mm
Width of footplate, 1.4 mm
Area of footplate, $3.2 \mathrm{~mm}^{2}$
Width of elastic ligament, 0.0150.1 mm

Cochlea:
Length of cochlear channels, 35 mm
Height of scala vestibuli or scala tympani, about 1 mm (great variability)
Round window: area, 2 mm $^{2}$
Basilar membrane:
Width at stapes, 0.04 mm
Width at helicotrema, 0.5 mm
Helicotrema: area of opening, $0.25-$ $0.4 \mathrm{~mm}^{2}$

[^144]Table 3k-2. Acoustic Impedance of the Ear in Acoustic Ohms, Measured Just within the Meatus

| Frequency | Total impedance | Resistive component | Reactive component |
| :---: | :---: | :---: | :---: |
| 250 | 200 | 50 | -190 |
| 350 | 150 | 40 | -145 |
| 500 | 125 | 35 | -115 |
| 700 | 70 | 25 | -65 |
| 1,000 | 55 | 25 | -50 |

Above 1,000 cycles, measurements depend increasingly on the method of measurement.

Table 3k-3. Minimum Audible Pressure at Entrance to External Ear Canal (MAC), in Decibels SPL

|  | Frequency |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 80 | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 |
| Threshold. ... | 43.5 | 30.0 | 18.5 | 11.5 | 9.0 | 8.0 | 9.5 | 13.0 | 17.0 | 21.0 |

The following corrections may be applied if it is desired to find thresholds for other conditions:
a. MAC to Threshold Pressure at Eardrum ${ }^{a}$

|  | Frequency |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 |
| Add....... | 0.0 | 0.0 | -0.5 | -1.0 | -4.5 | -10.5 | -4.0 | -2.5 |  |

b. MAC to Equivalent Coupler Calibration of Various Earphones ${ }^{a, b, c}$

|  | Frequency |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 | Coupler |
| Add for |  |  |  |  |  |  |  |  |  |  |
| PDR-8 with MX-41/AR | +8.0 | +4.0 | +0.5 | +1.0 | +1.5 | +4.5 | +12.0 | -3.0 | . | NBS-9A |
| Add for WE 705A. | +13.0 |  | +0.5 | +1.0 | +4.5 | +5.0 | -0.5 | $-7.0$ |  | NBS-9A |
| Add for STC 4026A. | +14.5 | +11.0 | +0.5 | -3.5 | +1.0 | +0.5 | -4.0 | $-7.5$ | . . | NPL ${ }^{\text {b }}$ |

[^145]Table 3k-3. Minimum Audible Pressure at Entrance to External Ear Canal (MAC), in Decibels SPL (Continued)
c. MAC to Free Field (MAF) (plane wave, $0^{\circ}$ azimuth in absence of head) ${ }^{d}$

|  | Frequency |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 6 | 6,000 | 8,000 | 10,000 |
| Add. | +1.0 | +0.5 | -2.0 | -4.0 | -11.0 | -12.5 | -7.0 | -3.0 | -3.0 |
| d. Mean Monaural to Mean Binaural Listeninge |  |  |  |  |  |  |  |  |  |
|  |  |  | Frequency |  |  |  |  |  |  |
|  |  |  | 125-2,0 |  | ,000 | 6,000 |  |  | 10,000 |
| Add. |  | -2.0 |  |  | -3.0 | -4.0 | -5.0 |  | -6.0 |
| e. Reference Age Group (18-25) to Older Age Groups ${ }^{\prime}$ |  |  |  |  |  |  |  |  |  |
|  |  | Frequency |  |  |  |  |  |  |  |
|  |  | 125-1,000 |  | 2,000 | 4,000 | 6,000 | 8,000 |  | 10,000 |
| Add for: |  |  |  |  |  |  |  |  |  |
| Men 30-39. |  | +1.0 |  | +2.0 | +5.0 | +6.0 | $0+6.0$ |  | +7.0 |
| Men 40-49. |  | +2.0+5.0 |  | +5.0 | +13.0 | +13.0 | +11.0 |  | +13.0 |
| Men 50-59. |  |  |  | +13.0 | +27.0+3.0 | $+32.0$ | +35.0 |  | +35.0 |
| Women 30-39 |  | +1.0 |  | +2.0 +2 |  | +4.0 | $\begin{array}{l\|l} 0 & +4.0 \\ 0 & +9.0 \end{array}$ |  | $\begin{array}{r} +4.0 \\ +9.0 \end{array}$ |
| Women 40-49 |  | +3.0 |  | +5.0 | +6.0 | +8.0 |  |  |  |
| Women 50-59 |  | +5.0 |  | +9.0 | +13.0 | +18.0 | +20.0 |  | $+22.0$ |

${ }^{\boldsymbol{d}}$ L. J. Sivian and S. D. White, On Minimum Audible Sound Fields, J. Acoust. Soc. Am. 4, 288-321 (1933).
${ }^{\bullet}$ H. Fletcher, "Speech and Hearing in Communication," p. 131, D. Van Nostrand Company, Inc., New York, 1953.
${ }^{\prime}$ J. C. Steinberg, H. C. Montgomery and M. B. Gardner, Results of the World's Fair Hearing Tests, J. Acoust. Soc. Am. 12, 291-301 (1940); J. C. Webster, H. W. Himes, and M. Lichtenstein, San Diego County Fair Hearing Survey, J. Acoust. Soc. Am. 22, 473-483 (1950).
within the external meatus. The values in Table $3 \mathrm{k}-2$ are representative but are subject to wide variations among individuals. ${ }^{1}$

3k-3. Minimum Audible Sound. The best recent measurements use as their point of reference the sound pressure level of a tone, heard one-half the time, and measured at the entrance to the external meatus. The observations were made on healthy young men, eighteen to twenty-five years of age, tested individually with earphones, one ear at a time. Sound pressures were determined with a probe-tube microphone and are given in decibels above 0.0002 dyne $/ \mathrm{cm}^{2} . \quad N=1,200$ ears. ${ }^{2}$
${ }^{1}$ E. Waetzmann and L. Keibs, Hörschwellenbestimmungen mit dem Thermophon und Messungen am Trommelfell, Ann. Physik 26, 141-144 (1936); O. Metz, The Acoustic Impedance Measured on Normal and Pathological Ears, Acta Oto-Laryngol., Suppl. 63, 1-254 (1946); A. H. Inglis, C. H. G. Gray, and R. T. Jenkins, A Voice and Ear for Telephone Measurements, Bell System Tech. J. 11, 293-317 (1932).
${ }^{2}$ R. S. Dadson and J. H. King, A Determination of the Normal Threshold of Hearing and Its Relation to the Standardization of Audiometers, J. Laryngol. Otol. 66, 366-378 (1952); L. J. Wheeler and E. D. D. Dickson, The Determination of the Threshold of Hearing, J. Laryngol. Otol. 66, 379-395 (1952).

## ACOUSTICS

3k-4. Threshold of Feeling or Discomfort. The upper limit for a tolerable intensity of sound rises substantially with increasing habituation. Moreover, a variety of subjective effects are reported, such as discomfort, tickle, pressure, and pain, each at a slightly different level. As a simple engineering estimate it can be said that naïve listeners reach a limit at about 125 db SPL and experienced listeners at 135 to 140 db . These are over-all measures of sound falling within the audible range and are roughly independent of frequency.

3k-5. Differential Thresholds for Pure Tones and Noise. A differential threshold represents a careful determination by laboratory methods of the ability of a subject

Table 3k-4. Differential Threshold for Intensity, in Decibels

| Sensation level, db above absolute threshold | Pure tones, frequency in cps |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 35 | 70 | 200 | 1,000 | 4,000 | 7,000 | 10,000 | White noise |
| 5 |  |  | 4.75 | 3.03 | 2.48 | 4.05 | 4.72 | 1.80 |
| 10 | 7.24 | 4.22 | 3.44 | 2.35 | 1.70 | 2.83 | 3.34 | 1.20 |
| 20 | 4.31 | 2.38 | 1.93 | 1.46 | 0.97 | 1.49 | 1.70 | 0.47 |
| 30 | 2.72 | 1.52 | 1.24 | 1.00 | 0.68 | 0.90 | 1.10 | 0.44 |
| 40 | 1.76 | 1.04 | 0.86 | 0.72 | 0.49 | 0.68 | 0.86 | 0.42 |
| 50 | .... | 0.75 | 0.68 | 0.53 | 0.41 | 0.61 | 0.75 | 0.41 |
| 60 |  | 0.61 | 0.53 | 0.41 | 0.29 | 0.53 | 0.68 | 0.41 |
| 70 |  | 0.57 | 0.45 | 0.33 | 0.25 | 0.49 | 0.61 |  |
| 80 |  | .... | 0.41 | 0.29 | 0.25 | 0.45 | 0.57 |  |
| 90 | $\ldots$ | $\ldots$ | 0.41 | 0.29 | 0.21 | 0.41 |  |  |
| 100 |  |  | . . . | 0.25 | 0.21 |  |  |  |
| 110 |  |  |  | 0.25 |  |  |  |  |

Table 3k-5. Differential Threshold for Frequency, in $\Delta F / F^{*}$

| Sensation level, <br> db above abso- <br> lute threshold | Pure tones, frequency in cps |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 60 | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 |
| 5 | 0.0252 | 0.0110 | 0.0097 | 0.0065 | 0.0049 | 0.0040 | 0.0077 |
| 10 | 0.0140 | 0.0060 | 0.0053 | 0.0035 | 0.0027 | 0.0022 | 0.0042 |
| 15 | 0.0092 | 0.0040 | 0.0035 | 0.0024 | 0.0018 | 0.0014 | 0.0028 |
| 20 | 0.0073 | 0.0032 | 0.0028 | 0.0019 | 0.0014 | 0.0012 | 0.0022 |
| 30 |  | 0.0032 | 0.0028 | 0.0019 | 0.0014 | 0.0011 | 0.0022 |

* J. D. Harris, Pitch Discrimination, J. Acoust. Soc. Am. 24, 750-755 (1952).
to just detect, and report, a difference in any specific property of a sound, all other factors presumably being held constant.

The method for determining the differential threshold for intensity of pure tones employed one tone beating with a second tone at 3 beats per second. ${ }^{1 .}$ Much evidence is available to support what should be kept always in mind, that thresholds determined

[^146]by other methods are a function of numerous psychological parameters and will differ systematically from the values in Table 3k-4. A more conventional method was used to determine the thresholds for white noise, with the results given in the last column. ${ }^{1}$

The ability to distinguish pitch is subject to a greater range of individual variability than other functions reported here. The data given are for three trained listeners and have been smoothed in both directions. Untrained listeners usually require a greater frequency difference than that reported here. Note also that individual listeners commonly show idiosyncrasies at particular frequencies.

3k-6. Masking. Masking refers to our inability to hear a weak sound in the presence of a louder sound. It is usually measured by the amount of change in the threshold of the weaker sound, i.e., how much more intense must the weak sound be made in order to be heard over the masking sound, than it needed to be when the masking sound was not present. The masking of one pure tone by another is a complex function of the particular frequencies and of the absolute level of the respective tones. See any standard text on hearing for the curves describing this relationship.

The masking of a pure tone by a noise with a reasonably flat and continuous spectrum is a linear function (except at levels below 10 db ) of the total intensity within a "critical band" centered on the masked tone. The width of the critical band of frequencies whose total energy is just equal to the energy of the masked tone is given by Table 3k-6.

Table 3k-6. Width of "Critical Band" $\Delta F$ as a Function of Center Frequency $F(10 \log \Delta F)$ *

|  | Frequency |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 250 | 500 | 1,000 | 2,000 | 4,000 | 8,000 | 10,000 |
| $\Delta F, \mathrm{db}$ | 19.4 | 17.1 | 17.1 | 18.0 | 19.9 | 23.1 | 27.7 | 29.2 |

* N. R. French and J. C. Steinberg, Factors Governing the Intelligibility of Speech Sounds, J. Acoust. Soc. Am. 19, 90-119 (1947).

The masking of one continuous noise by another can be thought of as a case of differential sensitivity to change in the intensity of a noise (see last column of Table $3 \mathrm{k}-4$ ). Thus, above 40 db SPL, if a weak noise is more than 10 db less intense than a very similar masking noise, the weak noise will not be heard; its presence or absence does not produce a discriminable difference in intensity. If the spectral composition of the two noises, masking and masked, are quite different, then the critical-band concept must be employed.

3k-7. Sounds of Short Duration. Acoustic disturbances of very short duration, i.e., less than 0.0001 sec , are heard only to the extent that they transmit energy to the ear. Short pulses at ultrasonic frequencies are generally not heard unless they are rectified. Impulse or step functions excite the ear, but not efficiently.

At the opposite extreme, tones, or continuous noise, of duration greater than from 0.2 to 0.5 sec , are generally heard independently of duration. Between these limits relatively complex relations are found. ${ }^{2}$

As a first approximation for both tones and noise, the effective intensity of short sounds is a function of total energy integrated over the duration of the sound. More

[^147]accurately, the threshold is defined by ${ }^{1}$
\[

$$
\begin{equation*}
I_{t}=k I t^{0.8} \tag{3k-1}
\end{equation*}
$$

\]

For some short tones and for many types of impulse noise, account must be taken of the frequency distribution of energy. Inasmuch as the ear varies in sensitivity as a function of frequency, any change in the shape or duration of a short acoustic pulse will also change its effectiveness because of the altered spectral composition.

3k-8. Loudness. Loudness and pitch are ways in which a listener reacts to sounds. Furthermore, within limits, a listener can use numbers to describe how much of a response he makes to the sound. These numbers usefully describe how loud, or how high in pitch, a sound seems to be. It is then necessary to relate how loud it is (subjective response) to how intense it is in physical terms. The loudness of a pure tone of $1,000 \mathrm{cps}$ is described by the following relationship:

$$
\begin{equation*}
\log L=0.0301 N-1.204 \tag{3k-2}
\end{equation*}
$$

in which $L$ is the loudness measured in sones and $N$ is the loudness level in phons (equal to the sound pressure level of the tone in decibels above 0.0002 dyne $/ \mathrm{cm}^{2}$ ). ${ }^{2}$ Another way of putting this is to say that loudness doubles for each $10-\mathrm{db}$ change in sound pressure level.

Table 3k-7. Loudness Level as a Function of Sound Pressure Level and Frequency*

| Sound pressure level | Frequency |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 125 | 250 | 500 | 1,000 | 2,000 | 4,000 | 8,000 | 10,000 |
| 10 | $\ldots$ |  |  | 10.0 | 18.0 | 18.0 |  |  |
| 20 | ..... | 6.3 | 16.0 | 20.0 | 28.0 | 28.0 | 11.0 |  |
| 30 | 4.0 | 18.0 | 26.5 | 30.0 | 37.0 | 36.5 | 20.5 | 17.0 |
| 40 | 17.0 | 31.0 | 38.5 | 40.0 | 45.5 | 45.0 | 29.5 | 26.0 |
| 50 | 34.0 | 45.5 | 52.0 | 50.0 | 55.0 | 54.0 | 38.0 | 35.0 |
| 60 | 52.0 | 59.5 | 64.5 | 60.0 | 64.0 | 63.5 | 47.0 | 43.5 |
| 70 | 70.0 | 72.5 | 76.0 | 70.0 | 73.5 | 72.5 | 56.0 | 53.5 |
| 80 | 86.0 | 84.5 | 86.0 | 80.0 | 84.5 | 83.0 | 66.0 | 63.5 |
| 90 | 98.0 | 95.5 | 96.0 | 90.0 | 95.0 | 94.5 | 77.0 | 73.5 |
| - 100 | 108.0 | 105.5 | 105.0 | 100.0 | 106.0 | 106.0 | 88.0 | 85.5 |
| 110 | 118.0 | 115.5 | 113.0 | 110.0 | 117.0 | 117.5 | 101.5 | 98.0 |

* American Standard for Noise Measurement, ASA Z24.2-1942.

There is some evidence that the loudness of a noise grows more rapidly than that of a tone with an increase in sound pressure level, especially at low levels. The exact relations are less well known than those for a tone.
The loudness of tones at other frequencies than $1,000 \mathrm{cps}$ is given by determining the loudness level in the manner described below and converting to tones by Eq. (3k-2).
$3 \mathrm{k}-9$. Loudness Level. The loudness level of a tone of $1,000 \mathrm{cps}$, expressed in phons, is defined as the sound pressure level in decibels above the reference level of 0.0002 dyne $/ \mathrm{cm}^{2}$.

The loudness level of tones of other frequencies is given by the empirical relations in Table 3 k -7.
${ }^{1}$ D. B. Yntema, "The Probability of Hearing a Short Tone Near Threshold," Ph.D. Dissertation, Harvard University, 1954, 43 pp.
${ }^{2}$ S. S. Stevens, The Measurement of Loudness, J. Acoust. Soc. Am. 27, 815-829 (1955).

Note that this table is based on the ASA standard and presumes the "free-field" measurement of sound pressure. This requires a measurement of a plane progressive wave at the listener's position before the listener is placed in the field. More meaningful measurements would doubtless be obtained from pressure measurements at the ear. For this purpose, apply the corrections contained in Table $3 k-3 c$ to the ear canal pressures before entering Table $3 \mathrm{k}-7$.

To enter the table with sound pressure levels measured under other conditions, first add the corrections in Table $3 \mathrm{k}-3 c$, then subtract rather than adding corrections in Tables $3 \mathrm{k}-3 a$ through $3 \mathrm{k}-3 d$. Note, however, that corrections given for presbycusis in Table $3 \mathrm{k}-3 e$ may give quite misleading results because of recruitment at high frequencies in some elderly people.

3k-10. Pitch. The relation between frequency and the subjective magnitude of perceived pitch is shown by Table $3 \mathrm{k}-8$. By definition, the pitch of a tone of $1,000 \mathrm{cps}$ at 40 db SPL is 1,000 mels. ${ }^{1}$

Table 3k-8. Pitch of a Pure Tone, in Mels, as a Function of Frequency

| Frequency | Mels | Frequency | Mels | Frequency | Mels |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | 0 | 350 | 460 | 1,750 | 1,428 |
| 30 | 24 | 400 | 508 | 2,000 | 1,545 |
| 40 | 46 | 500 | 602 | 2,500 | 1,771 |
| 60 | 87 | 600 | 690 | 3,000 | 1,962 |
| 80 | 126 | 700 | 775 | 3,500 | 2,116 |
| 100 | 161 | 800 | 854 | 4,000 | 2,250 |
| 150 | 237 | 900 | 929 | 5,000 | 2,478 |
| 200 | 301 | 1,000 | 1,000 | 6,000 | 2,657 |
| 250 | 358 | 1,250 | 1,154 | 7,000 | 2,800 |
| 300 | 409 | 1,500 | 1,296 | 10,000 | 3,075 |

3k-11. Localization of Sound. The localization of complex sounds is primarily a function of time differences of arrival at the two ears, and, to a first approximation, such differences may be calculated by assuming the ears on either end of the diameter of a sphere of 7.5 cm radius.

The localization of tones of low frequency (below $1,500 \mathrm{cps}$ ) is possible on the basis of phase differences, which may be interpreted in terms of time differences.

The localization of tones of high frequency is possible on the basis of intensity differences resulting from the sound shadow of the head. Exact measurements here are difficult at best.

Sound localization is greatly aided when the head or body can be rotated, or moved about, in the sound field, while the observer hears the appropriate sequence of sounds. ${ }^{2}$

Sound localization in reverberant rooms or with so-called "stereophonic-sound sources" depends critically upon a "precedence effect," by which the localization determined by the primary sound or sound from the nearer of two sound sources is overriding in its effect. ${ }^{3}$

In experiments where time differences are used to balance out intensity differences

[^148]in the opposite direction, $1.0 \times 10^{-5}$ sec priority offsets a $6-\mathrm{db}$ difference in intensity; $2.3 \times 10^{-5}$ sec offsets a 14 -db difference in intensity between the two ears. ${ }^{1}$

3k-12. Speech Power. The total radiated speech power, averaged over a $15-\mathrm{sec}$ interval for a sample including both men and women at conversational levels used for telephone talking, has been estimated as 32 microwatts.

When measured at the face of a telephone transmitter, this power produces the sound pressure levels given in Table 3k-9 for different distances from the mouth of the speaker. ${ }^{2}$

Table 3k-9. Average Sound Pressure Level Produced by Conversational Speech as a Function of Distance from Lips to Microphone

|  | Distance, cm |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Touching | 0.5 | 1.0 | 2.5 | 5.0 | 10.0 | 25.0 | 50.0 | 100.0 |
| Sound pressure level. | 104 | 102 | 99 | 95 | 90 | 85 | 78 | 72 | 66 |

A second source of variability lies in the essentially statistical distribution of speech power in time. If speech power is measured in successive $\frac{1}{8}$-sec intervals (a time slightly shorter than a syllable, and slightly longer than a phoneme), a distribution is obtained with the mean values given in Table $3 \mathrm{k}-9$ and variability that can be attributed to time sampling equal to a standard deviation of $7.0 \mathrm{db} .^{3}$ The distribution is badly skewed so that the value 7.0 db indicates only a rough order of magnitude. The variability is also greater when particular frequency bands are measured.

A third source of variability is the variation in effort expended by the person who is talking. As a rough approximation, a raised voice level is 6 db above conversational level, the loudest level that can be maintained is 12 db above conversational level, and the loudest shout is 18 db above conversational level. In the other direction, a whisper may be 20 db below conversational level.

[^149]3k-13. Speech Sounds
Table 3k-10. Characteristics of Sounds in General American Speech

| Symbol | Example | Power,* db re long time average $\dagger$ | Relative frequency of sound, \% $\ddagger$ | Formant frequencies for men and women 9 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | First |  | Second |  | Third |  |
|  |  |  |  | M | W | M | W | M | W |
| u | cool | +0.6 | 1.60 | 300 | 370 | 870 | 950 | 2,240 | 2,670 |
| U | cook | +2.3 | 0.69 | 440 | 470 | 1,020 | 1,160 | 2,240 | 2,680 |
| 0 | cone | +2.5 | 0.33 | 500 |  | 820 |  |  |  |
| 0 : | talk | +4.1 | 1.26 | 570 | 590 | 840 | 920 | 2,410 | 2,710 |
| 0 | cloth |  | \{2.81\} |  |  |  |  |  |  |
| a | calm $\}$ | +3.7 | $\left\{\begin{array}{l}\text { 0.49 }\end{array}\right\}$ | 730 | 850 | 1,090 | 1,220 | 2,440 | 2,810 |
| a | a-sk |  |  |  |  |  |  |  |  |
| æ | bat $\}$ | +2.5 | 3.95 | 660 | 860 | 1,720 | 2,050 | 2,410 | 2,850 |
| $\boldsymbol{\varepsilon}$ | bet | +1.6 | 3.44 | 530 | 610 | 1,840 | 2,330 | 2,480 | 2,990 |
| e | tape | +1.4 | 1.84 |  |  |  |  |  |  |
| 1 | bit | 0.0 | 8.53 | 390 | 430 | 1,990 | 2,480 | 2,550 | 3,070 |
| i | beet | 0.0 | 2.12 | 270 | 310 | 2,290 | 2,790 | 3,010 | 3,310 |
| $\boldsymbol{r}$ | bird | -0.5 | 0.53 | 490 | 500 | 1,350 | 1,640 | 1,690 | 1,960 |
| ә | sofa | $\ldots$ | 4.63 |  |  |  |  |  |  |
| $\triangle$ | bun | +2.9 | 2.33 | 640 | 760 | 1,190 | 1,400 | 2,390 | 2,780 |
| eI | laid | +1.4 | see e |  |  |  |  |  |  |
| aI | $\overline{\text { bite }}$ | +2.5 | 1.59 |  |  |  |  |  |  |
| ju | you | +0.6 | 0.31 |  |  |  |  |  |  |
| ou | soap | +2.5 | 1.30 |  |  |  |  |  |  |
| au | about | +2.3 | 0.59 |  |  |  |  |  |  |
| 91 | boil | +3.0 | 0.09 |  |  |  |  |  |  |

[^150]
## Table 3k-10. Characteristics of Sounds in General <br> American Speech (Continued)

| Symbol | Example | Power, * db re long time average $\dagger$ | Relative frequency of sound, \% $\ddagger$ | Formant frequencies for men and women 9 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | First | Second | Third | Fourth |
| 1 | $\underline{\operatorname{lip}}$ | -3.0 | 3.74 | 450 | 1,000 | 2,550 | 2,950 |
| m | $\underline{\text { me }}$ | -5.8 | 2.78 | 140 | 1,250 | 2,250 | 2,750 |
| n | $\underline{\bar{n}} \mathrm{p}$ | -7.4 | 7.24 | 140 | 1,450 | 2,300 | 2,750 |
| 1 | sing | -4.4 | 0.96 | 140 | 2,350 | 2,750 |  |
| w | we | 0.6 | 2.08 |  |  |  |  |
| r | $\overline{\text { rip }}$ | -1.0 | 6.35 | 500 | 1,350 | 1,850 | 3,500 |
| j | yes | 0.0 | 0.60 | 270 | 2,040 |  |  |
| p | pie | -15.2 | 2.04 | ... | 800 | 1,350 |  |
| t | tie | -11.2 | 7.13 |  | 1,700 | 2,450 |  |
| k | key | -11.9 | 2.71 |  | Variable |  |  |
| b | by | -14.6 | 1.81 | 140 | 800 | 1,350 |  |
| d | die | -14.6 | 4.31 | 140 | 1,700 | 2,450 |  |
| g | guy | $-11.2$ | 0.74 | 140 | Variable |  |  |
| v | vie | -12.2 | 2.28 | 140 | 1,150 | 2,500 | 3,650 |
| f | foe | $-16.0$ | 1.84 | $\ldots$ | 1,150 | 2,500 | 3,650 |
| $\theta$ | thin | -23.0 | 0.37 | $\ldots$ | 1,450 | 2,550 |  |
| $\gamma$ | then | -12.6 | 3.43 | 140 | 1,450 | 2,550 |  |
| s | $\overline{\text { sip }}$ | -11.0 | 4.55 | . . | 2,000 | 2,700 |  |
| z | is | -11.0 | 2.97 | 140 | 2,000 | 2,700 |  |
| S | shy | -4.0 | 0.82 | . . | 2,150 | 2,650 |  |
| 3 | measure | -10.0 | 0.05 | 140 | 2,150 | 2,650 |  |
| h | $\underline{\text { hit }}$ | -13.0 | 1.81 |  |  |  |  |
| ts | chop | -6.8 | 0.52 |  |  |  |  |
| d3 | $\overline{\text { Joe }}$ | -9.4 | 0.44 |  |  |  |  |

* The power measurements do not represent the peak instantaneous power but the average over the sustained portion of the phoneme where such a period can be defined. In this case, as with the formant frequencies, the absolute values are highly variable, but intercomparisons among the various sounds are generally more reliable.
$\dagger$ H. Fletcher, "Speech and Hearing in Communication," p. 86, D. Van Nostrand Company, Inc., New York, 1953.
$\ddagger$ G. Dewey, "Relative Frequency of English Speech Sounds," Harvard University Press, Cambridge, Mass., 1923.
IT E. G. Richardson, ed., "Technical Aspects of Sound," pp. 215-217, Elsevier Press, Inc., New York, 1953.

3k-14. Articulation Index. The articulation index is a set of numbers that makes possible the prediction of the efficiency of some types of voice-communication systems by the addition of suitably chosen values. The operations involve (1) dividing the speech spectrum into a series of bands having an equal possible contribution $\Delta A$ to the total efficiency, and (2) determining what proportion of the $\Delta A$ each band will contribute under the particular noise and speech conditions being tested.

Under (1) it is customary to use no more than 20 such bands. The frequency limits of 20 such bands are given in Table 3k-11.

Table 3k-11. Twenty Frequency Bands Contributing Equally to Efficiency of Speech Communication*

| Band <br> No. | Frequency <br> range | Band <br> No. | Frequency <br> range | Band <br> No. | Frequency <br> range |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 395 | 8 | $1,250-1,425$ | 15 | $2,930-3,285$ |
| 2 | $395-540$ | 9 | $1,425-1,620$ | 16 | $3,285-3,700$ |
| 3 | $540-675$ | 10 | $1,620-1,735$ | 17 | $3,700-4,200$ |
| 4 | $675-810$ | 11 | $1,735-2,075$ | 18 | $4,200-4,845$ |
| 5 | $810-950$ | 12 | $2,075-2,335$ | 19 | $4,845-5,790$ |
| 6 | $950-1,095$ | 13 | $2,335-2,620$ | 20 | 5,790 |
| 7 | $1,095-1,250$ | 14 | $2,620-2,930$ |  |  |

* H. Fletcher, "Speech and Hearing in Communication," D. Van Nostrand Company, Inc., New York, 1953.

For conditions where substantial wide-band noise is present, the second requirement may be approximated by the formula

$$
\begin{equation*}
w_{i}=\frac{1}{30}\left(S_{i}-N_{i}+6\right) \tag{3k-3}
\end{equation*}
$$

in which $w_{i}$ is a weight having a maximum value of $1.0, S_{i}$ is the signal level in band $i$ in decibels, $N_{i}$ is the noise level in the same band $i$ in decibels referred to the same base as $S_{i}{ }^{1}{ }^{1}$

Table 3k-12. Articulation Scores as a Function of Articulation Index*

| Articulation <br> index | CVC <br> syllables, $\%$ | Monosyllabic <br> words (PB lists), \% |
| :---: | :---: | :---: |
|  | (10.10 | 7 |
| 0.20 | 22 | 7 |
| 0.30 | 38 | 22 |
| 0.40 | 55 | 40 |
| 0.50 | 68 | 61 |
| 0.60 | 79 | 77 |
| 0.70 | 87 | 87 |
| 0.80 | 93 | 93 |
| 0.90 | 96 | 96 |
| 1.00 | 98 | 98 |
|  |  | 99 |

* E. G. Richardson, ed., "Technical Aspects of Sound," Elsevier Press, Inc., New York, 1953.

The articulation index $A$ is then described by the summation

$$
\begin{equation*}
A=\frac{1}{n} \sum_{i=1}^{i=n} w_{i} \tag{3k-4}
\end{equation*}
$$

Articulation scores are related to the articulation index according to the Table $3 \mathrm{k}-12$.

[^151]
# 31. Classical Electro-dynamical Analogies 

HARRY F. OLSON

RC:A Laboratories

Analogies are useful when it is desired to compare an unfamiliar system with one that is better known. The relations and actions are more easily visualized, the mathematics more readily applied, and the analytical solutions more readily obtained in the familiar system. Analogies make it possible to extend the line of reasoning into unexplored fields. In view of the tremendous amount of study which has been directed toward the solution of circuits, particularly electric circuits, and the engineer's familiarity with electric circuits, it is logical to apply this knowledge to the solutions of vibration problems in other fields by the same theory as that used in the solution of electric circuits. The objective in this section is the establishment of analogies between electrical, mechanical, and acoustical systems.

31-1. Resistance. Electric Resistance. Electric energy is changed into heat by the passage of an electric current through an electric resistance. Electric resistance $R_{E}$, in abohms, is defined as

$$
\begin{equation*}
R_{E}=\frac{e}{i} \tag{31-1}
\end{equation*}
$$

where $e=$ voltage across the electric resistance, abvolts
$i=$ current through the electric resistance, abamp
Mechanical Rectilineal Resistance. Mechanical rectilineal energy is changed into heat by a rectilinear motion which is opposed by mechanical rectilineal resistance (friction). Mechanical rectilineal resistance (termed mechanical resistance when there is no ambiguity) $R_{M}$, in mechanical ohms, is defined as

$$
\begin{equation*}
R_{M}=\frac{f_{M}}{u} \tag{31-2}
\end{equation*}
$$

where $f_{M}=$ applied mechanical force, dynes
$u=$ velocity at the point of application of the force, $\mathrm{cm} / \mathrm{sec}$
Mechanical Rotational Resistance. Mechanical rotational energy is changed into heat by a rotational motion which is opposed by a rotational resistance (rotational friction). Mechanical rotational resistance (termed rotational resistance when there is no ambiguity) $R_{R}$, in rotational ohms, is defined as

$$
\begin{equation*}
R_{R}=\frac{f_{R}}{\Omega} \tag{31-3}
\end{equation*}
$$

where $f_{R}=$ applied torque, dyne-cm
$\boldsymbol{\Omega}=$ angular velocity about the axis at the point of the torque, radians/sec
Acoustic Resistance. Acoustic energy is changed into heat either by a motion in a fluid which is opposed by acoustic resistance due to a fluid resistance incurred by viscosity or by the radiation of sound. Acoustic resistance $R_{A}$, in acoustical ohms, is defined as

$$
\begin{equation*}
R_{A}=\frac{p}{U} \tag{31-4}
\end{equation*}
$$

where $p=$ pressure, dynes/sq cm
$U=$ volume velocity, cu cm/sec
31-2. Inductance, Mass, Moment of Inertia, Inertance. Inductance. Electromagnetic energy is associated with inductance. Inductance is the electric-circuit element that opposes a change in current. Inductance $L$, in abhenrys, is defined as

$$
\begin{equation*}
e=L \frac{d i}{d t} \tag{31-5}
\end{equation*}
$$

where $e=$ voltage, emf, or driving force, abvolts
$\frac{d i}{d t}=$ rate of change of current, abamp/sec
Mass. Mechanical rectilineal inertial energy is associated with mass in the mechanical rectilineal system. Mass is the mechanical element which opposes a change in velocity. Mass $m$, in grams, is defined as

$$
\begin{equation*}
f_{M}=m \frac{d u}{d t} \tag{31-6}
\end{equation*}
$$

where $\frac{d u}{d t}=$ acceleration, $\mathrm{cm} / \mathrm{sec} / \mathrm{sec}$
$f_{M}=$ driving force, dynes
Moment of Inertia. Mechanical rotational energy is associated with moment of inertia in the mechanical rotational system. Moment of inertia is the rotational element which opposes a change in angular velocity. Moment of inertia $I$, in gram (centimeter) ${ }^{2}$, is defined as

$$
\begin{equation*}
f_{R}=I \frac{d \Omega}{d t} \tag{31-7}
\end{equation*}
$$

where $\frac{d \Omega}{d t}=$ angular acceleration, radians $/ \mathrm{sec} / \mathrm{sec}$

$$
f_{R}=\text { torque, dyne-cm }
$$

Inertance. Acoustic inertial energy is associated with inertance in the acoustic system. Inertance is the acoustic element which opposes a change in volume velocity. Inertance $M$, in grams per (centimeter) ${ }^{4}$, is defined as

$$
\begin{equation*}
p=M \frac{d U}{d t} \tag{31-8}
\end{equation*}
$$

where $\frac{d U}{d t}=$ rate of change of volume velocity, $\mathrm{cu} \mathrm{cm} / \mathrm{sec} / \mathrm{sec}$
$p=$ driving pressure, dynes $/ \mathrm{sq} \mathrm{cm}$
31-3. Electric Capacitance, Rectilineal Compliance, Rotational Compliance, Acoustic Capacitance. Electric Capacitance. Electric capacitance is associated with capacitance. Electric capacitance is the electric-circuit element which opposes a change in voltage. Electric capacitance $C_{E}$, in abfarads, is defined as

$$
\begin{align*}
i & =C_{E} \frac{d e}{d t}  \tag{31-9}\\
e & =\frac{1}{C_{E}} \int i d t=\frac{Q}{C_{E}} \tag{31-10}
\end{align*}
$$

where $Q=$ charge on the electrical capacitance, abcoulombs
$e=\mathrm{emf}$, abvolts
Rectilineal Compliance. Mechanical rectilineal potential energy is associated with the compression of a spring or compliant element. Rectilineal compliance is the
mechanical element which opposes a change in the applied force. Rectilineal compliance (termed compliance when there is no ambiguity) $C_{M}$, in centimeters per dyne, is defined as

$$
\begin{equation*}
f_{M}=\frac{x}{C_{M}} \tag{31-11}
\end{equation*}
$$

where $x=$ displacement, cm
$f_{M}=$ applied force, dynes
Rotational Compliance. Mechanical rotational potential energy is associated with the twisting of a spring or compliant element. Rotational compliance is the mechanical element that opposes a change in the applied torque. Rotational compliance $C_{R}$, in radians per centimeter per dyne, is defined as

$$
\begin{equation*}
f_{R}=\frac{\phi}{C_{R}} \tag{31-12}
\end{equation*}
$$

where $\phi=$ angular displacement, radians
$f_{R}=$ applied torque, dyne-cm
Acoustic Capacitance. Acoustic potential energy is associated with the compression of a fluid or a gas. Acoustic capacitance is the acoustic element which opposes a change in the applied pressure. The acoustic capacitance $C_{A}$, in (centimeters) ${ }^{5}$ per dyne, is defined as

$$
\begin{equation*}
p=\frac{X}{C_{A}} \tag{31-13}
\end{equation*}
$$

where $X=$ volume displacement, cu cm
$p=$ pressure, dynes $/ \mathrm{sq} \mathrm{cm}$
31-4. Representation of Electrical, Mechanical Rectilineal, Mechanical Rotational, and Acoustical Elements. Electrical, mechanical rectilineal, mechanical rotational,


Fig. 3l-1. Graphical representation of the three basic elements in electrical, mechanical rectilineal, mechanical rotational, and acoustical systems.
and acoustical elements have been defined in the preceding sections. Figure 31-1 illustrates schematically the three elements in each of the four systems.

The electrical elements, electric resistance, inductance, and electric capacitance are represented by the conventional symbols.

Mechanical rectilineal resistance is represented by sliding friction which causes dissipation. Mechanical rotational resistance is represented by a wheel with a sliding-
friction brake which causes dissipation. Acoustic resistance is represented by narrow slits which causes dissipation due to viscosity when fluid is forced through the slits. These elements are analogous to electric resistance in the electrical system.

Inertia in the mechanical rectilineal system is represented by a mass. Moment of inertia in the mechanical rotational system is represented by a flywheel. Inertance in the acoustical system is represented as the fluid contained in a tube in which all the particles move with the same phase when actuated by a force due to pressure. These elements are analogous to inductance in the electrical system.

Compliance in the mechanical rectilineal system is represented as a-spring. Rotational compliance in the mechanical rotational system is represented as a spring. Acoustic capacitance in the acoustical system is represented as a volume which acts as a stiffness or spring element. These elements are analogous to electric capacitance in the electrical system.

Table 31-1 shows the quantities, units, and symbols in the four systems.
31-5. Description of Systems of One Degree of Freedom. An electrical, mechanical rectilineal, mechanical rotational, and acoustical system of one degree of freedom are shown in Fig. 31-2. In one degree of freedom the activity in every element of the


Fig. 31-2. Electrical, mechanical rectilineal, mechanical rotation, and acoustical systems of one degree of freedom and the current, velocity, angular velocity and volume velocity response characteristics.
system may be expressed in terms of one variable. In the electrical system an electromotive force $e$ acts upon an inductance $L$, an electric resistance $R_{E}$, and an electric capacitance $C_{E}$ connected in series. In the mechanical rectilineal system a driving force $f_{M}$ acts upon a particle of mass $m$ fastened to a spring of compliance $C_{M}$ and sliding upon a plate with a frictional force which is proportional to the velocity and designated as the mechanical rectilineal resistance $R_{M}$. In the mechanical rotational system a driving torque $f_{R}$ acts upon a flywheel of moment of inertia $I$ connected to a spring or rotational compliance $C_{R}$ and the periphery of the wheel sliding against a brake with a frictional force which is proportional to the velocity and designated as the mechanical rotational resistance $R_{R}$. In the acoustical system, an impinging sound wave of pressure $p$ acts upon an inertance $M$ and an acoustic resistance $R_{A}$ comprising the air in the tubular opening which is connected to the volume or acoustical capacitance $C_{A}$. The acoustic resistance $R_{A}$ is due to viscosity.

The differential equations describing the four systems of Fig. 31-2 are as follows: Electrical

$$
\begin{equation*}
L \ddot{q}+R_{E} \dot{q}+\frac{Q}{C_{E}}=E \epsilon^{j \omega t} \tag{31-14}
\end{equation*}
$$

Mechanical rectilineal

$$
\begin{equation*}
m \ddot{x}+R_{M} \dot{x}+\frac{x}{C_{M}}=F_{M \epsilon}{ }^{j \omega t} \tag{3l-15}
\end{equation*}
$$

Mechanical rotational

$$
\begin{equation*}
I \ddot{\phi}+R_{R} \dot{\phi}+\frac{\phi}{C_{R}}=F_{R} \epsilon^{j \omega t} \tag{31-16}
\end{equation*}
$$

Acoustical

$$
\begin{equation*}
M \ddot{X}+R_{A} \dot{X}+\frac{X}{C_{A}}=P \epsilon^{j \omega t} \tag{31-17}
\end{equation*}
$$

$E, F_{M}, F_{R}$, and $P$ are the amplitudes of the driving forces in the four systems. $E \epsilon^{j \omega t}=e, F_{M} \epsilon^{j \omega t}=f_{M}, F_{R} \epsilon^{j \omega t}=f_{R}$ and $P^{j \omega t}=p$.

The steady-state solutions of Eqs. (31-14) to (31-17) are:
Electrical

$$
\begin{equation*}
\dot{q}=i=\frac{E \epsilon^{j \omega t}}{R_{E}+j \omega L-\left(j / \omega C_{E}\right)}=\frac{e}{Z_{E}} \tag{31-18}
\end{equation*}
$$

Mechanical rectilineal

$$
\begin{equation*}
\dot{x}=\frac{F \epsilon^{j \omega t}}{R_{M}+j \omega m-\left(j / \omega C_{M}\right)}=\frac{f_{M}}{Z_{M}} \tag{31-19}
\end{equation*}
$$

Mechanical rotational

$$
\begin{equation*}
\dot{\phi}=\frac{F \epsilon^{j \omega t}}{R_{R}+j \omega I-\left(j / \omega C_{R}\right)}=\frac{f_{R}}{Z_{R}} \tag{31-20}
\end{equation*}
$$

Acoustical

$$
\begin{equation*}
\dot{X}=\frac{P \epsilon^{j \omega t}}{R_{A}+j \omega M-\left(j / \omega C_{A}\right)}=\frac{p}{Z_{A}} \tag{31-21}
\end{equation*}
$$

The vector electric impedance is

$$
\begin{equation*}
Z_{E}=R_{E}+j \omega L-\frac{j}{\omega C_{E}} \tag{31-22}
\end{equation*}
$$

The vector mechanical rectilineal impedance is

$$
\begin{equation*}
Z_{M}=R_{M}+j \omega m-\frac{j}{\omega C_{M}} \tag{31-23}
\end{equation*}
$$

The vector mechanical rotational impedance is

$$
\begin{equation*}
Z_{R}=R_{R}+j \omega I-\frac{j}{\omega C_{R}} \tag{31-24}
\end{equation*}
$$

The vector acoustic impedance is

$$
\begin{equation*}
Z_{A}=R_{A i}+j \omega M-\frac{j}{\omega C_{A}} \tag{31-25}
\end{equation*}
$$

Table 3l-1. Quantities, Units, and Symbols for Electrical, Mechanical Rectilineal, Mechanical Rotational, and Acoustical Elements

| Electrical |  |  | Mechanical rectilineal |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Quantiy | Unit | Sym- bol | Quantity | Unit | Symbol |
| Electromotive force...... . . | Volts $\times 10^{8}$ | $e$ | Force | Dynes | $f_{M}$ |
| Charge or quantity | Coulombs $\times 10^{-1}$ | $\boldsymbol{Q}$ | Linear displacement | Centimeters |  |
| Current.... | Amperes $\times 10^{-1}$ | $i$ | Linear velocity | Centimeters per second | $\dot{x}$ or $u$ |
| Electric imped- ance | Ohms $\times 10^{9}$ | $Z_{B}$ | Mechanical impedance | Mechanical ohms | $Z_{M}$ |
| Electric resistance | Ohms $\times 10^{9}$ | $\boldsymbol{R}_{E}$ | Mechanical resistance | Mechanical ohms | $\boldsymbol{R}_{\text {M }}$. |
| Electric reactance | Ohms $\times 10^{9}$ | $\boldsymbol{X}_{\boldsymbol{E}}$ | Mechanical reactance | Mechanical ohms | $X_{M}$ |
| Inductance. . | Henry $\times 10^{9}$ | $L$ | Mass | Grams | $m$ |
| Electric capacitance | Farads $\times 10^{-9}$ | $C_{B}$ | Compliance | Centimeters per dyne | $C_{M}$ |
|  | Ergs per second | $P_{E}$ | Power | Ergs per second | $P_{M}$ |
| Mechanical rotational |  |  | Acoustical |  |  |
| Quantity | Unit | Symbol | Quantity | Unit | Symbol |
| Torque | Dyne-centimeter | $f_{R}$ | Pressure | Dynes per square centimeter | $p$ |
| Angular displacement | Radians | $\phi$ | Volume displacement | Cubic centimeters | $X$ |
| Angular velocity | Radians per second | $\phi$ or $\Omega$ | Volume velocity | Cubic centimeters per second | $\dot{X}$ or $U$ |
| Rotational impedance | Rotational ohms | $Z_{R}$ | Acoustic impedance | Acoustic ohms | $Z_{\text {A }}$ |
| Rotational resistance | Rotational ohms | $R_{R}$ | Acoustic resistance | Acoustic ohms | $R_{\text {A }}$ |
| Rotational reactance | Rotational ohms | $X_{R}$ | Acoustic reactance | Acoustic ohms | $X_{4}$ |
| Moment of inertia | (Gram) (centimeter) ${ }^{2}$ | $I$ | Inertance | Grams per (centimeter) ${ }^{4}$ | M |
| Rotational compliance | Radians per dyne per centimeter | $C_{R}$ | Acoustic capacitance | (Centimeter) ${ }^{5}$ per dyne | $C_{\text {A }}$ |
| Power....... | Ergs per second | $P_{R}$ | Power | Ergs per second | $P_{\text {A }}$ |

# 3m. The Mobility and Classical Impedance Analogies ${ }^{1}$ 

FLOYD A. FIRESTONE

Editor, The Journal of the Acoustical Society of America

3m-1. Introduction. An analogy is a recognized relationship of consistent mutual similarity between the equations and structures appearing within two or more fields of knowledge, and an identification and association of the quantities and structural elements which play mutually similar roles in these equations and structures, for the purpose of facilitating transfer of knowledge of mathematical procedures of analysis and behavior of the structures between these fields.

The theory of analogies is still developing, as evidenced by the recent publications of Olson, Raymond, Bloch, Trent, Le Corbeiller, Bauer, Beranek, and others (see references on page 3-177). This section sets forth the author's recommendations for a useful problem-solving technique as presented in his,paper, 'Twixt Earth and Sky with Rod and Tube, J. Acoust. Soc. Am. 26, 140 (1954) (abstract only).
Instead of drawing an analogous electric circuit, the author recommends that mechanical and acoustical schematic diagrams be drawn, utilizing the mechanical and acoustical symbols shown below. Such a schematic diagram can be drawn directly from an inspection of the structure and is a record of our determinations of the functions and connections of its parts. The mechanical and acoustical symbols here presented are distinctive but similar to their electrical analogues so that their shape indicates to one familiar with electrical schematics the algebraic operations which are to be performed in the analysis. Then the problem is solved using mechanical or acoustical units. .Even if an analogous electric circuit is drawn, there is advantage in understanding in detail the mechanical or acoustical analogue of each straight line, junction, and element on the diagram, as set forth in the mobility and impedance analogy tables which follow.

Schematic diagrams based on analogies are most useful in solving those mechanical and acoustical problems where it is known at the outset that the parts are constrained to move in one line only. Problems involving several degrees of freedom for each mass require the construction of a separate schematic diagram for each degree of freedom, usually with coupling between these diagrams.

In the mobility analogy, mechanical mobility (complex velocity amplitude divided by complex force amplitude) is analogous to electric impedance, velocity to voltage, and force to current. In the impedance analogy, mechanical impedance is analogous to electric impedance, force to voltage, and velocity to current.

3m-2. Wires, Rods, and Tubes. In an electric circuit, connections between distant terminals are made by slim wires which, when idealized on a schematic diagram, are assumed to be free of inductance, resistance, and capacitance to ground. Ofttimes a number of wires are soldered together to form a (soldered) junction which

[^152]ensures equal voltages at all the terminals connected by the tree of wires. But it will also be useful to introduce the isocurrent junction (or electric mesher) which ensures equal currents in all the wires coming to it; structurally it is a set of similar ideal transformers with one side of each primary grounded and all secondaries connected in series, the schematic symbol being abbreviated to that of a junction with a circle around it indicating the series of secondaries. The isocurrent junction is the electric example of that broad class of junctions which we shall call "meshers" because they have the effect of connecting all the attached circuits into the same mesh.

In a mechanical system, on the other hand, the connections between distant moving terminals are in practice made by either or both of two "slim" devices, rods or tubes. Ideally, the rods are free from mass, friction, or compliance. Ideally the hydraulic tubes are held stationary and are filled with ideal fluid free from mass, viscosity, or compressibility. Ofttimes a number of rods are bolted together to form a rigid junction which ensures equal velocities of all the terminals connected by the tree of rods. Also, ofttimes a number of tubes are joined in a small common chamber to form a hydraulic junction which ensures equal pressures (and forces if all tubes are of the same area) at all the terminals connected by the tree of tubes. However, rods can be joined in a hydraulic junction which will ensure equal forces in the rods, if the rods are provided with equal-area pistons hydraulically connected. Similarly, by means of connected pistons, tubes can be joined in a rigid junction.

Since mechanical systems are customarily connected by two kinds of slim devices (rods and tubes) while electric systems are connected by only one kind of slim device (wires), it is not possible in general to draw a correct schematic diagram by either the mobility or impedance analogies alone which will correspond completely to the apparent geometry of the mechanical structure. A mobility schematic is a rod diagram (each straight line represents a rod), and it will correspond with the geometry of all parts of the mechanical structure which are rigidly connected by rods. An impedance schematic is a tubing diagram (each connecting line represents a hydraulic tube), and it will correspond with the geometry of all parts of the mechanical structure which are hydraulically connected by tubes.

3m-3. Ground, Earth, and Sky. In a mobility schematic or rod diagram, the reference symbol which is analogous to the ground symbol in an electrical wiring diagram is a frame of reference called the earth, whereas in an impedance schematic or tubing diagram the reference symbol is a force (or pressure) of reference called the sky. The sky is the dual of the earth. Structurally, the sky consists of a bowl, a lake, or an atmosphere of ideal fluid maintained under a constant pressure of reference. In a mobility schematic or rod diagram one terminal of every mass is the earth relative to which the velocity of the mass is measured, while in an impedance schematic or tubing diagram one terminal of every spring is the sky relative to which

- the force in the spring is measured; these concepts are necessary in order that either type of schematic diagram may be drawn by inspection. The earth has zero mobility and infinite mass, while the sky has zero impedance and infinite compliance.

3m-4. Analogues of the Condenser and the Capacitor. In addition to the mechanical analogues of the inductor and the resistor, the analogues of two classes of capacitive elements must be considered, which we shall distinguish by the names condenser and capacitor. The condenser is the parallel-plate device which can be connected either in a high wire or to ground, while the capacitor is typified by the isolated sphere in free space as discussed in electrostatics, one terminal only being free while the other terminal is permanently grounded.

In the mobility analogy, every mass is analogous to the capacitor, not the condenser, in the sense that one terminal of the mass is the body of the mass while the other terminal is always the earth relative to which the velocity of the mass is meas-
ured. It is this drawing of an earth symbol near each mass which makes closed circuits in a mobility schematic and permits the drawing of a correct rod diagram of any rod-connected system in a straightforward intuitive manner. There is also an unusual structure called a transinertor which is a combination of two masses and a mesher, and which is analogous to the condenser; it can be connected either in series with the high rod or to ground.

In the impedance analogy, every spring is analogous to the capacitor, not the condenser, in the sense that one terminal of the spring is the body of the spring while the other terminal is always the sky relative to which the force of the spring is measured. It is this drawing of a sky symbol near each spring which makes closed circuits in an impedance schematic and permits the drawing of a correct tubing diagram of any tube-connected system in a straightforward intuitive manner.

3m-5. The Dotted Arrow. Alongside each rod diagram is drawn a dotted arrow, usually toward the right, which indicates the direction of motion which is considered positive. This is analogous to marking the plus and minus signs on our voltmeters. A solid arrow superimposed on a rod indicates the direction in which impulse is flowing, such as would increase the momentum of a mass in the direction of the dotted arrow. If the solid arrow is in the direction of the dotted arrow, the rod is in compression; if the arrows are in opposite directions, the rod is in tension; if the arrows are at right angles, the rod is in shear. In a rotational system, the rotational velocity is considered positive if it is clockwise when looking in the direction of the dotted arrow placed beside the rotational schematic diagram; a solid arrow superimposed on a shaft then indicates the direction of flow of torsional impulse such as would increase the positive angular momentum of any inertor into which it flows.

In a tubing diagram only the solid arrow is used, superimposed on a tube. It indicates the direction of positive fluid velocity or volume velocity.

3m-6. Rationale of the Schematic Symbols Proposed for the Elements. In both analogies, the mechanical and acoustical schematic symbols are similar in appearance to their analogous electrical symbols. On a rod diagram, the symbols for a mechanical spring and responsor have $1 \frac{1}{2}$ "wiggles," the acoustic elastor and responsor have $2 \frac{1}{2}$ wiggles, the torsional spring and responsor have $2 \frac{1}{2}$ wiggles but are tapered, while the electrical inductor and resistor have $3 \frac{1}{2}$ wiggles as usual. Similarly a torsional inertor is tapered.

On an impedance schematic, the symbols are similar to those for the mobility schematic though dual in meaning, and each impedance schematic symbol has a line drawn beside it.

3m-7. Method of Drawing Schematic Diagrams. (1) Choose your analogy, either for life or for the problem at hand, remembering that the mobility analogy is the most convenient for rod-connected systems while the impedance analogy is the most convenient for hydraulic tube-connected systems. (2) Identify the functions performed by each part of the given structure. (3) Choose the schematic symbols which represent these functions. (4) Identify the terminals of each element, coupler, and vibrator of the structure. (5) Connect in the schematic diagram by means of appropriate connectors and rigid or hydraulic junctions those terminals which are connected in the structure.

The identification of the terminals of each element will include the assignment of the earth symbol as one terminal of each mass in a mobility schematic or rod diagram, or the assignment of the sky symbol as one terminal of each spring in an impedance schematic or tubing diagram; this will result in closed meshes and correct series and parallel connections in each diagram.

A single hydraulic tube fitted with pistons at its two ends (of equal areas for mechanical systems but not necessarily equal for acoustic systems) performs the same functions as a rod; so both rod and tube may be represented by a straight line and are interchangeable in a series. It is where several rods join, or tubes join, that there
is a difference of function, a rigid junction of rods ensuring equal velocities while a hydraulic junction of tubes ensures equal forces or sound pressures. Either analogy may therefore be used for diagraming a system connected by rods and/or tubes by first determining whether a given structural connection performs the function of a rigid junction or of a hydraulic junction, then designating by means of the symbols below whether the connection constitutes a simple junction (analogous to a soldered junction of wires) or a mesher (analogous to the isocurrent junction mentioned in Sec. $3 \mathrm{~m}-2$ ). That analogy will be best for a given problem which brings in a minimum number of meshers with which we are not so familiar. Thus the mobility analogy will be best for rod-connected systems and the impedance analogy best for tube-connected systems.

3m-8. Types of Schematic Diagram. 1. The mobility schematic diagram or rod diagram. Because most mechanical systems are rod-connected and have no tubes, a mobility schematic diagram or rod diagram will be most convenient and can usually be drawn by inspection of the structure, using the mobility-analogy symbols given on left pages. Even an acoustic system of the kind where there are no side branches and the elements are of equal cross-sectional areas and lie in a series, as when a piezoelectric crystal radiates plane waves into a delay line, may be most conveniently represented by a mobility schematic since the contact of the adjacent faces of the elements ensures their equal volume velocities as if they were connected by acoustic rods.
2. The impedance schematic diagram or tubing diagram. If we have a hydraulically operated mechanical system which is tube-connected or an acoustic filter connected by tubes with side branches, an impedance schematic or tubing diagram will be most convenient and can be drawn by inspection using the impedance-analogy symbols given on right pages, provided that the sky is introduced as one terminal of each spring.
3. The two-analogy schematic diagram. Complete correspondence between the schematic diagram and the geometry of the structure can be obtained by diagraming the rod-connected parts by the mobility analogy and the tube-connected parts by the impedance analogy, appropriate couplers being indicated where rod and tube portions adjoin. Using this technique, the schematic diagram of the system can be drawn by inspection of the original structure, using the appropriate mechanical or acoustical symbols given below, including the analogy connectors on page 3-176.

3m-9. Mechanical Mobility $z$ vs. Mechanical Admittance $Y_{M}$. Why should the new term mechanical mobility $z$ be introduced when it is of the same magnitude as the established term mechanical admittance $Y_{M}$ ?

$$
\text { Mechanical mobility } z=\frac{\hat{v} \text { across }}{\hat{F} \text { through }} \text { while mechanical admittance } Y_{M}=\frac{\hat{v} \text { through }}{\hat{F} \text { aeross }}
$$

Thus while the magnitudes of the mechanical mobility and mechanical admittance are equal, the words through and across are inverted in the definitions, because mobility belongs in a rod-connected system and mechanical admittance belongs in a tubeconnected system.

Mechanical mobility $z$ is indigenous to a rod-connected system, and when a number of springs or other elements are connected in series, the mobility of the combination is the sum of the individual mobilities: $z=z_{1}+z_{2}+z_{3}$. It would be unanalogous, though correct, to say that the mechanical admittance of the elements in series is the sum of the individual mechanical admittances; this lack of analogy is avoided by introducing with the rod diagram the new term mobility and having it associated with the letter $z$. Mechanical admittance is indigenous to a tube-connected system and the above-mentioned series of structural elements would turn out to be a parallel combination of elements in a tubing diagram; the mechanical admittance of the

THE MOBILITY ANALOGY
Symbols for Constructing Mechanical, Acoustical, and Electrical Schematic Diagrams Based on the Mobility Analogy


THE IMPEDANCE ANALOGY (Classical Analogy)
Symbols for Constructing Mechanical, Acoustical, and Electrical
Schematic Diagrams Based on the Impedance Analogy


THE MOBILITY ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

Symbols Indicating the Signs of the Variables
$\xrightarrow[+\rightarrow \text { or }+]{+}$

Dotted arrow shows direction of positive velocity $v$ relative to the earth.

Small arrow on rod shows direction of positive flow of force $F$ and impulse $Q_{M}$. If impulse flows into a mass, its momentum in the direction of the dotted arrow is increased. Both arrows in the same direction indicates compression; at right angles, shear.


Rigid connector offset

compression everywhere
Flexible connector

| $+\cdots$ | $\xrightarrow{+\longrightarrow} \text { or }$ | + |
| :---: | :---: | :---: |
| Clockwise rotation $v_{R}$ looking in the direction of the dotted arrow is positive relative to the earth. | Dotted arrow shows direction of positive volume velocity $U$ relative to the earth. | The + sign near the wire indicates a positive voltage relative to ground. |
| Small arrow on shaft shows direction of positive flow of torque $F_{R}$ and torsional impulse $Q_{R}$. | Small arrow shows direction of flow of force per unit area (sound pressure $p$ ) and impulse per unit area (acoustic impulse $Q_{A}$ ). | Arrow shows direction of flow of positive current $I$ and charge $Q$. |
| $+\rightarrow$ | Both arrows in the same direction indicates compression; at right angles, shear. $+\rightarrow$ | + |
| $\xrightarrow[\begin{array}{l\|l}\text { clockwise } \\ \text { torque }\end{array}]{ }$(chain, <br> belt, or <br> gears, <br> 1 to 1$)$ | compression <br> shear |  |
| counter- <br> clockwise torque | rarefaction | ```c``` |
| Rigid connector offset | Rigid connector offset (rare) | Offset connector |
|  |  | same as above |
| everywhere <br> Flexible shaft | where <br> Flexible connector (similar to tube of small $d / \lambda$ ) | Offset connector |

THE IMPEDANCE ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| Symbols Indicating the Signs of the Variables |  |  |  |
| $+$ | + | + | + |
| The + sign indicates positive pressure in the tube (relative to the sky) and is assumed to be associated with positive force $F$ | The + sign indicates positive pressure in the tube (relative to the sky) and is assumed to be associated with positive torque $F_{R}$ | The + sign indicates a positive sound pressure $p$ (relative to the sky, $P_{0}$ ) | The + sign indicates a positive voltage (relative to the ground) |
| The arrow shows the direction of the velocity $v$ (relative to the tubing) | The arrow shows the direction of fluid motion which is associated with positive clockwise angular velocity $v_{R}$ | The arrow shows the direction of a positive volume velocity $U$ | The arrow shows the direction of flow of a positive historical current $I$ |
| Rounded corners are recommended for tubes |  |  |  |
|  |  |  |  |
| Stationary tube with bends; direction of positive velocity $v$ and displacement $s$ is shown by arrows | Stationary tube with changes of direction; positive clockwise angular velocity $v_{R}$ and angular displacement $s_{R}$ are shown by arrows | Stationary tube with bends; direction of positive volume velocity $U$ and volume displacement $S_{A}$ is shown by arrows | Offset connector; wire with bends; direction of positive current $I$ and flow of charge $Q$ is shown by arrows |

THE MOBILITY ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

Simple junctions. The across variables are equal. The sum of the through variables toward the junction is zero


Rigid junction (welded rods of any cross-sectional area)
 $-F_{5}=0$


Rigid junction ( 1 to
1 gearbox with shafts of any crosssectional area)


Rigid acoustic junction, connecting wavefronts 1 to 5 , not necessarily of equal areas, by any means which functions the same as a pivoted lever driving pistons 1 to 5 at lever arms equal to the reciprocals of the piston areas (as if the levers of individual acoustic rods .were rigidly connected)
$1=l_{1} A_{1}=l_{2} A_{2}$ $=$ etc. $U_{1}=U_{2}=$ etc. $\quad E_{1}=E_{2}=$ etc. $p_{1}+p_{2}-p_{3}-p_{4}$
$-p_{5}=0$


Junction (soldered wires of any cross-sectional area)
$I_{1}+I_{2}-I_{3}-I_{4}$ $-I_{5}=0$

## THE IMPEDANCE ANALOGY



THE MOBILITY ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

Meshers. The through variables (in the direction of the dotted arrow) are equal. The sum of the across variables (with sign changed where through arrow points away from junction) is zero


Hydraulic junction; mesher (see below) $F_{1}=F_{2}=$ etc.
$v_{1}+v_{2}-v_{3}-v_{4}$

$$
-v_{5}=0
$$

The earth connection is not necessary when equal numbers of forces flow to and from the mesher.

Typical hydraulic junction structure (see symbol above):


Equal-area pistons with common liquid, or any set of levers which will ensure equal forces of compression


Hydraulic junction; mesher (see below)
$F_{R 1}=F_{R 2}=$ etc.
$v_{R 1}+v_{R 2}-v_{R 3}$
$-v_{R 4}-v_{R 5}=0$
The earth connection is not necessary when equal numbers of torques flow $t o$ and from the mesher.

Typical hydraulic junction structure (see symbol above):


Differential gearbox giving equal torques


Hydraulic acoustic junction; mesher $p_{1}=p_{2}=$ etc. $U_{1}+U_{2}-U_{3}$
$-U_{4}-U_{5}=0$
The acoustic earth connection is not necessary when equal numbers of sound pressures flow to and from the mesher. Typical hydraulic junction structure (see symbol above):


Acoustic rods, generally of different wavefront (piston) areas, entering a small chamber containing ideal fluid


Isocurrent junction; mesher (see below)
$I_{1}=I_{2}=$ etc.
$E_{1}+E_{2}-E_{3}$ $-E_{4}-E_{5}=0$
The ground connection is not necessary when equal numbers of currents flow $t o$ and from the mesher.
Typical mesher structure (see symbol above):


Similar ideal transformers (on separate cores) with secondaries in series. Phased as shown by arrows

THE IMPEDANCE ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |

Meshers. The through variables (as indicated by the arrows) are equal. The sum of the across variables (with sign changed where through variable arrow points away from junction) is zero


Rigid junction; mesher (see below) $v_{1}=v_{2}=$ etc.
$F_{1}+F_{2}-F_{3}-F_{4}$
$-F_{5}=0$
The sky connection is not necessary when equal numbers of velocities flow to and from the mesher.

Typical rigid junction structure (see symbol above):


A multiplicity of rigidly connected equal-area pistons which ensure equal fluid velocities in all tubes; or a number of rods bolted together


Rigid (geared) junction; mesher $\begin{aligned} v_{R 1} & =v_{R 2}=\text { etc. } \\ F_{R 1} & +F_{R 2}-F_{R 3} \\ & -F_{R 4}-F_{R 5}=0\end{aligned}$ The sky connection is not necessary when equal numbers of rotational velocities flow to and from the mesher. Typical rigid junction structure (see symbol above):

gearbox

Gears, belts, chains, or levers, which ensure equal rotations of shafts


Rigid acoustic junction; mesher
$U_{1}=U_{2}=$ etc.
$p_{1}+p_{2}-p_{3}-p_{4}$
$-p_{5}=0$
The acoustic sky con-
nection is not necessary when equal numbers of volume velocities flow $t o$ and from the mesher. Typical rigid acoustic junction structure:

Same as the device in the rectilineal column at the left, but the pivoted wheel drives pistons 1 to 5 , not necessarily of equal areas, at lever arms equal to the reciprocals of the areas. Special case, equal-area pistons rigidly connected; or wavefronts in contact


Isocurrent junction; mesher
$I_{1}=I_{2}=$ etc.
$E_{1}+E_{2}-E_{3}-E_{4}$
$-E_{5}=0$
The ground connection is not necessary when equal numbers of currents flow to and from the mesher. Typical mesher structure:

Same as on opposite page

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric | |
|---|---|---|---|---|
| Referents |  |  |  |
| Earth, velocity of reference, frame of reference $v=0$ | Earth, angular velocity of reference, frame of reference $v_{R}=\mathbf{0}$ | $\frac{1}{-}+$ or $-\\| 1$ <br> Acoustic earth, volume velocity of refence, frame of refence $U=0$ | Ground, voltage of reference $E=0$ |
| Force $F$ is measured relative to the force in the surrounding empty space (no symbol) | Torque $F_{R}$ is measured relative to the torque in the surrounding empty space (no symbol) | Sound pressure $p$ is measured relative to the pressure $P_{0}$ in the surrounding atmosphere (no symbol) | Current $I$ is measured relative to the current in the surrounding empty space (no symbol) |


| Passive Elements |  |  |  |
| :---: | :---: | :---: | :---: |
| M- | $-W$ | $-W$ | $-W$ |
| - |  |  |  |
| A mechanical | A rotational | An acoustic mobility $z_{4}$. | An electric impedance $Z$. |
| mobility $z$. <br> 0 across | mobility $z_{R}$. <br> $\hat{0}_{R}$ across | mobility $z_{A}$. $z_{1} \equiv \hat{\theta} \text { across }$ | $Z \equiv E \text { across }$ |
| $z \equiv \frac{\beta \text { through }}{}$ | $z_{R} \equiv \frac{\widehat{F}_{R} \text { through }}{}$ | $z_{A} \equiv \overline{\hat{p} \text { through }}$ | $i$ through |
| $\hat{\theta}$ and $\hat{F}$ are complex | $\hat{v}_{R}$ and $\hat{F}_{R}$ are com- | $\hat{O}$ and $\hat{p}$ are com- | $E$ and $\bar{I}$ are complex |
| amplitudes. | plex amplitudes. | plex amplitudes. | amplitudes. |
| $z=r+j x$ | $z_{R}=r_{R}+j x_{R}$ | $z_{A}=r_{A}+j x_{A}$ | $Z=R+j X$ |
| $r=$ responsiveness | $r_{R}=$ rotational responsiveness | $r_{A}=$ acoustic responsiveness | resistanc |
| $x=$ excitability | $x_{R}=$ rotational excitability | $x_{A}=$ acoustic excitability | $X=$ reactance |
| Mechanical immo- | Rotational immo- | Acoustic immobility | Admittance |
| bility | bility |  |  |
| $y=1 / z=g+j b$ $g=$ unresponsiveness | $y_{R}=1 / z_{R}=g_{R}+j b_{R}$ $g_{R}=\text { rotational }$ | $\begin{aligned} & y_{A}=1 / z_{A}=g_{A}+j b_{A} \\ & g_{A}=\text { acoustic } \end{aligned}$ | $\begin{aligned} Y & =1 / Z=G+j t \\ G & =\text { conductance } \end{aligned}$ |
| $g=$ unresponsiveness | $g_{R}=$ rotational unresponsiveness | $g_{A}=$ acoustic ünrespóponsiveness |  |
| $b=$ unexcitability | $\begin{aligned} & b_{R}= \text { rotational } \\ & \text { unexcitability } \end{aligned}$ | $b_{A}=\underset{\text { unexcitability }}{\text { acoustic }}$ | $B=$ susceptance |
| $F=0 y$ | $\hat{F}_{R}=\hat{O}_{R} y_{R}$ | $\hat{p}=\sigma y_{A}$ | $I=E Y$ |
| $\hat{0}=\hat{F} z$ | $\hat{o}_{R}=\hat{F}_{R} z_{R}$ | $\hat{O}=\hat{p} z_{A}$ | $\hat{E}=I Z$ |
| $P=v F$ | $P_{i}=v_{R} F_{R}$ | $P_{i}=U p$ | $P_{i}=E I$ |
| $\begin{aligned} P & =v\|F\| \cos \varphi_{z} \\ & =\left.F\right\|^{2} r \end{aligned}$ | $\begin{aligned} P & =v_{R}\left\|F_{R}\right\| \cos \varphi_{2 R} \\ & =\left.F_{R}\right\|^{2} r_{R} \end{aligned}$ | $\begin{aligned} P & =U\|p\| \cos \varphi_{z A} \\ & =\left.p\right\|^{2} r_{A} \end{aligned}$ | $\begin{aligned} P & =E\|I\| \cos \varphi_{Z} \\ & =\left.I\right\|^{2} R \end{aligned}$ |

## THE IMPEDANCE ANALOGY



Passive Elements

| A mechanical impedance $Z_{M}$. $Z_{M} \equiv \frac{F \text { across }}{\hat{v} \text { hrough }}$ |  | An acoustic impedance $\boldsymbol{Z}_{\boldsymbol{a}}$. $Z_{A} \equiv \frac{\hat{p} \text { across }}{\hat{0} \text { through }}$ | An electric impedance $Z$. $Z \equiv \frac{E \text { across }}{I \text { through }}$ |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} Z_{M}=R_{M}+j X_{M} \\ R_{M}= \\ \text { mechanical } \\ \text { resistance } \\ X_{M}=\text { mechanical } \\ \text { reactance } \end{gathered}$ | $Z_{R}=R_{R}+j X_{R}$ <br> $R_{R}=$ rotational resistance <br> $X_{R}=$ rotational reactance | $\begin{gathered} Z_{A}=R_{A} \pm j X_{A} \\ R_{A}= \\ =\begin{array}{c} \text { acoustic } \\ \text { resistance } \end{array} \\ X_{A}=\begin{array}{c} \text { acoustic } \\ \text { reactance } \end{array} \end{gathered}$ | $\left\{\begin{array}{l} Z=R+j X \\ R=\text { resistance } \\ X=\text { reactance } \end{array}\right.$ |
| Mechanical admittance $Y_{M}=1 / Z_{M}$ <br> $=G_{M}+j B_{M}$ <br> $G_{M}=$ mechanical conductance <br> $B_{M}=$ mechanical <br> susceptance | Rotational admittance $Y_{R}=1 / Z_{R}$ <br> $=G_{R}+j B_{R}$ <br> $G_{R}=$ rotational conductance <br> $B_{R}=$ rotational susceptance | Acoustic admittance $\begin{aligned} Y_{A} & =1 / Z_{A} \\ & =G_{A}+j B_{A} \\ G_{A} & =\text { acoustic } \\ & \text { conductance } \\ B_{A} & =\text { acoustic } \\ & \text { susceptance } \end{aligned}$ | Admittance $\begin{aligned} & Y=1 / Z=G+j B \\ & G=\text { conductance } \\ & B=\text { susceptance } \end{aligned}$ |
| $\begin{aligned} & \hat{v}=\hat{F} Y_{M} \\ & \hat{F}=\hat{0} Z_{M} \\ & P_{i}=F v \\ & P=F\|v\| \cos \varphi_{Z M} \\ & P=\left.v\right\|^{2} R_{M} \end{aligned}$ | $\begin{aligned} & \hat{v}_{R}=F_{R} Y_{R} \\ & F_{R}=\hat{v}_{R} Z_{R} \\ & P_{i}=F_{R} v_{R} \\ & P=F_{R}\left\|v_{R}\right\| \cos \varphi_{Z R} \\ & P=\left.v_{R}\right\|^{2} R_{R} \end{aligned}$ | $\begin{aligned} & U=\hat{p} Y_{A} \\ & \hat{p}=\theta Z_{A} \\ & P_{i}=p U \\ & P=p\|U\| \cos \varphi_{Z_{A}} \\ & P=\left.U\right\|^{2} R_{\boldsymbol{A}} \end{aligned}$ | $\begin{aligned} & I=E Y \\ & E=I Z \\ & P_{i}=E I \\ & P=E\|I\| \cos \varphi_{Z} \\ & P=\left.I\right\|^{2} R \end{aligned}$ |

THE MOBILITY ANALOGY
$\xrightarrow[\substack{\text { Rectilineal } \\ \text { mechanical }}]{\substack{+\cdots \rightarrow}}$

Three-terminal mobility $z$ including (rigid) junction.
$\hat{0}_{1}=\hat{\theta}_{2}=\hat{0}_{3}=0$
$F_{3}=\hat{F}_{1}-\hat{F}_{2}$
$F_{2}=0 / z$


Mechanical responsor
of responsiveness $r$


Typical structure: viscous oil between plates attached to the terminals

$$
\begin{aligned}
& r \equiv \frac{v \text { across }}{F \text { through }}=\frac{0}{\vec{F}} \\
& z=r \\
& v=F r \\
& 0=F r \\
& P=\left.F\right|^{2} r=\left.v\right|^{2} / r
\end{aligned}
$$

Displacement
$s=\int v d t=r Q_{M}$ where impulse $Q_{M}=\int F d t$
tional mobility $z_{R}$
including (rigid)
junction.
$\hat{v}_{R 1}=\hat{v}_{R 2}=\hat{v}_{R 3}=\hat{0}$
$\widehat{F}_{R 3}=\widehat{F}_{R 1}-\widehat{F}_{R 2}$
$\hat{F}_{R 2}=\hat{0}_{R} / z_{R}$


Rotational responsor of rotational responsiveness $r_{R_{R}}$


Typical structure: viscous oil between concentric rotating cones attached to the terminals
$r_{R} \equiv \frac{v_{R} \text { across }}{F_{R} \text { through }}=\frac{\hat{\theta}_{R}}{\widehat{F}_{R}}$
$z_{R}=r_{R}$
$v_{R}=F_{R} r_{R}$
$\hat{\theta}_{R}=\widehat{F}_{R} r_{R}$
$P=\left.F_{R}\right|^{2} r_{R}=\left.v_{R}\right|^{2} / r_{R}$ Rotational displacement
$\theta=\int v_{R} d t=r_{R} Q_{R}$
where torsional impulse $Q_{R}=\int f_{R} d t$
Acoustic

Electric
$\rightarrow\left\{_{\substack{2}}^{\text {wire }}\right.$

Three-terminal impedance $Z$ including junction.
$\hat{E}_{1}=\hat{E}_{2}=\hat{E}_{3}=E$
$\hat{I}_{3}=\hat{I}_{1}-\hat{I}_{2}$
$I_{2}=\hat{E} / Z$


Resistor of resistance $R$


Typical structure: viscous oil leaking through holes in piston in movable cylinder
$r_{A} \equiv \frac{U \text { across }}{p \text { through }}=\frac{V}{\hat{p}}$
$R \equiv \frac{E \text { across }}{I \text { through }}=\frac{E}{I}$
$Z=R$
$E=I R$
$\hat{E}=\hat{I} R$
$P=\left.I\right|^{2} R=\left.E\right|^{2} / R$
Voltage impulse
$S=\int E d t=R Q$
where charge
$Q=\int I d t$


Three-terminal mechanical impedance $Z_{M}$ including hydraulic junction. $\hat{F}_{1}=\hat{F}_{2}=\hat{F}_{3}=\hat{F}$ $\hat{v}_{3}=\hat{v}_{1}-\hat{v}_{2}$ $\hat{0}_{2}=\tilde{F} / Z_{M}$


Mechanical resistor of resistance $R_{M}$


Typical structure: a length of viscous fluid moving in a stationary tube of unit cross-sectional area
$R_{M} \equiv \frac{F \text { across }}{v \text { through }}=\frac{F}{\hat{v}}$
$Z_{M}=R_{M}$
$F=v R_{M}$
$F=\hat{0} R_{M}$
$P=\left.v\right|^{2} R_{M}=\left.F\right|^{2} / R_{M}$
Impulse
$Q_{M}=\int F d t=R_{M} s$ where displacement $s=\int v d t$

THE IMPEDANCE ANALOGY

| Rotational <br> mechanical | Acoustic |
| :---: | :---: |



Three-terminal rotational impedance $Z_{R}$ including hydraulic
junction.
$\hat{F}_{R_{1}}=\hat{F}_{R 2}=\hat{F}_{R 3}=\hat{F}_{R}$
$v_{R 3}=v_{R 1}-v_{R 2}$
$\hat{o}_{R 2}=\hat{F}_{R} / Z_{R}$
$-\widehat{R_{R}}$
Rotational resistor of rotational resistance $R_{R}$


Typical structure: an annulus of viscous liquid between a rotating cone and a stationary cone; or a coil of tubing containing viscous fluid $R_{R} \equiv \frac{F_{R} \text { across }}{v_{R} \text { through }}=\frac{F_{R}}{\hat{v}_{R}}$
$Z_{R}=R_{R}$
$F_{R}=v_{R} R_{R}$
$F_{R}=\hat{v}_{R} R_{R}$
$P=\left.v_{R}\right|^{2} R_{R}=\left.f_{R}\right|^{2} / R_{R}$ Torsional impulse
$Q_{R}=\int F_{R} d \dot{t}=R_{R} \theta$ where displacement $\theta=\int v_{R} d t$


Three-terminal acoustic impedance $Z_{A}$ including hydraulic junction.
$\hat{p}_{1}=\hat{p}_{2}=\hat{p}_{3}=\hat{p}$
$\theta_{3}=\theta_{1}-\theta_{2}$
$\hat{U}_{2}=\hat{p} / Z_{A}$


Acoustic resistor of acoustic resistance $R_{A}$


Typical structure: a length of viscous fluid moving in a stationary tube of any cross-sectional area
$R_{A} \equiv \frac{p \text { across }}{U \text { through }}=\frac{\hat{p}}{\hat{V}}$
$Z_{A}=R_{A}$
$p=U R_{A}$
$\hat{p}=U R_{A}$
$P=\left.U\right|^{2} R_{A}=\left.p\right|^{2} / R_{A}$
Acoustic impulse
$Q_{A}=\int p d t=R_{A} S_{A}$
where volume displacement $S_{A}=\int U d t$

Three-terminal impedance $Z$ including junction.
$E_{1}=E_{2}=E_{3}=\hat{E}$
$I_{3}=I_{1}-I_{2}$
$I_{2}=E / Z$


Resistor of resistance $R$


Typical structure: a length of resistive wire
$R \equiv \frac{E \text { across }}{I \text { through }}=\frac{E}{I}$
$Z=R$
$E=I R$
$\hat{E}=I R$
$P=\left.I\right|^{2} R=\left.E\right|^{2} / R$
Voltage impulse
$S=\int E d t=R Q$
where charge
$Q=\int I d t$

THE MOBILITY ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Three-terminal mechanical responsor $r$ including junction. $\begin{aligned} & v_{1}=v_{2}=v_{3}=v \\ & F_{3}=F_{1}-F_{2} \\ & F_{2}=0 / r \end{aligned}$ | Three-terminal rotational responsor $r_{R}$ including junction. $\begin{aligned} & v_{R 1}=v_{R 2}=v_{R 3}=v_{R} \\ & F_{R 3}=F_{R 1}-F_{R 2} \\ & F_{R 2}=\theta_{R} / r_{R} \end{aligned}$ | Three-terminal acoustic responsor $r_{A}$ including (rigid) junction. $\left\{\begin{array}{l} U_{1}=U_{2}=U_{3}=U \\ p_{3}=p_{1}-p_{2} \\ \hat{p}_{2}=U / r_{A} \end{array}\right.$ | Three-terminal resistor $R$ including (soldered) junction. $\begin{aligned} & E_{1}=E_{2}=E_{3}=E \\ & I_{3}=I_{1}-I_{2} \\ & I_{2}=E / R \end{aligned}$ |
| $C_{C_{M}\left(\text { or } L_{M}\right)}$ | Torsional spring of rotational compliance $C_{R}$ (or $L_{R}$ ) | $\qquad$ $C_{A}\left(\text { or } L_{A}\right)$ <br> Acoustic spring of acoustic compliance $C_{A}\left(\right.$ or $\left.L_{A}\right)$ | Inductor of inductance $L$ |
| $\begin{aligned} & v=C_{M} d F / d t \\ & z=j \omega C_{M}\left(\text { or } j \omega L_{M}\right) \\ & 0=F z \\ & W=C_{M} F^{2} / 2 \end{aligned}$ | $\begin{aligned} & v_{R}=C_{R} d F_{R} / d t \\ & z_{R}=j \omega C_{R} \\ & \hat{v}_{R}=F_{R} z_{R} \\ & W=C_{R} F_{R} / 2 \end{aligned}$ | $\begin{aligned} & U=C_{A} d p / d t \\ & z_{A}=j \omega C_{A} \\ & \hat{U}=\hat{p} z_{A} \\ & W=C_{A} p^{2} / 2 \end{aligned}$ | $\begin{aligned} & E=L d I / d t \\ & Z=j \omega L \\ & E=I Z \\ & W=L I^{2} / 2 \end{aligned}$ |
| Displacement $s=\int v d t=C_{M} F$ | Angular displacement $\theta=\int v_{R} d t=C_{R} F_{R}$ | Volume displacement $X=\int U d t=C_{A} p$ A closed volume $V$ of gas at pressure $P_{0}$ has $C_{A}=V / \gamma P_{0}$ | Voltage impulse $S=\int E d t=L I$ |

THE IMPEDANCE ANALOGY


Three-terminal mechanical resistor $\boldsymbol{R}_{M}$ including hydraulic junction.
$F_{1}=F_{2}=F_{3}=F$
$v_{3}=v_{1}-v_{2}$
$\boldsymbol{0}_{2}=\hat{F} / \boldsymbol{R}_{\boldsymbol{M}}$


A mass, of mass $m$

Typical structure: a length of massive fluid contained in a unit-area tube
$F=m d v / d t=m a$
$Z_{M}=j \omega m$
$\boldsymbol{F}=\mathbf{0} Z_{M}$
$W=m v^{2} / 2$
Impulse equals momentum
$Q_{M}=\int F d t=m v$
$\underbrace{\substack{\text { tube }}}_{\substack{\text { Rotational } \\ \text { mechanical }}}$

Three-terminal rotational resistor $R_{R}$ including hydraulic junction.
$\begin{aligned} & F_{R 1}=F_{R 2}=F_{R 3}=F_{R} \\ & v_{R 3}=v_{R 1}-v_{R 2} \\ & \boldsymbol{o}_{R 2}=F_{R 2} / R_{R} \\ & \\ & \\ & \\ &\end{aligned}$
A rotational inertor of polar moment of inertia $J$ Typical structure: a coil of stationary tubing containing a massive fluid
$F_{R}=J d v_{R} / d t=J \alpha$
$Z_{R}=j \omega J$
$F_{R}=0_{R} Z_{R}$
$W=J v_{R}{ }^{2} / 2$
Torsional impulse equals angular momentum
$Q_{R}=\int F_{R} d t=J v_{R}$
$\underbrace{\text { tube }}_{\substack{\text { Acoustic }}}$

Three-terminal acoustic resistor $\boldsymbol{R}_{A}$ including hydraulic junction.
$p_{1}=p_{2}=p_{3}=p$
$U_{3}=U_{1}-U_{2}$
$\vec{U}_{2}=\hat{p} / R_{A}$
$\hat{U}_{2}=\hat{p} / R_{A}$


An acoustic inertor of inertance $M$ (or $\left.M_{A}\right) . \quad M=m / A^{2}$ Typical structure: a mass $m$ of gas in a stationary tube or neck of area $A$
$p=M d U / d t=p \overline{A_{A}}$
$Z_{A}=j \omega M$
$\hat{p}=\hat{O} Z_{\Delta}$
$W=M U^{2} / 2$
Acoustic impulse equals acoustic momentum
$Q_{A}=\int p d t=M U$


Three-terminal impedance $Z$ including (soldered) junction.
$E_{1}=E_{2}=E_{3}=E$
$I_{3}=I_{1}-I_{2}$
$I_{2}=E / R$


An inductor of inductance $L$

Typical structure:
a coil of wire
$E=L d I / d t$
$Z=j \omega L$
$E=I Z$
$W=L I^{2} / 2$
Voltage impulse
$S=\int E d t=L I$

THE MOBILITY ANALOGY
$\xrightarrow[\substack{\text { Rectilineal } \\ \text { mechanical }}]{\text { rod }}$

Three-terminal spring (elastor) of compliance $C_{M}$, including junction.


A mass of mass $m$

One terminal permanently earthed. Typical structure: a solid block constrained to lineal motion
$F=m d v / d t=m a$
$z=-j / \omega m$
$0=F z$
$W=m v^{2} / 2$
Impulse equals momentum
$Q_{M}=\int F d t=m v$

| Rotational mechanical | Acoustic | Electric | |
|---|---|---|---|
| $\xrightarrow{\text { shaft }}$ | $\rightarrow$ | wire |
|  |  |  |
| Three-terminal torsional spring (elastor) of rotational compliance $C_{R}$, including junction. | Three-terminal acoustic spring (elastor) of acoustic compliance $C_{4}$, including junction. | Three-terminal inductor of inductance $L$, including junction. |
| $\begin{aligned} & v_{R_{1}}=v_{R 2}=v_{R 3}=v_{R} \\ & F_{R_{3}}=F_{R_{1}}-F_{R 2} \\ & F_{R_{2}}=\theta_{R} / j \omega C_{R} \end{aligned}$ | $\begin{aligned} & U_{1}=U_{2}=U_{3}=U \\ & p_{3}=p_{1}-p_{2} \\ & \hat{p}_{2}=O / j \omega C_{A} \end{aligned}$ | $\begin{aligned} & E_{1}=E_{2}=E_{3}=E \\ & I_{3}=I_{1}-I_{2} \\ & I_{2}=E / j \omega L \end{aligned}$ |
|  | $\rightarrow \underset{M}{\square} \\|$ |  |
| A rotational inertor of polar moment of | An acoustic inertor of inertance $M$ (or | A capacitor of capacitance $C$. |

One terminal permanently earthed. Typical structure: a flywheel
$F_{R}=J d v_{R} / d t=J \alpha$ $Z_{R}=-j / \omega J$ $\hat{\theta}_{R}=\hat{F}_{R} z_{R}$
$W=J v_{R}{ }^{2} / 2$
Torsional impulse equals angular momentum $Q_{R}=\int F_{R} d t=J v_{R}$
of inertance $M$ (or $\left.M_{A}\right) . \quad M=m / A^{2}$

One terminal permanently earthed. Typical structure: a mass of gas in a constriction
$p=M d U / d t=M A$ $Z_{A}=-j / \omega M$ $\hat{V}=p z_{A}$ $W=M U^{2} / 2$
Acoustic impulse equals acoustic momentum
$Q_{\Lambda}=\int p d t=M U$
capacitance $C$.

One terminal permanently grounded.
Typical structure:
an isolated metal sphere in free space
$I=C d E / d t$
$Z=-j / \omega C$
$\hat{E}=I Z$
$W=C E^{2} / 2$
Charge equals capacitance times voltage
$Q=\int I d t=C E$

THE IMPEDANCE ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| Three-terminal mass $m$ including hydraulic junction. | Three-terminal rotational inertor $J$ including hydraulic junction. | Three-terminal acoustic inertor $M$ including hydraulic junction. | Three-terminal inductor $L$ including junction. |
| $\begin{aligned} & F_{1}=F_{2}=F_{3}=F \\ & v_{3}=v_{1}-v_{2} \\ & \theta_{2}=F / Z_{M} \end{aligned}$ | $\begin{aligned} & F_{R 1}=F_{R 2}=F_{R 3}=F_{R 1} \\ & v_{R 3}=v_{R 1}-v_{R 2} \\ & v_{R 2}=F_{R} / Z_{R} \end{aligned}$ | $\begin{aligned} & p_{1}=p_{2}=p_{3}=p \\ & U_{3}=U_{1}-U_{2} \\ & U_{2}=p / Z_{4} \end{aligned}$ | $\begin{aligned} & E_{1}=E_{2}=E_{3}=E \\ & I_{3}=I_{1}-I_{2} \\ & I_{2}=E / Z \end{aligned}$ |
|  |  |  |  |
| Spring of compliance $C_{M}$. One terminal permanently skyed | Torsional spring of rotational compliance $C_{R}$. One terminal permanently skyed | Acoustic spring of acoustic compliance $C_{\Delta} . \quad C_{\Delta}=V / \gamma P_{0}$. One terminal permanently skyed | Capacitor of capacitance $C$. One terminal permanently grounded |
| Typical structure: a bubble of gas in a rigid container, or ideal fluid in a shielded flexible container | Typical structure: a torsional spring reacting against its rigid support | Typical structure: compliant gas in a rigid container of volume V | Typical structure: an isolated metal sphere in free space |
| $v=C_{M} d f / d t$ | $v_{R}=C_{R} d F_{R} / d t$ | $U=C_{A} d p / d t$ | $I=C d E / d t$ |
| $Z_{M}=-j / \omega C_{M}$ | $Z_{R}=-j / \omega C_{R}$ | $Z_{\text {A }}=-j / \omega C_{A}$ | $Z=-j / \omega C$ |
| $F=0 Z_{M}$ | $F_{R}=0_{R} Z_{R}$ | $\hat{p}=O Z_{\text {a }}$ | $\hat{E}=I Z$ |
| $W=C_{M} F^{2} / 2$ | $W=C_{R} F_{R}{ }^{2} / 2$ | $W=C_{4} p^{2} / 2$ | $W=C E^{2} / 2$ |
| Displacement | Rotational displacement | Volume displacement | Charge |
| $s=\int v d t=C_{M} F$ | $\theta=\int v_{R} d t=C_{R} F_{R}$ | $S=\int U d t=C_{\Delta} p$ | $Q=f I d t=C E$ |

THE MOBİLITTY ANALOGY
Rectilineal
mechanical

THE IMPEDANCE ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
| Three-terminal spring $C_{M}$ including hydraulic junction. $\begin{aligned} & F_{1}=F_{2}=F_{3}=F \\ & v_{3}=v_{1}-v_{2} \\ & v_{2}=j \omega C_{M} F \end{aligned}$ | Three-terminal torsional spring $C_{R}$ including hydraulic junction. $\begin{aligned} & F_{R 1}=F_{R 2}=F_{R 3}=F_{R} \\ & v_{R 3}=v_{R 1}-v_{R 2} \\ & v_{R 2}=j \omega C_{R} F_{R} \end{aligned}$ | Three-terminal acoustic spring $C_{\Delta}$ including hydraulic junction. $\begin{aligned} & p_{1}=p_{2}=p_{3}=p \\ & U_{3}=U_{1}-U_{2} \\ & U_{2}=j \omega C_{1} p \end{aligned}$ | Three-terminal capacitor including soldered junction. $\begin{aligned} & E_{1}=E_{2}=E_{3}=E \\ & I_{3}=I_{1}-I_{2} \\ & I_{2}=j \omega C E \end{aligned}$ |
|  |  |  |  |
| Elaster of compliance $C_{M}$ $v_{1}=v_{2}$ <br> Connectible either in series with a high tube, or to sky | Torsional elaster of rotational compliance $C_{R}$ $v_{R_{1}}=v_{R_{2}}$ <br> Connectible either in series with a high tube, or to sky | Acoustic elaster of acoustic compliance $C_{\Delta}$ $U_{1}=U_{2}$ <br> Connectible either in series with a high tube, or to sky | Condenser of capacitance $C$ $I_{1}=I_{2}$ <br> Connectible either in series with a high wire, or to ground |
| Typical structure: a compliant diaphragm separating two chambers filled with ideal fluid | Typical structure: a torsional spring reacting against a stationary support | Typical structure: a compliant diaphragm separating two chambers filled with ideal fluid | Typical structure: parallel plates between which there is a displacement current- |

THE MOBILITY ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| If the masses are unequal $1 / m=\left(1 / m_{1}\right)$ | If the inertors are unequal $1 / J=\left(1 / J_{1}\right)$ | If the inertors are unequal $1 / M=\left(1 / M_{1}\right)$ |  |
| $+\left(1 / m_{2}\right)$ <br> Equations: same as for a mass (above) | $+\left(1 / J_{2}\right)$ <br> Equations: same as for a flywheel, (above) | $+\left(1 / M_{2}\right)$ <br> Equations: same as for an acoustic inertor (above) | Equations: same as for a capacitor (above) |

Series and Parallel Combinations of Elements
(The following combinations of general mobilities $z$ can be extended to the pure elements.
Thus, by analogy, the compliance of two springs in series is $C_{M}=C_{M 1}+C_{M 2}$ and the mass of two masses in parallel is $m=m_{1}+m_{2}$, etc.)


Mobilities in series


Immobilities in parallel (rigid junctions)
$y=y_{1}+y_{2}$


Mobilities enmeshed by hydraulic meshers

$$
\begin{aligned}
& z=z_{1}+z_{2} \\
& F_{1}=F_{2}=F
\end{aligned}
$$



Rotational mobilities in series


Rotational immobilities in parallel (rigid junctions)
$y_{R}=y_{R_{1}}+y_{R_{2}}$


Rotational mobilities enmeshed by hydraulic meshers
$z_{R}=z_{R_{1}}+z_{R 2}$
$F_{R 1}=F_{R 2}=F_{R}$

Acoustic mobilities in series
$z_{\Lambda}=z_{\Lambda 1}+z_{\Lambda 2}$


Acoustic immobilities in parallel (rigid junctions)


Acoustic mobilities enmeshed by hydraulic meshers
$z_{A}=z_{A 1}+z_{A 2}$
$p_{1}=p_{2}=p$


Impedances in series $Z=Z_{1}+Z_{2}$


Admittances in parallel (soldered junctions) $Y=Y_{1}+Y_{2}$


Impedances enmeshed by meshers
$Z=Z_{1}+Z_{2}$
$I_{1}=I_{2}=I$

THE IMPEDANCE ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Equations: same as <br> for a spring (above) | Equations: same as <br> for a torsional <br> spring (above) | Equations: same as <br> for an acoustic <br> spring (above) | Equations: same as <br> for a capacitor <br> (above) |

Series and Parallel Combinations of Elements
(The following combinations of general impedances can be extended to the pure elements. Thus, by analogy, the mass of two masses in series is $m=m_{1}+m_{2}$ and the compliance of two elasters in parallel is $C_{\boldsymbol{M}}=C_{M_{1}}+C_{M_{2}}$, etc.)


| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| Vibrators |  |  | Generators |
| $v$ or $F$ <br> A vibrator having a vibromotive velocity $v$ or vibromotive force $F$ as marked | $v_{R}$ or $F_{R}$ <br> A rotational vibrator having a rotatomotive velocity $v_{R}$ or rotatomotive torque $F_{R}$ as marked | An acoustic vibrator having an acoustomotive volume velocity $U$ or acoustomotive sound pressure $p$ as marked | $E$ or $I$ <br> A generator having an electromotive force $E$ or current $I$ as marked |

Meters and Their Connections

|  |  |  | Meters with soldered |
| :---: | :---: | :---: | :---: |
| Meters with rigid junctions measure: Force $F$ through or into $z$ <br> Velocity $v_{1}$ at or of terminal 1 <br> Velocity $v_{12}$ across $z$ $z=\hat{v}_{12} / \hat{F}$ | Meters with rigid junctions measure: Torque $F_{R}$ through or into $z_{R}$ <br> Velocity $v_{R_{1}}$ at or of terminal 1 <br> Angular velocity $\boldsymbol{v}_{R 12}$ across $z_{R}$ $z_{R}=\hat{\theta}_{R 12} / F_{R}$ | Meters with rigid junctions measure: <br> Sound pressure $p$ through or into $z_{A}$ Volume velocity $U_{1}$ at or of terminal 1 Volume velocity $U_{12}$ $\operatorname{across} z_{A}$ $z_{A}=\tilde{O}_{12} / \hat{p}$ | Meters with soldered junctions measure: Current I through or into $Z$ Voltage $E_{1}$ at or of terminal 1 Voltage $E_{12}$ across $Z$ $Z=\hat{E}_{12} / I$ |


| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| Vibrators |  |  | Generàtors |
| A vibrator pumping a vibromotive force $F$ or velocity $v$ as marked | A rotational vibrator having a rotatomotive torque $F_{R}$ or angular velocity $v_{B}$ as marked | An acoustic vibrator having an acoustomotive sound pressure $p$ or volume velocity $U$ as marked |  |

Meters and Their Connections


Meters with hydrau-
lic junctions measure:
Velocity $v$ through or into $Z_{M}$
Force $F_{1}$ at or of terminal 1
Force $F_{12}$ across $Z_{M}$
$Z_{M}=F_{12} / \theta$


Meters with hydraulic junctions measure:
Angular velocity $v_{B}$ through or into $Z_{B}$ Torque $F_{R_{1}}$ at or of terminal 1
Torque $F_{E 12}$ across
$Z_{Z_{B}}=F_{R_{12}} / \theta_{R}$


Meters with hydrau-
lic junctions measure
Volume velocity $U$
through or into $Z_{A}$
Sound pressure $p_{1}$
at or of terminal 1
Sound pressure $p_{12}$ across $Z_{4}$
$Z_{\Delta}=\hat{p}_{12} / \bar{O}$


Meters with soldered junctions measure:
Current I through
or into $Z$
Voltage $E_{1}$ at or of terminal 1
Voltage $E_{12}$ across
Z
$Z=E_{12} / \Gamma$

Erratum: The lower left symbol in each of the above diagrams in the first three columns should be a sky, not an earth.

## ACOUSTICS

## THE MOBILITY ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

Mutual Couplers. Only analogues of mutual inductance are shown though analogues of mutual resistance and mutual capacitance can be built using ideal transformers
$\overbrace{\substack{C_{M 1} \\ \text { Mutual compliance }}}^{\substack{C_{M 2} \\+n^{-}}} C_{C_{M m}}$
$C_{M m}$ between springs of self-compliances $C_{M 1}$ and $C_{M 2}$.
$v_{2}=C_{M m} d F_{1} / d t$
$v_{1}=C_{M m} d F_{2} / d t$
$\widehat{v}_{2}=-j \omega C_{M m} \widehat{F}_{1}$ etc.
Coefficient of
coupling
$k=C_{M m} / \sqrt{C_{M 1} C_{M 2}}$.

$C_{M m}^{2} / C_{M 2}$
Ideal transformer
with springs, equiva-
lent to mutual
springs above.
Typical structure:


A compliant hairpin with lever ratio $n_{2} / n_{1}$.
 compliance $C_{R m}$ between torsional springs of self-compliances $C_{R 1}$ and $C_{R 2}$ : $v_{R 2}=C_{R m} d F_{R_{1}} / d t$ $v_{R 1}=C_{R m} d F_{R 2} / d t$ $\widehat{v}_{R 2}=-j \omega C_{R m} \widehat{F}_{R 1}$ etc. Coefficient of coupling



Ideal transformer with springs, equivalent to mutual springs above.

Typical structure: As above; springs in series and parallel with primary differential, geared to secondary differential.


Mutual acoustic compliance $C_{\Delta m}$ between acoustic springs of self-compliances $C_{A 1}$ and $C_{A 2}$. $U_{2}=C_{\alpha_{m}} d p_{1} / d t$ $U_{1}=C_{\Delta m} d p_{2} / d t$ $\widehat{U}_{2}=-j \omega C_{A m} \widehat{p}_{1}$ Coefficient of coupling $k=C_{A m} / \sqrt{C_{A 1} C_{A 2}}$.
 $C_{A m}^{2} / C_{A 2}$
Ideal transformer with acoustic springs, equivalent to mutual springs above.

Typical structure:


Gas spring on coupling member between fluid filled differentials,

$L_{1}$
Mutual inductance $L_{m}$ between coils of self-inductances $L_{1}$ and $L_{2}$.
$E_{2}=L_{m} d I_{1} / d t$
$E_{1}=L_{m} d I_{2} / d t$ $\widehat{E}_{2}=-j \omega L_{m} \widehat{I}_{1}$ etc.
Coefficient of coupling $k=L_{m} / \sqrt{L_{1} L_{2}}$.

$L_{m}^{2} / L_{2}$
Ideal transformer with inductors, equivalent to mutual inductors above.

Typical structure:
$-100$


Proximate coils with air or iron core.

## THE IMPEDANCE ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |

Mutual Couplers. Only analogues of mutual inductance are shown though analogues of mutual resistance and mutual capacitance can be built using ideal transformers
 tween masses of selfmasses $m_{1}$ and $m_{!}$.
$F_{2}=m_{m} d v_{1} / d t$
$F_{1}=m_{m} d v_{2} / d t$
$\widehat{F}_{2}=-j \omega m_{m} \widehat{v}_{1}$ etc.
Coefficient of coupling
$k=m_{m} / \sqrt{m_{1} m_{2}}$.

$m_{m}^{2} / m_{2}$
Ideal transformer with masses, equivalent to mutual masses above.

Typical structure:


Inertia on connector between differentials, plus series mass $m^{\prime}$.


Mutual moment of inertia $J_{m}$ between rotational inertors of moments of inertia $J_{1}$ and $J_{2}$. $F_{R 2}=J_{m} d v_{R 1} / d t$ $F_{R_{1}}=J_{m} d v_{R_{2}} / d t$ $\widehat{F}_{R 2}=-j \omega J_{m} \widehat{v}_{R 1}$ etc. Coefficient of coupling $k=J_{m} / \sqrt{J_{1} J_{2}}$.

$J_{m}^{2} / J_{2}$
Ideal transformer with inertors, equivalent to mutual inertors above.

Typical structure:


Inertia on connector between differentials, plus series inertor $J^{\prime}$.


Mutual inertance $M_{m}$ between acoustic inertors of inertances $M_{1}$ and $M_{\text {s }}$
$p_{2}=M_{m} d U_{1} / d t$ $p_{1}=M_{m} d U_{2} / d t$ $\widehat{p}_{2}=-j \omega M_{m} \widehat{U}_{1}$ etc. Coefficient of coupling $k=M_{m} / \sqrt{M_{1} M_{2}}$.

$M_{m}^{2} / M_{2}$
Ideal transformer with acoustic inertors, equivalent to mutual inertors above.
Typical structure:


Inertia on connector between differentials, plus series inertor $M^{\prime}$.


Mutual inductance $L_{m}$ between coils of self-inductances $L_{1}$ and $L_{2}$.
$E_{2}=L_{m} d I_{1} / d t$
$E_{1}=L_{m} d I_{2} / d t$
$\widehat{E_{2}}=-j \omega L_{m} \widehat{I}_{1}$ eto.
Coefficient of coupling
$k=L_{m} / \sqrt{L_{1} L_{2}}$.

$L_{m}^{2} / L_{2}$
Ideal transformer with inductors, equivalent to mutual inductors above.

Typical structure:

- 00
m

Proximate coils with air or iron core.
$\qquad$

THE MOBILITY ANALOGY

| Rectilineal | Rotational | Acoustic | Electric |
| :---: | :---: | :---: | :---: |

Ideal Transformers


Lineal transformer with load The bracketed springs of great compliance symbolize the coupling of the velocities across primary and secondary, and the force through the rods, by means of levers shown below.
$v_{2}=n_{2} v_{1} / n_{1}$ $F_{1}=n_{2} F_{2} / n_{1}$ $z_{1}=z_{2}\left(n_{1} / n_{2}\right)^{2}$
Typical structure:
Hinged floating levers multiply the velocities across primary and secondary

$n_{2} / n_{1}$ is lever ratio

Very compliant dotted spring $s$ may pass constant primary force with no secondary force; not ideal at zero frequency.


Acoustic transformer with load The bracketed acoustic springs of great compliance symbolize the coupling of the volume velocities across primary and secondary, and the sound pressures through the rods, by means of pistons below.
$U_{2}=n_{2} U_{1} / n_{1}$
$p_{1}=n_{2} p_{2} / n_{1}$
$z_{A_{1}}=z_{A_{2}}\left(n_{1} / n_{2}\right)^{2}$
Typical structure:
Hydraulic differen-
tials with cross-connected pistons



Electric transformer with load The inductors of great inductance symbolize the coupling of the voltages across the primary and the secondary, and the currents through the wires, by means of the iron core below.
$E_{2}=N_{2} E_{1} / N_{1}$
$I_{1}=N_{2} I_{2} / N_{1}$
$Z_{1}=Z_{2}\left(N_{1} / N_{2}\right)^{2}$
Typical structure:
Two coils wound
on a laminated iron ring

$N_{2}^{\prime} / N_{1}$ is turns ratio

The primary may pass a constant current with no secondary current; not ideal at zero frequency

## THE IMPEDANCE ANALOGY

| Rectilineal | Rotational | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

Ideal Transformers


Lineal transformer with load
The bracketed masses of great mass symbolize the coupling of the forces across the primary and secondary, and the velocities through the tubes, by auxiliary mechanism as shown below.
$F_{\mathbf{2}_{1}}=n_{2} F_{1} / n_{1}$
$v_{1}=n_{2} v_{2} / n_{1}$
$Z_{M_{1}}=Z_{M_{2}}\left(n_{1} / n_{2}\right)^{2}$
Typical structure:
Two differential diaphragms or pistons, of different areas, actuated by the forces across primary and seoondary, are connected by the dotted rod

$\left(n_{1} / n_{2}\right)=\left(A_{2} / A_{1}\right)$ The large mass(es) may pass constant primary velocity with no secondary velocity; not necessarily ideal at zero frequency


Rotational transformer with load The bracketed rotational inertors of great moments of inertia symbolize the coupling of the torques across the primary ánd secondary, and the angular velocities through the tubes, by auxiliary mechanism as shown below.
$F_{R_{2}}=n_{2} F_{R_{1} / n_{1}}$ $v_{R_{1}}=\cdot n_{2} v_{R_{2}} / n_{1}$ $Z_{R_{1}}=Z_{R_{2}}\left(n_{1} / n_{2}\right)^{2}$ Typical structure: Two differentials actuated by the torques across primary and secondary are rigidly interconnected by the dotted shaft


Analogous possibility


Acoustic transformer with load The bracketed acoustic inertors of great inertances symbolize the coupling of the sound, pressures across the primary and secondary, and the volume velocities through the tubes, by auxiliary mechanism as shown below.
$p_{2}=n_{2} p_{1} / n_{2}$
$U_{1}=n_{2} U_{2} / n_{1}$
$Z_{A 1}=Z_{A 2}\left(n_{1} / n_{2}\right)^{2}$ Typical structure:
Same as the rectilineal transformer but the terminal tubes are of any areas


Analogous possibility


Electric transformer with load The inductors of great inductance symbolize the coupling of the voltages across the primary and secondary, and the currents through the wires, by an iron core shown below.
$E_{2}=N_{2} E_{1} / N_{1}$
$I_{1}=N_{2} I_{2} / N_{1}$
$Z_{1}=Z_{2}\left(N_{1} / N_{\mathbf{2}}\right)^{2}$
Typical structure:
Two coils wound on an iron ring


THE MOBILITY ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| $+\infty$ | $\overbrace{+\infty}^{+\infty}+\infty$ |  | $\underbrace{000}_{Y_{1}}]_{Y_{2}}^{+\infty} \underset{Y_{3}}{000}$ |
| Multiple element velocity transformer with loads. | Multiple element angular velocity transformer with loads. | Multiple element volume velocity transformer with loads. | Multiple element voltage transformer with loads. |
| $\frac{v_{1}}{n_{1}}=\frac{v_{2}}{n_{2}}$ | $\frac{v_{R 1}}{n_{1}}=\frac{v_{R 2}}{n_{2}}=\frac{v_{R 3}}{n_{3}}$ | $\frac{U_{1}}{n_{1}}=\frac{U_{2}}{n_{2}}=\frac{U_{3}}{n_{3}}$ | $\frac{E_{1}}{N_{1}}=\frac{E_{2}}{N_{2}}=$ |
| $y_{1}=\left(\frac{n_{2}}{n_{1}}\right)^{2}$ | $y_{R 1}=\left(\frac{n_{2}}{n_{1}}\right)^{2}$ | $y_{A 1}=\left(\frac{n_{2}}{n_{1}}\right)^{2} y_{A 2}$ | $Y_{1}=\left(\frac{N_{2}}{N_{1}}\right)^{2} Y_{2}$ |
| $+\left(\frac{n_{3}}{n_{1}}\right)^{2} y_{3}$ <br> Typical structure: | $+\left(\frac{n_{3}}{n_{1}}\right)^{2} y_{R 3}$ <br> Typical structure. | $+\left(\frac{n_{3}}{n_{1}}\right)^{2} y_{A 3}$ <br> Typical structure: | $+\left(\frac{N_{3}}{N_{1}}\right)^{2} Y_{3}$ |
|  | A multiplicity of differentials with their propeller shafts geared together | Hydraulic differen- |  |
| Hinged lever differentials in parallel. |  | tials with top piston areas $n_{1}, n_{2}$ and $n_{3}$. | turns. |
| $\begin{array}{lll} z_{1} & z_{2} & z_{8} \end{array}$ | $z_{R 1} \quad z_{R 2} \quad z_{R 3}$ | $\begin{array}{lll} z_{A 1} & z_{A 2} & z_{A 3} \end{array}$ | $800$ |
| Multiple element force transformer with loads. $n_{1} F_{1}=n_{2} F_{2}=n_{3} F_{3}$ | Multiple element torque transformer with loads. $n_{1} F_{R 1}=n_{2} F_{R 2}$ | Multiple element sound pressure transformer with loads. $n_{1} p_{1}=n_{2} p_{2}=n_{3} p_{3}$ | Multiple element current transformer with loads. $N_{1} I_{1}=N_{2} I_{2}=N_{3} I_{3}$ |
| $z_{1}=\left(\frac{n_{1}}{n_{2}}\right)^{2} z_{2}$ | $z_{R 1}=\left(\frac{n_{1}}{n_{9}}\right)^{2} z_{R 2}$ | $z_{A 1}=\left(\frac{n_{1}}{n_{2}}\right)^{2} z_{A 2}$ | $Z_{1}=\left(\frac{N_{1}}{N_{2}}\right)^{2} Z_{2}$ |
| $+\left(\frac{n_{1}}{n_{3}}\right)^{2} z_{3}$ <br> Typical structure: | $+\left(\frac{n_{1}}{n_{3}}\right)^{2} z_{R 3}$ <br> Typical structure: | $+\left(\frac{n_{1}}{n_{3}}\right)^{2} z_{A 3}$ <br> Typical structure: | $+\left(\frac{N_{1}}{N_{3}}\right)^{2} Z_{3}$ <br> ypical structure: |
| Hinged lever differentials in series. | A multiplicity of differentials with propeller shafts geared through differentials. | Hydraulic differentials with whiffletrees. Top piston areas are $n_{1}, n_{2}$, and $n_{3}$. | Parallel leg core with coils of $N_{1}$, $N_{2}$ and $N_{3}$ turns. |

## THE IMPEDANCE ANALOGY

| Acoustic |
| :---: |
| Multiple element sound pressure transformer with loads. |


| $+\sum_{Y_{1}}^{000} \underbrace{+000}_{Y_{2}} \underbrace{+\infty}_{Y_{3}}$ |
| :---: |

Multiple element voltage transformer with loads.

$$
\begin{aligned}
& \begin{array}{l}
\frac{E_{1}}{N_{1}}=\frac{E_{2}}{N_{2}}=\frac{E_{3}}{N_{3}} \\
Y_{1}=\left(\frac{N_{2}}{N_{1}}\right)^{2} Y_{2}
\end{array} \\
& +\left(\frac{N_{3}}{N_{1}}\right)^{2} Y_{8} \\
& \text { Typical structure: }
\end{aligned}
$$

The $N$ 's are propor-


The $n$ 's are inversely proportional to piston areas.


Multiple element velocity transformer with loads.

$$
\begin{aligned}
& n_{1} v_{1}=n_{2} v_{2}=n_{3} v_{3} \\
& Z_{M 1}=\left(\frac{n_{1}}{n_{2}}\right)^{2} Z_{M 2} \\
& \\
& \quad+\left(\frac{n_{1}}{n_{3}}\right)^{2} Z_{M 3}
\end{aligned}
$$

Typical structure:


The $n$ 's are inversely proportional to piston areas.


Multiple element torque transformer with loads.

$$
\begin{aligned}
& \frac{F_{R 1}}{n_{1}}=\frac{F_{R 2}}{n_{2}}=\frac{F_{R 3}}{n_{3}} \\
& Y_{R 1}=\left(\frac{n_{2}}{n_{1}}\right)^{2} Y_{R 2} \\
& \quad+\left(\frac{n_{3}}{n_{1}}\right)^{2} Y_{R 3}
\end{aligned}
$$

Typical structure:


The $\dot{n}$ 's are inversely proportional to the piston areas.


Multiple element angular velocity transformer with loads.
$n_{1} v_{R 1}=n_{2} v_{R 2}=\dot{n_{3}} v_{R 3}$
$\boldsymbol{Z}_{R_{1}}=\left(\frac{n_{1}}{n_{2}}\right)^{2} Z_{R 2}$
$+\left(\frac{n_{1}}{n_{3}}\right)^{2} Z_{R 3}$
Typical structure:


The $n$ 's are inversely proportional to the piston areas.
tional to the numbers of turns.
Multiple element
current transformer
with loads.
$N_{1} I_{1}=N_{2} I_{2}=N_{3} I_{3}$
$Z_{1}=\left(\frac{N_{1}}{N_{2}}\right)^{2} Z_{2}$
$+\left(\frac{N_{1}}{N_{3}}\right)^{2} Z_{3}$
Typical structure:


The $n$ 's are inversely proportional to the piston areas.


THE MOBILITY ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

The Conservative Ideal Direct Transducers and Transformers, Which Couple Through
Variables to Through Variables, and Across Variables to Across Variables


THE IMPEDANCE ANALOGY

| Rectilineal mechanical | Rotational mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |
| The Conservative Ideal Direct Transducers and Transformers, Which Couple Through Variables to Through Variables, and Across Variables to Across Variables |  |  |  |
| Electromechanical voltage-force transducer $E / N=F / N_{M}$ $N I=N_{M} v$ $Z=Z_{M}\left(N / N_{M}\right)^{2}$ <br> $N / N_{M}$ may be in volts per newton or $\mathrm{m} / \mathrm{sec}$ per amp <br> Acoustomechanical sound pressure-force transducer | Electrorotational voltage-torque transducer $E / N=F_{R} / N_{R}$ $N I=N_{R} v_{R}$ $Z=Z_{R}\left(N / N_{R}\right)^{2}$ <br> $N / N_{M}$ may be in volts per newton $m$ or radians/sec per amp $N_{A}$ <br> Acoustorotational sound pressuretorque transducer | Electroacoustic voltage-sound pressure transducer $E / N=p / N_{\Delta}$ <br> $N I=N_{A} U$ $Z=Z_{\Delta}\left(N / N_{\Delta}\right)^{2}$ $N / N_{4}$ may be in volts per newton/m² or $\mathrm{m}^{2} / \mathrm{sec}$ per amp <br> Acoustic transformer |  |



Rotato-rectilineal
torque-force
transducer



All these transducers and transformers have equations and units of the form given in the top row.
Two styles of symbol are rational for each of these elements since mutualcapacitance transformers and mutualinductance transformers are equivalent in function

## ACOUSTICS

## THE MOBILITY ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |

The Conservative Ideal Inverse Transducers and Transformers, Which Couple Through Variables to Across Variables


Electromechanical voltage-force inverse transducer
$E / N=n_{M} F$
$N I=v / n_{M}$
$Z=y\left(N n_{M}\right)^{2}$
$N n_{M}$ may be in volts per newton or $\mathrm{m} /$ sec per amp


Acoustomechanical volume velocity-force inverse transducer.


Rotato-rectilineal angular velocity-force inverse transducer


Mechanical velocity-force inverse transducer. A lineal gyrator


Electrorotational voltage-torque inverse transducer
$E / N=n_{R} F_{R}$
$N I=v_{R} / n_{R}$
$Z=y_{R}\left(N n_{R}\right)^{2}$
$N n_{R}$ may be in volts per newton $m$ or radian/sec per amp


Acoustorotational volume velocitytorque inverse transducer


Rotational angular velocity-torque inverse transformer. A gyroscope


Electroacoustic voltage-sound pressure inverse transducer
$E / N=n_{\Delta} p$
$N I=U / n_{A}$
$Z=y_{\Lambda}\left(N n_{\Lambda}\right)^{2}$
$N n_{4}$ may be in volts per newton/ $\mathrm{m}^{2}$ or $\mathrm{m}^{3} / \mathrm{sec}$ per amp


Acoustic volume veloc-ity-sound pressure inverse transformer. An acoustic gyrator


All these transducers and transformers have equations and units of the form given in the top row.
Either primary or secondary could rationally appear analogous to either an inductor or capacitor

THE IMPEDANCE ANALOGY

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :---: | :---: | :---: | :---: |

The Conservative Ideal Inverse Transducers and Inverse Transformers, Which Couple Through Variables to Across Variables


Electromechanical current-force inverse transducer
$E / N=N_{M} v$ $N I=F / N_{M}$ $Z=Y_{M}\left(N N_{M}\right)^{2}$ $N N_{M}$ may be in newtons per amp or volts per $\mathrm{m} / \mathrm{sec}$


Acoustomechanical volume velocity-force inverse transducer


Rotato-rectilineal angular velocityforce inverse transducer

 current-sound pressure inverse transducer
$E / N=N_{A} U$
$N I=p / N_{\Delta}$
$Z=Y_{A}\left(N N_{A}\right)^{2}$
$N N_{4}$ may be in newtons/ $\mathrm{m}^{2}$ per amp or volts per $\mathrm{m}^{3} / \mathrm{sec}$


Acoustic volume veloc-ity-sound pressure inverse transformer. An acoustic gyrator


All these transducers and transformers have equations and units of the form given in the top row. Either primary or secondary could rationally appear analogous to either an inductor or capacitor

THE MOBILITY AND IMPEDANCE ANALOGIES

| Rectilineal <br> mechanical | Rotational <br> mechanical | Acoustic | Electric |
| :--- | :--- | :--- | :--- |

The Conservative Ideal Inverse Autotransformers for Connecting a Rod Diagram to a
Tubing Diagram at a Change of Analogy. Through Variables Are Coupled to Across Variables


## References

Olson, Harry F.: "Dynamical Analogies," D. Van Nostrand Company, Inc., New York, 1943. Standard reference book on the classical impedance analogy.
Beranek, Leo L.: "Acoustics," chap. 3, etc., McGraw-Hill Book Company, Inc., New York, 1954. Expounds and utilizes both the mobility and impedance analogies.
Raymond, F.: Analogies électriques et mécaniques, Rev. gén. elec. 61, 465-475 (October, 1952). Both analogies. In the impedance analogy, "le bati (frame of reference) en mécanique n'est nullement l'analogue de la terre en électricité."
Bloch, A.: Electromechanical Analogies and Their Use for the Analysis of Mechanical and Electromechanical Systems, J. Inst. Elec. Engrs. (London) 92, 157-169 (1945, pt. I). Unfortunately, calls the mobility analogy the inverse analogy.
Bloch, A.: On Methods for the Construction of Networks Dual to Non-planar Networks, Proc. Phys. Soc. (London) 58, 677-694 (1946).
Bauer, Benjamin B.: Transformer Couplings for Equivalent Network Synthesis, J. Acoust. Soc. Am. 25, 837-840 (1953). Connects each element through a transformer, then gets rid of the transformers.
Trent, Horace M.: Isomorphisms between Oriented Linear Graphs and Lumped Physical Systems, J. Acoust. Soc. Am. 27, 500-527 (1955). Draws mobility schematic by setting up the networks of meters required to measure $F$ and $v$, etc.
Le Corbeiller, P., and Ying-Wa Yueng: Duality in Mechanics, J. Acoust. Soc. Am. 24, 643-648 (November, 1950). Recommends the mobility analogy.
Firestone, Floyd A.: The Mobility Method of Computing the Vibration of Linear Mechanical and Acoustical Systems: Mechanical and Electrical Analogies, J. Appl. Phys. 9, 373-387 (1938).
Firestone, Floyd A.: A New Analogy between Mechanical and Electrical Systems, J. Acoust. Soc. Am. 4, 249-267 (1933). Introduces the concept of mobility and discriminates through and across variables.
Hähnle, Walter: Die Darstellung elektromechanischer Gebilde durch rein elektrische Schaltbilder, Wissen. Veröff. Siemens-Konzern XI, 1-23 (1932). Expounds both analogies.
Darrieus, M.: Les Modeles mécaniques en electrotechnique, leur application aux problemes de stabilité, Bull. soc. franç. êlec. 96, 794-809 (August, 1929). First mention of the force-current analogy.
Circuit Theory. See Sec. 5b-14 (pp. 5-79 to 5-85) of this book.
[Text continued from page 3-148.]
parallel combination of these elements would with perfect analogy be the sum of the individual mechanical admittances: $Y_{M}=Y_{M_{1}}+Y_{M 2}+Y_{M 3}$.

3m-10. Couplers: Transformers and Transducers. A coupler introduces a constraint between circuits or between different portions of the same circuit. It specifies relationships between variables at different places, a more complicated type of relationship than the 1 to 1 specified by connectors, which might be considered as simplified couplers. Ideal passive couplers transmit energy but store none. Direct couplers couple through variables to through variables and across to across, while inverse couplers couple through variables to across variables. Transformers and transducers couple like and unlike system types, respectively. In general, a transformer consists of a subtracter operated by the difference between the values of a variable at two points, actuating a multiplier, the multiplied value then being impressed as a difference between the values of a variable at two other points.
3m-11. Units. While any consistent system of units may be used in computations with analogies, the mks system is particularly advantageous since the watt will then be the unit of power in both the acoustic, mechanical, and electric portions of a transducer. Thus velocity $v$ is in $\mathrm{m} / \mathrm{sec}$, force $F$ in newtons, mobility $z$ in $\mathrm{m} / \mathrm{sec}$ per newton; angular velocity $v_{R}$ is in radians/sec, torque $F_{R}$ in newton m, rotational mobility $z_{R}$ in radians/sec per newton m ; volume velocity $U$ is in $\mathrm{m}^{3} / \mathrm{sec}$, sound pressure $p$ in newtons $/ \mathrm{m}^{2}$, acoustic mobility $z_{A}$ in $\mathrm{m}^{3} / \mathrm{sec}$ per newton $/ \mathrm{m}^{2}$; voltage $E$ is in volts, current $I$ in amperes, impedance $Z$ in ohms. Power $P$ is in watts and energy $W$ in joules, throughout.

# 3n. Selected References on Acoustics 

LEO L. BERANEK

Bolt Beranek and Newman, Inc.

Bartholomew, W.: "Acoustics of Music," Prentice-Hall, Inc., New York, 1946.
Beranek, L. L.: "Acoustics," McGraw-Hill Book Company, Inc., New York, 1954.
Beranek, L. L.: "Acoustic Measurements," John Wiley \& Sons, Inc., New York, 1949.
Crede, C. E.: "Vibration and Shock Isolation," John Wiley \& Sons, Inc., New York, 1951.

Cremer, L.: "Die wissenschaftlichen Grundlagen der Raumakustik," Band I, S. Hirzel Verlag, Zurich, 1949.
Cremer, L.: "Die wissenschaftlichen Grundlagen der Raumakustik," Band III, S. Hirzel Verlag, Leipzig, 1950.
Cullum, D. J. W.: "The Practical Application of Acoustic Principles," E. and F. N. Spon, Ltd., London, 1949.
Culver, C. A.: "Musical Acoustics," Blakiston Division, McGraw-Hill Book Company, Inc., New York, 1949.
Davis, H.: "Hearing and Deafness," Murray Hill Books, Inc., New York, 1947.
Frayne, J. G., and H. Wolfe: "Sound Recording," John Wiley \& Sons, Inc., New York, 1949.

Hansen, H. M., and P. F. Chenea: "Mechanics of Vibration," John Wiley \& Sons, Inc., New York, 1952.
Hirsch, I. J.: "The Measurement of Hearing," McGraw-Hill Book Company, Inc., New York, 1952.
Heuter, T. F., and R. H. Bolt: "Sonics," John Wiley \& Sons, Inc., New York, 1955.
Hunt, F. V.: "Electroacoustics," Harvard University Press and John Wiley \& Sons, Inc., New York, 1954.
Kinsler, L. E., and A. R. Frey: "Fundamentals of Acoustics," John Wiley \& Sons, Inc., New York, 1950.
Knudsen, V.: "Architectural Acoustics," John Wiley \& Sons, Inc., New York, 1932.
Knudsen, V., and C. Harris: "Acoustical Designing in Architecture, John Wiley \& Sons, Inc., New York, 1950
Lamb, H.: "Hydrodynamics," 6th ed., Dover Publication, New York, 1945.
Mason, W. P.: "Electro-mechanical Transducers and Wave Filters," D. Van Nostrand Company, Inc., New York, 1943.
Miller, G. A.: "Language and Communication," McGraw-Hill Book Company, Inc., New York, 1951.
Morse, P. M.: "Vibration and Sound," 2d ed., McGraw-Hill Book Company, Inc., New York, 1948.
Olson, H. F.: "Elements of Acoustical Engineering," D. Van Nostrand Company, Inc., New York, 1947.
Olson, H. F.: "Dynamical Analogies," D. Van Nostrand Company, Inc., New York, 1943.

Olson, H. F.: "Musical Engineering," McGraw-Hill Book Company, Inc., New York, 1952.

Peterson, A. P. G., and L. L. Beranek: "Handbook of Noise Measurement," General Radio Company, Cambridge, Mass., 1954.

Raes, A. C.: "Acustica Arquitectónica," Editorial Victor Leru, Buenos Aires, 1953.
Lord Rayleigh: "The Theory of Sound," vols. 1 and 2, Dover Publications, New York, 1945.

Richardson, E. G.: "Technical Aspects of Sound," Elsevier Press, Inc., New York, 1953.

Skudrzyk, E.: "Die Grundlagen der Akustik, Springer-Verlag OHG, Vienna, 1954.
Stephens, R., and A. E. Bate: "Wave Motion and Sound," Edward Arnold \& Co., London, 1950.
Stevens, S. S., ed.: "Handbook of Experimental Psychology," John Wiley \& Sons, Inc., New York, 1951.
Stevens, S. S., and H. Davis: "Hearing," John Wiley \& Sons, Inc., New York, 1938.
Stewart, G. W., and R. B. Lindsay: "Acoustics," D. Van Nostrand Company, Inc., New York, 1930.
Swenson, G. W., Jr.: "Principles of Modern Acoustics," D. Van Nostrand Company, Inc., New York, 1953.
Wood, A.: "Acoustics," Interscience Publishers, Inc., New York, 1941.
Zwikker, C., and C. W. Kosten: "Sound Absorbing Materials," Elsevier Press, Inc., New York, 1949.

## Section 4

HEAT

MARK W. ZEMANSKY, Editor<br>The City Cotlege of New York

## CONTENTS

4a. Temperature Scales, Thermocouples, and Resistance Thermometers ..... 4-2
4b. Very Low Temperature Data. Properties of Paramagnetic Salts ..... 4-14
4c. Critical Constants ..... 4-21
4d. High-pressure Effects ..... 4-24
4e. Heat Capacities ..... 4-39
4f. Thermal Expansion. ..... 4-51
4 g . Thermal Conductivity ..... 4-65
4h. Thermodynamic Properties of Gases ..... 4-80
4i. Pressure-Volume-Temperature Relationships of Fluids. Viral Coefficients. ..... 4-118
4j. Temperature, Pressure, Heat, and Entropy Change of Transition, Fusion, and Vaporization ..... 4-130

# 4a. Temperature Scales, Thermocouples, and Resistance Thermometers 

R. H. WELSON<br>Hughes Research and Development Laboratories

Data on optical pyzometry and thermal radiation are given in Sec. 6.-
Table 4a-1. Equations Relating the Common Temperature Scales
Celsius-Fahrenheit

$$
t^{\circ} \mathrm{C}=\frac{5}{9}\left(t^{\circ} \mathrm{F}-32\right) \quad \text { or } \quad 9\left(t^{\circ} \mathrm{C}+40\right)=5\left(t^{\circ} \mathrm{F}+40\right)
$$

where ${ }^{\circ} \mathrm{C}={ }^{\circ}$ Celsius (international scale)
${ }^{\circ} \mathbf{F}={ }^{\circ}$ Fahrenheit
Celsius-Kelvin (Absolute Thermodynamic)

$$
T^{\circ} \mathrm{K}=t^{\circ} \mathbf{C}+T_{0}+\epsilon_{c}
$$

where ${ }^{\circ} \mathrm{K}={ }^{\circ}$ Kelvin
$T_{0}=$ temperature of the ice point on the absolute thermodynamic scale ( $273.16^{\circ} \mathrm{K}$ )
$\epsilon_{c}=$ correction term in Celsius degrees
Fahrenheit-Rankine

$$
T^{\circ} \mathrm{R}=\frac{9}{5} T^{\circ} \mathrm{K} \quad \text { or } \quad T^{\circ} \mathrm{R}=t^{\circ} \mathrm{F}+T_{0}+\epsilon F
$$

where ${ }^{\circ} \mathbf{R}={ }^{\circ}$ Rankine
$T_{0}=$ temperature of the ice point on the absolute thermodynamic scale $\left[\frac{9}{5}(273.16)-32=459.69^{\circ} \mathrm{R}\right]$
$\epsilon_{F}=$ correction term in Fahrenheit degrees
Table 4a-2. Definition of the International Temperature Scale of 1948*

| Temp. range | Fixed points, under standard pressure of 1 atm (1,013,250 dynes $/ \mathrm{cm}^{2}$ ) | Standard instruments | Interpolation equations |
| :---: | :---: | :---: | :---: |
| -182.97 to $630.5^{\circ} \mathrm{C}$ | Oxygen boiling point $\left(-182.970^{\circ} \mathrm{C}\right)$ <br> Ice point $\left(0^{\circ} \mathrm{C}\right)$ <br> Steam point $\left(100^{\circ} \mathrm{C}\right)$ <br> Sulfur boiling point $\left(444.600^{\circ} \mathrm{C}\right)$ | Platinum resistance thermometers (fourlead type) | $\begin{aligned} & R_{t}=R_{0}\left(1+A t+B t^{2}\right)\left(\text { above } 0^{\circ} \mathrm{C}\right) \\ & R_{t}=R_{0}\left[\left(1+A t+B t^{2}+C(t-100) t^{3}\right] \text { (below } 0^{\circ} \mathrm{C}\right) \\ & \text { where } R_{t}=\text { resistance of the platinum coil at tem- } \\ & \text { perature } t \\ & R_{0}=\text { resistance of the platinum coil at the } \\ & \text { ice point, } 0^{\circ} \mathrm{C} \text {. } \\ & A, B,{ }^{t}=\text { temperature, }{ }^{\circ} \text { Celsius } \end{aligned}$ |
| 630.5 to $1063.0^{\circ} \mathrm{C}$ | Antimony freezing point or equivalent temperature $\left(630.5^{\circ} \mathrm{C}\right)$ as determined with a platinum resistance thermometer Silver freezing point $\left(960.8^{\circ} \mathrm{C}\right)$ Gold freezing point $\left(1063.0^{\circ} \mathrm{C}\right)$ | Platinum vs. platinum$10 \%$ rhodium thermocouple | $\begin{aligned} & E=a+b t+c t^{2} \\ & \text { where } E=\text { electromotive force } \\ & a, b, c=\text { constants } \end{aligned}$ |
| $1063.0^{\circ} \mathrm{Cup}$ | Gold freezing point (1063.0 ${ }^{\circ} \mathrm{C}$ ) | Optical pyrometer |  |

* H. F. Stimson, The International Temperature Scale of 1948, J. Research Natl. Bur Standards 42, 209 (1949).

Table 4a-3. Corresponding Temperatures on the International Temperature Scales of 1948 and 1927*
[Degrees C (int.)]

| 1948 | 1927 | 1948 | 1927 |
| :---: | :---: | :---: | :---: |
| 630.50 | 630.50 | 2100 | 2107 |
| 650 | 649.92 | 2200 | 2208 |
| 700 | 699.76 | 2300 | 2310 |
| 750 | 749.65 | 2400 | 2411 |
| 800 | 799.58 | 2500 | 2512 |
| 850 | 849.57 | 2600 | 2613 |
| 900 | 899.60 | 2700 | 2715 |
| 950 | 949.68 | 2800 | 2816 |
| 960.80 | 960.50 | 2900 | 2918 |
| 1000 | 999.80 | 3000 | 3020 |
| 1050 | 1049.95 | 3100 | 3122 |
| 1063.00 | 1063.00 | 3200 | 3223 |
| 1100 | 1100.2 | 3300 | 3325 |
| 1200 | 1200.6 | 3400 | 3428 |
| 1300 | 1301.1 | 3500 | 3530 |
| 1400 | 1401.7 | 3600 | 3632 |
| 1500 | 1502.3 | 3700 | 3735 |
| 1600 | 1603.0 | 3800 | 3837 |
| 1700 | 1703.8 | 3900 | 3940 |
| 1800 | 1804.6 | 4000 | 4043 |
| 1900 | 1905.5 | 4100 | 4146 |
| 2000 | 2006.4 | 4200 | 4249 |

* Robert J. Corruccini, Differences between the International Temperature Scales of 1948 and 1927, J. Research, Natl. Bur. Standards 43, 133 (1949), RP2014.


## Table 4a-4. Secondary Fixed Points under the Pressure of 1 Standard Atmosphere (Except for the Triple Points)*

Temp. $\left({ }^{\circ} \mathrm{C}\right)$
(Int. 1948)
Temperature of equilibrium between solid carbon dioxide and its vapor.. -78.5

$$
t_{p}=-78.5+12.12\left(\frac{p}{p_{0}}-1\right)-6.4\left(\frac{p}{p_{0}}-1\right)^{2}
$$

Temperature of freezing mercury ........................................... . . . 38.87
Temperature of equilibrium between ice, water, and its vapor (triple point) +0.0100
Temperature of transition of sodium sulfate decahydrate............... 32.38
Temperature of triple point of benzoic acid........................... . . 122.36
Temperature of equilibrium between naphthalene and its vapor......... 218.0

$$
t_{p}=218.0+44.4\left(\frac{p}{p_{0}}-1\right)-19\left(\frac{p}{p_{0}}-1\right)^{2}
$$

Temperature of freezing tin............................................. 231.9
Temperature of equilibrium between benzophenone and its vapor....... 305.9

$$
t_{p}=305.9+48.8\left(\frac{p}{p_{0}}-1\right)-21\left(\frac{p}{p_{0}}-1\right)^{2}
$$

Temperature of freezing cadmium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320.9
Temperature of freezing lead. ................................................ . . 327.3
Temperature of equilibrium between mercury and its vapor............. 356.58

$$
t_{p}=356.58+55.552\left(\frac{p}{p_{0}}-1\right)-23.03\left(\frac{p}{p_{0}}-1\right)^{2}+14.0\left(\frac{p}{p_{0}}-1\right)^{3}
$$

Temperature of freezing zinc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419.5
Temperature of freezing antimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630.5
Temperature of freezing aluminum .......................................... . . . 660.1
Temperature of freezing copper in a reducing atmosphere. . . . . . . . . . . . . . 1083
Temperature of freezing nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453
Temperature of freezing cobalt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1492
Temperature of freezing palladium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552
Temperature of freezing platinum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1769
Temperature of freezing rhodium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1960
Temperature of freezing iridium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2443
Temperature of melting tungsten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3380

* H. F. Stimson, The International Temperature Scale of 1948, J. Research Natl. Bur. Standards 42 (1949), RP1962.

Table 4a-5. Thermal Emf of Chemical Elements Relative to Platinum*

| Temp., ${ }^{\circ} \mathrm{C}$ | Lithium, mv | Sodium, mv | Potassium, mv | Rubidium, mv | $\begin{gathered} \text { Cesium, } \\ \text { mv } \end{gathered}$ | Calcium, mv | $\begin{gathered} \text { Cerium, } \\ \text { mv } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -200 | -1.12 | +1.00 | +1.61 | +1.09 | +0.22 |  |  |
| -100 | -1.00 | +0.29 | +0.78 | +0.46 | -0.13 |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $+100$ | +1.82 |  |  |  |  | -0.51 | +1.14 |
| 200 |  |  |  |  |  | -1.13 | 2.46 |
| 300 |  |  |  |  |  | -1.85 |  |
| $\underset{{ }^{\circ} \mathrm{C}}{\text { Temp., }}$ | Magnesium, mv | Zinc, mv | Cadmium, mv | $\begin{gathered} \text { Mercury, } \\ \mathrm{mv} \end{gathered}$ | Indium, mv | Thallium, mv | Aluminum, mv |
| -200 | +0.37 | -0.07 | -0.04 |  |  |  | +0.45 |
| -100 | -0.09 | -0.33 | -0.31 |  |  |  | -0.06 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| +100 | +0.44 | +0.76 | +0.90 | -0.60 | +0.69 | +0.58 | +0.42 |
| 200 | +1.10 | 1.89 | 2.35 | $-1.33$ |  | 1.30 | 1.06 |
| 300 |  | 3.42 | 4.24 |  |  | 2.16 | 1.88 |
| 400 |  | 5.29, | ...... |  |  | ...... | 2.84 |
| 500 |  |  |  |  |  |  | 3.93 |
| 600 |  |  |  |  |  |  | 5.15 |
| Temp., ${ }^{\circ} \mathrm{C}$ | Carbon, mv | Silicon, mv | Germanium, mv | Tin, mv | Lead, mv | Antimony, mv | Bismuth, mv |
| -200 |  | +63.13 | -46.00 | +0.26 | +0.24 |  | +12.39 |
| -100. |  | +37.17 | -26.62 | -0.12 | -0.13 |  | +7.54 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $+100$ | +0.70 | -41.56 | +33.9 | +0.42 | +0.44 | +4.89 | -7.34 |
| 200 | 1.54 | -80.58 | 72.4 | 1.07 | 1.09 | 10.14 | $-13.57$ |
| 300 | 2.55 | -110.09 | 91.8 |  | 1.91 | 15.44 |  |
| 400 | 3.72 |  | 82.3 |  |  | 20.53 |  |
| 500 | 5.15 |  | 63.5 |  |  | 25.10 |  |
| 600 | 6.79 |  | 43.9 |  |  | 28.88 |  |
| 700 | 8.84 |  | 27.9 |  |  |  |  |
| 800 | 11.01 |  |  |  |  |  |  |
| 900 | 13.59 |  |  |  |  |  |  |
| 1000 | 16.51 |  |  |  |  |  |  |
| 1100 | 19.49 |  |  |  |  |  |  |

[^153]Table 4a-5. Thermal Emf of Chemical Elements Relative to Platinum* (Continued)


[^154]Table 4a-6. Thermal Emf of Important Thermocouple Materials Relative to Platinum*

| Temp., ${ }^{\circ} \mathrm{C}$ | $\begin{gathered} \text { Chromel P } \\ \mathrm{mv} \end{gathered}$ | Alumel, mv | Copper, mv | Iron, mv | Constantan, mv |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -200 | -3.36 | +2.39 | -0.19 | -2.92 | +5.35 |
| -100 | -2.20 | +1.29 | -0.37 | -1.84 | +2.98 |
| 0 | 0 | 0 | 0 | 0 | 0 |
| +100 | +2.81 | -1.29 | +0.76 | +1.89 | -3.51 |
| 200 | 5.96 | -2.17 | 1.83 | 3.54 | -7.45 |
| 300 | 9.32 | -2.89 | 3.15 | 4.85 | -11.71 |
| 400 | 12.75 | -3.64 | 4.68 | 5.88 | -16.19 |
| 500 | 16.21 | -4.43 | 6.41 | 6.79 | -20.79 |
| 600 | 19.62 | -5.28 | 8.34 | 7.80 | -25.47 |
| 700 | 22.96 | -6.18 | 10.49 | 9.12 | -30.18 |
| 800 | 26.23 | -7.08 | 12.84 | 10.86 | -34.86 |
| 900 | 29.41 | -7.95 | 15:41 | 12.84 | -39.45 |
| 1000 | 32.52 | -8.79 | 18.20 | 14.30 | -43.92 |
| 1100 | 35.56 | -9.58 |  |  |  |
| 1200 | 38.51 | -10.34 |  |  |  |
| 1300 | 41.35 | -11.06 |  |  |  |
| 1400 | 44.04 | -11.77 |  |  |  |

*American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," pp. 1308-1310, Reinhold Publishing Corporation, New York, 1941.

Table 4a-7. Thermal Emf of Some Alloys Relative to Platinum*

| $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Manganin, mv | Gold-chromium, mv | Copper-beryllium, mv | Yellow brass, mv | Phosphor bronze, mv | Solder <br> $50 \mathrm{Sn}-$ <br> 50 Pb , <br> mv | $\begin{gathered} \text { Solder } \\ 96.5 \mathrm{Sn}- \\ 3.5 \mathrm{Ag}, \\ \mathrm{mv} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $+100$ | +0.61 | -0.17 | $+0.67$ | +0.60 | +0.55 | +0.46 | +0.45 |
| 200 | 1.55 | -0.32 | 1.62 | 1.49 | 1.34 |  |  |
| 300 | 2.77 | -0.44 | 2.81 | 2.58 | 2.34 |  |  |
| 400 | 4.25 | -0.55 | 4.19 | 3.85 | 3.50 |  |  |
| 500 | 5.95 | -0.63 |  | 5.30 | 4.81 |  |  |
| 600 | 7.84 | -0.66 |  | 6.96 | 6.30 |  |  |
| Temp., ${ }^{\circ} \mathrm{C}$ | 18-8 stainless steel, mv | Spring steel, mv | 80 Ni 20 Cr , mv | $60 \mathrm{Ni}-$ <br> $24 \mathrm{Fe}-$ <br> 16 Cr , <br> mv | Copper coin ( $95 \mathrm{Cu}-$ 4 Sn 1 Zn ), mv | $\begin{gathered} \text { Nickel } \\ \text { coin } \\ (75 \mathrm{Cu}- \\ 25 \mathrm{Ni}), \\ \mathrm{mv} \end{gathered}$ | $\begin{gathered} \text { Silver } \\ \text { coin } \\ (90 \mathrm{Ag}- \\ 10 \mathrm{Cu}), \\ \mathrm{mv} \end{gathered}$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| +100 | +0.44 | +1.32 | +1.14 | +0.85 | +0.60 | -2.76 | +0.80 |
| 200 | 1.04 | 2.63 | 2.62 | 2.01 | 1.48 | -6.01 | 1.90 |
| 300 | 1.76 | 3.81 | 4.34 | 3.41 | 2.60 | -9.71 | 3.25 |
| 400 | 2.60 | 4.84 | 6.25 | 5.00 | 3.91 | -13.78 | 4.81 |
| 500 | 3.56 | 5.80 | 8.31 | 6.76 | 5.44 | $-18.10$ | 6.59 |
| 600 | 4.67 | 6.86 | 10.53 | 8.68 | 7.14 | -22.59 | 8.64 |
| 700 | 5.93 |  | 12.91 | 10.78 |  |  |  |
| 800 | 7.37 |  | 15.44 | 13.06 |  |  |  |
| 900 | 8.99 |  | 18.11 | 15.50 |  |  |  |
| 1000 |  |  | 20.91 | 18.10 |  |  |  |

[^155]Table 4a-8. Platinum vs. Platinum- $10 \%$ Rhodium Thermocouples*
[Emf, absolute millivolts; temp., ${ }^{\circ} \mathrm{C}$ (int. 1948); reference junctions at $0^{\circ} \mathrm{C}$ ]

| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.000 | 0.056 | 0.113 | 0.173 | 0.235 | 0.299 | 0.364 | 0.431 | 0.500 | 0.571 | 0.643 |
| 100 | 0.643 | 0.717 | 0.792 | 0.869 | 0.946 | 1.025 | 1.106 | 1.187 | 1.269 | 1.352 | 1.436 |
| 200 | 1.436 | 1.521 | 1.607 | 1.693 | 1.780 | 1.868 | 1.956 | 2.045 | 2.135 | 2.225 | 2.316 |
| 300 | 2.316 | 2.408 | 2.499 | 2.592 | 2.685 | 2.778 | 2.872 | 2.966 | 3.061 | 3.156 | 3.251 |
| 400 | 3.251 | 3.347 | 3.442 | 3.539 | 3.635 | 3.732 | 3.829 | 3.926 | 4.024 | 4.122 | 4.221 |
| 500 | 4.221 | 4.319 | 4.419 | 4.518 | 4.618 | 4.718 | 4.818 | 4.919 | 5.020 | 5.122 | 5.224 |
| 600 | 5.224 | 5.326 | 5.429 | 5.532 | 5.635 | 5.738 | 5.842 | 5.946 | 6.050 | 6.155 | 6.260 |
| 700 | 6.260 | 6.365 | 6.471 | 6.577 | 6.683 | 6.790 | 6.897 | 7.005 | 7.112 | 7.220 | 7.329 |
| 800 | 7.329 | 7.438 | 7.547 | 7.656 | 7.766 | 7.876 | 7.987 | 8.098 | 8.209 | 8.320 | 8.432 |
| 900 | 8.432 | 8.545 | 8.657 | 8.770 | 8.883 | 8.997 | 9.111 | 9.225 | 9.340 | 9.455 | 9.570 |
| 1000 | 9.570 | 9.686 | 9.802 | 9.918 | 10.035 | 10.152 | 10.269 | 10.387 | 10.505 | 10.623 | 10.741 |
| 1100 | 10.741 | 10.860 | 10.979 | 11.098 | 11.217 | 11.336 | 11.456 | 11.575 | 11.695 | 11.815 | 11.935 |
| 1200 | 11.935 | 12.055 | 12.175 | 12.296 | 12.416 | 12.536 | 12.657 | 12.777 | 12.897 | 13.018 | 13.138 |
| 1300 | 13.138 | 13.258 | 13.378 | 13.498 | 13.618 | 13.738 | 13.858 | 13.978 | 14.098 | 14.217 | 14.337 |
| 1400 | 14.337 | 14.457 | 14.576 | 14.696 | 14.815 | 14.935 | 15.054 | 15.173 | 15.292 | 15.411 | 15.530 |
| 1500 | 15.530 | 15.649 | 15.768 | 15.887 | 16.006 | 16.124 | 16.243 | 16.361 | 16.479 | 16.597 | 16.716 |
| 1600 | 16.716 | 16.834 | 16.952 | 17.069 | 17.187 | 17.305 | 17.422 | 17.539 | 17.657 | 17.774 | 17.891 |
| 1700 | 17.891 | 18.008 | 18.124 | 18.241 | 18.358 | 18.474 | 18.590 |  |  |  |  |

[^156]Table 4a-9. Platinum vs. Platinum-13\% Rhodium Thermocouples* [Emf, absolute millivolts; temp., ${ }^{\circ} \mathrm{C}$ (int. 1948); reference junctions at $0^{\circ} \mathrm{C}$ ]

| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.000 | 0.055 | 0.112 | 0.172 | 0.234 | 0.298 | 0.363 | 0.431 | 0.500 | 0.572 | 0.645 |
| 100 | 0.645 | 0.721 | 0.798 | 0.877 | 0.957 | 1.039 | 1.121 | 1.205 | 1.290 | 1.377 | 1.465 |
| 200 | 1.465 | 1.553 | 1.643 | 1.734 | 1.826 | 1.918 | 2.012 | 2.107 | 2.202 | 2.298 | 2.395 |
| 300 | 2.395 | 2.493 | 2.591 | 2.690 | 2.790 | 2.890 | 2.991 | 3.092 | 3.194 | 3.296 | 3.399 |
| 400 | 3.399 | 3.502 | 3.607 | 3.712 | 3.817 | 3.923 | 4.029 | 4.134 | 4.241 | 4.348 | 4.455 |
| 500 | 4.455 | 4.563 | 4.672 | 4.782 | 4.893 | 5.004 | 5.115 | 5.226 | 5.338 | 5.450 | 5.563 |
| 600 | 5.563 | 5.677 | 5.792 | 5.907 | 6.022 | 6.137 | 6.252 | 6.368 | 6.485 | 6.602 | 6.720 |
| 700 | 6.720 | 6.838 | 6.957 | 7.076 | 7.195 | 7.315 | 7.436 | 7.557 | 7.679 | 7.801 | 7.924 |
| 800 | 7.924 | 8.047 | 8.170 | 8.294 | 8.419 | 8.544 | 8.669 | 8.795 | 8.921 | 9.047 | 9.175 |
| 900 | 9.175 | 9.303 | 9.431 | 9.559 | 9.687 | 9.816 | 9.946 | 10.077 | 10.208 | 10.339 | 10.471 |
| 1000 | 10.471 | 10.603 | 10.735 | 10.869 | 11.003 | 11.138 | 11.273 | 11.408 | 11.544 | 11.681 | 11.817 |
| 1100 | 11.817 | 11.954 | 12.090 | 12.227 | 12.365 | 12.503 | 12.641 | 12.779 | 12.917 | 13.055 | 13.193 |
| 1200 | 13.193 | 13.332 | 13.471 | 13.610 | 13.749 | 13.888 | 14.027 | 14.165 | 14.304 | 14.443 | 14.582 |
| 1300 | 14.582 | 14.721 | 14.860 | 14.999 | 15.138 | 15.276 | 15.415 | 15.553 | 15.692 | 15.831 | 15.969 |
| 1400 | 15.969 | 16.108 | 16.247 | 16.386 | 16.524 | 16.663 | 16.802 | 16.940 | 17.079 | 17.217 | 17.355 |
| 1500 | 17.355 | 17.493 | 17.631 | 17.768 | 17.906 | 18.043 | 18.179 | 18.316 | 18.453 | 18.590 | 18.727 |
| 1600; | 18.727 | 18.864 | 19.001 | 19.137 | 19.273 | 19.409 | 19.545 | 19.682 | 19.818 | 19.954 |  |

[^157]Table 4a-10. Copper vs. Constantan Thermocouples* [Emf, absolute millivolts; temp., ${ }^{\circ} \mathrm{C}$, (int. 1948) ; reference junctions at $0^{\circ} \mathrm{C}$ ]

| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -100 | -8.349 | -3.624 | -3.887 | -4.138 | -4.877 | -4.603 | -4.817 | -5.018 | -5.205 | -5.379 |  |
| (-)0 | 0.000 | $-0.380$ | -0.751 | -1.112 | -1.463 | -1.804 | $-2.135$ | -2.455 | -2.764 | -3.062 | -3.349 |
| (+)0 | 0.000 | 0.389 | 0.787 | 1.194 | 1.610 | 2.035 | 2.467 | 2.908 | 3.357 | 3.813 | 4.277 |
| 100 | 4.277 | 4.749 | 5.227 | 5.712 | 6.204 | 6.703 | 7.208 | 7.719 | 8.236 | 8.759 | 9.288 |
| 200 | 9.288 | 9.823 | 10.363 | 10.909 | 11.459 | 12.015 | 12.575 | 13.140 | 13.710 | 14.285 | 14.864 |
| -300 | 14.864 | 15.447 | 16.035 | 16.626 | 17.222 | 17.821 | 18.425 | 19.032 | 19.642 | 20.257 | 20:874 |
|  |  |  |  |  |  |  |  |  |  |  |  |

* Henry Shenker, John L. Lauritzen, Jr., and Robert J. Corruccini, Reference Tables for Thermocouples, Natl. Bur. Standards (U.S.) Circ. 508 (May 7, 1951).

Table 4a-11. Iron vs. Constantan Thermocouples*
[Emf, absolute millivolts; temp., ${ }^{\circ} \mathrm{C}$, (int. 1948) ; reference junctions at $0^{\circ} \mathrm{C}$ ]

| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | $70$ | $80$ | $90$ | $100$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -100 | $-4.63$ | $-5.05$ | $-5.42$ | $-5.80$ | $-6.16$ | $-6.50$ | - 6.82 | $-7.12$ | $-7.40$ | $-7.66$ |  |
| $(-) 0$ | 0.00 | $-0.50$ | $-1.00$ | $-1.48$ | $-1.96$ | $-2.43$ | $-2.89$ | $-3.34$ | $-3.78$ | $-4.21$ | $-4.63$ |
| (+)0 | 0.00 | 0.50 | 1.02 | 1.54 | 2.06 | 2.58 | 3.11 | 3.65 | 4.19 | 4.73 | 5.27 |
| 100 | 5.27 | 5.81 | 6.36 | 6.90 | 7.45 | 8.00 | 8.56 | 9.11 | 9.67 | 10.22 | 10.78 |
| 200 | 10.78 | 11.34 | 11.89 | 12.45 | 13.01 | 13.56 | 14.12 | 14.67 | 15.22 | 15.77 | 16.33 |
| 300 | 16.33 | 16.88 | 17.43 | 17.98 | 18.54 | 19.09 | 19.64 | 20.20 | 20.75 | 21.30 | 21.85 |
| 400 | 21.85 | 22.40 | 22.95 | 23.50 | 24.06 | 24.61 | 25.16 | 25.72 | 26.27 | 26.83 | 27.39 |
| 500 | 27.39 | 27.95 | 28.52 | 29.08 | 29.65 | 30.22 | 30.80 | 31.37 | 31.95 | 32.53 | 33.11 |
| 600 | 33.11 | 33.70 | 34.29 | 34.88 | 35.48 | 36.08 | 36.69 | 37.30 | 37.91 | 38.53 | 39.15 |
| 700 | 39.15 | 39.78 | 40.41 | 41.05 | 41.68 | 42.32 | 42.96 | 43.60 | 44.25 | 44.89 | 45.53 |
| 800 | 45.53 | 46.18 | 46.82 | 47.46 | 48.09 | 48.73 | 49.36 | 49.98 |  |  |  |

[^158]Table 4a-12. Chromel vs. Alumel Thermocouples*:
[Emf, absolute millivolts; temp., ${ }^{\circ} \mathrm{C}$, (int. 1948); reference junction at $0^{\circ} \mathrm{C}$ ]

| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30. | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -100 | - 3.49 | $-3.78$ | - 4.06 | - 4.32 | $-4.58$ | -. 4.81 | $-5.03$ | $-5.24$ | $-5.43$ | - 5.60 |  |
| (-)0 | - 0.00 | $-0.39$ | $-0.77$ | - 1.14 | - 1.50 | -1.86 | $-2.20$ | - 2.54 | $-2.87$ | - 3.19 | - 3.49 |
| (+)0 | 0.00 | 0.40 | 0.80 | 1.20 | 1.61 | 2.02 | 2.43 | 2.85 | 3.26 | 3.68 | 4.10 |
| 100 | 4.10 | 4.51 | 4.92 | 5.33 | 5.73 | 6.13 | 6.53 | 6.93 | 7.33 | 7.73 | 8.13 |
| 200 | 8.13 | 8.54 | 8.94 | 9.34 | 9.75 | 10.16 | 10.57 | 10.98 | 11.39 | 11.80 | 12.21 |
| 300 | 12.21 | 12.63 | 13.04 | 13.46 | 13.88 | 14.29 | 14.71 | 15.13 | 15.55 | 15.98 | 16.40 |
| 400 | 16.40 | 16.82 | 17.24 | 17.67 | 18.09 | 18.51 | 18.94 | 19.36 | 19.79 | 20.22 | 20.65 |
| 500 | 20.65 | 21.07 | 21.50 | 21.92 | 22.35 | 22.78 | 23.20 | 23.63 | 24.06 | 24.49 | 24.91 |
| 600 | 24.91 | 25.34 | 25.76 | 26.19 | 26.61 | 27.03 | 27.45 | 27.87 | 28.29 | 28.72 | 29.14 |
| 700 | 29.14 | 29.56 | 29.97 | 30.39 | 30.81 | 31.23 | 31.65 | 32.06 | 32.48 | 32.89 | 33.30 |
| 800 | 33.30 | 33.71 | 34.12 | 34.53 | 34.93 | 35.34 | 35.75 | 36.15 | 36.55 | 36.96 | 37.36 |
| 900 | 37.36 | 37.76 | 38.16 | 38.56 | 38.95 | 39.35 | 39.75 | 40.14 | 40.53 | 40.92 | 41.31 |
| 1000 | 41.31 | 41.70 | 42.09 | 42.48 | 42.87 | 43.25 | 43.63 | 44.02 | 44.40 | 44.78 | 45.16 |
| 1100 | 45.16 | 45.54 | 45.92 | 46.29 | 46.67 | 47.04 | 47.41 | 47.78 | 48.15 | 48.52 | 48.89 |
| 1200 | 48.89 | 49.25 | 49.62 | 49.98 | 50.34 | 50.69 | 51.05 | 51.41 | 51.76 | 52.11 | 52.46 |
| 1300 | 52.46 | 52.81 | 53.16 | 53.51 | 53.85 | 54.20 | 54.54 | 54.88 |  |  |  |

* Henry Shenker, John L. Lauritzen, Jr., and Robert J. Corruccini, Reference Tables for Thermocouples, Natl. Bur. Standards (U.S.) Circ. 508 (May 7, 1951).

Table 4a-13. Chromel vs. Constantan Thermocouples*
[Emf, absolute millivolts; temp., ${ }^{\circ} \mathrm{C}$ (int. 1948); reference junctions at $0^{\circ} \mathrm{C}$ ]

| ${ }^{\circ} \mathrm{C}$ | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -100 | -5.18 | -5.62 | -6.04 | -6.44 | -6.83 | -7.20 | -7.55 | $-7.87$ | -8.17 | -8.45 | -8.71 |
| (-)0 | 0.00 | -0.58 | -1.14 | -1.70 | -2.24 | -2.77 | -3.28 | -3.78 | -4.26 | $-4.73$ | $-5.18$ |
| (+)0 | 0.00 | 0.59 | 1.19 | 1.80 | 2.41 | 3.04 | 3.68 | 4.33 | 4.99 | 5.65 | 6.32 |
| 100 | 6.32 | 7.00 | 7.69 | 8.38 | 9.08 | 9.79 | 10.51 | 11.23 | 11.95 | 12.68 | 13.42 |
| 200 | 13.42 | 14.17 | 14.92 | 15.67 | 16.42 | 17.18 | 17.95 | 18.72 | 19.49 | 20.26 | 21.04 |
| 300 | 21.04 | 21.82 | 22.60 | 22.39 | 24.18 | 24.97 | 25.76 | 26.56 | 27.35 | 28.15 | 28.95 |
| 400 | 28.95 | 29.75 | 30.55 | 31.36 | 32.16 | 32.96 | 33.77 | 34.58 | 35.39 | 36.20 | 37.01 |
| 500 | 37.01 | 37.82 | 38.62 | 39.43 | 40.24 | 41.05 | 41.86 | 42.67 | 43.48 | 44.29 | 45.10 |
| 600 | 45.10 | 45.91 | 46.72 | 47.53 | 48.33 | 49.13 | 49.93 | 50.73 | 51.54 | 52.34 | 53.14 |
| 700 | 53.14 | 53.94 | 54.74 | 55.53 | 56.33 | 57.12 | 57.92 | 58.71 | 59.50 | 60.29 | 61.08 |
| 800 | 61.08 | 61.86 | 62.65 | 63.43 | 64.21 | 64.99 | 65.77 | 66.54 | 67.31 | 68.08 | 68.85 |
| 900 | 68.85 | 69.62 | 70.39 | 71.15 | 71.92 | 72.68 | 73.44 | 74.20 | 74.95 | 75.70 | 76.45 |

[^159]TEMPERATURE SCALES
Table 4a-14. Electrical Resistivity of Some Elements and Alloys as a Function of Temperature*
[At $0^{\circ} \mathrm{C}$ both the relative $\left(R_{t} / R_{0}\right)$ and actual resistivity (microhm-cm) are given]

| $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathbf{C} \end{gathered}$ | Platinum $\left(R_{t} / R_{0}\right)$ | Copper $\left(R_{t} / R_{0}\right)$ | Nickel $\left(R_{t} / R_{0}\right)$ | $\begin{aligned} & \text { Iron } \\ & \left(R_{t} / R_{0}\right) \end{aligned}$ | Silver $\left(R_{t} / R_{0}\right)$ | $\underset{\substack{90 \mathrm{Pt}-\\\left(R_{t} / R_{0}\right)}}{ }$ | $\begin{aligned} & 87 \mathrm{Pt}- \\ & 13 \mathrm{Rh} \\ & \left(R_{t} / R_{0}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -200 | 0.177 | 0.117 |  | ..... | 0.176 |  |  |
| -100 | 0.599 | 0.557 |  |  | 0.596 |  |  |
| 0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
|  | (9.83) | (1.56) | (6.38) | (8.57) | (1.50) | (18.4) | (19.0) |
| +100 | 1.392 | 1.431 | 1.663 | 1.650 | 1.408 | 1.166 | 1.156 |
| 200 | 1.773 | 1.862 | 2.501 | 2.464 | 1.827 | 1.330 | 1. 308 |
| 300 | 2.142 | 2.299 | 3.611 | 3.485 | 2.256 | 1.490 | 1.456 |
| 400 | 2.499 | 2.747 | 4.847 | 4.716 | 2.698 | 1.646 | 1. 601 |
| 500 | 2.844 | 3.210 | 5.398 | 6.162 | 3.150 | 1.798 | 1. 744 |
| 600 | 3.178 | 3.695 | 5.882 | 7.839 | 3.616 | 1.947 | 1.885 |
| 700 | 3.500 | 4.208 | 6.327 | 9.790 | 4.094 | 2.093 | 2.023 |
| 800 | 3.810 | 4.752 | 6.751 | 12.009 | 4.586 | 2.234 | 2.157 |
| 900 | 4.109 | 5.334 | 7.156 | 12.790 | 5.091 | 2.370 | 2.287 |
| 1000 | 4.396 | 5.960 | 7.542 | 13.070 |  | 2.503 | 2.414 |
| 1100 | 4.671 |  |  |  |  | 2.633 | 2.538 |
| 1200 | 4.935 |  |  |  |  | 2.761 | 2.660 |
| 1300 | 5.187 |  |  |  |  | 2.887 | 2.780 |
| 1400 | 5.427 |  |  |  |  | 3.011 | 2.898 |
| 1500 | 5.655 |  |  |  |  | 3.133 | 3.014 |
| Temp., ${ }^{\circ} \mathrm{C}$ | $\begin{gathered} 80 \mathrm{Ni}-20 \\ \mathrm{Cr} \\ \left(R_{t} / R_{0}\right) \end{gathered}$ | $\begin{gathered} 60 \mathrm{Ni}-24 \\ \mathrm{Fe}-16 \mathrm{Cr} \\ \left(R_{t} / R_{0}\right) \end{gathered}$ | $\begin{gathered} 50 \mathrm{Fe}-30 \\ \mathrm{Ni}-20 \mathrm{Cr} \\ \left(R_{t} / R_{0}\right) \end{gathered}$ | $\left.\begin{gathered} \text { Chromel } \\ \mathrm{P}(90 \mathrm{Ni}- \\ 10 \mathrm{Cr} \\ \left(R_{t} / R_{0}\right) \end{gathered} \right\rvert\,$ | $\begin{gathered} \text { Alumel } 95 \\ \mathrm{Ni}-\mathrm{bal} . \\ \mathrm{Al} \mathrm{Si} \\ \text { and Mn } \\ \left(R_{t} / R_{0}\right) \end{gathered}$ | $\begin{gathered} \text { Constan- } \\ \tan (55 \\ \mathrm{Cu}-45 \mathrm{Ni}) \\ \left(R_{t} / R_{0}\right) \end{gathered}$ | $\begin{aligned} & \text { Manga- } \\ & \text { nin } \\ & \left(R_{t} / R_{0}\right) \end{aligned}$ |
| 0 | 1.000 | 1.000 | $1.00{ }^{\prime}$ | 1.000 | 1.000 | 1.000 | 1.000 |
|  | (107.6) | (111.6) | (99.0) | (70.0) | (28.1) | (48.9) | (48.2) |
| 100 | 1.021 | 1.025 | 1.037 | 1.041 | 1.239 | 0:999 | 1.002 |
| 200 | 1.041 | 1.048 | 1.073 | 1.086 | 1.428 | 0.996 | 0.996 |
| 300 | 1.056 | 1.071 | 1.107 | 1.134 | 1.537 | 0.994 | 0.991 |
| 400 | 1.068 | 1.092 | 1.137 | 1.187 | 1.637 | 0.994 | 0.983 |
| 500 | 1.073 | 1.108 | 1.163 | 1.222 | 1.726 | 1.007 |  |
| 600 | 1.071 | 1.115 | 1.185 | 1.248 | 1.814 | 1.024 |  |
| - 700 | 1.067 | 1.119 | 1.204 | 1.275 | -1.899 | 1.040 |  |
| 800 | 1.066 | 1.127 | 1.221 | 1.304 | 1.982 | 1.056 |  |
| . 900 | 1.071 | 1. 138 | 1.237 | 1.334 | 2.066 | 1.074 |  |
| 1000 | 1.077 | 1.149 | 1.251 | 1.365 | 2.150 | 1.092 |  |
| 1100 | 1.083 |  |  | 1.397 | 2.234 | 1.110 |  |
| 1200 |  |  |  | 1.430 | 2.318 |  |  |

[^160]
# 4b. Very Low Temperature Data. Properties of Paramagnetic Salts 

The National Bureau of Standards

Table $4 \mathrm{~b}-1$ summarizes the principal properties of 10 paramagnetic salts. Detailed data are given in the rest of the section.

Table 4b-1. Properties of Paramagnetic Salts

| Paramagnetic salt | Gramionic weight, $M(\mathrm{~g})$ | Density, $\rho\left(\frac{\mathrm{g}}{\mathrm{~cm}^{\mathrm{s}}}\right)$ | Curie const. $C\left(\frac{\mathrm{emu}}{\text { gram-ion }}\right)$ | Specific heat const. $\frac{A}{R}\left(\operatorname{deg}^{2}\right)$ | Splitting factor $\frac{\delta}{\boldsymbol{k}}\left({ }^{\circ} \mathrm{K}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Cerium magnesium nitrate |  |  |  | $7.5 \times 10^{-0}$ |  |
| $2 \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 24 \mathrm{H}_{2} \mathrm{O}$. | 765 |  | 0.318 | $7.5 \times 10^{-6}$ |  |
| 2. Chromium potassium alum $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O} \ldots$. | 499 | 1.83 | 1.88 | 0.017 | 0.25 |
| 3. Chromium methylammonium alum $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4} \cdot \mathbf{2 4} \mathrm{H}_{2} \mathrm{O}$. | 492 | 1.645 | 1.88 | 0.019 | 0.2 |
| 4. Copper potassium sulfate CuSO، $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 442 | 2.22 | (0.445) | $6.0 \times 10^{-4}$ |  |
| 5. Iron ammonium alum $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$. | 482 | 1.71 | 4.38 | 0.0143 | 0.23 |
| 6. Gadolinium sulfate $\mathrm{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O} \ldots$ | 373 | 3.010 | 7.88 | 0.32 | 1.35 |
| 7. Manganese ammonium sulfate $\mathrm{MnSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. | 391 | 1.83 | 4.38 | 0.033 | 0.24 |
| 8. Titanium cesium alum $\mathrm{Ti}_{2}\left(\mathrm{SO}_{4}\right)_{\mathbf{z}}$. $\mathrm{Cs}_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$. | 589 | $\sim 2$ | (0.118) | $3.9 \times 10^{-5}$ |  |
| 9. Cobalt ammonium sulfate CoSO$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 395 | 1.902 | $\begin{aligned} & 3.00 \\ & 0.873 \\ & 1.77 \end{aligned}$ | $4.30 \times 10^{-2}$ |  |
| 10. Copper sulfate pentahydrate $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 250 | 2.284 | $\binom{0.457}{\Delta=-0.65}$ |  | - |

Note: Average values for $C$, measured for anisotropic salts in powder form, are quoted in parentheses-

1. Cerium Magnesium Nitrate. $2 \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \cdot 24 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 765; $\mathrm{Ce}^{3+} ; \mathbf{4 f}^{1} ;{ }^{2}{ }^{2}{ }_{\mathbf{q}}$.

The next lowest level to the ground state, ${ }^{2} F_{3}$, lies about $2,500 \mathrm{~cm}^{-1}$ above the ${ }^{2} F_{1}$ ground level. The latter is assumed by Cooke, Duffus, and Wolf ${ }^{1}$ to be split into doublets characterized to a first approximation by $J_{Z}= \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}$.

Cooke et al. find $A / C=1,970, g_{\perp}=1.84, g_{\|}=0.25 \pm 0.05$. Taking $C=0.318$ emu per g ion, $A / R=7.5 \times 10^{-6} \mathrm{deg}^{2}$. (Owing to the smallness of the magnetic

[^161]specific heat, the contribution to the specific heat from the lattice is not negligible at $1^{\circ} \mathrm{K}$ and may be estimated to become comparable with the magnetic specific heat at about $0.5^{\circ} \mathrm{K}$.)

Daniels and Robinson ${ }^{1}$ find $A / R=6.4 \times 10^{-6}$, and that $T^{*}=T$ down to $0.006^{\circ} \mathrm{K}$. Their data are given in Table 4b-2.

Table 4b-2. Temperature Data on Cerium Magnesium Nitrate (Daniels and Robinson)

| $S / R$ | $T$ <br> $10^{-3}{ }^{\circ} \mathrm{K}$ | $T^{*}$ <br> $10^{-3} \circ$ | $S / R$ | $T$ <br> $10^{-3}{ }^{\circ} \mathrm{K}$ | $T^{*}$ <br> $10^{-3} \circ$ | $S / R$ | $T$ <br> $10^{-3}{ }^{\circ} \mathrm{K}$ | $T^{*}$ <br> $10^{-3} \circ$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.100 | 3.08 | 3.20 | 0.450 | 3.12 | 3.66 | 0.560 | 4.50 | 4.90 |
| 0.300 | 3.08 | 3.20 | 0.475 | 3.23 | 3.88 | 0.570 | 4.79 | 5.09 |
| 0.350 | 3.08 | 3.28 | 0.500 | 3.43 | 4.09 | 0.580 | 5.12 | 5.32 |
| 0.400 | 3.08 | 3.38 | 0.525 | 3.76 | 4.35 | 0.590 | 5.46 | 5.56 |
| 0.425 | 3.08 | 3.49 | 0.550 | 4.25 | 4.72 | 0.600 | 5.86 | 5.86 |

2. Chromium Potassium Alum. $\quad \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 499 ; density, $1.83 ; \mathrm{Cr}^{3+} ; 3 d^{3} ;{ }^{4} F_{\frac{3}{2}}$.

An orbital singlet is lowest-some $10^{4} \mathrm{~cm}^{-1}$ below the first triplet. This spin quadruplet remains degenerate in a cubic field but splits into two Kramers doublets in any field of lower symmetry. $g=2$. Paramagnetic-resonance experiments by Bleaney ${ }^{2}$ indicate two distinct values of the splitting $\delta$ below $160^{\circ} \mathrm{K}$, and the situation is very confused. (Adiabatic-demagnetization experiments lead to a rms value of $\delta$.)
De Klerk ${ }^{3}$ finds $A / R=0.0192 \mathrm{deg}^{2}$, and $\delta / k=0.27 \mathrm{deg}$ for a powder specimen. His data are given in Table 4b-3.

Table 4b-3. Temperature Data on Chromium Potassium Alum (de Klerk)

| $H_{i}$, gauss | $T_{i},{ }^{\circ} \mathrm{K}$ | $\ln 4-S / R$ | $T_{f}{ }^{*}$ | $T_{f},{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: |
| 628 | 1.174 | 0.0102 | 0.946 | 0.944 |
| 823 | 1.184 | 0.0124 | 0.877 | 0.875 |
| 1,022 | 1.177 | 0.0154 | 0.784 | 0.782 |
| 1,209 | 1.174 | 0.0189 | 0.701 | 0.699 |
| 1,645 | 1.158 | 0.0296 | 0.570 | 0.566 |
| 1,905 | 1.157 | 0.0369 | 0.508 | 0.502 |
| 2,183 | 1.155 | 0.0461 | 0.453 | 0.448 |
| 2,762 | 1.152 | 0.0687 | 0.365 | 0.359 |
| 3,572 | 1.149 | 0.1085 | 0.288 | 0.280 |
| 4,152 | 1.153 | 0.1380 | 0.251 | 0.242 |
| 5,805 | 1.148 | 0.2480 | 0.178 | 0.166 |
| 8,120 | 1.142 | 0.4180 | 0.124 | 0.108 |
| 10,310 | 1.143 | 0.5710 | 0.095 | 0.077 |

For two single crystals, $\delta / k=0.263 \mathrm{deg}$ and 0.251 deg respectively. ${ }^{4}$
In Table V-IV of the reference, de Klerk lists corresponding values of $T^{*}, \ln 4-S /$ $R$, and $T$ ranging between the values 0.064 and $0.033 \mathrm{deg}, 0.801$ and 0.987 deg , and
${ }^{1}$ J. M. Daniels and F. N. H. Robinson, Phil. Mag. 44, (7), 630 (1953).
2 B. Bleaney, Proc. Roy. Soc. (London), ser. A, 204, 203 (1950).
${ }^{3}$ D. de Klerk, Thesis, p. 52, Leiden, 1948.
${ }^{4}$ Ibid., pp. 54, 89.
0.035 and 0.0039 deg , respectively. This table is not internally consistent, however, and one cannot say which part of the data listed is in error. Assuming the $T$ values to be correct and the error to lie elsewhere, there is marked disagreement between these results and those of Daniels and Kurti ${ }^{1}$ given in Table 4b-4, for a compressed-powder specimen. The latter authors find absolute temperatures greater than de Klerk's values by a factor of 3 at the lowest entropies.

Table 4b-4. Temperature Data on Chromium Potassium Alum (Daniels and Kurti)

| $\ln 4-S / R$ | $T,{ }^{\circ} \mathrm{K}$ | $\ln 4-S / R$ | $T,{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: |
| 0.487 | 0.0728 | 0.906 | $0.011_{5}$ |
| 0.550 | 0.0515 | 1.096 | $0.011_{5}$ |
| 0.630 | 0.0354 | 1.136 | $0.010_{7}$ |
| 0.731 | 0.0232 | 1.178 | $0.009_{0}$ |
| 0.848 | 0.0127 | 1.236 | $0.007_{0}$ |

The most reliable measurements above $0.1^{\circ} \mathrm{K}$ are those of Bleaney ${ }^{2}$ given in Table 4b-5.

Table 4b-5. Temperature Data on Chromium Potassium Alum (Bleaney)

| $T,{ }^{\circ} \mathrm{K}$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $T^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.000 | 1.000 | 0.280 | 0.291 | 0.120 | 0.138 |
| 0.600 | 0.604 | 0.240 | 0.252 | 0.100 | 0.121 |
| 0.480 | 0.485 | 0.200 | 0.215 | 0.080 | 0.103 |
| 0.400 | 0.406 | 0.180 | 0.195 | 0.060 | 0.086 |
| 0.360 | 0.368 | 0.160 | 0.174 | 0.050 | 0.079 |
| 0.320 | 0.330 | 0.140 | 0.156 | 0.045 | 0.075 |

3. Chromium Methylammonium Alum. $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{CH}_{3} \cdot \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$; gramionic weight, 492; density, 1.645 (see chromium potassium alum).

Discussion is the same as for the potassium alum except that paramagnetic-resonance experiments ${ }^{3}$ indicate a unique value for the splitting $\delta$. The following values of $\delta / k$ from demagnetization experiments have been reported: de Klerk and Hudson ${ }^{4}$ (powder specimen), 0.275 deg ; Gardner and Kurti ${ }^{5}$ (compressed powder), 0.27; Hudson and McLane ${ }^{6}$ (single crystal), $0.269 \pm 0.003$. The paramagnetic-resonance value is smaller than these values, and the discrepancy is probably due to some anisotropic exchange interaction.

The absolute temperature measurements of Gardner and Kurti are summarized in Table 4b-6.
${ }^{1}$ J. M. Daniels and N. Kurti, Proc. Roy. Soc. (London), ser. A, 221, 243 (1954).
${ }^{2}$ B. Bleaney, Proc. Roy. Soc. London, ser. A., 204, 216 (1950).
${ }^{3}$ B. Bleaney, Proc. Roy. Soc. (London), ser. A., 204, 203 (1950).
${ }^{4}$ D. de Klerk and R. P. Hudson, Phys. Rev. 91, 278 (1953).
${ }^{5}$ W. E. Gardner and N. Kurti, Proc. Roy. Soc. (London), A, 223, 542 (1954).
${ }^{6}$ R. P. Hudson and C. K. McLane, Phys. Rev., 95, 932, (1954).

Table 4b-6. Temperature Data on Chromium Methylammonium Alum (Gardner and Kurti)

| $S / R$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $S / R$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $S / R$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.325 | 0.404 | 0.396 | 1.000 | 0.143 | 0.122 | 0.650 | 0.071 | 0.032 |
| 1.300 | 0.336 | 0.326 | 0.950 | 0.132 | 0.109 | 0.600 | 0.061 | 0.028 |
| 1.250 | 0.266 | 0.254 | 0.900 | 0.121 | 0.096 | 0.550 | 0.053 | 0.023 |
| 1.200 | 0.224 | 0.210 | 0.850 | 0.111 | 0.077 | 0.500 | 0.051 | 0.020 |
| 1.150 | 0.196 | 0.180 | 0.800 | 0.102 | 0.065 | 0.450 | 0.051 | 0.018 |
| 1.100 | 0.175 | 0.157 | 0.750 | 0.092 | 0.048 | 0.400 | 0.052 | 0.016 |
| 1.050 | 0.157 | 0.137 | 0.700 | 0.083 | 0.039 | 0.350 | 0.053 | 0.013 |

The results of Hudson and McLane are summarized in Table 4b-7.
Table 4b-7. Temperature Data on Chromium Methylammonium Alum (Hudson and McLane)

| $H / T$, <br> gauss/deg | $\ln 4-S / R$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $H / T$, <br> gauss/deg | $\ln 4-S / R$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,000 | 0.0180 | 0.724 | 0.719 | 4,000 | 0.1668 | 0.232 | 0.216 |
| 1,250 | 0.0242 | 0.624 | 0.618 | 4,500 | 0.2034 | 0.208 | 0.191 |
| 1,500 | 0.0317 | 0.544 | 0.538 | 5,000 | 0.2422 | 0.189 | 0.170 |
| 1,750 | 0.0404 | 0.482 | 0.474 | 6,000 | 0.3234 | 0.160 | 0.138 |
| 2,000 | 0.0505 | 0.431 | 0.422 | 7,000 | 0.4064 | 0.138 | 0.114 |
| 2,500 | 0.0739 | 0.355 | 0.344 | 8,000 | 0.4885 | 0.120 | 0.0938 |
| 3,000 | 0.1013 | 0.302 | 0.289 | 9,000 | 0.5677 | 0.105 | 0.0763 |
| 3,500 | 0.1325 | 0.262 | 0.248 |  |  |  |  |

4. Copper Potassium Sulfate. $\mathrm{CuSO}_{4} \cdot \mathrm{~K}_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 442; density $=2.22$; For spectroscopic data, see copper sulfate.

Bleaney, Bowers, and Ingram ${ }^{1}$ find that $g_{\|}=2.45, g_{\perp}=2.14$. Benzie and Cooke ${ }^{2}$ obtain $A / R=6.0 \times 10^{-4} \mathrm{deg}^{2}$, in agreement with that found by Garrett ${ }^{3}$ from demagnetization experiments, and a Curie-Weiss $\Delta$ of 0.034 deg. De Klerk ${ }^{4}$ has published demagnetization data for a powder specimen taking a $g$ value of 2 ; he also gives some corresponding values of $T$ and $T^{*}, T$ being measured via a potassium chromic alum thermometer. The Curie-Weiss $\Delta$ was found to be 0.052 deg and $A / R=6.8 \times 10^{-4} \mathrm{deg}^{2}$; the contribution from magnetic interaction was calculated to be $1.35 \times 10^{-4}$.
Further demagnetization experiments by Steenland and others, ${ }^{5}$ in which $g$ was taken to be 2.18, report approximate absolute-temperature measurements in the range 0.0046 to $0.025^{\circ} \mathrm{K}\left[(S / R)_{T_{c}}=0.46, H / T=11.5 \times 10^{3}, T_{c}=0.05^{\circ} \mathrm{K}\right]$. The lowest values have been critieized by Daniels as being incompatible with the entropy and hyperfine structure.

[^162]The contribution of nuclear hyperfine structure to $A / R$ has been found to be $1.3 \times 10^{-4}$ from demagnetization determinations, ${ }^{1} 1.1 \times 10^{-4}$ from relaxation experiments, ${ }^{2}$ and $1.40 \times 10^{-4}$ from the resonance spectrum. ${ }^{3}$

Reekie ${ }^{4}$ obtained a Curie constant of $0.445 \mathrm{emu} / \mathrm{g}$ ion for a powdered sample.
5. Iron Ammonium Alum. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 482.2; density, $1.71 ; \mathrm{Fe}^{3+} 3 \mathrm{~d}^{5} ;{ }^{6} \mathrm{~S}_{\mathbf{5}}$.

The free ion is in an $S$ state and interaction with the crystalline electric field is abnormally small. The 6 -fold degenerate level is split by a cubic field into a doublet and quadruplet. The measurements of Benzie and Cooke, ${ }^{5}$ however, are more consistent with a splitting into three equally spaced doublets (and this has been confirmed by Meier ${ }^{6}$ ); their value for the over-all splitting is $\delta / k=0.23 \mathrm{deg}$ (for the doubletquadruplet pattern they calculate $\delta / k=0.20 \mathrm{deg}) . \quad A / R=0.0143 \mathrm{deg}^{2}$. The $g$ values are all 2 within less than 1 per cent. ${ }^{7}$ Cooke ${ }^{8}$ reports low-temperature $T^{*}-T$ correlation, made by Kurti and Simon, given in graphical presentation; $T_{c}=0.042^{\circ} \mathrm{K}$.

The same data, for the region below $0.2^{\circ} \mathrm{K}$, are summarized in Table 4b-8.

| $T,{ }^{\circ} \mathrm{K}$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $T^{*}$ | $T,{ }^{\circ} \mathrm{K}$ | $T^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.015 | 0.0720 | 0.043 | 0.0850 | 0.090 | 0.1390 |
| 0.020 | 0.0702 | 0.045 | 0.0910 | 0.100 | 0.149 |
| 0.025 | 0.0683 | 0.050 | 0.0970 | 0.120 | 0.168 |
| 0.030 | 0.0670 | 0.055 | 0.1008 | 0.140 | 0.183 |
| 0.035 | 0.0666 | 0.060 | 0.1050 | 0.160 | 0.198 |
| 0.040 | 0.0666 | 0.070 | 0.1150 | 0.180 | 0.214 |
| 0.042 | 0.0668 | 0.080 | 0.1273 | 0.200 | 0.229 |

Steenland ${ }^{9}$ and others obtain $T_{c}=0.030^{\circ} \mathrm{K},(S / R)_{T_{c}}=0.65, H / T=11.5 \times 10^{3}$. De Klerk ${ }^{10}$ finds $A / R=0.0128 \mathrm{deg},{ }^{2} \delta / k=0.183 \mathrm{deg}$, and the data in Table 4b-9.

Table 4b-9. Temperature Data on Iron Ammonium Alum (de Klerk)

| $H$, gauss | $T_{i},{ }^{\circ} \mathrm{K}$ | $T_{f},{ }^{\circ} \mathrm{K}$ | $\ln 6-S / R$ |
| ---: | :---: | :---: | :---: |
|  | 1.164 | 0.76 | 0.0071 |
| 815 | 1.164 | 0.62 | 0.0127 |
| 1,055 | 1.172 | 0.51 | 0.0203 |
| 1,260 | 1.173 | 0.44 | 0.0288 |
| 2,180 | 1.162 | 0.269 | 0.0844 |

${ }^{1}$ C. G. B. Garrett, Proc. Roy. Soc. (London), ser. A., 203, 375 (1950).
${ }^{2}$ R. J. Benzie and A. H. Cooke, Nature 164, 837 (1949).
${ }^{3}$ A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London), ser. A, 206, 164 (1951).
${ }^{4}$ J. Reekie, Proc. Roy. Soc. (London), ser. A, 173, 367 (1939).
${ }^{5}$ R. J. Benzie and A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 63, 213 (1950).
${ }^{6}$ P. H. E. Meier, Physica 17, 899 (1951).
${ }^{7}$ J. Ubbink, J. A. Poulis, and C. J. Gorter, Physica 17, 213 (1951); C. A. Whitmer and R. T. Weidner, Phys. Rev. 84, 159 (1951).
${ }^{8}$ A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 62, 269 (1949).
${ }^{9}$ M. J. Steenland, D. de Klerk, M. L. Potters, and C. J. Gorter, Physica 17, 149 (1951).
${ }^{10}$ D. de Klerk, Thesis, p. 50, Leiden, 1948.
6. Gadolinium Sulfate. $\operatorname{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 373; density, 3.010; $\mathrm{Gd}^{3+} ; 4 f^{7} ;{ }^{8} S_{\frac{3}{2}}$.
Bleaney and others ${ }^{1}$ report paramagnetic resonance experiments on gadolinium ethylsulfate and note that the spectrum is of the same nature in gadolinium sulfate. For the former, $g$ is isotropic and equal to 1.993 .
$A / R$ has been found from paramagnetic-relaxation measurements e.g., 0.28 (de Haas and du $\mathrm{Pre}^{2}$ ), 0.33 ( $\mathrm{Bijl}^{3}$ ) and 0.32 (Benzie and Cooke ${ }^{4}$ ). (By direct calorimetry in the liquid-helium range van Dijk and Auer ${ }^{5}$ obtained 0.32.)

Hebb and Purcell's analysis ${ }^{6}$ shows that the 8 -fold ground level is split by a cubic field into two doublets and a quadruplet. van $\mathrm{Dijk}^{7,8}$ finds that $\delta / k=1.35$ deg gives the best agreement with the published data.

Giauque and MacDougall ${ }^{9}$ used this substance for their first demagnetizations in 1933 , reaching a lowest $T^{*}$ of 0.24 deg . Van $\mathrm{Dijk}^{7}$ measured absolute temperatures calorimetrically down to $T^{*}=0.27 \mathrm{deg}\left(T=0.22^{\circ} \mathrm{K}\right)$.
7. Manganese Ammonium Sulfate. $\mathrm{MnSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 391; density, $1.83 ; \mathrm{Mn}^{++} ; 3 d^{5} ;{ }^{6} \mathrm{~S}_{\mathbf{2}}$.

This is a Tutton salt similar to cobalt ammonium and copper potassium sulfates. The free ion is in an $S$ state and the interaction with the crystalline electric field is very small. Resonance experiments ${ }^{10}$ show that $g=2.000$ and is isotropic to $\sim 1$ in $10^{4}$.

Relaxation measurements show that $A / R=0.033$ (Benzie and Cooke ${ }^{11}$ ) and 0.034 ( $\mathrm{Bij}^{3}$ ).
Demagnetization experiments by Cooke and Hull ${ }^{12}$ give $A / R=0.033, T_{c}=0.14^{\circ} \mathrm{K}$, $(S / R)_{T_{e}}=1.27, H / T=6.2 \times 10^{3}$ gauss $/ \mathrm{deg}$. Steenland and others ${ }^{13}$ made absolutetemperature measurements in the region of and below $T_{c}$, the latter being found to be $0.10^{\circ} \mathrm{K}$.

A surprisingly large hyperfine structure is observed ${ }^{10}$ and has been explained by Abragam and Pryce. ${ }^{14}$ Contributions to $A / R$ are: Stark splitting + hyperfine structure 0.0154 , dipole interaction 0.0092 . This leaves 0.009 , which must be ascribed to exchange.
8. Titanium Cesium Alum. $\mathrm{Ti}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot \mathrm{Cs}_{2} \mathrm{SO}_{4} \cdot 24 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 589; Ti ${ }^{3+} ; 3 d^{1} ;{ }^{2} D_{2}$.

The orbital triplet (with 2-fold spin degeneracy) is split into three Kramers doublets by the action of the trigonal component of the crystal field and spin-orbit coupling. The separations are only a few hundred $\mathrm{cm}^{-1}$. At low temperatures, only one doublet is populated, with effective $S=\frac{1}{2}$. Owing to the nearness of two higher states, the $g$ value departs markedly from 2 and is anisotropic.

Bogle and Cooke (unpublished) found $g_{\|}=1.25, g_{\perp}=1.14$. Benzie and Cooke ${ }^{15}$ find (for a powder): Curie constant, $C=0.118 \mathrm{emu}$ per g ion, $g=1.12$ (and estimate

[^163]$\left.g_{\text {月 }}=1.40, g_{\perp}=0.96\right), A / C=2.7 \times 10^{4}\left( \pm 10\right.$ per cent), and hence $A / R=3.9 \times 10^{-5}$. Dilution experiments showed that nuclear hyperfine structure in the odd isotopes contributes $0.4 \times 10^{-5}$ to $A / R$, and dipole interaction accounts for $0.3 \times 10^{-5}$. The balance ( $3.2 \times 10^{-5}$ ) must be due to exchange.

Adiabatic-demagnetization experiments ${ }^{1}$ showed $(S / R)_{T_{c}}=0.22$ for $H / T=2.6 \times$ $10^{3}$ gauss/deg.
9. Cobalt Ammonium Sulfate. $\mathrm{CoSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 395.2; density, $1.902 ; \mathrm{Co}^{++} ; 3 d^{7} ;{ }^{4} F_{\frac{9}{2}}$.

In a cubic field the 7 -fold orbital state is split into two triplets and a singlet, with one triplet the lowest. This triplet, with its 4 -fold spin degeneracy, is then split into a number of doublets by the combined effect of the spin-orbit coupling and a tetragonal or trigonal field. For the lowest doublet (effective $S=\frac{1}{2}$ ) $g_{\|}=6.45, g_{\perp}=3.05 .{ }^{2}$

There are two ions in unit cell, their tetragonal axes lying in the $K_{1} K_{3}$ plane and inclined at $33^{\circ}$ to the $K_{1}$ axis, on opposite sides of it. Because of the anisotropy, $C$ varies markedly for the $K_{1}, K_{2}$, and $K_{3}$ axes: $C_{1}=3.00, C_{2}=0.873$, and $C_{3}=1.77$ emu per g ion.

Garrett, ${ }^{3}$ taking $g_{\|}=6.2, g_{\perp}=3.0$, obtained $S-T^{*}-T$ data for the $K_{1}, K_{2}$, and $K_{3}$ axes. $A / R=4.30 \times 10^{-3} \mathrm{deg}^{2}$. The critical temperature is found to be $0.084^{\circ} \mathrm{K}$.

Malaker ${ }^{4}$ found $1.61 \times 10^{-3}$ for the nuclear contribution to $A / R$, which is in good agreement with the resonance-experiments value ${ }^{5}$ of $1.66 \times 10^{-3}$. The dipolar contribution is $1.9 \times 10^{-3}$.
10. Copper Sulfate. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$; gram-ionic weight, 249.7; density, 2.279; $\mathrm{Cu}^{++}$; $3 d^{9} ;{ }^{2} D_{\text {孚 }}$.

In a cubic field the orbital levels split into an upper triplet and a lower doublet. In a tetragonal or rhombic field the doublet is further split into two singlets. The latter are still spin-degenerate and, at low temperatures, effectively $S=\frac{1}{2}$. In this salt there is a considerable exchange interaction. The specific heat is rather complicated with a pronounced minimum at $1.37^{\circ} \mathrm{K}$, a small anomaly at $0.75^{\circ} \mathrm{K}$, and a further peak below $0.25^{\circ} \mathrm{K}^{6}$.

There are two ions in unit cell, the angle between their tetragonal axes being approximately 80 deg . Benzie and Cooke ${ }^{7}$ measured the susceptibility along the magnetic axis $\chi_{a}$ and perpendicular to it $\chi_{\theta}$ and found

$$
\begin{array}{ll}
\chi_{a}=\frac{0.407}{T+0.6} & \left(=x_{\perp}\right) \\
\chi_{e}=\frac{0.480}{T+0.6} & \left(=\frac{\chi_{\|}+\chi_{\perp}}{2}\right)
\end{array}
$$

[^164]
# 4c. Critical Constants 

DAVID WHITE
The Ohio State University

Table 4c-1, which is presented in this section, was compiled from the review article by K. A. Kobe and R. E. Lynn, Jr., ${ }^{1}$ where references may be found. Kelvin temperatures can be calculated from the relation

$$
T^{\circ} \mathrm{K}=t^{\circ} \mathrm{C}+273.16
$$

Table 4c-1. Critical Temperáture, Pressure, and Density of Elements and Compounds

|  | $t_{c},{ }^{\circ} \mathrm{C}$ | $P_{c}$, atm | $\rho_{c}, \mathrm{~g} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: | :---: |
| Inorganic: |  |  |  |
| Ammonia | 132.35 | 111.3 | 0.235 |
| Argon. | -122.44 | 48.00 | 0.5308 |
| Boron tribromide. | 300 |  | 0.90 |
| Boron trichloride. | 178.8 | 38.2 |  |
| Boron trifluoride. | -12.3 | 49.2 |  |
| Bromine. | 311 | 102 | 1.18 |
| Carbon dioxide. | 31.04 | 72.85 | 0.468 |
| Carbon disulfide. | 279 | 78 | 0.441 |
| Carbon monoxide | -140.2 | 34.5 | 0.3010 |
| Carbonyl sulfide. | 105 | 61 |  |
| Chlorine. | 144.0 | 76.1 | 0.573 |
| Chlorotrifluorosilane | 34.48 | 34.20 |  |
| Cyanogen. | 127 | 59 |  |
| Deuterium (equilibrium) | -234.90 | 16.28 | 0.0668 |
| Deuterium (normal). | -234.81 | 16.43 |  |
| Dichlorodifluorosilane | 95.77 | 35.54 |  |
| Germanium tetrachloride. | 276.9 | 38 |  |
| Helium ${ }^{3}$. | -269.82 | 1.15 |  |
| Helium ${ }^{4}$. | -267.95 | 2.26 | 0.0693 |
| Hydrazone. | 380 | 145 |  |
| Hydrogen (equilibrium) | -240.22 | 12.77 | 0.0308 |
| Hydrogen (normal). | -239.92 | 12.80 | 0.03102 |
| Hydrogen bromide. | 89.80 | 84.00 |  |
| Hydrogen chloride. | 51.4 | 81.5 | 0.423 |
| Hydrogen cyanide. | 183.5 | 53.2 | 0.195 |

[^165]${ }^{1}$ Chem. Rev. 52: 117-236 (1953).

Table 4c-1. Critical Temperature, Pressure, and Density of Elements and Compounds (Continued)

|  | $t_{c},{ }^{\circ} \mathrm{C}$ | $P_{c}$, atm | $\rho_{c}, \mathrm{~g} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: | :---: |
| Hydrogen deuteride | -237.25 | 14.65 | 0.0481 |
| Hydrogen fluoride. | 230.2 |  |  |
| Hydrogen iodide. | 150.0 | 80.8 |  |
| Hydrogen selenide. | 138 | 88 |  |
| Hydrogen sulfide. | 100.4 | 88.9 | 0.3488 |
| Iodine. | 553 |  |  |
| Krypton. | -63.77 | 54.27 | 0.9085 |
| Neon. | -228.72 | 26.86 | 0.4835 |
| Nitric acid. | -92.9 | 64.6 | 0.52 |
| Nitrogen. | -146.9 | 33.54 | 0.3110 |
| Nitrogen peroxide | 158 | 100 | 0.56 |
| Nitrous oxide | 36.5 | 71.65 | 0.459 |
| Oxygen. | -118.38 | 50.14 | 0.41 |
| Oxygen fluoride*. | -58.0 | 48.9 | 0.553 |
| Ozone†. | 12.1 | 54.6 |  |
| Phosgene. | 182 | 56 | 0.52 |
| Phosphine. | 51.3 | 64.5 |  |
| Phosphonium chloride | 49.1 | 72.7 |  |
| Silane. | -3.5 | 47.8 |  |
| Silicon tetrachloride. | 233.6 |  |  |
| Silicon tetrafluoride. | -14.15 | 36.66 |  |
| Stannic chloride | 318.7 | 36.95 | 0.7419 |
| Sulfur | 1040 | 116 |  |
| Sulfur dioxide. | 157.5 | 77.79 | 0.524 |
| Sulfur hexafluoride. | 45.55 | 37.11 | 0.7517 |
| Sulfur trioxide. | 218.2 | 83.8 | 0.633 |
| Trichlorofluorosilane. | 165.26 | 35.33 |  |
| Uranium hexafluoride | 230.2 | 45.5 |  |
| Water. | 374.2 | 218.3 | 0.326 |
| Xenon | 16.590 | 58.0 | 1.105 |
| Organic: |  |  |  |
| Acetic acid. | 321.6 | 57.1 | 0.351 |
| Acetic anhydride. | 296 | 46.2 |  |
| Acetone. | 235.5 | 46.6 | 0.273 |
| Acetylene. | 36.3 | 61.6 | 0.231 |
| Benzene. | 289.5 | 48.6 | 0.300 |
| Bromobenzene | 397.7 | 44.6 | 0.458 |
| $n$-Butane. | 152.01 | 37.47 | 0.228 |
| 1-Butene. | 146.4 | 39.7 | 0.234 |
| Carbon tetrachloride. | 283.2 | 44.97 | 0.558 |
| Chlorobenzene. | 359.2 | 44.6 | 0.365 |
| Chlorodifluoromethane. | 96.4 | 48.48 | 0.525 |
| Chloroform. | 263.4 | 54 | 0.496 |
| Chlorotrifluoromethane. | 28.86 | 38.2 | 0.578 |
| Cyclohexane. | 281.0 | 40.57 | 0.273 |
| Cyclopentane. . | 238.6 | 44.55 | 0.27 |

[^166]Table 4c-1. Critical Temperature, Pressure, and Density of Elements and Compounds (Concluded)

|  | $t_{c},{ }^{\circ} \mathrm{C}$ | $P_{c}$, atm | $\rho_{c}, \mathbf{g} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: | :---: |
| Dibromomethane. | 309.8 | 70.6 |  |
| Dichlorodifluoromethane | 111.5 | 39.6 | 0.555 |
| Dichlorofluoromethane. | 178.5 | 51.0 | 0.522 |
| Diethyl ether. | 194.6 | 35.6 | 0.265 |
| Dimethyl amine | 164.5 | 52.4 |  |
| Dimethyl ether | 126.9 | 52.6 | 0.246 |
| Ethane. | 32.27 | 48.20 | 0.203 |
| Ethyl alcohol | 243 | 63.0 | 0.276 |
| Ethyl amine. | 183.2 | 55.54 |  |
| Ethyl bromide | 230.7 | 61.5 | 0.507 |
| Ethyl chloride. | 187.2 | 51.72 |  |
| Ethyl fluoride. | 102.16 | 46.62 |  |
| Ethyl formate. | 235.3 | 46.8 | 0.323 |
| Ethyl sulfide. | 225.5 | 54.2 | 0.300 |
| Ethylene.. | 9.90 | 50.50 | 0.227 |
| Ethylene oxide. | 195.8 | 70.97 | 0.32 |
| Fluorobenzene. | 286.55 | 44.6 | 0.354 |
| $n$-Hexane. | 234.7 | 29.94 | 0.234 |
| Iodobenzene | 448 | 44.6 | 0.581 |
| Methane. | -82.1 | 45.80 | 0.162 |
| Methyl alcohol | 240.0 | 78.47 | 0.272 |
| Methyl amine. | 156.9 | 73.6 |  |
| Methyl bromide. | 191 |  |  |
| Methyl chloride. | 143.12 | 65.93 | 0.353 |
| Methyl fluoride. | 44.55 | 58.0 | 0.300 |
| Methyl formate | 214.0 | 59.2 | 0:349 |
| Methyl iodide. | 255 |  |  |
| Methyl sulfide. | 229.9 | 54.6 | 0.309 |
| Methylene chloride. | 237.0 | 59.97 |  |
| Nitromethane. | 62.3 |  | 0.352 |
| $n$-Pentane. | 196.62 | 33.31 | 0.232 |
| Phenol. | 419.2 | 60.5 |  |
| Propane. | 96.80 | 42.01 | 0.220 |
| Propene. | 91.8 | 45.6 | 0.233 |
| $n$-Propyl alcohol | 264.1 | 50.2 | 0.273 |
| Propyne. | 128 | 52.8 |  |
| Toluene. | 320.8 | 41.6 | 0.29 |
| Trichlorofluoromethane. | 198.0 | 43.2 | 0.554 |

[^167]
# 4d. High-pressure Effects 

P. W. BRIDGMAN<br>Harvard University

Critical phenomena and data for gases are not treated here but will be found in other sections. The literature dealing with the effects of pressure on liquids and solids is very extensive, and only a typical selection can be attempted. The data presented here have been selected to cover as wide a range as possible, both of pressure and of the nature of the material. Referenoes to the general subject are:

Bridgman, P. W.: "The Physics of High Pressure," George Bell \& Sons, Ltd.; London, 1949.

Bridgman, P. W.: Recent Work in the Field of High Pressures, Rev. Modern Phys. 18, 1-93 (1946).
Timmermans, J.: "Les Constantes physiques des composés organiques cristallises," Masson et Cie, Paris, 1953.

In the following, single phases are treated first, and then systems of two phases. The data for single-phase systems consist mostly of volume as a function of pressure, at several temperatures when the data have been determined, but in a number of cases at only a single temperature. From these data, compressibilities may be found and also thermal expansions if the volumes are known for more than one temperature. Other thermodynamic parameters, such as specific heats, have been directly determined as a function of pressure in very few cases and have to be inferred from the volume relations by indirect methods. No attempt is made here to give any of these values.
For the two-phase systems, the melting curves are given first, including, when known, the other parameters necessary to completely characterize the melting thermodynamically; these are change of volume and latent heat. Finally, the transition parameters for a few systems exhibiting polymorphism under pressure are given. The phase diagrams of these substances are also given for greater clarity. In most cases the various transition lines are sufficiently characterized by the parameters at the triple points, which are indicated in the tables.

Table 4d-1. Specific Volume of Water* ( $\mathrm{In} \mathrm{cm}{ }^{3} / \mathrm{g}$; in the range 200 to $1000^{\circ} \mathrm{C}$ and 100 to 2,500 bars)

| $\underset{{ }^{\circ} \mathrm{C}}{\text { Temp., }}$ | Pressure, bars |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 100 | 200 | 500 | 1,000 | 1,500 | 2,000 | 2,500 |
| 200 | 1.14830 | 1.13899 | 1.1145 | 1.0811 | 1.0533 | 1.0258 | 1.0027 |
| 300 | 1.39704 | 1.35992 | 1.2869 | 1.2131 | 1.1639 | 1.1257 | 1.0946 |
| 400 | 26.31 | 9.96 | 1.745 | 1.4443 | 1.3284 | 1.2591 | 1.2092 |
| 500 | 32.35 | 14.77 | 3.890 | 1.8794 | 1.5653 | 1.4402 | 1.3566 |
| 600 | 37.78 | 18.11 | 6.114 | 2.6802 | 1.9496 | 1.6630 | 1.5252 |
| 700 | 42.517 | 20.973 | 7.7651 | 3.5829 | 2.449 | 1.980 | 1.7346 |
| 800 | 46.082 | 23.391 | 9.0925 | 4.4338 | 2.994 | 2.350 | 2.000 |
| 900 | 49.54 | 25.74 | 10.28 | 5.208 | 3.531 | 2.738 | 2.296 |
| 1000 | 52.90 | 27.84 | 11.30 | 5.900 | 4,035 | 3.123 | 2.589 |

* G. C. Kennedy, Am. J. Sci. 848, 540 (1950).

Table 4d-2. Specifte Volume of Water* ( $\mathrm{In} \mathrm{cm}{ }^{3} / \mathrm{g}$; between 0 and $95^{\circ} \mathrm{C}$ and up to $11,000 \mathrm{~kg} / \mathrm{cm}^{2}$ )

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Temp., ${ }^{\circ} \mathrm{C}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 0 | 50 | 95 |
| 1 | 1.0001 | 1.0121 | 1.0396 |
| 500 | 0.9772 |  |  |
| 1,000 | 0.9568 | 0.9742 | 0.9985 |
| 1,500 | 0.9397 | 0.9583 | 0.9813 |
| 2,000 | 0.9249 | 0.9440 | 0.9662 |
| 3,000 | 0.8997 | 0.9202 | 0.9410 |
| 4,000 | 0.8796 | 0.8998 | 0.9195 |
| 5,000 | 0.8627 | 0.8825 | 0.9010 |
| 6,000 |  | 0.8669 | 0.8850 |
| 7,000 |  | 0.8531 | 0.8706 |
| 8,000 |  | 0.8408 | 0.8578 |
| 9,000 |  | 0.8297 | 0.8462 |
| 10,000 |  | 0.8193 | 0.8353 |
| 11,000 |  |  | 0.8257 |

[^168]Table 4d-3. Relative Volumes of Mercury, Ethyl Alcohol, and Ethyl Ether at Several Temperatures*
(To $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$. Relative volumes in terms of volume at $0^{\circ} \mathrm{C}$ and atmospheric pressure)

| Pressure $\mathrm{kg} / \mathrm{cm}^{2}$ | Mercury |  | Ethyl alcohol |  |  | Ethyl ether |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} \mathrm{C}$ | $22^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ |
| 1 | 1.00000 | 1.00398 | 1.0212 | 1.0557 | 1.0934 | 1.0315 |  |  |
| 500 |  |  | 0.9794 | 1.0044 | 1.0334 | 0.9681 | 1.0011 | 1.0387 |
| 1,000 | 0.99626 | 1.00007 | 0.9506 | 0.9707 | 0.9944 | 0.9363 | 0.9616 | 0.9906 |
| 1,500 |  |  | 0.9267 | 0.9440 | 0.9640 | 0.9093 | 0.9291 | 0.9516 |
| 2,000 | 0.99261 | 0.99627 | 0.9081 | 0.9235 | 0.9407 | 0.8871 | 0.9038 | 0.9223 |
| 3,000 | 0.98905 | 0.99264 | 0.8786 | 0.8919 | 0.9055 | 0.8530 | 0.8670 | 0.8812 |
| 4,000 | 0.98561 | 0.98909 | 0.8545 | 0.8668 | 0.8787 | 0.8275 | 0.8400 | 0.8552 |
| 5,000 | 0.98231 | 0.98571 | 0.8343 | 0.8461 | 0.8568 | 0.8071 | 0.8186 | 0.8284 |
| 6,000 | 0.97914 | 0.98246 | 0.8178 | 0.8291 | 0.8387 | 0.7916 | 0.8023 | 0.8112 |
| 7,000 | 0.97607 | 0.97934 | 0.8038 | 0.8142 | 0.8229 | 0.7773 | 0.7869 | 0.7953 |
| 8,000 |  | 0.97637 | 0.7917 | 0.8013 | 0.8094 | 0.7645 | 0.7732 | 0.7813 |
| 9,000 |  | 0.97356 | 0.7807 | 0.7893 | 0.7973 | 0.7525 | 0.7606 | 0.7687 |
| 10,000 |  | 0.97088 | 0.7703 | 0.7785 | 0.7863 | 0.7418 | 0.7496 | 0.7574 |
| 11,000 |  | 0.96835 | 0.7606 | 0.7693 | 0.7765 | 0.7312 | 0.7388 | 0.7469 |
| 12,000 |  | 0.96596 | 0.7521 | 0.7600 | 0.7682 | 0.7216 | 0.7289 | 0.7365 |

* P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 347 (1911) (mercury); 49, 1 (1913) (ethyl alcohol, ethyl ether).

Table 4d-4. Relative Volumes of $\mathrm{CS}_{2}$ and $n$-Pentane at Several Temperatures*
(To $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$. Relative volumes in terms of volume at $0^{\circ} \mathrm{C}$ and atmospheric pressure)

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | $\mathrm{CS}_{2}$ |  |  | $n$-Pentane |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $20^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ |
| 1 | 1.0235 | 1.0630 | 1.1092 | 1.0000 | (1.0837) | (1.1869) |
| 500 | 0.9865 | 1.0158 | 1.0473 |  |  |  |
| 1,000 | 0.9586 | 0.9829 | 1.0083 | 0.9021 | 0.9395 | 0.9768 |
| 1,500 | 0.9358 | 0.9571 | 0.9787 |  |  |  |
| 2,000 | 0.9173 | 0.9362 | 0.9552 | 0.8546 | 0.8820 | 0.9078 |
| 3,000 | 0.8877 | 0.9033 | 0.9185 | 0.8229 | 0.8454 | 0.8671 |
| 4,000 | 0.8647 | 0.8770 | 0.8902 | 0.7997 | 0.8193 | 0.8371 |
| 5,000 | 0.8453 | 0.8570 | 0.8676 | 0.7811 | 0.7985 | 0.8125 |
| 6,000 | 0.8295 | 0.8406 | 0.8501 | 0.7647 | 0.7807 | 0.7933 |
| 7,000 | 0.8147 | 0.8257 | 0.8347 | 0.7506 | 0.7657 | 0.7775 |
| 8,000 | 0.8022 | 0.8131 | 0.8220 | 0.7381 | 0.7520 | 0.7641 |
| 9,000 | 0.7911 | 0.8020 | 0.8107 | 0.7281 | 0.7409 | 0.7527 |
| 10,000 | 0.7805 | 0.7910 | 0.7997 | 0.7192 | 0.7316 | 0.7433 |
| 11,000 | 0.7715 | 0.7809 | 0.7894 |  |  |  |
| 12,000 | 0.7638 | 0.7710 | 0.7795 |  |  |  |

[^169]Table 4d-5. Relative Volumes of $n$-Octane, Benzene, and Glycerine at Several Temperatures*
(To $12,000 \mathrm{~kg} / \mathrm{cm}^{2}$. Relative volumes in terms of volume at $0^{\circ} \mathrm{C}$ and atmospheric pressure)

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | $n$-Octane |  |  | Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ |  | Glycerine |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ | $0^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $95^{\circ} \mathrm{C}$ |
| 1 | 1.0000 | 1.0595 | 1.1230 | 1.0630 | 1.1295 | 1.0000 | 1.0266 |  |
| 500 | 0.9572 | 1.0005 |  | 1.0160 |  | 0.9900 | 1.0136 |  |
| 1,000 | 0.9311 | 0.9654 | 0.9943 | 0.9841 | 1.0201 | 0.9806 | 1.0025 | 1.0240 |
| 1,500 |  |  |  | 0.9591 | 0.9916 | 0.9721 | 0.9930 | 1.0125 |
| 2,000 | 0.8924 | 0.9200 | 0.9422 |  | 0.9684 | 0.9641 | 0.9843 | 1.0024 |
| 3,000 | 0.8640 | 0.8882 | 0.9068 |  | 0.9325 | 0.9501 | 0.9688 | 0.9853 |
| 4,000 |  | 0.8639 | 0.8802 |  |  | 0.9373 | 0.9548 | 0.9700 |
| 5,000 |  | 0.8428 | 0.8592 |  |  | 0.9264 | 0.9423 | 0.9565 |
| 6,000 |  | 0.8251 | 0.8416 |  |  | 0.9157 | 0.9310 | 0.9447 |
| 7,000 |  | 0.8103 | 0.8267 |  |  | 0.9057 | 0.9211 | 0.9342 |
| 8,000 |  |  | 0.8134 |  |  | 0.8958 | 0.9121 | 0.9244 |
| 9,000 |  |  | 0.8014 |  |  | 0.8867 | 0.9036 | 0.9152 |
| 10,000 |  |  | 0.7915 |  |  | 0.8783 | 0.8955 | 0.9070 |
| 11,000 |  |  |  |  |  | 0.8712 | 0.8879 | 0.8994 |
| 12,000 |  |  |  |  |  | 0.8648 | 0.8800 | 0.8925 |

* P. W. Bridgman, Proc. Am. Acad. Arts Sci. 66, 185 (1931) ( $n$-octane benzene); 67, 1 (1932) (glycerine).

| Table 4d-6. Volume of Solid Helium at |  |  |
| :---: | :---: | :---: |
| 4ressure, <br> $\mathrm{kg} / \mathrm{cm}^{2}$ | Volume, <br> $\mathrm{ml} / \mathrm{mole}$ | Compressibility <br> $(1 / v)(\partial v / \partial p)_{\tau}$ |
| 52 | 19.0 | $184 \times 10^{-5}$ |
| 91 | 18.0 | 135 |
| 141 | 17.0 | 100 |
| 207 | 16.0 | 73 |
| 305 | 15.0 | 52 |
| 475 | 14.0 | 37 |
| 718 | 13.0 | 25 |
| 1,105 | 12.0 | 16 |
| 1,715 | 11.0 | 12 |
| 2,240 | 10.5 | 10 |

* J. S. Dugdale and F. E. Simon, Proc. Roy. Soc. (London) 218, 291 (1953).

Table 4d-7. Fractional Change of Volume at $25^{\circ} \mathrm{C}$ of Relatively Incompressible Metals*

| Pressure, <br> $\mathrm{kg} / \mathrm{cm}^{2}$ | $\Delta V / V_{0}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | W | Pt | Fe | Cu | Ag | Au | Al |
| 5,000 | 0.00155 | 0.00176 | 0.00289 | 0.00353 | 0.00473 | 0.00281 | 0.00668 |
| 10,000 | 0.00309 | 0.00351 | 0.00575 | 0.00696 | 0.00938 | 0.00558 | 0.01312 |
| 15,000 | 0.00475 | 0.00526 | 0.00856 | 0.01039 | 0.01385 | 0.00831 | 0.01932 |
| 20,000 | 0.00634 | 0.00701 | 0.01133 | 0.01370 | 0.01820 | 0.01101 | 0.02520 |
| 25,000 | 0.00797 | 0.00877 | 0.01407 | 0.01695 | 0.02236 | 0.01367 | 0.03090 |
| 30,000 | 0.00959 | 0.01048 | 0.01676 | 0.02010 | 0.02619 | 0.01626 | 0.03642 |

[^170]Table 4d-8. Relative Volumes of Various Solids at $25^{\circ} \mathrm{C}$ *

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Lucite | Cellulose acetate | Bakelite |  |  | $\begin{gathered} \text { Nyl } \\ 6-1 \end{gathered}$ | Teflon | Orthoclase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 1.0000 | 1.0000 | 1.00 |  | 1.00 | 1.0000 | 1.0000 |
| 2,500 | 0.9633 | 0.9532 | 0.9760 | 0.96 |  | 0.96 | 0.9473 |  |
| 5,000 | 0.9329 | 0.9216 | 0.9562 | 0.93 |  | 0.93 | 0.9153 |  |
| 10,000 | 0.8903 | 0.8811 | 0.9240 | 0.89 |  | 0.89 | 0.8547 | 0.9829 |
| 15,000 | 0.8613 | 0.8514 | 0.8978 | 0.86 |  | 0.86 | 0.8306 |  |
| 20,000 | 0.8329 | 0.8283 | 0.8765 | 0.8 |  | 0.84 | 0.8125 | 0.9667 |
| 30,000 | 0.8051 | 0.7935 | 0.8436 | 0.80 |  | 0.81 | 0.7857 | 0.9512 |
| 40,000 | 0.7816 | 0.7682 | 0.8188 | 0.78 |  | 0.78 | 0.7661 | 0.9366 |
| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Calcite | Garnet | Iodoform |  | Urea nitrate |  | Potassium phosphate | Potassium alum |
| 1 | 1.0000 | 1.0000 | 1.0000 |  | 1.0000 |  | 1.0000 | 1.0000 |
| 5,000 |  |  | 0.9451 |  | 0.9628 |  | 0.9821 | 0.9718 |
| 10,000 | 0.9866 | 0.9929 | 0.9079 |  | 0.9358 |  | 0.9665 | 0.9486 |
| 15,000 | tr. |  | 0.8806 |  | 0.9145 |  | 0.9526 | 0.9296 |
| 20,000 | 0.9275 | 0.9862 | 0.8586 |  |  | 8966 | 0.9401 | 0.9131 |
| 30,000 | 0.9113 | 0.9800 | 0.8241 |  |  | 8669 | 0.9183 | 0.8843 |
| 40,000 | 0.8981 | 0.9743 | 0.7966 |  |  | 8431 | 0.9004 | 0.8607 |

[^171]Table 4d-9. Relative Volumes of Some of the More Compressible Elements, Salts, and Other Solids at $25^{\circ}{ }^{\circ}$ *

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Li | Na | K | Rb | Cs | Ca | Sr | Ba | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 10,000 | 0.928 | 0.889 | 0.814 | 0.802 | 0.761 | 0.942 | 0.925 | $0.914{ }_{\text {tr }}$ |  |
| 20,000 | 0.874 | 0.816 | 0.723 | 0.708 | $0.656_{\text {tr }}$ | 0.897 | $0.878_{\text {tr }}$ | $0.841_{\text {tr }}^{\text {tr }}$ |  |
| 30,000 | 0.833 | 0.770 | 0.668 | 0.652 | $0.571^{\text {tr }}$ | 0.861 | $0.828^{\text {tr }}$ | $0.789^{\text {tr }}$ | 0.940 |
| 40,000 | 0.801 | 0.737 | 0.628 | 0.612 | $0.521{ }_{\text {tr }}$ | 0.832 | 0.791 | 0.747 | 0.929 |
| 50,000. | 0.773 | 0.708 | 0.595 | 0.578 | $0.431^{\text {tr }}$ | 0.805 | 0.761 | $0.712^{\text {tr }}$ | 0.919 |
| 60,000 | 0.748 | 0.683 | 0.568 | 0.551 | 0.409 | 0.780 tr | $0.734_{\text {tr }}$ | $0.682^{\text {tr }}$ | 0.911 |
| 70,000 | 0.727 | 0.661 | 0.546 | 0.528 | 0.392 | $0.748^{\text {tr }}$ | $0.702^{\text {tr }}$ | 0.639 | 0.903 |
| 80,000 | 0.707 | 0.641 | 0.528 | 0.507 | 0.381 | 0.732 | 0.683 | 0.618 | 0.896 |
| 90,000 | 0.689 | 0.623 | 0.513 | 0.489 | 0.375 | 0.716 | 0.665 | 0.598 | 0.890 |
| 100,000 | 0.672 | 0.606 | 0.500 | 0.473 | 0.368 | 0.702 | 0.648 | 0.580 | 0.885 |

* P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 55, 71 (1948); 74, 425 (1942).

Table 4d-10. Relative Volumes of Solids at $25^{\circ}{ }^{\circ}$ *

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Mg | Sn | Pb | Bi | S | NaCl | NaI | . CsCl | CsI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 1.000 | 1.000 | 1. 000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 10,000 |  | 0.982 | 0.978 | 0.972 | 0.917 | 0.962 | 0.944 | 0.952 | 0.935 |
| 20,000 |  | 0.966 | 0.959 | 0.948 tr | 0.869 | 0.932 | 0.902 | 0.914 | 0.887 |
| 30,000 | 0.935 | 0.951 | 0.941 | $0.842^{\text {tr }}$ | 0.837 | 0.907 | 0.868 | 0.882 | 0.849 |
| 40,000 | 0.919 | 0.936 | 0.925 | $0.826_{\text {tr }}$ | 0.812 | 0.885 | 0.840 | 0.856 | 0.818 |
| 50,000 | 0.904 | 0.923 | 0.901 | $0.808^{\text {tr }}$ | 0.792 | 0.865 | 0.816 | 0.834 | 0.792 |
| 60,000 | 0.890 | 0.909 | 0.898 | 0.795 | 0.775 | 0.848 | 0.795 | 0.816 | 0.770 |
| 70,000 | 0.878 | 0.897 | 0.885 | 0.778 | 0.760 | 0.832 | 0.777 | 0.801 | 0.751 |
| 80,000 | 0.866 | 0.886 | 0.874 | 0.768 | 0.747 | 0.817 | 0.761 | 0.788 | 0.734 |
| 90,000 | 0.856 | 0.875 | 0.864 | $0.760{ }_{\text {tr }}$ | 0.736 | 0.803 | 0.747 | 0.777 | 0.719 |
| 100,000 | 0.847 | 0.864 | 0.855 | $0.739^{\text {tr }}$ | 0.72 | 0.790 | 0.734 | 0.767 | 0.706 |
| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | NaN |  | PbS | PbTe |  | Quartz crystal |  |  | Pyrex glass |
| 1 | 1.000 |  | 1.000 | 1.000 |  | 1.000 | 1. |  | 1.000 |
| 10,000 | 0.966 |  | 0.980 | 0.978 |  | 0.976 | 0.9 |  | 0.969 |
| 20,000 | 0.938 |  | $0.962_{\text {tr }}$ | 0.961 |  | 0.955 | 0.9 |  | 0.938 |
| 30,000 | 0.914 |  | $0.928^{\text {tr }}$ | 0.939 |  | 0.939 | 0.9 |  | 0.907 |
| 40,000 | 0.893 |  | 0.918 | 0.930 |  | 0.926 | 0.8 |  | 0.885 |
| 50,000 | 0.873 |  | 0.909 | 0.884 |  | 0.914 | 0.8 |  | 0.867 |
| 60,000 | 0.846 |  | 0.900 | 0.869 |  | 0.902 | 0.8 |  | 0.851 |
| 70,000 | 0.833 |  | 0.892 | 0.855 |  | 0.892 | 0.8 |  | 0.838 |
| 80,000 | 0.820 |  | 0.886 | 0.842 |  | 0.883 | 0.8 |  | 0.827 |
| 90,000 | 0.809 |  | 0.881 | 0.831 |  | 0.875 | 0.8 |  | 0.817 |
| 100,000 | 0.799 |  | 0.876 | 0.820 |  | 0.868 | 0.7 |  | 0.809 |

*P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 55. 71 (1948); 74, 425 (1942).

Table 4d-11. Melting of Hydrogen and helium*:

| $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | Hydrogen pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Helium |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Entropies, cal/mole deg |  | Volumes, $\mathrm{ml} / \mathrm{mole}$ |  |
|  |  |  | Solid | Fluid | Solid | Fluid |
| 5 |  | 196 | 0.23 | 1.70 | 16.21 | 17.14 |
| 10 |  | 595 | 0.48 | 2.00 | 13.45 | 14.13 |
| 15 | 4 | 1,150 | 0.66 | 2.26 | 12.08 | 12.65 |
| 20 | 213 | 1,800 | 0.86 | 2.54 | 11.10 | 11.61 |
| 25 | 438 | 2,540 | 1.04 | 2.82 | 10.25 | 10.72 |
| 30 | 706 | 3,350 |  |  |  |  |
| 40 | 1,370 | 5,260 |  |  |  |  |
| 55 | 2,200 |  |  |  |  |  |
| 60 | 3,180 |  |  |  |  |  |
| 70 | 4,330 |  |  |  |  |  |
| 80 | 5,630 |  |  |  |  |  |

* F. Simon, Z. Elektrochem. 35, 618 (1929); F. Simon, M. Ruhemann, and W. A. M. Edwards, Z. physik. Chem. 5, 331 (1930); J. S. Dugdale and F. E. Simon, Proc. Roy. Soc. (London) 218, 291 (1953).

Table 4d-12. Melting Parameters of Nitrogen and Argon*

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Nitrogen |  |  | Argon |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Temp., ${ }^{\circ} \mathrm{K}$ | $\begin{gathered} \Delta V, \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | $\underset{{ }^{\circ} \mathrm{K}}{\mathrm{Temp}},$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ |
| 1 | 63.1 | (0.072) | (218) | 83.9 | 0.0795 | 280 |
| 1,000 | 82.3 | 0.058 | 271 | 106.3 | 0.0555 | 280 |
| 2,000 | 98.6 | 0.047 | 302 | 126.4 | 0.0425 | 279 |
| 3,000 | 113.0 | 0.040 | 334 | 144.9 | 0.0340 | 277 |
| 4,000 | 125.8 | 0.033 | 335 | 162.0 | 0.0280 | 275 |
| 5,000 | 137.8 | 0.029 | 342 | 178.0 | 0.0240 | 276 |
| 6,000 | 149.2 | 0.026 | 346 | 193.1 | 0.0210 | 277 |

[^172]HIGH PRESSURE EFFECTS
Table 4d-13. Melting Parameters of Various Substances*

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Mercury |  |  | Carbon dioxide |  |  | Sodium |  |  | Potassium |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Temp., ${ }^{\circ} \mathrm{C}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\underset{\substack{\Delta V \\ \mathrm{~cm}^{3} / \mathrm{g}}}{\mathrm{c}}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | $\underset{{ }^{\circ} \mathrm{C}}{\mathrm{Temp} .,}$ | $\begin{gathered} \Delta V, \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ |
| 1 | -38.9 | 0.00253 | 118 | $-56.6$ |  |  | 97.6 | 0.0279 | 1,180 | 62.5 | 0.0268 | 551 |
| 1,000 | -33.8 | 0.00253 | 119 | -37.3 | .... |  | 105.9 | 0.0256 | 1,174 | 78.7 | 0.0237 | 581 |
| 2,000 | -28.6 | 0.00253 | 122 | -20.5 |  |  | 113.9 | 0.0236 | 1,171 | 92.4 | 0.0211 | 602 |
| 3,000 | -23.5 | 0.00252 | 124 | $-5.5$ | 0.1071 | 1,668 | 121.5 | 0.0220 | 1,168 | 104.7 | 0.0188 | 615 |
| 4,000 | -18.4 | 0.00251 | 126 | $+8.5$ | 0.0979 | 1,688 | 128.8 | 0.0207 | 1,169 | 115.8 | 0.0168 | 622 |
| 5,000 | -13.4 | 0.00250 | 128 | 21.4 | 0.0896 | 1,689 | 135.8 | 0.0197 | 1,176 | 126.0 | 0.0150 | 621 |
| 6,000 | $-8.3$ | 0.00249 | 130 | 33.1 | 0.0822 | 1,679 | 142.5 | 0.0187 | 1,189 | 135.4 | 0.0135 | 612 |
| 7,000 | - 3.2 | 0.00247 | 132 | 44.2 | 0.0755 | 1,655 | 148.9 | 0.0179 | 1,207 | 144.1 | 0.0121 | 600 |
| 8,000 | + 1.8 | 0.00245 | 133 | 55.2 | 0.0697 | 1,630 | 155.1 | 0.0171 | 1,221 | 152.5 | 0.0107 | 585 |
| 9,000 | 6.9 | 0.00241 | 134 | 65.8 | 0.0644 | 1,610 | 161.0 | 0.0163 | 1,227 | 160.1 | 0.0095 | 567 |
| 10,000 | 11.9 | 0.00238 | 135 | 75.4 | 0.0602 | 1,603 | 166.7 | 0.0156 | 1,226 | 167.0 | 0.0084 | 543 |
| 11,000 | 16.9 | 0.00234 | 135 | 84.6 | 0.0564 | 1,604 | 172.2 | 0.0148 | 1,218 | 173.6 | 0.0074 | 516 |
| 12,000 | 22.0 | 0.00229 | 135 | 93.5 | 0.0531 | 1,612 | 177.5 | 0.0140 | 1,207 | 179.6 | 0.0064 | 483 |
| 23,000 | 75.3 |  |  |  |  |  |  |  |  |  |  |  |

[^173]HEAT
Table 4d-13. Melting Parameters of Various Substances* (Continued)

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Carbon tetrachloride |  |  | Benzene |  |  | Phosphorus |  |  | Bismuth |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Temp., ${ }^{\circ} \mathrm{C}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \text {. } \end{gathered}$ | $\begin{gathered} \Delta V, \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} . \end{gathered}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ |
| 1 | $-22.6$ | 0.0258 | 167 | 5.4 | 0.1317 | 1,288 | 44.2 | 0.0193 | 209 | 271.0 | 0.00345 | 549 |
| 1,000 | +14.2 | 0.0201 | 150 | 32.5 | 0.1026 | 1,294 | 72.7 | 0.0179 | 227 | 267.5 | 0.00354 | 536 |
| 2,000 | 45.9 | 0.0165 | 141 | 56.5 | 0.0872 | 1,306 | 99.3 | 0.0167 | 241 | 263.8 | 0.00362 | 524 |
| 3,000 | 75.8 | 0.0140 | 134 | 77.7 | 0.0759 | 1,324 | 124.4 | 0.0155 | 252 | 260.0 | 0.00370 | 511 |
| 4,000 | 102.7 | 0.0120 | 127 | 96.6 | 0.0675 | 1,347 | 148.2 | 0.0144 | 263 | 256.0 | 0.00378 | 498 |
| 5,000 | 126.8 | 0.0102 | 120 | 114.6 | 0.0614 | 1,370 | 170.5 | 0.0133 | 272 | 251.9 | 0.00386 | 485 |
| 6,000 | 149.5 | 0.0086 | 113 | 131.2 | 0.0564 | 1,390 | 191.9 | 0.0122 | 278 | 247.6 | 0.00394 | 472 |
| 7,000 | 171.0 | 0.0073 | 104 | 147.2 | 0.0522 | 1,405 |  | . ..... | ... | 243.2 | 0.00401 | 459 |
| 8,000 | 192.1 | 0.0062 | 95 | 162.2 | 0.0485 | 1,415 | $\ldots$ | .... | $\ldots$ | 238.6 | 0.00407 | 444 |
| 9,000 | 211.9 | 0.0054 | 88 | 176.7 | 0.0451 | 1,420 |  |  | $\ldots$ | 233.8 | 0.00413 | 430 |
| 10,000 |  |  | $\ldots$ | 190.7 | 0.0422 | 1,421 |  | ..... | $\ldots$ | 228.8 | 0.00419 | 416 |
| 11,000 |  |  | $\ldots$ | 204.2 | 0.0394 | 1,420 | $\ldots$ |  | $\ldots$ | 223.6 | 0.00424 | 401 |
| 12,000 |  |  |  |  |  |  |  |  |  | 218.3 | 0.00429 | 388 |

See page 4-33 for footnotes.

HIGH PRESSURE EFFECTS
Table 4d-13. Melting Parameters of Various Substances* (Continued)

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Ethyl alcohol |  |  | $n$-Butyl alcohol |  |  | Chloroform |  |  | $\begin{gathered} \text { Tin } \\ \text { temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | Carbon bisulfide |  |  | Lead temp., ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|c} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{array}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | $\begin{gathered} \text { Latent } \\ \text { heat, } \\ \mathrm{kg} \mathrm{~cm} / \mathrm{g} \end{gathered}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | $\begin{gathered} \text { Latent } \\ \text { heat, } \\ \mathrm{kg} \mathrm{~cm} / \mathrm{g} \end{gathered}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | $\begin{gathered} \text { Latent } \\ \text { heat, } \\ \mathrm{kg} \mathrm{~cm} / \mathrm{g} \end{gathered}$ |  | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \Delta V \\ \mathrm{~cm}^{3} / \mathrm{g} \end{gathered}$ | $\begin{gathered} \text { Latent } \\ \text { heat, } \\ \mathrm{kg} \mathrm{~cm} / \mathrm{g} \end{gathered}$ |  |
| 1 | -117.3 |  |  | -89.8 |  |  |  |  |  |  |  |  |  |  |
| 5,000 | -76 |  |  | -33 |  |  |  |  | 870 | 232 | -111.6 |  |  | 327 |
| 10,000 | - 39 |  |  | -33 +12 | 0.0478 |  | +10 76 | 0.0430 | 870 | 247 | $-51$ |  |  | 363 |
| 15,000 | - 5 | 0.0443 | 1,850 | +12 49 | 0.0478 0.0432 | 1,690 | 76 137 | 0.0354 | 980 | $261^{\circ}$ | 0 | 0.0285 | 820 | 396 |
| 20,000 | + 25 | 0.0435 | 1,850 2,200 | 80 | 0.0432 0.0399 | 2,050 2,430 | 137 | 0.0301 | 1,070 | 275 | + 46 | 0.0247 | 900 | 428 |
| 25,000 | 54 | 0.0428 | 2,480 | 108 | 0.0373 | 2,430 2,730 |  | 0.0262 | 1,160 | 287 | 89 | 0.0222 | 960 | 458 |
| 30,000 | 82 | 0.0420 | 2,700 | 132 | 0.0352 | 2,730 3,040 | 243 | 0.0231 | 1,240 | 298 | 130 | 0.0205 | 1,030 | 486 |
| 35,000 | 109 | 0.0412 | 2,910 | 155 | 0.0333 | 3,040 3,390 |  |  |  | 309 | 170 | 0.0195 | 1,110 | 512 |
|  |  |  | 2,910 | 155 | 0.0333 | 3,390 |  |  |  | 319 | 209 | 0.0187 | 1,190 | 537 |

[^174]Table 4d-14. Transtition Parameters of Water and Ice (See also Fig. 4d-1)

| $\begin{gathered} \text { Pressure, } \\ \mathrm{kg} / \mathrm{cm}^{2} \end{gathered}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\Delta V, \mathrm{~cm}^{3} / \mathrm{g}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | Triple point |
| :---: | :---: | :---: | :---: | :---: |
| I-liquid |  |  |  |  |
| 1 | 0 | 0.0900 | 3,410 |  |
| 1,130 | -10.0 | 0.1122 | 2,900 |  |
| 2,115 | -22.0 | 0.1352 | 2,390 | T.P. |
| I-III |  |  |  |  |
| 2,115 | -22.0 | 0.1818 | 220 | T.P. |
| 2,170 | -34.7 | 0.1963 | 90 | T.P. |
| Liquid-III |  |  |  |  |
| 2,115 | $\square 22.0$ | 0.0466 | -2,170 | T.P. |
| 3,530 | -17.0 | 0.0241 | -2,620 | T.P. |
| I-II |  |  |  |  |
| 2,170 | -34.7 | 0.2178 | -430 | T.P. |
| 1,794 | -75.0 | 0.2146 | -380 |  |
| III-II |  |  |  |  |
| 2,170 | -34.7 | 0.0215 | -520 | T.P. |
| 3,510 | -24.3 | 0.0145 | -720 | T.P. |
| Liquid-V |  |  |  |  |
| 3,530 | -17.0 | 0.0788 | -2,660 | T.P. |
| 6,380 | +.16 | 0.0527 | -2,990 | T.P. |
| III-V |  |  |  |  |
| 3,530 | -17.0 | 0.0547 | -40 | T.P. |
| 3,510 | -24.3 | 0.0546 | -40 | T.P. |
| II-V |  |  |  |  |
| 3,510 | -24.3 | 0.0401 | 680 | T.P. |
| 4,200 | -34.0 | 0.0401 | 660 |  |
| V-VI |  |  |  |  |
| 6,380 | +0.16 | 0.0389 | -10 | T.P. |
| 6,365 | $-20$ | 0.0381 | -10 |  |
| Liquid-V |  |  |  |  |
| 6,380 | +0.16 | 0.0916 | -3,000 | T.P. |
| 10,590 | 30.0 | 0.0663 | -3,360 |  |
| 16,000 | 57.2 | 0.0478 | -3,430 |  |
| 22,400 | 81.6 | 0.0330 | -3,610 | T.P. |
| VI-VII |  |  |  |  |
| 22,000 | 0.0 | 0.0567 | -290 |  |
| 22,350 | +40.0 | 0.0573 | -60 |  |
| 22,400 | 81.6 | 0.0580 | 0 | T.P. |
| Liquid-VII |  |  |  |  |
| 22,400 | 81.6 | 0.0910 | -3,610 | T.P. |
| 28,000 | 124.1 | 0.0817 | -4,840 |  |
| 34,000 | 161.1 | 0.0738 | -5,650 |  |
| 40,000 | 192.3 | 0.0674 | -6,550 |  |



Fig. 4d-1. Phase diagram of water.

Table 4d-15. Transition Parameters of Bismuth (See also Fig. 4d-2)

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\Delta V, \mathrm{~cm}^{3} / \mathrm{g}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | Triple point |
| :---: | :---: | :---: | :---: | :---: |
| I-Liquid |  |  |  |  |
| 1 | 271.0 | 0.00345 | -549 |  |
| 10,000 | 228.8 | 0.00419 | -416 |  |
| 17,300 | 183.0 | 0.0045 | -310 | T.P. |
| I-II |  |  |  |  |
| 17,300 | 183.0 | 0.0047 | 110 | T.P. |
| 32,300 | -110 | 0.0043 | 36 | T.P. |
| II-III |  |  |  |  |
| 22,400 | 185 | 0.0029 | 45 | T.P. |
| 32,300 | -110 | 0.0025 | 14 | T.P. |
| Liquid-II (calculated) |  |  |  |  |
| 17,300 | 183 | 0.0002 | -200 | T.P. |
| 22,400 | 185 | 0.0002 | -200 | T.P. |
| Liquid-III (calculated) |  |  |  |  |
| 22,400 | 185 | 0.0031 | -155 | T.P. |
| III-IV |  |  |  |  |
| 43,000 | -100 | 0.0003 (?) | 0 (?) |  |
| 45,000 | +50 | 0.0004 (?) | 0 (?) |  |



Fig. 4d-2. Phase diagram of bismuth.

Table 4d-16. Transition Parameters of Urethane ( $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$ )
(See also Fig. 4d-3)

| $\begin{aligned} & \hline \text { Pressure, } \\ & \mathrm{kg} / \mathrm{cm}^{2} \\ & \hline \end{aligned}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\Delta V, \mathrm{~cm}^{3} / \mathrm{g}$ | $\begin{gathered} \text { Latent heat, } \\ \mathrm{kg} \mathrm{~cm} / \mathrm{g} \end{gathered}$ | Triple point |
| :---: | :---: | :---: | :---: | :---: |
| Liquid-I |  |  |  |  |
| 1 | 47.9 | 0.0599 | -1,740 |  |
| 2,350 | 66.2 | 0.0253 | -1,620 | T.P. |
| I-II |  |  |  |  |
| 2,350 | 66.2 | 0.0102 | 90 | T.P. |
| 3,400 | 25.5 | 0.0092 | 70 | T.P. |
| Liquid-II |  |  |  |  |
| 2,350 | 66.2 | 0.0355 | -1,530 | T.P. |
| 4,230 | 76.8 | 0.0184 | -1,470 | T.P. |
| Liquid-III |  |  |  |  |
| 4,230 | 76.8 | 0.0640 | -1,730 | T.P. |
| 8,000 | 119.0 | 0.0500 | -1,950 |  |
| 12,000 | 156.7 | 0.0378 | -1,830 |  |
| II-III |  |  |  |  |
| 4,230 | 76.8 | 0.0456 | -260 | T.P. |
| 3,400 | 25.5 | 0.0482 | -235 | T.P. |
| I-III |  |  |  |  |
| 3,400 | 25.5 | 0.0574 | -165 | T.P. |
| 3,160 | 0 | 0.0572 | -150 |  |



Fig. 4d-3. Phase diagram of urethane.

Table 4d-17. Transition Parameters of Thallium (See also Fig. 4d-4)

| Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ | Temp., ${ }^{\circ} \mathrm{C}$ | $\Delta V, \mathrm{~cm}^{3} / \mathrm{g}$ | Latent heat, $\mathrm{kg} \mathrm{cm} / \mathrm{g}$ | Triple point |
| :---: | :---: | :---: | :---: | :---: |
| II-I |  |  |  |  |
| $\begin{array}{r} 1 \\ 39,000 \end{array}$ | $\begin{aligned} & 227 \\ & 153 \end{aligned}$ | 0.00004 0.00024 | 41.7 | T.P. |
| II-III |  |  |  |  |
| $\begin{aligned} & 39,000 \\ & 43,000 \end{aligned}$ | $\begin{array}{r} 153 \\ -100 \end{array}$ | 0.00053 0.00039 | 2.7 1.1 | T.P. |
| I-III (calculated) |  |  |  |  |
| 39,000 | 153 | 0.00029 | $-39.0$ | T.P. |



Fig. 4d-4. Phase diagram of thallium.

## 4e. Heat Capacities

G. T. FURUKAWA

The National Bureau of Standards
T. B. DOUGLAS

The National Bureau of Standards

## HEAT

|  | 10 | 15 | 20 | 25 | 30 | 50 | 70 | 100 | 150 | 200 | 250 | 298.16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Al 26.98. | 0.01 | 0.02 | 0.05 | 0.11 | 0.20 | 0.91 | 1.85 | 3.12 | 4.43 | 5.16 | 5.56 | 5.82 |
| Antimony Sb 121.76 | (0.06) | (0.20 | (0.48) | (0.80) | (1.18) | (2.99) | 4.10 | 4.92 | 5.55 | 5.82 | 5.93 | 6.03 |
| Argon A 39.944. | 0.90 | 1.89 | 2.82 | 3.70 | 4.39 | 5.93 | 6.96 (c) | 4.97 (g) | 4.97 | 4.97 | 4.97 | 4.97 |
| Arsenic As 74.91. | (0.03) | (0.10) | (0.21) | (0.35) | (0.59) | (1.88) | 2.88 | 3.99 | 4.94 | 5.43 | 5.75 | 5.89 |
| Beryllium Be 9.013. | 0.0006 | 0.002 | 0.004 | 0.01 | 0.02 | 0.05 | 0.15 | 0.41 | 1.26 | 2.38 | 3.37 | 4.26 |
| Bismuth Bi 209.00. | 0.52 | 1.20 | 1.77 | 2.43 | 2.95 | 4.27 | 4.99 | 5.46 | 5.83 | 5.98 | 6.05 | 6.10 |
| Boron (amorphous) B 10.82. |  |  | 0.02 | 0.01 | 0.01 | 0.04 | 0.12 | 0.33 | 0.86 | 1.55 | 2.22 | 2.86 |
| Boron (erystalline) B 10.82. |  |  | 0.006 | 0.009 | 0.006 | 0.02 | 0.08 | 0.26 | 0.77 | 1.45 | 2.11 | 2.65 |
| Bromine $\mathrm{Br}_{2} 159.832$. | (0.74) | 1.83 | 3.28 | 4.12 | 5.82 | 8.14 | 9.70 | 10.51 | 11.75 | 12.87 | 13.84 (c) | 17.0 (1). |
| Cadmium Cd 112.41 | 0.22 | 0.60 | 1.15 | 1.71 | 2.26 | 3.90 | 4.67 | 5.32 | 5.73 | 5.93 | 6.08 | 6.19 |
| Calcium Ca 40.08 . | 0.04 | 0.15 | 0.35 | 0.62 | 0.94 | 2.60 | 3.64 | 4.66 | 5.49 | 5.91 | 6.12 | 6.28 |
| Carbon (graphite) C 12.010. | (0.004) | 0.01 | 0.02 | 0.03 | 0.04 | 0.12 | 0.23 | 0.40 | 0.77 | 1.18 | 1.63 | 2.04 |
| Carbon (diamond) C 12.010 |  |  | (0.0003) | (0.001) | (0.002) | 0.005 | 0.015 | 0.059 | 0.24 | 0.56 | 0.99 | 1.46 |
| Cerium Ce 140.13. | 1.05* | 1.14* | 1.76 | 2.46 | 3.08 | 3.10 | 5.83 | 6.46 | 6.71* | 6.90 |  |  |
| Chlorine $\mathrm{Cl}_{2} 70.914$. | (0.30) | 0.89 | 1.85 | 2.89 | 3.99 | 6.99 | 8.68 | 10.10 | 12.20 (c) | 15.95 (1) | 15.63 (1) | 8.07 (g) |
| Chromium Cr 52.01. | (0.01) | (0.02) | (0.04) | (0.06) | (0.12) | 0.47 | 1.20 | 2.39 | 3.94 | 4.81 | 5.30 | 5.58 |
| Cobalt Co 58.94. | 0.02 | 0.04 | 0.07 | 0.14 | 0.24 | 0.98 | 2.04 | 3.34 | 4.60 | 5.33 | 5.75 | 5.98 |
| Copper Cu 63.54. | 0.01 | 0.04 | 0.11 | 0.23 | 0.41 | 1.49 | 2.62 | 3,85 | 4.90 | 5.43 | 5.72 | 5.85 |
| Fluorine $\mathrm{F}_{2} 38.00$ |  | 1.75 | 3.10 | 4.61 | 6.03 ( $\mathrm{c}_{1}$ ) | 11.79 ( $\mathrm{c}_{2}$ ) | 13.56 (1) | 6.96 (g) | 6.99 | 7.10 | 7.28 | 7.49 |
| Gallium Ga 69.72. | (0.15) | 0.31 | 0.54 | 0.84 | 1.19 | 2.45 | 3.47 | 4.43 | 5.26 | 5.69 | 5.95 | 6.23 |
| Germanium Ge 72.60 | 0.02 | 0.08 | 0.22 | 0.42 | 0.64 | 1.50 | 2.28 | 3.31 | 4.45 | 4.99 |  |  |
| Gold Au 197.2. | (0.12) | 0.35 | 0.77 | 1.24 | 1.76 | 3.41 | 4.39 | 5.12 | 5.62 | 5.84 | 5.96 | 6.07 |
| Hafnium Hf 178.6 . | (0.03) | 0.05 | 0.13 | 0.31 | 0.60 | 3.90* | 10.2* | 5.40 | 5.80 | 6.00 | 6.08 | 6.15 |
| Helium He 4.003. | 4.97 (g) | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 | 4.97 |
| $n$-Hydrogen $\mathrm{H}_{2} 2.016$ |  | $\begin{gathered} 3.50(1) \\ 99.8, \end{gathered}$ |  |  | 4.97 (g) | 4.98 | 5.06 | 5.39 | 6.07 | 6.52 | 6.77 | 6.89 |
| $n$-Deuterium D2 4.032. |  | 1.66 (c) | 5.49 (1) |  | 5.06 (g) | 5.95 | 6.89 | 7.19 | 7.03 | 6.98 | 6.98 | 6.98 |
|  |  | 97.8\% | ortho |  |  |  |  |  |  |  |  |  |
| Indium In 114.76 | 0.43 | 1.01 | 1.67 | 2.36 | 2.94 | 4.41 | 5.08 | 5.58 | 5.99 | 6.17 | 6.31 | (6.43) |
| Iodine $\mathrm{I}_{2} 253.82$. | 0.93 |  |  | 5.12 |  | 8.79 |  | 10.96 | 11.86 | 12.42 |  | 13.14 |
| Iron Fe 55.85 | 0.02 | 0.03 | 0.06 | 0.10 | 0.18 | 0.73 | 1.61 | 2.88 | 4.33 | 5.13 | 5.63 | 5.97 |
| Krypton Kr 83.80 | 1.46 | 2.90 | 3.67 | 4.43 | 5.01 | 6.01 | 6.57 | 7.55 (c) | 4.97 (g) | 4.97 | 4.97 | 4.97 |
| Lanthanum La 138.92 | 0.26 | 0.80 | 1.48 | 2.20 | 2.81 | 4.41 | 5.12 | 5.64 | 6.04 |  |  |  |
| Lead Pb 207.21.. | 0.67 | 1.74 | 2.62 | 3.36 | 3.94 | 5.10 | 5.54 | 5.84 | 6.04 | 6.18 | 6.30 | ${ }^{6.41}$ |
| Lithium Li 6.940 . | (0.03) | 0.05 | 0.10 | 0.17 | 0.27 | 1.00 | 1.88 | 3.05 | 4.42 | 5.17 | 5.60 | 5.90 |



4-42


HEAT CAPACITIES
4-43


The contribution to the molar heat capacity at constant volume $C_{v}$ of a solid due to lattice vibrations is given by Debye's equation

$$
\begin{equation*}
C_{v}=3 R\left[12\left(\frac{T}{\Theta}\right)^{3} \int_{0}^{\Theta / T} \frac{y^{3} d y}{e^{y}-1}-3 \frac{\Theta / T}{e^{\Theta / T}-1}\right] \tag{4e-1}
\end{equation*}
$$

where $R$ is the universal gas constant and $\Theta$ is the Debye temperature. Values of $C_{v}$ for many different values of $\theta / T$ are given in Table 4e-3. The molar internal energy $E$ of a solid due to lattice vibrations is equal to $\int_{0}^{T} C_{v} d T$. Values of $E / T$ as a function of $\theta / T$ are given in Table $4 \mathrm{e}-4$. The molar entropy $S$ of a solid due to lattice vibrations is equal to $\int_{0}^{T}\left(C_{v} / T\right) d T$. Values of $S$ as a function of $\Theta / T$ are given in Table 4e-5.

Table 4e-3. Values of the Debye $C_{v}$ as a Function of $\theta / T^{*}$

| $\frac{\theta}{T}$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5.955 | 5.95 | 5.94 | 5.93 | 5.91 | 5.88 | 5.85 | 5.81 | 5.77 | 5.72 |
| 1 | 5.670 | . 5.61 | 5.55 | 5.48 | 5.41 | 5.34 | 5.26 | 5.18 | 5.09 | 5.01 |
| 2 | 4.918 | 4.83 | 4.74 | 4.64 | 4.54 | 4.45 | 4.35 | 4.25 | 4.15 | 4.05 |
| 3 | 3.948 | 3.85 | 3.75 | 3.65 | 3.56 | 3.46 | 3.36 | 3.27 | 3.18 | 3.09 |
| 4 | 2.996 | 2.91 | 2.82 | 2.74 | 2.65 | 2.57 | 2.50 | 2.42 | 2.34 | 2.27 |
| 5 | 2.197 | 2.13 | 2.06 | 1.99 | 1.93 | 1.87 | 1.81 | 1.75 | 1.69 | 1.63 |
| 6 | 1.582 | 1.53 | 1.48 | 1.43 | 1.39 | 1.34 | 1.30 | 1.26 | 1.21 | 1.18 |
| 7 | 1.137 | 1.100 | 1.065 | 1.031 | 0.998 | 0.966 | 0.935 | 0.906 | 0.878 | 0.850 |
| 8 | 0.823 | 0.798 | 0.774 | 0.750 | 0.727 | 0.704 | 0.683 | 0.662 | 0.642 | 0.623 |
| 9 | 0.604 | 0.588 | 0.570 | 0.552 | 0.537 | 0.521 | 0.507 | 0.492 | 0.478 | 0.465 |
| 10 | 0.452 | 0.439 | 0.427 | 0.415 | 0.404 | 0.394 | 0.383 | 0.373 | 0.363 | 0.353 |
| 11 | 0.345 | 0.335 | 0.324 | 0.319 | 0.310 | 0.303 | 0.295 | 0.287 | 0.280 | 0.273 |
| 12 | 0.267 | 0.260 | 0.254 | 0.248 | 0.242 | 0.237 | 0.231 | 0.226 | 0.221 | 0.216 |
| 13 | 0.211 | 0.206 | 0.202 | 0.197 | 0.193 | 0.188 | 0.184 | 0.180 | 0.176 | 0.172 |
| 14 | 0.169 | 0.165 | 0.162 | 0.159 | 0.155 | 0.152 | 0.149 | 0.146 | 0.143 | 0.140 |
| 15 | 0.137 | 0.135 | 0.132 | 0.130 | 0.127 | 0.125 | 0.122 | 0.120 | 0.118 | 0.116 |


| $\frac{\Theta}{T}$ | $C$ | $\frac{\Theta}{T}$ | $C$ | $\frac{\Theta}{T}$ | $C$ |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 16 | 0.113 | 21 | 0.0502 | 26 | 0.0264 |
| 17 | 0.0945 | 22 | 0.0436 | 27 | 0.0236 |
| 18 | 0.0796 | 23 | 0.0382 | 28 | 0.0212 |
| 19 | 0.0677 | 24 | 0.0336 | 29 | 0.0190 |
| 20 | 0.0581 | 25 | 0.0298 | 30 | 0.0172 |

[^175]Table 4e-4. Values of $\frac{E}{T}=\frac{1}{T} \int_{0}^{T} C_{v} d T$ as a Function of $\theta / T^{*}$

| $\boldsymbol{\theta}$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{T}$ |  |  |  |  |  |  |  |  |  |  |
| 0.1 | 5.733 | 5.710 | 5.688 | 5.667 | 5.646 | 5.625 | 5.604 | 5.583 | 5.562 | 5.541 |
| 0.2 | 5.520 | 5.500 | 5.480 | 5.459 | 5.438 | 5.417 | 5.396 | 5.375 | 5.354 | 5.333 |
| 0.3 | 5.312 | 5.291 | 5.271 | 5.250 | 5.230 | 5.210 | 5.190 | 5.170 | 5.150 | 5.130 |
| 0.4 | 5.110 | 5.091 | 5.071 | 5.051 | 5.031 | 5.012 | 4.992 | 4.972 | 4.952 | 4.933 |
| 0.5 | 4.913 | 4.893 | 4.874 | 4.855 | 4.836 | 4.817 | 4.788 | 4.779 | 4.760 | 4.741 |
| 0.6 | 4.722 | 4.704 | 4.685 | 4.666 | 4.647 | 4.628 | 4.610 | 4.592 | 4.574 | 4.555 |
| 0.7 | 4.536 | 4.518 | 4.500 | 4.483 | 4.465 | 4.447 | 4.429 | 4.412 | 4.394 | 4.376 |
| 0.8 | 4.358 | 4.341 | 4.324 | 4.307 | 4.290 | 4.273 | 4.255 | 4.238 | 4.221 | 4.203 |
| 0.9 | 4.186 | 4.169 | 4.152 | 4.135 | 4.118 | 4.101 | 4.084 | 4.067 | 4.050 | 4.033 |
| 1.0 | 4.017 | 4.001 | 3.985 | 3.968 | 3.952 | 3.935 | 3.918 | 3.902 | 3.886 | 3.870 |
| 1.1 | 3.854 | 3.838 | 3.822 | 3.806 | 3.790 | 3.774 | 3.758 | 3.742 | 3.726 | 3.710 |
| 1.2 | 3.695 | 3.680 | 3.665 | 3.650 | 3.635 | 3.620 | 3.605 | 3.590 | 3.575 | 3.560 |
| 1.3 | 3.545 | 3.530 | 3.515 | 3.500 | 3.486 | 3.471 | 3.457 | 3.442 | 3.428 | 3.413 |
| 1.4 | 3.399 | 3.385 | 3.371 | 3.357 | 3.343 | 3.329 | 3.315 | 3.301 | 3.287 | 3.273 |
| 1.5 | 3.259 | 3.245 | 3.231 | 3.217 | 3.203 | 3.190 | 3.176 | 3.163 | 3.150 | 3.136 |
| 1.6 | 3.123 | 3.110 | 3.096 | 3.082 | 3.069 | 3.056 | 3.043 | 3.030 | 3.017 | 3.004 |
| 1.7 | 2.992 | 2.979 | 2.966 | 2.953 | 2.940 | 2.927 | 2.915 | 2.902 | 2.890 | 2.877 |
| 1.8 | 2.864 | 2.851 | 2.839 | 2.826 | 2.814 | 2.801 | 2.789 | 2.776 | 2.764 | 2.752 |
| 1.9 | 2.739 | 2.727 | 2.716 | 2.704 | 2.692 | 2.681 | 2.670 | 2.659 | 2.648 | 2.637 |


| $\frac{\theta}{T}$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 5.955 | 5.7330 | 5.5195 | 5.3122 | 5.1100 | 4.9130 | 4.7220 | 4.5364 | 4.3578 | 4.186 |
| 1 | 4.0168 | 3.8536 | 3.6951 | 3.5450 | 3.3991 | 3.2592 | 3.1229 | 2.9920 | 2.8640 | 2.7395 |
| 2 | 2.6266 | 2.5138 | 2.4068 | 2.3047 | 2.2044 | 2.1078 | 2.0166 | 1.9288 | 1.8446 | 1.7642 |
| 3 | 1.6873 | 1.6131 | 1.5423 | 1.4756 | 1.4118 | 1.3492 | 1.2917 | 1.2364 | 1.1825 | 1.131 |
| 4 | 1.0921 | 1.0361 | 0.9931 | 0.9517 | 0.9118 | 0.8733 | 0.8361 | 0.8002 | 0.7654 | 0.7317 |
| 5 | 0.7009 | 0.6712 | 0.7438 | 0.6187 | 0.5944 | 0.5708 | 0.5478 | 0.5255 | 0.5037 | 0.4824 |
| 6 | 0.4618 | 0.4437 | 0. 4259 | 0.4088 | 0.3926 | 0.3787 | 0.3652 | 0.3519 | 0.3387 | 0.3257 |
| 7 | 0.3128 | 0.3017 | 0.2908 | 0.2803 | 0.2702 | 0.2605 | 0.2513 | 0.2423 | 0.2340 | 0.2263 |
| 8 | 0.2195 | 0.2135 | 0.2077 | 0.2017 | 0.1959 | 0.1905 | 0.1855 | 0.1797 | 0.1744 | 0.1691 |
| 9 | 0.1639 | 0.1588 | 0.1536 | 0.1485 | 0.1435 | 0.1384 | 0.1336 | 0.1289 | 0.1242 | 0.1195 |
| 10 | 0.1149 | 0.1107 | 0.1070 | 0.1028 | 0.1009 | 0.0983 | 0.0957 | 0.0953 | 0.0907 | 0.0886 |
| 11 | 0.0866 | 0.0845 | 0.0824 | 0.0804 | 0.0783 | 0.0763 | 0.0742 | 0.0722 | 0.0704 | 0.0686 |
| 12 | 0.0671 | 0.0655 | 0.0640 | 0.0625 | 0.0610 | 0.0595 | 0.0580 | 0.0565 | 0.0552 | 0.0540 |
| 13 | 0.0526 | 0.0514 | 0.0502 | 0.0491 | 0.0481 | 0.0471 | 0.0461 | 0.0451 | 0.04410 | 0.0431 |
| 14 | 0.0420 | 0.0411 | 0.0403 | 0.0395 | 0.0388 | 0.0380 | 0.0373 | 0.0365 | 0.0358 | 0.0350 |
| 15 | 0.0343 | 0.0335 | 0.0328 | 0.0320 | 0.0313 | 0.0308 | 0.0303 | 0.0298 | 0.02930 | 0.0288 |

[^176]Table 4e-5. Values of $S=\int_{0}^{T} \frac{C_{v}}{T} d T$ as a Function of $\Theta / T^{*}$

| $\boldsymbol{\theta}$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T$ | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
|  |  |  |  |  |  |  |  |  |  |  |
| 0.1 | 21.65 | 21.16 | 20.69 | 20.23 | 19.79 | 19.37 | 18.99 | 18.62 | 18.26 | 17.79 |
| 0.2 | 17.53 | 17.23 | 16.98 | 16.73 | 16.47 | 16.22 | 15.97 | 15.74 | 15.52 | 15.31 |
| 0.3 | 15.12 | 14.93 | 14.76 | 14.59 | 14.42 | 14.25 | 14.08 | 13.91 | 13.74 | 13.58 |
| 0.4 | 13.42 | 13.27 | 13.13 | 13.00 | 12.86 | 12.73 | 12.60 | 12.47 | 12.35 | 12.22 |
| 0.5 | 12.06 | 11.98 | 11.86 | 11.75 | 11.64 | 11.53 | 11.41 | 11.32 | 11.22 | 11.12 |
| 0.6 | 11.03 | 10.93 | 10.84 | 10.75 | 10.65 | 10.56 | 10.47 | 10.38 | 10.29 | 10.21 |
| 0.7 | 10.14 | 10.04 | 9.96 | 9.88 | 9.80 | 9.73 | 9.66 | 9.58 | 9.51 | 9.45 |
| 0.8 | 9.364 | 9.291 | 9.229 | 9.162 | 9.094 | 9.027 | 8.959 | 8.892 | 8.825 | 8.756 |
| 0.9 | 8.689 | 8.630 | 8.564 | 8.495 | 8.440 | 8.379 | 8.320 | 8.263 | 8.206 | 8.150 |
| 1.0 | 8.094 | 8.039 | 7.984 | 7.928 | 7.873 | 7.818 | 7.762 | 7.707 | 7.653 | 7.601 |
| 1.1 | 7.549 | 7.498 | 7.447 | 7.396 | 7.346 | 7.302 | 7.249 | 7.201 | 7.153 | 7.105 |
| 1.2 | 7.060 | 7.015 | 6.970 | 6.925 | 6.880 | 6.835 | 6.791 | 6.748 | 6.706 | 6.663 |
| 1.3 | 6.621 | 6.579 | 6.537 | 6.496 | 6.455 | 6.413 | 6.373 | 6.333 | 6.295 | 6.256 |
| 1.4 | 6.218 | 6.185 | 6.144 | 6.107 | 6.069 | 6.032 | 5.995 | 5.958 | 5.921 | 5.885 |
| 1.5 | 5.849 | 5.813 | 5.778 | 5.743 | 5.709 | 5.675 | 5.640 | 5.607 | 5.574 | 5.540 |
| 1.6 | 5.507 | 5.475 | 5.442 | 5.410 | 5.379 | 5.347 | 5.316 | 5.285 | 5.253 | 5.222 |
| 1.7 | 5.191 | 5.160 | 5.130 | 5.100 | 5.070 | 5.041 | 5.012 | 4.982 | 4.953 | 4.924 |
| 1.8 | 4.895 | 4.867 | 4.840 | 4.811 | 4.783 | 4.755 | 4.728 | 4.700 | 4.672 | 4.645 |
| 1.9 | 4.617 | 4.590 | 4.565 | 4.539 | 4.513 | 4.488 | 4.463 | 4.438 | 4.414 | 4.390 |
|  |  |  |  |  |  |  |  |  |  |  |


| $\frac{\theta}{T}$ | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 21.6510 | 17.5293 | 15.1233 | 13.4213 | 12.1051 | 11.0354 | 10.1357 | 9.3643 | 8.6892 |
| 1 | 8.0934 | 7.5484 | 7.0601 | 6.6206 | 6.2183 | 5.8491 | 5.5068 | 5.1906 | 4.8947 | 4.6176 |
| 2 | 4.3680 | 4.1296 | 3.9084 | 3.7020 | 3.5055 | 3.3202 | 3.1484 | 2.9861 | 2.8332 | 2.7493 |
| 3 | 2.5538 | 2.4253 | 2.3042 | 2.1913 | 2.0849 | 1.9816 | 1.8871 | 1.7976 | 1.7115 | 1.6306 |
| 4 | 1.5529 | 1.4810 | 1.4141 | 1.3502 | 1.2892 | 1.2309 | 1.1750 | 1.1214 | 1.0698 | 1.0202 |
| 5 | 0.9748 | 0.9317 | 0.8914 | 0.8548 | 0.8195 | 0.7854 | 0.7525 | 0.7206 | 0.6897 | 0.6595 |
| 6 | 0.6306 | 0.6050 | 0.5799 | 0.5562 | 0.5334 | 0.5138 | 0.4950 | 0.4765 | 0.4583 | 0.4403 |
| 7 | 0.4225 | 0.4072 | 0.3922 | 0.3777 | 0.3639 | 0.3506 | 0.3381 | 0.3258 | 0.3144 | 0.3033 |
| 8 | 0.2946 | 0.2865 | 0.2786 | 0.2704 | 0.2626 | 0.2551 | 0.2484 | 0.2406 | 0.2334 | 0.2263 |
| 9 | 0.2193 | 0.2124 | 0.2054 | 0.1985 | 0.1918 | 0.1850 | 0.1785 | 0.1722 | 0.1659 | 0.1596 |
| 10 | 0.1535 | 0.1478 | 0.1428 | 0.1386 | 0.1347 | 0.1312 | 0.1277 | 0.1242 | 0.1210 | 0.1182 |
| 11 | 0.1155 | 0.1127 | 0.1099 | 0.1072 | 0.1044 | 0.1017 | 0.0989 | 0.0963 | 0.0939 | 0.0915 |
| 12 | 0.0895 | 0.0873 | 0.0853 | 0.0833 | 0.0813 | 0.0793 | 0.0773 | 0.0753 | 0.0736 | 0.0720 |
| 13 | 0.0701 | 0.0686 | 0.0669 | 0.0655 | 0.0641 | 0.0628 | 0.0615 | 0.0601 | 0.0588 | 0.0575 |
| 14 | 0.0560 | 0.0548 | 0.0537 | 0.0527 | 0.0517 | 0.0506 | 0.0497 | 0.0487 | 0.0477 | 0.0467 |

* "Handbuch der Physik," vol. 10, p. 369.

Once $\Theta$ is known, $C_{v}, E$, and $S$ may be obtained at any desired $T$. Table 4e-6 contains values of $\Theta$ for nonmetals.

At low temperatures, the molar heat capacity of metals varies with the temperature according to the equation

$$
\begin{equation*}
C_{v}=\frac{464}{\theta^{3}} T^{3}+\gamma T \tag{4e-2}
\end{equation*}
$$

where $\Theta$ is the Debye temperature and $\gamma$ is the electronic constant. Table $4 \mathrm{e}-7$ contains values of $\theta$ and $\gamma$ for 39 metals. This table is the result of a critical evaluation of the latest low-temperature calorimetric work. The starred values of $\gamma$ were
not obtained calorimetrically but were calculated thermodynamically from superconducting threshold field curves. For references, see page 210 of "Progress in Low Temperature Physics," C. J. Gorter, ed., Interscience Publishers, Inc., New York, NorthHolland Publishing Co., Amsterdam; 1955.

Table 4e-6. Debye Temperatures for Nonmetals

| Substance | $\theta,{ }^{\circ} \mathrm{K}$ | Substance | 日, ${ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: |
| A. | 85 | KBr . | 177 |
| AgBr . | 144 | KCl . | 227 |
| $\mathrm{AgCl}^{\text {. }}$ | 183 | KI. | 115-200 |
| $\mathrm{CaF}_{2}$. | 474 | LiF | 607-750 |
| Cl . | 115 | MgO . | 750-890 |
| $\mathrm{D}\left(\mathrm{H}^{2}\right)$ | 97 | NaCl . | 281 |
| Diamond. | 1860 | N | 68 |
| $\mathrm{FeS}_{2}$. | 645 | Ne . | 63 |
| H. | 105 | O. | 91 |
| He. | 28-36 | RbBr . | 120-135 |
| He II. | 15.5 | RbI. | 100-118 |
| I. | 106 |  |  |


| Substance | $\boldsymbol{\theta},{ }^{\circ} \mathrm{K}$ | Reference |
| :---: | :---: | :---: |
| Germanium | 250-400 | I. Esterman and J. R. Weertman, J. Chem. Phys. 20, 972 (1952) |
| Silicon. | 658 [but $f(t)$ ] | Pearlman and Keesom, Phys. Rev. 88, 398 (1952) |
| Gray tin | 260 | Hill and Parkins, Phil. Mag. 43, 309 (1952) |
| $\mathrm{TiO}_{2}$. | 318 | C. H. Shomate, J. Am. Chem. Soc. 69, 218 (1947) |
| PbS | 194 | R. L. Petritz and W. W. Scanlon |
| PbSe. | 135-160 | D. H. Parkinson and J. E. Quarrington, Proc. Phys. Soc. (London), ser. A, 67, 569 (1954) |
| PbTe. | 124-135 | D. H. Parkinson and J. E. Quarrington, Proc. Phys. Soc. (London), ser. A, 67, 569 (1954) |
| $\mathrm{UO}_{2}$. | 160 | Long, Jones, and Gordon, U.S. Bur. Mines Rept. A-329 (Oct. 28, 1942) |
| ZnS. | 300 | Calculated by F. A. Kroger from Wooster, Acta Cryst. 4, 191 (1951); Meijer and Polder, Physica 19, 255 (1953) Table 1 |
| C (graphite) | $\sim 1000$ | J. A. Krumhansl and H. Brooks, J. Chem. Phys. 21, 1663 (1953) |

Table 4e-7. Debye Temperatures and Electronic Constants for Metals (Starred values were obtained magnetically)

| Metal | $\theta,{ }^{\circ} \mathrm{K}$ | $\begin{gathered} \gamma, \\ 10^{-4} \mathrm{cal} / \mathrm{mole}^{2} \mathrm{deg}^{2} \end{gathered}$ | Metal | $\theta,{ }^{\circ} \mathrm{K}$ | $\begin{gathered} \gamma, \\ 10^{-4} \mathrm{cal} / \mathrm{mole} \mathrm{deg}^{2} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ag. | 229 | 1.45-1.60 | Na . | 160 | 4.3 |
| Al. | 375 | 3.27-3.48 | Nb | 252 | 17.5-20.4 |
| Au . | 164 | 1.67 | Ni. | 413 | 17.4 |
| Ba. | 116 |  | Os. |  | 5.62 |
| Be. | 1160 | 0.53 | Pb . | 96.3 | 7.48-8.0 |
| Bi. | 117 | 0.114-0.186 | Pd. | 275 | 22.4-31.0 |
| Ca | 220 | 2.9 | Pr. |  | 22 |
| Cd . | 165 | 1.5-1.7 | Pt. | 233 | 16.1-16.5 |
| Co. | 385 | 12.0 | Rb. | 59 | ......... |
| Cr. | 418 | 3.7-3.8 | Re. | 275 | 5.85 |
| Cs. | 43 |  | Rh. | 350 | 10.0-11.7 |
| Cu . | 343 | 1.60-1.80 | Ru. |  | 8.0 |
| Fe. | 355 | 12.0 | Sb . | 140 | ......... |
| Ga. | 240 | 1.2 | Sn . | 195 | 4.18-4.46 |
| Gd. | 152 | 16 | Sr | 148 | , |
| Hf. | 213 | 6.3-6.8 | Ta. | 230 | 13.0-14.0 |
| Hg . | 75 | 5.3* | Th. | 168 | 11.2-13.3 |
| In. | 109 | 4.0-4.33 | Ti. | 430 | 8.0-8.5 |
| Ir. | 285 | 7.5-7.6 | Tl. | 100 | 3.5 |
| K. | 100 |  | U. | 200 | 26 |
| La. | 132 | 16-21 | V | 338 | 21.1-22.1 |
| Li. | 430 |  | W | 270 | 1.8-5.0 |
| Mg | 342 | 3.15-3.25 | Zn. | 235 | 1.25-1.50 |
| Mn . | 410 | 32.9-43 |  | 265 | 6.92-7.25 |
| Mo. | 360 | 5.05-5.25 |  |  |  |

The calorimetric quantities $\theta$ and $\gamma$ are given separately for the superconducting metals in Table 4e-8, along with the zero-field transition temperature $T_{0}$ and the threshold field at absolute zero $\mathrm{H}_{0}$.

Table 4e-8. Superconducting Transition Temperatures, Electronic
Constants, and Debye Temperatures for Superconductors
(Starred values were obtained magnetically)

| Metal | $T_{0},{ }^{\circ} \mathrm{K}$ | $\begin{gathered} \gamma, 10^{-4} \mathrm{cal} / \\ \text { mole } \mathrm{deg}^{2} \end{gathered}$ | ө, ${ }^{\circ} \mathrm{K}$ | $H_{0}$, oersted | References |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Al. | 1.175 | 3.27-3.48 | 375 | 106 | D2, G1, G2, K8, S7 |
| Cd. | 0.56-0.65 | 1.5-1.7 | 165 | 27-28.8 | $\begin{aligned} & \text { G1, G2, K9, S1, S10, } \\ & \text { S12. T1 } \end{aligned}$ |
| Ga. | 1.103 | 1.2 | 240 | 47-50.3 | G1, G2, S7 |
| Hf. | 0.37 | 6.3-6.8 | 213 |  | K9, S10 |
| Hg. | 4.160 | 5.3* | 69 | 400-419 | $\begin{aligned} & \text { D3, D4, M1, M6, P2, } \\ & \text { R1, R2, S3, S4 } \end{aligned}$ |
| In. | 3.374-3.432 | 4.0-4.33 | 109 | 269-275 | C1, C3, C4, D3, M6 |
| La. | 4.8, 5.8 | 16-21 | 132 |  | J2, M4, P1, S5, Z1, Z2 |
| Nb | 8.7-8.9 | 17.5-20.4 | 252 | 1960 | C5, D3, D4, J1 |
| Os. | 0.71 | 5.62 |  | 65 | G1 |
| Pb . | 7.22 | 7.48-8.0 | 96.3 | 800 | $\begin{aligned} & \text { C2, D3, D4, H2, J3, } \\ & \text { O1, P3, S2 } \end{aligned}$ |
| Re. | 1.70 | 5.85 | 210 | 188 | A4, D5 |
| Rh. | 0.9 | 10.0-11.7 | 350 |  |  |
| Ru. | 0.47 | 8.0 |  | 46 | G1 |
| Sn. | 3.74 | 4.18-4.46 | 195 | 304-310 | $\begin{aligned} & \text { A2, A3, D3, D4, H1, } \\ & \text { K6, K7, L1, M2, } \\ & \text { M3, S2, W3 } \end{aligned}$ |
| Ta. | 4.38 | 13.0-14.0 | 230 | 860 | $\begin{aligned} & \text { D3, D4, K2, M5, P4, } \\ & \text { W1, W5 } \end{aligned}$ |
| Tc. | 11.2 |  |  |  | T2 |
| Th. | 1.388-1.40 | 11.2-13.3 | 168 | 131 | S6, S7 |
| Ti. | 0.39 | 8.0-8.5 | 430 | 100 | $\begin{aligned} & \text { D1, E1, S7, S10, S11, } \\ & \text { S13, W2 } \end{aligned}$ |
| Tl. | 2.392 | 3.5 | 100 | 171 | D3, K4, K5, M6 |
| U. | 1.1 - | 26 | 200 |  | A1, A4, G3, S7, S8 |
| V. | 4.89 | 21.1-22.1 | 338 | 1340 | W3, W4 |
|  | 0.93 | 1.25-1.50 | 235 | 42-52.5 | $\begin{aligned} & \mathrm{D} 2, \mathrm{D} 9, \mathrm{G} 1, \mathrm{G} 2, \mathrm{~K} 1 \text {, } \\ & \mathrm{K} 3, \mathrm{~S} 7, \mathrm{~S} 9 \end{aligned}$ |
| Zr. | 0.55 | 6.92-7.25 | 265 | 46.6 | E1, K9, S10 |

## References for Table 4e-8

A1. Alekseyevsky, N., and L. Migunov: J. Phys. (U.S.S.R.) 11, 95 (1947).
A2. Allen, Dawton, Lock, Pippard, and Shoenberg: Nature 166, 1071 (1950).
A3. Allen, Dawton, Bar, Mendelssohn, and Olsen: Nature 166, 1071 (1950).
A4. Aschermann, G., and E. Justi: Physil. Z. 43, 207 (1942).
B1. Brown, Zemansky, and Boorse: Phys. Rev. 86, 134 (1952).
C1. Clement, J. R., and E. H. Quinnell: Phys. Rev. 79, 1028 (1950).
C2. Clement, J. R., and E. H. Quinnell: Phys. Rev. 85, 502 (1952).
C3. Clement, J. R., and E. H. Quinnell: Phys. Rev. 92, 258 (1953).
C4. Clusiou, K., and L. Schachinger: Z. angew. Phys. 4, 442 (1952).
C5. Cook, Zemansky, and Boorse: Phys. Rev. 80, 737 (1950).
D1. Daunt, J. G., and C. V. Heer: Phys. Rev. 76, 715 (1949).
D2. Daunt, J. G., and C. V. Heer: Phys. Rev. 76, 1324 (1949).

D3. Daunt, Horseman, and Mendelssohn: Phil. Mag. 27, 754 (1939).
D4. Daunt and Mendelssohn: Proc. Roy. Soc. (London), ser. A, 160, 127 (1937).
D5. Daunt and Smith: Phys. Rev. 88, 309 (1952).
E1. Estermann, Friedberg, and Goldman: Phys. Rev. 87, 582 (1952).
G1. Goodman: Nature 167, 111 (1951).
G2. Goodman and Mendoza: Phil. Mag. 42, 594 (1951).
G3. Goodman and Shoenberg: Nature 165, 441 (1950).
H1. de Haas and Engelkes: Physica 4, 325 (1937).
H2. Horowitz, Silvidi, Malaker, and Daunt: Phys. Rev. 88, 1182 (1952).
J1. Jackson and Preston-Thomas: Phil. Mag. 41, 1284 (1950).
J2. James, Legvold, and Spedding: Phys. Rev. 88, 1092 (1952).
J3. Justi: Physik. Z. 42, 325 (1941).
K1. Keesom: Physica 1, 123 (1933).
K2. Keesom and Desirant: Physica 8, 273 (1941).
K3. Keesom and van den Ende: Leid. Comm. 219b.
K4. Keesom and Kok: Physica 1, 175 (1934).
K5. Keesom and Kok: Physica 1, 503 (1934).
K6. Keesom and van Laer: Physica 4, 487 (1937).
K7. Keesom and van Laer: Physica 5, 193 (1938).
K8. Kok and Keesom: Physica 4, 835 (1937).
K9. Kurti and Simon: Proc. Roy. Soc. (London), ser. A, 151, 610 (1935).
L1. Lock, Pippard, and Shoenberg: Proc. Cambridge Phil. Soc. 47, 811 (1951).
M1. Maxwell: Phys. Rev. 78, 477 (1950).
M2. Maxwell: Phys. Rev. 79, 173 (1950).
M3. Maxwell: Phys. Rev. 86, 235 (1952).
M4. Mendelssohn and Daunt: Nature 139, 473 (1937).
M5. Mendelssohn and Moore: Phil. Mag. 21, 532 (1936).
M6. Misener: Proc. Roy. Soc. (London), ser. A, 174, 262 (1940).
O1. Olsen: Nature 168, 245 (1951).
P1. Parkinson, Simon, and Spedding: Proc. Roy. Soc. (London), ser. A, 207, 137 (1951).

P2. Pickard and Simon: Proc. Phys. Soc. (London) 61, 1 (1948).
P3. Preston-Thomas: Can. J. Phys. 30, 626 (1952).
P4. Preston-Thomas: Phys. Rev. 88, 325 (1952).
R1. Reynolds, Serin, and Nesbitt: Phys. Rev. 84, 691 (1951).
R2. Reynolds, Serin, Wright, and Nesbitt: Phys. Rev. 78, 487 (1950).
S1. Samoilov, Dokl. Akad. Nauk SSSR 81, 79 (1951).
S2. Serin, Reynolds, and Lohman: Phys. Rev. 86, 162 (1952).
S3. Serin, Reynolds, and Nesbitt: Phys. Rev. 78, 813 (1950).
S4. Serin, Reynolds, and Nesbitt: Phys. Rev. 80, 761 (1950).
S5. Shoenberg: Proc. Cambridge Phil. Soc. 36, 84 (1940).
S6. Shoenberg: Nature 142, 874 (1938).
S7. Shoenberg: Proc. Cambridge Phil. Soc. 36, 84 (1940).
S8. Shoenberg: Nature 159, 303 (1947).
S9. Silvidi and Daunt: Phys. Rev. 77, 125 (1950).
S10. Smith and Daunt: Phys. Rev. 88, 1172 (1952).
S11. Smith, Gager, and Daunt: Phys. Rev. 89, 654 (1953).
S12. Steele and Hein: Phys. Rev. 87, 908 (1952).
S13. Steele and Hein: Phys. Rev. 92, 243 (1953).
T1. Tuyn: Leid. Comm. 196b.
T2. Daunt and Cobble: Phys. Rev. 92, 507 (1953).
W1. Webber: Phys. Rev. 72, 1241 (1947).
W2. Webber and Reynolds: Phys. Rev. 73, 640 (1948).
W3. Webber, Reynolds, and McG ire: Phys. Rev. 76, 293 (1949).
W4. Wexler and Corak: Phys. Rev. 85, 85 (1952).
W5. Worley, Zemansky, and Boorse: Phys. Rev. 91, 1567 (1953).
Z1. Ziegler: J. Chem. Phys. 16, 838 (1948).
Z2. Ziegler: J. Am. Chem. Soc. 75, 1215 (1953).

# 4f. Thermal Expansion ${ }^{1}$ 

PETER HIDNERT AND H. S. KRIDER

The National Bureau of Standards

Table 4f-1. Coefficients of Linear* Thermal Expansion of Chemical Elements (Polycrystalline) $\dagger$


See page 4-53 for footnotes.
${ }^{1}$ All tables except $4 \mathrm{f}-7$ and $4 \mathrm{f}-8$ reprinted by permission from "Smithsonian Physical Tables," 9 th ed. Data or references to publications on thermal expansion of other materials may be obtained from the National Bureau of Standards.

Table 4f-1. Coefficients of Linear* Thermal Expansion of Chemical Elements (Polycrystalline) $\dagger$ (Continued)


See page t-58 for footnoten,

## Table 4f-1. Coefficients of Linear* Thermal Expansion of Chemical Elements (Polycrystalline) $\dagger$ (Continued)

| Element | ```Temp. or temp. range, 0}\textrm{C``` | Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ | , Element | Temp. <br> or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Selenium: <br> Polycrystalline. $\qquad$ <br> Amorphous. $\qquad$ <br> Amorphous; melted and cast. . | $\begin{aligned} & -78 \text { to } 19 \\ & +20 \text { to } 100 \\ & 205 \end{aligned}$ | $\therefore$ | Thallium. . . . . . . . . . | 0 to 100 | 29.4 |
|  |  |  |  | 0 to 200 | 30.0 |
|  |  | 20.3 |  |  |  |
|  |  | 22.9 | Thorium. . . . . . . . . . | -216 to 20 | 9.8 |
|  |  | 45.2 |  | +20 to 100 | 11.3 |
|  | $\begin{gathered} 205 \\ -78 \text { to } 0 \end{gathered}$ | 42.7 |  | 20 to 300 | 12.1 |
|  | 0 to 21 | 48.7 |  | 20 to 600 | 13.7 |
|  | -160 to 0 | 37.3 | Tin. | -183 to 20 | 15.8 to 22.6 |
|  | 0 | 43.9 |  | +18 to 100 | 23.8 to 27.0 |
|  |  |  |  | 25 to 200 | 24 |
| Silicon | -172 | $-0.4$ | Titanium. . . . . . . . . | -195 to 20 | $6.8$ |
|  | $+20 \text { to } 50$ | +0.9+2.4 |  |  | 6.8 8.9 |
|  |  |  |  | +20 to 200 | 8.9 |
|  | $\left\lvert\, \begin{gathered} 20 \text { to } 50 \\ 100 \end{gathered}\right.$ | 2.4 2.0 |  | 20 to 400 | 9.4 |
|  |  | $3.0$ |  | 20 to 600 | 9.9 |
|  | $1000$ |  |  | 20 to 800 | 10.1 |
| Silver....... . . . . . . . |  | $3.3$ | Tungsten (wolfram).. | -190 to 0 | 3.8 |
|  | -250 to 0 | 14.9 |  | -100 to 0 | 4.2 |
|  | -191 to 16 | 17.0 |  | 0 to 100 | 4.4 |
|  | 0 to 100 | 19.4 |  | 0 to 300 | 4.6 |
|  | 20 to 300 | 20.2 |  | 0 to 650 | 4.6 |
|  | 20 to 500 | 20.7 |  | 27 to 1000 | 4.7 |
|  | 0 to 900 | 22.4 |  | 27 to 1750 | 5.2 |
|  |  |  |  | 27 to 2400 | 5.8 |
| Sodium..... ...... | $\begin{array}{r} -193 \text { to } 0 \\ 0 \text { to } 17 \\ 0 \text { to } 50 \\ 0 \text { to } 95 \end{array}$ | $\begin{aligned} & 59.8 \\ & 68.2 \\ & 70 \\ & 71 \end{aligned}$ | Vanadium. . . . . . . . . | -183 to 0 | 6.6 |
|  |  |  |  |  |  |
|  |  |  |  | 0 to 40 | 7.8 |
|  |  |  |  |  |  |
|  |  |  | Zincł.... . . . . . . . . . . | -183 to 18 | 9 to 10 |
|  |  |  | Zirconium | $\begin{array}{r} +20 \text { to } 100 \\ 20 \text { to } 200 \\ 20 \text { to } 300 \end{array}$ | $\begin{array}{ll} 17 & \text { to } 40 \\ 30 & \text { to } 40 \end{array}$ |
| Tantalum.......... |  | 6.26.6 |  |  |  |
|  | $\left\lvert\, \begin{aligned} & -190 \text { to } 20 \\ & +20 \text { to } 100\end{aligned}\right.$ |  |  |  | 34 to 39 |
|  | +20 to 100 20 to 300 | 6.6 6.6 |  |  |  |
|  | 20 to 500 | 6.6 |  | -183 to 0 | 4.0 to 5.1 |
|  | 27 to 1400 | 7.3 | Zirconium. . . . . . . . . . | 0 to 20 | 4.6 to 5.9 |
|  | 27 to 2400 | 7.8 |  | +20 to 200 | 4.6 to 5.9 5.4 |
|  |  |  | \% . . | 20 to 400 | 6.1 |
|  | 40 | 16.8 |  | 20 to 700 | 7.1 |

[^177]Table 4f-2. Coefficients of Linear* Thermal Expansion of Chemical Elements (Crystals)

| Element | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient of linear thermal expansion per ${ }^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Parallel to axis | Perpendicular to axis |
| Antimony . | $\begin{gathered} -215 \text { to }+20 \\ +15 \text { to } 25 \\ 0 \text { to } 100 \\ 20 \text { to } 200 \\ 20 \text { to } 400 \end{gathered}$ | $\begin{aligned} & 16.0 \times 10^{-6} \\ & 15.6 \\ & 16.8 \end{aligned}$ | $7.0 \times 10^{-6}$ 8.4 8.1 |
| Arsenic. | 30 to 75 | 3.2 to 6.8 |  |
| Beryllium . | -150 | 1.6 | 2.8 |
|  | + 10 | 8.6 | 11.7 |
|  | 18 to 220 | 10.4 | 15.0 |
|  | 18 to 454 | 13.1 | 15.7 |
| Bismuth. | -140 | 15.9 | 10.5 |
|  | + 30 | 16.2 | 11.6 |
|  | 20 to 260 | 16.5 |  |
|  | 20 to 240 |  | 12.0 |
| Cadmium. | -190 to 18 | 48.2 | 18.5 |
|  | + 20 to 100 | 50.4 | 18.9 |
| Carbon: |  |  |  |
| Graphite. | -195 to 0 |  | 4.8 |
|  | 0 to 40 |  | 6.6 |
|  | 0 to 500 | 17.2 | 1.3 |
|  | 0 to 1000 | 18.8 | 1.8 |
|  | 0 to 1500 | 20.7 | 2.0 |
|  | 0 to 2300 | $23.1$ | 2.4 |
|  | 20 to 870 | 26.7 |  |
| Cobalt. | 33 to 100 | 16.1 | 12.6 |
| Indium. | - 17 to 9 | 56 | 13 |
|  | +23 to 87 | 45.0 | 11.7 |
| Magnesium. | 20 to 100 | 26.4 | 25.6 |
|  | 20 to 200 | 27.7 | 26.6 |
| Mercury . | -190 to -160 | 42.6 | 33.4 |
|  | -188 to -79 | 47.0 | 37.5 |
|  | -120 | 49.6 | 37.5 |

See page 4-55 for footnote.

| Element | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient of linear thermal expansion per ${ }^{\circ} \mathrm{C}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | Parallel to axis | Perpendicular to axis |
| Osmium . | $\begin{array}{r} 50 \\ 250 \\ 500 \end{array}$ | $5.8 \times 10^{-6}$ 6.6 8.3 | $\begin{aligned} & 4.0 \times 10^{-6} \\ & 4.6 \\ & 5.8 \end{aligned}$ |
| Rhenium . | 20 to 1917 | 12.4 | 4.7 |
| Ruthenium | 50 | 8.8 | 5.9 |
|  | 250 | 9.8 | 6.4 |
|  | 550 | 11.7 | 7.6 |
| Selenium . | 15 to 55 | -17.9 |  |
|  | 20 to 60 |  | 74.1 |
| Tellurium. | 20 | $-1.6$ | 27.2 |
|  | 20 to 60 | $-1.7$ | 27.0 |
| Thallium . | 32 to 91 | $+72$ | 9 |
| Tin | -195 to 20 | 25.9 | 14.1 |
|  | 0 to 20 | 29.0 | 15.8 |
|  | + 14 to 25 | 32.2 | 16.8 |
|  | 34 to 194 | 45.8 | 25.7 |
| Zinc | -190 to 18 | 49.5 | 11.3 |
|  | +20 to 100 | 64.0 | 14.1 |
|  | 0 to 250 | 56 | 15 |
|  | 20 to 400 | 59 | 16 |
| Zirconium | 0 to 100 | 4 | 13 |

[^178]Table 4f-3. Coefficients of Cubical Thermal Expansion of Chemical Elements

| Element | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient of cubical thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ | Element | Temp. <br> or <br> temp. <br> range, ${ }^{\circ} \mathrm{C}$ | Coefficient of cubical thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cadmium. . . . | $\begin{aligned} & 100 \\ & 210 \\ & 250 \end{aligned}$ | $\begin{array}{r} 91 \\ 105 \\ 110 \end{array}$ | Potassium <br> Rubidium | 0 to 55 | 240 |
|  |  |  |  |  |  |
|  |  |  |  | 0 to 38 | 270 |
| Carbon: Diamond. | 27 | 3.2 | Selenium: <br> Compressed. . . . . . <br> Not compressed. . . | 0 to 100 | 175 |
|  | 25 to 650 | 9.1 |  | 0 to 100 | 198 |
| Cesium. | 0 to 23 | 291 | Sodium. | -186 to 17 | 186 |
|  |  |  | - | 0 to 53 | 207 |
| Cobalt. | 100300 | 35.6 |  | 0 to 79 | 208 |
|  |  | 39.4 |  | 20 to 95 | 226 |
| Gallium. | $\begin{array}{r} -78 \text { to } 18 \\ 0 \text { to } 29.6 \end{array}$ | $\begin{aligned} & 53 \\ & 55 \end{aligned}$ | Sulfur: <br> Rhombic. |  |  |
|  |  |  |  | -273 to 18 | 139 |
|  |  |  |  | -195 to 18 | 164 |
| Iodine. | $\begin{aligned} & -195 \text { to } 25 \\ & +\quad 10 \text { to } 40 \end{aligned}$ | 204 $\begin{aligned} & \text { to } 251 \\ & 264\end{aligned}$ |  | -79 to 18 | 180 : |
|  |  |  | Crystallized. . . . . | 0 to 100 | 354 |
|  |  |  | Sicilian........... | 0 to 100 | 260 |
| Lithium. . | $\begin{aligned} & 0 \text { to } 100 \\ & 0 \text { to } 178 \end{aligned}$ | $\begin{array}{\|l\|} 162 \\ 170 \end{array}$ |  |  |  |
|  |  |  | Tin. |  | $\begin{aligned} & 68 \\ & 78 \end{aligned}$ |
|  |  |  |  | 140 190 | $\begin{aligned} & 78 \\ & 89 \end{aligned}$ |
| Nickel. | 200 | 41.9 |  |  |  |
|  | 300 | 46.5 | Zinc | 50 | 89 |
|  |  |  |  | 200 | 104 |
| Phosphorus. | $\begin{aligned} & -273 \text { to } 19 \\ & -195 \text { to } 19 \end{aligned}$ | 317 |  | 300 | 110 |
|  |  | 398 |  |  |  |
|  | - 79 to 19 ; | 362 |  |  |  |
|  | 0 to 44 | 372 |  |  |  |

## Table 4f-4. Coefficients of Linear Thermal Expansion of Some Alloys*

| Alloy $\dagger$ | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient $\ddagger$ of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| Aluminum-beryllium, 4.2 to 32.7 Be . | $\begin{aligned} & 20 \text { to } 100 \\ & 20 \text { to } 500 \end{aligned}$ | $\begin{aligned} & 22.4 \text { to } 17.8 \\ & 26.6 \text { to } 22.2 \end{aligned}$ |
| Aluminum-copper, 9.9 Cu . | 20 to 100 | 22.0 |
|  | 20 to 300 | 23.8 |
| 33.2 Cu . | 20 to 100 | 19.7 |
|  | 20 to 300 | 20.8 |
| 回 |  |  |
| Aluminum-nickel, 3.4 Ni. | 20 to 100 | 21.9 |
|  | 20 to 300 | 23.7 |
| 19.5 Ni. | 20 to 100 | 18.2 |
|  | 20 to 300 | 19.5 |
|  | 20 to 100 | 22.2 to 19.4 |
|  | 20 to 300 | 24.8 to 22.1 |
| 19.7 Si | 20 to 100 | 18.5 |
|  | 20 to 300 | 19.0 |
| 40 Si. | 20 to 100 | 14.7 |
|  | 20 to 300 | 17.1 |
| Aluminum-zinc, 0 to 50 Zn . | 20 to 100 | 23.6 to 26.5 |
| Brass, 3 to 40 Zn | 25 to 100 | 16.9 to 19.7 |
|  | 25 to 300 | 17.7 to 21.2 |
| Bronze, 4.2 to 10.1 Sn. | 25 to 100 | 17.1 to 17.8 |
|  | 25 to 300 | $17.8 \text { to } 19.0$ |
| Cast iron. | 20 to 100 | 8.7 to 11.1 |
|  | 20 to 400 | 11.5 to 12.7 |
| Cobalt-iron-chromium, 53.0 to $55.5 \mathrm{Co}, 35.0$ to $37.5 \mathrm{Fe}, 9.0$ to 10.5 Cr . | 20 to 60 | -1.1 to +1 |
| Copper-beryllium, 3.0 Be: | 20 to 100 | 15.9 to 17.3 |
| ! ${ }^{\text {¢ }}$ : | 20 to 300 | 16.4 to 17.4 |
| Copper-mickel, 19.5 Ni. . ${ }^{\text {S }}$. | -182 to 0 | 13.0 |
|  | 0 to 40 | 14.7 |
| 49:8 Ni. | -182 to 0 | 11.8 |
|  | 0 to 40 | 13.7 |
| Copper-tin (see Bronze) |  |  |

Table 4f-4. Coefficients of Linear Thermal Expansion of Some Alloys* (Continued)

| Alloy $\dagger$ | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient $\ddagger$ of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| Copper-zinc (see Brass) |  |  |
| Dumet: |  |  |
| Axial. | 20 to 300 | 6.1 to 6.8 |
| Radial | 20 to 300 | 8.0 to 10.0 |
| Duralumin. | 20 to 100 | 21.9 to 23.8 |
|  | 20 to 500 | 25.4 to 27.6 |
|  | 25 to 300 | 5.0 |
| Invar, $64 \mathrm{Fe}, 36 \mathrm{Ni}$. | 0 to 100 | 0 to 2 |
| Iron-aluminum, 0.5 to 10.5 Al . | 20 to 100 | 11.6 to 12.2 |
|  | 20 to 100 | 12.4 to 9.4 |
| Iron-cobalt 9.9 to 49.4 Co . | 30 to 100 | 11.2 to 9.3 |
| Iron-manganese, 2.8 to 14.4 Mn....... . . . . . . . . . | 20 to 100 | 12.7 to 16.9 |
| Iron-nickel, 3.6 Ni. | 20 to 100 | 10.9 |
| 34.5 Ni. . . . . . . | 20 to 100 | 3.7 |
| 36 Ni | 0 to 100 | $0 \text { to } 2$ |
| 40 to 50 Ni . | 30 to 100 | 4.1 to 9.7 |
| Iron-nickel-chromium, 6.6 to $74.7 \mathrm{Fe}, 1.3$ to 70.1 $\mathrm{Ni}, 4.9$ to 26.7 Cr | 20 to 100 | 8.7 to 18.4 |
|  | 20 to 1000 | 13.1 to 20.6 |
| Iron-nickel-cobalt, 62.5 to $64.0 \mathrm{Fe}, 30.5$ to 34.0 Ni , 3.5 to 6.0 Co | 20 | 0.0 to 0.5 |
| 61.3 Fe, 31.8 Ni, 6.0 Co. | 20 to 100 | 0.9 |
|  | 20 to 240 | 2.4 |
| 58.7 Fe, 32.4 Ni, 8.2 Co | 20 to 200 | 1.7 |
|  | 20 to 295 | 2.6 |
| Iron-silicon, 1.0 to 8.4 Si . . . . . . . . . . . . . . . . . . . . . | 20 to 100 | 12.2 to 11.3 |
|  | 20 to 100 | 11.4 to 11.7 |
|  | 20 to 900 | 13.9 to 15.1 |
| Kovar (see Fernico) |  |  |

Table 4f-4. Coefficients of Linear Thermal Expansion of Some Alloys* (Continued)

| Alloy $\dagger$ | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient $\ddagger$ of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| Lead-antimony, 2.9 to 39.6 Sb . | 20 to 100 | 28.2 to 20.4 |
| Magnesium-aluminum, 10.4 Al. | 20 to 100 | 25.9 |
|  | 20 to 200 | 27.2 |
| 30 Al . | 0 to 100 | 23.7 |
|  | 0 to 200 | 25.1 |
| Magnesium-tin, 20.4 Sn | 30 to 100 | 24.3 |
|  | 30 to 300 | 24.7 |
| 46.3 Sn. | 30 to 100 | 21.1 |
|  | 30 to 300 | 21.3 |
| Magnesium-zinc, 20 Zn . . . . . . . . . . . . . . . . . . . . . . | 40 to 100 | 29.5 |
| 50 Zn . | 40 to 100 | 30.2 |
| Manganin . | 20 to 100 | 18.1 |
|  | 0 to 400 | 18.9 |
|  | 0 to 800 | 21.1 |
| Monel metal. | 25 to 100 | 13.5 to 14.5 |
|  | 25 to 600 | 15.9 to 16.7 |
| Nickel-chromium, 20.4 Cr . . . . . . . . . . . . . . . . . . . . | 20 to 100 | 13.0 |
|  | 20 to 1000 | 17.2 |
| 47.7 Cr. | 20 to 100 | 13.5 |
|  | 20 to 1000 | 17.7 |
| Nickel silver, 62.0 to $63.2 \mathrm{Cu}, 10.0$ to $20.2 \mathrm{Ni}, 17.4$ to 27.1 Zn . | 0 to 100 | 14.8 to 15.4 |
|  | 0 to 400 | 16.8 to 17.4 |
| Platinum-iridium, 20 Ir . | -190 to 0 | 7.5 |
|  | 0 to 100 | 8.3 |
|  | 0 to 1000 | 9.6 |
|  | 0 to 1600 | 10.5 |
| Platinum-rhodium, 20 Rh . | 0 to 500 | 9.6 |
|  | 0 to 1000 | 10.4 |
|  | 0 to 1400 | 11.0 |
| SAE carbon steels§. | 20 to 100 | 8.8 to 14.4 |
| SAE stainless chromium irons. | 20 to 100 | 9.4 to 10.7 |

[^179]
## Table 4f-4. Coefficients of Linear Thermal Expansion of Some Alloys* (Continued)

| Alloy $\dagger$ | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient $\ddagger$ of linear thermal expansion $\times 10^{\circ}$ per ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| Speculum metal | 20 to 100 | 16.0 |
| Stainless steel, 12 Cr | 20 to 100 | 10.0 |
| $18 \mathrm{Cr}, 8 \mathrm{Ni}$. | 20 to 100 | 16.4 |
| Stellite, 55 to $80 \mathrm{Co}, 20$ to $40 \mathrm{Cr}, 0$ to $10 \mathrm{~W}, 0$ to 2 C | 20 to 100 | 11.0 to 14.1 |
|  | 20 to 600 | 13.6 to 16.5 |
| Tantalum carbide. | 20 to 2377 | 8.2 |
| Tungsten carbide +5.9 Co. | 20 to 100 | 4.5 |
|  | 20 to 400 | 5.2 |
| +13.0 Co. | 20 to 100 | 5.2 |
|  | 20 to 400 | 6.0 |
| Zinc-aluminum, 22.6 Al. | 20 to 100 | 26.0 |
|  | 20 to 200 | 28.3 |
| 50 Al. | 20 to 100 | 26.5 |
|  | 20 to 200 | 27.6 |

[^180]Table 4f-5. Coefficients of Linear Thermal Expansion of Some Miscellaneous Materials*

| Material | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ | Material | Temp. or temp. range, ${ }^{\circ} \mathrm{C}$ | Coefficient of linear thermal expansion $\times 10^{6}$ per ${ }^{\circ} \mathrm{C}$ | |
|---|---|---|---|---|---|---|
| Alum: <br> Ammonium........ <br> Ammonium chrome. $\qquad$ <br> Potassium. $\qquad$ <br> Thallium. | 20 to 50 | 9.5 | Mica, muscovite: \\| to cleavage | 0 to 100 |  |
|  |  |  | plane........... |  | 8.5 |
|  | 20 to 50 | 10.. 6 | $\perp$ to cleavage |  |  |
|  | 20 to 50 | 11.0 | plane†.......... | 20 to 300 | 8 to 25 |
|  | 20 to 50 | 13.1 | Mica, phlogopite: \|| to cleavage plane. |  |  |
| Amber.............. | 0 to 50 |  |  | 0 to 100 | 13.5 |
| Bakelite. | 20 to 60 | 21 to 33 | $\perp$ to cleavage plane $\dagger . . .$. | 20 to 100 | 1 to 179 |
| Beryl. | 20 to 100 | 0.3 to 1.6 | Porcelain. | 20 to 200 | 1.6 to 19.6 |
| Carborundum........ | -10 to 40 | 3.0 to 12.4 | Quartz, crystalline |  |  |
|  | 0 to 500 | 7.3 |  | 0 to 100 | 8.0 |
|  | 0 to 1000 | 7.3 8.4 |  | 0 to 300 | 9.6 |
| Concrete. | 0 to 1800 | 9.2 |  | 0 to 500 | 12.2 |
|  | -13 to 27 | 6.8 to 12.7 | $\perp$ to axis.. | 0 to 100 | 14.4 |
|  | - 13 to 88 | 7.5 to 14.0 |  | 0 to 300 | 16.9 |
|  |  |  |  | 0 to 500 | 20.9 |
| Dental amalgam..... | + 20 to 50 | 22 to 28 | Quartz, fused (silica). | 20 to 100 | 0.5 |
| Glass: <br> Miscellaneous...... <br> Pyrex. $\qquad$ |  |  |  | 20 to 1000 | 0.5 |
|  | 0 to 300 | 0.8 to 12.8 | Rocks (American): |  |  |
|  | $20 \text { to } 100$ | 3.1 to 3.5 |  |  |  |
|  |  |  | Igneous..... | 20 to 100 | 3.4 to 11.9 |
|  |  |  | Sedimentary. | 20 to 100 | 2.7 to 12.2 |
| Granites (American). | -20 to 60 | 4.8 to 8.3 | Metamorphic. | 20 to 100 | 2.3 to 11.0 |
| Ice. | -250 | -6.1 | Rubber (hard) $\ddagger . \ldots$ | ¢ | 50 to 84 |
|  | -200 | +0.8 | Slate................ |  |  |
|  | -150 | 16.8 |  | 20 to 100 | 6.3 to 8.3 |
|  | -100$-\quad 50$ | 33.9 | Tooth: |  |  |
|  |  | 45.6 |  |  |  |
|  | 0 | 52.7 | Root.............. . | 20 to 50 | 8.3 |
|  |  |  | Across crown.. | 20 to 50 | 11.4 |
| Magnesia............. | $\left\|\begin{array}{r} 20 \text { to } 500 \\ 20 \text { to } 1000 \end{array}\right\|$ | $12.4$ | Root and crown. | 20 to 50 | 7.8 |
|  |  | $13.7$ | Wood: |  |  |
| Marble.............. | 25 to 100 | 5 to 16 | Along grain........ | 9 | 1 to 11 |
|  |  |  | Across grain. ...... | 9 | 32 to 73 |

[^181]
## Table 4f-6. Cubical Expansion of Liquids

(If $V_{0}$ is the volume at $0^{\circ}$ then at $t^{\circ}$ the expansion formula is $V_{t}=V_{0}(1+\alpha t+$ $\beta t^{2}+\gamma t^{3}$ ). The table gives values of $\alpha, \beta$ and $\gamma$ and $k$, the true coefficient of cubical expansion at $20^{\circ}$ for some liquids and solutions. $\Delta t$ is the temperature range of the observation.)

| Liquid | $\Delta t,{ }^{\circ} \mathrm{C}$ | $\alpha 10^{3}$ | $\beta 10{ }^{6}$ | $\gamma 10^{8}$ | $\begin{gathered} k 10^{3} \\ \text { at } 20^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Acetic acid | 16 to 107 | 1.0630 | 0.12636 | 1.0876 | 1.071 |
| Acetone | 0 to 54 | 1.3240 | 3.8090 | $-0.87983$ | 1.487 |
| Alcohol: |  |  |  |  |  |
| Amyl | -15 to 80 | 0.9001 | 0.6573 | 1.18458 | 0.902 |
| Ethyl, $30 \%$ by vol | 18 to 39 | 0.2928 | 10.790 | -11.87 |  |
| Ethyl, $50 \%$ by vol. | 0 to 39 | 0.7450 | 1.85 | 0.730 |  |
| Ethyl, $99.3 \%$ vol | 27 to 46 | 1.012 | 2.20 |  | 1.12 |
| Ethyl, 500 atm pressure. | 0 to 40 | 0.866 |  |  |  |
| Ethyl, 3,000 atm pressure | 0 to 40 | 0.524 |  |  |  |
| Methyl. | 0 to 61 | 1.1342 | 1.3635 | 0.8741 | 1.199 |
| Benzene.. | 11 to 81 | 1.17626 | 1.27776 | 0.80648 | 1.237 |
| Bromine | 0 to 59 | 1.06218 | 1.87714 | $-0.30854$ | 1.132 |
| Calcium chloride: |  |  |  |  |  |
| $5.8 \%$ solution. | 18 to 25 | 0.07878 | 4.2742 |  | 0.250 |
| $40.9 \%$ solution | 17 to 24 | 0.42383 | 0.8571 |  | 0.458 |
| Carbon disulfide. | -34 to 60 | 1.13980 | 1.37065 | 1.91225 | 1.218 |
| 500 atm pressure | 0 to 50 | 0.940 |  |  |  |
| $3,000 \mathrm{~atm}$ pressure | 0 to 50 | 0.581 |  |  |  |
| Carbon tetrachloride | 0 to 76 | 1.18384 | 0.89881 | 1.35135 | 1.236 |
| Chloroform. | 0 to 63 | 1.10715 | 4.66473 | - 1.74328 | 1.273 |
| Ether | -15 to 38 | 1.51324 | 2.35918 | 4.00512 | 1.656 |
| Glycerin |  | 0.4853 | 0.4895 |  | 0.505 |
| Hydrochloric acid, $33.2 \%$ solution. | 0 to 33 | 0.4460 | 0.215 |  | 0.455 |
| Mercury | 0 to 100 | 0.18182 | 0.0078 |  | 0.18186 |
| Olive oil |  | 0.6821 | 1.1405 | - 0.539 | 0.721 |
| Pentane. | 0 to 33 | 1.4646 | 3.09319 | 1.6084 | 1.608 |
| Petroleum, density 0.8467 | 24 to 120 | 0.8994 | 1.396 |  | 0.955 |
| Potassium chloride, $24.3 \%$ solution. | 16 to 25 | 0.2695 | 2.080 |  | 0.353 |
| Phenol.... | 36 to 157 | 0.8340 | 0.10732 | 0.4446 | 1.090 |
| Sodium chloride, $20.6 \%$ solution. | 0 to 29 | 0.3640 | 1.237 |  | 0.414 |
| Sodium sulfate, $24 \%$ solution . | 11 to 40 | 0.3599 | 1.258 |  | 0.410 |
| Sulfuric acid: |  |  |  |  |  |
| $10.9 \%$ solution $100.0 \%$ | 0 to 30 0 | 0.2835 0.5758 | 2.580 -0.432 |  | 0.387 |
| $100.0 \%$ Turpentine | ( $\begin{gathered}0 \text { to } 30 \\ -9 \text { to } 106\end{gathered}$ | 0.5758 0.9003 | -0.432 1.9595 |  | 0.558 <br> 0.973 |
| Turpentine | $\left\lvert\, \begin{gathered}-9 \text { to } 106 \\ 0 \text { to } 33\end{gathered}\right.$ | 0.9003 -0.06427 | 1.9595 8.5053 | - 0.44998 | (1) $\begin{aligned} & 0.973 \\ & 0.207\end{aligned}$ |

Table 4f-7. Coefficients of Linear Expansion* of
Some Semiconductors, $\left({ }^{\circ} \mathrm{C}\right)^{-1}$

| Material | Coefficient $\dagger$ | Reference | |
|---|---|---|---|
| CdS (\\|). | $4 \times 10^{-6}$ at $25^{\circ} \mathrm{C}$ |  |
| CdS ( $\perp$ ). | $6 \times 10^{-6}$ at $25^{\circ} \mathrm{C}$ | R. Seiwert, Ann. Physik 6, 241 (1949) |
| Germanium. | $5.5 \times 10^{-6}$ at $25^{\circ} \mathrm{C}$ | M. E. Fine, J. Appl. Phys. 24, 338 (1953) |
| PbS. | $19 \times 10^{-6}$ at $40^{\circ} \mathrm{C}$ | S. S. Sharma, Proc. Indian Acad. Sci. A34, 72 (1951) |
| PbSe | $20 \times 10^{-6}$ | T. S. Moss, "Photoconductivity, in |
| PbTe | $27 \times 10^{-6}$ | the Elements," pp. 66 and 67, But- |
| ZnS. | $7 \times 10^{-6}$ | terworth \& Co. (Publishers), Ltd., London, 1952 |
| Gray tin. | $5.3 \times 10^{-6},-163$ to $18^{\circ} \mathrm{C}$ | ASM "Metals Handbook," p. 1070, American Society for Metals (1948) |
| $\mathrm{TiO}_{2}$. | $9 \times 10^{-6}$ | Von Hippel, Breckenridge, Chesley, and Tisza, Ind. Eng. Chem. 38, 1097 (1946) |
| $\mathrm{UO}_{2}$. | $11.5 \times 10^{-8}, 20$ to $720^{\circ} \mathrm{C}$ | J. Thewliss, Acta Cryst. 5, 790 (1952) |

* Compiled by Mark W. Zemansky, The City College of New York.
$\dagger$ Temperature or temperature range for coefficients of $\mathrm{PbSE}, \mathrm{PbTe}, \mathrm{ZnS}$, and $\mathrm{TiO}_{2}$ not indicated in the publications cited.

An approximate relation between the coefficient of volume expansion,

$$
\beta=(1 / v)(\partial v / \partial T)_{P}
$$

and the temperature is given by Grüneisen's equation

$$
\begin{equation*}
\beta=\frac{C_{v}}{Q_{0}\left[1-k\left(E / Q_{0}\right)\right]^{2}} \tag{4f-1}
\end{equation*}
$$

where $C_{v}$ is the molar heat capacity at constant volume, $E$ is the energy of the lattice vibrations, and $Q_{0}$ and $k$ are constants. If the Debye temperature $\Theta$ is known, both $C_{v}$ and $E$ may be calculated at any value of $T$ from the equations

$$
\begin{align*}
C_{v} & =3 R\left[12\left(\frac{T}{\Theta}\right)^{3} \int_{0}^{\Theta / T} \frac{y^{3} d y}{e^{y}-1}-3 \frac{\Theta / T}{e^{\theta / T}-1}\right]  \tag{4f-2}\\
E & =\int_{0}^{T} C_{v} d T \tag{4f-3}
\end{align*}
$$

Values of $C_{v}$ for many values of $\theta / T$ are given in Table 4e-3, and values of $E$ in Table 4e-4. Thus, if $\Theta, Q_{0}$, and $k$ are known, $\beta$ can be calculated. Table $4 \mathrm{f}-8$ lists the values of $\theta, Q_{0}$, and $k$ for 24 metals which are consistent with the experimentally determined values of $\beta$ measured by Adenstedt, ${ }^{1}$ Erfling, ${ }^{2}$ and Nix and MacNair. ${ }^{3}$ The values of $\theta$ listed in Table $4 \mathrm{f}-8$ are not in perfect agreement with those determined from low-temperature heat capacities. (For the most reliable values of $\theta$ obtained from low-temperature heat capacities, see Table 4e-7.)

Another consequence of Grüneisen's theory of the solid state is the approximate proportionality of $Q_{0}$ with the melting temperature $T_{m}$. Values of $T_{m}$ are listed in the last column of Table 4f-8.

[^182]Table 4f-8. Constants* in Grüneisen's Equation for Thermail Expansion

| Metal | 日, ${ }^{\circ} \mathrm{K}$ | $\begin{gathered} Q_{0} \\ \mathrm{kcal} / \mathrm{mole} \end{gathered}$ | $k$ | $T_{m},{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: |
| Ag. | 215 | 108.8 | 2.42 | 1234 |
| Al. | 400 | 83.6 | 2.7 \% | 933 |
| Au . | 190 | 148.8 | 3.4 | 1336 |
| Be. | 1000 | 106.0 | 2.4 | 1623 |
| Bi. | 147 | 150.0 | 0.5 | 544 |
| Ca | 220 | 96.0 | 3.8 | 1083 |
| Cr | 430 | 277.0 | 1.7 |  |
|  | 490 | 294 | 2.0 | 1888 |
| Cu . | 315 | 120 | 2.8 | 1357 |
| Fe . | 420 | 166.7 | 3.7 | 1806 |
| $\beta \mathrm{Mn}$. | 330 | 85.0 | 3.3 | 1533 |
| Mo. | 390 | 363.0 | 3.0 | 2893 |
| Nb. | 280 | 290.5 | 7.0 | 2773 |
| Ni. | 400 | 151.5 | 4 | 1725 |
| Pb . | 88 | 77.84 | 3.19 | 601 |
| Pd. | 300 | 163.7 | 0.49 | 1825 |
| Pt. | 230 | 221 | 2.21 | 2042 |
| Rh. | 350 | 229.5 | 2.5 | 2233 |
| Sb. | 201 | 179.0 | 0.4 | 904 |
| Sn. | 180 | 112.0 | 6.0 | 505 |
| Ta | 252 | 292.4 | 0.2924 | 3278 |
| Th. | 200 | 184.5 | 2.0 | 2118 |
| V. | 450 | 215.5 | 6.5 | 2008 |
| W. | 310 | 471.2 | 30.63 . | 3653 |
| Zn . | 235 | 68.6 | 3.33 | 693 |

* Compiled by Mark W. Zemansky, The City College of New York.


# 4g. Thermal Conductivity 

W. E. FORSYTHE ${ }^{1}$<br>The Smithsonian Institution<br>ROBERT L. POWELL ${ }^{2}$<br>NBS-AEC Cryogenic Engineering Laboratory

${ }^{4}$ High-temperature thermal conductivitien reprinted by permiagion from the "Emithsonian Physical Tables;" 9th ed.

1 Low-tomperature thermal oonduotivities.
Table 4g-1. Conversion Factors for Thermal Conductivity

| \% | Watts <br> $\mathrm{cm}^{-2}$ <br> ${ }^{\circ} \mathrm{K}^{-1}$ <br> cm | Watts in. ${ }^{-2}$ ${ }^{\circ} \mathrm{F}^{-1}$ in. | Watts meter ${ }^{-2}$ ${ }^{\circ} \mathrm{K}^{-1}$ meter | $\begin{aligned} & \text { Calories } \\ & \mathrm{sec}^{-1} \\ & \mathrm{~cm}^{-2} \\ & { }^{\circ} \mathrm{K}^{-1} \mathrm{~cm} \end{aligned}$ | $\begin{aligned} & \text { Calories } \\ & \sec ^{-1} \\ & \text { in. } \\ & { }^{\circ} \mathrm{F}^{-1} \mathrm{in} . \end{aligned}$ | $\begin{gathered} \mathrm{K} \text { calories } \\ \mathrm{hr}^{-1} \\ \text { meter }^{-2} \\ { }^{\circ} \mathrm{K}^{-1} \text { meter } \end{gathered}$ | $\begin{gathered} \mathrm{Btu} \\ \mathrm{hr}^{-1} \\ \mathrm{ft}^{-2} \\ { }^{\circ} \mathrm{F}^{-1} \mathrm{in} . \end{gathered}$ | $\begin{gathered} \mathrm{Btu} \\ \mathrm{hr}^{-1} \\ \mathrm{ft}^{-2} \\ { }^{\circ} \mathrm{F}-1 \mathrm{ft} \end{gathered}$ | $\begin{gathered} \mathrm{Btu} \\ \mathrm{sec}^{-1} \\ \mathrm{in}^{-2} \\ { }^{\circ} \mathrm{F}^{-1} \mathrm{in} . \end{gathered}$ | $\begin{gathered} \mathrm{Btu} \\ \mathrm{hr}^{-1} \\ \mathrm{in} .^{-2} \\ { }^{-\mathrm{F}^{-1}} \mathrm{in} . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { Watt-cm }}{\mathrm{cm}^{2} \mathrm{~K}}=$ | 1.000 | 1.411 | 100.0 | 0.2389 | 0.3371 | 86.00 | 693.46 | 57.79 | $1.338 \times 10^{-3}$ | 4.816 |
| $\frac{\text { Watts-in. }}{\overline{\mathrm{n} .} .^{2}-{ }^{\circ} \mathrm{F}}=$ | 0.7087 | 1.000 | 70.87 | 0.1693 | 0.2389 | 60.95 | 491.4 | 40.95 | $9.480 \times 10^{-4}$ | 3.413 |
| $\frac{\text { Watts-meter }}{\text { meter }^{2}{ }^{2} \mathrm{~K}}=$ | 0.01 | $1.411 \times 10^{-2}$ | 1.000 | $2.389 \times 10^{-3}$ | $3.371 \times 10^{-3}$ | 0.860 | 6.935 | 0.5779 | $1.338 \times 10^{-5}$ | $4.816 \times 10^{-2}$ |
| $\frac{\text { Calories-cm }}{\sec -\mathrm{cm}^{2} \mathrm{~K}}=$ | 4.1858 | 5.907 | 418.58 | 1.000 | 1.411 | 360 | 2,902.7 | 241.9 | $5.602 \times 10^{-3}$ | 20.16 |
| ${\underset{\text { Sec-in. }}{ }{ }^{\circ} \mathrm{F} \mathrm{~F}}_{\text {Calories-in. }}^{\text {and }}$ | 2.966 | 4.1858 | 296.6 | 0.7087 | 1.000 | 255.1 | 2,057.0 | 171.4 | $3.968 \times 10^{-3}$ | 14.28 |
| $\frac{\text { S calories-meter }}{\mathrm{hr} \text {-meter } 2^{2} \mathrm{~K}}=$ | $1.162 \times 10^{-2}$ | $1.641 \times 10^{-2}$ | 1.163 | $2.778 \times 10^{-3}$ | $3.920 \times 10^{-3}$ | 1.000 | 8.050 | 0.6721 | $1.556 \times 10^{-5}$ | $5.599 \times 10^{-2}$ |
| $\frac{\mathrm{Btu}-\mathrm{in} .}{\mathrm{hr}-\mathrm{ft}^{\circ} \cdot \mathrm{F}}=$ | $1.442 \times 10^{-3}$ | $2.035 \times 10^{-3}$ | 0.1442 | $3.445 \times 10^{-4}$ | $4.861 \times 10^{-4}$ | 0.1242 | 1.000 | $8.33 \times 10^{-2}$ | $1.929 \times 10^{-6}$ | $6.944 \times 10^{-3}$ |
| $\frac{\mathrm{Btu}-\mathrm{ft}}{\mathrm{hr}-\mathrm{ft}^{\circ} \mathrm{F}}=$ | $1.730 \times 10^{-2}$ | $2.442 \times 10^{-2}$ | 1.730 | $4.135 \times 10^{-3}$ | $5.834 \times 10^{-3}$ | 1.489 | 12 | 1.000 | $2.315 \times 10^{-5}$ | $8.333 \times 10^{-2}$ |
| $\frac{\text { Btu-in. }}{\sec ^{2}-\mathrm{in}^{2}{ }^{\circ} \mathrm{F}}=$ | 747.38 | 1,054.8 | $7.4738 \times 10^{4}$ | 178.5 | 252.0 | $6.428 \times 10^{4}$ | $5.184 \times 10^{6}$ | $4.3191 \times 10^{4}$ | 1.000 | 3,600 |
| $\frac{\text { Bta-in. }}{\mathrm{gr}-\mathrm{in}^{2} \cdot{ }^{\circ} \mathrm{F} \mathrm{~F}}=$ | 0.2076 | 0.2930 | 20.76 | $4.960 \times 10^{-2}$ | $7.002 \times 10^{-2}$ | 17.86 | 144 | 12 | $2.778 \times 10^{-4}$ | 1.000 |

Table 4g-2. Thermal Conductivity of Metals and Alloys

| Substance | $t^{\circ} \mathrm{C}$ | $\left\lvert\, \begin{gathered} \text { cal } \mathrm{cm} / \\ \sec \mathrm{cm}^{\circ}{ }^{\circ} \mathrm{C} \end{gathered}\right.$ | $\boldsymbol{\alpha}$ | Substance | $t^{\circ} \mathrm{C}$ | $\left\lvert\, \begin{gathered} \text { cal } \mathrm{cm} / \\ \operatorname{sec~cm}^{\circ}{ }^{\circ} \mathrm{C} \end{gathered}\right.$ | $\boldsymbol{\alpha}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum. | -190 | 0.497 |  | Molybdenum. | 17 | 0.346 | -0.0001 |
| Aluminum. | 30 | 0.497 | +0.0030 | Nickel. | -160 | 0.129 |  |
| Aluminum | 76.4 | 0.550 |  | Nickel. | 18 | 0.1420 |  |
| Antimony | 0 | 0.0442 |  | Nickel. | 0 | 0.1425 |  |
| Antimony | 100 | 0.0396 | -0.00104 | Nickel. | 100 | 0.1380 | -0.00032 |
| Bismuth. | -186 | 0.025 |  | Nickel. | 200 | 0.1325 |  |
| Bismuth | 18 | 0.0194 | -0.0021 | Nickel. | 700 | 0.069 | -C.00095 |
| Bismuth | 100 | 0.0161 | -0.0021 | Nickel. | 1000 | 0.064 |  |
| Brass | -160 | 0.181 |  | Nickel. | 1200 | 0.058 | -0.00047 |
| Brass. | 17 | 0.260 |  | Palladium | 18 | 0.1683 |  |
| Brass, yellow. | 0 | 0.204 | +0.0024 | Palladium | 100 | 0.182 | +0.0010 |
| Brass, red. | 0 | 0.246 | +0.0015 | Platinum. | 18 | 0.1664 |  |
| Cadmium, pure. | -160 | 0.239 |  | Platinum | 100 | 0.1733 | +0.00051 |
| Cadmium, pure. | 18 | 0.222 | -0.00038 | Pt $10 \% \mathrm{Ir}$. | 17 | 0.074 | +0.0002 |
| Cadmium, pure. | 100 | 0.215 | -0.00038 | Pt 10\% Rh. | 17 | 0.072 | +0.0002 |
| Constantan | 18 | 0.0540 | +0.00227 | Platinoid. | 18 | 0.060 |  |
| $(60 \mathrm{Cu}+40 \mathrm{Ni})$ | 100 | 0.0640 | +0.00227 | Potassium | 5.0 | 0.232 |  |
| Copper,* pure. | -160 | 1.079 |  | Potassium | 57.4 | 0.216 | -0.0013 |
| Copper,* pure. | 18 | 0.918 | -0.00013 | Rhodium. | 17 | 0.210 | -0.0010 |
| Copper,* pure | 100 | 0.908 | -0.00013 | Silver, pure. | -160 | 0.998 |  |
| German silver. | 0 | 0.070 | +0.0027 | Silver | 18 | 1.006 |  |
| Gold. | -190 | 0.793 | -0.00007 | Silver. | 100 | 0.992 | 0.00017 |
| Gold | 17 | 0.705 |  | Sodium | 5.7 | 0.321 |  |
| Graphite. | 17 | 0.037 | +0.0003 | Sodium. | 88.1 | 0.288 | -0.0012 |
| Iridium. | 17 | 0.141 | -0.0005 | Steel. | 18 | 0.110 |  |
| Iron, $\dagger$ pure. | 18 | 0.161 | -0.0008 | Tantalum. | 17 | 0.130 | -0.0001 |
| Iron, $\dagger$ pure. | 100 | 0.151 | -0.0008 | Tantalu | 1700 | 0.174 |  |
| Iron, wrought...... | -160 | 0.152 |  | Tantalum | 1900 | 0.186 | +0.00032 |
| Iron, |  |  |  | Tantalum | 2100 | 0.198 | +0.00032 |
| polycrystalline | 30 | 0.173 |  | Tin | 0 | 0.155 | -0.00069 |
| Iron, |  |  |  | Tin. | 100 | 0.145 | -0.00069 |
| polycrystalline | 100 | 0.163 |  | Tin, pure. | -160 | 0.192 |  |
|  |  |  | -0.0008 | Tungsten. | 17 | 0.476 | -0.0001 |
| polycrystalline | 200 | 0.147 |  | Tungsten. | 1600 | 0.249 |  |
| Iron, |  |  |  | Tungsten. | 2000 | 0.272 | +0.00023 |
| polyorystalline .. | 800 | 0.071 |  | Tungsten. | 2400 | 0.294 |  |
| Iron, steel, $1 \%$ C. | 18 | 0.108 | -0.0001 | Tungsten. | 2800 | 0.313 | +0.00016 |
| Iron, steel, 1\% C. . | 100 | 0.107 | -0.0001 | Wood's alloy |  | 0.319 |  |
| Lead, pure. | -160 | 0.092 |  | Zinc, pure. | -160 | 0.278 |  |
| Lead, pure. | 18 | 0.083 | -0.0001 | Zinc, |  |  |  |
| Lead, pure. | 100 | 0.081 | -0.0001 | polycrystalline | 0 | 0.280 |  |
| Magnesium. | 0 to 100 | 0.376 |  | Zinc, |  |  |  |
| Manganin. | -160 | 0.035 |  | polycrystalline | 200 | 0.250 |  |
| $\begin{array}{r} \text { Manganin }(84 \mathrm{Cu} \\ +4 \mathrm{Ni} 12 \mathrm{Mn}) . \end{array}$ | 18 100 | $\begin{aligned} & 0.0519 \\ & 0.0630 \end{aligned}$ | +0.0026 | Zinc, polycrystalline | 400 | 0.231 |  |
| Mercury. | 0 | 0.0148 |  | Zinc, liquid...... | 500 | 0.144 |  |
| Mercury . | 50 | 0.0189 | +0.0055 |  |  |  |  |

The coefficient $k$ is the quantity of heat in small calories which is transmitted per second through a plate 1 cm thick per square centimeter of its surface when the difference of temperature between the two faces of the plate is $1^{\circ} \mathrm{C}$. The coefficient $k$ is found to vary with the absolute temperature of the plate, and is expressed approximately by the equation $k_{t}=k_{0}\left[1+a\left(t-t_{0}\right)\right] . \quad k_{0}$ is the conductivity at $t_{0}$, the lower temperature of the bracketed pairs in the table, $k_{t}$ that at temperature $t$, and $a$ is a constant.

* Copper: 100 to $197^{\circ} \mathrm{C}, k_{t}=1.043 ; 100$ to $268^{\circ}, 0.969 ; 100$ to $370^{\circ}, 0.931 ; 100$ to $541^{\circ}, 0.902$.
$\dagger$ Ircn: 100 to $727^{\circ} \mathrm{C}, k_{t}=0.202 ; 100$ to $912^{\circ}, 0.184 ; 100$ to $1245^{\circ}, 0.191$.

Table 4g-3. Thermal Conductivity of Insulating Materials*

| Material | $\begin{gathered} \text { Density } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$ | $t^{\circ} \mathrm{C}$ | Conductivity |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\frac{\text { watt cm }}{\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}}$ | $\frac{\text { cal } \mathrm{cm}}{\text { sec } \mathrm{cm}^{2}{ }^{\circ} \mathbf{C}}$ |
| Air, 76 cm Hg . | 0.00129 | 0 | 0.00023 | 0.000055 |
| Asbestos wool. | 0.40 | $-100$ | 0.00068 | 0.000162 |
| Asbestos wool. | 0.40 | 0 | 0.00090 | 0.000215 |
| Asbestos wool. | 0.40 | +100 | 0.00101 | 0.00024 |
| Asbestos with $85 \% \mathrm{MgO}$. | 0.3 | 30 | 0.00075 | 0.000179 |
| Brick, very porous, dry. | 0.71 | 20 | 0.00174 | 0.00042 |
| Brick, machine-made, dry. | 1.54 | 0 | 0.00038 | 0.000091 |
| Brick, machine-made, moist, $1.2 \%$ vol. |  | 50 | 0.00096 | 0.00023 |
| Calorox, fluffy mineral matter. | 0.064 | 30 | 0.00032 | 0.000076 |
| Celluloid, white. | 1.4 | 30 | 0.00021 | 0.000050 |
| Cement mortar | 2.0 | 90 | 0.0055 | 0.0013 |
| Chalk. |  |  | 0.0092 | 0.0022 |
| Charcoal | 0.18 | 20 | 0.00055 | 0.00013 |
| Coke dust. | 1.0 | 20 | 0.0015 | 0.00036 |
| Concrete | 1.6 | 0 | 0.008 | 0.002 |
| Cork. | 0.05 | 0 | 0.00032 | 0.000076 |
| Cork | 0.05 | 100 | 0.00041 | 0.000098 |
| Cork | 0.35 | 0 | 0.00061 | 0.000146 |
| Cork. | 0.35 | 100 | 0.00079 | 0.000189 |
| Cotton, tightly packed. | 0.08 | -150 | 0.00038 | 0.000091 |
| Cotton, tightly packed. | 0.08 | 0 | 0.00056 | 0.000133 |
| Cotton, tightly packed | 0.08 | +150 | 0.00076 | 0.00018 |
| Cotton wool, tightly packed. | 0.08 | 30 | 0.00042 | 0.00010 |
| Diatomite (binders may increase $100 \%$ )....... | 0.20 | 0 | 0.00052 | 0.00012 |
| Diatomite (binders may increase $100 \%$ )....... | 0.20 | 400 | 0.00094 | 0.00022 |
| Diatomite (binders may increase $100 \%$ )...... | 0.50 | 0 | 0.00086 | 0.00021 |
| Diatomite (binders may increase $100 \%$ )....... | 0.50 | 400 | 0.00157 | 0.00037 |
| Ebonite. | 1.19 | -190 | 0.00138 | 0.00033 |
| Ebonite. | 1.19 | - 78 | 0.00157 | 0.00038 |
| Ebonite. | 1.19 | 0 | 0.00160 | 0.00038 |
| Felt, flax fibers. | 0.18 | 30 | 0.00047 | 0.00011 |
| Felt, hair | 0.27 | 30 | 0.00036 | 0.000086 |
| Felt, wool | 0.15 | 40 | 0.00063 | 0.000151 |
| Felt, wool | 0.33 | 30 | 0.00052 | 0.000124 |
| Flannel. |  |  |  | 0.000023 |
| Fuller's earth. | 0.53 | 30 | 0.00101 | 0.00024 |
| Glass, lead |  | 15 | 0.0060 | 0.00143 |
| Glass, soda | 2.59 | 20 | 0.0072 | 0.00172 |
| Glass, soda | 2.59 | 100 | 0.0076 | 0.00182 |

[^183]Table 4g-3. Thermal Conductivity of Insulating Materials (Continued)

| Material | $\begin{gathered} \text { Density } \\ \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$ | $t^{\circ} \mathrm{C}$ | Conductivity |  | |
|---|---|---|---|---|---|
|  |  |  | $\frac{\text { watt cm }}{\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}}$ | $\frac{\mathrm{cal} \mathrm{cm}}{\mathrm{sec} \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}}$ |
| Glass, wool | 0.22 | 50 | 0.00042 | 0.000100 |
| Glass, wool | 0.22 | 100 | 0.00050 | 0.000120 |
| Glass, wool | 0.22 | 200 | 0.00065 | 0.000155 |
| Glass, wool | 0.22 | 300 | 0.00081 | 0.000195 |
| Graphite, 100 mesh | 0.48 | 40 | 0.0018 | 0.00044 |
| Graphite, 40 mesh | 0.42 | 40 | 0.0038 | 0.00093 |
| Graphite, 20 to 40 mesh | 0.70 | 40 | 0.0129 | 0.0031 |
| Horsehair, compressed. | 0.17 | 20 | 0.00051 | 0.000122 |
| Ice. | 0.92 | 0 | 0.022 | 0.0053 |
| Leather, chamois. |  | 85 | 0.00063 | 0.000151 |
| Leather, cowhide |  | 85 | 0.00176 | 0:000421 |
| Leather, sole | 1.0 | 30 | 0.0016 | 0.00038 |
| Linen |  | 20 | 0.00086 | 0.00021 |
| Linoleum, cork | 0.54 | 20 | 0.00080 | 0.000191 |
| Mica, average |  | 50 | 0.0050 | 0.0012 |
| Micanite. |  | 30 | 0.0021-0.0042 | 0.000050-0.00010 |
| Mineral wool | 0.15 | 30 | 0.00042 | 0.00010 |
| Mineral wool. | 0.30 |  | 0.00052 | 0.00012 |
| Paper, rice. |  | 40 | 0.00046 | 0.00011 |
| Paper, blotting |  | 20 | 0.00063 | 0.00015 |
| Paraffin wax | 0.89 | 30 | 0.0023 | 0.00055 |
| Peat, dry. | 0.19 | 30 | 0.00052 | 0.00012 |
| Peat, blocks. | 0.84 | 20 | 0.0017 | 0.00041 |
| Porcelain. |  | 90 | 0.0104 | 0.0025 |
| Rocks: |  |  |  |  |
| Basalt. |  | 20 | 0.020 | 0.0048 |
| Chalk |  |  | 0.0092 | 0.0022 |
| Granite. | 2.8 |  | 0.022 | 0.0053 |
| Limestone, very variable | 2.0 | 20 | 0.010 | 0.0024 |
| Slate, $\perp$ to cleavage. |  | 95 | 0.014 | 0.0033 |
| Slate, \\| to cleavage. |  | 95 | 0.025 | 0.0060 |
| Sandstone, air-dried. | 2.2 | 20 | 0.013 | 0.00031 |
| Sandstone, freshly cut. | 2.3 | 20 | 0.017 | 0.00041 |
| Rubber, rigid sponge, hard. | 0.09 | 25 | 0.00037 | $0.00008{ }^{\prime}$ |
| Rubber, sponge, vulcanized. | 0.22 | 20 | 0.00054 | 0.00013 |
| Rubber, commercial, 40\% rubber. | :.... | 25 | 0.0028 | 0.00067 |
| Rubber, commercial, $92 \%$ rubber. |  | 25 | 0.0016 | 0.00038 |
| Sawdust. | 0.20 | 30 | 0.00060 | 0.000143 |
| Shellac |  |  | 0.0023 | 0.0006 |
| Silk. |  |  | 0.00040 | 0.00010 |
| Silk scrap from spinning mill.. | 0.10 | -200 | 0.00023 | 0.000055 |
| Silk scrap from spinning mill. | 0.10 | -100 | 0.00037 | 0.000088 |

Table 4g-3. Thermal Conductivity of Insulating Materials (Continued)

| Material | Density $\mathrm{g} / \mathrm{cm}^{3}$ | $t^{\circ} \mathrm{C}$ | Conductivity |  | |
|---|---|---|---|---|---|
|  |  |  | $\frac{\text { watt cm }}{\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}}$ | $\frac{\text { cal cm }}{\sec \mathrm{cm}^{\text {² }}{ }^{\circ} \mathrm{C}}$ |
| Silk scrap from spinning mill. | 0.10 | 0 | 0.000495 | 0.000118 |
| Silk scrap from spinning mill.. | 0.10 | 50 | 0.00056 | 0.000134 |
| Snow. | 0.25 | 0 | 0.0016 | 0.00038 |
| Steel wool | 0.15 | 55 | 0.00080 | 0.000191 |
| Steel wool. | 0.08 | 55 | 0.00090 | 0.00022 |
| Woods: |  |  |  |  |
| Ash $\perp$ to grain | 0.74 | 20 | 0.0017 | 0.00041 |
| Ash \|| to grain. | 0.74 | 20 | 0.0031 | 0.00074 |
| Balsa $\perp$ to grain | 0.11 | 30 | 0.00045 | 0.000084 |
| Boxwood. | 0.90 | 20 | 0.0015 | 0.00036 |
| Cedar $\perp$ to grain | 0.48 |  | 0.0011 | 0.00027 |
| Cypress $\perp$ to grain | 0.46 | 30 | 0.00096 | 0.00023 |
| Fir $\perp$ to grain. | 0.54 | 20 | 0.0014 | 0.00033 |
| Fir \|| to grain. | 0.54 | 20 | 0.0035 | 0.00081 |
| Lignum vitae. | 1.16 | 20 | 0.0025 | 0.00060 |
| Lignum vitae. | 1.16 | 100 | 0.0030 | 0.00072 |
| Mahogany, $\perp$ to grain. | 0.70 | 20 | 0.0016 | 0.00038 |
| Mahogany, \|| to grain | 0.70 | 20 | 0.0031 | 0.00074 |
| Oak, $\perp$ to grain. | 0.82 | 15 | 0.0021 | 0.00050 |
| Oak, $\\|$ to grain | 0.82 | 15 | 0.0036 | 0.00086 |
| Pine, pitch, $\perp$ to grain |  | 30 | 0.0015 | 0.00036 |
| Pine, Virginia, $\perp$ to grain. | 0.55 | 30 | 0.0014 | 0.00033 |
| Pine, white, $\perp$ to grain. | 0.45 | 60 | 0.0011 | 0.00026 |
| Pine, white, \|| to grain | 0.45 | 60 | 0.0026 | 0.00062 |
| Spruce, $\perp$ to grain. | 0.41 |  | 0.0011 | 0.00026 |
| Teak, $\perp$ to grain. | 0.64 | 15 | 0.00175 | 0.00042 |
| Teak, \|| to grain | 0.64 | 15 | 0.0038 | 0.00091 |
| Walnut, $\perp$ to grain. | 0.65 | 20 | 0.0014 | 0.00033 |
| Wool, pure. | 0.09 | 30 | 0.00036 | 0.000086 |
| Wool, pure, very loose packing | 0.04 | 30 | 0.00042 | 0.00010 |

Table $4 \mathrm{~g}-4$. Thermal Conductivity of Water*

| $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} k, \\ 10^{-5} \text { watt } / \mathrm{cm}^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} k, \\ 10^{-5} \mathrm{watt} / \mathrm{cm}{ }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} k, \\ 10^{-5} \text { watt } / \mathrm{cm}^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 554 | 100 | 680 | 200 | 666 |
| 10 | 576 | 110 | 684 | 210 | 659 |
| 20 | 598 | 120 | 686 | 220 | 652 |
| 30 | 615 | 130 | 687 | 230 | 644 |
| 40 | 630 | 140 | 686 | 240 | 635 |
| 50 | 643 | 150 | 685 | 250 | 624 |
| 60 | 654 | 160 | 682 | 260 | 614 |
| 70 | 665 | 170 | 680 | 270 | 602 |
| 80 | 671 | 180 | 676 | 280 | 590 |
| 90 | 676 | 190 | 672 | 290 | 576 |
| 100 | 680 | 200 | 666 | 300 | 564 |

[^184]Table 4g-5. Thermal Conductivity of Organic Materials


Table 4g-6. Thermal Conductivity of Gases
The conductivity of gases, $k_{t}=\frac{1}{2}(9 \gamma-5) \mu C_{v}$, where $\gamma$ is the ratio of the specific heats, $C_{p} / C_{v}$, and $\mu$ is the viscosity coefficient (Jeans, "Dynamical Theory of Gases," 1916). Theoretically $k_{t}$ should be independent of the density and has been found to be so by Kundt and Warburg and others within a wide range of pressure below 1 atm . It increases with the temperature.

| Gas | $t^{\circ} \mathrm{C}$ | $\left\|\begin{array}{c} k_{t}, 10^{-5} \\ \text { cal } \mathrm{cm} / \\ \mathrm{sec} \mathrm{~cm}^{2}{ }^{\circ} \mathrm{C} \end{array}\right\|$ | Gas | $t^{\circ} \mathrm{C}$ | $\left\|\begin{array}{c} k_{t}, 10^{-5} \\ \text { cal } \mathrm{cm} / \\ \sec \mathrm{cm}^{2} \mathrm{C} \end{array}\right\|$ | Gas | $t^{\circ} \mathrm{C}$ | $\begin{gathered} k_{t}, 10^{-5} \\ \text { cal } \mathrm{cm}^{2} / \\ \sec \mathrm{cm}^{\circ}{ }^{\circ} \mathrm{C} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Air* | -191 | 1.80 | $\mathrm{CO}_{2}$ | 100 | 4.96 | Hg . | 203 | 1.85 |
| Air. | 0 | 5.66 | $\mathrm{C}_{2} \mathrm{H}_{4}$ | 0 | 3.95 | $\mathrm{N}_{2}$ | -191 | 1.83 |
| Air | 100 | 7.19 | He. | -193 | 14.6 | $\mathrm{N}_{2}$ | 0 | 5.68 |
| A. | -183 | 1.42 | He | 0 | 34.4 | $\mathrm{N}_{2}$. | 100 | 7.18 |
| A | 0 | 3.88 | He | 100 | 39.8 | $\mathrm{O}_{2}$ | -191 | 1.72 |
| A. | 100 | 5.09 | $\mathrm{H}_{2}$. | -192 | 13.3 | $\mathrm{O}_{2}$ | 0 | 5.70 |
| CO. | 0 | 5.42 | $\mathrm{H}_{2}$ | 0 | 41.6 | $\mathrm{O}_{2}$ | 100 | 7.43 |
| $\mathrm{CO}_{2}$ | - 78 | 2.19 | $\mathrm{H}_{2}$ | 100 | 49.9 | NO | 8 | 4.6 |
| $\mathrm{CO}_{2}$ | 0 | 3.32 | $\mathrm{CH}_{4}$ | 0 | 7.20 | $\mathrm{N}_{2} \mathrm{O}$ | 0 | 3.53 |

[^185]Table 4g-7. Thefmal Conductivity of Cubic Crystals*

| Crystal | $\underset{{ }^{\circ} \mathrm{C}}{\mathrm{Temp}}$ | Thermal conductivity, $10^{-4} \mathrm{cal} \mathrm{cm} / \mathrm{sec} \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| AgCl . | 0 | 26 |
| $\mathrm{BaF}_{2}$. | 52 | 27.1 |
|  | 38 | 170 |
|  | 68 | 140 |
| $\mathrm{CaF}_{2}$. | -190 | 932 |
|  | -78 | 360 |
|  | 0 | 246.8 |
|  | 36 | 232 |
| CsBr | 100 | 191.0 |
|  | 45 | 22 |
|  | 65 | 26 |
| KBr . | 0 | 87 |
|  | 46 | 115 |
| KCl . | -252 | 1400 |
|  | -250 | 1170 |
|  | -190 | 502 |
|  | -78 | 248.5 |
|  | 0 | 166.5 |
|  | 42 | 156 |
|  | 72 | 153 |
|  | 100 | 117.6 |
| KI. | -190 | 303 |
|  | -78 | (110) |
|  | 0 | 73.1 |
|  | 25 | (65) |
|  | 100 | (50) |
| LiF (vacuum grown) | 34 | 280 |
| LiF (air grown).LiF ........... | 36 | 249 |
|  | 105 | 61.3 |
|  | 249 | 93.2 |
|  | 384 | 122.0 |
|  | 499 | 138.0 |
| MgO. | -78 | 930 |
|  | 0 | 830 |
|  | 25 | 800 |
|  | 34 | 290 |
|  | 72 | 340 |
|  | 100 | 700 |
| NaCl . | -190 | 636 |
|  | -78 | 249.5 |
|  | 0 | 166.7 |
|  | 35 | 147 |
|  | 70 | 130 |
|  | 100 | 115.9 |

[^186]Table 4g-7. Thermal Conductivity of Cubic Crystals (Continued)

| Crystal | $\begin{gathered} \text { Temp, } \\ { }^{\circ} \mathrm{C} \\ \hline \end{gathered}$ | Thermal conductivity, $10^{-4} \mathrm{cal} \mathrm{cm} / \mathrm{sec} \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| NaCl (from melt). | -190 | 809 |
| NaCl (from solution). | 0 | 213 |
|  | -190 | 902.5 |
|  | 0 | 902.5 |
|  | 0 | 228 |
| NaF. | -190 | 1,240 |
|  | 0 | 252 |
|  | 25 | 220 |
| TlBr . | 0 | 19 |
| TlCl.. | 0 | 23 |
| KRS-5. | 54 | 21.3 |
| KRS-6. | 56 | 17.1 |
|  | 35 | 330 |
|  | 60 | 260 |
| $\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$ (spinel). | 120 | 80 |
|  | 300 | 100 |
|  | 500 | 150 |

Table $4 \mathrm{~g}-8$. Thermal Conductivity of Noncubic Crystals*

| Crystal | Temp., ${ }^{\circ} \mathrm{C}$ | Parallel to $c$ axis, $10^{-4} \mathrm{cal} \mathrm{cm} / \mathrm{sec} \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$ | Perpendicular to $c$ axis, $10^{-4} \mathrm{cal} \mathrm{cm} / \mathrm{sec} \mathrm{cm}{ }^{2}{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ (sapphire) | 105 | ..... | 61.3 |
|  | 249 |  | 93.2 |
|  | 384 |  | 122 |
|  | 499 |  | 138 |
| $\mathrm{CaCO}_{3}$ (calcite). | -190 | 730 | 440 |
|  | -78 |  | 137.7 |
|  | 0 | 129 | 102 |
|  | 25 |  | 98 |
|  | 100 |  | 85.2 |
| $\mathrm{SiO}_{2}$ (crystalline quartz) | -252 | .... | 6, 800 |
|  | -250 | $\cdots$ | 5,100 |
|  | -190 | 1,170 | 586 |
|  | -78 | 467 | 240.9 |
|  | 0 | 325 | 173.1 |
|  | 100 | 215 | 133.3 |
|  | 145 | 174 |  |
|  | 236 | 153 |  |
|  | 260 |  | 89 |
|  | 308 | 137 |  |
|  | 383 |  | 104 |
|  | 468 |  | 106 |
|  | 475 | 123 |  |

[^187]|  | Thermal conductivity |
| :---: | :---: |
| Temp., ${ }^{\circ} \mathrm{C}$ | $k, 10^{-4} \mathrm{cal} \mathrm{cm} / \mathrm{sec} \mathrm{cm}{ }^{2}{ }^{\circ} \mathrm{C}$ |
| -270.7 | 1.5 |
| $-268.2$ | 2.7 |
| -263.2 | 2.8 |
| -253.2 | 3.5 |
| -233.2 | 5.8 |
| -213.7 | 9.0 |
| -193.2 | 14.2 |
| - 78 | 22.7 |
| 0 | 35.2 |
| 41 | 28.2 |
| 60 | 33.0 |
| 120 | 34.1 |
| 180 | 35.3 |
| 240 | 36.4 |

Table 4g-10. Diffusivities

| Material | Diffusivity, $\mathrm{cm}^{2} / \mathrm{sec}$ | Material | $\begin{aligned} & \text { Diffusivity } \\ & \mathrm{cm}^{2} / \mathrm{sec} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Aluminum | 0.860 | Coal | 0.002 |
| Antimony | 0.135 | Concrete (cinder) | 0.0032 |
| Bismuth. | 0.069 | Concrete (stone) | 0.0048 |
| Brass (yellow) | 0.339 | Concrete (light slag) | 0.006 |
| Cadmium.... | 0.467 | Cork (ground | 0.0017 |
| Copper | 1.140 | Ebonite. | 0.0010 |
| Gold. . | 1.209 | Glass (ordinary) | 0.0057 |
| Iron (wrought, also mild |  | Granite. | 0.0127 |
| steel). | 0.173 | Ice. | 0.0112 |
| Iron (cast, also $1 \%$ carbon |  | Limestone | 0.0081 |
| steel) | 0.121 | Marble (white) | 0.0097 |
| Lead. | 0.245 | Paraffin. | 0.00098 |
| Magnesium. | 0.932 | Rock material (earth avg) | 0.0118 |
| Mercury . | 0.45 | Rock material (crustal |  |
| Nickel.. | 0.155 | rocks). | 0.0064 |
| Palladium | 0.261 | Sandstone | 0.0113 |
| Platinum | 0.243 | Snow (fresh) | 0.0033 |
| Silver | 1.700 | Soil (clay or sand, slightly |  |
| Tin. | 0.407 | damp). | 0.005 |
| Zinc. | 0.413 | Soil (very dry) | 0.0031 |
| Air 1 atm | 0.179 | Water. | 0.0017 |
| Asbestos (loose). | 0.0025 | Wood (pine, cross grain) | 0.00068 |
| Brick (avg fire). | 0.0052 | Wood (pine with grain) | 0.0023 |
| Brick (avg building) | 0.0044 |  |  |

[^188]Table 4g-11. Thermal Conductivity-Liqutds, Pressure Effect*

| No. $\dagger$ | Liquid | ${ }^{\circ} \mathrm{C}$ | Con-ductivityat$0 \mathrm{~kg} / \mathrm{cm}^{2}$$(\mathrm{cgs})$ | Conductivity relative to unity ( $0 \mathrm{~kg} / \mathrm{cm}^{2}$ ) as function of pressure in $\mathrm{kg} / \mathrm{cm}^{2}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1,000 | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 | 11,000 | , 000 |
| 1 | Methyl alcohol........ | 30 | 0.000505 | 1.201 | 1.342 | 1.557 | 1.724 | 1.864 | 1.986 | 2.043 | 2.097 |
|  |  | 75 | 0.000493 | 1.212 | 1.365 | 1.601 | 1.785 | 1.939 | 2.072 | 2.133 | 2.191 |
| 2 | Ethyl alcohol. . . . . . . . | 30 | 0.000430 | 1.221 | 1.363 | 1.574 | 1.744 | 1.888 | 2.014 | 2.070 | 2.122 |
|  |  | 75 | 0.000416 | 1.233 | 1.400 | 1.650 | 1.845 | 2.007 | 2.152 | 2.217 | 2.278 |
| 3 | Isopropyl alcohol . . . . | 30 | 0.000367 | 1.205 | 1.352 | 1.570 | 1.743 | 1.894 | 2.028 | 2.091 | 2.150 |
|  |  | 75 | 0.000363 | 1.230 | 1.399 | 1.638 | 1.812 | 1.962 | 2.093 | 2.154 | 2.211 |
| 4 | Normal butyl alcohol. . | 30 | 0.000400 | 1.181 | 1.307 | 1.495 | 1.648 | 1.780 | 1.900 | 1.955 | 2.008 |
|  |  | 75 | 0.000391 | 1.218 | 1.358 | 1.559 | 1.720 | 1.859 | 1.985 | 2.043 | 2.099 |
| 5 | Isoamyl alcohol. . . . . . | 30 | 0.000354 | 1.184 | 1.320 | 1.524 | 1.686 | 1.828 | 1.955 | 2.013 | 2.069 |
|  |  | 75 | 0.000348 | 1.207 | 1.348 | 1.557 | 1.724 | 1.868 | 1.998 | 2.063 | 2.126 |
| 6 | Ether. . . . . . . . . . . . . . | 30 | 0.000329 | 1.305 | 1.509 | 1.800 | 2.009 | 2.177 | 2.322 | 2.388 | 2.451 |
|  |  | 75 | 0.000322 | 1.313 | 1.518 | 1.814 | 2.043 | 2.231 | 2.394 | 2.469 | 2.537 |
| 7 | Acetone. . . . . . . . . . . | 30 | 0.000429 | 1.184 | 1.315 | 1.511 | 1.659 | 1.786 | 1.900 | Freezes |  |
|  |  | 75 | 0.000403 | 1.181 | 1.325 | 1.554 | 1.738 | 1.891 | 2.024 | 2.083 | 2.137 |
| 8 | Carbon bisulfide. . . . . | 30 | 0.000382 | 1.174 | 1.310 | 1.512 | 1.663 | 1.783 | 1.880 | 1.923 | 1.962 |
|  |  | 75 | 0.000362 | 1.208 | 1.366 | 1.607 | 1.789 | 1.935 | 2.054 | 2.107 | 2.154 |
| 9 | Ethyl bromide........ | 30 | 0.000286 | 1.193 | 1.327 | 1.517 | 1.657 | 1.768 | 1.858 | 1.895 | 1.928 |
|  |  | 75 | 0.000273 | 1.230 | 1.390 | 1.609 | 1.772 | 1.907 | 2.022 | 2.073 | 2.121 |
| 10 | Ethyl iodide. . . . . . . . | 30 | 0.000265 | 1.125 | 1.232 | 1.394 | 1.509 | 1.592 | 1.662 | 1.694 | 1.724 |
|  |  | 75 | 0.000261 | 1.148 | 1.265 | 1.442 | 1.570 | 1.671 | 1.757 | 1.799 | 1.837 |
| 11 | Water. . . . . . . . . . . . . | 30 | 0.00144 | 1.058 | 1.113 | 1.210 | 1.293 | 1.366 | 1.428 | 1.456 | Freezes |
|  |  | 75 | 0.00154 | 1.065 | 1.123 | 1.225 | 1.308 | 1.379 | 1.445 | 1.476 | $1.506$ |
| 12 | Toluol. . . . . . . . . . . . . | 30 | 0.000364 | 1.159 | 1.286 | 1.470 | 1.604 | 1.716 |  | (2.394ఫ) |  |
|  |  | 75 | 0.000339 | 1.210 | 1.355 | 1.573 | 1.738 | 1.872 | 1.987 | 2.039 | 2.089 |
| 13 | Normal pentane. . . . . | 30 | 0.000322 | 1.281 | 1.483 | 1.777 | 1.987 | 2.163 | 2.325 | 2.404 | 2.481 |
|  |  | 75 | 0.000307 | 1.319 | 1.534 | 1.855 | 2.112 | 2.335 | 2.543 | 2.642 | 2.740 |
| 14 | Petroleum ether....... | 30 | 0.000312 | 1.266 | 1.460 | 1.752 | 1.970 | 2.143 | 2.279 | 2.333 | 2.379 |
|  |  | 75 | 0.000302 | 1.268 | 1.466 | 1.780 | 2.026 | 2.232 | 2.409 | 2.488 | 2.561 |
| 15 | Kerosene. | 75 | 0.000333 | 1.185 | 1.314 | 1.502 | 1.654 | 1.792 | 1.925 | 1.990 | 2.054 |

[^189]Table 4g-12. Thermal Conductivity of Optical Materials*

| Material | $\begin{array}{\|c} \text { Temp., } \\ { }^{\circ} \mathrm{C} \end{array}$ | $k$, $\mathrm{cal} / \mathrm{sec} \mathrm{cm}$${ }^{\circ} \mathrm{C}$ | Material | $\begin{aligned} & \text { Temp., } \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} k, \\ \mathrm{cal} / \mathrm{sec} \mathrm{~cm}{ }^{\circ} \mathrm{C} \end{gathered}$ | | |
|---|---|---|---|---|---|---|---|
| Barium fluoride | -49 | $4.8 \times 10^{-2}$ | Cesium bromide | -49 | $2.9 \times 10^{-8}$ |
|  | -38 | 4.0 |  | $-23$ | 2.4 |
|  | -14 | 3.2 |  | +25 | 2.3 |
|  | +13 | 2.8 |  | 45 | 2.2 |
|  | 32 | 2.6 |  | 98 | 2.0 |
|  | 63 | 2.5 |  |  |  |
|  | 95 | 2.5 |  |  |  |
| Cesium iodide | 8 | $2.8 \times 10^{-8}$ | Fused silica | $-49$ | $3.1 \times 10^{-8}$ |
|  | 25 | 2.7 |  | -24 | 3.0 |
|  | 40 | 2.65 |  | +14 | 2.85 |
|  | 59 | 2.6 |  | 42 | 2.8 |
|  | 90 | 2.5 |  | 104 | 2.8 |
| Sodium chloride | -37 | $1.8 \times 10^{-2}$ | Spinel | -29 | $4.1 \times 10^{-2}$ |
|  | -30 | 1.7 |  | -21 | 3.7 |
|  | $+16$ | 1.55 |  | $+6$ | 3.0 |
|  | 35 | 1.5 |  | 21 | 2.8 |
|  | 70 | 1.3 |  | 68 | 2.6 |
|  | 98 | 1.2 |  | 100 | 2.5 |
| Arsenic sulfide glass | 10 | $3.9 \times 10^{-4}$ | Rutile: <br> \|| to optic axis <br> $\perp$ to optic axis |  |  |
|  | 22 | 4.3 |  | 16 | $2.8 \times 10^{-2}$ |
|  | 42 | 4.8 |  | 36. | 3.0 |
|  | 57 | 5.2 |  | 18 | 2.1 |
|  | 80 | 6.0 |  | 44 | 1.8 |
|  | 90 | 6.2 |  |  |  |
|  | 102 | 6.4 |  |  |  |
| Thallium bromide iodide <br> (KRS-5) | -37 | $1.1 \times 10^{-8}$ | Thallium bromide chloride <br> (KRS-6) | -31 | $1.1 \times 10^{-3}$ |
|  | $-18$ | 1.1 |  | -20 | 1.1 |
|  | 0 | 1.2 |  | $+11$ | 1.2 |
|  | 20 | 1.3 |  | 24 | 1.4 |
|  | 36 | 1.7 |  | 56 | 1.7 |
|  | 54 | 2.1 |  | 98 | 2.2 |
|  | 99 | 3.8 |  |  |  |
| Sapphire: $\dagger$ \|| to optic axis |  |  | Ammonium dihydrogen phosphate: <br> \|| to optic axis |  |  |
|  | 21 | $6.0 \times 10^{-2}$ |  |  |  |
|  | 50 | 5.0 |  | 46 | $1.7 \times 10^{-3}$ |
| $\perp$ to optic axis | 21 | 5.5 |  | 66 | 1.7 |
|  | 49 | 4.5 | $\perp$ to optic axis | 40 | 3.0 |
|  |  |  | 边 | 69 | 3.2 |

[^190]Table 4g-13. Thermal Conductivity of Some Semiconductors (At room temperature unless noted)

| Material | Conductivity, $\mathrm{cal} / \mathrm{sec} \mathrm{cm}{ }^{\circ} \mathrm{C}$ | Reference |
| :---: | :---: | :---: |
| Germanium . | $\begin{aligned} & \hline 0.14,25^{\circ} \mathrm{C} \\ & 0.11,100^{\circ} \mathrm{C} \end{aligned}$ | A. Grieco and H. C. Montgomery, Phys. Rev. 86, 570 (1952) |
| Silicon | 0.20 | 1948 "Metals Handbook" |
| PbS. | 0.0016 | Lees, Phil. Trans. A191, 399 (1938) |
| PbSe . | 0.01 | E. H. Putley, Proc. Phys. Soc. (London) B65, 991 (1952) |
| PbTe . | 0.012 | E. H. Putley, Proc. Phys. Soc. (London) B67, (1954) |
| $\mathrm{Mg}_{2} \mathrm{Sn}$ | 0.03 | H. P. R. Frederikse, NBS |
| C (graphite) | See references | A. W. Smith, Phys. Rev. 95, 1095 (1954); R. Berman, Proc. Phys. Soc. (London), A65, 1029 (1952) |



Fig. 4g-1. Typical curves showing low-temperature dependence of thermal conductivity.
It is generally assumed that thermal conductivity is not a function of temperature gradient but is a function of temperature itself. It also is assumed that the conductivity is not size- or shape-dependent, thdugh this last is not strictly true for dielectric crystals at very low temperatures. Five representative curves are given in Fig. 4g-1, showing the temperature dependence of a typical metal, nonferrous alloy, ferrous alloy, dielectric crystal, and disordered dielectric. Impurities in the metals or dielectric crystals will cause a lowering or removal of the maximum in the conductivity. The values of thermal conductivity given in the following tables are expressed in the unit watts/cm deg Kelvin.

The thermal conductivity of solids at liquid helium $\left(4.2^{\circ} \mathrm{K}\right)$, liquid hydrogen $\left(20^{\circ} \mathrm{K}\right)$, liquid nitrogen $\left(76^{\circ} \mathrm{K}\right)$, solid $\mathrm{CO}_{2}\left(194^{\circ} \mathrm{K}\right)$, and ice $\left(273^{\circ} \mathrm{K}\right)$ temperatures are given in Tables $4 \mathrm{~g}-14$ to $4 \mathrm{~g}-17$. The values of conductivity for solids are broken up into four main groups: metals, alloys, dielectric crystals, and disordered dielectrics. The numbers marked with an asterisk are extrapolated. The author references and more exact values may be obtained by referring to National Bureau of Standards Circular 556. Three survey references to literature and data in this field are:

Berman, R.: The Thermal Conductivity of Dielectric Solids at Low Temperatures, Adv. Physics (suppl. to Phil. Mag.) 2, 103-140 (1953).
Olsen, J. L., and H. M. Rosenberg: The Thermal Conductivity of Metals at Low Temperatures, Adv. Physics 2, 28-66 (1953).
Powell, R. L., and W. A. Blanpied, The Thermal Conductivity of Metals and Alloys at Low Temperatures, Published as Natl. Bur. Standards (U.S.) Circ. 556, 1954.

4-78
HEAT
Table 4g-14. Thermal Conductivity of Metals in Watts/cm ${ }^{\circ} \mathrm{K}$

| Metal | $4.2{ }^{\circ} \mathrm{K}$ | $20^{\circ} \mathrm{K}$ | $76^{\circ} \mathrm{K}$ | $194^{\circ} \mathrm{K}$ | $273{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Al. | 32.0 | 57.0* | 4.2 | 2.39 | 2.38* |
| Sb | 0.072 | 0.386 | 0.532* | 0.296 | 0.245 |
| Be. |  | 39.5* | 17.5 | 1.32 | 1.57 |
| Bi |  | 0.996 | 0.270 | 0.119 | 0.112 |
| Cd. | 11.6 | 2.5 | 1.14 | 1.05 | 1.05 |
| C (graphite) | 0.0021 | 0.142 | 1.95 | 2.8 | 2.51 |
| Ce. | 0.0048 | 0.0189 |  |  |  |
| Co. | 0.54 | 2.30 |  |  |  |
| Cu | 20.5 | 54.9 | 6.3 | 4.3 | 4.16 |
| Ga. | 24.0 | 6.3 |  |  |  |
| Ge. | 0.535 | 4.45 | 2.3 |  |  |
| Au . | 17.5 | 15.1 | 3.5 | 3.12 | 3.11 |
| In. | 8.45 | 1.83 |  |  |  |
| Ir. | 5.45 | 19.0 |  |  |  |
| Fe. | 0.77 | 3.01 | - 1.80 | 0.89 | 0.82 |
| Pb | 16.0 | 0.575 | 0.47 | 0.396 | 0.350 |
| Li. |  | 5.5* | 0.94 | 0.74 | 0.702 |
| Mn | 0.0037 | 0.0175 |  |  |  |
| Mg. | 5.1 | 13.8 | 2.03 |  | 1.72 |
| Hg . | 1.72 |  | 0.415* | 0.345 |  |
| Mo. | 0.660 | 2.8 | 2.15 | 1.38 | 1.38 |
| Ni . | 0.94 | 3.61 | 0.75 | 0.78 | 0.76 |
| Nb . | 0.043 | 0.312 | 0.471 |  |  |
| Pd. | 0.36 | 1.85* | 0.795 |  |  |
| Pt. | 9.4 | 4.6 | 0.835 | 0.700 | 0.699 |
| K. |  |  |  |  | 0.990 |
| Rh | 2.7 | 11.2 |  |  |  |
| Ag. | 144.3 | 51.0 | 5.2 | 4.2 | 4.17 |
| Na . | 31.5* | 5.5 | 1.55 | 1.22 | 1.40 |
| Ta. | 0.225 | 0.629 | 0.599 |  |  |
| Te. |  |  | 0.034* | 0.0215 | 0.018 |
| Tl. | 8.95 | 0.711 | $0.645^{*}$ | 0.531 | 0.506 |
| Sn. | 74.0 | 2.3 | 0.86* | 0.72 | 0.666 |
| Ti. | 0.048 | 0.23 |  |  |  |
| W. | 0.718 | 54.5 | 2.6 | 1.78 | 1.69 |
| U. | 0.046 | 0.151 | 0.231 | 0.257 | 0.286 |
| V . | 0.0135 | 0.0619 |  |  |  |
| Zn . | 11.3 | 7.3 | 1.53 | 1.40 | 1.25 |
| Zr. | 0.127 | 0.461 |  |  |  |

* Extrapolated.

Table 4g-15. Thermal Conductivity of Alloys in Watts/cm ${ }^{\circ} \mathrm{K}$

| Alloy | $4.2{ }^{\circ} \mathrm{K}$ | $20^{\circ} \mathrm{K}$ | $76^{\circ} \mathrm{K}$ | $194{ }^{\circ} \mathrm{K}$ | $273{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum: |  |  |  |  |  |
| Duralumin | $\ldots$ | 0.300 | 0.91 |  |  |
| J51. |  |  | 2.41 | 2.00 | 2.10 |
| 4 S . |  |  | 0.79 | 1.22 | 1.49 |
| 75 S |  |  | 0.63 | 1.04 |  |
| 24S. |  |  | 0.575 | 0.99 | 1.11 |
| Copper: $\quad \cdots \cdots$ |  |  |  |  |  |
| Brass. |  |  |  | 0.92 | 1.05 |
| Constantan $40 \% \mathrm{Ni}$ | 0.0091 | 0.088 | 0.190 | 0.225 | 0.239 |
| Cu-Au 50.1\% Au. |  | 0.42 | 1.05 |  |  |
| Cu-Ni $10 \% \mathrm{Ni}$. | 0.013 | 0.155 | 0.38 |  |  |
| German silver | 0.013 | 0.158 | 0.168 | 0.207 | 0.235 |
| Manganin |  |  |  | 0.170 | 0.209 |
| Platnoid. |  |  |  | 0.200 | 0.245 |
| Silver bronze. | 0.012 | 0.052 |  |  |  |
| Ferrous: |  |  |  |  |  |
| Carbon steel SAE 1020. | 0.125 | 0.200* | 0.58 | 0.651 | 0.645 |
| Stainless. | 0.0027 | 0.0205 | 0.082 | 0.125 | 0.140 |
| Nickel: |  |  |  |  |  |
| Contracid. |  | 0.0154 | 0.072 | 0.095 | 0.113 |
| Inconel. | 0.0051 | 0.041 | 0.118 | 0.134 | 0.150 |
| Monel. | 0.009 | 0.072 | 0.167 | 0.197 | 0.219 |

* Extrapolated.

Table 4g-16. Thermal Conductivity of Dielectric Crystals in Watts/cm ${ }^{\circ} \mathrm{K}$

| Crystal | $4.2{ }^{\circ} \mathrm{K}$ | $20^{\circ} \mathrm{K}$ | $76^{\circ} \mathrm{K}$ | $194{ }^{\circ} \mathrm{K}$ | $273{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Alumina | 0.00495 | 0.232 | 1.5 | 0.46 |  |
| Beryilla. | 0.0026 | 0.155 | 2.80 |  |  |
| Diamond. | 0.76 | 16.0 | 34.0 | 8.6 | 6.59 |
| KBr . | 1.22 | 0.488 | 0. 140 |  |  |
| KCl . | 2.74 | 1.30 | 0.370 |  |  |
| Quartz. | 4.20 | 7.6 | 0.66 |  |  |
| Sapphire. | 1.13 | 35.0 | 10.9 |  |  |

Table 4g-17. Thermal Conductivity of Disordered Dielectrics in mw/cm ${ }^{\circ} \mathrm{K}$

| Dielectric | $4.2^{\circ} \mathrm{K}$ | $20^{\circ} \mathrm{K}$ | $76^{\circ} \mathrm{K}$ | $194^{\circ} \mathrm{K}$ | $273{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Perspex. | 0.575 | 0.74 |  |  |  |
| Phoenix glass. | 0.92 | 1.51 | 3.7 |  |  |
| Pyrex. |  |  | 4.6* | 8.75 | 10.2 |
| Quartz glass. | 1.02 | 1.60 | 4.85 |  |  |

[^191]
# 4h. Thermodynamic Properties of Gases 

## JOSEPH HILSENRATH

The National Bureau of Standards

The Thermodynamic Properties of Air, Argon, Carbon Dioxide, Hydrogen, Nitrogen, Oxygen, and Steam. Tables 4h-3 through $4 \mathrm{~h}-37$ are an abridged version of a collection of tables computed and published at the National Bureau of Standards. ${ }^{1}$ The tables of compressibility and density were computed from equations of state which were fitted to the existing PVT data. In most instances the method of fitting permitted simultaneous consideration of other experimental data, such as Joule-Thomson coefficients, specific heat, and sound-velocity measurements. The tables for entropy, enthalpy, and specific heats were obtained by combining these properties of the ideal gas with corrections for the gas imperfection obtained, through the thermodynamic identities, from the equation of state. A fuller discussion and more extensive tabulations in the temperature argument are to be found in the above-cited circular of the National Bureau of Standards.

The tables are presented in dimensionless form. Conversion factors given in Tables $4 \mathrm{~h}-1$ and $4 \mathrm{~h}-2$ permit ready conversion to some of the more frequently used units. Values of the gas constant $R$ are listed for frequently used units in order to facilitate the use of the tables of the compressibility factor in calculating, by means of the equation $Z=P V / R T$, the pressure $P$, the specific volume $V$ (or density $1 / V$ ), or the temperature $T$, when any two of these are known. The molecular weights given in Table 4h-2 permit extension of the tabulated values of $R$ to still other units.

Pressure entries have been chosen to facilitate four-point Lagrangian interpolation, when linear interpolation is not valid. A convenient rule of thumb for determining the adequacy of linear interpolation is the following: "The error introduced by linear interpolation is approximately $\frac{1}{8}$ of the second difference." Where the error greatly exceeds the uncertainty of the table, nonlinear interpolation is recommended.

Table 4h-1. Values of the Gas Constant $R$ in Various Units

| $P$ | V | $T$ | $R$ |
| :---: | :---: | :---: | :---: |
| tm | $\mathrm{cm}^{3} /$ mole | ${ }^{\circ} \mathrm{K}$ | $82.0567 \mathrm{~atm} \mathrm{~cm}{ }^{3} / \mathrm{mole}^{\circ} \mathrm{K}$ |
| $\mathrm{kg} / \mathrm{cm}^{2}$. | $\mathrm{cm}^{3} /$ mole | ${ }^{\circ} \mathrm{K}$ | $84.7832\left(\mathrm{~kg} / \mathrm{cm}^{2}\right) \mathrm{cm}^{3} / \mathrm{mole}{ }^{\circ} \mathrm{K}$ |
| bars*. | $\mathrm{cm}^{3} /$ mole | ${ }^{\circ} \mathrm{K}$ | $83.1440 \mathrm{bars} \mathrm{cm}^{3} / \mathrm{mole}^{\circ} \mathrm{K}$ |
| mm Hg | $\mathrm{cm}^{3} / \mathrm{mole}$ | ${ }^{\circ} \mathrm{K}$ | $62,363.1(\mathrm{~mm} \mathrm{Hg}) \mathrm{cm}^{3} / \mathrm{mole}^{\circ} \mathrm{K}$ |
| atm | liters/mole | ${ }^{\circ} \mathrm{K}$ | 0.0820544 atm liters $/ \mathrm{mole}{ }^{\circ} \mathrm{K}$ |
| $\mathrm{kg} / \mathrm{cm}^{2}$ | liters/mole | ${ }^{\circ} \mathrm{K}$ | $0.0847809\left(\mathrm{~kg} / \mathrm{cm}^{2}\right)$ liters $/ \mathrm{mole}{ }^{\circ} \mathrm{K}$ |
| mm Hg | liters/mole | ${ }^{\circ} \mathrm{K}$ | $62.3613(\mathrm{~mm} \mathrm{Hg})$ liters $/ \mathrm{mole}{ }^{\circ} \mathrm{K}$ |
| atm | $\mathrm{ft}^{3} /(\mathrm{lb})$ mole | ${ }^{\circ} \mathrm{R}$ | $0.730228 \mathrm{~atm} \mathrm{ft}{ }^{3} / \mathrm{mole}{ }^{\circ} \mathrm{R}$ |
| mm Hg | $\mathrm{ft}^{3} /(\mathrm{lb})$ mole | ${ }^{\circ} \mathrm{R}$ | $554.973(\mathrm{~mm} \mathrm{Hg}) \mathrm{ft}^{3} / \mathrm{mole}{ }^{\circ} \mathrm{R}$ |

[^192]THERMODYNAMIC PROPERTIES OF GASES
Table 4h-2. Conversion Factors for Tables 4h-4 through 4h-37

| To convert tabulated value of |  | Having the dimensions indicated below | Air | Argon | $\mathrm{CO}_{2}$ | $\mathrm{H}_{2}$ | $\mathrm{N}_{2}$ | $\mathrm{O}_{2}$ | Steam |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Multiply by |  |  |  |  |  |  |
| $\left(H-E_{0}{ }^{\circ} /\right.$ /RT ${ }_{0}$ | $\left(H-E_{0}{ }^{\circ}\right.$ ) | cal mole ${ }^{-1}$ <br> cal g ${ }^{-1}$ <br> joules $\mathrm{g}^{-1}$ <br> Btu (lb mole) ${ }^{-1}$ <br> Btu lb-1 | $\begin{array}{\|c} 542.821 \\ 18.7399 \\ 78.4079 \\ 976.437 \\ 33.7098 \end{array}$ | $\begin{array}{\|c} 542.821 \\ 13.5896 \\ 56.8589 \\ 976.437 \\ 24.4451 \end{array}$ | 542.821 12.3340 51.6056 976.437 22.1867 | $\begin{array}{\|c} 542.821 \\ 269.256 \\ 1126.57 \\ 976.437 \\ 484.344 \end{array}$ | 542.821 19.3754 81.0669 976.437 34.8528 | $\begin{array}{\|c} 542.821 \\ 16.9632 \\ 70.9742 \\ 976.437 \\ 30.5137 \end{array}$ | $\begin{array}{\|c} 542.821 \\ 30.1299 \\ 126.064 \\ 976.437 \\ 54.1893 \end{array}$ |
| $C_{p} / R, S / R$ | $C_{p}, S$ |  | $\begin{aligned} & 1.98719 \\ & 0.0686042 \\ & 0.287041 \\ & 1.98588 \\ & 0.0685590 \end{aligned}$ | $\begin{aligned} & 1.98719 \\ & 0.0497494 \\ & 0.208152 \\ & 1.98588 \\ & 0.0497166 \end{aligned}$ | $\begin{aligned} & 1.98719 \\ & 0.0451531 \\ & 0.188921 \\ & 1.98588 \\ & 0.0451234 \end{aligned}$ | 1.98719 <br> 0.985709 <br> 4.12422 <br> 1.98588 <br> 0.985060 | $\begin{aligned} & 1.98719 \\ & 0.0709305 \\ & 0.296774 \\ & 1.98588 \\ & 0.0708838 \end{aligned}$ | 1.98719 <br> 0.0620997 <br> 0.259826 <br> 1.98588 <br> 0.0620588 | $\begin{aligned} & 1.98719 \\ & 0.110301 \\ & 0.461500 \\ & 1.98588 \\ & 0.110229 \end{aligned}$ |
| $\rho / \rho_{0}$ and for steam of $\rho$ in $\mathrm{g} \mathrm{cm}^{-3}$ | $\rho$ | $\mathrm{g} \mathrm{cm}^{-8}$ <br> mole cm ${ }^{-8}$ <br> g liter ${ }^{-1}$ <br> $\mathrm{lb} \mathrm{in}^{-3}$ <br> $\mathrm{lb} \mathrm{ft}^{-3}$ | $\begin{aligned} & 1.29304 \times 10^{-8} \\ & 4.46400 \times 10^{-5} \\ & 1.29308 \\ & 4.67143 \times 10^{-5} \\ & 8.07223 \times 10^{-2} \end{aligned}$ | $\begin{aligned} & 1.78377 \times 10^{-8} \\ & 4.46568 \times 10^{-5} \\ & 1.78382 \\ & 6.44432 \times 10^{-5} \\ & 0.111358 \end{aligned}$ | $\begin{aligned} & 1.9770 \times 10^{-8} \\ & 4.4922 \times 10^{-5} \\ & 1.9771 \\ & 7.1424 \times 10^{-5} \\ & 0.12342 \end{aligned}$ | $\begin{aligned} & 8.98854 \times 10^{-5} \\ & 4.45860 \times 10^{-6} \\ & 8.98879 \times 10^{-2} \\ & 3.24734 \times 10^{-6} \\ & 5.61140 \times 10^{-3} \end{aligned}$ | $\begin{aligned} & 1.25046 \times 10^{-8} \\ & 4.46338 \times 10^{-5} \\ & 1.25050 \\ & 4.51760 \times 10^{-5} \\ & 7.80641 \times 10^{-2} \end{aligned}$ | $\begin{aligned} & 1.42900 \times 10^{-3} \\ & 4.46562 \times 10^{-5} \\ & 1.42904 \\ & 5.16262 \times 10^{-5} \\ & 8.92101 \times 10^{-2} \end{aligned}$ | $\begin{array}{\|l} 1 \\ 0.055506 \\ 1.00003 \times 10^{3} \\ 3.61275 \times 10^{-2} \\ 62.4283 \end{array}$ |
| Molecular weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . |  |  | 28.966 | 39.944 | 44.010 | 2.016 | 28.016 | - 32.000 | 18.016 |

4-82 HEAT

Table 4h-3. Compressibility Factor for Air, $Z=\frac{P V}{R T}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.98090 |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 200 | 0.99767 | 0.99067 | 0.98367 | 0.97666 | 0.9080 | 0.8481 | 0.8105 |
| 300 | 0.99970 | 0.99879 | 0.99797 | 0.99717 | 0.99135 | 0.9900 | 0.9933 |
| 400 | 1.00019 | 1.00079 | 1.00141 | 1.00205 | 1.00946 | 1.0188 | 1.0299 |
| 500 | 1.00034 | 1.00137 | 1.00242 | 1.00348 | 1.01454 | 1.0265 | 1.0393 |
|  |  |  |  |  |  |  |  |
| 600 | 1.00038 | 1.00152 | 1.00267 | 1.00385 | 1.01574 | 1.0281 | 1.0408 |
| 700 | 1.00038 | 1.00153 | 1.00268 | 1.00385 | 1.01558 | 1.0275 | 1.0397 |
| 800 | 1.00037 | 1.00148 | 1.00259 | 1.00371 | 1.01493 | 1.0263 | 1.0379 |
| 900 | 1.00035 | 1.00140 | 1.00246 | 1.00351 | 1.01411 | 1.0248 | 1.0356 |
| 1000 | 1.00033 | 1.00132 | 1.00231 | 1.00331 | 1.01325 | 1.0233 | 1.0333 |
|  |  |  |  |  |  |  |  |
| 1100 | 1.00031 | 1.00124 | 1.00218 | 1.00311 | 1.01245 | 1.0218 | 1.0312 |
| 1200 | 1.00029 | 1.00117 | 1.00205 | 1.00293 | 1.01170 | 1.0205 | 1.0292 |
| 1300 | 1.00028 | 1.00110 | 1.00193 | 1.00275 | 1.01100 | 1.0192 | 1.0275 |
| 1400 | 1.00026 | 1.00104 | 1.00182 | 1.00259 | 1.01037 | 1.0181 | 1.0259 |
| 1500 | 1.00024 | 1.00098 | 1.00171 | 1.00245 | 1.00978 | 1.0171 | 1.0244 |
|  |  |  |  |  |  |  |  |
| 1600 | 1.00023 | 1.00094 | 1.00163 | 1.00233 | 1.0093 | 1.0162 | 1.0232 |
| 1700 | 1.00023 | 1.00090 | 1.00157 | 1.00223 | 1.0088 | 1.0154 | 1.0220 |
| 1800 | 1.00024 | 1.00087 | 1.00152 | 1.00213 | 1.0083 | 1.0146 | 1.0208 |
| 1900 | 1.00027 | 1.00085 | 1.00146 | 1.00204 | 1.0079 | 1.0138 | 1.0198 |
| 2000 | 1.00035 | 1.00085 | 1.00140 | 1.00196 | 1.0076 | 1.0132 | 1.0188 |
|  |  |  |  |  |  |  |  |
| 2100 | 1.0006 | 1.0010 | 1.0014 | 1.0019 | 1.0073 | 1.0126 | 1.0180 |
| 2200 | 1.0008 | 1.0010 | 1.0014 | 1.0019 | 1.0070 | 1.0121 | 1.0172 |
| 2300 | 1.0014 | 1.0013 | 1.0016 | 1.0020 | 1.0067 | 1.0116 | 1.0165 |
| 2400 | 1.0023 | 1.0017 | 1.0019 | 1.0022 | 1.0067 | 1.0113 | 1.0160 |
| 2500 | 1.0036 | 1.0024 | 1.0024 | 1.0026 | 1.0066 | 1.0110 | 1.0155 |
|  |  |  |  |  |  |  |  |
| 2600 | 1.0056 | 1.0034 | 1.0031 | 1.0032 | 1.0067 | 1.0108 | 1.0151 |
| 2700 | 1.0086 | 1.0048 | 1.0042 | 1.0041 | 1.0068 | 1.0107 | 1.0148 |
| 2800 | 1.0124 | 1.0068 | 1.0057 | 1.0053 | 1.0071 | 1.0108 | 1.0145 |
| 2900 | 1.0178 | 1.0096 | 1.0079 | 1.0071 | 1.0079 | 1.0111 | 1.0147 |
| 3000 | 1.0252 | 1.0133 | 1.0107 | 1.0095 | 1.0092 | 1.0119 | 1.0151 |
|  |  |  |  |  |  |  |  |

Table 4h-4. Relative Density of Air, $\rho / \rho_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 2.7830 |  |  |  |  |  |  |
| 200 | 1.3681 | 5.511 | 9.713 | 13.976 | 60.13 | 112.66 | 168.40 |
| 300 | 0.9102 | 3.644 | 6.383 | 9.125 | 36.72 | 64.34 | 91.61 |
| 400 | 0.6823 | 2.7277 | 4.771 | 6.811 | 27.043 | 46.89 | 66.27 |
| 500 | 0.5458 | 2. 1809 | 3.813 | 5.441 | 21.526 | 37.23 | 52.53 |
| 600 | 0.4548 | 1.8171 | 3.176 | 4.532 | 17.917 | 30.977 | 43.71 |
| 700 | 0.3898 | 1.5575 | 2.7226 | 3.885 | 15.360 | 26.567 | 37.51 |
| 800 | 0.3411 | 1.3629 | 2.3825 | 3.400 | 13.449 | 23.274 | 32.879 |
| 900 | 0.3032 | 1.2115 | 2.1180 | 3.023 | 11.964 | 20.720 | 29.290 |
| 1000 | 0.2729 | 1.0905 | 1.9065 | 2.721 | 10.777 | 18.675 | 26.419 |
| 1100 | 0.24809 | 0.9914 | 1.7334 | 2.474 | 9.805 | 17.001 | 24.066 |
| 1200 | 0.22742 | 0.9089 | 1.5892 | 2.268 | 8.994 | 15.605 | 22.103 |
| 1300 | 0.20993 | 0.8390 | 1.4671 | 2.094 | 8.308 | 14.422 | 20.438 |
| 1400 | 0.19494 | 0.7791 | 1.3625 | 1.945 | 7.720 | 13.406 | 19.007 |
| 1500 | 0.18195 | 0.7272 | 1.2718 | 1.815 | 7.209 | 12.525 | 17.766 |
| 1600 | 0.17058 | 0.6818 | 1.1924 | 1.702 | 6.762 | 11.753 | 16.675 |
| 1700 | 0.16054 | 0.6417 | 1.1223 | 1.602 | 6.367 | 11.070 | 15.712 |
| 1800 | 0.15162 | 0.6061 | 1.0600 | 1.513 | 6.016 | 10.463 | 14.857 |
| 1900 | 0.14364 | 0.5742 | 1.0043 | 1.434 | 5.702 | 9.921 | 14.089 |
| 2000 | 0.13645 | 0.5455 | 0.9541 | 1.362 | 5.419 | 9.430 | 13.398 |
| 2100 | 0.12992 | 0.5194 | 0.9087 | 1.297 | 5.162 | 8.986 | 12.770 |
| 2200 | 0.12399 | 0.4958 | 0.8674 | 1.239 | 4.929 | 8.582 | 12.199 |
| 2300 | 0.11852 | 0.4741 | 0.8295 | 1.185 | 4.716 | 8.213 | 11.676 |
| 2400 | 0.11348 | 0.4542 | 0.7947 | 1.135 | 4.520 | 7.873 | 11.195 |
| 2500 | 0.10880 | 0.4357 | 0.7625 | 1.089 | 4.339 | 7.560 | 10.753 |
| 2600 | 0.10441 | 0.4185 | 0.7327 | 1.047 | 4.172 | 7.271 | 10.343 |
| 2700 | 0.10024 | 0.4024 | 0.7048 | 1.007 | 4.017 | 7.003 | 9.963 |
| 2800 | 0.09630 | 0.3873 | 0.6786 | 0.970 | 3.872 | 6.752 | 9.610 |
| 2900 | 0.09249 | 0.3729 | 0.6538 | 0.935 | 3.736 | 6.517 | 9.277 |
| 3000 | 0.08876 | 0.3592 | 0.6302 | 0.901 | 3.607 | 6.295 | 8.964 |

Table 4h-5. Specific Heat of Air, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 100 | 3.5824 |  |  |  |  |  |  |
| 200 | 3.5062 | 3.5495 | 3.5950 | 3.6427 | 4.256 | 5.132 | 6.079 |
| 300 | 3.5059 | 3.5220 | 3.5383 | 3.5546 | 3.722 | 3.889 | 4.046 |
| 400 | 3.5333 | 3.5416 | 3.5500 | 3.5583 | 3.640 | 3.717 | 3.788 |
| 500 | 3.5882 | 3.5932 | 3.5983 | 3.6032 | 3.652 | 3.697 | 3.739 |
|  |  |  |  |  |  |  |  |
| 600 | 3.6626 | 3.6660 | 3.6693 | 3.6726 | 3.705 | 3.735 | 3.763 |
| 700 | 3.7455 | 3.7479 | 3.7502 | 3.7525 | 3.775 | 3.797 | 3.817 |
| 800 | 3.828 | 3.830 | 3.832 | 3.834 | 3.851 | 3.867 | 3.882 |
| 900 | 3.906 | 3.908 | 3.909 | 3.910 | 3.924 | 3.936 | 3.947 |
| 1000 | 3.979 | 3.980 | 3.982 | 3.983 | 3.993 | 4.003 | 4.012 |
|  |  |  |  |  |  |  |  |
| 1100 | 4.046 | 4.047 | 4.048 | 4.049 | 4.057 | 4.065 | 4.072 |
| 1200 | 4.109 | 4.110 | 4.111 | 4.111 | 4.118 | 4.125 | 4.130 |
| 1300 | 4.171 | 4.172 | 4.172 | 4.173 | 4.179 | 4.184 | 4.189 |
| 1400 | 4.230 | 4.231 | 4.231 | 4.232 | 4.236 | 4.241 | 4.245 |
| 1500 | 4.289 | 4.290 | 4.290 | 4.290 | 4.294 | 4.298 | 4.302 |
|  |  |  |  |  |  |  |  |
| 1600 | 4.352 | 4.351 | 4.351 | 4.351 | 4.354 | 4.357 | 4.361 |
| 1700 | 4.418 | 4.414 | 4.413 | 4.414 | 4.416 | 4.419 | 4.421 |
| 1800 | 4.487 | 4.480 | 4.479 | 4.478 | 4.477 | 4.479 | 4.481 |
| 1900 | 4.566 | 4.549 | 4.544 | 4.543 | 4.540 | 4.540 | 4.542 |
| 2000 | 4.662 | 4.626 | 4.617 | 4.613 | 4.603 | 4.604 | 4.605 |
|  |  |  |  |  |  |  |  |
| 2100 | 4.781 | 4.715 | 4.699 | 4.692 | 4.674 | 4.670 | 4.671 |
| 2200 | 4.947 | 4.823 | 4.791 | 4.780 | 4.745 | 4.738 | 4.734 |
| 2300 | 5.179 | 4.969 | 4.918 | 4.893 | 4.828 | 4.814 | 4.806 |
| 2400 | 5.484 | 5.149 | 5.067 | 5.026 | 4.922 | 4.897 | 4.886 |
| 2500 | 5.882 | 5.373 | 5.247 | 5.186 | 5.028 | 4.987 | 4.971 |
|  |  |  |  |  |  |  |  |
| 2600 | 6.40 | 5.661 | 5.474 | 5.389 | 5.152 | 5.088 | 5.062 |
| 2700 | 7.06 | 6.019 | 5.753 | 5.634 | 5.295 | 5.203 | 5.172 |
| 2800 | 7.87 | 6.455 | 6.088 | 5.930 | 5.467 | 5.341 | 5.297 |
| 2900 | 8.86 | 6.993 | 6.497 | 6.300 | 5.668 | 5.496 | 5.434 |
| 3000 | 9.96 | 7.605 | 6.991 | 6.724 | 5.906 | 5.678 | 5.602 |
|  |  |  |  |  |  |  |  |

Table 4h-6. Enthalpy of Air, $\left(H-E_{0}{ }^{\circ}\right) / R T_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 100 | 1.2552 |  |  |  |  |  |  |
| 200 | 2.5465 | 2.5281 | 2.5094 | 2.4908 | 2.2922 | 2.0794 | 1.8734 |
| 300 | 3.8292 | 3.8204 | 3.8118 | 3.8034 | 3.7194 | 3.6411 | 3.5699 |
| 400 | 5.1167 | 5.1125 | 5.1079 | 5.1039 | 5.0623 | 5.0252 | 4.9926 |
| 500 | 6.4195 | 6.4176 | 6.4154 | 6.4137 | 6.3951 | 6.3795 | 6.3670 |
|  |  |  |  |  |  |  |  |
| 600 | 7.7463 | 7.7459 | 7.7454 | 7.7449 | 7.7408 | 7.7388 | 7.7390 |
| 700 | 9.1023 | 9.1027 | 9.1035 | 9.1037 | 9.1096 | 9.1168 | 9.1253 |
| 800 | 10.489 | 10.490 | 10.491 | 10.492 | 10.505 | 10.519 | 10.534 |
| 900 | 11.904 | 11.906 | 11.908 | 11.909 | 11.928 | 11.947 | 11.968 |
| 1000 | 13.348 | 13.350 | 13.352 | 13.354 | 13.377 | 13.400 | 13.424 |
|  |  |  |  |  |  |  |  |
| 1100 | 14.817 | 14.819 | 14.822 | 14.824 | 14.851 | 14.877 | 14.904 |
| 1200 | 16.310 | 16.312 | 16.316 | 16.318 | 16.347 | 16.376 | 16.405 |
| 1300 | 17.826 | 17.828 | 17.832 | 17.834 | 17.866 | 17.897 | 17.928 |
| 1400 | 19.363 | 19.365 | 19.370 | 19.373 | 19.407 | 19.440 | 19.471 |
| 1500 | 20.922 | 20.924 | 20.929 | 20.932 | 20.968 | 21.003 | 21.036 |
|  |  |  |  |  |  |  |  |
| 1600 | 22.504 | 22.506 | 22.511 | 22.514 | 22.551 | 22.587 | 22.621 |
| 1700 | 24.110 | 24.112 | 24.116 | 24.118 | 24.156 | 24.193 | 24.228 |
| 1800 | 25.740 | 25.740 | 25.744 | 25.746 | 25.784 | 25.821 | 25.857 |
| 1900 | 27.397 | 27.392 | 27.394 | 27.396 | 27.434 | 27.472 | 27.509 |
| 2000 | 29.086 | 29.071 | 29.070 | 29.072 | 29.108 | 29.146 | 29.183 |
|  |  |  |  |  |  |  |  |
| 2100 | 30.813 | 30.781 | 30.774 | 30.775 | 30.806 | 30.844 | 30.881 |
| 2200 | 32.592 | 32.527 | 32.510 | 32.509 | 32.530 | 32.566 | 32.603 |
| 2300 | 34.443 | 34.318 | 34.286 | 34.279 | 34.282 | 34.315 | 34.349 |
| 2400 | 36.393 | 36.169 | 36.107 | 36.093 | 36.067 | 36.092 | 36.123 |
| 2500 | 38.470 | 38.093 | 37.994 | 37.961 | 37.888 | 37.901 | 37.927 |
|  |  |  |  |  |  |  |  |
| 2600 | 40.713 | 40.110 | 39.955 | 39.895 | 39.750 | 39.744 | 39.764 |
| 2700 | 43.172 | 42.246 | 42.008 | 41.911 | 41.661 | 41.627 | 41.638 |
| 2800 | 45.901 | 44.528 | 44.173 | 44.026 | 43.630 | 43.556 | 43.554 |
| 2900 | 48.960 | 46.985 | 46.474 | 46.262 | 45.666 | 4.539 | 45.518 |
| 3000 | 52.403 | 49.655 | 48.940 | 48.650 | 47.784 | 47.583 | 47.537 |
|  |  |  |  |  |  |  |  |

heat
Table 4h-7. Entropy of Air, $S / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 20.049 |  |  |  |  |  |  |
| 200 | 22.497 | 21.091 | 20.513 | 20.139 | 18.551 | 17.767 | 17.184 |
| 300 | 23.917 | 22.524 | 21.958 | 21.594 | 20.138 | 19.513 | 19.095 |
| 400 | 24.929 | 23.539 | 22.976 | 22.616 | 21.194 | 20.602 | 20.214 |
| 500 | 25.723 | 24.335 | 23.773 | 23.414 | 22.006 | 21.428 | 21.056 |
| 600 | 26.383 | 24.995 | 24.434 | 24.077 | 22.677 | 22.104 | 21.736 |
| 700 | 26.954 | 25.567 | 25.006 | 24.649 | 23.253 | 22.685 | 22.320 |
| 800 | 27.460 | 26.073 | 25.512 | 25.155 | 23.762 | 23.196 | 22.833 |
| 900 | 27.915 | 26.528 | 25.968 | 25.610 | 24.219 | 23.655 | 23.293 |
| 1000 | 28.330 | 26.944 | 26.384 | 26.025 | 24.634 | 24.071 | 23.709 |
| 1100 | 28.713 | 27.327 | 26.767 | 26.408 | 25.018 | 24.454 | 24.093 |
| 1200 | 29.068 | 27.682 | 27.122 | 26.763 | 25.373 | 24.809 | 24.448 |
| 1300 | 29.399 | 28.013 | 27.453 | 27.093 | 25.702 | 25.138 | 24.777 |
| 1400 | 29.711 | 28.324 | 27.764 | 27.404 | 26.013 | 25.448 | 25.087 |
| 1500 | 30.005 | 28.618 | 28.058 | 27.698 | 26.306 | 25.741 | 25.380 |
| 1600 | 30.284 | 28.897 | 28.337 | 27.977 | 26.585 | 26.020 | 25.659 |
| 1700 | 30.549 | 29.162 | 28.602 | 28.242 | 26.850 | 26.287 | 25.926 |
| 1800 | 30.804 | 29.416 | 28.856 | 28.496 | 27.104 | 26.542 | 26.181 |
| 1900 | 31.048 | 29.660 | 29.100 | 28.740 | 27.348 | 26.785 | 26.424 |
| 2000 | 31.284 | 29.896 | 29.335 | 28.974 | 27.582 | 27.019 | 26.658 |
| 2100 | 31.514 | 30.124 | 29.563 | 29.201 | 27.808 | 27.245 | 26.884 |
| 2200 | 31.740 | 30.346 | 29.784 | 29.421 | 28.027 | 27.463 | 27.102 |
| 2300 | 31.964 | 30.563 | 29.999 | 29.636 | 28.240 | 27.676 | 27.314 |
| 2400 | 32.191 | 30.778 | 30.212 | 29.847 | 28.447 | 27.883 | 27.520 |
| 2500 | 32.423 | 30.992 | 30.422 | 30.055 | 28.650 | 28.084 | 27.721 |
| 2600 | 32.663 | 31.208 | 30.632 | 30.263 | 28.849 | 28.281 | 27.918 |
| 2700 | 32.917 | 31.428 | 30.844 | 30.471 | 29.046 | 28.476 | 28.111 |
| 2800 | 33.188 | 31.654 | 31.059 | 30.681 | 29.242 | 28.669 | 28.302 |
| 2900 | 33.481 | 31.889 | 31.279 | 30.895 | 29.438 | 28.861 | 28.491 |
| 3000 | 33.799 | 32.136 | 31.507 | 31.114 | 29.634 | 29.052 | 28.678 |

Table 4h-8. Compressibility Factor for Argon, $Z=P V / R T$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.9782 | 0.9079 |  |  |  |  |  |
| 200 | 0.99706 | 0.98818 | 0.97923 | 0.97023 | 0.8778 | 0.7838 | 0.6917 |
| 300 | 0.99937 | 0.99750 | 0.99565 | 0.99382 | 0.9773 | 0.9643 | 0.9553 |
| 400 | 0.99998 | 0.99991 | 0.99986 | 0.99982 | 1.0002 | 1.0022 | 1.0057 |
| 500 | 1.00018 | 1.00072 | 1.00127 | 1.00183 | 1.0079 | 1.0147 | 1.0224 |
| 600 | 1.00025 | 1.00101 | 1.00178 | 1.00255 | 1.0105 | 1.0190 | 1.0279 |
| 700 | 1.00027 | 1.00111 | 1.00194 | 1.00278 | 1.0113 | 1.0201 | 1.0292 |
| 800 | 1.00028 | 1.00111 | 1.00195 | 1.00279 | 1.0113 | 1.0199 | 1.0288 |
| 900 | 1.00027 | 1.00109 | 1.00191 | 1.00273 | 1.0110 | 1.0194 | 1.0279 |
| 1000 | 1.00026 | 1.00104 | 1.00183 | 1.00261 | 1.0105 | 1.0185 | 1.0265 |
| 1100 | 1.00025 | 1.00100 | 1.00174 | 1.00249 | 1.0100 | 1.0176 | 1.0252 |
| 1200 | 1.00024 | 1.00095 | 1.00166 | 1.00237 | 1.0095 | 1.0167 | 1.0239 |
| 1300 | 1.00023 | 1.00090 | 1.00158 | 1.00225 | 1.0090 | 1.0158 | 1.0226 |
| 1400 | 1.00021 | 1.00085 | 1.00149 | 1.00213 | 1.0085 | 1.0149 | 1.0213 |
| 1500 | 1.00020 | 1.00081 | 1.00142 | 1.00203 | 1.0081 | 1.0142 | 1.0203 |
| 1600 | 1.00019 | 1.00077 | 1.00135 | 1.00193 | 1.0077 | 1.0135 | 1.0193 |
| 1700 | 1.00018 | 1.00073 | 1.00128 | 1.00183 | 1.0073 | 1.0128 | 1.0183 |
| 1800 | 1.00018 | 1.00070 | 1.00123 | 1.00175 | 1.0070 | 1.0123 | 1.0175 |
| 1900 | 1.00017 | 1.00067 | 1.00117 | 1.00167 | 1.0067 | 1.0117 | 1.0167 |
| 2000 | 1.00016 | 1.00064 | 1.00111 | 1.00159 | 1.0064 | 1.0111 | 1.0159 |
| 2100 | 1.00015 | 1.00061 | 1.00107 | 1.00153 | 1.0061 | 1.0107 | 1.0153 |
| 2200 | 1.00015 | 1.00058 | 1.00102 | 1.00146 | 1.0058 | 1.0102 | 1.0146 |
| 2300 | 1.00014 | 1.00056 | 1.00098 | 1.00140 | 1.0056 | 1.0098 | 1.0140 |
| 2400 | 1.00014 | 1.00054 | 1.00095 | 1.00135 | 1.0054 | 1.0095 | 1.0135 |
| 2500 | 1:00013 | 1.00052 | 1.00091 | 1.00130 | 1.0052 | 1.0091 | 1.0130 |
| 2600 | 1.00013 | 1.00050 | 1.00088 | 1.00125 | 1.0050 | 1.0088 | 1.0125 |
| 2700 | 1.00012 | 1.00048 | 1.00084 | 1.00120 | 1.0048 | 1.0084 | 1.0120 |
| 2800 | 1.00012 | 1.00046 | 1.00081 | 1.00116 | 1.0046 | 1.0081 | 1.0116 |
| 2900 | 1.00011 | 1.00045 | 1.00078 | 1.00112 | 1.0045 | 1.0078 | 1.0112 |
| 3000 | 1.00011 | 1.00043 | 1.00076 | 1.00108 | 1.0043 | 1.0076 | 1.0108 |
| 3100 | 1.00011 | 1.00042 | 1.00074 | 1.00105 | 1.0042 | 1.0074 | 1.0105 |
| 3200 | 1.00011 | 1.00041 | 1.00072 | 1.00102 | 1.0041 | 1.0072 | 1.0102 |
| 3300 | 1.00010 | 1.00039 | 1.00069 | 1.00098 | 1.0039 | 1.0069 | 1.0098 |
| 3400 | 1.00010 | 1.00038 | 1.00067 | 1.00096 | 1.0038 | 1.0067 | 1.0096 |
| 3500 | 1.00009 | 1.00037 | 1.00065 | 1.00093 | 1.0037 | 1.0065 | 1.0093 |
| 3600 | 1.00009 | 1.00036 | 1.00063 | 1.00090 | 1.0036 | 1.0063 | 1.0090 |
| 3700 | 1.00009 | 1.00035 | 1.00062 | 1.00088 | 1.0035 | 1.0062 | 1.0088 |
| 3800 | 1.00009 | 1.00034 | 1.00060 | 1.00085 | 1.0034 | 1.0060 | 1.0085 |
| 3900 | 1.00008 | 1.00033 | 1.00058 | 1.00083 | 1.0033 | 1.0058 | 1.0083 |
| 4000 | 1.00008 | 1.00032 | 1.00057 | 1.00081 | 1.0032 | 1. 0057 | 1.0081 |
| 4100 | 1.00008 | 1.00032 | 1.00055 | 1.00079 | 1.0032 | 1.0055 | 1.0079 |
| 4200 | 1.00008 | 1.00031 | 1.00054 | 1.00077 | 1.0031 | 1.0054 | 1.0077 |
| 4300 | 1.00008 | 1.00030 | 1.00053 | 1. 00075 | 1.0030 | 1.0053 | 1.0075 |
| 4400 | 1.00007 | 1.00029 | 1.00051 | 1.00073 | 1.0029 | 1.0051 | 1.0073 |
| 4500 | 1.00007 | 1.00028 | 1.00050 | 1.00071 | 1.0028 | 1.0050 | 1.0071 |
| 4600 | 1.00007 | 1.00028 | 1.00049 | 1.00070 | 1.0028 | 1.0049 | 1.0070 |
| 4700 | 1.00007 | 1.00027 | 1.00048 | 1.00068 | 1.0027 | 1.0048 | 1.0068 |
| 4800 | 1.00007 | 1.00026 | 1.00046 | 1.00066 | 1.0026 | 1.0046 | 1.0066 |
| 4900 | 1.00007 | 1.00026 | 1.00046 | 1.00065 | 1.0026 | 1.0046 | 1.0065 |
| 5000 | 1.00006 | 1.00025 | 1 :00044 | 1.00063 | 1.0025 | 1.0044 | 1.0063 |

Table 4h-9. Relative Density of Argon, $\rho / \rho_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 2.79 | 12.02 |  |  |  |  |  |
| 200 | 1.3685 | 5.5232 | 9.754 | 14.064 | 62.18 | 121.9 | 197.3 |
| 300 | 0.91023 | 3.6477 | 6.3954 | 9.1531 | 37.23 | 66.03 | 95.22 |
| 400 | 0.68226 | 2.7292 | 4.7764 | 6.8237 | 27.28 | 47.65 | 67.84 |
| 500 | 0.54570 | 2.1816 | 3.8157 | 5.4480 | 21.66 | 37.65 | 53.38 |
| 600 | 0.45471 | 1.8175 | 3.1781 | 4.5367 | 18.00 | 31.25 | 44.25. |
| 700 | 0.38975 | 1.5577 | 2.7237 | 3.8877 | 15.42 | 26.75 | 37.88 |
| 800 | 0.34103 | 1.3630 | 2.3832 | 3.4017 | 13.49 | 23.41 | 33.16 |
| 900 | 0.30314 | 1.2116 | 2.1185 | 3.0239 | 12.00 | 20.82 | 29.50 |
| 1000 | 0.27283 | 1.0905 | 1.9068 | 2.7219 | 10.80 | 18.76 | 26.59 |
| 1100 | 0.24803 | 0.99136 | 1.7336 | 2.4747 | 9.825 | 17.07 | 24.20 |
| 1200 | 0.22736 | 0.90879 | 1.5893 | 2.2688 | 9.011 | 15.66 | 22.21 |
| 1300 | 0.20987 | 0.83893 | 1.4671 | 2.0945 | 8.322 | 14.47 | 20.53 |
| 1400 | 0.19489 | 0.77904 | 1.3625 | 1.9451 | 7.731 | 13.44 | 19.09 |
| 1500 | 0.18189 | 0.72714 | 1,2717 | 1.8156 | 7.219 | 12.56 | 17.83 |
| 1600 | 0.17053 | 0.68172 | 1.1923 | 1. 7023 | 6.770 | 11. 78 | 16.73 |
| 1700 | 0.16050 | 0.64164 | 1.1223 | 1.6023 | 6.375 | 11.09 | 15.76 |
| 1800 | 0.15158 | 0.60601 | 1.0600 | 1.5134 | 6.022 | 10.48 | 14.90 |
| 1900 | 0.14361 | 0.57414 | 1.0042 | 1.4339 | 5.707 | 9.938 | 14.13 |
| 2000 | 0.13643 | 0.54544 | 0.95408 | 1.3623 | 5.423 | 9.447 | 13.43 |
| 2100 | 0.12993 | 0.51949 | 0.90868 | 1.2975 | 5.167 | 9.000 | 12.80 |
| 2200 | 0.12403 | 0.49589 | 0.86742 | 1. 2386 | 4.933 | 8.595 | 12.23 |
| 2300 | 0.11863 | 0.47434 | 0.82974 | 1. 1848 | 4.720 | 8.225 | 11.70 |
| 2400 | 0.11369 | 0.45458 | 0.79520 | 1.1355 | 4.524 | 7.885 | 11.22 |
| 2500 | 0.10914 | 0.43641 | 0.76342 | 1.0902 | 4.344 | 7.572 | 10.78 |
| 2600 | 0.10495 | 0.41963 | 0.73408 | 1.0483 | 4.178 | 7.283 | 10.37 |
| 2700 | 0.10106 | 0.40410 | 0.70692 | 1.0095 | 4.024 | 7.016 | 9.987 |
| 2800 | 0.097452 | 0.38967 | 0.68169 | 0.9735 | 3.881 | 6.768 | 9.635 |
| 2900 | 0.094092 | 0.37624 | 0.65820 | 0.93997 | 3.747 | 6.536 | 9.306 |
| 3000 | 0.090956 | 0.36371 | 0.63628 | 0.90868 | 3.623 | 6.320 | 8.999 |
| 3100 | 0.088022 | 0.35198 | 0.61576 | 0.87939 | 3.507 | 6.117 | 8.712 |
| 3200 | 0.085271 | 0.34098 | 0.59653 | 0.85193 | 3.397 | 5.927 | 8.442 |
| 3300 | 0.082688 | 0.33066 | 0.57847 | 0.82614 | 3.295 | 5.749 | 8.189 |
| 3400 | 0.080256 | 0.32093 | 0.56147 | 0.80187 | 3.198 | 5.581 | 7.950 |
| 3500 | 0.077964 | 0.31177 | 0.54544 | 0.77898 | 3. 107 | 5.423 | 7.725 |
| 3600 | 0.075798 | 0.30311 | 0.53030 | 0.75737 | 3.021 | 5.273 | 7.513 |
| 3700 | 0.073749 | 0.29492 | 0.51597 | 0.73691 | 2.940 | 5.131 | 7.311 |
| 3800 | 0.071809 | 0.28716 | 0.50240 | 0.71754 | 2.863 | 4.997 | 7. 121 |
| 3900 | 0.069968 | 0.27980 | 0.48953 | 0.69916 | 2.790 | 4.870 | 6.940 |
| 4000 | 0.068219 | 0:27281 | 0.47730 | 0.68169 | 2.720 | 4.749 | 6.768 |
| 4100 | 0.066555 | 0.266 .16 | 0.46567 | 0.66508 | 2.654 | 4.634 | 6.604 |
| 4200 | 0.064970 | 0.25982 | 0.45458 | 0.64925 | 2.591 | 4.524 | 6.448 |
| 4300 | 0.063459 | 0.25378 | 0.44402 | 0.63417 | 2.531 | 4.419 | 6.299 |
| 4400 | 0.062018 | 0.24802 | 0.43393 | 0.61977 | 2.474 | 4.320 | 6.157 |
| 4500 | 0.060640 | 0.24251 | 0.42429 | 0.60601 | 2.419 | 4.224 | 6.022 |
| 4600 | 0.059321 | 0.23724 | 0.41507 | 0.59284 | 2.366 | 4.133 | 5.891 |
| 4700 | 0.058059 | 0:23219 | 0.40625 | 0.58024 | 2.316 | 4.045 | 5.767 |
| 4800 | 0.056850 | 0.22736 | 0.39779 | 0.56816 | 2.268 | 3.961 | 5.648 |
| 4900 | 0.055689 | 0.22272 | 0:38967 | 0.55657 | 2.222 | 3.881 | 5.533 |
| 5000 | 0.054576 | 0.21826 | 0.38.189 | 0.54545 | 2.178 | 3.804 | 5.424 |

Table 4h-10. Specific Heat of Argon, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 2.6077 | 3.016 | 3.55 |  |  |  |  |
| 200 | 2.5154 | 2.5626 | 2.612 | 2.663 | 3.31 | 4.2 | 5.2 |
| 300 | 2.5057 | 2.5230 | 2.5404 | 2.5581 | 2.74 | 2.93 | 3.12 |
| 400 | 2.5029 | 2.5118 | 2.5206 | 2.5294 | 2.61 | 2.70 | 2.79 |
| 500 | 2.5018 | 2.5071 | 2.5124 | 2.5176 | 2.570 | 2.621 | 2.670 |
| 600 | 2.5012 | 2.5047 | 2.5082 | 2.5117 | 2.546 | 2.579 | 2.611 |
| 700 | 2.5008 | 2.5033 | 2.5058 | 2.5082 | 2.532 | 2.555 | 2.578 |
| 800 | 2.5006 | 2.5025 | 2.5043 | 2.5062 | 2.524 | 2.541 | 2.558 |
| 900 | 2.5005 | 2.5020 | 2.5033 | 2.5047 | 2.519 | 2.531 | 2.544 |
| 1000 | 2.5004 | 2.5015 | 2.5026 | 2.5037 | 2.515 | 2.525 | 2.536 |
| 1100 | 2.5003 | 2.5012 | 2.5021 | 2.5030 | 2.512 | 2.520 | 2.528 |
| 1200 | 2.5002 | 2.5010 | 2.5017 | 2.5024 | 2.510 | 2.516 | 2.523 |
| 1300 | 2.5002 | 2.5008 | 2.5014 | 2.5020 | 2.508 | 2.514 | 2.519 |
| 1400 | 2.5002 | 2.5007 | 2.5012 | 2.5017 | 2.507 | 2.512 | 2.516 |
| 1500 | 2.5001 | 2.5006 | 2.5010 | 2.5014 | 2.506 | 2.510 | 2.513 |
| 1600 | 2.5001 | 2.5005 | 2:5009 | 2.5012 | 2.505 | 2.509 | 2.511 |
| -1700 | 2.5001 | 2.5004 | 2.5007 | 2.5011 | 2.504 | 2.507 | 2.511 |
| 1800 | 2.5001 | 2.5004 | 2.5006 | 2.5009 | 2.504 | 2.506 | 2.509 |
| 1900 | 2.5001 | 2.5003 | 2.5006 | 2.5008 | 2.503 | 2.506 | 2.508 |
| 2000 | 2.5001 | 2.5003 | 2.5005 | 2.5007 | 2.503 | 2.505 | 2.507 |
| 2100 | 2.5001 | 2.5002 | 2.5004 | 2.5006 | 2.502 | 2.504 | 2.506 |
| 2200 | 2.5001 | 2.5002 | 2.5004 | 2.5005 | 2.502 | 2.504 | 2.505 |
| 2300 | 2.5000 | 2.5002 | 2.5003 | 2.5005 | 2.502 | 2.503 | 2.505 |
| 2400 | 2.5000 | 2.5002 | 2.5003 | 2.5004 | 2.502 | 2.503 | 2.504 |
| 2500 | 2.5000 | 2.5002 | 2.5003 | 2.5004 | 2.502 | 2.503 | 2. 504 |
| 2600 | 2.5000 | 2.5001 | 2.5002 | 2.5003 | 2.501 | 2.502 | 2.503 |
| 2700 | 2.5000 | 2.5001 | 2.5002 | 2.5003 | 2.501 | 2.502 | 2.503 |
| 2800 | 2.5000 | 2.5001 | 2.5002 | 2.5003 | 2.501 | 2.502 | 2.503 |
| 2900 | 2.5000 | 2.5001 | 2.5002 | 2.5003 | 2.501 | 2.502 | 2.503 |
| 3000 | 2:5000 | 2.5001 | 2.5002 | 2.5002 | 2.501 | 2.502 | 2.502 |

Table 4h-11. Enthalpy of Argon, $\left(H-E_{0}{ }^{\circ}\right) / R T_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.8935 | 0.8220 | 0.7413 |  |  |  |  |
| 200 | 1.8236 | 1.8029 | 1.7819 | 1.7606 | 1.53 | 1.3 |  |
| 300 | 2.7422 | 2.7319 | 2.7217 | 2.7114 | 2.610 | 2.512 | 2.42 |
| 400 | 3.6590 | 3.6532 | 3.6476 | 3.6418 | 3.586 | 3.533 | 3.48 |
| 500 | 4.5750 | 4.5718 | 4.5686 | 4.5654 | 4.535 | 4.506 | 4.48 |
| 600 | 5.4907 | 5.4891 | 5.4874 | 5.4859 | 5.471 | 5.457 | 5.445 |
| 700 | 6.4063 | 6.4057 | 6.4052 | 6.4047 | 6.400 | 6.397 | 6.395 |
| 800 | 7.3218 | 7.3220 | 7.3222 | 7.3226 | 7.326 | 7.330 | 7.335 |
| 900 | 8.2372 | 8.2380 | 8.2388 | 8.2396 | 8.249 | 8.258 | 8.268 |
| 1000 | 9.1525 | 9.1538 | 9.1551 | 9.1564 | 9.170 | 9.184 | 9.198 |
| 1100 | 10.0679 | 10.0696 | 10.0712 | 10.0729 | 10.090 | 10.107 | 10.125 |
| 1200 | 10.9832 | 10.9852 | 10.9871 | 10.9891 | 11.009 | 11.029 | 11.049 |
| 1300 | 11.8985 | 11.9007 | 11.9029 | 11.9051 | 11.927 | 11.950 | 11.972 |
| 1400 | 12.8138 | 12.8162 | 12.8186 | 12.8210 | 12.845 | 12.869 | 12.894 |
| 1500 | 13.7291 | 13.7316 | 13.7342 | 13.7367 | 13.763 | 13.788 | 13.815 |
| 1600 | 14.6443 | 14.6470 | 14.6497 | 14.6524 | 14.680 | 14.707 | 14.735 |
| 1700 | 15.5595 | 15.5624 | 15.5652 | 15.5680 | 15.597 | 15.625 | 15.654 |
| 1800 | 16.4749 | 16.4778 | 16.4808 | 16.4837 | 16.513 | 16.543 | 16.572 |
| 1900 | 17.3901 | 17.3931 | 17.3962 | 17.3992 | 17.430 | 17.460 | 17.491 |
| 2000 | 18.3053 | 18.3085 | 18.3116 | 18.3147 | 18.346 | 18.377 | 18.409 |
| 2100 | 19.2206 | 19.2238 | 19.2269 | 19.2301 | 19.262 | 19.294 | 19.326 |
| 2200 | 20.1358 | 20.1390 | 20.1423 | 20.1456 | 20.178 | 20.211 | 20.243 |
| 2300 | 21.0510 | 21.0543 | 21.0576 | 21.0609 | 21.094 | 21.127 | 21.160 |
| 2400 | 21.9662 | 21.9696 | 21.9729 | 21.9763 | 22.010 | 22.044 | 22.077 |
| 2500 | 22.8815 | 22.8849 | 22.8884 | 22.8918 | 22.926 | 22.960 | 22.994 |
| 2600 | 23.7967 | 23.8002 | 23.8036 | 23.8071 | 23.842 | 23.876 | 23.911 |
| 2700 | 24.7120 | 24.7154 | 24.7189 | 24.7224 | 24.757 | 24.792 | 24.827 |
| 2800 | 25.6272 | 25.6307 | 25:6342 | 25.6377 | 25.673 | 25.708 | 25.743 |
| 2900 | 26.5424 | 26.5459 | 26.5495 | 26.5530 | 26.589 | 26.624 | 26.659 |
| 3000 | 27.4576 | 27.4612 | 27.4647 | 27.4683 | 27.504 | 27.540 | 27.575 |

THERMODYNAMIC PROPERTIES OF GASES
4-91
Table 4h-12. Entropy of Argon, $S / R$

| T, ${ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 15.8425 | 14.328 | 13.62 |  |  |  |  |
| 200 | 17.6069 | 16.2012 | 15.6218 | 15.245 | 13:64 | 12.83 | 12.2 |
| 300 | 18.6245 | 17.2308 | 16.6637 | 16.2995 | 14.8389 | 14.2067 | 13.781 |
| 400 | 19.3449 | 17.9548 | 17.3913 | 17.0308 | 15.6067 | 15.0118 | 14.618 |
| 500 | 19.9032 | 18.5146 | 17.9527 | 17.5937 | 16.1850 | 15.6037 | 15.2261 |
| 600: | 20.3593 | 18.9715 | 18.4104 | 18.0522 | 16:6513 | 16.0776 | 15.7078 |
| 700 | 20.7449 | 19.3575 | 18.7969 | 18.4391 | 17.0426 | 16.4732 | 16.1070 |
| 800 | 21.0787 | 19.6917 | 19.1313 | 18.7739 | 17.3802 | 16.8134 | 16:4498 |
| 900 | 21.3733 | 19.9864 | 19.4263 | 19.0690 | 17.6772 | 17.1122 | 16.7503 |
| 1000 | 21.6368 | 20.2500 | 19.6900 | 19.3328 | 17.9423 | 17.3785 | 17.0179 |
| 1100 | 21:8751 | 20:4884 | 19.9285 | 19.5715 | 18.1819 | 17.6190 | 17.2592 |
| 1200 | 22.0926 | 20.7060 | 20.1462 | 19.7892 | 18.4003 | 17.8381 | 17.4789 |
| 1300 | 22.2927 | 20.9062 | 20.3464 | 19.9895 | 18.6010 | 18.0394 | 17.6807 |
| 1400 | 22.4780 | 21.0916 | 20.5318 | 20.1749 | 18.7869 | 18.2256 | 17.8673 |
| 1500 | 22.6505 | 21.2640 | 20.7043 | 20.3474 | 18.9597 | 18.3988 | 18.0408 |
| 1600 | 22.8119 | 21.4254 | 20.8657 | 20.5089 | 19.1214 | 18.5607 | 18.2029 |
| 1700 | 22.9635 | 21.5771 | 21.0174 | 20.6606 | 19.2733 | 18.7128 | 18.3552 |
| 1800 | 23.1064 | 21.7200 | 21.1603 | 20.8035 | 19.4165 | 18.8561 | 18.4987 |
| 1900 | 23.2415 | 21.8551 | 21.2955 | 20.9387 | 19.5518 | 18.9915 | 18.6343 |
| 2000 | 23.3698 | 21.9834 | 21.4238 | 21.0670 | 19.6802 | 19.1201 | 18.7630 |
| 2100 | 23.4917 | 22.1053 | 21.5457 | 21.1890 | 19.8022 | 19.2422 | 18,8851 |
| 2200 | 23.6080 | 22.2217 | 21.6620 | 21.3053 | 19.9187 | 19.3587 | 19.0017 |
| 2300 | 23.7192 | 22.3329 | 21.7732 | 21.4165 | 20.0299 | 19.4701 | 19.1131 |
| 2400 | 23.8256 | 22.4393 | 21.8797 | 21.5229 | 20.1364 | 19.5766 | 19.2197 |
| . 2500 | 23.9276 | 22.5413 | 21.9817 | $21,6249$ | 20.2385 | 19.6787 | 19.3218 |
| 2600 | 24.0257 | 22.6394 | 22.0798 | 21.7231 | 20.3366 | 19.7769 | 19,4201 |
| 2700 | 24.1200 | 22.7337 | 22.1741 | 21.8174 | 20.4310 | 19.8713 | 19.5145 |
| 2800 | 24.2109 | 22.8246 | 22.2650 | 21.9083 | 20.5219 | 19.9623 | 19.6055 |
| 2900 | 24.2987 | 22.9124 | 22.3528 | 21.9961 | 20.6098 | 20.0501 | 19.6934 |
| 3000 | 24.3834 | 22.9971 | 22.4375 | 22.0808 | 20.6945 | 20.1349 | 19.7782 |

Table 4h-13. Compressibility Factor for Carbon Dioxide, $Z=P V / R T$

| $\mathrm{T},{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 0.99501 | 0.9798 | 0.9644 | 0.9486 | 0.7611 |  |  |
| 400 | 0.99817 | 0.99267 | 0.98714 | 0.9815 | 0.9252 | 0.8697 | 0.8155 |
| 500 | 0.99927 | 0.99711 | 0.99496 | 0.99281 | 0.9721 | 0.9531 | 0.9365 |
| 600 | 0.99975 | 0.99903 | 0.99832 | 0.99763 | 0.9916 | 0.9874 | 0.9850 |
| 700 | 0.99998 | 0.99996 | 0.99995 | 0.99996 | 1.0008 | 1.0031 | 1.0068 |
|  |  |  |  |  |  |  |  |
| 800 | 1.0001 | 1.0004 | 1.0008 | 1.0011 | 1.0054 | 1.0108 | 1.0172 |
| 900 | 1.0001 | 1.0007 | 1.0012 | 1.0018 | 1.0079 | 1.0147 | 1.0224 |
| 1000 | 1.0002 | 1.0008 | 1.0015 | 1.0022 | 1.0092 | 1.0167 | 1.0248 |
| 1100 | 1.0002 | 1.0009 | 1.0016 | 1.0024 | 1.0098 | 1.0177 | 1.0260 |
| 1200 | 1.0002 | 1.0009 | 1.0017 | 1.0024 | 1.0101 | 1.0181 | 1.0263 |
|  |  |  |  |  |  |  |  |
| 1300 | 1.0002 | 1.0010 | 1.0017 | 1.0025 | 1.0102 | 1.0181 | 1.0262 |
| 1400 | 1.0002 | 1.0010 | 1.0017 | 1.0025 | 1.0101 | 1.0179 | 1.0258 |
| 1500 | 1.0002 | 1.0010 | 1.0017 | 1.0025 | 1.0100 | 1.0176 | 1.0253 |

Table 4h-14. Relative Density of Carbon Dioxide, $\rho / \rho_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| 300 | 0.9088 | 3.6916 | 6.5637 | 9.532 | 47.52 |  |  |
| 400 | 0.6794 | 2.7329 | 4.8095 | 6.909 | 29.321 | 54.600 | 83.17 |
| 500 | 0.5429 | 2.1766 | 3.8173 | 5.465 | 22.327 | 39.848 | 57.937 |
| 600 | 0.45227 | 1.8104 | 3.1704 | 4.5323 | 18.238 | 32.054 | 45.904 |
| 700 | 0.38757 | 1.5503 | 2.7130 | 3.8758 | 15.489 | 27.044 | 38.491 |
|  |  |  |  |  |  |  |  |
| 800 | 0.33908 | 1.3558 | 2.3719 | 3.3871 | 13.491 | 23.483 | 33.335 |
| 900 | 0.30138 | 1.2048 | 2.1073 | 3.0088 | 11.962 | 20.793 | 29.483 |
| 1000 | 0.27123 | 1.0842 | 1.8961 | 2.7069 | 10.752 | 18.677 | 26.470 |
| 1100 | 0.24657 | 0.9855 | 1.7235 | 2.4604 | 9.768 | 16.963 | 24.038 |
| 1200 | 0.22585 | 0.9034 | 1.5798 | 2.2551 | 8.952 | 15.544 | 22.028 |
|  |  |  |  |  |  |  |  |
| 1300 | 0.20863 | 0.8339 | 1.4582 | 2.0816 | 8.262 | 14.348 | 20.335 |
| 1400 | 0.19373 | 0.7743 | 1.3541 | 1.9329 | 7.673 | 13.325 | 18.890 |
| 1500 | 0.18081 | 0.7227 | 1.2638 | 1.8041 | 7.162 | 12.441 | 17.639 |

Table 4h-15. Specific Heat of Carbon Dioxide, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 4.513 | 4.624 | 4.739 | 4.862 | 7.45 |  |  |
| 400 | 4.984 | 5.027 | 5.070 | 5.115 | 5.615 | 6.225 | 6.960 |
| 500 | 5.374 | 5.396 | 5.418 | 5.440 | 5.669 | 5.875 | 6.014 |
| 600 | 5.696 | 5.708 | 5.721 | 5.734 | 5.873 | 6.020 | 6.173 |
| 700 | 5.964 | 5.972 | 5.981 | 5.989 | 6.078 | 6.171 | 6.267 |
|  |  |  |  |  |  |  |  |
| 800 | 6.188 | 6.194 | 6.200 | 6.206 | 6.266 | 6.326 | 6.387 |
| 900 | 6.376 | 6.380 | 6.384 | 6.389 | 6.433 | 6.476 | 6.518 |
| 1000 | 6.533 | 6.536 | 6.540 | 6.543 | 6.577 | 6.609 | 6.640 |
| 1100 | 6.665 | 6.668 | 6.671 | 6.674 | 6.700 | 6.725 | 6.749 |
| 1200 | 6.776 | 6.779 | 6.781 | 6.783 | 6.805 | 6.825 | 6.844 |
|  |  |  |  |  |  |  |  |
| 1300 | 6.872 | 6.874 | 6.876 | 6.878 | 6.896 | 6.912 | 6.928 |
| 1400 | 6.952 | 6.954 | 6.955 | 6.957 | 6.972 | 6.986 | 6.999 |
| 1500 | 7.021 | 7.022 | 7.024 | 7.025 | 7.038 | 7.050 | 7.061 |

Table 4h-16. Enthalpy of Carbon Dioxide, $\left(\boldsymbol{H}-E_{0}{ }^{\circ}\right) / R T_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 300 | 4.135 | 4.079 | 4.023 | 3.965 | 3.25 |  |  |
| 400 | 5.876 | 5.846 | 5.816 | 5.785 | 5.466 | 5.128 | 4.771 |
| 500 | 7.774 | 7.755 | 7.737 | 7.717 | 7.522 | 7.315 | 7.081 |
| 600 | 9.802 | 9.789 | 9.777 | 9.764 | 9.635 | 9.497 | 9.333 |
| 700 | 11.938 | 11.929 | 11.921 | 11.912 | 11.824 | 11.729 | 11.609 |
|  |  |  |  |  |  |  |  |
| 800 | 14.164 | 14.157 | 14.151 | 14.145 | 14.084 | 14.016 | 13.925 |
| 900 | 16.464 | 16.459 | 16.456 | 16.451 | 16.409 | 16.360 | 16.287 |
| 1000 | 18.828 | 18.824 | 18.822 | 18.819 | 18.791 | 18.755 | 18.696 |
| 1100 | 21.245 | 21.243 | 21.241 | 21.239 | 21.222 | 21.197 | 21.147 |
| 1200 | 23.706 | 23.704 | 23.704 | 23.703 | 23.695 | 23.677 | 23.635 |
|  |  |  |  |  |  |  |  |
| 1300 | 26.204 | 26.204 | 26.204 | 26.203 | 26.202 | 26.192 | 26.156 |
| 1400 | 28.735 | 28.735 | 28.736 | 28.736 | 28.741 | 28.736 | 28.705 |
| 1500 | 31.293 | 31.294 | 31.295 | 31.296 | 31.306 | 31.305 | 31.279 |

Table 4h-17. Entropy of Carbon Dioxide, $S / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 300 | 25.715 | 24.293 | 23.698 | 23.305 | 21.43 |  |  |
| 400 | 27.080 | 25.678 | 25.103 | 24.732 | 23.183 | 22.449 | 21.904 |
| 500 | 28.235 | 26.840 | 26.273 | 25.908 | 24.436 | 23.783 | 23.316 |
| 600 | 29.244 | 27.853 | 27.288 | 26.927 | 25.488 | 24.870 | 24.437 |
| 700 | 30.143 | 28.753 | 28.190 | 27.830 | 26.409 | 25.809 | 25.395 |
|  |  |  |  |  |  |  |  |
| 800 | 30.954 | 29.565 | 29.003 | 28.645 | 27.233 | 26.643 | 26.240 |
| 900 | 31.695 | 30.307 | 29.745 | 29.387 | 27.982 | 27.398 | 27.001 |
| 1000 | 32.375 | 30.987 | 30.426 | 30.069 | 28.667 | 28.087 | 27.694 |
| 1100 | 33.004 | 31.616 | 31.055 | 30.698 | 29.300 | 28.723 | 28.332 |
| 1200 | 33.589 | 32.202 | 31.641 | 31.284 | 29.887 | 29.312 | 28.923 |
|  |  |  |  |  |  |  |  |
| 1300 | 34.135 | 32.748 | 32.187 | 31.831 | 30.436 | 29.862 | 29.474 |
| 1400 | 34.647 | 33.260 | 32.700 | 32.343 | 30.949 | 30.377 | 29.990 |
| 1500 | 35.129 | 33.742 | 33.182 | 32.825 | 31.431 | 30.858 | 30.475 |



Fig. 4h-1. Temperature-entropy diagram for helium. (Zelmanov.)

THERMODYNAMIC PROPERTIES OF GASES
4-95
Table 4h-18. Compressibility Factor for Hydrogen, $Z=P V / R T$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 0.9845 | 0.9362 | 0.8853 | 0.8317 |  |  |  |
| 60 | 0.9955 | 0.9822 | 0.9691 | 0.9564 | 0.8757 | 0.8700 | 0.9395 |
| 80 | 0.9986 | 0.9946 | 0.9908 | 0.9872 | 0.9682 | 0.9782 | 1.0174 |
| 100 | 0.9998 | 0.9992 | 0.9987 | 0.9983 | 1.0029 | 1.0222 | 1.0560 |
| 120 | 1.0003 | 1.0012 | 1.0021 | 1.0030 | 1.0176 | 1.0405 | 1.0726 |
| 140 | 1.0005 | 1.0020 | 1.0036 | 1.0052 | 1.0243 | 1.0488 | 1.0786 |
| 160 | 1.0006 | 1.0024 | 1.0043 | 1.0062 | 1.0271 | 1.0516 | 1.0798 |
| 180 | 1.0007 | 1.0028 | 1.0048 | 1.0067 | 1.0283 | 1.0523 | 1.0785 |
| 200 | 1.0007 | 1.0028 | 1.0048 | 1.0068 | 1.0283 | 1.0513 | 1.0760 |
| 220 | 1.0007 | 1.0028 | 1.0048 | 1.0067 | 1.0276 | 1.0497 | 1.0730 |
| 240 | 1.0007 | 1.0027 | 1.0047 | 1.0066 | 1.0269 | 1.0480 | 1.0698 |
| 260 | 1.0006 | 1.0024 | 1.0044 | 1.0064 | 1.0259 | 1.0459 | 1.0667 |
| 280 | 1.0006 | 1.0024 | 1.0042 | 1.0061 | 1.0247 | 1.0439 | 1.0636 |
| 300 | 1.0006 | 1.0024 | 1.0042 | 1.0059 | 1.0238 | 1.0420 | 1.0607 |
| 320 | 1.0006 | 1.0024 | 1.0041 | 1.0057 | 1.0229 | 1.0402 | 1.0579 |
| 340 | 1.0005 | 1.0021 | 1.0037 | 1.0054 | 1.0217 | 1.0384 | 1.0553 |
| 360 | 1.0005 | 1.0020 | 1.0036 | 1.0052 | 1.0209 | 1.0367 | 1.0529 |
| 380 | 1.0005 | 1.0020 | 1.0035 | 1.0050 | 1.0201 | 1.0353 | 1.0507 |
| 400 | 1.0005 | 1.0020 | 1.0034 | 1.0048 | 1.0193 | 1.0339 | 1.0486 |
| 420 | 1.0005 | 1.0019 | 1.0033 | 1.0046 | 1.0185 | 1.0325 | 1.0466 |
| 440 | 1.0004 | 1.0017 | 1.0030 | 1.0045 | 1.0180 | 1.0314 | 1.0448 |
| 460 | 1.0004 | 1.0016 | 1.0029 | 1.0043 | 1.0172 | 1.0301 | 1.0431 |
| 480 | 1.0004 | 1.0016 | 1.0028 | 1.0041 | 1.0165 | 1.0289 | 1.0415 |
| 500 | 1.0004 | 1.0016 | 1.0028 | 1.0040 | 1.0160 | 1.0280 | 1.0400 |
| 520 | 1.0004 | 1.0016 | 1.0028 | 1.0039 | 1.0155 | 1.0271 | 1.0385 |
| 540 | 1.0004 | 1.0016 | 1.0026 | 1.0037 | 1.0148 | 1.0260 | 1.0372 |
| 560 | 1.0004 | 1.0015 | 1.0026 | 1.0036 | 1.0144 | 1.0252 | 1.0360 |
| 580 | 1.0003 | 1.0013 | 1.0024 | 1.0035 | 1.0140 | 1.0244 | 1.0348 |
| 600 | 1.0003 | 1.0012 | 1.0023 | 1.0034 | 1.0136 | 1.0237 | 1.0337 |

Table 4h-19. Relative Density of Hydrogen, $\rho / \rho_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | 6.9408 | 29.195 | 54.029 | 82.160 |  |  |  |
| 60 | 4.5761 | 18.552 | 32.905 | 47.632 | 208.08 | 366.53 | 484.88 |
| 80 | 3.4214 | 13.740 | 24.138 | 34.609 | 141.15 | 244.49 | 335.82 |
| 100 | 2.7338 | 10.942 | 19.158 | 27.379 | 109.01 | 187.17 | 258.83 |
| 120 | 2.2771 | 9.0999 | 15.910 | 22.709 | 89.532 | 153.23 | 212.36 |
| 140 | 1.9514 | 7.7937 | 13.617 | 19.422 | 76.240 | 130.30 | 181.01 |
| 160 | 1.7073 | 6.8167 | 11.907 | 16.978 | 66.528 | 113.71 | 158.21 |
| 180 | 1.5174 | 6.0569 | 10.578 | 15.084 | 59.067 | 101.01 | 140.80 |
| 200 | 1.3657 | 5.4512 | 9.5206 | 13.574 | - 53.160 | 90.995 | 127.01 |
| 220 | 1.2415 | 4.9557 | 8.6551 | 12.341 | 48.361 | 82.849 | 115.79 |
| 240 | 1.1381 | 4.5431 | 7.9347 | 11.314 | 44.361 | 76.068 | 106.46 |
| 260 | 1.0506 | 4.1949 | 7.3265 | 10.446 | 40.988 | 70.358 | 98.553 |
| 280 | 0.97559 | 3. 8953 | 6.8045 | 9.7026 | 38.105 | 65.457 | 91.780 |
| 300 | 0.91055 | 3.6356 | 6.3509 | 9.0575 | 35.596 | 61.204 | 85.896 |
| 320 | 0.85364 | 3.4084 | 5.9546 | 8.4931 | 33.401 | 57.479 | 80.740 |
| 340 | 0.80351 | 3.2088 | 5.6065 | 7.9959 | 31.473 | 54.192 | 76.178 |
| 360 | 0.75887 | 3.0309 | 5.2956 | 7.5532 | 29.748 | 51.265 | 72.110 |
| 380 | 0.71893 | 2.8714 | 5.0174 | 7.1571 | 28.204 | 48.632 | 68.458 |
| 400 | 0.68298 | 2.7278 | 4.7670 | 6.8006 | 26.815 | 46.286 | 65.165 |
| 420 | 0.65046 | 2.5982 | 4.5404 | 6.4780 | 25.558 | 44.120 | 62.181 |
| 440 | 0.62095 | 2.4806 | 4.3353 | 6.1842 | 24.408 | 42.160 | 59.457 |
| 460 | 0.59396 | 2.3729 | 4.1473 | 5.9165 | 23.365 | 40.377 | 56.964 |
| 480 | 0.56921 | 2.2741 | 3.9749 | 5.6711 | 22.407 | 38.740 | 54.675 |
| 500 | 0.54644 | 2.1831 | 3.8159 | 5.4448 | 21.522 | 37.223 | 52.563 |
| 520 | 0.52542 | 2.0991 | 3.6691 | 5.2359 | 20.704 | 35.823 | 50.615 |
| 540 | 0.50596 | 2.0214 | 3.5339 | 5.0430 | 19.951 | 34.533 | 48.801 |
| 560 | 0.48789 | 1.9494 | 3.4077 | 4.8634 | 19.246 | 33.326 | 47.113 |
| 580 | 0.47112 | 1.8826 | 3.2908 | 4.6961 | 18.590 | 32.202 | 45.541 |
| 600 | 0.45541 | 1.8200 | 3.1815 | 4.5400 | 17.977 | 31.150 | 44.070 |

THERMODYNAMIC PROPERTIES OF GASES
Table 4h-20. Specific Heat of Hydrogen, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 0 atm | 1 atm | 10 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 2.500 |  |  |  |
| 40 | 2.501 | 2.564 | 3.463 |  |
| 60 | 2.519 | 2.544 | 2.780 | 3.957 |
| 80 | 2.591 | 2.605 | 2.723 | 3.564 |
| 100 | 2.714 | 2.722 | 2.790 | 3.295 |
| 120 | 2.857 | 2.862 | 2.905 | 3.242 |
| 140 | 2.993 | 2.996 | 3.026 | 3.264 |
| 160 | 3.108 | 3.111 | 3.135 | 3.326 |
| 180 | 3.204 | 3.206 | 3.226 | 3.377 |
| 200 | 3.280 | 3.282 | 3.296 | 3.413 |
| 220 | 3.340 | 3.341 | 3.355 | 3.454 |
| 240 | 3.387 | 3.388 | 3.399 | 3.486 |
| 260 | 3.424 | 3.425 | 3.433 | 3.504 |
| 280 | 3.450 | 3.451 | 3.458 | 3 : 516 |
| 300 | 3.469 | 3.470 | 3.476 | 3.526 |
| 320 | 3.483 | 3.484 | 3.489 | 3.532 |
| 340 | 3.494 | 3.495 | 3.499 | 3.536 |
| 360 | 3.501 | 3.502 | 3.506 | 3.539 |
| 380 | 3.507 | 3.508 | 3.510 | 3.539 |
| 400 | 3.510 | 3.511 | 3.514 | 3.539 |
| 420 | 3.513 | 3.514 | 3.516 | 3.539 |
| 440 | 3.515 | 3.516 | 3.518 | 3:538 |
| 460 | 3.516 | 3.517 | 3.519 | 3.538 |
| 480 | 3.518 | 3.518 | 3.520 | 3.537 |
| 500 | 3.519 | 3.519 | 3.521 | 3.536 |
| 520 | 3.521 | 3.521 | 3.523 | 3.536 |
| 540 | 3.522 | 3.522 | 3.524 | 3.536 |
| 560 | 3.524 . | 3. 524 | 3.526 | 3.536 |
| 580 | 3.525 | 3.525 | 3.527 | 3.536 |
| 600 | 3.527 | 3.527 | 3.529 | 3.536 |

Table 4h-21. Enthalpy of Hydrogen, $\left(H-E_{0}{ }^{\circ}\right) / R T_{0}$

| ${ }^{\circ} \mathrm{K}$ | 0.01 atm | 0.1 atm | 1 atm | 10 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 1.0175 | 1.0172 | 1.0142 | 0.9833 | 0.7818 |
| 80 | 1.2042 | 1.2040 | 1.2021 | 1.1837 | 1.0577 |
| 100 | 1.3981 | 1.3980 | 1.3968 | 1.3852 | 1.3059 |
| 120 | 1.6020 | 1.6020 | 1.6012 | 1.5936 | 1.5449 |
| 140 | 1.8163 | 1.8163 | 1.8158 | 1.8108 | 1.7825 |
| 160 | 2.0398 | 2.0398 | 2.0394 | 2.0365 | 2.0234 |
| 180 | 2.2710 | 2.2710 | 2.2708 | 2.2695 | 2.2690 |
| 200 | 2.5085 | 2.5085 | 2.5084 | 2.5083 | 2.5178 |
| 220 | 2.7509 | 2.7509 | 2.7510 | 2.7519 | 2.7692 |
| 240 | 2.9973 | 2.9973 | 2.9975 | 2.9993 | 3.0236 |
| 260 | 3.2467 | 3.2467 | 3.2470 | 3.2495 | 3.2792 |
| 280 | 3.4983 | 3.4984 | 3.4986 | 3.5017 | 3.5363 |
| 300 | 3.7517 | 3.7517 | 3.7521 | 3.7556 | 3.7941 |
| 320 | 4.0063 | 4.0063 | 4.0067 | 4.0106 | 4.0525 |
| 340 | 4.2617 | 4.2617 | 4.2622 | 4.2664 | 4.3114 |
| 360 | 4.5178 | 4.5178 | 4.5183 | 4.5229 | 4.5705 |
| 380 | 4.7743 | 4.7744 | 4.7748 | 4.7797 | 4.8296 |
| 400 | 5.0312 | 5.0312 | 5.0317 | 5.0368 | 5.0887 |
| 420 | 5.2883 | 5.2883 | 5.2889 | 5.2941 | 5.3478 |
| 440 | 5.5455 | 5.5456 | 5.5461 | 5.5516 | 5.6067 |
| 460 | 5.8029 | 5.8030 | 5.8035 | 5.8091 | 5.8659 |
| 480 | 6.0604 | 6.0605 | 6.0610 | 6.0669 | 6.1249 |
| 500 | 6.3180 | 6.3181 | 6.3187 | 6.3246 | 6.3839 |
| 520 | 6.5757 | 6.5758 | 6.5764 | 6.5824 | 6.6427 |
| 540 | 6.8335 | 6.8336 | 6.8342 | 6.8404 | 6.9015 |
| 560 | 7.0915 | 7.0915 | 7.0921 | 7.0984 | 7.1606 |
| 580 | 7.3495 | 7.3496 | 7.3502 | 7.3565 | 7.4194 |
| 600 | 7.6077 | 7.6078 | 7.6084 | 7.6147 | 7.6784 |

THERMODYNAMIC PROPERTIES OF GASES
4-99
Table 4h-22. Entropy of Hydrogen, $S / R$

| $T,{ }^{\circ} \mathrm{K}$ | 0.01 atm | 0.1 atm | 1 atm | 10 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 15.554 | 13.251 | 10.938 | 8.535 | 5.557 |
| 80 | 16.287 | 13.984 | 11.676 | 9.324 | 6.642 |
| 100 | 16.878 | 14.575 | 12.269 | 9.937 | 7.400 |
| 120 | 17.386 | 15.083 | 12.778 | 10.456 | 7.996 |
| 140 | 17.836 | 15.533 | 13.229 | 10.913 | 8.496 |
| 160 | 18.244 | 15.941 | 13.637 | 11.324 | 8.935 |
| 180 | 18.616 | 16.313 | 14.009 | 11.699 | 9.331 |
| 200 | 18.958 | 16.655 | 14.352 | 12.043 | 9.688 |
| 220 | 19.273 | 16.970 | 14.667 | 12.359 | 10.015 |
| 240 | 19.566 | 17.263 | 14.960 | 12.653 | 10.317 |
| 260 | 19.838 | 17.535 | 15.232 | 12.926 | 10.596 |
| 280 | 20.093 | 17.790 | 15.487 | 13.182 | 10.857 |
| 300 | 20.331 | 18.029 | 15.726 | 13.421 | 11.100 |
| 320 | 20.556 | 18.254 | 15.951 | 13.646 | 11.328 |
| 340 | 20.768 | 18.465 | 16.162 | 13.858 | 11.542 |
| 360 | 20.967 | 18.665 | 16.362 | 14.058 | 11.744 |
| 380 | 21.157 | 18.854 | 16.552 | 14.248 | 11.936 |
| 400 | 21.337 | 19.034 | 16.731 | 14.428 | 12.117 |
| 420 | 21.508 | 19.206 | 16.903 | 14.600 | 12.290 |
| 440 | 21.671 | 19.369 | 17.066 | 14.763 | 12.454 |
| 460 | 21.828 | 19.525 | 17.223 | 14.919 | 12.612 |
| 480 | 21.977 | 19.675 | 17.372 | 15.069 | 12.762 |
| 500 | 22.121 | 19.818 | 17.515 | 15.213 | 12.906 |
| 520 | 22.260 | 19.957 | 17.655 | 15.352 | 13.046 |
| 540 | 22.392 | 20.090 | 17.787 | 15.484 | 13.179 |
| 560 | 22.520 | 20.218 | 17.915 | 15.612 | 13.308 |
| 580 | 22.644 | 20.341 | 18.038 | 15.736 | 13.431 |
| 600 | 22.764 | 20.461 | 18.158 | 15.856 | 13.552 |



Fig. 4h-2. Temperature-entropy diagram for hydrogen. (Woolley, Scott, and Brickwedde.)


Fig. 4h-3. Temperature-entropy diagram for hydrogen. (Continued)


Fig. 4h-4. Temperature-entropy diagram for hydrogen. (Continued)

Table 4h-23. Compressibility Factor for Nitrogen, $Z=P V / R T$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.981 | 0.909 | 0.783 |  |  |  |  |
| 200 | 0.99788 | 0.99150 | 0.98514 | 0.9788 | 0.9185 | 0.8705 | 0.844 |
| 300 | 0.99982 | 0.99930 | 0.99882 | 0.99838 | 0.9962 | 0.9984 | 1.0054 |
| 400 | 1.00028 | 1.00113 | 1.00201 | 1.00290 | 1.01292 | 1.0248 | 1.0383 |
| 500 | 1.00041 | 1.00164 | 1.00289 | 1.00414 | 1.01726 | 1.0313 | 1.0461 |
| 600 | 1.00044 | 1.00174 | 1.00306 | 1.00439 | 1.01795 | 1.0320 | 1.0465 |
| 700 | 1.00043 | 1.00171 | 1.00301 | 1.00430 | 1.01744 | 1.0309 | 1.0446 |
| 800 | 1.00041 | 1.00163 | 1.00286 | 1.00409 | 1.0165 | 1.0292 | 1.0420 |
| 900 | 1.00038 | 1.00154 | 1.00269 | 1.00384 | 1.0155 | 1.0273 | 1.0391 |
| 1000 | 1.00036 | 1.00144 | 1.00252 | 1.00360 | 1.0145 | 1.0255 | 1.0365 |
| 1100 | 1.00034 | 1.00135 | 1.00236 | 1.00337 | 1.0135 | 1.0238 | 1.0341 |
| 1200 | 1.00032 | 1.00126 | 1.00221 | 1.00316 | 1.0127 | 1.0223 | 1.0319 |
| 1300 | 1.00030 | 1.00119 | 1.00208 | 1.00297 | 1.0119 | 1.0209 | 1.0299 |
| 1400 | 1.00028 | 1.00112 | 1.00195 | 1.00279 | 1.0112 | 1.0196 | 1.0280 |
| 1500 | 1.00026 | 1.00105 | 1.00184 | 1.00263 | 1.0105 | 1.0185 | 1.0264 |
| 1600 | 1.00025 | 1.00100 | 1.00174 | 1.00249 | 1.0100 | 1.0175 | 1.0250 |
| 1700 | 1.00024 | 1.00094 | 1.00165 | 1.00235 | 1.0094 | 1.0165 | 1.0236 |
| 1800 | 1.00022 | 1.00089 | 1.00156 | 1.00223 | 1.0089 | 1.0156 | 1.0223 |
| 1900 | 1.00021 | 1.00085 | 1.00148 | 1.00212 | 1.0085 | 1.0148 | 1.0212 |
| 2000 | 1.00020 | 1.00081 | 1.00141 | 1.00202 | 1.0081 | 1.0141 | 1.0202 |
| 2100 | 1.00019 | 1.00077 | 1.00135 | 1.00193 | 1.0077 | 1.0135 | 1.0193 |
| 2200 | 1.00018 | 1.00074 | 1.00129 | 1.00184 | 1.0074 | 1.0129 | 1.0184 |
| 2300 | 1.00018 | 1.00070 | 1.00123 | 1.00176 | 1.0070 | 1.0123 | 1.0176 |
| 2400 | 1.00017 | 1.00068 | 1.00118 | 1.00169 | 1.0068 | 1.0118 | 1.0169 |
| 2500 | 1.00016 | 1.00065 | 1.00113 | 1.00162 | 1.0065 | 1.0113 | 1.0162 |
| 2600 | 1.00016 | 1.00062 | 1.00109 | 1.00156 | 1.0062 | 1.0109 | 1.0156 |
| 2700 | 1.00015 | 1.00060 | 1.00105 | 1.00150 | 1.0060 | 1.0105 | 1.0150 |
| 2800 | 1.00015 | 1.00058 | 1.00102 | 1.00145 | 1.0058 | 1.0102 | 1.0145 |
| 2900 | 1.00014 | 1.00056 | 1.00097 | 1.00139 | 1.0056 | 1.0097 | 1.0139 |
| 3000 | 1.00014 | 1.00054 | 1.00095 | 1.00135 | 1.0054 | 1.0095 | 1.0135 |

Table 4h-24. Relative Density of Nitrogen, $\rho / \rho_{0}$

| T, ${ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 2.783 | 12.010 | 24.40 |  |  |  |  |
| 200 | 1.36809 | 5.50755 | 9.7004 | 13.947 | 59.45 | 109.77 | 161.7 |
| 300 | 0.91029 | 3.64304 | 6.3783 | 9.1160 | 36.543 | 63.810 | 90.523 |
| 400 | 0.68240 | 2.72729 | 4.76856 | 6.8061 | 26.955 | 46.625 | 65.741 |
| 500 | 0.54585 | 2.18072 | 3.81150 | 5.4382 | 21.472 | 37.065 | 52.200 |
| 600 | 0.45486 | 1.81708 | 3.17571 | 4.5307 | 17.881 | 30.866 | 43.484 |
| 700 | 0.38989 | 1.55755 | 2.72218 | 3.8838 | 15.334 | 26.485 | 37.339 |
| 800 | 0.34116 | 1.36296 | 2.38226 | 3.3990 | 13.429 | 23.212 | 32.754 |
| 900 | 0.30326 | 1.21163 | 2.11792 | 3.0223 | 11.949 | 20.673 | 29.195 |
| 1000 | 0.27294 | 1.09058 | 1.90645 | 2.7206 | 10.765 | 18.631 | 26.342 |
| 1100 | 0.24813 | 0.99152 | 1.73342 | 2.4737 | 9.796 | 16.971 | 24.003 |
| 1200 | 0.22746 | 0.90898 | 1.58920 | 2.2681 | 8.987 | 15.579 | 22.049 |
| 1300 | 0.20997 | 0.83912 | 1.46715 | 2.0940 | 8.302 | 14.401 | 20.393 |
| 1400 | 0.19497 | 0.77923 | 1.36253 | 1.9448 | 7.714 | 13.389 | 18.971 |
| 1500 | 0.18198 | 0.72733 | 1.27183 | 1.8155 | 7.205 | 12.510 | 17.734 |
| 1600 | 0.17061 | 0.68191 | 1.19246 | 1.7022 | 6.758 | 11.739 | 16.648 |
| 1700 | 0.16057 | 0.64184 | 1.12242 | 1.6023 | 6.364 | 11.060 | 15.690 |
| 1800 | 0.15165 | 0.60621 | 1.06016 | 1.5135 | 6.014 | 10.455 | 14.837 |
| 1900 | 0.14367 | 0.57433 | 1.00444 | 1.4340 | 5.699 | 9.912 | 14.072 |
| 2000 | 0.13649 | 0.54563 | 0.95428 | 1.3625 | 5.416 | 9.423 | 13.381 |
| 2100 | 0.12999 | 0.51967 | 0.90890 | 1.2977 | 5.161 | 8.980 | 12.755 |
| 2200 | 0.12409 | 0.49606 | 0.86763 | 1.2388 | 4.927 | 8.576 | 12.186 |
| 2300 | 0.11869 | 0.47451 | 0.82996 | 1.1850 | 4.715 | 8.208 | 11.665 |
| 2400 | 0.11375 | 0.45475 | 0.79542 | 1.1357 | 4.519 | 7.870 | 11.187 |
| 2500 | 0.10920 | 0.43658 | 0.76364 | 1.0904 | 4.340 | 7.559 | 10.747 |
| 2600 | 0.10500 | 0.41980 | 0.73430 | 1.0485 | 4.174 | 7.271 | 10.340 |
| 2700 | 0.10111 | 0.40426 | 0.70713 | 1.0097 | 4.020 | 7.005 | 9.963 |
| 2800 | 0.09750 | 0.38983 | 0.68190 | 0.9737 | 3.878 | 6.757 | 9.611 |
| 2900 | 0.09414 | 0.37639 | 0.65842 | 0.9402 | 3.745 | 6.527 | 9.286 |
| 3000 | 0.09100 | 0.36385 | 0.63648 | 0.9089 | 3.620 | 6.310 | 8.980 |

THERMODYNAMIC PROPERTIES OF GASES
Table 4h-25. Specific Hbat of Nitrogen, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 3.613 |  |  |  |  |  |  |
| 200 | 3.5146 | 3.5569 | 3.6009 | 3.6466 | 4.1865 | 4.860 | 5.64 |
| 300 | 3.5083 | 3.5243 | 3.5404 | 3.5565 | 3.7195 | 3.878 | 4.021 |
| 400 | 3.5207 | 3.5289 | 3.5372 | 3.5454 | 3.6260 | 3.7023 | 3.773 |
| 500 | 3.5595 | 3.5645 | 3.5694 | 3.5744 | 3.6225 | 3.6680 | 3.7104 |
| 600 | 3.6225 | 3.6258 | 3.6292 | 3.6324 | 3.6642 | 3.6944 | 3.7229 |
| 700 | 3.6998 | 3.7021 | 3.7045 | 3.7067 | 3.7293 | 3.7506 | 3.7709 |
| 800 | 3.7812 | 3.7829 | 3.7846 | 3.7863 | 3.8029 | 3.8188 | 3.8338 |
| 900 | 3.8600 | 3.8614 | 3.8627 | 3.8640 | 3.8766 | 3.8888 | 3.9004 |
| 1000 | 3.9329 | 3.9340 | 3.9350 | 3.9361 | 3.9460 | 3.9556 | 3.9647 |
| 1100 | 3.9985 | 3.9993 | 4.0001 | 4.0010 | 4.0089 | 4.0166 | 4.0239 |
| 1200 | 4.0564 | 4.0571 | 40578 | 4.0584 | 4.0649 | 4.0712 | 4.0772 |
| 1300 | 4.1074 | 4.1079 | 4.1085 | 4.1091 | 4.1144: | 4.1197 | 4.1247 |
| 1400 | 4.1520 | 4.1524 | 4.1529 | 4.1533 | 4.1578 | 4.1621 | 4.1663 |
| 1500 | 4.1910 | 4.1914 | 4.1918 | 4.1922 | 4.1960 | 4.1995 | 4.2031 |
| 1600 | 4.2253 | 4.2256 | 4.2260 | 4.2263 | 4.2295 | 4.2326 | 4.2356 |
| 1700 | 4.2555 | 4.2558 | 4.2561 | 4.2563 | 4.2591 | 4.2618 | 4.2644 |
| 1800 | 4.2822 | 4.2824 | 4.2827 | 4.2829 | 4.2852 | 4.2875 | 4.2896 |
| 1900 | 4.3058 | 4.3060 | 4.3062 | 4.3064 | 4.3084 | 4.3103 | 4.3122 |
| 2000 | 4.3269 | 4.3270 | 4.3272 | 4.3274 | 4.3292 | 4.3309 | 4.3325 |
| 2100 | 4.3458 | 4.3459 | 4.3461 | 4.3462 | 4.3478 | 4.3492 | 4.3507 |
| 2200 | 4.3627 | 4.3629 | 4.3630 | 4.3632 | 4.3645 | 4.3658 | 4.3671 |
| 2300 | 4.3780 | 4.3782 | 4.3783 | 4.3784 | 4.3796 | 4.3807 | 4.3818 |
| 2400 | 4.3920 | 4.3921 | 4.3922 | 4.3924 | 4.3934 | 4.3944 | 4.3953 |
| 2500 | 4.4047 | 4.4048 | 4.4049 | 4.4050 | 4.4059 | 4.4068 | 4.4076 |
| 2600 | 4.4163 | 4.4164 | 4.4165 | 4.4166 | 4.4174 | 4.4182 | 4.4189 |
| 2700 | 4.4270 | 4.4271 | 4.4272 | 4.4272 | 4.4280 | 4.4287 | 4.4293 |
| 2800 | 4.4369 | 4.4370 | 4.4370 | 4.4371 | 4.4377 | 4.4384 | 4.4389 |
| 2900 | 4.4460 | 4.4461 | 4.4461 | 4.4462 | 4.4467 | 4.4473 | 4.4478 |
| 3000 | 4.4545 | 4.4546 | 4.4546 | 4.4547 | 4.4551 | 4.4556 | 4.4561 |

Table 4h-26. Enthalpy of Nitrogen, $\left(H-E_{0}{ }^{\circ}\right) / R T_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 1.2589 |  |  |  |  |  |  |
| 200 | 2.5535 | 2.5358 | 2.5179 | 2.4999 | 2.3140 | 2.125 | 1.94 |
| 300 | 3.8385 | 3.8302 | 3.8221 | 3.8140 | 3.7351 | 3.662 | 3.596 |
| 400 | 5.1244 | 5.1203 | 5.1164 | 5.1125 | 5.0756 | 5.0426 | 5.013 |
| 500 | 6.4194 | 6.4178 | 6.4162 | 6.4147 | 6.4005 | 6.3891 | 6.3802 |
| 600 | 7.7334 | 7.7333 | 7.7332 | 7.7331 | 7.7332 | 7.7354 | 7.7393 |
| 700 | 9.0735 | 9.0744 | 9.0752 | 9.0762 | 9.0861 | 9.0977 | 9.1103 |
| 800 | 10.4428 | 10.4444 | 10.4460 | 10.4477 | 10.4647 | 10.4829 | 10.5020 |
| 900 | 11.8416 | 11.8438 | 11.8459 | 11.8482 . | 11.8705 | 11.8937 | 11.9177 |
| 1000 | 13.2683 | 13.2708 | 13.2734 | 13.2760 | 13.3025 | 13.3296 | 13.3573 |
| 1100 | 14.7203 | 14.7232 | 14.7261 | 14.7290 | 14.7588 | 14.7891 | 14.8197 |
| 1200 | 16.1950 | 16.1982 | 16.2014 | 16.2046 | 16.2369 | 16.2697 | 16.3029 |
| 1300 | 17.6894 | 17.6929 | 17.6963 | 17.6997 | 17.7343 | 17.7691 | 17.8043 |
| 1400 | 19.2014 | 19.2050 | 19.2086 | 19.2122 | 19.2486 | 19.2851 | 19.3221 |
| 1500 | 20.7288 | 20.7325 | 20.7363 | 20.7400 | 20.7779 | 20.8159 | 20.8542 |
| 1600 | 22.2695 | 22.2734 | 22.2773 | 22.2812 | 22.3203 | 22.3597 | 22.3992 |
| 1700 | 23.8219 | 23.8259 | 23.8299 | 23.8340 | 23.8742 | 23.9146 | 23.9550 |
| 1800 | 25.3848 | 25.3889 | 25.3930 | 25.3971 | 25.4382 | 25.4795 | 25.5209 |
| 1900 | 26.9568 | 26.9610 | 26.9652 | 26.9693 | 27.0113 | 27.0533 | 27.0954 |
| 2000 | 28.5370 | 28.5413 | 28.5455 | 28.5498 | 28.5924 | 28.6352 | 28.6779 |
| 2100 | 30.1246 | 30.1290 | 30.1333 | 30.1376 | 30.1808 | 30.2241 | 30.2674 |
| 2200 | 31.7187 | 31.7230 | 31.7274 | 31.7318 | 31.7755 | 31.8193 | 31.8632 |
| 2300 | 33.3187 | 33.3231 | 33.3275 | 33.3319 | 33.3761 | 33.4203 | 33.4647 |
| 2400 | 34.9240 | 34.9284 | 34.9329 | 34.9374 | 34.9819 | 35.0266 | 35.0712 |
| 2500 | 36.5342 | 36.5387 | 36.5432 | 36.5477 | 36.5926 | 36.6377 | 36.6827 |
| 2600 | 38.1488 | 38.1533 | 38.1579 | 38.1624 | 38.2076 | 38.2530 | 38.2983 |
| 2700 | 39.7676 | 39.7722 | 39.7767 | 39.7813 | 39.8268 | 39.8723 | 39.9179 |
| 2800 | 41.3901 | 41.3947 | 41.3993 | 41.4039 | 41.4496 | 41.4954 | 41.5413 |
| 2900 | 43.0160 | 43.0206 | 43.0252 | 43.0298 | 43.0758 | 43.1218 | 43.1678 |
| 3000 | 44.6452 | 44.6499 | 44.6545 | 44.6591 | 44.7053 | 44.7514 | 44.7976 |

Table 4h-27. Entropy of Nitrogen, $S / R$

| $\boldsymbol{T},{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 19.1705 | 17.607 | 16.55 |  |  |  |  |
| 200 | 21.6249 | 20.2208 | 19.6431 | 19.2682 | 17.6905 | 16.932 | 16.382 |
| 300 | 23.0482 | 21.6549 | 21.0884 | 20.7248 | 19.2706 | 18.6461 | 18.230 |
| 400 | 24.0586 | 22.6687 | 22.1055 | 21.7454 | 20.3246 | 19.7322 | 19.3448 |
| 500 | 24.8479 | 23.4595 | 22.8977 | 22.5390 | 21.1322 | 20.5532 | 20.1781 |
| 600 | 25.5020 | 24.1144 | 23.5534 | 23.1953 | 21.7958 | 21.2236 | 20.8548 |
| 700 | 26.0662 | 24.6790 | 24.1184 | 23.7607 | 22.3654 | 21.7970 | 21.4319 |
| 800 | 26.5656 | 25.1786 | 24.6183 | 24.2609 | 22.8682 | 22.3022 | 21.9396 |
| 900 | 27.0154 | 25.6286 | 25.0685 | 24.7113 | 23.3203 | 22.7561 | 22.3949 |
| 1000 | 27.4260 | 26.0393 | 25.4793 | 25.1223 | 23.7323 | 23.1693 | 22.8094 |
| 1100 | 27.8039 | 26.4173 | 25.8574 | 25.5004 | 24.1114 | 23.5491 | 23.1899 |
| 1200 | 28.1543 | 26.7678 | 26.2080 | 25.8511 | 24.4627 | 23.9010 | 23.5424 |
| 1300 | 28.4811 | 27.0947 | 26.5349 | 26.1780 | 24.7901 | 24.2289 | 23.8707 |
| 1400 | 28.7872 | 27.4007 | 26.8410 | 26.4842 | 25.0965 | 24.5357 | 24.1779 |
| 1500 | 29.0751 | 27.6887 | 27.1290 | 26.7721 | 25.3848 | 24.8242 | 24.4666 |
| 1600 | 29.3467 | 27.9603 | 27.4006 | 27.0438 | 25.6567 | 25.0964 | 24.7390 |
| 1700 | 29.6037 | 28.2173 | 27.6577 | 27.3009 | 25.9140 | 25.3537 | 24.9965 |
| 1800 | 29.8477 | 28.4613 | 27.9017 | 27.5449 | 26.1582 | 25.5981 | 25.2410 |
| 1900 | 30.0799 | 28.6936 | 28.1339 | 27.7772 | 26.3905 | 25.8306 | 25.4736 |
| 2000 | 30.3013 | 28.9150 | 28.3553 | 27.9986 | 26.6120 | 26.0522 | 25.6953 |
| 2100 | 30.5129 | 29.1266 | 28.5670 | 28.2102 | 26.8238 | 26.2640 | 25.9072 |
| 2200 | 30.7154 | 29.3291 | 28.7695 | 28.4128 | 27.0264 | 26.4667 | 26.1100 |
| 2300 | 30.9097 | 29.5234 | 28.9638 | 28.6071 | 27.2207 | 26.6611 | 26.3043 |
| 2400 | 31.0963 | 29.7100 | 29.1504 | 28.7937 | 27.4074 | 26.8478 | 26.4911 |
| 2500 | 31.2759 | 29.8896 | 29.3300 | 28.9733 | 27.5870 | 27.0275 | 26.6708 |
| 2600 | 31.4488 | 30.0625 | 29.5029 | 29.1462 | 27.7600 | 27.2004 | 26.8438 |
| 2700 | 31.6157 | 30.2294 | 29.6698 | 29.3131 | 27.9269 | 27.3674 | 27.0108 |
| 2800 | 31.7769 | 30.3906 | 29.8310 | 29.4743 | 28.0882 | 27.5287 | 27.1721 |
| 2900 | 31.9327 | 30.5464 | 29.9868 | 29.6301 | 28.2440 | 27.6846 | 27.3280 |
| 3000 | 32.0836 | 30.6973 | 30.1377 | 29.7810 | 28.3949 | 27.8355 | 27.4790 |

HEAT
Table 4h-28. Compressibility Factor for Oxygen, $Z=P V / R T$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 0.97724 |  |  |  |  |  |  |
| 200 | 0.99701 | 0.98796 | 0.97880 | 0.96956 | 0.8734 | 0.7764 | 0.6871 |
| 300 | 0.99939 | 0.99759 | 0.99580 | 0.99402 | 0.97731 | 0.9636 | 0.9541 |
| 400 | 1.00001 | 1.00006 | 1.00012 | 1.00019 | 1.00161 | 1.0042 | 1.0079 |
| 500 | 1.00022 | 1.00088 | 1.00154 | 1.00222 | 1.00942 | 1.0173 | 1.0256 |
|  |  |  |  |  |  |  |  |
| 600 | 1.00029 | 1.00116 | 1.00204 | 1.00292 | 1.01205 | 1.0216 | 1.0314 |
| 700 | 1.00031 | 1.00124 | 1.00218 | 1.00312 | 1.01275 | 1.0227 | 1.0328 |
| 800 | 1.00031 | 1.00124 | 1.00218 | 1.00311 | 1.01265 | 1.0224 | 1.0323 |
| 900 | 1.00030 | 1.00121 | 1.00211 | 1.00302 | 1.01223 | 1.0216 | 1.0312 |
| 1000 | 1.00029 | 1.00115 | 1.00202 | 1.00288 | 1.01167 | 1.0206 | 1.0296 |
|  |  |  |  |  |  |  |  |
| 1100 | 1.00027 | 1.00109 | 1.00192 | 1.00274 | 1.01107 | 1.0195 | 1.0281 |
| 1200 | 1.00026 | 1.00104 | 1.00182 | 1.00260 | 1.01047 | 1.0184 | 1.0265 |
| 1300 | 1.00025 | 1.00098 | 1.00172 | 1.00246 | 1.00991 | 1.0174 | 1.0250 |
| 1400 | 1.00023 | 1.00093 | 1.00163 | 1.00233 | 1.00938 | 1.0165 | 1.0237 |
| 1500 | 1.00022 | 1.00088 | 1.00155 | 1.00221 | 1.00890 | 1.0156 | 1.0224 |
|  |  |  |  |  |  |  |  |
| 1600 | 1.00021 | 1.00084 | 1.00147 | 1.00210 | 1.00845 | 1.0149 | 1.0213 |
| 1700 | 1.00020 | 1.00080 | 1.00140 | 1.00200 | 1.00803 | 1.0141 | 1.0202 |
| 1800 | 1.00019 | 1.00076 | 1.00133 | 1.00190 | 1.00765 | 1.0134 | 1.0193 |
| 1900 | 1.00018 | 1.00072 | 1.00127 | 1.00181 | 1.00728 | 1.0128 | 1.0183 |
| 2000 | 1.00017 | 1.00069 | 1.00121 | 1.00173 | 1.00696 | 1.0122 | 1.0175 |
| 2100 | 1.00017 | 1.00066 | 1.00116 | 1.00166 | 1.00666 | 1.0117 | 1.0167 |
| 2200 | 1.00016 | 1.00063 | 1.00111 | 1.00159 | 1.00638 | 1.0112 | 1.0161 |
| 2300 | 1.00015 | 1.00061 | 1.00107 | 1.00152 | 1.00610 | 1.0107 | 1.0153 |
| 2400 | 1.00015 | 1.00058 | 1.00102 | 1.00146 | 1.00586 | 1.0103 | 1.0147 |
| 2500 | 1.00014 | 1.00056 | 1.00098 | 1.00141 | 1.00564 | 1.0099 | 1.0142 |
| 2600 | 1.00014 | 1.00054 | 1.00095 | 1.00135 | 1.00543 | 1.0095 | 1.0136 |
| 2700 | 1.00013 | 1.00052 | 1.00091 | 1.00130 | 1.00523 | 1.0092 | 1.0131 |
| 2800 | 1.00013 | 1.00050 | 1.00088 | 1.00126 | 1.00505 | 1.0089 | 1.0127 |
| 2900 | 1.00012 | 1.00049 | 1.00085 | 1.00122 | 1.00488 | 1.0086 | 1.0122 |
| 3000 | 1.00012 | 1.00047 | 1.00082 | 1.00117 | 1.00471 | 1.0083 | 1.0118 |
|  |  |  |  |  |  |  |  |

THERMODYNAMIC PROPERTIES OF GASES
4-109
Table 4h-29. Relative Density of Oxygen, $\rho / \rho_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 2.79257 |  |  |  |  |  |  |
| 200 | 1.36860 | 5.5245 | 9.7584 | 14.073 | 62.4 | 123 | 198.5 |
| 300 | 0.91023 | 3.6474 | 6.39455 | 9.151 | 37.231 | 66.082 | 95.34 |
| 400 | 0.68225 | 2.72885 | 4.77519 | 6.8212 | 27.246 | 47.557 | 67.69 |
| 500 | 0.54568 | 2.18129 | 3.81474 | 5.4459 | 21.628 | 37.556 | 53.217 |
| 600 | 0.45470 | 1.81723 | 3.17736 | 4.5351 | 17.9767 | 31.165 | 44.098 |
| 700 | 0.38974 | 1.55750 | 2.72307 | 3.8864 | 15.3980 | 26.684 | 37.747 |
| 800 | 0.34102 | 1.36282 | 2.38269 | 3.4006 | 13.4746 | 23.355 | 33.045 |
| 900 | 0.30313 | 1.21143 | 2.11809 | 3.0231 | 11.9823 | 20.776 | 29.404 |
| 1000 | 0.27282 | 1.09035 | 1.90646 | 2.7211 | 10.7901 | 18.717 | 26.505 |
| 1100 | 0.24802 | 0.99129 | 1.73331 | 2.4741 | 9.8150 | 17.034 | 24.131 |
| 1200 | 0.22736 | 0.90872 | 1.58903 | 2.26828 | 9.0024 | 15.631 | 22.154 |
| 1300 | 0.20987 | 0.83887 | 1.46694 | 2.09409 | 8.3145 | 14.443 | 20.480 |
| 1400 | 0.19488 | 0.77899 | 1.36228 | 1.94476 | 7.7247 | 13.423 | 19.041 |
| 1500 | 0.18189 | 0.72710 | 1.27157 | 1.81533 | 7.2131 | 12.539 | 17.794 |
| 1600 | 0.17053 | 0.68168 | 1.19219 | 1.70206 | 6.7653 | 11.764 | 16:700 |
| 1700 | 0.16050 | 0.64161 | 1.12214 | 1.60210 | 6.3700 | 11.080 | 15.735 |
| 1800 | 0.15158 | 0.60599 | 1.05987 | 1.51324 | 6.0184 | 10.472 | 14.874 |
| 1900 | 0.14361 | 0.57412 | 1.00415 | 1.43373 | 5.7037 | 9.927 | 14.105 |
| 2000 | 0.13643 | 0.54543 | 0.95400 | 1.36215 | 5.4202 | 9.436 | 13.410 |
| 2100 | 0.12993 | 0.51947 | 0.90862 | 1.29737 | 5.1637 | 8.991 | 12.781 |
| 2200 | 0.12403 | 0.49587 | 0.86736 | 1.23849 | 4.9303 | 8.587 | 12.208 |
| 2300 | 0.11863 | 0.47432 | 0.82968 | 1.18473 | 4.7173 | 8.217 | 11.686 |
| 2400 | 0.11369 | 0.45457 | 0.79515 | 1.13543 | 4.5218 | 7.878 | 11,206 |
| 2500 | 0.10915 | 0.43640 | 0.76337 | 1.09007 | 4.3419 | 7.566 | 10.763 |
| 2600 | 0.10495 | 0.41962 | 0.73404 | 1.04820 | 4.1758 | 7.278 | 10.355 |
| 2700 | 0.10106 | 0.40409 | 0.70688 | 1.00943 | 4.0219 | 7.010 | 9.976 |
| 2800 | 0.09745 | 0.38966 | 0.68165 | 0.97342 | 3.8790 | 6.762 | 9.624 |
| 2900 | 0.09409 | 0.37623 | 0.65817 | 0.93989 | 3.7458 | 6.531 | 9.296 |
| 3000 | 0.09096 | 0.36370 | 0.63625 | 0.90861 | 3.6216 | 6.315 | 8.990 |

Table 4h-30. Specific Heat of Oxygen, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 200 | 3.519 | 3.5681 | 3.6196 | 3.6739 | 4.415 | 5.66 | 7.6 |
| 300 | 3.5403 | 3.5584 | 3.5766 | 3.5951 | 3.7862 | 3.981 | 4.165 |
| 400 | 3.6243 | 3.6335 | 3.6427 | 3.6520 | 3.7453 | 3.836 | 3.921 |
| 500 | 3.7415 | 3.7470 | 3.7526 | 3.7582 | 3.8134 | 3.8677 | 3.920 |
| 600 | 3.8611 | 3.8648 | 3.8685 | 3.8722 | 3.9087 | 3.9445 | 3.980 |
|  |  |  |  |  |  |  |  |
| 700 | 3.9681 | 3.9707 | 3.9733 | 3.9759 | 4.0016 | 4.0266 | 4.052 |
| 800 | 4.0583 | 4.0603 | 4.0622 | 4.0641 | 4.0830 | 4.1017 | 4.120 |
| 900 | 4.1332 | 4.1347 | 4.1361 | 4.1376 | 4.1521 | 4.1664 | 4.180 |
| 1000 | 4.1952 | 4.1964 | 4.1975 | 4.1987 | 4.2101 | 4.2213 | 4.232 |
| 1100 | 4.2472 | 4.2481 | 4.2491 | 4.2500 | 4.2591 | 4.2681 | 4.277 |
|  |  |  |  |  |  |  |  |
| 1200 | 4.2915 | 4.2922 | 4.2930 | 4.2937 | 4.3012 | 4.3085 | 4.316 |
| 1300 | 4.3302 | 4.3308 | 4.3315 | 4.3321 | 4.3382 | 4.3442 | 4.350 |
| 1400 | 4.3653 | 4.3658 | 4.3663 | 4.3669 | 4.3721 | 4.3771 | 4.382 |
| 1500 | 4.3976 | 4.3981 | 4.3985 | 4.3990 | 4.4034 | 4.4076 | 4.412 |
| 1600 | 4.4283 | 4.4287 | 4.4291 | 4.4295 | 4.4332 | 4.4369 | 4.440 |
|  |  |  |  |  |  |  |  |
| 1700 | 4.4579 | 4.4582 | 4.4586 | 4.4589 | 4.4621 | 4.4652 | 4.468 |
| 1800 | 4.4869 | 4.4872 | 4.4875 | 4.4878 | 4.4905 | 4.4933 | 4.496 |
| 1900 | 4.5154 | 4.5156 | 4.5159 | 4.5161 | 4.5185 | 4.5209 | 4.523 |
| 2000 | 4.5437 | 4.5439 | 4.5441 | 4.5443 | 4.5464 | 4.5485 | 4.551 |
| 2100 | 4.5716 | 4.5717 | 4.5719 | 4.5721 | 4.5739 | 4.5758 | 4.578 |
|  |  |  |  |  |  |  |  |
| 2200 | 4.5993 | 4.5995 | 4.5997 | 4.5999 | 4.6016 | 4.6032 | 4.605 |
| 2300 | 4.6268 | 4.6269 | 4.6271 | 4.6272 | 4.6287 | 4.6301 | 4.631 |
| 2400 | 4.6540 | 4.6542 | 4.6543 | 4.6544 | 4.6558 | 4.6570 | 4.658 |
| 2500 | 4.6808 | 4.6810 | 4.6811 | 4.6812 | 4.6824 | 4.6835 | 4.685 |
| 2600 | 4.7071 | 4.7072 | 4.7073 | 4.7074 | 4.7085 | 4.7095 | 4.710 |
| 2700 | 4.7328 | 4.7329 | 4.7330 | 4.7331 | 4.7341 | 4.7349 | 4.736 |
| 2800 | 4.7579 | 4.7580 | 4.7581 | 4.7582 | 4.7590 | 4.7598 | 4.761 |
| 2900 | 4.7824 | 4.7825 | 4.7826 | 4.7826 | 4.7834 | 4.7841 | 4.785 |
| 3000 | 4.8062 | 4.8063 | 4.8064 | 4.8064 | 4.8072 | 4.8077 | 4.808 |
|  |  |  |  |  |  |  |  |

THERMODYNAMIC PROPERTIES OF GASES
4-111
Table 4h-31. Enthalpy of Oxygen, $\left(H-E_{0}{ }^{\circ}\right) / R T_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atmi | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 1.254 |  |  |  |  |  |  |
| 200 | 2.5523 | 2.5308 | 2.5091 | 2.4871 | 2.248 | 1.972 | 1.659 |
| 300 | 3.8424 | 3.8319 | 3.8213 | 3.8108 | 3.705 | 3.602 | 3.505 |
| 400 | 5.1523 | 5.1464 | 5.1406 | 5.1349 | 5.078 | 5.023 | 4.971 |
| 500 | 6.5000 | 6.4968 | 6.4936 | 6.4905 | 6.460 | 6.431 | 6.403 |
| 600 | 7.8919 | 7.8903 | 7.8888 | 7.8873 | 7.873 | 7.860 | 7.848 |
| 700 | 9.3254 | 9.3250 | 9.3245 | 9.3242 | 9.321 | 9.319 | 9.318 |
| 800 | 10.7951 | 10.7956 | 10.7960 | 10.7965 | 10.802 | 10.807 | 10.814 |
| 900 | 12.2949 | 12.2960 | 12.2970 | 12.2981 | 12.309 | 12.321 | 12.333 |
| 1000 | 13.8198 | 13.8213 | 13.8228 | 13.8243 | 13.840 | 13.857 | 13.874 |
| 1100 | 15.3653 | 15.3672 | 15.3691 | 15.3710 | 15.391 | 15.411 | 15.431 |
| 1200 | 16.9285 | 16.9307 | 16.9329 | 16.9351 | 16.958 | 16.981 | 17.004 |
| 1300 | 18.5067 | 18.5092 | 18.5116 | 18.5141 | 18.539 | 18.565 | 18.591 |
| 1400 | 20.0985 | 20.1012 | 20.1038 | 20.1065 | 20.134 | 20.161 | 20.189 |
| 1500 | 21.7025 | 21.7054 | 21.7082 | 21.7111 | 21.740 | 21.769 | 21.799 |
| 1600 | 23.3181 | 23.3211 | 23.3241 | 23.3271 | 23.358 | 23.388 | 23.419 |
| 1700 | 24.9447 | 24.9479 | 24.9510 | 24.9541 | 24.986 | 25.018 | 25.050 |
| 1800 | 26.5820 | 26.5852 | 26.5885 | 26.5917 | 26.625 | 26.658 | 26.691 |
| 1900 | 28.2299 | 28.2333 | 28.2366 | 28.2399 | 28.274 | 28.308 | 28.342 |
| 2000 | 29.8880 | 29.8915 | 29.8949 | 29.8983 | 29.933 | 29.968 | 30.003 |
| 2100 | 31.5566 | 31.5601 | 31.5636 | 31.5671 | 31.602 | 31.638 | 31.674 |
| 2200 | 33.2353 | 33.2389 | 33.2424 | 33.2460 | 33.282 | 33.318 | 33.355 |
| 2300 | 34.9239 | 34.9275 | 34.9312 | 34.9348 | 34.971 | 35.008 | 35.045 |
| 2400 | 36.6229 | 36.6266 | 36.6303 | 36.6340 | 36.671 | 36.708 | 36.745 |
| 2500 | 38.3314 | 38.3352 | 38.3389 | 38.3426 | 38.380 | 38.418 | 38.455 |
| 2600 | 40.0500 | 40.0537 | 40.0575 | 40.0613 | 40.099 | 40.137 | 40.175 |
| 2700 | 41.7778 | 41.7816 | 41.7854 | 41.7892 | 41.827 | 41.866 | 41.904 |
| 2800 | 43.5151 | 43.5189 | 43.5227 | 43.5266 | 43.565 | 43.604 | 43.643 |
| 2900 | 45.2614 | 45.2653 | 45.2691 | 45.2730 | 45.312 | 45.351 | 45.390 |
| 3000 | 47.0165 | 47.0204 | 47.0243 | 47.0282 | 47.067 | 47.107 | 47.146 |

Table 4h-32. Entropy of Oxygen, $S / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 4 atm | 7 atm | 10 atm | 40 atm | 70 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 20.794 |  |  |  |  |  |  |
| 200 | 23.2553 | 21.8488 | 21.2686 | 20.8908 | 19.2709 | 18.431 | 17.74 |
| 300 | 24.6839 | 23.2899 | 22.7224 | 22.3579 | 20.8928 | 20.2555 | 19.825 |
| 400 | 25.7127 | 24.3224 | 23.7587 | 23.3980 | 21.9719 | 21.3733 | 20.9789 |
| 500 | 26.5337 | 25.1450 | 24.5830 | 24.2239 | 22.8139 | 22.2311 | 21.8517 |
| 600 | 27.2266 | 25.8387 | 25.2775 | 24.9193 | 23.5176 | 22.9429 | 22.5712 |
| 700 | 27.8299 | 26.4425 | 25.8819 | 25.5241 | 24.1272 | 23.5571 | 23.1900 |
| 800 | 28.3659 | 26.9788 | 26.4185 | 26.0610 | 24.6670 | 24.0999 | 23.7357 |
| 900 | 28.8484 | 27.4615 | 26.9013 | 26.5440 | 25.1521 | 24.5869 | 24.2246 |
| 1000 | 29.2872 | 27.9005 | 27.3404 | 26.9833 | 25.5926 | 25.0287 | 24.6678 |
| 1100 | 29.6896 | 28.3029 | 27.7430 | 27.3859 | 25.9963 | 25.4334 | 25.0733 |
| 1200 | 30.0610 | 28.6744 | 28.1146 | 27.7576 | 26.3685 | 25.8064 | 25.4471 |
| 1300 | 30.4061 | 29.0196 | 28.4598 | 28.1029 | 26.7144 | 26.1527 | 25.7939 |
| 1400 | 30.7283 | 29.3419 | 28.7821 | 28.4252 | 27.0372 | 26.4760 | 26.1176 |
| 1500 | 31.0307 | 29.6442 | 29.0845 | 28.7276 | 27.3399 | 26.7790 | 26.4209 |
| 1600 | 31.3155 | 29.9290 | 29.3693 | 29.0125 | 27.6250 | 27.0644 | 26.7067 |
| 1700 | 31.5848 | 30.1984 | 29.6387 | 29.2819 | 27.8946 | 27.3342 | 26.9766 |
| 1800 | 31.8404 | 30.4540 | 29.8943 | 29.5375 | 28.1505 | 27.5902 | 27. 2328 |
| 1900 | 32.0838 | 30.6974 | 30.1377 | 29.7810 | 28.3941 | 27.8339 | 27.4767 |
| 2000 | 32.3161 | 30.9297 | 30.3701 | 30.0133 | 28.6265 | 28.0664 | 27.7094 |
| 2100 | 32.5385 | 31.1521 | 30.5925 | 30.2358 | 28.8490 | 28.2890 | 27.9320 |
| 2200 | 32.7518 | 31.3655 | 30.8058 | 30.4491 | 29.0625 | 28.5025 | 28.1456 |
| 2300 | 32.9568 | 31.5705 | 31.0108 | 30.6541 | 29.2675 | 28.7077 | 28.3508 |
| 2400 | 33.1543 | 31.7680 | 31.2083 | 30.8516 | 29.4651 | 28.9053 | 28.5485 |
| 2500 | 33.3449 | 31.9586 | 31.3990 | 31.0422 | 29.6558 | 29.0960 | 28.7393 |
| 2600 | 33.5289 | 32.1426 | 31.5830 | 31.2263 | 29.8399 | 29.2802 | 28.9235 |
| 2700 | 33.7071 | 32.3208 | 31.7612 | 31.4045 | 30.0181 | 29.4585 | 29.1018 |
| 2800 | 33.8796 | 32.4933 | 31.9337 | 31.5770 | 30.1907 | 29.6310 | 29.2744 |
| 2900 | 34.0470 | 32.6607 | 32.1011 | 31.7444 | 30.3581 | 29.7985 | 29.4419 |
| 3000 | 34.2096 | 32.8233 | 32.2637 | 31.9070 | 30.5207 | 29.9612 | 29.6047 |

Table 4h-33. Compressibility Factor for Steam, $Z=P V / R T$

| T, ${ }^{\circ} \mathrm{K}$ | 1 atm | 10 atm | 20 atm | 40 atm | 60 atm | 80 atm | 100 atm | 120 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 0.98591 |  |  |  |  |  |  |  |
| 400 | 0.98912 |  |  |  |  |  |  |  |
| 420 | 0.99133 |  |  |  |  |  |  |  |
| 440 | 0.99294 |  |  |  |  |  |  |  |
| 460 | 0.99415 | 0.93377 |  |  |  |  |  |  |
| 480 | 0.99509 | 0.94617 |  |  |  |  |  |  |
| 500 | 0.99583 | 0.95528 | 0.90274 |  |  |  |  |  |
| 520 | 0.99642 | 0.96223 | 0.91953 |  |  |  |  |  |
| 540 | 0.99690 | 0.96768 | 0.93215 | 0.84838 |  |  |  |  |
| 560 | 0.99730 | 0.97207 | 0.94198 | 0.87379 | 0.79031 |  |  |  |
| 580 | 0.99763 | 0.97565 | 0.94983 | 0.89295 | 0.82692 | 0.74683 |  |  |
| 600 | 0.99790 | 0.97862 | 0.95622 | 0.90792 | 0.85386 | 0.79194 | 0.7180 | 0.6214 |
| 620 | 0.99814 | 0.98111 | 0.96152 | 0.91995 | 0.87462 | 0.82458 | 0.7682 | 0.7025 |
| 640 | 0.99834 | 0.98323 | 0.96596 | 0.92980 | 0.89115 | 0.84955 | 0.8043 | 0.7542 |
| 660 | 0.99852 | 0.985030 | 0.96969 | 0.93787 | 0.90432 | 0.86877 | 0.8309 | 0.7902 |
| 680 | 0.99867 | 0.98659 | 0.97292 | 0.94472 | 0.91530 | 0.88451 | 0.85218 | 0.81809 |
| 700 | 0.99880 | 0.98795 | 0.97570 | 0.95060 | 0.92463 | 0.89772 | 0.86977 | 0.84068 |
| 720 | 0.998920 | 0.989130 | 0.97813 | 0.95568 | 0.93263 | 0.90893 | 0.88453 | 0.85939 |
| 740 | 0.999020 | 0.990180 | 0.98026 | 0.96011 | 0.93955 | 0.91854 | 0.89708 | 0.87513 |
| 760 | 0.999110 | 0.991100 | 0.98213 | 0.96399 | 0.94558 | 0.92688 | 0.90787 | 0.88855 |
| 780 | 0.99919 | 0.991920 | 0.98379 | 0.96742 | 0.95086 | 0.93413 | 0.91722 | 0.90011 |
| 800 | 0.999270 | 0.992650 | 0.98527 | 0.97045 | 0.95553 | 0.94051 | 0.92538 | 0.91015 |
| 820 | 0.999330 | 0.993300 | 0.98659 | 0.97315 | 0.95966 | 0.94614 | 0.93256 | 0.91893 |
| 840 | 0.999390 | 0.993890 | 0.98778 | 0.97556 | 0.96335 | 0.95113 | 0.93891 | 0.92667 |

Table 4h-33. Compressibility Factor for Steam, $Z=P V / R T$ (Continued)

| $T ;{ }^{\circ} \mathrm{K}$ | 140 atm | 160 atm | 180 atm | 200 atm | 220 atm | 240 atm | 260 atm | 280 atm | 300 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 620 | 0.6209 |  |  |  |  |  |  |  |  |
| 640 | 0.6979 | 0.6315 | 0.5464 |  |  |  |  |  |  |
| 660 | 0.7461 | 0.6975 | 0.6428 | 0.5790 | 0.4987 | 0.3751 |  |  |  |
| 680 | 0.78194 | 0.7433 | 0.7018 | 0.6566 | 0.6065 | 0.5499 | 0.484 | 0.4066 | 0.3323 |
| 700 | 0.81031 | 0.77850 | 0.74508 | 0.70978 | 0.6723 | 0.6324 | 0.5895 | 0.5435 | 0.4944 |
| 720 | 0.83343 | 0.80660 | 0.77882 | 0.74999 | 0.72005 | 0.6889 | 0.6565 | 0.6227 | 0.5876 |
| 740 | 0.85266 | 0.82965 | 0.80606 | 0.78186 | 0.75704 | 0.7316 | 0.7054 | 0.6786 | 0.6512 |
| 760 | 0.86891 | 0.84892 | 0.82859 | 0.80790 | 0.78684 | 0.7654 | 0.7436 | 0.7215 | 0.6990 |
| 780 | 0.88280 | 0.86528 | 0.84756 | 0.82962 | 0.81147 | 0.7931 | 0.7745 | 0.7557 | 0.7368 |
| 800 | 0.89480 | 0.87933 | 0.86375 | 0.84804 | 0.83220 | 0.8162 | 0.8001 | 0.7839 | 0.7676 |
| 820 | 0.90525 | 0.89151 | 0.87771 | 0.86384 | 0.84989 | 0.8359 | 0.8218 | 0.8076 | 0.7933 |
| 840 | 0.91442 | 0.90214 | 0.88985 | 0.87752 | 0.86515 | 0.8527 | 0.8403 | 0.8278 | 0.8152 |

Table 4h-34. Density of Steam, $\rho$ in $\mathbf{q} / \mathrm{cm}^{3}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 10 atm | 20 atm | 40 atm | 60 atm | 80 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 380 | 0.00058604 |  |  |  |  |  |
| 400 | 0.00055493 |  |  |  |  |  |
| 420 | 0.00052732 |  |  |  |  |  |
| 440 | 0.00050254 |  |  |  |  |  |
| 460 | 0.00048010 | 0.0051115 |  |  |  |  |
|  |  |  |  |  |  |  |
| 480 | 0.00045966 | 0.0048343 |  |  |  |  |
| 500 | 0.00044095 | 0.0045967 | 0.0097284 |  |  |  |
| 520 | 0.00042374 | 0.0043880 | 0.0091835 |  |  |  |
| 540 | 0.00040785 | 0.0042016 | 0.0087236 | 0.01917 |  |  |
| 560 | 0.00039313 | 0.0040333 | 0.0083242 | 0.017947 | 0.029765 |  |
|  |  |  |  |  |  |  |
| 580 | 0.00037944 | 0.0038799 | 0.0079708 | 0.016957 | 0.027467 | 0.040549 |
| 600 | 0.00036670 | 0.0037392 | 0.0076536 | 0.016121 | 0.025713 | 0.036965 |
| 620 | 0.00035478 | 0.0036094 | 0.0073659 | 0.015397 | 0.024293 | 0.034356 |
| 640 | 0.00034363 | 0.0034891 | 0.0071029 | 0.014758 | 0.023098 | 0.032305 |
| 660 | 0.00033315 | 0.0033771 | 0.0068611 | 0.014188 | 0.022071 | 0.030633 |
|  |  |  |  |  |  |  |
| 680 | 0.00032331 | 0.0032726 | 0.0066372 | 0.013671 | 0.021165 | 0.029203 |
| 700 | 0.00031403 | 0.0031748 | 0.0064292 | 0.013198 | 0.020353 | 0.027951 |
| 720 | 0.00030527 | 0.0030829 | 0.0062351 | 0.012763 | 0.019618 | 0.026839 |
| 740 | 0.00029699 | 0.0029964 | 0.0060534 | 0.012361 | 0.018947 | 0.025841 |
| 760 | 0.00028915 | 0.0029148 | 0.0058829 | 0.011987 | 0.018331 | 0.024934 |
| 780 | 0.00028171 | 0.0028377 | 0.0057224 | 0.011638 | 0.017762 | 0.024106 |
| 800 | 0.00027464 | 0.0027648 | 0.0055709 | 0.011312 | 0.017233 | 0.023344 |
| 820 | 0.00026793 | 0.0026956 | 0.0054278 | 0.011006 | 0.016740 | 0.022639 |
| 840 | 0.00026154 | 0.0026298 | 0.0052922 | 0.010717 | 0.016279 | 0.021984 |

Table 4h-34. Density of Steam, $\rho$ in $\mathrm{g} / \mathrm{cm}^{3}$ (Continued)

| T, ${ }^{\circ} \mathrm{K}$ | 100 atm | 120 atm | 140 atm | 160 atm | 180 atm | 200 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | 0.05096 | 0.07066 |  |  |  |  |
| 620 | 0.04610 | 0.06049 | 0.07985 |  |  |  |
| 640 | 0.04265 | 0.05458 | 0.06882 | 0.08692 | 0.113 |  |
| 660 | 0.040036 | 0.05052 | 0.06242 | 0.07631 | 0.09315 | 0.1149 |
| 680 | 0.037888 | 0.04736 | 0.057808 | 0.06949 | 0.08281 | 0.09835 |
| 700 | 0.036061 | 0.044771 | 0.054190 | 0.064463 | 0.075773 | 0.088380 |
| 720 | 0.034475 | 0.04258 | 0.051224 | 0.060489 | 0.070477 | 0.081318 |
| 740 | 0.033074 | 0.040684 | 0.048715 | 0.057219 | 0.066255 | 0.075895 |
| 760 | 0.031820 | 0.039015 | 0.046546 | 0.054448 | 0.062757 | 0.071516 |
| 780 | 0.030689 | 0.037526 | 0.044639 | 0.052049 | 0.059779 | 0.067858 |
| 800 | 0.029658 | 0.036184 | 0.042939 | 0.049937 | 0.057192 | 0.064724 |
| 820 | 0.028711 | 0.034965 | 0.041408 | 0.048053 | 0.054910 | 0.061991 |
| 840 | 0.027838 | 0.033847 | 0.040017 | 0.046357 | 0.052871 | 0.059572 |

THERMODYNAMIC PROPERTIES OF GASES
4-115
Table 4h-34. Density of Steam, $\rho$ in g/cm ${ }^{3}$ (Continued)

| $T,{ }^{\circ} \mathrm{K}$ | 220 atm | 240 atm | 260 atm | 280 atm | 300 atm |
| :---: | :--- | :--- | :--- | :--- | :--- |
|  | 0.1468 | 0.2128 |  |  |  |
| 660 | 0.1171 | 0.1409 | 0.1734 | 0.2223 | 0.2915 |
| 780 | 0.1026 | 0.1190 | 0.1383 | 0.1616 | 0.1903 |
| 720 | 0.093169 | 0.1062 | 0.1208 | 0.1371 | 0.1557 |
| 740 | 0.086221 | 0.09733 | 0.1094 | 0.1224 | 0.1367 |
|  |  |  |  |  |  |
| 760 | 0.080773 | 0.09058 | 0.1010 | 0.1121 | 0.1240 |
| 780 | 0.076313 | 0.08518 | 0.09449 | 0.1043 | 0.1146 |
| 800 | 0.072552 | 0.08070 | 0.08918 | 0.09803 | 0.1073 |
| 820 | 0.069309 | 0.07688 | 0.08471 | 0.09283 | 0.1013 |
| 840 | 0.066465 | 0.07357 | 0.08037 | 0.08841 | 0.09619 |

Table 4h-35. Specific Heat of Steam, $C_{p} / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 10 atm | 20 atm | 40 atm | 60 atm | 80 atm | 100 atm |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 4.462 |  |  |  |  |  |  |
| 400 | 4.355 |  |  |  |  |  |  |
| 420 | 4.312 |  |  |  |  |  |  |
| 440 | 4.291 |  |  |  |  |  |  |
| 460 | 4.282 | 5.614 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 480 | 4.285 | 5.231 |  |  |  |  |  |
| 500 | 4.294 | 4.994 | 6.211 |  |  |  |  |
| 520 | 4.308 | 4.842 | 5.703 |  |  |  |  |
| 540 | 4.326 | 4.744 | 5.378 | 7.432 |  |  |  |
| 560 | 4.346 | 4.681 | 5.164 | 6.602 | 9.131 |  |  |
|  |  |  |  |  |  |  |  |
| 580 | 4.367 | 4.641 | 5.019 | 6.074 | 7.725 | 10.574 |  |
| 600 | 4.391 | 4.618 | 4.921 | 5.723 | 6.886 | 8.619 | 11.513 |
| 620 | 4.416 | 4.606 | 4.854 | 5.481 | 6.338 | 7.527 | 9.215 |
| 640 | 4.442 | 4.603 | 4.808 | 5.311 | 5.966 | 6.826 | 7.970 |
| 660 | 4.467 | 4.606 | 4.779 | 5.190 | 5.704 | 6.351 | 7.172 |
|  |  |  |  |  |  |  |  |
| 680 | 4.495 | 4.615 | 4.762 | 5.104 | 5.518 | 6.020 | 6.634 |
| 700 | 4.522 | 4.627 | 4.754 | 5.043 | 5.383 | 5.785 | 6.259 |
| 720 | 4.550 | 4.642 | 4.752 | 4.999 | 5.284 | 5.610 | 5.987 |
| 740 | 4.578 | 4.659 | 4.756 | 4.970 | 5.211 | 5.482 | 5.789 |
| 760 | 4.607 | 4.680 | 4.765 | 4.951 | 5.158 | 5.387 | 5.641 |
| 780 | 4.636 | 4.701 | 4.776 | 4.939 | 5.118 | 5.314 | 5.528 |
| 800 | 4.665 | 4.724 | 4.792 | 4.937 | 5.094 | 5.264 | 5.448 |
| 820 | 4.694 | 4.748 | 4.809 | 4.939 | 5.078 | 5.227 | 5.387 |
| 840 | 4.724 | 4.772 | 4.828 | 4.944 | 5.069 | 5.201 | 5.342 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

Table 4h-36. Enthalpy of Steam, $\left(H-E_{0}{ }^{\circ}\right) / R T_{0}$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 10 atm | 20 atm | 40 atm | 60 atm | 80 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 5.482 |  |  |  |  |  |  |
| 400 | 5.804 |  |  |  |  |  |  |
| 420 | 6.121 |  |  |  |  |  |  |
| 440 | 6.436 |  |  |  |  |  |  |
| 460 | 6.750 | 6.306 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 480 | 7.063 | 6.702 |  |  |  |  |  |
| 500 | 7.377 | 7.075 | 6.665 |  |  |  |  |
| 520 | 7.692 | 7.435 | 7.180 |  |  |  |  |
| 540 | 8.008 | 7.786 | 7.505 | 6.811 |  |  |  |
| 560 | 8.326 | 8.131 | 7.890 | 7.322 | 6.592 |  |  |
|  |  |  |  |  |  |  |  |
| 580 | 8.645 | 8.472 | 8.263 | 7.785 | 7.204 | 6.471 |  |
| 600 | 8.965 | 8.811 | 8.627 | 8.216 | 7.736 | 7.165 | 6.462 |
| 620 | 9.288 | 9.148 | 8.984 | 8.625 | 8.219 | 7.753 | 7.210 |
| 640 | 9.612 | 9.485 | 9.338 | 9.020 | 8.669 | 8.277 | 7.836 |
| 660 | 9.938 | 9.822 | 9.689 | 9.404 | 9.095 | 8.758 | 8.388 |
|  |  |  |  |  |  |  |  |
| 680 | 10.266 | 10.160 | 10.038 | 9.781 | 9.506 | 9.211 | 8.892 |
| 700 | 10.596 | 10.498 | 10.386 | 10.152 | 9.905 | 9.642 | 9.364 |
| 720 | 10.928 | 10.838 | 10.734 | 10.520 | 10.295 | 10.059 | 9.811 |
| 740 | 11.262 | 11.178 | 11.082 | 10.885 | 10.679 | 10.465 | 10.242 |
| 760 | 11.599 | 11.520 | 11.431 | 11.248 | 11.059 | 10.863 | 10.660 |
|  |  |  |  |  |  |  |  |
| 780 | 11.937 | 11.863 | 11.780 | 11.610 | 11.435 | 11.254 | 11.069 |
| 800 | 12.278 | 12.208 | 12.130 | 11.971 | 11.808 | 11.641 | 11.470 |
| 820 | 12.620 | 12.555 | 12.482 | 12.333 | 12.181 | 12.025 | 11.867 |
| 840 | 12.965 | 12.903 | 12.834 | 12.695 | 12.552 | 12.407 | 12.260 |

THERMODYNAMIC PROPERTIES OF GASES
Table 4h-37. Entropy of Steam, $S / R$

| $T,{ }^{\circ} \mathrm{K}$ | 1 atm | 10 atm | 20 atm | 40 atm | 60 atm | 80 atm | 100 atm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 23.628 |  |  |  |  |  |  |
| 400 | 23.854 |  |  |  |  |  |  |
| 420 | 24.065 |  |  |  |  |  |  |
| 440 | 24.265 |  |  |  |  |  |  |
| 460 | 24.456 | 21.945 |  |  |  |  |  |
| 480 | ' 24.638 | 22.175 |  |  |  |  | - |
| 500 | 24.813 | 22.383 | 21.513 |  |  |  |  |
| 520 | 24.982 | 22.576 | 21.746 |  |  |  |  |
| 540 | 25.145 | 22.757 | 21.954 | 20.981 |  |  |  |
| 560 | 25.302 | 22.928 | 22,146 | 21.235 | 20.539 |  |  |
| 580 | 25.455 | 23.092 | 22.324 | 21.457 | 20.833 | 20.260 |  |
| 600 | 25.604 | 23.249 | 22.493 | 21.657 | 21.080 | 20.582 | 20.092 |
| 620 | 25.748 | 23.400 | 22.653 | 21.840 | 21.296 | 20.845 | 20.427 |
| 640 | 25.889 | 23:546 | 22.806 | 22.011 | 21.491 | 21.072 | 20.699 |
| 660 | 26.026 | 23.688 | 22.954 | 22.173 | 21.670 | 21.274 | 20.931 |
| 680 | 26.159 | 23.825 | 23.096 | 22.326 | 21.838 | 21.459 | 21.137 |
| 700 | 26.290 | 23.959 | 23.234 | 22.473 | 21.996 | 21.630 | 21.323 |
| 720 | 26.418 | 24.090 | 23.368 | 22.615 | 22.146 | 21.790 | 21.495 |
| 740 | 26.543 | 24.217 | 23.498 | 22.751 | 22.290 | 21.942 | 21.657 |
| 760 | 26.665 | 24.342 | 23.625 | 22.883 | 22.428 | 22.087 | 21.809 |
| 780 | 26.786 | 24.643 | 23.749 | 23.012 | 22.561 | 22.226 | 21.954 |
| 800 | 26.903 | 24.583 | 23.870 | 23.137 | 22.690 | 22.360 | 22.093 |
| 820 | 27.019 | 24.700 | 23.989 | 23.259 | 22.816 | 22.489 | 22.227 |
| 840 | 27.132 | 24.814 | 24.105 | 23.378 | 22.938 | 22.615 | 22.356 |

# 4i. Pressure-Volume-Temperature Relationships of Gases Virial Coefficients 

ABRAHAM S. FRIEDMAN

U.S. Atomic Energy Commission

Many empirical and semiempirical relations have been used to describe the pressure-volume-temperature relationships of gases and liquids. Among those most frequently used are the equations of van der Waals, Dieterici, Berthelot, Clausius, and Beattie and Bridgeman. It is most convenient, however, and more satisfactory from the theoretical standpoint, to use the Kamerlingh Onnes equation of state or any of the other simple variations of the virial equation:

$$
\begin{aligned}
& P V=R T\left(1+\frac{B_{v}}{V}+\frac{C_{v}}{V^{2}}+\frac{D_{v}}{V^{3}}+\frac{E_{v}}{V^{4}}+\cdots\right) \\
& P V=R T\left(1+B_{p} P+C_{p} P^{2}+D_{p} P^{3}+E_{p} P^{4}+\cdots\right)
\end{aligned}
$$

The virial coefficients are temperature-dependent and are expressed in units of powers of volume or reciprocal pressure, depending on the forms of equations used. The coefficients of these equations may be interrelated as follows:

$$
\begin{aligned}
& B_{v}=B_{p} R T \\
& C_{v}=\left(C_{p}+B_{p}{ }^{2}\right)(R T)^{2} \\
& D_{v}=\left(D_{p}+3 C_{p} B_{p}+B_{p}{ }^{3}\right)(R T)^{3} \\
& E_{v}=\left(E_{p}+4 D_{p} B_{p}+6 C_{p} B_{p}{ }^{2}+2 C_{p}{ }^{2}+B_{p}{ }^{4}\right)(R T)^{4} \\
& \cdot \cdot \cdot \\
& B_{p}=\frac{B_{v}}{R T} \\
& C_{p}=\frac{C_{v}-B_{v}{ }^{2}}{(R T)^{2}} \\
& D_{p}=\frac{D_{v}-3 B_{v} C_{v}+2 B_{v}{ }^{3}}{(R T)^{3}} \\
& E_{p}=\frac{E_{v}-2 C_{v}{ }^{2}-4 B_{v} D_{v}+10 B_{v}{ }^{2} C_{v}-5 B_{v}{ }^{4}}{(R T)^{4}}
\end{aligned}
$$

The workers at the van der Waals Laboratory generally express their PVT data in terms of the density in amagat units $\rho_{A}$, which is a relative scale, the reference volume usually being taken as the value at $0^{\circ} \mathrm{C}$ and 1 atm pressure. The equation of state takes the form

$$
P V=A+B \rho_{A}+C_{\rho_{A}{ }^{2}}+D \rho_{A}{ }^{3}+E \rho_{\rho^{4}}{ }^{4}+\cdots
$$

It is also possible to express the equations of van der Waals, Dieterici, etc., as virial expansions, in which case the virial coefficients are those given in tabular form below.

|  | $B_{v}$ | $C_{v}$ | $D_{v}$ |
| :--- | :---: | :---: | :---: |
| van der Waals: $\left(P+a / V^{2}\right)(V-b)=R T$ | $b-\frac{a}{R T}$ | $b^{2}$ | $b^{3}$ |
| Dieterici: $\left(P e^{a / R T V}\right)(V-b)=R T$ | $b-\frac{a}{R T}$ | $b^{2}-\frac{a b}{R T}+\frac{a^{2}}{2(R T)^{2}}$ | $b^{3}-\frac{a b^{2}}{R T}+\frac{a^{2} b}{2(R T)^{2}}-\frac{a^{3}}{6(R T)^{3}}$ |
| Berthelot: $\left(P+a / V^{2} T\right)(V-b)=R T$ | $b-\frac{a}{R T^{2}}$ | $b^{2}$ | $b^{3}$ |
| Clausius: $\left[P+a /(V+c)^{2} T\right](V-b)=R T$ | $b-\frac{2 a c}{R T^{2}}$ | $b^{2}-\frac{3 a c^{2}}{R T^{2}}$ | $b^{3}-\frac{4 a c^{3}}{R T^{2}}$ |

Data of state have been selected and assembled for several gases. These have been fitted to virial equations by the various investigators, and the coefficients of these equations are tabulated. The form of the virial equations and the units used are, in most cases, those of the original investigators. No attempt has been made to include all the available PVT data of these gases. Several excellent bibliographies of $P V T$ properties of fluids exist, ${ }^{1}$ and abstracts of research papers in this field are published in Chemical Abstracts.

In the tables given below, the virial coefficients $B, C$, etc., are those of the expansion in terms of amagat densities, the coefficients $B_{v}, C_{v}$, etc., are the coefficients of the polynomial in $1 / V$, and the coefficients $B_{p}, C_{p}$, etc., are the coefficients of the polynomial in $P$.

> Table 4i-1. Virial Coefficients for Helium (He)*

| $T,{ }^{\circ} \mathrm{C}$ | $B \times 10^{3}$ | $C \times 10^{6}$ | $D \times 10^{9}$ |
| ---: | ---: | ---: | ---: |
| 0 | 0.5292 | 0.1500 | 0.218 |
| 25 | 0.5710 | 0.1564 | 0.239 |
| 50 | 0.6105 | 0.1699 | 0.268 |
| 75 | 0.6494 | 0.2402 | -0.070 |
| 100 | 0.6909 | 0.2456 | -0.126 |
| 125 | 0.7299 | 0.2716 | -0.283 |
| 150 | 0.7645 | 0.3376 | -0.554 |

Pressure range: 10 to 300 atm.
Density in amagats ( 1 amagat $=4.4589 \times 10^{-5}$ moles $\mathrm{He} / \mathrm{cc}$ ).

* Michels and Wouters, Physica 8, 923 (1941); Wouters, Dissertation, University of Amsterdam, 1941.
${ }^{1}$ See, for example, D. M. Newitt, "High Pressure Plant and Fluids at High Pressures," Oxford University Press, New York, 1940; S. Gratch, Trans. ASME 70, 631 (1948); L. C. Nelson and E. F. Obert, Trans. ASME 76, 1057 (1954).

Table 4i-2. Virial Coefficients for Helium ( $\mathrm{He}^{3}$ and $\mathrm{He}^{4}$ )*

| $T,{ }^{\circ} \mathrm{K}$ | $\mathrm{He}^{4} B_{v}$, cc/mole | $\begin{gathered} \mathrm{He}^{3} B_{v}, \\ \mathrm{cc} / \mathrm{mole} \end{gathered}$ | $T,{ }^{\circ} \mathrm{K}$ | $\begin{gathered} \mathrm{He}^{4} B_{v}, \\ \text { cc /mole } \end{gathered}$ | $\mathrm{He}^{3} B_{v}$ <br> cc/mole |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.3 | -2,715.4 | -375.1 | 3.6 | $-88.71$ | $-64.72$ |
| 0.4 | $-1,712.8$ | -348.6 | 3.8 | -83.12 | $-60.80$ |
| 0.5 | -1,203.2 | $-320.0$ | 4.0 | -78.11 | -57.25 |
| 0.6 | - 906.6 | -293.5 | 4.2 | -73.58 | -54.01 |
| 0.7 | - 717.6 | -269.9 | 4.4 | -69.47 | -51.04 |
| 0.8 | - 589.0 | -249.1 | 4.6 | $-65.72$ | $-48.32$ |
| 0.9 | - 497.2 | -230.7 | 4.8 | -62.29 | -45.81 |
| 1.0 | - 428.9 | -214.4 | 5.0 | -59.14 | -43.49 |
| 1.2 | - 335.2 | -187.08 | 6.0 | -46.53 | -34.11 |
| 1.4 | - 274.6 | $-165.13$ | 7.0 | -37.53 | $-27.29$ |
| 1.6 | - 232.34 | -147.21 | 8.0 | $-30.78$ | -22.11 |
| 1.8 | - 201.25 | -132.36 | 10.0 | -21.34 | -14.75 |
| 2.0 | - 177.39 | -119.89 | 12.0 | -15.04 | $-9.78$ |
| 2.2 | - 158.47 | -109.29 | 15.0 | $-8.77$ | $-4.77$ |
| 2.4 | $-143.06$ | $-100.18$ | 19.64 |  | 0.00 |
| 2.6 | $-130.26$ | $-92.28$ | 20.0 | $-2.53$ | 0.28 |
| 2.8 | - 119.42 | $-85.38$ | 23.18 | 0.00 |  |
| 3.0 | $-110.13$ | $-79.29$ | 25.0 | 1.15 | 3.29 |
| 3.2 | - 102.06 | $-73.88$ | 30,0 | 3.57 | 5.28 |
| 3.4 | - 94.98 | $-69.05$ | 40.0 | 6.49 | 7.70 |
|  |  |  | 50.0 | 8.16 | 9.07 |
|  | $\because$ |  | 60.0 | 9.20 | 9.93 |

Second virial coefficients calculated from the force constants of a Lennard-Jones six-twelve potential function.

* Kilpatrick, Keller, Hammel, and Metropolis, Phys. Rev. 94, 1103 (1954).

Table 4i-3. Virial Coefficients for Neon (Ne)*

| $T,{ }^{\circ} \mathrm{C}$ | $B_{p} \times 10^{3}$ <br> $(\mathrm{~m} \mathrm{Hg})^{-1}$ | $C_{p} \times 10^{6}$ <br> $(\mathrm{~m} \mathrm{Hg})^{-2}$ | $E_{p} \times 10^{9}$ <br> $(\mathrm{~m} \mathrm{Hg})^{-4}$ |
| :---: | :---: | :---: | :---: |
| -207.9 | -5.1522 | 7.4076 | 3.7425 |
| -18.5 | -1.4468 | 11.722 |  |
| -150 | +0.0129 | 5.239 |  |
| -100 | 0.5976 | 1.353 |  |
| -50 | 0.6553 | 0.748 |  |
| 0 | 0.6261 | 0.490 |  |
| +100 | 0.5098 | 0.538 |  |
| 200 | 0.4425 | 0.189 |  |
| 300 | 0.3853 |  |  |
| 400 | 0.3273 |  |  |

Pressure range: 0 to 75 m Hg .

* Holborn and Otto, Z. Physik 33, 1 (1925); 38, 359 (1926).

Table 4i-4. Virial Coefficients for Argon (A)*

| $T,{ }^{\circ} \mathrm{K}$ | $B_{p}, \mathrm{~atm}^{-1}$ | $\begin{gathered} C_{p} \times 10^{3}, \\ \mathrm{~atm}^{-2} \end{gathered}$ | $\begin{gathered} D_{p} \times 10^{9}, \\ \mathrm{~atm}^{-3} \end{gathered}$ | $\begin{gathered} E_{p} \times 10^{11} \\ \mathrm{~atm}^{-4} \end{gathered}$ | $\begin{gathered} F_{p} \times 10^{13}, \\ \mathrm{~atm}^{-5} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 80 | -0.03919 | -1.82 |  |  |  |
| 90 | -0.02836 | -0.885 |  |  |  |
| 100 | -0.02127 | $-0.4677$ |  |  |  |
| 110 | -0.01640 | -0.2634 |  |  |  |
| 120 | -0.01292 | -0.1555 | , | $\cdots$ |  |
| 130 | -0.01036 | -0.09513 |  |  |  |
| 140 | -0.008432 | -0.05973 |  |  |  |
| 150 | -0.006938 | -0.03816 |  |  |  |
| 200 | -0.002941 | -0.00391 | 28.47 | -5.16 | 1.58 |
| 250 | -0.001370 | 0.00069 | 23.66 | -7.76 | 2.03 |
| 300 | -0.000631 | 0.00120 | 11.61 | -6.60 | 1.40 |
| 350 | -0.000244 | 0.00104 | 2.75 | -0.87 | 0.02 |
| 400 | -0.000026 | 0.00081 | 0.42 | -0.10 |  |
| 450 | 0.000101 | 0.00061 |  |  |  |
| 500 | 0.000178 | 0.00046 |  |  |  |
| 550 | 0.000224 | 0.00035 |  |  |  |
| 600 | 0.000252 | $\therefore \quad 0.00027$ |  |  |  |
| 650 | 0.000268 | 0.00021 |  |  |  |
| 700 | 0.000276 | -. 0.00016 |  |  |  |
| 750 | 0.000279 | 0.00013 |  |  |  |
| 800 | 0.000278 | 0.00010 |  |  |  |
| 1000 | 0.000261 | 0.00004 |  |  |  |
| 1500 | 0.000203 | $\therefore \quad$ |  |  |  |
| 2000 | 0.000159 |  |  |  |  |
| 2500 | 0.000130 | , |  |  |  |
| 3000 | 0.000108 |  |  |  |  |
| 3500 | 0.000093 |  |  |  |  |
| 4000 | 0.000081 |  |  |  |  |
| 4500 | 0.000071 |  |  |  |  |
| 5000 | 0.000063 |  |  |  |  |

* J. Hilsenrath et al., Natl. Bur. Standards (U.S.) Cir. 564, 1955.

Table 4i-5. Virial Coefficients for Krypton (Kr)*

| $T,{ }^{\circ} \mathrm{C}$ | $B_{v}$, liters/mole | $C_{v}$, <br> $(\text { liters } / \mathrm{mole})^{2}$ | $E_{v} \times 10^{5}$ <br> (liters/mole) ${ }^{4}$ |
| ---: | :---: | :---: | :---: |
|  | -0.06296 | 0.002758 | -0.1184 |
| 25 | -0.05236 | 0.002611 | -0.1627 |
| 50 | -0.04278 | 0.002259 | -0.01800 |
| 75 | -0.03521 | 0.002077 | 0.03923 |
| 100 | -0.02886 | 0.001944 | 0.07865 |
| 125 | -0.02347 | 0.001843 | 0.1074 |
| 150 | -0.01882 | 0.001758 | 0.1351 |
| 175 | -0.01473 | 0.001670 | 0.1705 |
| 200 | -0.01111 | 0.001581 | 0.2197 |
| 225 | -0.008404 | 0.001640 | 0.1372 |
| 250 | -0.005694 | 0.001625 | 0.1004 |
| 275 | -0.003168 | 0.001562 | 0.1404 |
| 300 | -0.001154 | 0.001611 | 0.05625 |

Density range: 1 to 10 moles/liter.

* Beattie, Brierley, and Barriault, J. Chem. Phys. 20, 1615 (1952).

Table 4i-6. Second Virial Coefficients for Xenon (Xe)* $B_{v}$,

| $T,{ }^{\circ} \mathrm{K}$ | liters $/$ mole |
| :---: | :---: |
| 289.80 | -0.1378 |
| 298.15 | -0.1302 |
| 323.15 | -0.1106 |
| 348.15 | -0.0945 |
| 373.16 | -0.0812 |
| 398.17 | -0.0701 |
| 423.18 | -0.0607 |
| 448.20 | -0.0526 |
| 473.21 | -0.0454 |
| 498.23 | -0.0391 |
| 523.25 | -0.0332 |
| 548.26 | -0.0280 |
| 573.28 | -0.0235 |

* Beattie, Barriault, and Brierley, J. Chem. Phys. 19, 1222 (1951).
Table 4i-7. Virial Coefficients for Xenon (Xe)*

|  | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $150^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $A=R T$ | 1.006986 | 1.099150 | 1.117583 | 1.154449 | 1.191314 | 1.283479 | 1.375643 | 1.467807 | 1.559971 |
| $B \times 10^{3}$ | -6.97642 | $-6.459542$ | $-6.352$ | $-6.150$ | $-5.950758$ | -5.499720 | -5.046321 | $-4.656402$ | -4.297573 |
| $C \times 10^{5}$ | 1. 27147 | 1.453417 | 1.371080 | 1.312370 | 1.259808 | 1.210478 | 0.986975 | 0.961896 | 0.974894 |
| $D \times 10^{8}$ | 0 | $-5.203863$ | -3.197344 | $-1.682540$ | $-0.756664$ | -0.193922 | 3.180954 | 3.038628 | 2.627841 |
| $E \times 10^{10}$ | 0.52738 | 7.9112101 | 5.6735824 | 3.5985523 | 2.3616596 | 1.2120539 | $-1.8827796$ | $-1.7862985$ | $-1.5295443$ |
| $F \times 10^{12}$ | 0 | $-5.02072017$ | $-3.85933320$ | $-2.66879840$ | $-1.95159793$ | $-1.15745852$ | 0.39740876 | 0.43469633 | 0.4141180 |
| $G \times 10^{15}$ | 0 | 14.4812871 | 11.4672576 | 8.2400434 | 6.3137947 | 4.0736364 | 0.0609279 | -0.0846543 | -0.1328780 |
| $H \times 10^{18}$ | 0 | $-18.8255152$ | $-14.9707903$ | $-10.7594517$ | -8.2980748 | $-5.4181185$ | -0.2735897 | -0.1520461 | -0.0902496 |
| $I \times 10^{21}$ | 0 | 9.3353921 | 7.3909181 | 5.2451016 | 4.0251896 | 2.6149050 | 0 | 0 | 0 |
| Density range | $d=0-66 \mathrm{Am}$. | $d=0-515 \mathrm{Am}$. | $d=0-515 \mathrm{Am}$. | $d=0-515 \mathrm{Am}$. | $d=0-515 \mathrm{Am}$. | $d=0-515 \mathrm{Am}$. | $d=0-515 \mathrm{Am}$. | $d=0-486 \mathrm{Am}$. | $d=0-486 \mathrm{Am}$. |

[^193]Table 4i-8. Virial Coefficients for Hydrogen $\left(\mathrm{H}_{2}\right) *$

| $T,{ }^{\circ} \mathrm{K}$ | $B_{v}$, cc | $C_{v}, \mathrm{cc}^{2}$ | $D_{v}, \mathrm{cc}^{3}$ | $\underset{E_{v}}{ } \times 10^{-3}$ | $\begin{gathered} F_{v} \times 10^{-4}, \\ c^{5} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 20.59 | -140.980 |  |  |  |  |
| 22.58 | -122.630 |  |  |  |  |
| 24.65 | -108.020 |  |  |  |  |
| 26.75 | - 95.995 |  |  |  |  |
| 28.83 | - 90.275 | 2,200.0 |  |  |  |
| 30.86 | - 80.734 | 2,078.0 | -30,000 |  |  |
| 33.00 | - 73.439 | 2,050.0 | -21,700 |  |  |
| 35.10 | - 64.300 | 1,700.0 | -16,200 | -270 | 2,810 |
| 37.61 | - 56.950 | 1,510.0 | $-13,200$ | -260 | 2,650 |
| 40.09 | - 51.520 | 1,400.0 | -10,400 | -250 | 2,510 |
| 45.10 | - 41.380 | 1,181.0 | - 6,000 | -240 | 2,282 |
| 50.09 | - 33.720 | 1,038.0 | $-3,700$ | -220 | 2,130 |
| 55.09 | - 28.070 | 925.0 | - 345 | -210 | 1,930 |
| 60.03 | - 22.900 | 841.0 | 1,500 | -196 | 1,724 |
| 63.96 | - 19.650 | 763.0 | 4,100 | -175 | 1,490 |
| 69.00 | - 16.200 | 685.0 | 8,500 | -140 | 834 |
| 75.01 | - 12.460 | 612.0 | 10,600 | - 90 | 540 |
| 80.02 | - 9.760 | 553.0 | 11,300 | - 55 | 380 |
| 90.04 | - 5.170 | 462.2 | 12,980 | - 5 | 100 |
| 100.02 | - 1.900 | 412.0 | 13,000 | 30 | 40 |
| 104.0 | 0.000 |  |  |  |  |
| 125.03 | 3.830 | 318.3 | 14,000 | 120 | 10 |
| 150.04 | 7.630 | 269.0 | 13,000 | 150 |  |
| 175.02 | 10.330 | 257.0 | 11,000 | 120 |  |
| 200.11 | 11.930 | 254.0 | 8,850 | 60 |  |
| 249.99 | 14.000 | 252.0 | 7,500 | 20 |  |
| 273.16 | 14.193 |  |  |  |  |
| 299.99 | 15.010 | 250.0 | 6,000 | 5 |  |

Pressure range: 0 to 200 atm .

* H. L. Johnston et al., Ohio State University Cryogenic Laboratory.

| $T,{ }^{\circ} \mathrm{C}$ | A | $B \times 10^{3}$ | $C \times 10^{6}$ | D $\times 10^{9}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0.99939 | 0.6015 | 1.834 | -16.838 |
| 25 | 1.09086 | 0.6606 | 2.521 | -20.206 |
| 50 | 1.18233 | 0.7308 | 2.606 | -16.249 |
| 75 | 1.27379 | 0.8030 | 3.588 | -40.836 |
| 100 | 1.36526 | 0.8841 | 2.619 | -17.798 |
| 125 | 1.45673 | 0.9314 | 4.348 | -43.290 |
| 150 | 1.54820 | 1.0010 | 4.337 | -36.189 |

Pressure range: 0 to 50 atm .
Density in amagat units.

* Michels and Goudeket, Physica 8, 347 (1941).

Table 4i-10. Virial Coefficients for Deuterium ( $\mathrm{D}_{2}$ )*

| $T,{ }^{\circ} \mathrm{C}$ | $A$ | $B \times 10^{3}$ | $C \times 10^{6}$ | $D \times 10^{9}$ |
| ---: | :---: | :---: | :---: | :---: |
| 0 | 0.99945 | 0.57884 | 4.47087 | -61.9635 |
|  | 1.09092 | 0.64317 | 2.0572 | -24.291 |
| 50 | 1.18239 | 0.68055 | 5.0292 | -60.984 |
| 75 | 1.27387 | 0.74937 | 5.9227 | -76.729 |
| 100 | 1.36536 | 0.83057 | 5.1521 | -59.138 |
| 125 | 1.45682 | 0.90211 | 5.2563 | -60.585 |
| 150 | 1.54829 | 0.97838 | 5.3152 | -62.845 |

Pressure range: 0 to 50 atm .
Density in amagat units.

* Michels and Goudeket, Physica 8, 353 (1941).

Table 4i-11. Virial Coefficients for Nitrogen ( $\mathrm{N}_{2}$ )*

| $T,{ }^{\circ} \mathrm{K}$ | $B_{v}, \mathrm{~cm}^{3}$ | $C_{v} \times 10^{-2}$, <br> $\mathrm{cm}^{6}$ | $D_{v} \times 10^{-4}$, <br> $\mathrm{cm}^{9}$ | $E_{v} \times 10^{-5}$, <br> $\mathrm{cm}^{12}$ | $F_{v} \times 10^{-7}$, <br> $\mathrm{cm}^{15}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 326 | 0 |  |  |  |  |
| 300 | -3.54 | 7.437 | 16.65 | -22.19 | -87.538 |
| 273.16 | -9.50 | 8.20 | 15.60 | -75.00 | -16.00 |
| 250 | -16.19 | 10.00 | 14.00 | -100.00 | 21.50 |
| 200 | -34.33 | 12.00 | 13.96 | -117.75 | 36.40 |
| 175 | -49.44 | 15.70 | 13.20 | -120.76 | 45.50 |
| 150 | -71.16 | 21.86 |  | 12.52 | -122.75 |
| 125.2 | -106.92 | 42.00 | - | 4.50 |  |
| 120 | -114.62 | 48.00 | - | 26.60 |  |
| 110 | -131.80 | 65.00 | -200.0 |  |  |
| 100 | -162.10 | 85.00 | -600 |  |  |
| 90 | -200.50 | 135.00 | -1000 |  |  |
| 80 | -250.80 | 210.00 | -2000 |  |  |

[^194]Table 4i-12. Virial Coefficients for Nitrogen ( $\mathrm{N}_{2}$ )*

| $T,{ }^{\circ} \mathrm{K}$ | $B_{P}, \mathrm{~atm}^{-1}$ | $C_{P}, \mathrm{~atm}^{-2}$ | $D_{P}, \mathrm{~atm}^{-3}$ |
| :---: | :---: | :---: | :---: |
| 150 | -0. (2)5586 | -0. (4)2490 | -0. (7)10394 |
| 200 | -0. (2)2125 | -0. (7)801 | 0. (7)5727 |
| 250 | -0. (3)790 | 0. (5)235 | 0. (7)1484 |
| 300 | -0. (3)183 | 0. (5)208 | 0. (8)298 |
| 350 | 0. (3)120 | 0. (5)156 | -0. (9)21 |
| 400 | 0. (3)279 | 0. (5)114 | -0. (9)97 |
| 450 | $0 .(3) 364$ | 0. (6)838 | -0. (8)103 |
| 500 | 0. (3) 408 | 0. (6)623 | -0. (9)89 |
| 550 | 0. (3) 429 | 0. (6)471 | -0. (9)73 |
| 600 | 0. (3) 435 | 0. (6)360 | -0. (9)58 |
| 650 | 0. (3) 434 | 0. (6)279 | -0. (9)46 |
| 700 | 0. (3)428 | 0. (6)219 | -0. (9)36 |
| 750 | 0. (3)419 | 0. (6) 174 | -0. (9)29 |
| 800 | 0. (3)408 | 0. (6) 139 | -0. (9)23 |
| 1000 | 0 . (3) 360 | 0. (7)61 | -0. (9)10 |
| 1500 | 0. (3)263 | 0. (7) 10 |  |
| 2000 | 0 . (3)202 |  |  |
| 2500 | 0. (3) 162 |  |  |
| 3000 | 0 ( 3 ) 135 |  |  |

Pressure range 0 to 100 atm .
Numbers in parentheses indicate zeros immediately to right of decimal point.

* J. Hilsenrath et al., Natl. Bur. Standards (U.S.) Circ. 564, 1955.

Table 4i-13. Virial Coefficients for Oxygen ( $\mathrm{O}_{2}$ )*

| $T,{ }^{\circ} \mathrm{K}$ | $B_{P}, \mathrm{~atm}^{-1}$ | $C_{P}, \mathrm{~atm}^{-2}$ | $D_{P}, \mathrm{~atm}^{-3}$ |
| :---: | :---: | :---: | :---: |
| 50 |  |  |  |
| 100 | $-0 .(1) 218811$ | $-0 .(3) 49949$ | $-0 .(3) 3826$ |
| 150 | $-0 .(2) 71105$ | $-0 .(4) 4404$ | $-0 .(6) 9312$ |
| 200 | $-0 .(2) 29842$ | $-0 .(5) 660$ | $+0 .(7) 5150$ |
| 250 | $-0 .(2) 13644$ | $-0 .(6) 59$ | $+0 .(7) 2683$ |
| 300 | $-0 .(3) 6051$ | $0 .(6) 60$ | $0 .(8) 8649$ |
| 350 | $-0 .(3) 2091$ | $0 .(6) 78$ | $0 .(8) 1828$ |
| 400 | $+0 .(4) 119$ | $0 .(6) 72$ | $-0 .(9) 5143$ |
| 450 | $0 .(3) 1403$ | $0 .(6) 62$ | $-0 .(8) 1209$ |
| 500 | $0 .(3) 2167$ | $0 .(6) 52$ | $-0 .(8) 1306$ |
| 750 | $0 .(3) 3112$ | $0 .(6) 22$ | $-0 .(9) 6111$ |
| 1000 | $0 .(3) 2875$ | $0 .(6) 11$ | $-0 .(9) 2577$ |
| 1500 | $0 .(3) 2208$ | $0 .(7) 4$ | $-0 .(10) 647$ |
| 2000 | $0 .(3) 1731$ | $0 .(7) 2$ | $-0 .(10) 228$ |
| 2500 | $0 .(3) 1406$ | $0 .(7) 1$ | $-0 .(11) 99$ |
| 3000 | $0 .(3) 1174$ | $0 .(7) 1$ | $-0 .(11) 49$ |

Pressure range: 0 to 100 atm .
Numbers in parentheses indicate zeros immediately to right of decimal point.

* J. Hilsenrath et al., Natl. Bur. Standards (U.S.) Circ. 564, 1955.

Table 4i-14. Virial Coefficients for Carbon Monoxide (CO)*

|  | Series coefficients for carbon monoxide |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $75^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $125^{\circ} \mathrm{C}$ | $150{ }^{\circ} \mathrm{C}$ |
| A | 1.00062 | 1.09220 | 1.18379 | 1.27537 | 1.36695 | 1.45853 | 1.55011 |
| $B \times 10^{3}$ | -0.609570 | -0.387728 | -0.173710 | 0.060129 | 0.279123 | 0.499249 | 0.703395 |
| $C \times 10^{8}$ | 2.74732 | 3.13199 | 3.60123 | 3.26131 | 3.26204 | 2.99544 | 3.31613 |
| $D \times 10^{9}$ | 6.10453 | 2.81560 | -1.08194 | 4.59805 | 5.87388 | 10.7319 | 8.29195 |
| $E \times 10^{11}$ | -2.23472 | 0.029516 | 2.47553 | -0.281361 | -0.421188 | -2.60066 | -0.770897 |
| $F \times 10^{14}$ | 7.66630 | 1.36450 | -5.13513 | 2.52046 | 2.46871 | 7.94417 | 2.50096 |
| $G \times 10^{17}$ | -7.38468 | 1.15574 | 9.52599 | -0.953864 | -0.587082 | -7.37101 | 0.322446 |
| $H \times 10^{\mathbf{2 0}}$ | 3.20596 | -1.37431 | -5.60470 | -0.069931 | -0.358606 | 2.91011 | -1.32504 |

Pressure range: 40 to 3,000 atm.
Density in amagat units ( 1 amagat $=4.4643 \times 10^{-5}$ moles CO per cc).

* A. Michels et al., Physica 18, 121 (1952).

| $T,{ }^{\circ} \mathrm{C}$ | $A$ | $B \times 10^{3}$ | $C \times 10^{6}$ |
| ---: | :---: | :---: | :---: |
| 0 | 1.00062 | -0.633991 | 3.55228 |
| 25 | 1.09220 | -0.403802 | 3.64460 |
| 50 | 1.18379 | -0.179705 | 3.75360 |
| 75 | 1.27537 | 0.051373 | 3.67000 |
| 100 | 1.36695 | 0.274208 | 3.64751 |
| 125 | 1.45853 | 0.489526 | 3.67394 |
| 150 | 1.55011 | 0.695124 | 3.88893 |

Pressure range: 20 to 50 atm.
Density in amagat units.
Table 4i-15. Virial Coefficients for Carbon Monoxide (CO)*

| $T,{ }^{\circ} \mathrm{K}$ | $B_{P}, \mathrm{~atm}^{-1}$ | $C_{P}, \mathrm{~atm}^{-2}$ |
| :---: | :---: | :--- |
| 200 | $-0 .(2) 2701$ | $0 .(5) 4485$ |
| 250 | $-0 .(2) 1087$ | $0 .(5) 4200$ |
| 300 | $-0 .(3) 345$ | $0 .(5) 2803$ |
| 350 | $+0 .(4) 31$ | $0 .(5) 1847$ |
| 400 | $0 .(3) 232$ | $0 .(5) 1269$ |
| 450 | $0 .(3) 343$ | $0 .(6) 903$ |
| 500 | $0 .(3) 404$ | $0 .(6) 652$ |
| 750 | $0 .(3) 443$ | $0 .(6) 146$ |
| 1000 | $0 .(3) 387$ | $0 .(7) 36$ |
| 1500 | $0 .(3) 287$ |  |
| 2000 | $0 .(3) 221$ |  |
| 2500 | $0 .(3) 178$ |  |
| 3000 | $0 .(3) 148$ |  |

## Pressure range: 0 to 100 atm.

Numbers in parentheses indicate zeros immediately to right of decimal point.

* J. Hilsenrath et al., Natl. Bur. Standards (U.S.) Circ. 564, 1955.

Table 4i-16. Virial Coefficients for Air*


* Michels et al., Appl. Sci. Research (A)4, 52 (1953).

Table 4i-17. Virial Coefficients for Air*

| $T,{ }^{\circ} \mathrm{K}$ | $B_{v}, \mathrm{~cm}^{3} / \mathrm{mole}$ | $\begin{gathered} C_{v} \\ \mathrm{~cm}^{6} / \mathrm{mole}^{2} \end{gathered}$ | $\begin{aligned} & D_{v} \times 10^{4} \\ & \mathrm{~cm}^{9} / \text { mole }^{3} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 50 | -527.60 |  |  |
| 100 | -153.15 | -3253.5 | 9.40 |
| 150 | - 72.681 | 944.9 | 7.00 |
| 200 | $-38.241$ | 1323.5 | 5.46 |
| 250 | - 19.327 | 1332.7 | 4.36 |
| 300 | - 7.480 | 1288.5 | 3.46 |
| 350 | + 0.575 | 1239.1 | 2.75 |
| 400 | 6.367 | 1194.2 | 2.16 |
| 450 | 10.701 | 1154.4 | 1.72 |
| 500 | 14.048 | 1119.2 | 1.40 |
| 750 | 23.241 | 990.4 | 0.4 |
| 1000 | 27.129 | 904.30 |  |
| 1500 | 30.138 | 789.45 |  |

Pressure range: 0 to 100 atm.

* J. Hilsenrath et al., Natl. Bur. Standards (U.S.) Circ. 564, 1955.

A statistical mechanical treatment permits the expression of the virial coefficients of spherically symmetrical molecules in terms of the intermolecular potential energy and the distance between the molecules. The second virial coefficient is then given by

$$
B_{v}=2 \pi N \int_{0}^{\infty}\left(1-e^{-\epsilon(r) / k T}\right) r^{2} d r
$$

Various models have been proposed for the intermolecular potential energy function $\epsilon(r)$. One of the most frequently used models for nonpolar gases is that due to Lennard-Jones:

$$
\epsilon(r)=\epsilon_{0}\left[\frac{m}{n-m}\left(\frac{r_{0}}{r}\right)^{n}-\frac{n}{n-m}\left(\frac{r_{0}}{r}\right)^{m}\right]
$$

where the repulsive exponent $n$ is generally taken as 12 and the attractive exponent $m$ is taken as 6. The Lennapd-Jones six-twelve potential function is then
or

$$
\begin{aligned}
& \epsilon(r)=\epsilon_{0}\left[\left(\frac{r_{0}}{r}\right)^{12}-2\left(\frac{r_{0}}{r}\right)^{6}\right] \\
& \epsilon(r)=4 \epsilon_{0}\left[\left(\frac{d}{r}\right)^{12}-\left(\frac{d}{r}\right)^{6}\right]
\end{aligned}
$$

where $\epsilon_{0}$ is the energy at the minimum of the potential-energy well and $r_{0}$ is the intermolecular separation at this energy. The intermolecular separation at $\epsilon(r)=0$ is given by $d$, where $d=r_{0}(m / n)^{\frac{1}{n-m}}=r_{0}\left(\frac{1}{2}\right)^{\frac{1}{d}}$. The constant $\epsilon_{0}$ is often expressed in units of temperature by dividing by the Boltzmann constant $k$.

Table 4i-18. Constants in the Lennard-Jones Potential Function

| Gas | $\begin{gathered} \epsilon_{0} \times 10^{16} \\ e r g s \end{gathered}$ | $\epsilon_{0} / k,{ }^{\circ} \mathrm{K}$ | $r_{0}, \mathbf{A}$ | $d, \mathrm{~A}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| He . | 10.22 | 7.40 | 2.65 | 2.36 | 1 |
| He*. | 14.03 | 10.16 | 2.87 | 2.56 | 2 |
| Ne. | 48.2 | 34.9 | 3.12 | 2.78 | 3 |
| A. | 165.0 | 119.5 | 3.84 | 3.42 | 4 |
| Kr | 238.4 | 172.7 | 4.03 | 3.59 | 5 |
| Xe | 309.9 | 224.5 | 4.56 | 4.06 | 6 |
| $\mathrm{H}_{2}$. | 42.36 | 30.69 | 3.35 | 2.98 | 7 |
| $\mathrm{D}_{2}$. | 45.93 | 33.27 | 3.39 | 3.02 | 1 |
| $\mathrm{H}_{2}, \mathrm{D}_{2}{ }^{*}$ | 50.75 | 36.76 | 3.28 | 2.92 | 2 |
| $\mathrm{N}_{2}$. | 132.4 | 95.93 | 4.15 | 3.69 | 7 |
| $\mathrm{O}_{2}$. | 163 | 118 | 3.88 | 3.46 | 8 |
| CO. | 140.3 | 101.6 | 4.26 | 3.79 | 9 |

[^195]
## References

1. White, D., and H. L. Johnston: Phys. Rev. 79, 236 (1950).
2. deBoer, J., and A. Michels: Physica 5, 945 (1938).
3. Holborn, L., and J. Otto: Z. Physik 33, 1 (1925).
4. Hilsenrath, J., et al.: Natl. Bur. Standards (U.S.) Circ. 564, 1955.
5. Beattie, Brierley, and Barriault: J. Chem. Phys. 20, 1615 (1952).
6. Beattie, Barriault, and Brierley: J. Chem. Phys. 19, 1222 (1951).
7. White, D., A. S. Friedman, and H. L. Johnston: Phys. Rev. 79, 235 (1950).
8. Holborn, L., and J. Otto: Z. Physik 10, 367 (1922).
9. Michels, A., et al.: Physica 18, 121 (1952).

# 4j. Temperature, Pressure, Heat, and Entropy Change of Transition, Fusion, and Vaporization 

D. D. WAGMAN

The National Bureau of Standards

[^196]Table 4j-1. Phase Transition Data for Elements and Compounds


Table 4 j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\begin{aligned} & \Delta C_{p, \mathrm{cal}} / \\ & \text { mole deg } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{AsBr}_{3}$ | Fusion <br> Vaporization | $\begin{aligned} & 0 \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 304.4 \\ & 494 \end{aligned}$ | $\begin{gathered} 2.81 \\ 10 \end{gathered}$ | $\begin{aligned} & 9.23 \\ & 20 \end{aligned}$ |  |
| $\mathrm{AsCl}_{8}$ | Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | liq $\mathrm{g}$ | 780 | $\begin{aligned} & 257 \\ & 403 \end{aligned}$ | $\begin{aligned} & 2.42 \\ & 7.5 \end{aligned}$ | $\begin{gathered} 9.42 \\ 18.6 \end{gathered}$ |  |
| $\mathrm{AsF}_{3}$ | Fusion <br> Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \end{aligned}$ | $\begin{array}{\|l} \mathrm{liq} \\ \mathbf{g} \end{array}$ | 142.6 | $\begin{aligned} & 267.21 \\ & 292.50 \end{aligned}$ | $\begin{aligned} & 2.486 \\ & 8.568 \end{aligned}$ | $\begin{array}{r} 9.304 \\ 29: 285 \end{array}$ |  |
| AsF6 | Fusion <br> Vaporization Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 149 \\ & 149 \\ & 760 \end{aligned}$ | $\begin{aligned} & 102.9 \\ & 192.9 \\ & 220.6 \end{aligned}$ | $2.71$ $4.96$ | $14.0$ $22.5$ |  |
| $\mathrm{AsH}_{3}$ | Fusion <br> Vaporization Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{gathered} 24.6 \\ 24.6 \\ 760 \end{gathered}$ | $\begin{aligned} & 156.9 \\ & 156.9 \\ & 210.7 \end{aligned}$ | $0.56$ $4.18$ | $3.6$ $19.8$ | ; |
| $\mathrm{As}_{4} \mathrm{O}_{6}$ | Sublimation Fusion <br> Sublimation Fusion <br> Vaporization | c, octahedral <br> c, octahedral <br> c, monoclinic c, monoclinic liq | g <br> liq <br> g <br> liq <br> g | 28 <br> 28 <br> 67 <br> 67 <br> 760 | 547 <br> 547 <br> 586 <br> 586 <br> 733 | 26.1 <br> 11.9 <br> 23.0 <br> 8.8 <br> 14.2 | 47.7 <br> 21.8 <br> 39.2 <br> 15.0 <br> 19.4 | . |
| Au | Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}_{\sigma}$ | 760 | $\begin{aligned} & 1336.16 \\ & 2933 \end{aligned}$ | $\begin{array}{r} 3.03 \\ 74.21 \end{array}$ | $\begin{array}{r} 2.27 \\ 25.30 \end{array}$ | $\begin{aligned} & -0.53 \\ & -2.0 \end{aligned}$ |
| B | Fusion | c | liq | $\ldots$ | 2313 |  |  |  |
| $\mathrm{B}_{2} \mathrm{O}_{3}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\cdots$ | $\begin{array}{r} 723 \\ 1523 \end{array}$ | $\begin{gathered} 5.27 \\ 77 \end{gathered}$ | $\begin{aligned} & 7.29 \\ & 50 \end{aligned}$ |  |
| $\mathrm{BCl}_{3}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{e} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 166 \\ & 285.6 \end{aligned}$ | 5.7 | 20.0 |  |
| $\mathrm{BF}_{3}$ | Sublima- <br> tion <br> Fusion <br> Vaporization <br> Vaporization |  | $\begin{aligned} & \mathrm{g} \\ & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | 54 <br> 54 <br> 54 <br> 760 | 144.5 <br> 144.5 <br> 144.5 <br> 174 | $\begin{aligned} & 5.7 \\ & 1.0 \\ & 4.7 \\ & 4.8 \end{aligned}$ | 39 <br> 7 <br> 33 <br> 25 |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S$, cal/ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{B}_{2} \mathrm{H}_{6}$ | Fusion Vaporization | liq | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{aligned} & 108.30 \\ & 180.32 \end{aligned}$ | $\begin{aligned} & 1.069 \\ & 3.412 \end{aligned}$ | $\begin{array}{r} 9.87 \\ 18.89 \end{array}$ |  |
| Ba | Transition Sublimation Fusion Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{~g} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\ldots \ldots \ldots$ 0.0063 $\ldots \ldots \ldots$ 760 | $\begin{array}{r} 648 \\ 990 \\ 990 \\ 1911 \end{array}$ | 41.1 <br> 35.7 | 41.5 <br> 18.7 |  |
| $\mathrm{BaCl}_{2}$ | Transition Fusion Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \\ & \mathrm{g} \end{aligned}$ | $6.3$ | $\begin{aligned} & 1193 \\ & 1233 \\ & 1462 \end{aligned}$ | $\begin{gathered} 5.4 \\ 57 \end{gathered}$ | $\begin{gathered} 4.4 \\ 39 \end{gathered}$ |  |
| $\mathrm{BaCO}_{3}$ | Transition Transition | c, III | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\ldots$ | $\begin{aligned} & 1083 \\ & 1241 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 0.7 \end{aligned}$ | $\begin{aligned} & 4.1 \\ & 0.6 \end{aligned}$ | 7.93 |
| $\mathrm{BaF}_{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | liq $\mathrm{g}$ | $42 \ldots$ | $\begin{aligned} & 1593 \\ & 2072 \end{aligned}$ | $\begin{gathered} 3.0 \\ 83 \end{gathered}$ | $\begin{gathered} 1,9 \\ 40 \end{gathered}$ |  |
| BaO | Sublima tion Fusion | c | liq | 0.00076 | $\begin{aligned} & 1650 \\ & 2190 \end{aligned}$ | 89 | 54 |  |
| $\mathrm{BaSO}_{4}$ | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | ...... | $\begin{aligned} & 1422 \\ & 1623 \end{aligned}$ | 9.7 | 6:0 |  |
| $\mathrm{BaTiO}_{3}$ | Transition | c, II | c, I | ......... | 385.8 |  |  |  |
| Be | Sublimation <br> Fusion | c |  | $\begin{aligned} & 0.034 \\ & 0.034 \end{aligned}$ | $\begin{array}{r} 1556 \\ 1556 \end{array}$ | $\begin{array}{r} 75.2 \\ 2.3 \end{array}$ | $\begin{gathered} 48.3 \\ \vdots \\ 1.5 \end{gathered}$ |  |
| $\mathrm{BeCl}_{2}$ | Sublimation Vaporization Vaporization Sublimation | c | g, $\mathrm{BeCl}_{2}$ <br> g, $\mathrm{BeCl}_{2}$ <br> g, $\mathrm{BeCl}_{2}$ <br> g, $\mathrm{Be}_{2} \mathrm{Cl}_{4}$ | $\begin{array}{r} 2 \\ 2 \\ 760 \\ 127 \end{array}$ | 678 <br> 678 <br> 820 <br> 678 | 29.2 <br> 26.2 <br> 25 <br> 15.4 | 43.1 <br> 38.6 <br> 30 <br> 22.7 | $\cdots$ |
| BeO | Sublimation Sublimation Fusion | c |  | $\begin{aligned} & 0.00076 \\ & 0.196 \\ & 0.196 \end{aligned}$ | $\begin{aligned} & 2327 \\ & 2823 \\ & 2823 \end{aligned}$ | $\begin{aligned} & 147.4 \\ & 145.4 \end{aligned}$ | $\begin{aligned} & 63.3 \\ & 51.5 \end{aligned}$ |  |
| Bi | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{e} \\ & \text { liq } \end{aligned}$ | liq $\mathbf{g}$ | 760 | $\begin{gathered} 544.2 \\ 1693 \end{gathered}$ | 2.63 | $4.83$ |  |

4-134
HEAT
Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, kcal/ mole | $\Delta S, \mathrm{cal} /$ mole deg | $\begin{gathered} \Delta C_{p}, \mathrm{cal} / \\ \text { mole deg } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{BiCl}_{5}$ | Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}_{\mathrm{g}}$ | $760$ | $\begin{aligned} & 505 \\ & 714 \end{aligned}$ | $\begin{gathered} 2.6 \\ 17.35 \end{gathered}$ | $\begin{gathered} 5.1 \\ 24.30 \end{gathered}$ |  |
| $\mathrm{Bi}_{2} \mathrm{O}_{\mathbf{n}}$ | Fusion | c | liq | $\ldots .$. | 1090 | 6.8 | 6.2 |  |
| $\mathrm{Br}_{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 214 | $\begin{aligned} & 265.9 \\ & 298.16 \end{aligned}$ | $\begin{aligned} & 2.52 \\ & 7.34 \end{aligned}$ | $\begin{gathered} 9.48 \\ 24.6 \end{gathered}$ | 2.0 |
| C | Sublimation Sublimation | c, graphite <br> c, graphite | g, std. state equilibrium gas | $\begin{aligned} & 760 \\ & 760 \end{aligned}$ | $\begin{aligned} & 298.16 \\ & 4620 \end{aligned}$ | 171.698 | 36.4002 |  |
| CBr 4 | Transition Fusion Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathbf{c , 1} \mathbf{I} \\ & \text { liq } \\ & \mathbf{g} \end{aligned}$ | 760 | $\begin{aligned} & 320.1 \\ & 363.3 \\ & 460 \end{aligned}$ | $\begin{gathered} 1.5 \\ 0.98 \\ 10.4 \end{gathered}$ | $\begin{gathered} 4.7 \\ 2.70 \\ 22.6 \end{gathered}$ |  |
| $\mathrm{CCH}_{4}$ | Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 225.5 \\ & 250.3 \\ & 349.9 \end{aligned}$ | $\begin{aligned} & 1.09 \\ & 0.60 \\ & 7.17 \end{aligned}$ | $\begin{array}{r} 4.8 \\ 2.4 \\ 20.5 \end{array}$ | 1.1 |
| CF4 | Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{array}{\|l} \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \\ \mathrm{liq} \end{array}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{array}{r} 76.23 \\ 89.47 \\ 145.14 \end{array}$ | $\begin{aligned} & 0.35 \\ & 0.167 \\ & 3.01 \end{aligned}$ | $\begin{aligned} & 4.6 \\ & 1.87 \\ & 20.7 \end{aligned}$ |  |
| $\mathrm{CFCl}_{3}$ | Fusion Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 162.68 \\ & 296.8 \end{aligned}$ | $\begin{aligned} & 1.648 \\ & 5.96 \end{aligned}$ | $\begin{aligned} & 10.13 \\ & 20.1 \end{aligned}$ | -10.4 |
| $\mathrm{CF}_{2} \mathrm{Cl}_{2}$ | Fusion Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | 760 | $\begin{aligned} & 118 \\ & 242.7 \end{aligned}$ | $\begin{aligned} & 0.99 \\ & 4.85 \end{aligned}$ | $\begin{array}{r} 8.4 \\ 20.0 \end{array}$ |  |
| CHBr | Fusion <br> Vaporization Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ liq | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $22$ <br> 760 | $\begin{aligned} & 281.21 \\ & 323 \\ & 422.7 \end{aligned}$ | $\begin{gathered} 2.65 \\ 10.4 \end{gathered}$ | $\begin{gathered} 9.42 \\ 32.2 \end{gathered}$ |  |
| CHCl 3 | Fusion Vaporization | $\begin{aligned} & \mathrm{e} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{aligned} & 209.7 \\ & 334.4 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 7.02 \end{aligned}$ | $\begin{aligned} & 10.5 \\ & 20.99 \end{aligned}$ |  |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | Fusion Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | liq | $\underset{760}{ }$ | $\begin{aligned} & 176 \\ & 313 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 6.69 \end{aligned}$ | $\begin{gathered} 6 \\ 21.4 \end{gathered}$ |  |
| $\mathrm{CH}_{3} \mathrm{I}_{3}$ | Fusion <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \text { liq } \\ & \text { liq } \\ & \mathrm{g} \end{aligned}$ | 330 | $\begin{aligned} & 278.76 \\ & 279.26 \\ & 425 \end{aligned}$ | $\begin{aligned} & 3.02 \\ & 2.88 \end{aligned}$ | $\begin{aligned} & 10.8 \\ & 10.3 \end{aligned}$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{CH}_{2} \mathrm{O}$ (formaldehyde) | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 154.9 \\ & 253.9 \end{aligned}$ | 5.85 | 23.0 |  |
| $\underset{\text { acid) }}{\mathrm{CH}_{2} \mathrm{O}_{2} \text { (formic }}$ | Fusion <br> Vaporiza- <br> tion <br> Vaporization | $\stackrel{\text { e }}{\text { liq }}$ <br> liq | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 18 \\ 18 \\ 760 \end{array}$ | $\begin{aligned} & 281.46 \\ & 281.46 \\ & \\ & 373.7 \end{aligned}$ | $3.03$ $5.32$ | 10.8 $14.24$ | 8.8 |
| $\mathrm{CH}_{3} \mathrm{Br}$ | Transition Fusion Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\begin{array}{\|l} \mathrm{c}, \mathrm{I} \\ \text { liq } \\ \mathrm{g} \end{array}$ | $760$ | $\begin{aligned} & 173.79 \\ & 179.48 \\ & 276.72 \end{aligned}$ | $\begin{aligned} & 0.113 \\ & 1.429 \\ & 5.715 \end{aligned}$ | $\begin{gathered} 0.650 \\ 7.96 \\ 20.65 \end{gathered}$ |  |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | Fusion <br> Vaporiza- <br> tion <br> Vaporization | $\stackrel{\text { e }}{\text { liq }}$ <br> liq | $\begin{aligned} & \mathrm{liq} \\ & \mathbf{g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{gathered} 65.66 \\ 65.66 \\ 760 \end{gathered}$ | $\begin{aligned} & 175.44 \\ & 175.44 \\ & 248.94 \end{aligned}$ | $\begin{aligned} & 1.537 \\ & 5.15 \end{aligned}$ | $8.76$ <br> 20.7 | 1.5 |
| $\mathrm{CH}_{3} \mathrm{~F}$ | Fusion <br> Vaporizaticn | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 131.4 \\ & 195.1 \end{aligned}$ | 4.23 | 21.7 |  |
| $\mathrm{CH}_{8} \mathrm{I}$ | Fusion Vaporization | $\begin{aligned} & \text { eq } \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}_{\infty}$ | 760 | $\begin{aligned} & 206.7 \\ & 315.6 \end{aligned}$ | 6.7 | 21.2 |  |
| $\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{~N}$ (nitromethane) | Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ liq | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 36.7 \\ & 760 \end{aligned}$ | $\begin{aligned} & 244.78 \\ & 298.16 \\ & 374.0 \end{aligned}$ | $\begin{aligned} & 2.319 \\ & 9.147 \end{aligned}$ | $\begin{array}{r} 9.47 \\ 30.68 \end{array}$ |  |
| CH4 | Fusion <br> Vaporiza- <br> tion <br> Vaporization | $\begin{aligned} & \mathbf{0} \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathbf{g} \\ & \mathbf{g} \end{aligned}$ | 87.7 <br> 87.7 <br> 760 | $\begin{array}{r} 90.68 \\ 90.68 \\ \\ 111.67 \end{array}$ | $\begin{aligned} & 0.225 \\ & 1.955 \end{aligned}$ | $2.48$ <br> 17.51 |  |
| $\mathrm{CH}_{4} \mathrm{O}$ | Transition <br> Fusion <br> Vaporiza- <br> tion <br> Vaporiza- <br> tion <br> Vaporization |  |  | 124.0 <br> 760 <br> 760 | 157.4 <br> 175.26 <br> 298.16 <br> 298.16 <br> 337.9 | $\begin{aligned} & 0.154 \\ & 0.757 \\ & 8.94 \\ & 8.94 \\ & \\ & 8.43 \end{aligned}$ | $\begin{array}{r} 0.98 \\ 4.32 \\ 29.98 \\ 26.48 \\ \\ 24.95 \end{array}$ | 4.2 |
| $\mathrm{CH}_{4} \mathrm{ON}_{2}$ (urea) | Fusion | c | liq | $\ldots$. | 405.8 | 3.60 | 8.9 |  |
| $\mathrm{CH}_{4} \mathrm{~S}$ | Transition Fusion Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 137.6 \\ & 150.16 \\ & 279.12 \end{aligned}$ | $\begin{aligned} & 0.052 \\ & 1.411 \\ & 5.872 \end{aligned}$ | $\begin{array}{r} 0.38 \\ 9.40 \\ 21.04 \end{array}$ | 4.8 |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{CH}_{6} \mathrm{~N}$ (methylamine) | Fusion <br> Vaporization | $\begin{aligned} & \text { cole } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \overline{\mathrm{liq}} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 179.70 \\ & 266.84 \end{aligned}$ | $\begin{aligned} & \hline 1.466 \\ & 6.17 \end{aligned}$ | $\begin{gathered} 8.16 \\ 23.1 \end{gathered}$ |  |
| $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | liq $\mathrm{g}$ | 760 | $\begin{aligned} & 134.83 \\ & 285.43 \end{aligned}$ | $\begin{aligned} & 1.064 \\ & 5.9 \end{aligned}$ | $\begin{aligned} & 7.89 \\ & 21 \end{aligned}$ | 1.52 |
| $\mathrm{C}_{2} \mathrm{H}_{2}$ | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 760 \\ & 900 \\ & 900 \end{aligned}$ | $\begin{aligned} & 189.2 \\ & \\ & 191.7 \\ & 191.7 \end{aligned}$ | $\begin{aligned} & 5.1 \\ & \\ & 0.9 \\ & 4.2 \end{aligned}$ | 27 $\begin{array}{r} 5 \\ 22 \end{array}$ |  |
| $\mathrm{C}_{2} \mathrm{H}_{4}$ | Fusion <br> Vaporiza- <br> tion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ liq | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 0.9 \\ 0.9 \\ 760 \end{array}$ | $\begin{aligned} & 103.97 \\ & 103.97 \\ & 169.45 \end{aligned}$ | $\begin{aligned} & 0.8008 \\ & 3.237 \end{aligned}$ | $\begin{gathered} 7.702 \\ 19.10 \end{gathered}$ |  |
| $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \text { (acetalde- } \\ & \text { hyde) } \end{aligned}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\begin{array}{\|l} \mathrm{liq} \\ \mathrm{~g} \end{array}$ | 760 | $\begin{aligned} & 155 \\ & 293.3 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 6.5 \end{aligned}$ | $\begin{array}{r} 5.0 \\ 22.2 \end{array}$ | - 9.3 |
| $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \text { (ethylene } \\ & \text { oxide) } \end{aligned}$ | Fusion <br> Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | 760 | $\begin{aligned} & 160.71 \\ & 283.72 \end{aligned}$ | $\begin{aligned} & 1.236 \\ & 6.101 \end{aligned}$ | $\begin{array}{r} 7.69 \\ 21.50 \end{array}$ | $\begin{aligned} & 3.45 \\ - & 9.7 \end{aligned}$ |
| $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \text { (acetic } \\ & \text { acid) } \end{aligned}$ | Fusion <br> Transition <br> Fusion <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{II} \\ & \text { liq } \end{aligned}$ | liq <br> c, II <br> liq <br> liq <br> g, equilibrium | $\begin{array}{r} 760 \\ 155,000 \\ 155,000 \\ 155,000 \\ 760 \end{array}$ | $\begin{aligned} & 289.77 \\ & 328.9 \\ & 328.9 \\ & 328.9 \\ & 391.4 \end{aligned}$ | $\begin{aligned} & 2.80 \\ & 0.11 \\ & 2.78 \\ & 2.89 \\ & 5.83 \end{aligned}$ | $\begin{gathered} 9.66 \\ 0.3 \\ 8.5 \\ 8.8 \\ 14.9 \end{gathered}$ | 9.4 |
| $\mathrm{C}_{2} \mathrm{H}_{6}$ | Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 0.006 \\ & 0.006 \\ & 760 \end{aligned}$ | $\begin{array}{r} 89.89 \\ 89.89 \\ 184.53 \end{array}$ | $0.6834$ $3.517$ | $\begin{array}{r} 7.603 \\ 19.06 \end{array}$ | $\begin{array}{r} 2.2 \\ -11.5 \end{array}$ |
| $\underset{\text { ether) }}{\substack{\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \\ \text { (dimethyl } \\ \hline}}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{e} \\ & \text { liq } \end{aligned}$ | liq $\mathrm{g}$ | 760 | $\begin{aligned} & 131.66 \\ & 248.34 \end{aligned}$ | $\begin{aligned} & 1.180 \\ & 5.141 \end{aligned}$ | $\begin{array}{r} 8.96 \\ 20.70 \end{array}$ | $\begin{array}{r} 6.8 \\ -10.6 \end{array}$ |
| $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ (ethanol) | Fusion <br> Vaporiza- <br> tion <br> Vaporiza- <br> tion <br> Vaporiza- <br> tion | $\stackrel{c}{\text { c }}$ liq, std. liq | liq <br> g <br> g, std. <br> g | 58.6 <br> 760 <br> 760 | $\begin{aligned} & 158.6 \\ & 298.16 \\ & 298.16 \\ & 351.7 \end{aligned}$ | $\begin{gathered} 1.200 \\ 10.12 \\ 10.12 \\ 9.22 \end{gathered}$ | $\begin{array}{r} 7.57 \\ 33.94 \\ 28.99 \\ 26.22 \end{array}$ | 5.70 |
| $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$ (ethylamine) | Fusion Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\operatorname{liq}_{\sigma}$ | $\cdots{ }^{\cdots} \ldots \ldots \ldots$ | $\begin{aligned} & 192.2 \\ & 289.7 \end{aligned}$ | 6.7 | 23 | -14.4 |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)


Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | $\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { process } \end{aligned}$ | Phase |  | Pressure, mm Hg | $\underset{{ }^{\circ} \mathrm{K}}{\text { Temp., }}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{Ca}_{2} \mathrm{SiO}_{4}$ | Transition <br> Transition <br> Fusion | $\begin{aligned} & \mathrm{c}, 111 \\ & \mathrm{c}, 11 \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\ldots .$. | $\begin{array}{r} 948 \\ 1673 \\ 2393 \end{array}$ | $\begin{aligned} & 0.35 \\ & 0.77 \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.46 \end{aligned}$ | 0.58 |
| CaTiOs | Transition | c, 11 | c, 1 | $\ldots$ | 1530 | 0.55 | 0.36 | -0.23 |
| Cd | Sublimation Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { e } \\ & \text { liq } \end{aligned}$ | liq <br> g | $\begin{gathered} 0.11 \\ 0.11 \\ 760 \end{gathered}$ | $\begin{gathered} 594.1 \\ \\ 594.1 \\ 1040 \end{gathered}$ | $\begin{array}{r} 26.28 \\ \\ 1.46 \\ 23.86 \end{array}$ | $\begin{array}{r} 44.23 \\ \\ 2.46 \\ 22.94 \end{array}$ |  |
| $\mathrm{CdBr}_{2}$ | Sublimation <br> Fusion <br> Vaporization | c c lig | $\begin{aligned} & \mathrm{g} \\ & \mathrm{liq} \\ & \mathbf{g} \end{aligned}$ | $\begin{aligned} & 0.0032 \\ & \\ & \ldots 6 . \end{aligned}$ | $\begin{aligned} & 638 \\ & 841 \\ & 863 \end{aligned}$ | $\begin{array}{r} 38.2 \\ 5.0 \end{array}$ | $\begin{array}{r} 59.9 \\ 6.0 \end{array}$ |  |
| $\mathbf{C d C l}_{2}$ | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ |  | $\begin{gathered} 0.966 \\ 0.966 \\ 760 \end{gathered}$ | $\begin{array}{r} 841 \\ \\ 841 \\ 1253 \end{array}$ | $\begin{array}{r} 41.2 \\ \\ 5.3 \\ 29.4 \end{array}$ | $\begin{array}{r} 49.0 \\ \\ 6.3 \\ 23.5 \end{array}$ |  |
| $\mathrm{CdF}_{2}$ | Fusion <br> Vaporization | $\begin{array}{\|l} \mathrm{c} \\ \mathrm{liq} \end{array}$ | $\operatorname{liq}_{\mathrm{g}}$ | $760$ | $\begin{aligned} & 1322 \\ & 2020 \end{aligned}$ | $\begin{array}{r} 5.4 \\ 56.0 \end{array}$ | $\begin{array}{r} 4.1 \\ 27.7 \end{array}$ |  |
| $\mathrm{CdI}_{2}$ | Sublimation <br> Fusion | c | liq | $\begin{aligned} & 0.48 \\ & 0.48 \end{aligned}$ | $\begin{aligned} & 660 \\ & 660 \end{aligned}$ | $32$ | 48 <br> 12 |  |
| CdO | Sublimation | c | g | 760 | 1832 | 53.8 | 29.4 |  |
| CdS | Sublimation | c | $g$ | 0.0126 | 958 | 51.4 | 53.7 |  |
| $\dot{C}$ | Transition Transition Transition Fusion | $\begin{array}{\|l} \mathrm{c}, \mathrm{IV} \\ \mathrm{c}, \mathrm{III} \\ \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{array}{r} 140 \\ 666 \\ 713 \\ 1048 \end{array}$ | 2.1 | 2.0 |  |
| $\mathrm{Cl}_{2}$ | Fusion <br> Vaporization <br> Vaporization | $\stackrel{\text { c }}{\text { liq }}$ liq | liq $\mathrm{E}$ <br> g | $760$ | $\begin{aligned} & 172.16 \\ & 172.16 \\ & 239.10 \end{aligned}$ | $\begin{aligned} & 1.531 \\ & 4.878 \end{aligned}$ | $\begin{gathered} 8.89 \\ 20.40 \end{gathered}$ | $\begin{array}{r} 2.75 \\ -8.76 \end{array}$ |
| CIF | Vaporization | liq | g | 760 | 172.9 | 5.34 | 30.88 |  |
| $\mathrm{ClF}_{3}$ | Vaporization | liq | B | 760 | 284.6 | 5.74 | 20.2 |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, kcal/ mole | $\Delta S$, cal/ mole deg | $\Delta C_{p, c a l}$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| Co | Transition <br> Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{array}{\|l} \text { c, II } \\ \text { c, I } \\ \text { liq } \\ \text { g } \end{array}$ | 760 | $\begin{array}{r} 723 \\ 1398 \\ 1765 \\ 3373 \end{array}$ | $\begin{aligned} & 0.005 \\ & 0.07 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 0.007 \\ & 0.05 \\ & 2.1 \end{aligned}$ |  |
| $\mathrm{CoCl}_{2}$ | Fusion <br> Vaporization | $\left\lvert\, \begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}\right.$ | $\begin{aligned} & \mathrm{liq} \\ & \mathbf{g} \end{aligned}$ | $\cdots{ }^{760}$ | $\begin{array}{r} 997 \\ 1323 \end{array}$ | $\begin{array}{r} 7.4 \\ 27.2 \end{array}$ | $\begin{array}{r} 7.4 \\ 20.6 \end{array}$ |  |
| CoO | Fusion | c | liq |  | 2078 |  |  |  |
| CoS | Fusion | c | liq | .......... | 1373 |  |  |  |
| Cr | Fusion | c | liq | .......... | 2173 | 3.5 | 1.6 |  |
| $\mathrm{CrCl}_{2}$ | Sublimation <br> Fusion | c | g <br> liq | $\begin{aligned} & 0.61 \\ & 0.61 \end{aligned}$ | $\begin{aligned} & 1088 \\ & 1088 \end{aligned}$ | $\begin{array}{r} 60.1 \\ 7.7 \end{array}$ | $\begin{array}{r} 55.2 \\ 7.1 \end{array}$ |  |
| $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | .......... | $\begin{gathered} 306.0 \\ 2538 \end{gathered}$ |  |  |  |
| Cs | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { e } \\ & \text { liq } \end{aligned}$ | g <br> liq | $\begin{aligned} & 1.2 \times 10^{-6} \\ & 1.2 \times 10^{-6} \\ & 760 \end{aligned}$ | $\begin{aligned} & 301.9 \\ & \\ & 301.9 \\ & 963 \end{aligned}$ | $\begin{array}{r} 18.82 \\ \\ 0.50 \\ 16.32 \end{array}$ | $\begin{gathered} 62.34 \\ \\ 1.6 \\ 16.95 \end{gathered}$ |  |
| CsBr | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}$ | $\ldots$ | $\begin{array}{r} 909 \\ 1573 \end{array}$ | $\begin{gathered} 1.7 \\ 35.99 \end{gathered}$ | $\begin{gathered} 1.9 \\ 22.88 \end{gathered}$ |  |
| CsCl | Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{array}{r} 718 \\ 918 \\ 1573 \end{array}$ | $\begin{gathered} 1.8 \\ 3.60 \\ 35.69 \end{gathered}$ | $\begin{gathered} 2.5 \\ 3.92 \\ 22.69 \end{gathered}$ |  |
| C8F | Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ |  | $\begin{array}{r} 955 \\ 1524 \end{array}$ | $\begin{gathered} 2.45 \\ 34.3 \end{gathered}$ | $\begin{gathered} 2.56 \\ 22.5 \end{gathered}$ |  |
| CsNOs | Transition Fusion | $\begin{array}{l\|l} \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | a........ | $\begin{aligned} & 429 \\ & 690 \end{aligned}$ | 3.25 | 4.71 |  |
| CsOH | Transition Fusion | $\begin{array}{l\|l} \text { c, II } \\ \text { c, I } \end{array}$ | $\begin{aligned} & \mathbf{c , I}, \\ & \text { liq } \end{aligned}$ | . | $\begin{aligned} & 496 \\ & 545.5 \end{aligned}$ | $\begin{aligned} & 1.76 \\ & 1.61 \end{aligned}$ | $\begin{aligned} & 3.55 \\ & 2.93 \end{aligned}$ |  |
| $\mathrm{Cs}_{2} \mathrm{SO}_{4}$ | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | ..... | $\begin{array}{r} 933 \\ 1292 \end{array}$ |  |  |  |
| Cu | Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 1356.2 \\ & 2855 \end{aligned}$ | $\begin{gathered} 3.11 \\ 72.8 \end{gathered}$ | $\begin{gathered} 2.29 \\ 25.4 \end{gathered}$ | 0.5 |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, ~ c a l /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| CuBr | Fusion | c | liq | .......... | 761 |  |  |  |
| CuCl | Fusion | c | liq | .......... | 703 | 2.4 | 3.4 |  |
| $\mathrm{Cu}_{2} \mathrm{O}$ | Fusion | c | liq | .......... | 1502 | 13.4 | 8.9 |  |
| $\mathrm{Cu}_{2} \mathrm{~S}$ | Transition <br> Fusion | $\begin{aligned} & \text { c, } \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | .......... | $\begin{array}{r} 376 \\ 1400 \end{array}$ | $\begin{aligned} & 1.34 \\ & 5.5 \end{aligned}$ | $\begin{aligned} & 3.6 \\ & 3.9 \end{aligned}$ | 0.2 |
| $\mathrm{ErCl}_{3}$ | Fusion | c, $\gamma$ | liq | .......... | 1047 |  |  |  |
| $\mathrm{F}_{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | ${ }_{760}^{1.66}$ | $\begin{aligned} & 53.54 \\ & 85.02 \end{aligned}$ | $\begin{aligned} & 0.122 \\ & 1.562 \end{aligned}$ | $\begin{gathered} 2.28 \\ 18.4 \end{gathered}$ | -6.90 |
| Fe | Transition <br> Transition <br> Sublima- <br> tion <br> Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \mathrm{c}, \alpha \\ & \mathrm{c}, \beta \\ & \mathrm{c}, \gamma \\ & \mathrm{c}, \gamma \\ & \mathrm{c}, \gamma \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \beta \\ & \mathrm{c}, \gamma \\ & \mathrm{~g} \\ & \mathrm{c}, \delta \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $5.4 \times 10^{-5}$ $\qquad$ <br> 760 | $\begin{aligned} & 1033 \\ & 1180 \\ & 1473 \\ & \\ & 1673 \\ & 1808 \\ & 3073 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.217 \\ & 94.4 \\ & \\ & 0.15 \\ & 3.6 \end{aligned}$ | 0.0 <br> 0.184 <br> 64.1 <br> 0.09 2.0 <br> 2.0 | $\begin{gathered} 0.0 \\ 1.40 \\ \\ 1 \\ -2.8 \end{gathered}$ |
| $\mathrm{FeBr}_{2}$ | Fusion | c | liq | .......... | 957 |  |  |  |
| $\mathrm{FeCl}_{2}$ | Fusion <br> Vaporization | $\stackrel{c}{\text { liq }}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{array}{r} 950 \\ 1299 \end{array}$ | $\begin{aligned} & 10.28 \\ & 30.21 \end{aligned}$ | $\begin{array}{r} 10.82 \\ \dot{23.26} \end{array}$ | 3.63 |
| $\mathrm{FeCl}_{3}$ | Sublima- <br> tion <br> Fusion <br> Vaporization <br> Vaporization |  | $\begin{aligned} & \frac{1}{2} \mathrm{Fe}_{2} \mathrm{Cl}_{6}(\mathrm{~g}) \\ & \frac{1}{3} \mathrm{Fe}_{2} \mathrm{Cl}_{6}(\mathrm{liq}) \\ & \frac{1}{2} \mathrm{Fe}_{2} \mathrm{Cl}_{6}(\mathrm{~g}) \\ & \frac{1}{2} \mathrm{Fe}_{2} \mathrm{Cl}_{6}(\mathrm{~g}) \end{aligned}$ | 582 <br> 582 <br> 582 <br> 760 | 577 <br> 577 <br> 577 <br> 592 | $\begin{gathered} 16.5 \\ \\ 10.3 \\ 6.24 \\ 6.02 \end{gathered}$ | $\begin{aligned} & 28.6 \\ & 17.8 \\ & 10.81 \\ & 10.17 \end{aligned}$ | -4 |
| $\mathrm{Fe}(\mathrm{CO})_{5}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline \text { liq } \\ \hline \end{array}$ | $760$ | $\begin{aligned} & 252 \\ & 378 \end{aligned}$ | $\begin{aligned} & 3.25 \\ & 8.9 \end{aligned}$ | $\begin{aligned} & 12.90 \\ & 23.5 \end{aligned}$ | . |
| $\mathrm{Fel}_{2}$ | Fusion | c | liq | .......... | 860 |  |  |  |
| Fe0.950 | Fusion | c | liq | .......... | 1641 | 7.5 | 4.6 |  |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | Transition | c, II | c, I | ........... | 1303 |  |  |  |
| $\mathrm{Fe}_{3} \mathrm{O}_{4}$ | Fusion | c | liq | ........... | 1867 | 33 | 18 |  |
| FeS | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c} \end{aligned}$ | $\begin{aligned} & \mathbf{c , I}, \\ & \text { liq } \end{aligned}$ | ......... | $\begin{array}{r} 411 \\ 1468 \end{array}$ | $\begin{aligned} & 1.05 \\ & 7.73 \end{aligned}$ | $\begin{aligned} & 2.55 \\ & 5.26 \end{aligned}$ | -4.89 |
| Ga | Transition Fusion | $\begin{aligned} & c, I \\ & c, ~ I \end{aligned}$ | $\begin{aligned} & \text { c, II } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & 8.86 \times 10^{6} \\ & 8.86 \times 10^{8} \end{aligned}$ | $\begin{aligned} & 275.6 \\ & 275.6 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 1.23 \end{aligned}$ | $\begin{aligned} & 1.85 \\ & 4.46 \end{aligned}$ |  |

Table 4j-1. Phabe Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\Delta H$, kcal/ mole | $\Delta S$, cal/ mole deg | $\begin{gathered} \Delta C_{p, c \mathrm{cal}} / \\ \text { mole deg } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| Ga | Fusion <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | liq <br> liq <br> $g$ | $\begin{gathered} 8.86 \times 10^{8} \\ \ldots \ldots . . \\ 0.0006 \end{gathered}$ | $\begin{aligned} & 275.6 \\ & 309.940 \\ & 1210 \end{aligned}$ | $\begin{gathered} 0.72 \\ 1.336 \\ 63.8 \end{gathered}$ | $\begin{array}{r} 2.61 \\ 4.31 \\ 52.7 \end{array}$ | 0.38 |
| $\mathrm{GazO}_{2}$ | Fusion | c | liq | .......... | 2013 |  |  |  |
| GaS | Fusion | c | liq | ........... | 1218 |  |  |  |
| Ge | Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 1233 \\ & 2960 \end{aligned}$ | $\begin{array}{r} 8.3 \\ 81.6 \end{array}$ | $\begin{gathered} 6.7 \\ 28 . \end{gathered}$ |  |
| $\mathrm{GeBr}_{4}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | liq | 760 | $\begin{aligned} & 299.3 \\ & 460.3 \end{aligned}$ | 9.9 | 21.5 |  |
| GeCl4 | Fusion Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \operatorname{liq} \\ & \mathbf{g} \end{aligned}\right.$ | $760$ | $\begin{aligned} & 223.7 \\ & 356.3 \end{aligned}$ | 7.9 | 22.2 |  |
| GeH4 | Transition <br> Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \mathrm{c}, \text { III } \\ & \text { c, II } \\ & \mathbf{c , I} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{gathered} 73.2 \\ 76.5 \\ 107.26 \\ 184.80 \end{gathered}$ | $\begin{aligned} & 0.050 \\ & 0.086 \\ & 0.200 \\ & 3.361 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 1.12 \\ & 1.86 \\ & 18.19 \end{aligned}$ | 2.0 |
| $\mathrm{GeO}_{2}$ | Transition Fusion <br> Fusion | c, II, insoluble c, II, insoluble c, I, soluble | c, I, soluble liq liq | $\ldots \ldots \ldots$. $\ldots \ldots .$. $\ldots \ldots .$. | $\begin{aligned} & 1306 \\ & 1359 \\ & 1389 \end{aligned}$ | $\therefore$ | . |  |
| HBr | Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \operatorname{liq} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 186.28 \\ & 186.28 \\ & 206.43 \end{aligned}$ | $\begin{aligned} & 0.575 \\ & 4.210 \end{aligned}$ | $\begin{array}{r} 3.09 \\ 20.39 \end{array}$ | $\begin{array}{r} 1.64 \\ -7.37 \end{array}$ |
| HCl | Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{e}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | 98.38 158.94 188.11 | $\begin{aligned} & 0.284 \\ & 0.476 \\ & 3.86 \end{aligned}$ | $\begin{gathered} 2.89 \\ 2.99 \\ 20.5 \end{gathered}$ | $\begin{array}{r} 1.15 \\ 2.10 \\ -7.14 \end{array}$ |
| HCN | Transition <br> Fusion <br> Vaporiza- <br> tion <br> Vaporiza- <br> tion | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | 140.4 <br> 140.4 <br> 760 | $\begin{aligned} & 170.41 \\ & 259.92 \\ & 259.92 \\ & 298.86 \end{aligned}$ | $\begin{gathered} 0.004 \\ 2.009 \\ \\ 6.027 \end{gathered}$ | $\begin{array}{r} 0.02 \\ 7.73 \\ \\ 20.17 \end{array}$ | 1.7 |
| HF | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | liq | $760$ | $\begin{aligned} & 190.09 \\ & 293.1 \end{aligned}$ | $\begin{aligned} & 1.094 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & 5.756 \\ & 6.1 \end{aligned}$ | $\begin{array}{r} 2.55 \\ -10.9 \end{array}$ |

Table 4j-1. Phase Transition Data for Elements and Compounds. (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}$, cal/ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| HI | Fusion | c | liq | $\ldots$ | 222.36 | 0.686 | 3.08 | 1.10 |
|  | Vaporization | liq | g |  | 222.36 |  |  |  |
|  | Vaporization | liq | g | 760 | 237.80 | 4.724 | 19.86 | - 7.14 |
| HNO: | Fusion | lig | ${ }^{\text {liq }}$ |  | $231.56$ | $2.503$ | $10.81$ | 10.55 |
|  | Vaporization | liq | g | 48 | $293$ | $9.43$ | $32.2$ |  |
| $\mathrm{H}_{2}$ | Fusion | c | liq | 52.8 | 13.84 | 0.028 | 2.0 | 1.9 |
|  | Vaporization | liq | g | 52.8 | 13.84 |  |  |  |
|  | Vaporiza- | liq | g | 760 | 20.26 | 0.215 | 10.6 |  |
| $\mathrm{H}_{2} \mathrm{O}$ | Fusion | c | liq | 760 | 273.16 | 1.4363 | 5.2581 | 8.911 |
|  | Vaporiza- | liq | g | 4.58 | 273.17 | 10.767 | 39.415 | -10.184 |
|  | Vaporiza- |  |  | 23.75 | 298.16 | 10.514 | 35.263 | - 9.971 |
|  | $\begin{aligned} & \text { Vaporiza- } \\ & \text { tion } \end{aligned}$ | liq |  | 23.75 |  | 10.514 |  |  |
|  | Vaporiza- | liq | g | 760 | 373.16 | 9.7171 | 26.0400 | -10.021 |
|  | tion |  |  |  |  |  |  |  |
|  | Vaporization | liq, std. | g, std. | 760 | 298.16 | 10.520 | 28.390 |  |
| $\mathrm{H}_{2} \mathrm{~S}$ | Transition | c, III | c, II | $\ldots .$. | 103.54 | 0.366 | 3.53 | 1.20 |
|  | Transition | c, II | c, I |  | 126.24 | 0.108 | 0.86 | -0.65 |
|  | Fusion | c, I | liq | 173.9 | 187.63 | 0.568 | 3.03 | 1.59 |
|  | Vaporiza- | liq | g | 173.9 | 187.63 |  |  |  |
|  | tion |  |  |  |  |  |  |  |
|  | Vaporization | liq | g | 760 | 212.82 | 4.463 | 20.97 | $-8.34$ |
| $\mathrm{H}_{2} \mathrm{SO} 4$ | Fusion | c | liq |  | 283.53 | 2.36 | 8.32 | 6.218 |
| $\mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ | Fusion | c | liq | $\ldots .$. | 281.65 | 4.63 | 16.44 | 25.04 |
| $\mathrm{H}_{2} \mathrm{Se}$ | Transition | c, III | c, II | ...... | 82.3 | 0.309 | 3.75 | 1.5 |
|  | Transition | c, II | c, I |  | 172.54 | 0.267 | 1.55 | $-1.9$ |
|  | Fusion | c, I | liq | 205.4 | 207.43 | 0.601 | 2.90 | 1.95 |
|  | Vaporiza- | liq |  | 205.4 | 207.43 | 5.34 | 25.72 |  |
|  | tion |  |  |  |  |  |  |  |
|  | Vaporiza- | liq | g | 760 | 231.9 | 4.62 | 19.93 |  |
|  | tion |  |  |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{Te}$ | Fusion |  | liq |  | 222 | 1.0 |  |  |
|  | Vaporization | liq |  | 760 | 270.9 | 5.55 | 20.49 |  |
| $\mathrm{H}_{3} \mathrm{PO}_{3}$ | Fusion | c | liq | $\ldots .$. | 343.3 | 3.07 | 8.94 |  |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$ | Fusion | c | liq | ...... | 315.51 | 2.52 | 7.99 | - |

TRANSITION, FUSION, AND VAPORIZATION
Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | $\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { process } \end{aligned}$ | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| ${ }^{\mathbf{1}}{ }^{2} \mathrm{H}$ | Fusion <br> Vaporiza- <br> tion <br> Vaporization | $\stackrel{\mathrm{c}}{\mathrm{c}} \mathrm{l}$ <br> liq | $\begin{aligned} & \overline{\mathrm{liq}} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 93 \\ 93 \\ \\ \hline 760 \end{array}$ | $\begin{aligned} & 16.60 \\ & 16.60 \\ & 22.13 \end{aligned}$ | $\begin{aligned} & 0.038 \\ & 0.265 \end{aligned}$ | $\begin{array}{r} 2.3 \\ 16.0 \end{array}$ | 2.0 |
| ${ }^{1} \mathrm{H}^{2} \mathrm{HO}$ | Vaporization | liq | g | 22.0 | 298.16 | 10.652 | 35.726 |  |
| ${ }^{1} \mathrm{H}_{2}$ | Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{gathered} 52.8 \\ 52.8 \\ 760 \end{gathered}$ | $\begin{aligned} & 13.84 \\ & 13.84 \\ & 20.26 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 0.215 \end{aligned}$ | $\begin{gathered} 2.0 \\ 10.6 \end{gathered}$ | 1.9 |
| ${ }^{2} \mathrm{H}_{2}$ | Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \mathrm{e} \\ & \mathrm{liq} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 128 \\ & 128 \\ & 760 \end{aligned}$ | 18.63 <br> 18.63 <br> 23.59 | $\begin{aligned} & 0.0471 \\ & 0.2937 \end{aligned}$ | $2.53$ $12.45$ | 2.2 |
| ${ }^{2} \mathrm{H}_{2} \mathrm{O}$ | Fusion <br> Vaporization Vaporization | $\stackrel{\text { c }}{\text { liq }}$ <br> liq, std. | liq <br> g <br> g, std. | $20.78$ <br> 760 | $\begin{aligned} & 276.98 \\ & 298.16 \\ & 298.16 \end{aligned}$ | $\begin{array}{r} 1.501 \\ 10.193 \\ 10.850 \end{array}$ | $\begin{array}{r} 5.419 \\ 34.186 \\ 29.22 \end{array}$ | 9.48 |
| He | Fusion <br> Transition <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq, II } \end{aligned}$ liq, I | $\begin{aligned} & \text { liq, I } \\ & \text { liq, I } \\ & \mathrm{g} \end{aligned}$ | $\begin{gathered} 78,300 \\ 38.3 \\ 760 \end{gathered}$ | $\begin{aligned} & 3.5 \\ & 2.186 \\ & 4.216 \end{aligned}$ | $\begin{aligned} & 0.005 \\ & 0.00 \\ & 0.020 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 0.00 \\ & 4.7 \end{aligned}$ | -19 |
| Hf | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { e, I } \\ & \text { liq } \end{aligned}$ | ........... | $\begin{aligned} & 1773 \\ & 2500 \end{aligned}$ |  |  |  |
| $\mathrm{HfO}_{2}$ | Fusion | c | liq |  | 3050 |  |  |  |
| Hg | Sublimation <br> Fusion <br> Vaporization <br> Vaporization |  | g <br> liq <br> g <br> g, equilibrium | $\begin{aligned} & 2.5 \times 10^{-6} \\ & 2.5 \times 10^{-6} \\ & 0.00209 \end{aligned}$ $760$ | $\begin{aligned} & 234.29 \\ & 234.29 \\ & 298.16 \\ & 629.88 \end{aligned}$ | $\begin{gathered} 15.20 \\ 0.549 \\ 14.65 \\ 14.13 \end{gathered}$ | $\begin{array}{r} 64.9 \\ 2.34 \\ 49.13 \\ 22.43 \end{array}$ |  |
| $\mathrm{HgBr}_{2}$ | Sublimation <br> Fusion <br> Vaporization |  | $\begin{aligned} & \mathrm{g} \\ & \mathrm{liq} \\ & \mathbf{g} \end{aligned}$ | $\begin{aligned} & 166 \\ & 116 \\ & 760 \end{aligned}$ | 514 <br> 514 <br> 592 | $\begin{array}{r} 18.82 \\ 3.96 \\ 14.08 \end{array}$ | $36.6$ $\begin{array}{r} 7.7 \\ 23.8 \end{array}$ |  |
| $\mathrm{HgCl}_{2}$ | Sublimation Fusion Vaporization |  | liq <br> g | $\begin{aligned} & 418 \\ & 418 \\ & 760 \end{aligned}$ | 550 <br> 550 <br> 577 | $\begin{array}{r} 18.50 \\ 4.15 \\ 14.08 \end{array}$ | $\begin{array}{r} 33.6 \\ 7.5 \\ 24.4 \end{array}$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)


Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| KI | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { liq } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathrm{g} \\ & \operatorname{liq} \\ & \mathrm{~g} \end{aligned}\right.$ | $\begin{gathered} 0.36 \\ 0.36 \\ 760 \end{gathered}$ | $\begin{array}{r} 958 \\ 958 \\ 1597 \end{array}$ | $47.2$ $34.7$ | $49.3$ $21.7$ |  |
| KNO ${ }_{3}$ | Transition <br> Transition <br> Transition <br> Transition <br> Transition <br> Transition <br> Transition <br> Fusion | c, IV <br> c, IV <br> c, III <br> c, III <br> c, III <br> c, II <br> c, II <br> c, I | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, II } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { c, I } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $2.84 \times 10^{6}$ <br> $2.84 \times 10^{6}$ <br> $2.84 \times 10^{6}$ <br> 61,500 <br> 61,500 <br> 61,500 <br> 760 | 294.5 <br> 294.5 <br> 294.5 <br> 401.18 <br> 401.18 <br> 401.18 <br> 400.9 <br> 610 | $\begin{array}{r} -0.512 \\ -0.381 \\ 0.131 \\ -0.502 \\ 0.558 \\ 1.060 \\ 1.3 \\ 2.8 \end{array}$ | $\begin{gathered} -1.74 \\ -1.29 \\ 0.445 \\ -1.25 \\ 1.39 \\ 2.64 \\ 3.2 \\ 4.6 \end{gathered}$ | $\begin{aligned} & 2.9 \\ & 0.7 \end{aligned}$ |
| KOH | Transition Fusion Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{array}{\|l} \mathrm{c}, \mathrm{I} \\ \text { liq } \\ \mathrm{g} \end{array}$ | 760 | $\begin{array}{r} 522 \\ 673 \\ 1600 \end{array}$ | $\begin{gathered} 1.52 \\ 1.8 \\ 30.8 \end{gathered}$ | $\begin{gathered} 2.91 \\ 2.6 \\ 19.3 \end{gathered}$ | : |
| $\mathrm{K}_{2} \mathrm{CO}_{\mathbf{3}}$ | Transition <br> Transition <br> Transition Fusion | $\begin{aligned} & \text { c, IV } \\ & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{III} \\ & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \end{aligned}$ |  | $\begin{array}{r} 523 \\ 701 \\ 895 \\ 1169 \end{array}$ | 7.8 | 6.8 | - |
| $\mathrm{K}_{2} \mathrm{SO}_{4}$ | Transition Fusion | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | .......... | $\begin{array}{r} 856 \\ 1342 \end{array}$ | $\begin{aligned} & 1.94 \\ & 8.76 \end{aligned}$ | $\begin{aligned} & 2.27 \\ & 6.53 \end{aligned}$ | $\begin{array}{r} -4.79 \\ -6.49 \end{array}$ |
| Kr | Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 549 \\ & 549 \\ & \\ & \mathbf{7 6 0} \end{aligned}$ | $\begin{aligned} & 115.95 \\ & 115.95 \\ & \\ & 119.93 \end{aligned}$ | $\begin{aligned} & 0.391 \\ & 2.158 \end{aligned}$ | 3.37 <br> 17.99 | $\begin{array}{r} 2.01 \\ -5.67 \end{array}$ |
| La | Transition Transition Transition Fusion | $\begin{array}{\|l} \hline \text { c, IV } \\ \text { c, III } \\ \text { c, II } \\ \text { c, I } \end{array}$ | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{array}{r} 110 \\ 821 \\ 982 \\ 1193 \end{array}$ |  | . |  |
| Li | Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \end{aligned}$ | c, I <br> liq <br> g, equilibrium | . | $\begin{gathered} 77 \\ 453.7 \\ 1599 \end{gathered}$ | 0.723 | 1.594 | 0.39 |
| LiBr | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}_{\mathrm{q}}$ | 760 | $\begin{array}{r} 823 \\ 1583 \end{array}$ | $\begin{array}{r} 2.9 \\ 35.4 \end{array}$ | $\begin{array}{r} 3.5 \\ 22.4 \end{array}$ |  |
| LiCl | Sublimation Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { e } \\ & \text { liq } \end{aligned}$ | g <br> liq <br> g | $\begin{aligned} & 0.014 \\ & 0.014 \\ & 760 \end{aligned}$ | $\begin{array}{r} 883 \\ \\ 883 \\ 1655 \end{array}$ | $\begin{array}{r} 46.2 \\ 3.2 \\ 36.0 \end{array}$ | $\begin{array}{r} 52.3 \\ \\ 3.6 \\ 21.8 \end{array}$ |  |

-146
HEAT
Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | $\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { process } \end{aligned}$ | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, kcal/ mole | $\Delta S$, cal/ mole deg | $\begin{gathered} \Delta C_{p}, \text { cal/ } \\ \text { mole deg } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| LiF | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathbf{g} \end{aligned}$ | $\ldots$ 760 | $\begin{aligned} & 1118 \\ & 1954 \end{aligned}$ | $\begin{array}{r} 2.4 \\ 51.0 \end{array}$ | $\begin{array}{r} 2.1 \\ 26.1 \end{array}$ |  |
| LiI | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\ldots$ 760 | $\begin{array}{r} 722 \\ 1444 \end{array}$ | $40.8$ | $28.2$ |  |
| LiOH | Fusion | c. | liq | $\ldots$ | 735 |  |  |  |
| $\mathrm{Li}_{2} \mathrm{CO}_{3}$ | Fusion | c | liq | $\cdots$ | 1008 |  |  |  |
| LiNOs | Fusion | c | liq | $\ldots$ | 527 | 6.1 | 11.6 | 0.45 |
| $\mathrm{Li}_{2} \mathrm{SO}_{4}$ | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\cdots$ | $\begin{array}{r} 848 \\ 1132 \end{array}$ | $\begin{aligned} & 6.8 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 8.0 \\ & 2.6 \end{aligned}$ |  |
| $\mathrm{LuCl}_{3}$ | Fusion | c, $\gamma$ | liq | $\ldots$ | 1165 |  |  |  |
| Mg | Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 3 \\ 760 \end{array}$ | $\begin{array}{r} 923 \\ 1393 \end{array}$ | $\begin{array}{r} 2.2 \\ 31.5 \end{array}$ | $\begin{array}{r} 2.4 \\ 22.6 \end{array}$ |  |
| $\mathbf{M g C l} \mathbf{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | liq $\mathbf{g}$ | 760 | $\begin{array}{r} 987 \\ 1691 \end{array}$ | $\begin{aligned} & 10.3 \\ & 32.7 \end{aligned}$ | $\begin{aligned} & 10.4 \\ & 19.3 \end{aligned}$ |  |
| $\mathbf{M g C l} 2 \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | Fusion | c | liq | $\ldots$ | 390 | 8.2 | 21.0 |  |
| MgO | Fusion | c | liq | $\ldots$ | 3173 | 18.5 | 5.8 |  |
| $\mathrm{MgSO}_{4}$ | Fusion | c | liq | $\cdots$ | 1400 | 3.5 | 2.5 |  |
| $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ | Transition Transition | $\begin{aligned} & \text { c, II } \\ & \text { e, III } \end{aligned}$ | $\begin{aligned} & c, \text { I } \\ & c, \text { II } \end{aligned}$ | $\cdots$ | $\begin{array}{r} 1061 \\ 823 \end{array}$ | $\begin{aligned} & 0.26 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 0.27 \end{aligned}$ |  |
| Mn | Transition <br> Transition <br> Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, IV } \\ & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | c, III <br> c, II <br> c, I <br> liq <br> g | $760$ | $\begin{aligned} & 1000 \\ & 1374 \\ & 1410 \\ & 1517 \\ & 2360 \end{aligned}$ | $\begin{gathered} 0.54 \\ 0.54 \\ 0.43 \\ 3.50 \\ 53.7 \end{gathered}$ | $\begin{gathered} 0.54 \\ 0.39 \\ 0.30 \\ 2.31 \\ 22.8 \end{gathered}$ |  |
| $\mathbf{M n B r} \mathbf{2}$ | Fusion | c | liq | $\ldots$ | 971 |  |  |  |
| $\mathbf{M n C l}{ }_{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \text { liq } \\ & \mathrm{g} \end{aligned}$ | $\ldots$ 760 | $\begin{array}{r} 923 \\ 1463 \end{array}$ | $\begin{array}{r} 9.0 \\ 28.8 \end{array}$ | $\begin{array}{r} 9.7 \\ 19.7 \end{array}$ |  |
| MnO | Fusion | c | liq | $\ldots$ | 2053 |  |  |  |
| $\mathrm{Mn}_{2} \mathrm{O}_{\mathbf{3}}$ | Transition | c, II | c, I | $\ldots$ | 873 |  |  |  |
| $\mathrm{Mn}_{8} \mathrm{O}_{4}$ | Transition <br> Fusion | $\begin{aligned} & c, \text { II } \\ & \text { c, I } \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | ... | $\begin{aligned} & 1445 \\ & 1833 \end{aligned}$ | $4.5$ | 3.1 |  |
| MnS | Fusion | c | liq | $\cdots$ | 1803 | 6.2 | 3.4 |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| Mo | Fusion | c | liq | $\ldots .$. | 2883 |  |  |  |
| $\mathrm{Mo}(\mathrm{CO})_{6}$ | Sublimation | c | g | 48 | 375 | 16.3 | 43.5 |  |
| MoF6 | Sublimation Fusion Vaporization | $\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathbf{g} \\ & \mathrm{liq} \\ & \mathbf{g} \end{aligned}$ | $\begin{aligned} & 406 \\ & 406 \\ & 760 \end{aligned}$ | $\begin{aligned} & 290.7 \\ & \\ & 290.7 \\ & 308 \end{aligned}$ | $\begin{aligned} & 8.3 \\ & 2.2 \\ & 6.0 \end{aligned}$ | $\begin{array}{r} 28.6 \\ 7.6 \\ 19.5 \end{array}$ |  |
| $\mathrm{MoO}_{3}$ | Sublimation Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { liq } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathbf{g} \\ & \mathbf{l i q} \\ & \mathbf{g} \end{aligned}\right.$ | $\begin{gathered} 0.3 \\ 10 \\ 760 \end{gathered}$ | $\begin{aligned} & 973 \\ & 1068.4 \\ & 1428 \end{aligned}$ | 65 <br> 12.54 <br> 33 | 67 <br> 11.74 <br> 23 |  |
| Na | Fusion <br> Vaporization | $\left\lvert\, \begin{aligned} & \text { ciq } \\ & \text { liq } \end{aligned}\right.$ | $\begin{array}{\|l} \hline \text { liq } \\ \text { g, equilib- } \\ \text { rium } \end{array}$ | 760 | $\begin{gathered} 371.0 \\ 1162 \end{gathered}$ | 0.622 | 1.68 | 0.12 |
| NaBr | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { liq } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathbf{g} \\ & \operatorname{liq} \\ & \mathbf{g} \end{aligned}\right.$ | $\begin{gathered} 0.40 \\ 0.40 \\ 760 \end{gathered}$ | $\begin{aligned} & 1023 \\ & 1023 \\ & 1665 \end{aligned}$ | $\begin{array}{r} 49.3 \\ \\ 6.1 \\ 38.7 \end{array}$ | $\begin{array}{r} 48.2 \\ 5.9 \\ 23.2 \end{array}$ |  |
| NaCN | Transition <br> Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ |  | $\begin{gathered} 172.1 \\ 288.5 \\ 835 \\ 1770 \end{gathered}$ | $\begin{aligned} & 0.15 \\ & 0.70 \\ & 4 \\ & 37 \end{aligned}$ | $\begin{gathered} 0.87 \\ 2.43 \\ 5 \\ 21 \end{gathered}$ |  |
| $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | Transition <br> Transition <br> Transition <br> Fusion | $\begin{aligned} & \text { c, IV } \\ & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \end{aligned}$ | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{array}{r} 629 \\ 759 \\ 891 \\ 1127 \end{array}$ | $\begin{aligned} & 0.20 \\ & 0.45 \\ & 8 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.59 \\ & 7 \end{aligned}$ |  |
| NaCl | Sublima <br> tion <br> Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathrm{g} \\ & \mathrm{liq}_{\mathrm{g}} \\ & \mathrm{~g} \end{aligned}\right.$ | $\begin{gathered} 0.5 \\ 0.5 \\ 760 \end{gathered}$ | $\begin{aligned} & 1081 \\ & \\ & 1081 \\ & 1738 \end{aligned}$ | $\begin{array}{r} 51.5 \\ 6.8 \\ 40.8 \end{array}$ | $\begin{array}{r} 47.6 \\ \\ 6.3 \\ 23.5 \end{array}$ | 0.8 |
| NaF | Sublima- <br> tion <br> Fusion <br> Vaporization | c c liq | $\begin{aligned} & \mathrm{g} \\ & \operatorname{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{gathered} 0.5 \\ 0.5 \\ 760 \end{gathered}$ | $\begin{aligned} & 1268 \\ & \\ & 1268 \\ & 1977 \end{aligned}$ | $\begin{gathered} 63 \\ \\ 7.8 \\ 50 \end{gathered}$ | $\begin{aligned} & 49 \\ & \\ & 6.2 \\ & 25 \end{aligned}$ | 0.65 |
| NaI | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}$ | $760$ | $\begin{array}{r} 935 \\ 1577 \end{array}$ | $\begin{array}{r} 5.2 \\ 38.2 \end{array}$ | $\begin{array}{r} 5.6 \\ 24.2 \end{array}$ |  |
| $\mathrm{Na} \cdot \mathrm{MoO}_{4}$ | Transition <br> Fusion | $\begin{aligned} & \text { c, II } \\ & c, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\ldots$ | $\begin{aligned} & 713 \\ & 960 \end{aligned}$ | $\begin{array}{r} 14.6 \\ 3.6 \end{array}$ | $\begin{array}{r} 20.5 \\ 3.8 \end{array}$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | ${ }^{\mathrm{T}} \mathrm{K} \mathrm{K}$., | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{NaNO}_{3}$ | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | . $\ldots$......... | $\begin{aligned} & 548 \\ & 583 \end{aligned}$ | 3.8 | 6.5 | 0.3 |
| NaOH | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \mathbf{c , I} \\ & \text { liq } \end{aligned}$ | . $\ldots$......... | $\begin{aligned} & 566.0 \\ & 592.2 \end{aligned}$ | $\begin{aligned} & 1.514 \\ & 1.518 \end{aligned}$ | $\begin{aligned} & 2.67 \\ & 2.57 \end{aligned}$ | 1.2 |
| $\mathrm{NaOH} \cdot \mathrm{H}_{2} \mathrm{O}$ | Fusion | c | liq | ......... | 337.4 |  |  |  |
| $\mathrm{Na}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ | Fusion | c | liq | ......... | 1243 | 14 | 11 |  |
| $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | Transition Fusion | $\begin{array}{\|l\|l} \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\ldots$ | $\begin{array}{r} 513 \\ 1163 \end{array}$ | 5.8 | 5.0 |  |
| $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ | Fusion | c | liq | ......... | 1362 | 12.5 | 9.2 | -1.07 |
| $\mathrm{Na}_{2} \mathrm{TiO}_{3}$ | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\ldots$ | $\begin{array}{r} 560 \\ 1303 \end{array}$ | $\begin{array}{r} 0.4 \\ 16.8 \end{array}$ | $\begin{array}{r} 0.7 \\ 12.9 \end{array}$ | $\begin{aligned} & -1.31 \\ & -1.2 \end{aligned}$ |
| Nb | Sublimation Fusion | c | liq | 0.00017 | $\begin{aligned} & 2500 \\ & 2760 \end{aligned}$ | 181 | 72 |  |
| NbCls | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathbf{g} \\ & \text { liq } \\ & \mathbf{g} \end{aligned}$ | $\begin{aligned} & 330 \\ & \\ & 330 \\ & 760 \end{aligned}$ | $\begin{aligned} & 483 \\ & 483 \\ & 519 \end{aligned}$ | $\begin{array}{r} 20.4 \\ \\ 8.5 \\ 11.8 \end{array}$ | 42.2 <br> 17.6 <br> 22.7 |  |
| $\mathrm{Nb}_{2} \mathrm{O}_{5}$ | Fusion | c | liq | ......... | 1785 | 24.59 | 13.78 |  |
| $\mathrm{Nb}_{2} \mathrm{O}_{3}$ | Fusion | c | liq | ......... | 2045 |  |  |  |
| Nd | Transition <br> Transition <br> Transition <br> Fusion | $\begin{array}{\|l} \mathrm{c}, \mathrm{IV} \\ \mathrm{c}, \mathrm{III} \\ \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{array}{r} 109 \\ 781 \\ 987 \\ 1113 \end{array}$ |  |  |  |
| Ne | Fusion <br> Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \end{aligned}$ | liq | $\begin{aligned} & 324 \\ & 324 \end{aligned}$ | $\begin{aligned} & 24.57 \\ & 24.57 \end{aligned}$ | $\begin{aligned} & 0.080 \\ & 0.431 \end{aligned}$ | $\begin{array}{r} 3.26 \\ 17.54 \end{array}$ | $\begin{array}{r} 2.42 \\ -3.42 \end{array}$ |
| $\mathrm{NH}_{3}$ | Fusion <br> Vaporization <br> Vaporization | $\stackrel{\text { e }}{\text { liq }}$ <br> liq | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 45.57 \\ & 45.57 \\ & \\ & 760 \end{aligned}$ | $\begin{aligned} & 195.40 \\ & 195.40 \\ & 239.73 \end{aligned}$ | $1.351$ $5.581$ | $\text { 6. } 914$ $23.28$ |  |
| $\mathrm{NH}_{4} \mathrm{Br}$ | Transition <br> Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{gathered} \text { c, I } \\ \text { lia } \end{gathered}$ | 735 | $\begin{aligned} & 411.0 \\ & 815 \end{aligned}$ | 0.77 | 1.87 |  |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{e}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 760 \\ & 2.62 \times 10^{4} \\ & 2.62 \times 10^{4} \end{aligned}$ | $\begin{aligned} & 457.6 \\ & 793 \\ & 793 \end{aligned}$ | 1.06 | 2.32 |  |
| $\mathrm{NH}_{4} \mathrm{I}$ | Transition <br> Fusion | c, II | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | 760 | $\begin{aligned} & 260 \\ & 824 \end{aligned}$ | 0.70 | 2.7 |  |

TRANSITION, FUSION, AND VAPORIZATION
Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Fig | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta I I$, <br> keal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p, c a l} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{NH}_{4} \mathrm{NO}_{3}$ | Transition | c, V | c, IV | 7 CO | 255 | 0.13 | 0.51 |  |
|  | Transition | c, IV | c, III | 760 | 305.3 | 0.38 | 1.23 |  |
|  | Transition | c, III | c, II | $6.32 \times 10^{5}$ | 336.5 | 0.20 | 0.59 |  |
|  | Transition | c, IV | c, III | $6.32 \times 10^{5}$ | 336.5 | 0.32 | 0.95 |  |
|  | Transition | c, IV | c, II | $6.32 \times 10^{5}$ | 336.5 | 0.52 | 1.54 |  |
|  | Transition | c, III | c, II | 760 | 357.4 | 0.32 | 0.90 |  |
|  | Transition | c, II | c, I | 760 | 398.4 | 1.01 | 2.54 |  |
|  | Transition | c, IV | c, II | $6.73 \times 10^{6}$ | 442.4 | 0.96 | 2.16 |  |
|  | Transition | c, IV | c, VI | $6.73 \times 10^{6}$ | 442.4 | 0.98 | 2.21 |  |
|  | Transition | c, II | c, VI | $6.73 \times 10^{6}$ | 442.4 | 0.02 | 0.05 |  |
|  | Fusion | c, I | liq | 760 | 442.8 | 1.3 | $2.94$ |  |
|  | Transition | c, VI | c, I | $6.63 \times 10^{6}$ | 459.9 | 0.99 | 2.15 |  |
|  | Transition | c, II | c, VI | $6.63 \times 10^{6}$ | 459.9 | 0.03 | 0.06 |  |
|  | Transition | c, II | c, I | $6.63 \times 10^{6}$ | 459.9 | 1.02 | 2.21 |  |
| NO | Fusion | ${ }^{\text {c }}$ | liq | 164.4 | 109.51 | 0.550 | 5.02 | 6.0 |
|  | Vaporization | liq | g | 164.4 | 109.51 |  |  |  |
|  | Vaporization | liq | g | 760 | 121.39 | 3.293 | 27.13 | 11.8 |
| $\mathrm{N}_{2}$ | Transition | c, II | c, I | 04 | 35.62 | 0.055 | 1.54 |  |
|  | Fusion | c, I | liq | 94 | 63.18 | 0.172 | 2.72 |  |
|  | Vaporization | liq | g | 94 | 63.18 |  |  |  |
|  | Vaporization | liq | g | 760 | 77.34 | 1.333 | 17.24 |  |
| $\mathrm{N}_{2} \mathrm{H}_{4}$ | Fusion | - | liq | ......... | 274.69 | 3.025 | 11.01 | 8.0 |
|  | Vaporization | liq | g | 764 | 386.7 | 9.70 | 25.1 |  |
| $\mathrm{N}_{2} \mathrm{O}$ | Fusion | c | liq | 658.9 | 182.30 | 1.563 | 8.574 | 4.67 |
|  | Vaporization | liq | g | 658.9 | 182.30 |  |  |  |
|  | Vaporization | liq | g | 760 | 184.68 | 3.956 | 21.42 |  |
| Ni | Transition | c, II |  | ......... | 626 | 0.092 | 0.15 | $-0.71$ |
|  | Fusion | c, I | liq |  | 1726 | 4.2 | 2.4 | 0.0 |
|  | Vaporiza- <br> tion | liq | g | 760 | 3073 | 91.0 | 29.6 |  |
| $\mathrm{NiCl}_{3}$ | Sublimation | c | g | 760 |  |  |  |  |
|  | Fusion | c | liq |  | 1300.8 | 18.47 | 14.18 |  |
| $\mathrm{Ni}(\mathrm{CO})$ 4 | Fusion Vaporiza- | $\stackrel{c}{\text { c }}$ | liq | $760$ | $\begin{aligned} & 248 \\ & 315.6 \end{aligned}$ |  |  |  |
|  | Vaporization | liq |  | 760 |  | 7.0 | 22.2 |  |
| NiO | Sublimation | c | g | $1.14 \times 10^{-5}$ |  | 111.4 | 74.2 |  |
|  | Fusion | c | liq |  | 2223 |  |  |  |
| NiS | Fusion | c | liq | ....... | 1070 |  |  |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Substance} \& \multirow[b]{2}{*}{Type of process} \& \multicolumn{2}{|r|}{Phase} \& \multirow[b]{2}{*}{Pressure, mm Hg} \& \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Temp., } \\
{ }^{\circ} \mathrm{K}
\end{gathered}
\]} \& \multirow[b]{2}{*}{\(\Delta H\), kcal/ mole} \& \multirow[b]{2}{*}{\(\Delta S, \mathrm{cal} /\) mole deg} \& \multirow[b]{2}{*}{\(\Delta C_{p}, \mathrm{cal}^{\prime}{ }^{\prime}\) mole deg} \\
\hline \& \& Initial \& Final \& \& \& \& \& \\
\hline Np \& Fusion \& c \& liq \& ......... \& 913 \& \& \& \\
\hline \(\mathrm{NpCl}_{8}\) \& Fusion \& c \& liq \& . . . . . . \({ }^{\text {a }}\) \& 1075 \& \& \& \\
\hline \(\mathrm{NpCl}_{4}\) \& Fusion \& c \& liq \& .......... \& 811 \& \& \& \\
\hline \(\mathrm{NpF}_{6}\) \& Fusion \& c \& liq \& ......... \& 326 \& \& \& \\
\hline \(\mathrm{O}_{2}\) \& \begin{tabular}{l}
Transition \\
Transition \\
Fusion \\
Vaporiza- \\
tion \\
Vaporization
\end{tabular} \& \[
\begin{aligned}
\& \text { c, III } \\
\& \text { c, II } \\
\& \text { c, I } \\
\& \text { liq } \\
\& \text { liq }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{c}, \mathrm{II} \\
\& \mathrm{c}, \mathrm{I} \\
\& \mathrm{liq} \\
\& \mathrm{~g} \\
\& \mathrm{~g}
\end{aligned}
\] \& \(\cdots \cdots \cdots\)
\(\cdots \cdots \cdots\)
1.14
1.14
760 \& \[
\begin{aligned}
\& 23.89 \\
\& 43.80 \\
\& 54.36 \\
\& 54.36 \\
\& 90.19
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.022 \\
\& 0.178 \\
\& 0.106 \\
\& \\
\& 1.630
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.92 \\
\& 4.07 \\
\& 1.95 \\
\& \\
\& 18.07
\end{aligned}
\] \& \[
\begin{array}{r}
0.3 \\
-0.14 \\
1.74 \\
\\
-6.00
\end{array}
\] \\
\hline 03 \& Vaporization \& liq \& g \& 760 \& 162.65 \& 2.59 \& 15.92 \& \\
\hline Os \& Fusion Vaporization \& \[
\begin{aligned}
\& \mathbf{c} \\
\& \text { liq }
\end{aligned}
\] \& liq \& 760 \& \[
\begin{aligned}
\& 2973 \\
\& 4673
\end{aligned}
\] \& \& \& \\
\hline OsO4 \& Fusion Vaporization \& \[
\begin{aligned}
\& \mathrm{c}, \mathrm{I} \\
\& \text { liq }
\end{aligned}
\] \& \[
\begin{array}{|l|l|l|l|l|}
\hline \text { liq } \\
\hline
\end{array}
\] \& * 760 \& \[
\begin{aligned}
\& 313.3 \\
\& 403
\end{aligned}
\] \& \[
\begin{aligned}
\& 3.41 \\
\& 9.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 10.9 \\
\& 23.6
\end{aligned}
\] \& \\
\hline \(\mathbf{P}\) \& \begin{tabular}{l}
Transition \\
Transition \\
Transition \\
Transition \\
Fusion \\
Vaporiza- \\
tion \\
Fusion \\
Vaporiza- \\
tion
\end{tabular} \& \begin{tabular}{l}
c, IV, white \\
c, IV, white \\
c. III, \\
white \\
c, III, \\
white \\
c, III, \\
white \\
liq \\
c, II, red \\
liq
\end{tabular} \& c. III, white c, III, white c, II, red c, I, black liq g, \(\mathrm{P}_{4}\) liq g, \(\mathrm{P}_{4}\) \& 760
\(4.41 \times 10^{6}\)
\(\ldots \ldots \ldots\)
\(\ldots \ldots \ldots\)
760
760
32,760
32,760 \& \begin{tabular}{l}
196 \\
270.8 \\
298.16 \\
298.16 \\
317.4 \\
553 \\
863 \\
863
\end{tabular} \& \[
\begin{array}{r}
1.35 \\
-4.4 \\
-10.3 \\
0.15 \\
\\
2.97 \\
\\
4.85 \\
2.50
\end{array}
\] \& \begin{tabular}{l}
4.09 \\
0.47 \\
5.37 \\
5.62 \\
2.90
\end{tabular} \& \\
\hline \(\mathrm{PBr}_{3}\) \& Fusion Vaporization \& \[
\begin{array}{|l|}
\mathbf{c} \\
\text { liq }
\end{array}
\] \& liq
g \& 760 \& \[
\begin{aligned}
\& 232.7 \\
\& 446.4
\end{aligned}
\] \& 9.28 \& 20.79 \& \\
\hline PBrs \& Sublimation \& c \& g \& 210 \& 357.0 \& 13.0 \& 36.4 \& \\
\hline \(\mathrm{PCl}_{3}\) \& Fusion Vaporization \& \[
\begin{array}{|l}
\mathbf{c} \\
\text { liq }
\end{array}
\] \& \[
\begin{array}{|l|l}
\mathrm{liq} \\
\mathrm{~g}
\end{array}
\] \& \[
760
\] \& \[
\begin{aligned}
\& 181 \\
\& 349
\end{aligned}
\] \& 7.28 \& 20.9 \& \\
\hline PCl \({ }_{6}\) \& Sublimation Fusion \& c \& \begin{tabular}{l}
g, mixt. \\
equilibrium \\
liq
\end{tabular} \& 760 \& \[
\begin{aligned}
\& 432 \\
\& 433
\end{aligned}
\] \& 16.1 \& 37.3 \& \\
\hline PFs \& Fusion Vaporization \& \[
\begin{aligned}
\& \mathrm{c} \\
\& \mathrm{liq}
\end{aligned}
\] \& liq
\[
\mid \mathbf{g}
\] \& \(\cdots 7 . \ldots\)

760 \& $$
\begin{aligned}
& 121.7 \\
& 172.0
\end{aligned}
$$ \& 3.43 \& 19.9 \& <br>

\hline
\end{tabular}

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p, c a l /}$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| PF5 | Fusion | c | liq | 427 | 179.4 | 2.8 | 15.6 |  |
|  | Sublimation | c | g | 427 | 179.4 | 6.9 | 38.5 |  |
|  | Vaporization | liq | g | 760 | 188.7 | 4.1 | 21.7 |  |
| $\mathrm{PH}_{3}$ | Transition | c, IV | c, III | $\ldots$ | 30.31 | 0.0197 | 0.650 |  |
|  | Transition | c, III | c, II | $\ldots . . .$. | 49.44 | 0.186 | 3.76 |  |
|  | Transition | c, II | c, I |  | 88.12 | 0.116 | 1.32 |  |
|  | Fusion | c, I | liq | 27.33 | 139.38 | 0.270 | 1.94 |  |
|  | Vaporization | liq | g | 27.33 | 139.38 |  |  |  |
|  | Vaporization | liq | g | 760 | 185.42 | 3.490 | 18.82 |  |
| $\mathrm{P}_{4} \mathbf{O}_{10}$ | Sublimation |  |  | 760 | 632 |  |  |  |
|  | Fusion | c, II | liq | 3,700 | 693 | 5 | 7.2 |  |
|  | Fusion |  | liq | 570 | 845 | 11.5 | 13.6 |  |
|  | Vaporization |  | g | 570 | 845 | 16.8 | 19.9 |  |
| $\mathrm{PaCl}_{5}$ | Fusion | c | liq | ........ | 574 |  |  |  |
| Pb | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{gathered} \quad 600.5 \\ 2023 \end{gathered}$ | $\begin{gathered} 1.14 \\ 43.0 \end{gathered}$ | $\begin{gathered} 1.90 \\ 21.3 \end{gathered}$ | 0.29 |
| $\mathrm{PbBr}_{2}$ | Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | \|liq $\mid \mathbf{g}$ | 760 | $\begin{gathered} 643.2 \\ 1187 \end{gathered}$ | $\begin{array}{\|c\|} \hline 5 \\ 27.7 \end{array}$ | $\begin{array}{r} 7.8 \\ 23.3 \end{array}$ |  |
| $\mathrm{PbCl}_{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | liq g | 760 | $\begin{array}{r} 771 \\ 1227 \end{array}$ | $\begin{array}{r} 5.7 \\ 29.6 \end{array}$ | $\begin{array}{r} 7.4 \\ 24.1 \end{array}$ |  |
| $\mathbf{P b F}_{\mathbf{2}}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c , I} \text { I } \\ & \text { liq } \end{aligned}$ | liq $\mathrm{g}$ | 760 | $\begin{aligned} & 1095 \\ & 1563 \end{aligned}$ | $\begin{array}{r} 1.8 \\ 38.3 \end{array}$ | $\begin{array}{r} 1.6 \\ 24.5 \end{array}$ |  |
| $\mathrm{PbH}_{12} \mathrm{C}_{4}$ (tetramethyllead) | Fusion <br> Vaporization | $\begin{array}{\|l} \mathbf{c} \\ \text { liq } \end{array}$ | liq | 760 | $\begin{aligned} & 245.7 \\ & 379.3 \end{aligned}$ | 8.0 | 21.1 |  |
| $\mathrm{PbH}_{20} \mathrm{C}_{8}$ (tetraethyllead) | Fusion <br> Vaporization | $\begin{array}{\|l\|} \hline \mathbf{c} \\ \mid \mathrm{liq} \end{array}$ | $\begin{array}{\|l} \text { liq } \\ \mathbf{g} \end{array}$ | 609.7 | $\begin{aligned} & 137 \\ & 450.0 \end{aligned}$ | 11.87 | 26.38 |  |
| PbO | Transition <br> Fusion <br> Vaporization | c, II, red c, I, yellow liq | c, I, yellow liq <br> g | 760 | $\begin{array}{r} 762 \\ 1159 \\ 1745 \end{array}$ | ${ }_{51}^{2.8}$ | $\begin{gathered} 2.4 \\ 29 \end{gathered}$ |  |
| PbS | Sublimation <br> Fusion | c | liq | 10 | $\begin{aligned} & 1238 \\ & 1387 \end{aligned}$ | 55 $4.2$ | 44 $3.0$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| PbSO4 | Transition <br> Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{array}{\|l} \hline \text { c, I } \\ \text { liq } \end{array}$ | $\ldots \ldots$. | $\begin{aligned} & 1139 \\ & 1360 \end{aligned}$ | $\begin{aligned} & 4.06 \\ & 9.6 \end{aligned}$ | $\begin{aligned} & 3.56 \\ & 7.1 \end{aligned}$ |  |
| Pd | Fusion <br> Vaporization | $\begin{array}{\|l\|} \hline \mathbf{c} \\ \text { liq } \end{array}$ | $\begin{array}{\|l\|l\|} \mathrm{liq} \\ \mathrm{~g} \end{array}$ | 760 | $\begin{aligned} & 1825 \\ & 3833 \end{aligned}$ | 4 | 2 |  |
| Pt | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 2042 \\ & 4283 \end{aligned}$ | 5.2 | 2.5 |  |
| $\mathrm{PuCl}_{3}$ | Sublima- <br> tion <br> Vaporization | liq | g <br> g | $\begin{aligned} & 0.0017 \\ & 0.0017 \end{aligned}$ | $\begin{aligned} & 1033 \\ & 1033 \end{aligned}$ | 65 $59.7$ | 63 <br> 57.8 |  |
| PuFs | Sublimation Vaporization | liq | $\mathbf{g}$ | 0.00036 <br> 0.079 | $\begin{aligned} & 1329 \\ & 1562 \end{aligned}$ | $\begin{aligned} & 96.9 \\ & 80.9 \end{aligned}$ | $\begin{aligned} & 72.9 \\ & 51.8 \end{aligned}$ |  |
| Ra | Fusion | c | liq | ......... | 973 |  |  |  |
| Rb | Transition <br> Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{l} \\ & \mathrm{~g} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{gathered} 0.01 \\ 0.01 \\ 760 \end{gathered}$ | $\begin{aligned} & 243 \\ & 312.0 \\ & 312.0 \\ & 952 \end{aligned}$ | $\begin{array}{r} 20.47 \\ 0.52 \\ 18.11 \end{array}$ | $\begin{array}{r} 65.61 \\ 1.67 \\ 19.02 \end{array}$ |  |
| $\mathbf{R b B r}$ | Fusion Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | 760 | $\begin{array}{r} 953 \\ 1625 \end{array}$ | $\begin{gathered} 3.7 \\ 37.12 \end{gathered}$ | $\begin{gathered} 3.9 \\ 22.84 \end{gathered}$ | - |
| RbCl | Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{array}{r} 990 \\ 1654 \end{array}$ | $\begin{array}{r} 4.40 \\ 36.92 \end{array}$ | $\begin{array}{r} 4.44 \\ 22.32 \end{array}$ |  |
| RbF | Fusion Vaporization | $\begin{aligned} & \mathrm{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 1048 \\ & 1681 \end{aligned}$ | $\begin{array}{r} 4.13 \\ 39.51 \end{array}$ | $\begin{array}{r} 3.94 \\ 23.50 \end{array}$ |  |
| RbI | Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{array}{r} 913 \\ 1577 \end{array}$ | $\begin{array}{r} 2.99 \\ 35.96 \end{array}$ | $\begin{array}{r} 3.27 \\ 22.80 \end{array}$ |  |
| $\mathrm{RbNO}_{3}$ | Transition Transition Transition Fusion | $\begin{aligned} & \text { c, IV } \\ & \text { c, III } \\ & \text { c, II } \\ & \text { c, I } \end{aligned}$ | $\begin{aligned} & \text { c. III } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{aligned} & 438 \\ & 498 \\ & 564 \\ & 589 \end{aligned}$ | 1.34 | 2.28 |  |
| RbOH | Transition Fusion | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\ldots \ldots$. | $\begin{aligned} & 518 \\ & 574 \end{aligned}$ | $\begin{aligned} & 1.70 \\ & 1.62 \end{aligned}$ | $\begin{aligned} & 3.28 \\ & 2.82 \end{aligned}$ |  |
| $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ | Fusion | c | liq |  | 1108 |  |  |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Substance} \& \multirow[t]{2}{*}{Type of process} \& \multicolumn{2}{|r|}{Phase} \& \multirow{2}{*}{Pressure, mm Hg} \& \multirow{2}{*}{Temp., \({ }^{\circ} \mathrm{K}\)} \& \multirow[b]{2}{*}{\begin{tabular}{l}
\(\Delta H\), \\
kcal/ \\
mole
\end{tabular}} \& \multirow{2}{*}{\(\Delta S, c a l /\) mole deg} \& \multirow{2}{*}{\(\Delta C_{p, c a l /}\) mole deg} \\
\hline \& \& Initial \& Final \& \& \& \& \& \\
\hline Re \& Fusion \& c \& liq \& \& 3420 \& \& \& \\
\hline \(\mathrm{Re}_{2} \mathrm{O}_{7}\) \& Fusion Vaporization \& \[
\begin{aligned}
\& \mathbf{c} \\
\& \text { liq }
\end{aligned}
\] \& \[
\begin{array}{|l}
\mathrm{liq} \\
\mathrm{~g}
\end{array}
\] \& 760 \& \[
\begin{array}{r}
573.5 \\
635.5
\end{array}
\] \& \[
15.3
\] \& \[
\begin{array}{r}
26.7 \\
28.5
\end{array}
\] \& \\
\hline Rh \& Fusion Vaporization \& \[
\begin{aligned}
\& \mathrm{c} \\
\& \mathrm{liq}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{liq} \\
\& \mathrm{~g}
\end{aligned}
\] \& \(\ldots\) \& \[
\begin{aligned}
\& 2233 \\
\& 4233
\end{aligned}
\] \& \& \& \\
\hline Rn \& Fusion Vaporization \& \[
\begin{aligned}
\& \mathbf{c} \\
\& \text { liq }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { liq } \\
\& \mathrm{g}
\end{aligned}
\] \& 760 \& \[
\begin{aligned}
\& 202 \\
\& 211
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.693 \\
\& 3.92
\end{aligned}
\] \& \[
\begin{gathered}
3.43 \\
18.6
\end{gathered}
\] \& \\
\hline Ru \& \begin{tabular}{l}
Transition \\
Transition \\
Transition \\
Fusion \\
Vaporiza- \\
tion
\end{tabular} \& \[
\begin{aligned}
\& \text { c, IV } \\
\& \text { c, III } \\
\& \text { c, II } \\
\& \text { c, I } \\
\& \text { liq }
\end{aligned}
\] \& \[
\begin{array}{|l}
\mathrm{c}, \text { III } \\
\text { o, II } \\
\text { c, I I } \\
\text { liq } \\
\mathbf{g}
\end{array}
\] \& \[
\begin{gathered}
\ldots \ldots \ldots \\
\ldots \ldots \ldots \\
\ldots \ldots \ldots \\
760
\end{gathered}
\] \& \[
\begin{aligned}
\& 1308 \\
\& 1473 \\
\& 1773 \\
\& 2773 \\
\& 4383
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.034 \\
\& 0.23
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.026 \\
\& 0.13
\end{aligned}
\] \& \\
\hline S \& \begin{tabular}{l}
Transition \\
Sublimation \\
Sublimation \\
Fusion \\
Vaporization
\end{tabular} \& \begin{tabular}{l}
c, II, rhombic \\
c, II, rhombic c, I, monoclinic c, I, monoclinic equilibrium liq, \(\lambda, \mu\)
\end{tabular} \& \begin{tabular}{l}
c, I, monoclinic \\
g, \(\mathrm{S}_{8}\) \\
g, \(\mathrm{S}_{8}\) \\
\(\operatorname{liq}, \lambda\) \\
g
\end{tabular} \& \[
\begin{gathered}
0.0047 \\
0.0047 \\
0.0047 \\
\ldots \ldots . . \\
760
\end{gathered}
\] \& \begin{tabular}{l}
368.6 \\
368.6 \\
368.6 \\
392 \\
717.76
\end{tabular} \& \[
\begin{aligned}
\& 0.09 \\
\& 3.01 \\
\& 2.92 \\
\& 0.293 \\
\& 2.5
\end{aligned}
\] \& \[
\begin{aligned}
\& 0.25 \\
\& 8.17 \\
\& 7.93 \\
\& 0.75 \\
\& 3.5
\end{aligned}
\] \& 0.24

1.6 <br>

\hline SF6 \& | Transition Sublimation |
| :--- |
| Fusion |
| Vaporization | \& \[

$$
\begin{aligned}
& \text { c, II } \\
& \text { c, I } \\
& \text { c, I } \\
& \text { liq }
\end{aligned}
$$

\] \& | c, I |
| :--- |
| g |
| liq |
| g | \& \[

$$
\begin{aligned}
& \not \ldots \ldots \ldots \\
& 760 \\
& 1,700 \\
& 1,700
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
94.26 \\
209.5 \\
222.5 \\
222.5
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.384 \\
& 5.46 \\
& \\
& 1.20 \\
& 4.08
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
4.07 \\
26.04 \\
5.40 \\
18.34
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& -1.98 \\
& -1.7
\end{aligned}
$$
\] <br>

\hline $\mathrm{SO}_{2}$ \& | Fusion |
| :--- |
| Vaporization |
| Vaporization | \& \[

$$
\begin{aligned}
& \mathbf{c} \\
& \text { liq }
\end{aligned}
$$
\]

liq \& | liq |
| :--- |
| g |
| g | \& \[

$$
\begin{array}{r}
12.56 \\
12.56 \\
760
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 197.68 \\
& 197.68 \\
& 263.14
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1.769 \\
5.955
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
8.95 \\
22.63
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
4.50 \\
-11.84
\end{array}
$$
\] <br>

\hline Sb \& | Transition |
| :--- |
| Transition |
| Fusion |
| Vaporiza- |
| tion | \& \[

$$
\begin{aligned}
& \text { c, III } \\
& \text { c, II } \\
& \text { c, I } \\
& \text { liq }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l}
\hline \text { c, II } \\
\text { c, I } \\
\text { liq } \\
\text { g, equilib- } \\
\text { rium }
\end{array}
$$

\] \& \[

760

\] \& \[

$$
\begin{aligned}
& 367.8 \\
& 690 \\
& 903.7 \\
& 1713
\end{aligned}
$$
\] \& 4.8 \& 5.3 \& <br>

\hline $\mathrm{SbBr}{ }^{\text {a }}$ \& Fusion Vaporization \& \[
$$
\begin{aligned}
& \text { c } \\
& \text { liq }
\end{aligned}
$$

\] \& liq \& \[

749

\] \& \[

$$
\begin{aligned}
& 369.8 \\
& 561
\end{aligned}
$$
\] \& 3.51 \& 9.49 \& <br>

\hline
\end{tabular}

4-154
Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | $\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { process } \end{aligned}$ | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, kcal/ mole | $\Delta S, \mathrm{cal} /$ <br> mole deg | $\begin{gathered} \Delta C_{p}, \mathrm{cal} / \\ \text { mole deg } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{SbCl}_{3}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{aligned} & 346.4 \\ & 494 \end{aligned}$ | $\begin{array}{r} 3.03 \\ 10.80 \end{array}$ | $\begin{array}{r} 8.74 \\ 21.86 \end{array}$ |  |
| $\mathrm{SbCl}_{5}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | ${ }_{\mathbf{l}}^{\mathbf{l}} \mathrm{g}$ | $21$ | $\begin{aligned} & 276.2 \\ & 349.7 \end{aligned}$ | $\begin{array}{r} 2.4 \\ 11.5 \end{array}$ | $\begin{array}{r} 8.7 \\ 32.9 \end{array}$ |  |
| SbHz | Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{aligned} & 185 \\ & 256 \end{aligned}$ |  |  |  |
| $\mathrm{Sb}_{4} \mathrm{O}_{6}$ | Transition <br> Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \operatorname{liq} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 0.525 \\ & 8.5 \\ & 8.5 \\ & 760 \end{aligned}$ | $\begin{array}{r} 830 \\ 928 \\ 928 \\ \\ 1729 \end{array}$ | $\begin{array}{r} 3.24 \\ 29.49 \end{array}$ <br> 17.83 | $\begin{array}{r} 3.91 \\ 31.78 \end{array}$ $10.31$ |  |
| Sc | Fusion <br> Vaporization. | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\operatorname{liq}_{\mathrm{g}}$ | $760$ | $\begin{aligned} & 1673 \\ & 4173 \end{aligned}$ |  |  |  |
| $\mathrm{ScCl}_{3}$ | Sublima- <br> tion <br> Fusion | c | g <br> liq | $\begin{aligned} & 684 \\ & 684 \end{aligned}$ | $\begin{aligned} & 1233 \\ & 1233 \end{aligned}$ | 61.1 | 49.6 |  |
| Se | Transition <br> Transition <br> Fusion <br> Vaporization <br> Vaporization <br> Vaporization <br> Vaporization | vitreous c. III, red c, I, gray liq $\operatorname{liq}$ liq $\operatorname{liq}$ | c, I, gray <br> c, I, gray <br> liq <br> g, $\mathrm{Se}_{6}$ <br> g, Se 6 <br> g, Se4. ${ }^{27}$ <br> g, $\mathrm{Se}_{2}$ | $\ldots \ldots \ldots$ 0.0043 0.0043 $\mathbf{7 6 0}$ 760 760 | $\begin{aligned} & 398 \\ & 423 \\ & 490.6 \\ & 490.6 \\ & 1009 \\ & 958.0 \\ & 1027 \end{aligned}$ | $\begin{aligned} & 1.05 \\ & 0.18 \\ & 1.25 \\ & 4.31 \\ & 3.43 \\ & 5.10 \\ & 12.80 \end{aligned}$ | 2.64 <br> 0.43 <br> 2.56 <br> 8.79 <br> 3.40 <br> 5.32 <br> 12.46 | $\begin{aligned} & 2.2 \\ & 0.2 \\ & 2.7 \end{aligned}$ |
| SeFs | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \text { e } \\ & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathbf{g} \\ & \operatorname{liq} \\ & \mathbf{g} \end{aligned}$ | $\begin{array}{r} 760 \\ 1,500 \\ 1,500 \end{array}$ | $\begin{aligned} & 226.6 \\ & 238.6 \\ & 238.6 \end{aligned}$ | $\begin{aligned} & 6.27 \\ & \\ & 1.70 \\ & 4.38 \end{aligned}$ | $\begin{array}{r} 27.68 \\ \\ 7.14 \\ 18.34 \end{array}$ |  |
| $\mathrm{SeO}_{2}$ | Sublimation | c | g | 760 | 595 | 21.1 | 35.4 |  |
| Si | Fusion | c | $\mathbf{l i q}$ | ..... | 1683 | 11 | 6.5 |  |
| SiBr 4 | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | liq $\mathbf{g}$ | $760$ | $\begin{aligned} & 278.4 \\ & 426.0 \end{aligned}$ | 9.1 | 21.4 |  |
| $\mathrm{SiCl}_{4}$ | Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}$ $\mathbf{g}$ | $760$ | $\begin{aligned} & 205 \\ & 330.2 \end{aligned}$ | $\begin{aligned} & 1.84 \\ & 7.0 \end{aligned}$ | $\begin{array}{r} 9.0 \\ 21.2 \end{array}$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p, c a l}$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| SiF4 | Sublima- <br> tion <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{g} \\ & \operatorname{liq}_{\mathrm{g}} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 760 \\ 1,320 \\ 1,320 \end{array}$ | 177.7 <br> 182.9 <br> 182.9 | $\begin{aligned} & 6.15 \\ & 1.69 \\ & 4.46 \end{aligned}$ | $\begin{array}{r} 34.6 \\ \\ 9.2 \\ 24.4 \end{array}$ |  |
| $\mathrm{SiH}_{4}$ | Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \\ & \mathrm{g} \end{aligned}$ | 760 | $\begin{array}{r} 63.5 \\ 88.5 \\ 161.8 \end{array}$ | $\begin{aligned} & 0.147 \\ & 0.159 \\ & 2.9 \end{aligned}$ | $\begin{aligned} & 2.32 \\ & 1.80 \\ & 18 \end{aligned}$ | 1.3 |
| $\mathrm{SiO}_{2}$ | Transition <br> Transition Transition <br> Fusion <br> Transition <br> Transition <br> Transition <br> Transition <br> Fusion <br> Transition <br> Fusion | quartz, c , III <br> quartz, c, II <br> quartz, c, I <br> quartz, c, I <br> tridymite, <br> c, IV <br> tridymite, <br> c, III <br> tridymite, <br> c, II <br> tridymite, <br> c, I <br> tridymite, <br> c, I <br> cristobal- <br> ite, c, II <br> cristobal- <br> ite, c, I | quartz, c, II <br> quartz, c, I <br> tridymite, <br> c, I <br> liq <br> tridymite, <br> c, III <br> tridymite, <br> c, II <br> tridymite, <br> c, I <br> cristobalite, <br> c, I <br> liq <br> cristobalite, c, I <br> liq |  | $\begin{array}{r} 91 \\ 846 \\ 1140 \\ 1883 \\ 390 \\ 436 \\ \hline 598 \\ \hline 1743 \\ \hline 1953 \\ \hline 515 \\ \hline 2001 \end{array}$ | $\begin{aligned} & 0.15 \\ & 0.12 \\ & \\ & 2.04 \\ & 0.07 \\ & 0.04 \\ & 0.05 \\ & 0.05 \\ & \\ & 0.31 \\ & \\ & 1.84 \end{aligned}$ | $\begin{aligned} & 0.18 \\ & 0.11 \\ & \\ & 1.08 \\ & 0.18 \\ & 0.09 \\ & 0.08 \\ & 0.03 \\ & \\ & 0.60 \\ & 0.92 \end{aligned}$ | -5.6 |
| Sn | Transition <br> Transition <br> Fusion <br> Vaporiza- <br> tion | $\begin{aligned} & \text { c, III, gray } \\ & \text { c, II, white } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \text { c, II, white } \\ & \text { c, I } \\ & \text { liq } \\ & \text { g } \end{aligned}$ | 760 | $\begin{aligned} & 291 \\ & 476.0 \\ & 505.1 \\ & 2600 \end{aligned}$ | $\begin{aligned} & 0.6 \\ & 0.002 \\ & 1.69 \end{aligned}$ | 2.1 <br> 0.004 <br> 3.35 |  |
| SnBr 2 | Fusion <br> Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \end{aligned}$ | $\operatorname{liq}_{\sigma}$ | -... 760 | $\begin{aligned} & 505 \\ & 911 \end{aligned}$ | $22_{1.7}$ | $\begin{gathered} 3.4 \\ 24 \end{gathered}$ |  |
| $\mathrm{SnBr}_{4}$ | Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{aligned} & 267 \\ & 303 \\ & 478 \end{aligned}$ | $\begin{gathered} 3.0 \\ 10 \end{gathered}$ | $\begin{gathered} 9.9 \\ 21 \end{gathered}$ |  |
| $\mathrm{SnCl}_{2}$ | Fusion <br> Vaporization | $\begin{aligned} & \text { ciq } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 520 \\ & 896 \end{aligned}$ | $\begin{gathered} 3.0 \\ 21 \end{gathered}$ | $\begin{aligned} & 5.8 \\ & 23 \end{aligned}$ |  |
| $\mathrm{SnCl}_{4}$ | Fusion <br> Vaporization | $\begin{aligned} & \text { e } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 239.9 \\ & 386 \end{aligned}$ | $\begin{aligned} & 2.19 \\ & 8.3 \end{aligned}$ | $\begin{gathered} 9.13 \\ 21.5 \end{gathered}$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | $\begin{gathered} \text { Type } \\ \text { of } \\ \text { process } \end{gathered}$ | Phase |  | Pressure, mm Hg | $\begin{gathered} \text { Temp., } \\ { }^{\circ}{ }^{\prime} \mathrm{K} \end{gathered}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p, c a l}$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{SnO}_{2}$ | Transition | c, II | c, I | ....... | 683 | 0.45 | 0.66 |  |
| SnS | Fusion | c | liq | ....... | 1153 |  |  |  |
| Sr | Fusion Vaporization | $\begin{aligned} & \mathrm{e} \\ & \mathrm{liq} \end{aligned}$ | $\operatorname{liq}_{\sigma}$ | 760 | $\begin{aligned} & 1043 \\ & 1657 \end{aligned}$ | $\begin{array}{r} 2.2 \\ 33.8 \end{array}$ | $\begin{array}{r} 2.1 \\ 20.4 \end{array}$ |  |
| $\mathrm{SrCl}_{2}$ | Fusion | c | liq | . | 1148 | 4.1 | 3.6 |  |
| SrCO3 | Transition Fusion | $\begin{array}{l\|l} \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \text { liq } \end{aligned}$ | $\ldots$ | $\begin{aligned} & 1197 \\ & 1770 \end{aligned}$ | 4.7 | 3.9 |  |
| $\mathrm{SrF}_{2}$ | Fusion | c | liq | ....... | 1673 | 4.3 | 2.6 |  |
| SrO | Fusion | c | liq | ....... | 2688 |  |  |  |
| SrSO4 | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & c, \text { I } \\ & \text { liq } \end{aligned}$ | . $\ldots$...... | $\begin{aligned} & 1425 \\ & 1878 \end{aligned}$ |  |  |  |
| Ta |  | c |  | $8.6 \times 10^{\circ}$ | $\begin{aligned} & 2500 \\ & 3250 \end{aligned}$ | 180 | 72 |  |
| TaC | Fusion | c | liq | $\ldots$ | 4100 |  |  |  |
| TaCls | Sublimation <br> Fusion <br> Vaporization |  | $\begin{aligned} & \mathbf{g} \\ & \operatorname{liq} \\ & \mathbf{g} \end{aligned}$ | $\begin{aligned} & 415 \\ & 415 \\ & 760 \end{aligned}$ | $\begin{aligned} & 484 \\ & \\ & 484 \\ & 508 \end{aligned}$ | 22.7 <br> 11.1 <br> 11.5 | 46.9 <br> 22.9 <br> 22.6 |  |
| $\mathrm{Ta}_{2} \mathrm{O}_{6}$ | Fusion | c | liq | ....... | 2163 |  |  |  |
| Te | Transition <br> Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \\ & \text { liq } \end{aligned}$ | c, I <br> liq <br> g, $\mathrm{Te}_{2}$ <br> g, $\mathrm{Te}_{2}$ | $\begin{gathered} 0.18 \\ 0.18 \\ \\ 760 \end{gathered}$ | $\begin{array}{r} 621 \\ 723 \\ 723 \\ \\ 1360 \end{array}$ | $\begin{gathered} 0.13 \\ 4.28 \\ 13.3 \\ 11.9 \end{gathered}$ | $\begin{gathered} 0.21 \\ 5.92 \\ 18.4 \\ 8.75 \end{gathered}$ | 2.0 |
| TeF6 | Transition <br> Sublima- <br> tion <br> Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{~g} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 60 \\ 760 \\ \\ 800 \\ 800 \end{array}$ | $\begin{aligned} & 199.7 \\ & 234.6 \\ & \\ & 235.5 \\ & 235.5 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 6.47 \\ & 2.1 \\ & 4.3 \end{aligned}$ | $\begin{array}{r} 2.5 \\ 27.6 \\ 9.0 \\ 18.4 \end{array}$ |  |
| Th | Transition Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{c} \end{aligned}$ | $\begin{array}{\|l} \text { e, II } \\ \text { liq } \end{array}$ | $\ldots$ | $\begin{array}{r} 498 \\ 1968 \end{array}$ |  |  |  |
| ThO2 | Fusion | c | liq | ....... | 3493 |  |  |  |
| Ti | Transition Sublimation Furion | $\begin{aligned} & c, \text { II } \\ & c, I \\ & c, I \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{~g} \\ & \text { liq } \end{aligned}$ | 0.036 <br> 0.036 | $\begin{aligned} & 1157 \\ & 2085 \\ & 2085 \end{aligned}$ | 106.5 | 51.0 |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Conitnued)

| Subetance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, c a l /$ mole deg | $\Delta C_{p, c a l /}$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| TiBrs | Transition <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $760$ | $\begin{aligned} & 258 \\ & 311.7 \\ & 503 \end{aligned}$ | 2.1 | 6.7 |  |
| TiCl ${ }_{6}$ | Fusion <br> Vaporization | $\underset{\mathrm{liq}}{\mathrm{c}}$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 250 \\ & 409.0 \end{aligned}$ | $\begin{aligned} & 2.24 \\ & 8.4 \end{aligned}$ | $\begin{array}{r} 9.0 \\ 20.5 \end{array}$ |  |
| TiIf | Fusion <br> Vaporization | $\left\lvert\, \begin{aligned} & \mathbf{c} \\ & \mathbf{l i q} \end{aligned}\right.$ | $\begin{aligned} & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 760 | $\begin{aligned} & 423 \\ & 650.3 \end{aligned}$ | 13.6 | 20.9 |  |
| TiO | Transition | c, II | c, I | $\ldots .$. | 1264 | 0.82 | 0.65 |  |
| $\mathrm{TiO}_{2}$ | Transition <br> Fusion | $\begin{array}{\|c} \text { c, III, } \beta, \\ \text { anatase } \\ \text { c, I, rutile } \end{array}$ | $\begin{aligned} & \text { c, II, } \alpha, \text { ana- } \\ & \text { tase } \\ & \text { liq } \end{aligned}$ | $\ldots$ | $\begin{array}{r} 915 \\ 2108 \end{array}$ | 0.3 | 0.3 |  |
| Tl | Transition <br> Transition <br> Transition <br> Transition <br> Fusion <br> Vaporization <br> Vaporization | $\begin{aligned} & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \text { liq } \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \text { III } \\ & \text { c, III } \\ & \text { c, I } \\ & \text { c, I } \\ & \text { liq } \\ & \mathbf{g} \\ & \mathrm{g} \end{aligned}$ | $\begin{gathered} 2.87 \times 10^{7} \\ 2.87 \times 10^{7} \\ 2.87 \times 10^{7} \\ \ldots \ldots \\ \ldots \ldots \\ 28 \\ 760 \end{gathered}$ | $\begin{gathered} 426 \\ 426 \\ 426 \\ 508.3 \\ 576.8 \\ 1350 \\ \\ 1730 \end{gathered}$ | $\begin{gathered} -0.19 \\ 0.01 \\ 0.20 \\ 0.082 \\ 1.03 \\ 40.1 \end{gathered}$ | $\begin{array}{r} -0.45 \\ 0.02 \\ 0.47 \\ 0.16 \\ 1.79 \\ 29.7 \end{array}$ | $\begin{aligned} & 0.18 \\ & 0.43 \end{aligned}$ |
| TIBr | Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\left\lvert\, \begin{aligned} & \mathrm{g} \\ & \mathrm{liq} \\ & \mathbf{g} \end{aligned}\right.$ | $\begin{aligned} & 2.11 \\ & 2.11 \\ & 760 \end{aligned}$ | $\begin{array}{r} 732 \\ 732 \\ 1089 \end{array}$ | $\begin{array}{r} 31.4 \\ 3.6 \\ 24.6 \end{array}$ | $\begin{array}{r} 42.9 \\ \\ 4.9 \\ 22.7 \end{array}$ |  |
| TlCl | Sublimation Fusion Vaporization | $\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{g} \\ & \operatorname{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 1.12 \\ & 1.12 \\ & 760 \end{aligned}$ | $\begin{array}{r} 702 \\ 702 \\ 1079 \end{array}$ | 29 $\begin{array}{r} 4.0 \\ 24.8 \end{array}$ | 41 $\begin{array}{r} 5.6 \\ 23.0 \end{array}$ |  |
| TII | Transition Sublimation Fusion Vaporization | c, II, yellow c, I, red c, I, red liq | $\begin{aligned} & \mathrm{c}, \mathrm{I}, \text { red } \\ & \mathrm{g} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{aligned} & 1.00 \\ & 1.00 \\ & 760 \end{aligned}$ | $\begin{array}{r} 438 \\ 713 \\ \\ 713 \\ 1098 \end{array}$ | $\begin{array}{r} 30.0 \\ 2.7 \\ 24.9 \end{array}$ | $\begin{array}{r} 42.1 \\ 3.8 \\ 22.6 \end{array}$ |  |
| Tl2 0 | Fusion <br> Vaporization Fusion | $\begin{aligned} & \mathbf{c} \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \text { liq } \\ & \mathrm{g} \\ & \mathrm{liq} \end{aligned}$ | $760$ | 573 <br> 773 <br> 990 |  |  |  |
| $\mathrm{Tr}_{2} \mathrm{O}_{\mathbf{3}}$ | Fusion | c | liq | ...... | 990 |  |  |  |
| Tm | Vaporization | liq | $g$ | 760 | 3773 |  |  |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | Type of process | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ mole deg | $\Delta C_{p}, \mathrm{cal} /$ mole deg |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| U | Transition <br> Transition <br> Fusion | $\begin{aligned} & \text { c, III } \\ & \text { c, } \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{array}{r} 935 \\ 1049 \\ 1405 \end{array}$ | $\begin{aligned} & 0.714 \\ & 1.165 \end{aligned}$ | $\begin{aligned} & 0.763 \\ & 1.110 \end{aligned}$ |  |
| $\mathrm{UBr}_{4}$ | Sublimation <br> Vaporization <br> Vaporization | liq | $\mathrm{g}$ | $\begin{aligned} & 4.78 \\ & 4.78 \\ & 760 \end{aligned}$ | $\begin{array}{r} 792 \\ 792 \\ 1039 \end{array}$ | 49.9 <br> 43.8 <br> 31.0 | 63.0 <br> 55.3 <br> 29.8 |  |
| $\mathrm{UCl}_{4}$ | Sublimation Vaporization | liq | g | $\begin{aligned} & 15.5 \\ & 15.5 \end{aligned}$ | $\begin{aligned} & 863 \\ & 863 \end{aligned}$ | $\begin{aligned} & 46.3 \\ & 36.0 \end{aligned}$ | 53.6 <br> 41.7 |  |
| UF6 | Sublimation Sublimation Fusion Vaporization | $\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | $\begin{array}{r} 760 \\ 1,133 \\ 1,133 \\ 1,133 \end{array}$ | 329 <br> 337.2 <br> 337.2 <br> 337.2 | $\begin{aligned} & 11.8 \\ & 11.8 \\ & \\ & 4.59 \\ & 7.2 \end{aligned}$ | $\begin{aligned} & 35.9 \\ & 35.0 \\ & \\ & 13.61 \\ & 21.4 \end{aligned}$ | 8.81 |
| V | Fusion Sublimation | $\left\lvert\, \begin{aligned} & \mathrm{c} \\ & \mathrm{c} \end{aligned}\right.$ | $\operatorname{liq}$ | ${ }^{\ldots .1 \times 10^{-5}}$ | $\begin{aligned} & 2003 \\ & 1800 \end{aligned}$ | 120.4 | 66.9 |  |
| $\mathrm{VCl}_{4}$ | Fusion <br> Vaporization | $\begin{array}{\|l\|l} \mathrm{c} \\ \mathrm{liq} \end{array}$ | $\operatorname{liq}_{\mathrm{g}}$ | 760 | $\begin{aligned} & 247.5 \\ & 425 \end{aligned}$ | 9.1 | 21.4 |  |
| $\mathrm{V}_{2} \mathrm{O}_{3}$ | Fusion | c | liq | ........ | 2250 |  |  |  |
| $\mathrm{V}_{2} \mathrm{O}_{4}$ | Transition <br> Fusion | $\begin{array}{\|l} \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | . $\ldots \ldots \ldots$ | $\begin{array}{r} 345 \\ 1815 \end{array}$ | $\begin{array}{r} 2.05 \\ 27.21 \end{array}$ | $\begin{gathered} 5.94 \\ 15.0 \end{gathered}$ | $\begin{array}{r} 6.9 \\ 10.1 \end{array}$ |
| $\mathrm{V}_{2} \mathrm{O}_{5}$ | Fusion | c | liq | ......... | 948 | 15.56 | 16.50 | 2.9 |
| W | Fusion | c | liq | $\ldots . .$. | 3653 |  |  |  |
| WCl ${ }_{6}$ | Transition <br> Transition <br> Sublima- <br> tion <br> Sublimation <br> Fusion <br> Vaporization | $\begin{aligned} & \text { c, III } \\ & \text { c, II } \\ & \text { c, II } \\ & \text { c, I } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{~g} \\ & \mathrm{~g} \\ & \mathrm{liq} \\ & \mathrm{~g} \end{aligned}$ | 38 38 <br> 233 <br> 233 <br> 760 | 442 <br> 500.1 <br> 500.1 <br> 557.2 <br> 557.2 <br> 609.7 | $\begin{array}{r} 3.4 \\ 21.0 \\ 17.4 \\ \\ 2.3 \\ 14.9 \end{array}$ | $\begin{array}{r} 6.8 \\ 42.0 \\ 31.2 \\ 4.1 \\ 24.4 \end{array}$ |  |
| WF6 | Transition <br> Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, I } \\ & \text { liq } \end{aligned}$ | ${ }^{420}$ | $\begin{array}{r} 265.0 \\ 275.7 \end{array}$ | $\begin{aligned} & 1.6 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 1.8 \end{aligned}$ |  |

Table 4j-1. Phase Transition Data for Elements and Compounds (Continued)

| Substance | $\begin{gathered} \text { Type } \\ \text { of } \\ \text { process } \end{gathered}$ | Phase |  | Pressure, mm Hg | Temp., ${ }^{\circ} \mathrm{K}$ | $\Delta H$, <br> kcal/ <br> mole | $\Delta S, \mathrm{cal} /$ <br> mole deg | $\begin{gathered} \Delta C_{p}, \mathrm{cal} / \\ \text { mole deg } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Initial | Final |  |  |  |  |  |
| $\mathrm{WO}_{8}$ | Sublimation Fusion | c | g <br> liq | 0.0058 | $\begin{array}{r} 1375 \\ 1743 \end{array}$ | 112 | 81 |  |
| Xe | Fusion <br> Vaporization <br> Vaporization | c <br> liq <br> liq | $\begin{aligned} & \operatorname{liq}^{\prime} \\ & \mathbf{g} \\ & \mathbf{g} \end{aligned}$ | $\begin{aligned} & 611 \\ & 611 \\ & 760 \end{aligned}$ | $\begin{aligned} & 161.3 \\ & 161.3 \\ & \\ & 165.1 \end{aligned}$ | $\begin{aligned} & 0.549 \\ & 3.021 \end{aligned}$ | $\begin{array}{r} 3.40 \\ 18.29 \end{array}$ | $\begin{array}{r} 2.13 \\ -5.71 \end{array}$ |
| Y | Fusion <br> Vaporization | $\begin{aligned} & \text { c } \\ & \text { liq } \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{aligned} & 1773 \\ & 4373 \end{aligned}$ |  |  |  |
| $\mathbf{Y b C l}_{\mathbf{3}}$ | Fusion | c, $\gamma$ | liq |  | 1127 |  |  |  |
| Zn | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathbf{g} \end{aligned}$ | 760 | $\begin{gathered} 692.7 \\ 1180 \end{gathered}$ | $\begin{gathered} 1.595 \\ 27.43 \end{gathered}$ | $\begin{gathered} 2.303 \\ 23.24 \end{gathered}$ |  |
| $\mathrm{ZnCl}_{\mathbf{2}}$ | Fusion <br> Vaporization | $\begin{aligned} & \mathrm{c} \\ & \mathrm{liq} \end{aligned}$ | $\begin{aligned} & \operatorname{liq} \\ & \mathrm{g} \end{aligned}$ | $760$ | $\begin{array}{r} 548 \\ 1029 \end{array}$ | $\begin{array}{r} 5.5 \\ 30.9 \end{array}$ | $\begin{aligned} & 10 \\ & 30.0 \end{aligned}$ |  |
| ZnO | Fusion | c | liq | $\ldots . . . .$. | 2248 |  |  |  |
| ZnS | Sublimation Transition Sublimation | $\begin{array}{l\|l} \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{II} \\ \mathrm{c}, \mathrm{I} \end{array}$ | $\begin{aligned} & \mathrm{g} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{~g} \end{aligned}$ | $\begin{gathered} 0.01 \\ \ldots \ldots \\ 760 \end{gathered}$ | $\begin{gathered} 1127 \\ 1293 \\ 1455 \end{gathered}$ | 64.3 | 57.1 |  |
| Zr | Transition Sublimation Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | c, I <br> g <br> liq | $\ldots \ldots \ldots$ $1.5 \times 10^{-6}$ | $\begin{aligned} & 1135 \\ & 2000 \\ & \\ & 2125 \end{aligned}$ | $\begin{array}{r} 0.7 \\ 137.7 \end{array}$ | $\begin{array}{r} 0.6 \\ 68.9 \end{array}$ |  |
| ZrC | Fusion | c | liq | ........ | 3765 |  |  |  |
| $\mathrm{ZrCl}_{4}$ | Sublimation Fusion | c | g liq | 760 | $\begin{aligned} & 604 \\ & 710 \end{aligned}$ | 25.3 | 41.9 |  |
| ZrN | Fusion | c | liq |  | 3225 |  |  |  |
| $\mathrm{ZrO}_{2}$ | Transition <br> Transition <br> Fusion | $\begin{aligned} & \mathrm{c}, \mathrm{III} \\ & \mathrm{c}, \mathrm{II} \\ & \mathrm{c}, \mathrm{I} \end{aligned}$ | $\begin{aligned} & \text { c, II } \\ & \text { c, I } \\ & \text { liq } \end{aligned}$ |  | $\begin{aligned} & 1478 \\ & 2173 \\ & 2988 \end{aligned}$ | $\begin{array}{r} 1.42 \\ 20.8 \end{array}$ | $\begin{aligned} & 0.96 \\ & 7.0 \end{aligned}$ |  |

Figure 4j-1 presents vapor-pressure curves for approximately 40 elements and compounds.

Fig. 4j-1. Vapor-pressure data. [Compiled by R. R. Law, Rev. Sci. Instr. 19, 920 (1948).]

## Section 5

# ELECTRICITY AND MAGNETISM 

D. F. BLEIL, Editor

U.S. Naval Ordnance Laboratory, White Oak, Md.

## CONTENTS

5a. Definitions, Units, Nomenclature, Symbols, Conversion Tables ..... 5-2
5b. Formulas ..... 5-12
5c. Electrical Standards ..... 5-105
5d. Properties of Dielectrics ..... 5-114
5e. Properties of Semiconductors ..... 5-157
5f. Properties of Nonmetallic Conductors ..... 5-166
5 g . Properties of Metallic Conductors ..... 5-197
5h. Magnetic Properties of Materials ..... 5-206
5i. Electrical Power Practices ..... 5-245
5j. Electrochemical Information ..... 5-268
5k. Electric and Magnetic Properties of the Earth and Stars ..... 5-283

# 5a. Definitions, Units, Nomenclature, Symbols, Conversion Tables 

W. R. SMYTHE<br>California Institute of Technology

## 5a-1. Fundamental Definitions Based on Mechanical Measurements

Capacitivity or Dielectric Constant. The capacitivity in farads per meter is the ratio of the force between two charged conductors measured in vacuum to that measured when the vacuum is replaced by a homogeneous fluid insulating medium, multiplied by $8.85434 \times 10^{-12}$. In a homogeneous solid it is the product of $8.85434 \times 10^{-12}$ by the ratio of the force on a given small charge measured at the center of a thin diskshaped evacuated cavity placed normal to a uniform electric field to that on the same charge measured at the center of a thin needle-shaped evacuated cavity aligned with the same field.

Charge. One coulomb is that charge which, when carried by each of two bodies whose distance apart $r$ in meters is very large compared with their dimensions, produces in a vacuum a mutual repulsion of $8.98740 r^{-2} \times 10^{9}$ newton. A charge of one coulomb is transported by a current of one ampere in one second. There are two kinds of charge. Electrons carry a negative charge and protons a positive charge.

Current. An ampere is that current which, flowing in the same direction in each of two identical coaxial circular loops of wire whose distance apart $r$ in meters is very large compared with their radius $a$, produces in a vacuum a mutual attraction of $6 \pi^{2} a^{4} r^{-4} \times$ $10^{-7}$ newton. A current of one ampere transports one coulomb of charge per second. Current direction is defined as that in which a positive charge moves.

Electric Intensity. The electric intensity in volts per meter is the vector force in newtons acting on a very small body carrying a very small positive charge placed at the field point, divided by the charge in coulombs. In a homogeneous solid the measurement is carried out at the center of a thin evacuated needle-shaped cavity aligned so that the force lies along the axis.

Electromotance or Electromotive Force. The electromotance in volts around a closed path is the work in joules required to carry a very small positive charge around that path, divided by the charge in coulombs.

Magnetic Induction or Magnetic Flux Density. The magnetic induction in webers per square meter is a vector whose direction is that in which the axis of a small circular current-carrying test loop that rests in stable equilibrium at the field point would advance if it were a right-hand screw rotated in the sense of the current circulation and whose magnitude equals the torque in newton meters on the loop when its axis is normal to the induction, divided by the product of loop current by loop area. In a homogeneous solid the measurement is carried out at the center of a thin evacuated disk-shaped cavity oriented so that the induction is normal to its faces.

Permeability. The permeability in henrys per meter is the ratio of the force between two linear circuits carrying fixed current measured in a homogeneous fluid
insulating medium to that measured in a vacuum, multiplied by $4 \pi \times 10^{-7}$. In a homogeneous solid it is the product of $4 \pi \times 10^{-7}$ by the ratio of the magnetic induction at the center of a thin evacuated disk-shaped cavity oriented so that the induction is normal to its faces to that at the center of a thin evacuated needle-shaped cavity oriented so that the induction is directed along its axis.

Potential. The potential in volts at a point in an electrostatic field is the work in joules done in bringing a very smail positive charge to the point from a point arbitrarily chosen at zero potential, divided by the charge in coulombs.

## 5a-2. Basic Laws

Ampere's Law. At any field point near a linear circuit, each circuit element contributes to the magnetic induction an amount inversely proportional to the square of the distance $r$ from it to the point, directly proportional to its length, current, and the sine of the angle between ds and $r$, and in the direction of $d s \times r$.

Coulomb's Law. The force in a homogeneous isotropic medium of infinite extent between two point charges is proportional to the product of their magnitudes divided by the square of the distance between them.

Faraday's Law of Induction. The electromotance induced in a circuit is proportional to the rate of change of the magnetic flux linking the circuit.

Joule's Law. The rate of production of heat in a constant-resistance electric circuit is proportional to the square of the current.

Kirchhoff's Laws. (1) The algebraic sum of the currents flowing into any point in a network is zero. (2) The algebraic sum of the products of current by resistance around any closed path in a network equals the algebraic sum of the electromotances in that path.

Lenz's Law. The current induced in a circuit due to a change in the magnetic flux through it or to its motion in a magnetic field is so directed as to oppose the change in flux or to exert a mechanical force opposing the motion.

Ohm's Law. The current in an electric circuit is directly proportional to the electromotance in it.

5a-3. Definitions of Some Descriptive Terms. For quantitative terms, see Table 5a-1.

Anode. The positive electrode in such devices as the arc, vacuum tube, and electrolytic cell.

Antiferroelectric Materials. Those in which spontaneous electric polarization occurs in lines of ions; adjacent lines are polarized in an antiparallel arrangement.

Antiferromagnetic Materials. Those in which spontaneous magnetic polarization occurs in equivalent sublattices; the polarization in one sublattice is aligned antiparallel to the other.

Cathode. The negative electrode in such devices as the arc, vacuum tube, and electrolytic cell.

Coercive Force. The value of the reverse magnetic intensity needed to destroy the magnetic moment of the specimen.

Conductors. Bodies in which differences of potential, if not maintained by some driving electromotance, disappear rapidly with a flow of current.

Curie Point. The point, as the temperature increases, at which the transition from ferromagnetic to paramagnetic properties of a substance is complete.

Diamagnetic Bodies. Those which, when placed in an inhomogeneous magnetic field, tend to move toward its weaker regions.

Dielectric Bodies. Those which can support an electric strain and in which differences of potential disappear very slowly or not at all because of current flow.

Eddy or Foucault Currents. Circulating currents set up in conducting masses or sheets by varying magnetic fields.

Edison or Richardson Effect. The thermionic emission of electrons from hot bodies at a rate which increases rapidly with temperature.

Electric Circuit. The path taken by an electric current. Elements of the circuit which possess the properties of capacitance, inductance, resistance, etc., (Table 5a-1) are known as capacitors, inductors, resistors, etc., respectively.

Electric Lines of Force. Curves in an electric field whose tangents at any point give the direction of the field at that point.

Electric Tubes of Flux. Charge-free regions in isotropic space whose sides are everywhere tangent to the electric intensity and whose ends terminate on charges or charged areas or may meet to form closed rings.

Electrodes. Terminals by which current may enter or leave a region.
Electrolysis. The process of passing current through a substance when so doing liberates one or more of its constituents at the electrodes.

Electrolyte. A substance capable of electrolysis.
Electrostriction. The change of dimensions of a dielectric body when placed in an electric field.

Ettinghausen Effect. The phenomenon observed when a conductor carries current in a transverse magnetic field and a temperature gradient appears in a direction normal to both.

Ferrimagnetic Materials. Those in which spontaneous magnetic polarization occurs in nonequivalent sublattices; the polarization in one sublattice is aligned antiparallel to the other.

Ferroelectric Materials. Those in which the electric polarization (see Table 5a-1) is produced by cooperative action between groups or domains of collectively oriented molecules.

Ferromagnetic Materials. Those in which the magnetization is produced by cooperative action between groups or domains of collectively oriented molecules.

Gyromagnetic Effects. The phenomena of magnetization by rotation (Barnett effect) and rotation by magnetization (Einstein-de Haas effect).

Hall Effect. The production of a transverse potential gradient in a material by a steady electric current which has a component normal to a magnetic field.

Hysteresis Curves. These show the steady-state relation between the magnetic induction in a material and the steady-state alternating magnetic intensity (see Table 5a-1) that produces it.
Image Force. The force on a charge due to that charge or polarization which it induces on neighboring conductors or dielectrics.
Magnetic Lines of Force. Curves in a magnetic field whose tangents at any point give the direction of the magnetic intensity there.
Magnetic Saturation. A condition in which further increases in the magnetizing field produce no increase in magnetization.
Magnetic Tubes of Flux. Regions in space whose sides are everywhere tangent to the magnetic induction and whose ends may meet to form closed rings.

Magnetostriction. The change in dimensions of a body when placed in a magnetic field.
Nernst Effect. The production of a transverse electric field by a heat current.
Parallel Connections. These are so arranged that current divides between elements, no portion passing through more than one element.

Paramagnetic Bodies. When placed in an inhomogeneous magnetic field, these bodies tend to move toward its stronger regions.

Peltier Effect. The phenomenon of absorption or generation of heat according to the direction of passage of current across a junction of two conductors.

Permanent Magnets: Strongly magnetized bodies whose magnetization is little affected by the action of internal or external magnetic fields or by moderate mechanical shocks.

Photoconductivity. The property of a material which causes its resistivity (see Table 5a-1) to change when light falls upon it.

Photoelectric Effect. The liberation of electrons from a surface when light falls upon it.

Piezoelectric Effects. The phenomena of separation of charge in a crystal by mechanical stresses and the converse.

Proximity Effect. The distortion of alternating-current flow in one conductor due to that in neighboring conductors.
Pyroelectric Effect. The phenomenon of separation of charge in a crystal by heating.
Rectifiers. Devices which offer higher resistance (see Table 5a-1) to current passing in one direction than the other.
Seebeck or Thermoelectric Effect. The flow of current in a circuit consisting of two or more conductors caused by temperature differences at the junctions.

Semiconductor. A rather poor conductor whose conductivity may be changed radically by small changes in its physical condition.

Series Connections. These are so arranged that current must pass through all the elements in succession.

Skin Effect. The concentration of high-frequency alternating current near the surface of a conductor.

Thomson Effects. Phenomena in which potential gradients are produced in a material by differences of temperature.

Triboelectricity. The electric charges separated by friction between bodies.
Volta or Contact-potential Effect; The appearance of opposite charges on two dissimilar uncharged metals when placed in contact and the existence of a difference of potential between them.

Work Function. The energy needed to carry a charge across a metal vacuum boundary.

Note on Tables 5a-2, 5a-3, and 5a-4. These tables are presented to facilitate transposition of formulas from one system of units into another. In such systems as the Gaussian, the formula to be transposed must be written for a medium in which $\mu$ and $\epsilon$ are not unity before using the tables. For example, the force on a moving charge in static fields is

$$
\mathbf{F}=Q \mathbf{E}+c^{-1} Q\left(\mathbf{V} \times \mathbf{B}^{\prime}\right) \quad \text { (Gaussian) }
$$

where $F$ is in dynes, $Q$ and $E$ in esu, $v$ in $\mathrm{cm} / \mathrm{sec}, B^{\prime}$ in emu or gauss, and $c \approx 3 \times 10^{10}$ $\mathrm{cm} / \mathrm{sec}$. The equivalent formula in cgs emu is found from Table $5 \mathrm{a}-3$ where, using primes for emu quantities, we write according to directions, $c Q^{\prime}$ for $Q, c^{-1} \mathbf{E}^{\prime}$ for $E$ and obtain

$$
F^{\prime}=Q^{\prime} \mathbf{E}^{\prime}+Q^{\prime}\left(\mathbf{v} \times \mathbf{B}^{\prime}\right) \quad(\text { cgs emu })
$$

For mks units, written with a double prime, we use the same table but write $10^{-5} \mathrm{~F}^{\prime \prime}$ for $\mathrm{F}, 10 Q^{\prime \prime}$ for $Q^{\prime}, 10^{-2} \mathbf{v}^{\prime \prime}$ or $10^{-2} \mathbf{1}^{\prime \prime} / t$ for v or $1 / t$ and $10^{-4} \mathrm{~B}^{\prime \prime}$ for $\mathrm{B}^{\prime}$, giving, after cancellation of $10^{-5}$ throughout,

$$
\mathbf{F}^{\prime \prime}=Q^{\prime \prime} \mathbf{E}^{\prime \prime}+Q^{\prime \prime}\left(\mathbf{v}^{\prime \prime} \times \mathbf{B}^{\prime \prime}\right) \quad(\mathbf{m k s})
$$

In this formula $F^{\prime \prime}$ is in newtons, $Q^{\prime \prime}$ in coulombs, $\mathbf{E}^{\prime \prime}$ in volts per meter, $\mathbf{v}^{\prime \prime}$ in meters per second, and $B^{\prime \prime}$ in webers per square meter.

## Table 5a-1. Symbols. Mks Unit Names. Symbolic <br> Definitions. Dimensions ${ }^{a}$

| Quantity | Symbol | Mks unit | Equivalents | Dimensions |
| :---: | :---: | :---: | :---: | :---: |
| Admittance | $\breve{Y}$ | mho | $\check{Z}^{-1}=G+j B$ | $m^{-1} l^{-2} t Q^{2}$ |
| Attenuation |  | decibels | $10 \log \left(A_{1} / A_{2}\right)$ |  |
| Attenuation constant. | $\alpha$ | parts/m | $\left(x_{2}-x_{1}\right)^{-1} \ln \left(A_{1} / A_{2}\right)$ | $l^{-1}$ |
| Capacitance | C | farad | $Q V^{-1}$ | $m^{-1} l^{-2} t^{2} Q^{2}$ |
| Mutual. | $C_{m}, C_{r s}$ | farad | $Q_{s} V_{r}^{-1}$ if $V_{t}=0, t \neq r$ | $m^{-1} l^{-2} t^{2} Q^{2}$ |
| Self | $C, C_{r r}$ | farad | $Q_{r} V_{r}^{-1}$ if $V_{t}=0, t \neq r$ | $m^{-1} l^{-2} t^{2} Q^{2}$ |
| Capacitivity | $\epsilon$ | farad/m | Defined in 5a-1 | $m^{-1} l^{-3} t^{2} Q^{2}$ |
| Capacitivity of vacuum. | $\epsilon_{v}$ | farad/m | $8.85434 \times 10^{-12}$ | $m^{-1} l^{-3} t^{2} Q^{2}$ |
| Capacitivity, relative. | $K_{e}, K$ | ratio | $\epsilon \epsilon_{v}{ }^{-1}$ |  |
| Charge. | $Q, Q, q$ | coulomb | Fundamental | Q |
| Charge density, line |  | coulomb/m | $d Q / d s$ | $l^{-1} Q$ |
| Surface. | $\sigma,\left(\rho_{s}\right)$ | coulomb/m ${ }^{2}$ | $d Q / d S$ | $l^{-2} Q$ |
| Volume. | - | coulomb/m ${ }^{3}$ | $d Q / d v$ | $l^{-3} Q$ |
| Conductance. | G | mho | $R^{-1}=I V^{-1}$ | $m^{-1} l^{-2} t Q^{2}$ |
| Conductivity | $\gamma,(\sigma)$ | mho/m | $\mathrm{iE}^{-1}$ | $m^{-1} l^{-3} t Q^{2}$ |
| Surface. | $\gamma^{\prime},\left(\sigma^{\prime}\right)$ | mho | $\mathrm{i}_{s} \mathrm{E}_{5}{ }^{-1}$ | $m^{-1} l^{-2} t Q^{2}$ |
| Current. | I,I | ampere | Defined in 5a-1 | $t^{-1} Q$ |
| Current density | i, i, J | ampere/m ${ }^{2}$ | $\gamma \mathbf{E}, \gamma$ E | $l^{-2} t^{-1} Q$ |
| Surface. | $\mathbf{i}^{\prime}, \mathbf{i}^{\prime}, \mathbf{J}^{\prime}$ | ampere/m | $\gamma^{\prime} \mathbf{E}_{s}, \gamma^{\prime} \check{E}_{s}$ | $l^{-1} t^{-1} Q$ |
| Dielectric constant. |  | farad/m | Defined in 5a-1 | $m^{-1} l^{-3} t^{2} Q^{2}$ |
| Displacement, electric. . | D,D | coulomb/m ${ }^{2}$ | $\boldsymbol{\epsilon E , \epsilon E ¢ , ~} \epsilon_{v} \mathbf{E}+\mathbf{P}$ | $l^{-2} Q$ |
| Elastance. | S | daraf | $C^{-1}, V Q^{-1}$ | $m l^{2} t^{-2} Q^{-2}$ |
| Mutual. | $S_{m}, S_{r s}$ | daraf | $V_{s} Q_{r}{ }^{-1}$ if $Q_{t}=0, t \neq r$ | $m l^{2} t^{-2} Q^{-2}$ |
| Self | $S, S_{r r}$ | daraf | $V_{r} Q_{r}{ }^{-1}$ if $Q_{t}=0, t \neq r$ | $m l^{2} t^{-2} Q^{-2}$ |
| Elastivitity . | $\sigma$ | daraf-m | $\epsilon^{-1}$ | $m l^{3} t^{-2} Q^{-2}$ |
| Electromotance (electromotive force). | 8,E | volt | Defined in 5a-1 | $m l^{2} t^{-2} Q^{-1}$ |
| Electronic charge. | $e$ | coulomb | $1.6020 \times 10^{-19}$ |  |
| Energy . | W | joule | $\begin{aligned} & I \Phi, Q V, \frac{1}{2} \int \mathbf{E} \cdot \mathbf{D} d v, \\ & \frac{1}{2} \int \mathbf{H} \cdot \mathbf{B} d v \end{aligned}$ | $m l^{2} t^{-2}$ |
| Flux, electric. | $\psi$ | coulomb | $\int_{\text {n }} \cdot \mathbf{D} d \mathbf{S}$ |  |
| Flux, magnetic | $\pm$ | weber | $\int \mathrm{n} \cdot \mathrm{B} d \mathrm{~S}$ | $m l^{2} t^{-1} Q^{-1}$ |
| Force. | F | newton | $Q \mathbf{E}, \int \mathrm{i} \times \mathrm{B} d v$ | $m l t^{-2}$ |
| Frequency . | $\nu$ | cycle/sec | $v \lambda^{-1}, \omega(2 \pi)^{-1}$ | $t^{-1}$ |
| Frequency, angular | $\omega$ | radian/sec | $2 \pi \nu, 2 \pi v \lambda^{-1}$ |  |
| Impedance. | Z | ohm | ¢̌̌ ${ }^{-1}, R+j X$ | $m l^{2} t^{-1} Q^{-2}$ |
| Intrinsic, vacuum. |  | ohm | $\mu_{v}{ }^{\frac{1}{2} \epsilon_{v}}{ }^{-\frac{1}{2}} \approx 120 \pi$ | $m l^{2} t^{-1} Q^{-2}$ |
| Mutual. | $\check{Z}_{m} \check{Z}_{\text {r }}$ | ohm |  | $m l^{2} t^{-1} Q^{-2}$ |
| Self. | $\check{Z}, \check{Z}_{\text {rr }}$ | ohm |  | $m l^{2} t^{-1} Q^{-2}$ |
| Inductance. | L | henry |  | $m l^{2} Q^{-2}$ |
| Mutual | $M, L_{m}, L_{r s}$ | henry | $\left(I_{1} I_{2}\right)^{-1} \int \mathbf{B}_{2} \cdot \mathrm{n} d \mathrm{~S}_{1}$ | $m l^{2} Q^{-2}$ |
| Self | $L, L_{r r}$ | henry | $\left(\mu I^{2}\right)^{-1} \int B^{2} d v$ | $m l^{2} Q^{-2}$ |
| Induction, magnetic | B, B | weber $/ \mathrm{m}^{2}$ | Defined in 5a-1 | $m t^{-1} Q^{-1}$ |
| Intensity, electric. | E, E | volt/m | Defined in 5a-1 | $m l t^{-2} Q^{-1}$ |

[^197]Table 5a-1. Symbols. Mks Unit Names. Symbolic Definitions. Dimensions (Continued)

| Quantity | Symbol | Mks unit | Equivalents | Dimensions |
| :---: | :---: | :---: | :---: | :---: |
| Intensity, magnetic | H,Ḣ | amp-turn/m | $\mu^{-1} \mathrm{~B}, \mu_{v}{ }^{-1} \mathrm{~B}-\mathrm{M}$ | $l^{-1} t^{-1} Q$ |
| Length. |  | meter | Fundamental |  |
| Magnetization (loop). | M | amp-turn/m | $\left(K_{m}-1\right) \mathrm{H}$ | $l^{-1} t^{-1} Q$ |
| Magnetization (dipole) . | M | weber $/ \mathrm{m}^{2}$ | $\left(K_{m}-1\right) \mu_{v} \mathrm{H}$ | $m t^{-1} Q^{-1}$ |
| Magnetomotance (magnetomotive force). | $\mathfrak{F}$ | amp-turn | $\mu^{-1} \mathscr{F} \mathrm{~B} \cdot \mathrm{ds}, \mathscr{f} \mathbf{H} \cdot \mathrm{ds}$ | $t^{-1} Q$ |
| Mass. | $m$ | kilogram | Fundamental |  |
| Moment, electric. | p, ¢ | coulomb-m | $Q \mathrm{ds}$ | 12 |
| Moment, magnetic loop. | m, m | amp-m ${ }^{2}$ | $\pi a^{2} I \mathrm{n}$ | $l^{2} t^{-1} Q$ |
| Moment, magnetic (dipole) | m | weber-m | $m$ ds | $m l^{3} t^{-1} Q^{-1}$ |
| Period. | T | second | $\omega^{-1} 2 \pi, \nu^{-1}, \lambda v^{-1}$ |  |
| Permeance | P | henry | $\mathfrak{R}^{-1, F^{-1}}{ }^{\text {d }}$ | $m l^{2} Q^{-2}$ |
| Permeability | $\mu$ | henry/m | Defined in 5a-1 | $m l Q^{-2}$ |
| Vacuum. | $\mu_{v}$ | henry/m | $4 \pi \times 10^{-7}$ | $m l Q^{-2}$ |
| Relative. | $K_{m}$ |  | $\mu_{v}{ }^{-1} \mu$ | 0 |
| Phase angle. | $\varphi$ | radian |  | 0 |
| Phase constant (see Wave number) <br> Polarization, electric | P |  |  | $l^{-2} 2$ |
| Polarization, magnetic (see Magnetization) |  |  |  |  |
| Pole strength. | $m$ | weber |  | $m l^{2} t^{-1} Q^{-1}$ |
| Potential, electrostatic. | $V$ | volt | Defined in 5a-1 | $m l^{2} t^{-2} Q^{-1}$ |
| Electrodynamic. | Ф, ¢ $^{\text {¢ }}$ | volt | $\mathbf{E}=-\boldsymbol{\nabla} \Phi-d \mathrm{~A} / d t$ | $m l^{2} t^{-2} Q^{-1}$ |
| Vector magnetic | A, $\overline{\mathbf{A}}$ | weber/m | $\mathbf{B}=\boldsymbol{\nabla} \times \mathbf{A}$ | $m m t^{-1} Q^{-1}$ |
| Power. | $P$ | watt | $d W / d t$ | $m l^{2} t^{-3}$ |
| Poynting vector. | II | watt/m ${ }^{2}$ | $\mu^{-1} \mathrm{E} \times \mathrm{B}$ | $m t^{-3}$ |
| Propagation constant. | ז̌,(̌̌) | parts/m | $\alpha+j \beta$ | $l^{-1}$ |
| Quality factor | $Q$ | a ratio | $\omega L R^{-1}$ | 0 |
| Reactance. | $X$ | ohm | $\omega L-(\omega C)^{-1}$ | $m l^{2} t^{-1} Q^{-2}$ |
| Reluctance. | a | amp-turn/ weber | $\Psi^{\top} \Phi^{-1}$ | $m^{-1} l^{-2} Q^{2}$ |
| Reluctivity | $\nu$ | m/henry | $\mu^{-1}$ | $m^{-1} l^{-1} Q^{2}$ |
| Resistanc | $R$ | ohm | $V I^{-1}$ | $m l^{2} t^{-1} Q^{-2}$ |
| Resistivity. | $\rho$ | ohm-m | $\mathrm{Ei}^{-1}$ | $m l^{3} t^{-1} Q^{-2}$ |
| Susceptance. | $B$ | mho | $\bar{Y}=G+j B$ | $m^{-1} l^{-2} t Q^{2}$ |
| Susceptibility, electric. | $\chi_{\text {x }}$ |  | $K_{e}{ }^{-1}$ |  |
| Magnetic. | $\chi_{m}$ |  | $K_{m}{ }^{-1}$ | 0 |
| Time. | $t$ | second | Fundamental | $t$ |
| Time constant | $\tau$ | second | $L R^{-1}, R C$ |  |
| Velocity of light. | c | $\mathrm{m} / \mathrm{sec}$ | $2.99790 \times 10^{8}$ | $l t^{-1}$ |
| Wavelength.... | $\lambda$ | meter | $2 \pi \beta^{-1}, 2 \pi v \omega^{-1}$ | $l$ |
| Wave number (phase constant). | $\beta, k$ | radian/m | $2 \pi \lambda^{-1}, \omega \nu^{-1}, \gamma=\alpha+j \beta$ |  |
| Work. | W | joule | $\Phi \mathrm{F} \cdot \mathrm{ds}$ | $m l^{2} t^{-2}$ |

Table 5a-2. Reduction of Formula to cgs esua

| Quantity | Esu | Emu | Practical cgs and rationalized mks |
| :---: | :---: | :---: | :---: |
| Capacitance | C | $c^{-2} C$ | $9^{-1} 10^{-11} C$ farad |
| Capacitivity | $\epsilon$ | $c^{-2}{ }^{\text {E }}$ | $9^{-1} 10^{-11} \epsilon\left(4 \pi\right.$ farad)/cm $\epsilon_{v} \epsilon$ farad $/ \mathrm{m}$ |
| Charge, quantity | $Q$ | $c^{-1} Q$ | $3^{-1} 10^{-9} Q$ coulomb |
| Conductance. | $\boldsymbol{G}$ | $c^{-2} G$ | $9^{-1} 10^{-11} G$ mho |
| Conductivity, area. | $\gamma^{\prime}$ | $c^{-2} \gamma^{\prime}$ | $9^{-11} 10^{-11} \gamma^{\prime}$ mho |
| Conductivity, volume. | $\gamma$ | $c^{-2} \gamma$ | $9^{-1} 10^{-11} \gamma$ mho/cm $\quad 9^{-1} 10^{-9} \gamma$ mho $/ \mathrm{m}$ |
| Current. | $I$ | $c^{-1} I$ | $3^{-1} 10^{-9} I \mathrm{amp}$ |
| Current density, area | $\mathrm{i}^{\prime}$ | $c^{-1 \mathbf{i}^{\prime}}$ | $3^{-1} 10^{-9} \mathbf{i}^{\prime} \mathrm{amp} / \mathrm{cm} \quad 3^{-1} 10^{-7} \mathbf{i}^{\prime} \mathrm{amp} / \mathrm{m}$ |
| Current density, volume. | i | $c^{-1}$ | $3^{-1} 10^{-9} \mathrm{i} \mathrm{amp} / \mathrm{cm}^{2} \quad 3^{-1} 10^{-5} \mathrm{i} \mathrm{amp} / \mathrm{m}^{2}$ |
| Displacement. | D | $c^{-1} \mathrm{D}$ | $\begin{aligned} & 3^{-1} 10^{-9} \mathrm{D} \\ & (4 \pi \text { coulomb }) / \mathrm{cm}^{2} \end{aligned} \quad 3 \epsilon_{v} 10^{4} \mathrm{D} \text { coulomb } / \mathrm{m}^{2}$ |
| Elastance | $S$ | $c^{2} S$ | $9 \times 10^{11} S$ daraf |
| Electromotance | $\varepsilon$ | $c \varepsilon$ | 3008 volt |
| Energy | W | $W$ | $W$ erg $10^{-7} \mathrm{~W}$ joule |
| Force: | F | F | F dyne $\quad 10^{-5} \mathrm{~F}$ newton |
| Impedance | Z | $c^{2}$ Z $\check{Z}$ | $9 \times 10^{11}$ Ž ohm |
| Inductance | $L$ | $c^{2} L$ | $9 \times 10{ }^{11} L$ henry |
| Intensity, electric. | E | $c \mathrm{E}$ | 300 E volt/cm $\quad 30,000 \mathrm{E}$ volt/m |
| Length. | $l$ | $l$ | $l$ centimeter $\quad 10^{-2} l$ meter |
| Mass. | $m$ | $m$ | $m$ gram $\quad 10^{-3} \mathrm{~m}$ kilogram |
| Polarization, electric. | P | $c^{-1} \mathbf{P}$ | $3^{-1} \times 10^{-9} \mathrm{P}$ $3^{-1} \times 10^{-5} \mathrm{P}$ <br> coulomb $/ \mathrm{cm}^{2}$ coulomb $/ \mathrm{m}^{2}$ |
| Potential, electric. | $V$ | cV | 300 V volt |
| Power. | $P$ | $P$ | $P \mathrm{erg} / \mathrm{sec} \quad 10^{-7} P$ watt |
| Reactance. | $X$ | $c^{2} X$ | $9 \times 10^{11} X$ ohm |
| Resistance. | $R$ | $c^{2} R$ | $9 \times 10^{11} R$ ohm |
| Resistivity, area. | $\sigma$ | $c^{2} \sigma$ | $9 \times 10^{11^{\prime}}$ ohm |
| Resistivity, volume. | $\rho$ | $c^{2} \rho$ | $9 \times 10^{11} \rho$ ohm-cm $\quad 9 \times 10^{9} \rho$ ohm-m |

[^198]Table 5a-3. Reduction of Formula to cgs emu ${ }^{a}$

| Quantity | Emu | Esu | Practical cgs and rationalized mks |  |
| :---: | :---: | :---: | :---: | :---: |
| Capacitance. | C | $c^{2} C^{*}$ | $10^{9} \mathrm{C}$ | rad |
| Charge, quantity | Q | $c Q^{*}$ | $10 Q$ | lomb |
| Conductance. | G | $c^{2} G^{*}$ | $10^{9} \mathrm{G}$ |  |
| Conductivity, area | $\boldsymbol{\gamma}^{\prime}$ | $c^{2} \gamma^{\prime *}$ | $10^{9} \gamma$ | ho |
| Conductivity, volume | $\gamma$ | $c^{2} \gamma^{*}$ | $10^{9} \gamma \mathrm{mho} / \mathrm{cm}$ | ${ }^{10{ }^{11} \gamma} \mathrm{r}$ mho/m |
| Current | I | cI* | 10 I |  |
| Current density, area. | $i^{\prime}$ | $\mathrm{ci}^{\text {'* }}$ | $10 \mathrm{i}^{\prime} \mathrm{amp} / \mathrm{cm}$ | $10^{3 i^{\prime}} \mathrm{amp} / \mathrm{m}$ |
| Current density, volume. | i | $\mathrm{ci}^{*}$ | $10 \mathrm{i} \mathrm{amp} / \mathrm{cm}^{2}$ | $10^{5} \mathrm{i} \mathrm{amp} / \mathrm{m}^{2}$ |
| Elastance. | $S$ | $c^{-2} S^{*}$ | 10 | daraf |
| Electromotance | $\varepsilon$ | $c^{-1} \varepsilon^{*}$ | $10^{-8} \varepsilon$ | olt |
| Energy | W | W | $W$ erg | $10^{-7} W$ joule |
| Flux, magnetic | ¢ $^{*}$ | $c^{-1 \Phi}$ | ¢ maxwell | $10^{-8} \Phi$ weber |
| Force | F |  | F dyne | $10^{-5} \mathrm{~F}$ newton |
| Impedanc | Z | $c^{-2} \check{Z}^{*}$ | $10^{-9}$ | ohm |
| Inductance | L | $c^{-2} L^{*}$ | 10 | henry |
| Induction, magnetic | B* | $c^{-1} \mathrm{~B}$ | B gauss | $10^{-4} \mathrm{~B}$ weber/ $/ \mathrm{m}^{2}$ |
| Intensity, electric | E | $c^{-1} \mathrm{E}^{*}$ | $10^{-8} \mathrm{E}$ volt/cm | $10^{-6} \mathrm{E}$ volt/m |
| Intensity, magnetic | H* | $c \mathrm{H}$ | H oersted | $\begin{aligned} & (4 \pi)^{-1} 10^{3} \mathrm{H} \\ & \text { amp-turn } / \mathrm{m} \end{aligned}$ |
| Length | $l$ | $l$ | $l$ centimeter | $10^{-2} l$ meter |
| Magnetic moment (dipole). | $\mathrm{m}^{\prime *}$ | $c^{-1} \mathrm{~m}^{\prime}$ | $4 \pi \mathrm{~m}^{\prime}$ maxwell-cm | $4 \pi 10^{-10} \mathrm{~m}^{\prime}$ weber-m |
| Magnetic moment (loop). | m* | cm | $10 \mathrm{mamp}-\mathrm{cm}^{2}$ | $10^{-3} \mathrm{~m} \mathrm{amp}-\mathrm{m}^{2}$ |
| Magnetization (dipole). | M ${ }^{\text {+ }}$ | $c^{-1} \mathrm{M}^{\prime}$ | $4 \pi \mathrm{M}^{\prime}$ maxwell/cm ${ }^{2}$ | $4 \pi 10^{-4} \mathrm{M}^{\prime}$ weber $/ \mathrm{m}^{2}$ |
| Magnetization (loop). | M* | cM | $10 \mathrm{M} \mathrm{amp} / \mathrm{cm}$ | $1000 \mathrm{M} \mathrm{amp} / \mathrm{m}$ |
| Magnetomotance | $\mathfrak{F}^{*}$ | cF | $\mathcal{F}$ gilbert | $(4 \pi)^{-1} 10 \mathcal{F}$ amp-turn |
| Mass. | $m$ | $m$ | $m$ gram | $10^{-3} \mathrm{~m}$ kilogram |
| Permeability. | $\mu^{*}$ | $c^{-2} \mu$ | $\mu$ gauss/oersted | $4 \pi 10^{-7} \mu$ henry $/ \mathrm{m}$ |
| Pole strength, magnetic | $m^{*}$ | $c^{-1} m$ | $4 \pi m$ maxwell | $4 \pi 10^{-8} m$ weber |
| Potential, electric. | $V$ | $c^{-1} V^{*}$ | $10^{-8}$ | volt |
| Potential, vector | $A^{*}$ | $c^{-1} \mathbf{A}$ | A gauss-cm | $10^{-6} \mathrm{~A}$ weber/m |
| Powe | $P$ |  | $P \mathrm{erg} / \mathrm{sec}$ | $10^{-7} P$ watt |
| Reactance | $X$ | $c^{-2} X^{*}$ |  | ohm |
| Reluctance | $\mathrm{R}^{*}$ | $c^{2} \mathcal{R}$ | $\bigcirc$ gilbert/max | $\begin{aligned} & (4 \pi)^{-1} 10^{9} R \\ & \text { amp-turn/web } \end{aligned}$ |
| Resistance | $R$ | $c^{-2} R^{*}$ | 10 | ohm |
| Resistivity, area. | $\sigma$ | $c^{-2} \sigma^{*}$ | $10^{-9} \mathrm{\sigma}$ | hm |
| Resistivity, volume. | $\rho$ | $c^{-2} \rho^{*}$ | $10^{-9} \rho$ ohm-cm | $10^{-11} \rho$ ohm-m |

[^199]Table 5a-4. Reduction of Formula to Rationalized mes Unitsa ${ }^{a}$

| Quantity | (a) Practical cgs (b) mks | Emu | Esu |
| :---: | :---: | :---: | :---: |
| Capacitance | $C$ farad | $10^{-9} \mathrm{C}$ | $9 \times 10^{11} C^{*}$ |
| Capacitivity | (a) $\epsilon(4 \pi \mathrm{farad}) / \mathrm{cm}$ | $10^{-9}{ }^{-9}$ | $9 \times 10^{11} \epsilon^{*}$ |
|  | (b) $\epsilon$ farad/m | $4 \pi 10^{-11} \epsilon$ | $\epsilon_{v}{ }^{-1} \epsilon^{*}$ |
| Charge, quantity | $Q$ coulomb | $10^{-1} Q$ | $3 \times 10^{9} Q^{*}$ |
| Conductance. | $G$ mho | $10^{-9} G$ | $9 \times 10^{11} G^{*}$ |
| Conductivity, area. | $\gamma^{\prime}$ mho | $10^{-9} \gamma^{\prime}$ | $9 \times 10^{11} \gamma^{\prime *}$ |
| Conductivity, volume. | (a) $\gamma \mathrm{mho} / \mathrm{cm}$ | $10^{-9} \gamma$ | $9 \times 10^{11} \gamma^{*}$ |
|  | (b) $\gamma \mathrm{mho} / \mathrm{m}$ | $10^{-11} \gamma$ | $9 \times 10^{9} \gamma^{*}$ |
| Current. | $I$ ampere | $10^{-1} I$ | $3 \times 10^{9} I^{*}$ |
| Current density, area | (a) $\mathrm{i}^{\prime} \mathrm{amp} / \mathrm{cm}$ | $10^{-1 i^{\prime}}$ | $3 \times 10^{9 \mathbf{i}^{\prime *}}$ |
|  | (b) $\mathrm{i}^{\prime} \mathrm{amp} / \mathrm{m}$ | $10^{-3 i^{\prime}}$ | $3 \times 10^{7 \mathrm{i}^{\prime *}}$ |
| Current density, volume... | (a) $\mathrm{i} \mathrm{amp} / \mathrm{cm}^{2}$ | $10^{-1}$ | $3 \times 10^{9} \mathrm{i}^{*}$ |
|  | (b) $\mathrm{i} \mathrm{amp} / \mathrm{m}^{2}$ | $10^{-5} \mathrm{i}$ | $3 \times 10^{51}{ }^{\text {\% }}$ |
| Displacement, electric..... | (a) $\mathrm{D}\left(4 \pi\right.$ coulomb)/ $\mathrm{cm}^{2}$ | $10^{-1} \mathrm{D}$ | $3 \times 10^{9} \mathrm{D}^{*}$ |
|  | (b) D coulomb $/ \mathrm{m}^{2}$ | $4 \pi 10^{-5} \mathrm{D}$ | $\left(3 \epsilon_{v}\right)^{-1} 10^{-4} \mathrm{D}^{*}$ |
| Elastance | $S$ daraf | 109 S | $9^{-1} 10^{-11} S^{*}$ |
| Electromotance | \& volt | $10^{8} \mathrm{E}$ | $(300)^{-1} \varepsilon^{*}$ |
| Energy | (a) $W$ erg | W | W |
|  | (b) $W$ joule | $10^{7} \mathrm{~W}$ | $10^{7} \mathrm{~W}$ |
| Flux, magnetic. | (a) $\Phi$ maxwell | $\Phi^{*}$ | $3^{-1} 10^{-10} \Phi$ |
|  | (b) $\Phi$ weber | $10^{3} \Phi^{*}$ | $(300)^{-1} \Phi$ |
| Force | (a) F dyne | F | F |
|  | (b) F newton | $10^{5} \mathrm{~F}$ | $10^{5} \mathrm{~F}$ |
| Impedance. | $\check{Z}$ ohm | $10^{9}$ Z | $9^{-110} 0^{-11} \check{Z}^{*}$ |
| Inductance | $L$ henry | $10^{\circ} \mathrm{L}$ | $9^{-1} 10^{-11} L^{*}$ |
| Induction, magnetic | (a) B gauss | B* | $3^{-1} 10^{-10} \mathrm{~B}$ |
|  | (b) B weber $/ \mathrm{m}^{2}$ | $10^{4} \mathrm{~B}^{*}$ | $3^{-1} 10^{-6} \mathrm{~B}$ |
| Intensity, electric | (a) E volt/cm | $10^{8} \mathrm{E}$ | (300) ${ }^{-1} \mathbf{E}^{*}$ |
|  | (b) E volt/m | $10^{6} \mathrm{E}$ | $3^{-1} 10^{-4} \mathrm{E}^{*}$ |
| Intensity, magnetic. | (a) H oersted | H* | $3 \times 1{ }^{10} \mathrm{H}$ |
|  | (b) H amp-turn/m | $4 \pi 10^{-3} \mathrm{H}^{*}$ | $12 \pi 10^{7} \mathrm{H}$ |
| Length. | (a) l centimeter |  |  |
|  | (b) $l$ meter | $10^{2} l$ | $10^{2} l$ |
| Magnetic moment (dipole). | (a) $\mathrm{m}^{\prime}$ maxwell-cm | $(4 \pi)^{-1} \mathrm{~m}^{\prime} *$ | $(12 \pi)^{-1} 10^{-10} \mathrm{~m}^{\prime}$ |
|  | (b) $\mathrm{m}^{\prime}$ weber-m | $(4 \pi)^{-1} 10^{10} \mathrm{~m}^{\prime} *$ | $(12 \pi)^{-1} \mathrm{~m}^{\prime}$ |
| Magnetic moment (loop). . | (a) $\mathrm{m} \mathrm{amp}-\mathrm{cm}^{2}$ | $10^{-1} \mathrm{~m}^{*}$ | $3 \times 10^{9} \mathrm{~m}$ |
|  | (b) $\mathrm{mamp}-\mathrm{m}^{2}$ | $10^{3} \mathrm{~m}$ * | $3 \times 10^{13} \mathrm{~m}$ |
| Magnetization (dipole). | (a) $\mathbf{M}^{\prime}$ maxwell $/ \mathrm{cm}^{2}$ | $(4 \pi)^{-1} \mathbf{M}^{\prime *}$ | $(12 \pi)^{-1} 10^{-10} \mathrm{M}^{\prime}$ |
|  | (b) $\mathbf{M}^{\prime}$ weber $/ \mathrm{m}^{2}$ | $(4 \pi)^{-1} 10^{4} \mathrm{M}^{\prime *}$ | $(12 \pi)^{-1} 10^{-6} \mathrm{M}^{\prime}$ |
| Magnetization (loop)...... | (a) $\mathrm{M} \mathrm{amp} / \mathrm{cm}$ | $10^{-1} \mathrm{M}^{*}$ | $3 \times 10^{9} \mathrm{M}$ |
|  | (b) $\mathbf{M a m p} / \mathrm{m}$ | $10^{3} \mathrm{M}^{*}$ | $3 \times 10^{7} \mathrm{M}$ |

[^200]Table 5a-4. Reduction of Formula to Rationalized mks Units (Continued)


# 5b. Formulas 

W. R. SMYTHE ${ }^{1}$<br>California Institute of Technology

S. SILVER, J. R. WHINNERY, AND D. J. ANGELAKOS ${ }^{2}$<br>University of California

D. F. BLEIL ${ }^{3}$

U.S. Naval Ordnance Laboratory, White Oak, Md.

## STATIC-FIELD FORMULAS

Note. In the following formulas $\approx$ designates an approximate equality, $K(k)$ and $E(k)$ are complete elliptic integrals of modulus $k, F(\phi, k)$ and $E(\phi, k)$ are incomplete elliptic integrals, $\ln x$ is the natural logarithm of $x, \delta_{n}{ }^{m}$ is the Kronecker delta which is zero unless $m$ equals $n$ when it is one, $J_{n}(x)$ is a Bessel function, $\Gamma(x)$ is a gamma function, $(2 n-1)$ !! means $1 \cdot 3 \cdot 5 \cdots(2 n-1)$, $(2 n)!!$ means $2 \cdot 4 \cdot 6 \cdots(2 n)$. Vectors are written boldface unless only the strength or magnitude is involved when the same symbol is used without boldface. The positive value of a difference $x-y$ is indicated by $|x-y|$.

## 5b-1. Capacitance Formulas in MKS Units

## Single Body Remote from Earth

Sphere of radius $a \quad C=4 \pi \epsilon a \approx 1.1128 \times 10^{-10} a$
Oblate spheroid of semiaxes $a$ and $c, a>c \quad C=4 \pi \epsilon\left(a^{2}-c^{2}\right)^{\frac{1}{2}}\left[\tan ^{-1}\left(a^{2} c^{-2}-1\right)^{\frac{1}{2}}\right]^{-1}$
Prolate spheroid of semiaxes $a$ and $b, a>b \quad C=4 \pi \epsilon\left(a^{2}-b^{2}\right)^{\frac{1}{2}}\left[\tanh ^{-1}\left(1-b^{2} a^{-2}\right)^{\frac{1}{2}}\right]^{-1}$ Ellipsoid of semiaxes $a, b$, and $c, a>b>c$

$$
C=4 \pi \epsilon\left(a^{2}-c^{2}\right)^{\frac{1}{3}}[F(k, \phi)]^{-1}
$$

where $\phi=\sin ^{-1}\left(1-c^{2} a^{-2}\right)^{\frac{1}{\frac{1}{2}}}$ and $k=\left(a^{2}-b^{2}\right)^{\frac{1}{3}}\left(a^{2}-c^{2}\right)^{-\frac{1}{2}}$.
Circular disk of radius $a$
$C=8 \epsilon a$
Elliptic disk of semiaxes $a$ and $b, a>b \quad C=4 \pi \epsilon a\left\{K\left[\left(1-b^{2} a^{-2}\right)^{\frac{1}{2}}\right]\right\}^{-1}$
Two spheres of radius $a$ in contact $\quad C=8 \pi \epsilon a \ln 2$
Two spheres of radii $a$ and $b$ in contact

$$
C \equiv-4 \pi e a b(a+b)^{-1}\left\{2 \gamma+\psi\left[b(a+b)^{-1}\right]+\psi\left[a(a+b)^{-1}\right]\right\}
$$

where $\psi(z)=\Gamma^{\prime}(\boldsymbol{z}) / \Gamma(\boldsymbol{z})$ and $\gamma$ is Euler's constant 0.5772.

[^201]Two spheres of radius $a$, distance between centers $c$, connected by thin wire

$$
C=8 \pi \epsilon a \sinh \beta \sum_{n=1}^{\infty}(-1)^{n+1} \operatorname{csch} m \beta
$$

where $\cosh \beta=\frac{1}{2} c a^{-1}$.
Two spheres of radii $a$ and $b$, distance between centers $c$, connected by thin wire

$$
C=8 \pi \epsilon a b \sinh \alpha \sum_{n=1}^{\infty}\left\{(c \sinh n \alpha)^{-1}+[a \sinh n \alpha+b \sinh (n-1) \alpha]^{-1}\right\}
$$

where $\cosh \alpha=\frac{1}{2} a^{-1} b^{-1}\left(c^{2}-a^{2}-b^{2}\right)$.
Two spherical caps with a common rim which meet at an external angle $\pi / m$ where $m$ is a positive integer

$$
C=4 \pi \epsilon a\left\{1+\sin \alpha \sum_{s=1}^{\infty}\left[\csc \left(m^{-1} s \pi+\alpha\right)-\csc \left(m^{-1} s \pi\right)\right]\right\}
$$

The sphere of which the flatter cap is a portion has a radius $a$ and the rim subtends an angle $\alpha$ at its center.
Same as above but with external angle $3 \pi / 2 .{ }^{1}$

$$
\begin{aligned}
C=4 \pi \epsilon 3^{-\frac{1}{2}} a \sin \alpha\left\{3^{\frac{1}{2}}-3^{-14}+\left[2 \operatorname { s i n } \frac { 1 } { 3 } \alpha \left(\sin \frac{1}{3} \alpha+\right.\right.\right. & \left.\left.\sin \frac{1}{3} \pi\right)\right]^{-1} \\
& \left.+\left[2 \cos \frac{1}{3} \alpha\left(\cos \frac{1}{3} \alpha+\cos \frac{1}{3} \pi\right)\right]^{-1}\right\}
\end{aligned}
$$

Spherical bowl whose chord, drawn from center to rim, subtends an angle $\alpha$ at the center of the sphere of radius $a$ on which it lies

$$
C=4 \epsilon a(\alpha+\sin \alpha)
$$

Torus formed by rotation of a circle of radius $a$ about a coplanar line a distance $b$ from its center

$$
C=8 \pi \epsilon b\left(1-a^{2} b^{-2}\right)^{\frac{1}{2}} \sum_{n=1}^{\infty}\left(2-\delta_{n}{ }^{0}\right) \frac{Q_{n}}{P_{n}}
$$

where $P_{0}=2 k^{\frac{1}{2}} K\left(k^{\prime}\right), Q_{0}=2 k^{\frac{1}{3}} K(k), P_{1}=2 k^{-\frac{1}{2}} E\left(k^{\prime}\right)$, and $Q_{1}=2 k^{-\frac{1}{2}}[K(k)-E(k)]$ and the moduli of the complete elliptic functions are given by

$$
k=a\left[b+\left(b^{2}-a^{2}\right)^{\frac{1}{2}}\right]^{-1}=\left(1-k^{\prime 2}\right)^{\frac{1}{2}}
$$

When $n>1$, the following recurrence formula may be used to find both $P_{n}$ and $Q_{n}$

$$
(2 n+1) P_{n+1}-4 n a^{-1} b P_{n}+(2 n-1) P_{n-1}=0
$$

A capacitance table is given in Australian J. Phys. [7, $\left.350{ }^{\circ}(1954)\right]$.
Torus formed by rotation of a circle of diameter $d$ about a tangent line

$$
C=8 \pi \epsilon d \sum_{n=1}^{\infty}\left[J_{1}\left(k_{n} d\right)\right]^{-1} S_{0.0}\left(k_{n} d\right) \approx 0.970 \times 10^{-10} d
$$

where $S_{0,0}\left(k_{n} d\right)$ is a Lommel function and $J_{0}\left(k_{n} d\right)=0$.

[^202]Aichi's formula for a nearly spherical surface

$$
C \approx 3.139 \times 10^{-11} S^{\frac{1}{2}}
$$

where $S$ is surface area.
Cube of side $a$. Close lower limit

$$
C \approx 0.7283 \times 10^{-10} a
$$

Figure of rotation, $z=a(\cos u+k \cos 2 u), \rho=a(\sin u-k \sin 2 u), 0<k<\frac{1}{2}$

$$
C \approx 1.11278 \times 10^{-10} a\left(1-0.06857 k^{2}-0.00559 k^{4}\right)
$$

Flat circular annulus, with edges at $\rho=a, \rho=b . \quad a<b$

$$
C \approx 4.510 \times 10^{-11} b\left[\cos ^{-1} \frac{a}{b}+\left(1-\frac{a^{2}}{b^{2}}\right)^{\frac{1}{2}} \tanh ^{-1} \frac{a}{b}\right]\left(1+\frac{0.0143 b}{a} \tan ^{3} \frac{1.28 a}{b}\right)
$$

Error varies from about $\pm 0.001 C$ at $b=1.1 a$ to zero at $b=a$.

$$
C \approx 17.48 \times 10^{-12}(a+b)\left\{\ln \left[16(a+b)(b-a)^{-1}\right]\right\}^{-1}
$$

Error varies from about $\pm 0.001 C$ at $b=1.1 a$ to zero at $b=a$.
Thin torus generated by rotation of a circle of radius $a$ about a coplanar line a distance $b$ from its center

$$
C \approx 3.49066 \times 10^{-10} b\left(\ln \frac{8 b}{a}\right)^{-1}
$$

Capacitance between Two Bodies Remote from All Others and Carrying Equal and Opposite Charges

Two spheres of radii $a$ and $b$ with distance $r$ between centers

$$
C=\left(c_{11} c_{22}-c_{12}^{2}\right)\left(c_{11}+c_{22}+2 c_{12}\right)^{-1}
$$

where $c_{11}$ or $c_{22}=4 \pi \epsilon a b \sinh \alpha \sum_{n=1}^{\infty}[(b$ or $a) \sinh n \alpha+(a$ or $b) \sinh (n-1) \alpha]$.

$$
c_{12}=-4 \pi \epsilon a b r^{-1} \sinh \alpha \sum_{n=1}^{\infty} \operatorname{csch} n \alpha \quad \text { and } \quad \cosh \alpha=\frac{1}{2}\left(r^{2}-a^{2}-b^{2}\right) a^{-1} b^{-1}
$$

Two equal spheres of radius $a$ with distance $r$ between centers

$$
C=2 \pi \epsilon a \sinh \beta \sum_{n=1}^{\infty}[\operatorname{csch}(2 n-1) \beta+\operatorname{csch} 2 n \beta]
$$

where $\cosh \beta=\frac{1}{2} r a^{-1}$.
Kirchhoff's formula for two identical plane parallel coaxial circular disks of thickness $t$ and radius $r$ with square edges and a distance $d$ between adjacent faces
$C \approx 8.855 \times 10^{-12}\left(\pi r^{2} d^{-1}+r\left\{-1+\ln \left[16 \pi r d^{-1}\left(1+t d^{-1}\right)\right]+4 \pi t d^{-1} \ln \left(1+t^{-1} d\right)\right\}\right)$
Two identical oppositely charged plane parallel coaxial infinitely thin circular disks at a distance $c$ apart

$$
C \approx 8.855 \times 10^{-12}\left\{\pi r^{2} d^{-1}+r\left[\ln \left(16 \pi r d^{-1}\right)-1\right]\right\}
$$

Two thin oppositely charged coaxial rings generated by rotating two coplanar circles
of radius $a$ about a line parallel to and at a distance $b$ from the line of length $c$ that joins their centers

$$
C \approx 1.7480 \times 10^{-10}\left\{\frac{1}{2 b} \ln \frac{8 b}{a}+\frac{1}{\left(4 a^{2}+c^{2}\right)^{\frac{1}{2}}} K\left[\left(1+4 c^{2} b^{-2}\right)^{-\frac{1}{2}}\right]\right\}^{-1}
$$

Capacitance between Two Bodies, One Enclosing the Other
Concentric spheres of radii $a$ and $b, a<b \quad C=4 \pi \epsilon a b(b-a)^{-1}$
Spheres of radii $a$ and $b$ with distance $c$ between centers

$$
C=4 \pi \epsilon a b \sinh \alpha \sum_{s=0}^{\infty}[b \sinh n \alpha-a \sinh (n-1) \alpha]^{-1}
$$

where $\cosh \alpha=\frac{1}{2}\left(a^{2}+b^{2}-c^{2}\right)(a b)^{-1}$.
Confocal ellipsoids with semiaxes $a>b>c, a^{\prime}>b^{\prime}>c^{\prime}$, and $a>a^{\prime}$

$$
C=4 \pi \epsilon a^{\prime}\left(a-a^{\prime}\right)^{-1}\left(a^{2}-c^{2}\right)^{\frac{1}{2}}\left\{F\left[\left(a^{2}-b^{2}\right)^{\frac{1}{2}}\left(a^{2}-c^{2}\right)^{-\frac{1}{2}}, \sin ^{-1}\left(1-c^{2} a^{-2}\right)^{\frac{1}{2}}\right]\right\}^{-1}
$$

Small sphere of radius $a$ midway between planes a distance $2 c$ apart

$$
C \approx 1.1128 \times 10^{-10}\left(\frac{1}{a}-\frac{1}{c} \ln 2\right)^{-1}
$$

## Two-dimensional Formulas for Capacitance per Meter Length

Let $U+j V=f(x+j y)$, then if $V_{1}$ and $V_{2}$ form two closed curves in the $x y$ plane such that all $U$ lines originate inside one and terminate inside the other and are continuous in the intermediate regions, $V_{1}$ and $V_{2}$ are sections of two cylindrical conductors and the capacitance per meter between them is

$$
C_{1}=\epsilon[U]\left|V_{2}-V_{1}\right|^{-1}
$$

where [ $U$ ] is the increment in $U$ in passing once around $V_{1}$ or $V_{2}$ in the positive direction.
Two circular cylinders of radii $a$ and $b$ with a distance $c$ between centers

$$
C_{1}=2 \pi \epsilon\left(\cosh ^{-1} \frac{\left|c^{2}-a^{2}-b^{2}\right|}{2 a b}\right)^{-1}
$$

One cylinder may enclose the other or they may be mutually external.
Cylinder of radius $a$ and plane at a distance $c$ from its center

$$
C_{1}=2 \pi \epsilon\left[\cosh ^{-1}\left(c a^{-1}\right)\right]^{-1}
$$

Coaxial circular cylinders of radii $a$ and $b, b>a$

$$
C_{1}=2 \pi \epsilon \ln \left(a^{-1} b\right)
$$

Confocal elliptic cylinders semiaxes $a, b$ and $a^{\prime}, b^{\prime}, b>a, b^{\prime}>a^{\prime}, a>a^{\prime}$

$$
C_{1}=2 \pi \epsilon\left[\tanh ^{-1}\left(b^{-1} a\right)-\tanh ^{-1}\left(b^{-1} a^{\prime}\right)\right]^{-1}
$$

Two identical infinite parallel coplanar strips with near-edge distance $2 a$ and far-edge distance $2 b$

$$
C_{1}=\epsilon K\left[\left(1-b^{-2} a^{2}\right)^{\frac{1}{3}}\right]\left[K\left(b^{-1} a\right)\right]^{-1}
$$

Two identical infinite parallel flat strips of width $2 a$ at a distance $2 b$ apart in position to form opposite faces of a rectangular prism ${ }^{1}$

$$
C_{1}=\epsilon K\left[\left(1-k^{2}\right)^{\frac{1}{2}}\right][K(k)]^{-1}=\epsilon K\left(k^{\prime}\right)[K(k)]^{-1}
$$

where $k$ must be chosen to satisfy

$$
\frac{a}{b}=\frac{K\left(k^{\prime}\right) E\left\{\cos ^{-1}\left[E\left(k^{\prime}\right) / K\left(k^{\prime}\right)\right], k^{\prime}\right\}-E\left(k^{\prime}\right) F\left\{\cos ^{-1}\left[E\left(k^{\prime}\right) / K\left(k^{\prime}\right)\right], k^{\prime}\right\}}{E\left(k^{\prime}\right) K(k)-\left(k / k^{\prime}\right)^{2} E(k) K\left(k^{\prime}\right)}
$$

Approximate formula for above

$$
C_{1} \approx \epsilon b^{-1} a\left\{1+b(\pi a)^{-1}\left[1+\ln \left(2 \pi b^{-1} a\right)\right]\right\}
$$

Square coaxial line with faces of inner square section of width $2 a$ parallel to faces of outer square section of width $2 b$

$$
C_{1}=2 \epsilon \frac{K\left[\left(k_{1}{ }^{2}-k_{2}{ }^{2}\right)^{\frac{1}{2}} k_{1}{ }^{-1}\left(1-k_{2}{ }^{2}\right)^{-\frac{1}{2}}\right]}{K\left[k_{2}\left(1-k_{1}{ }^{2}\right)^{\left.\frac{1}{2} k_{1}{ }^{-1}\left(1-k_{2}{ }^{2}\right)^{-\frac{1}{2}}\right]}\right.}
$$

where $k_{1}$ and $k_{2}$ are found from

$$
\frac{K\left(k_{1}\right)}{\overline{K\left[\left(1-k_{1}\right)^{\frac{1}{2}}\right]}}=\frac{K\left[\left(1-k_{2}{ }^{2}\right)^{\frac{1}{2}}\right]}{\bar{K}\left(k_{2}\right)}=\frac{b+a}{b-a}
$$

Strip of width $b$ coplanar with and parallel to the edge of a semi-infinite grounded sheet with a gap $a$ between them

$$
C_{1}=2 \epsilon K\left[b^{\frac{1}{2}}(a+b)^{-\frac{1}{2}}\right]\left\{K\left[a^{\frac{1}{2}}(a+b)^{-\frac{1}{2}}\right]\right\}^{-1}
$$

Circular cylinder of radius a midway between earthed parallel plates at a distance $2 b$ apart

$$
C_{1} \approx 4 \epsilon K(\sin \theta)[K(\cos \theta)]^{-1}
$$

where $\theta$ must be chosen to satisfy

$$
\sin \theta=\tanh \left[\pi a \theta(2 b \theta-\pi a)^{-1}\right]
$$

This is an upper limit which is about 0.1 per cent above the true value when $a=\frac{1}{2} b$ and approaches the true value as $a / b$ diminishes.
Small wire of radius $a$ parallel to and at a distance $c$ from the nearer of two parallel earthed plates at a distance $b$ apart. $a \ll c$

$$
C_{1} \approx 2 \pi \epsilon\left[\ln \left(\frac{2 b}{\pi a} \sin \frac{\pi c}{b}\right)\right]^{-1}
$$

Rectangular prism of $n$ sides, each side of width $a$, coaxial with and inside circular cylinder of radius $b . \quad b \gg a$

$$
C_{1} \approx 2 \pi \epsilon\left[\ln \left(a^{-1} b N\right)\right]^{-1}
$$

where $N=2 \pi n^{-1} \Gamma\left(1+2 n^{-1}\right)\left[\Gamma\left(1+n^{-1}\right)\right]^{-2}$.
Capacitance Edge Corrections. Consider a thin, charged semi-infinite plate with straight edge parallel to and halfway between two infinite conducting plates at potential zero spaced a distance $b$ apart. Increased capacitance per unit length of edge due to bulging of field is equivalent to adding strip of width $\pi^{-1} b \ln 2$ to the edge and assuming no bulging.

[^203]Same as above but infinite plates a distance $2 B$ apart and central plates of thickness $2 A$ with square edge. Increased capacitance per unit length due to bulging of field equivalent to adding to central plate a strip of thickness $2 A$ and width

$$
\frac{2}{\pi}\left\{B \ln \frac{2 B-A}{B-A}-A \ln \frac{[A(2 B-A)]}{B-A}\right\}
$$

and assuming no bulging or charge on edge.
Parallel-plate capacitor with rectangular step in one plate, spacing on one side of step $a$ and on other $b . \quad b>a$. Additional capacitance per unit length of step above that from assumption of uniform field on each side of step is

$$
2 \pi \epsilon\left(\frac{a^{2}+b^{2}}{a b} \ln \frac{b+a}{b-a}+2 \ln \frac{b^{2}-a^{2}}{4 a b}\right)^{-1}
$$

Two infinite sheets, each of which has one half bent at right angles to the other, are placed with the edges of the bends parallel so that the distance between sheets on one side of the bend is $a$ and on the other $b$. The additional capacitance per unit length of bend over that given by the assumption of a uniform field over each a half of the inner sheet and no field in the corner rectangle is

$$
\frac{2 \epsilon}{\pi}\left(\ln \frac{a^{2}+b^{2}}{4 a b}+\frac{a}{b} \tan ^{-1} \frac{b}{a}+\frac{b}{a} \tan ^{-1} \frac{a}{b}\right)
$$

## Capacitance and Elastance Coefficients

In a system of $n$ conductors the charge on conductor $m$ is

$$
Q_{m}=c_{1 m} V_{1}+c_{2 m} V_{2}+\cdots+c_{m m} V_{m}+\cdots+c_{n m} V_{n}
$$

In a system of $n$ conductors the potential of conductor $m$ is

$$
V_{m}=s_{1 m} Q_{1}+s_{2 m} Q_{2}+\cdots+s_{m m} Q_{m}+\cdots+s_{n m} Q_{n}
$$

The force or torque tending to increase distance or angle $x$ is

$$
-\frac{1}{2} \sum_{p=1}^{n} \sum_{q=1}^{n} \frac{\partial c_{p q}}{\partial x} Q_{p} Q_{q}=+\frac{1}{2} \sum_{p=1}^{n} \sum_{q=1}^{n} \frac{\partial s_{p q}}{\partial x} V_{p} V_{q}
$$

The energy of a system of $n$ conductors is

$$
W=\frac{1}{2} \sum_{p=1}^{n} \sum_{q=1}^{n} c_{p q} V_{p} V_{q}=\frac{1}{2} \sum_{p=1}^{n} \sum_{q=1}^{n} s_{p q} Q_{p} Q_{q}
$$

For two distant conductors

$$
s_{p q}=s_{q p} \approx(4 \pi \epsilon r)^{-1}
$$

If conductor 2 encloses conductor 1 only, then
where $1<r$.

$$
c_{11}=-c_{12} \quad \text { and } \quad s_{1 r}=s_{2 r}
$$

For two spheres of radii $a_{1}$ and $a_{2}$ with centers a distance $c$ apart, far from all other bodies

$$
c_{11}=4 \pi a_{1} a_{9} \sinh \alpha \sum_{n=1}^{\infty}\left[a_{2} \sinh n \alpha \pm a_{1} \sinh (n-1) \alpha\right]^{-1}
$$

where $\cosh \alpha=\frac{1}{2}\left|c^{2}-a^{2}-b^{2}\right| a^{-1} b^{-1}$ and the upper sign is used unless $a_{2}$ encloses $a_{1}$. If spheres are mutually external

$$
c_{12}=-4 \pi \epsilon a_{1} a_{2} c^{-1} \sinh \alpha \sum_{n=1}^{\infty} \operatorname{csch} n \alpha
$$

If the capacitances to earth of two distant bodies when alone are $C_{1}$ and $C_{2}$, the capacitance coefficients are approximately

$$
c_{11} \approx \frac{16 \pi^{2} \epsilon^{2} r^{2} C_{1}}{16 \pi^{2} \epsilon^{2} r^{2}-C_{1} C_{2}} \quad c_{12}=c_{21} \approx-\frac{C_{1} C_{2}}{4 \pi \epsilon r} \quad c_{22} \approx \frac{16 \pi^{2} \epsilon^{2} r^{2} C_{2}}{16 \pi^{2} \epsilon^{2} r^{2}-C_{1} C_{2}}
$$

5b-2. Electrostatic-force Formulas. The force in the direction of the unit vector $m$ on a conductor with surface charge density $\sigma$ in a dielectric of capacitivity $\epsilon$ is

$$
F_{m}=\frac{1}{\Sigma} \epsilon^{-1} \int S_{S} \sigma^{2} m \cdot \mathrm{n} d S
$$

where n is a unit vector normal to the surface.
When a uniform isotropic dielectric body of capacitivity $\epsilon$ occupies the volume $v$, where, before its advent, the field due to a fixed distribution of charge was $\mathbf{E}$ and after its advent $E^{\prime}$, its energy is

$$
W=\frac{1}{2} \int_{v}\left(\epsilon_{v}-\epsilon\right) \mathbf{E} \cdot \mathbf{E}^{\prime} d v
$$

The force or torque tending to increase the distance or angle $x$ of the above body is

$$
\boldsymbol{F}_{x}=-\frac{\partial W}{\partial x}
$$

The torque tending to increase the angle $\alpha$ which the normal to a disk of radius $a$ makes with a field that would be uniform and of strength $E$ except for the disk is

$$
T=\frac{8}{3} \epsilon a^{3} E^{2} \sin 2 \alpha
$$

The torque tending to increase the angle $\alpha$ between the field and the major axis of an oblate dielectric spheroid of capacitivity $\epsilon$ with semiaxes $a$ and $b$, where $b>a$, placed in a field that would be uniform and of strength $E$ except for the spheroid is

$$
T=\frac{2 \pi \epsilon_{v}(K-1)^{2} b^{2} a E^{2}(3 P-2) \sin 2 \alpha}{3\left[(K-1)^{2} P^{2}+(K-1)(2-K) P-2 K\right]}
$$

where $P=A\left[\left(1+A^{2}\right) \cot ^{-1} A-A\right], A=a\left(b^{2}-a^{2}\right)^{-\frac{1}{2}}$, and $K=\epsilon \epsilon_{v}^{-1}$.
If the above oblate spheroid is conducting, the torque is

$$
T=\frac{2 \pi \epsilon_{v} b^{2} a E^{2}(3 P-2) \sin 2 \alpha}{3 P(P-1)}
$$

The torque tending to increase the angle $\alpha$ between the field and the major axis of a prolate dielectric spheroid of capacitivity $\epsilon$ with semiaxes $a$ and $b$ where $b<a$ placed in a field that would be uniform and of strength $E$ except for the spheroid is

$$
T=\frac{2 \pi \epsilon_{v}(K-1)^{2} b^{2} a E^{2}(2-3 Q) \sin 2 \alpha}{3\left[(K-1)^{2} Q^{2}+(K-1)(2-K) Q-2 K\right]}
$$

where $Q=C\left[\left(1-C^{2}\right) \operatorname{coth}^{-1} C+C\right] . \quad C=a\left(a^{2}-b^{2}\right)^{-\frac{1}{2}}$ and $K=\epsilon_{v}{ }^{-1}$.

If the above prolate spheroid is conducting, the torque becomes ${ }^{1}$

$$
T=\frac{2 \pi \epsilon_{v} b^{2} a E^{2}(2-3 Q) \sin 2 \alpha}{3 Q(Q-1)}
$$

Two parallel cylinders of radii $a$ and $b$ carry charges $+Q$ and $-Q$ and their axes are a distance $c$ apart. The force per unit length tending to increase $c$ is

$$
F_{1}=\frac{ \pm Q^{2} c}{2 \pi \epsilon\left[\left(c^{2}-a^{2}-b^{2}\right)^{2}-4 a^{2} b^{2}\right]^{\frac{1}{2}}}
$$

The plus sign is used if one cylinder encloses the other and the minus sign if they are mutually external.
Two identical coplanar parallel strips carry charges $+Q$ and $-Q$, the distance between their nearer edges being $2 a$ and between their far edges $2 b$. The attractive force per unit length between them is

$$
F_{1}=\frac{\pi b Q^{2}}{8 \epsilon a(a+b)[K(a / b)]^{2}}
$$

Two identical infinite coplanar parallel conducting strips carry equal positive charges $Q$, the distance between their near edges being $2 a$ and between their far edges $2 b$. The repulsive force per unit length between them is

$$
F_{1}=\frac{Q^{2}}{2 \pi \epsilon(a+b)}
$$

The force on a point charge at a distance $b$ from the center of a sphere of radius $a$ at zero potential is

$$
F=\frac{a b Q^{2}}{4 \pi \epsilon\left(a^{2}-b^{2}\right)^{2}}
$$

When $b>a$, the force is toward the center; and when $b<a$, it is away from the center. The repulsive force between a point charge $q$ at a distance $b$ from the center of a sphere of radius $a$ carrying a total charge $Q$ is, when $b>a$,

$$
F=\frac{q}{4 \pi \epsilon b^{2}}\left[Q+\frac{a^{3}\left(a^{2}-2 b^{2}\right) q}{b\left(b^{2}-a^{2}\right)^{2}}\right]
$$

At the point $x_{0}, y_{0}, z_{0}$ inside a rectangular conducting box bounded by the planes $x=0, a, y=0, b, z=0, c$, the image force on a charge $Q$ is

$$
F_{z}=-\frac{2 Q^{2}}{\epsilon a b} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{\sinh A_{m n}\left(c-2 z_{0}\right)}{\sinh A_{m n} c} \sin ^{2} \frac{n \pi x_{0}}{a} \sin ^{2} \frac{m \pi y_{0}}{b}
$$

in the $z$ direction where $A_{m n}=\pi(a b)^{-1}\left(m^{2} a^{2}+n^{2} b^{2}\right)^{\frac{1}{2}}$. The other force components are given by cyclic permutation of the symbols $x, y, z ; a, b, c$; and $x_{0}, y_{0}, z_{0}$. At a distance $c$ from one of two parallel uncharged plates at a distance $b$ apart, the image force on a charge $Q$ is

$$
F=\frac{Q^{2}}{16 \pi \epsilon a^{2}}\left[\zeta\left(2, \frac{1}{2}-\frac{c}{b}\right)-\zeta\left(2, \frac{c}{b}\right)\right]
$$

where $\zeta(z, a)$ is a Riemann zeta function.

[^204]On the axis and at a distance $b$ from the center of a conducting disk of radius $a$ carrying a charge $Q$, the repulsive force on a point charge $q$ is

$$
F=\frac{q}{4 \pi \epsilon\left(a^{2}+b^{2}\right)}\left[Q-\frac{a\left(3 b^{2}+a^{2}\right) q}{2 \pi b\left(a^{2}+b^{2}\right)}+\frac{3 b^{2}-a^{2}}{2 \pi b^{2}} q \tan ^{-1} \frac{a}{b}\right]
$$

At a distance $c$ from the center of an uncharged dielectric sphere of radius $a$ and relative capacitivity $K$, the attractive force on a charge $Q$ is

$$
F=\frac{(K-1) Q^{2}}{4 \pi \epsilon_{v} c^{2}} \sum_{n=1}^{\infty} \frac{n(n+1)}{K n+n+1}\left(\frac{a}{c}\right)^{2 n+1}
$$

At a distance $c$ from the plane face of an infinite block of dielectric of relative capacitivity $K$, the attractive force on a point charge $Q$ is

$$
F=\frac{Q^{2}}{16 \pi \epsilon_{v} c^{2}} \frac{K-1}{K+1}
$$

The attractive force on a point charge $Q$ at a distance $a$ from the plane face of a dielectric slab of thickness $c$ and relative capacitivity $K$ is

$$
F=\frac{\beta Q^{2}}{16 \pi \epsilon_{v}}\left[\frac{1}{a^{2}}-\left(1-\beta^{2}\right) \sum_{n=1}^{\infty} \frac{\beta^{2(n-1)}}{(a+n c)^{2}}\right]
$$

where $\beta=(K-1)(K+1)^{-1}$.
The attractive force per unit length on a line charge of strength $\lambda$ per unit length parallel to and at a distance $c$ from the axis of an uncharged circular cylinder of radius $a$ and relative capacitivity $K$ is

$$
F_{1}=\frac{K-1}{K+1} \frac{\lambda^{2} a^{2}}{2 \pi \epsilon_{v} c\left(c^{2}-a^{2}\right)}
$$

For a conductor, $K=\infty$; so the first factor is unity.
The force toward the wall per unit length on a line charge of strength $\lambda$ per unit length parallel to and at a distance $c$ from the axis of a circular cylindrical hole of radius $a$ in an infinite block of dielectric of relative capacitivity $K$ is

$$
F_{1}=\frac{K-1}{K+1} \frac{c \lambda^{2}}{2 \pi \epsilon_{v}\left(a^{2}-c^{2}\right)}
$$

For a conductor, $K=\infty$; so the first factor is unity.
The attractive force per unit length on a line charge of strength $\lambda$ per unit length parallel to and at a distance $a$ from the nearer face of a dielectric slab of thickness $a$ and relative capacitivity $K$ is

$$
F_{1}=\frac{\beta \lambda^{2}}{4 \pi \epsilon_{v}}\left[\begin{array}{l}
1 \\
\dot{a}
\end{array}-\left(1-\beta^{2}\right) \sum_{n=1}^{\infty} \frac{\beta^{2(n-1)}}{a+n c}\right]
$$

where $\beta=(K-1)(K+1)^{-1}$.
In the foregoing case, if $a=m c$ where $m$ is an integer, the force per unit length is expressible in finite terms; thus

$$
F_{1}=\frac{\beta \lambda^{2}}{4 \pi e_{v} c}\left\{\frac{1}{m}-\frac{1-\beta^{2}}{\beta^{2(m+1)}}\left[\ln \left(1-\beta^{2}\right)+\sum_{n=1}^{m} \frac{\beta^{2 n}}{n}\right]\right\}
$$

The attractive force per unit length on a line charge of strength $\lambda$ per unit length parallel to and at a distance $a$ from an uncharged conducting plane is

$$
F_{1}=\frac{\lambda^{2}}{4 \pi \epsilon a}
$$

The attractive force between a line charge of strength $\lambda$ per unit length and an uncharged conducting sphere of radius $a$ whose center is at a distance $b$ from it is .

$$
F=\frac{\lambda^{2} a^{2}}{\pi \epsilon_{v} b\left(b^{2}-a^{2}\right)^{\frac{1}{2}}} \sin ^{-1} \frac{a}{b}
$$

The attractive force between a line charge of strength $\lambda$ per unit length and an uncharged dielectric sphere of relative capacitivity $K$ and radius $a$ is

$$
F=\frac{(K-1) \lambda^{2}}{\pi \epsilon_{v}} \sum_{n=1}^{\infty} \frac{n(2 n-2)!!}{(2 n-1)!!(K n+n+1)}\left(\frac{a}{b}\right)^{2 n+1}
$$

5b-3. Multipole Formulas. The potential of a point charge $Q$ is

$$
V=\frac{Q}{4 \pi \epsilon r}
$$

where $r$ is the distance from the charge to the field point. The force on a point charge in a field of electric intensity $\mathbf{E}$ is

$$
\mathbf{F}=Q \mathbf{E}
$$

The potential of a dipole of moment $p$ is

$$
V=\frac{p \cos \theta}{4 \pi \epsilon r^{2}}=\frac{\mathbf{p} \cdot \mathbf{r}}{4 \pi \epsilon r^{3}}
$$

where $r$ is measured from the dipole to the field point.
The force on a dipole in a field $\mathbf{E}$ is $\mathbf{F}=(\mathbf{p} \cdot \boldsymbol{\nabla}) \mathbf{E}$.
The torque on a dipole in a field $\mathbf{E}$ is $\mathbf{T}=\mathrm{p} \times \mathbf{E}$.
The mutual energy of two dipoles of moment $p_{1}, p_{2}$ which make angles $\theta_{1}$ and $\theta_{2}$ with the vector $\mathbf{r}$ that joins them and whose planes intersect along $\mathbf{r}$ at an angle $\psi$ is

$$
W=\frac{p_{1} p_{2}}{4 \pi \epsilon r^{3}}\left(\sin \theta_{1} \sin \theta_{2} \cos \psi-2 \cos \theta_{1} \cos \theta_{2}\right)
$$

The components of force and torque between two dipoles are

$$
F_{r}=-\frac{\partial W}{\partial r} \quad T_{\alpha}=-\frac{\partial W}{\partial \alpha}
$$

The potential of a multipole of the $n$th order and moment strength $p^{(n)}$ is

$$
\begin{aligned}
V_{n} & =\frac{(-1)^{n} p^{(n)}}{4 \pi \epsilon n!} \frac{\partial^{n}}{\partial l_{1} \cdots \partial l_{n}}\left(\frac{1}{r}\right) \\
& =\sum_{m=0}^{n}\left(a_{n m} \cos m \varphi+b_{n m} \operatorname{in} m \varphi\right) r^{-n-1} P_{n}^{m}(\cos \theta)
\end{aligned}
$$

5b-4. Dielectric-boundary Formulas. If $V^{\prime}$ and $V^{\prime \prime}$ are the electrostatic potentials
in the dielectrics $\epsilon^{\prime}$ and $\epsilon^{\prime \prime}$, then at their uncharged interface

$$
V^{\prime}=V^{\prime \prime} \quad \text { and } \quad \epsilon^{\prime} \frac{\partial V^{\prime}}{\partial n}=\epsilon^{\prime \prime} \frac{\partial V^{\prime \prime}}{\partial n}
$$

where $n$ is a coordinate normal to the interface.
The normal stress, directed from $\epsilon^{\prime \prime}$ to $\epsilon^{\prime}$, on the above interface is

$$
F_{n}=\frac{\epsilon^{\prime \prime}-\epsilon^{\prime}}{2 \epsilon^{\prime}}\left(\frac{D_{t}^{\prime 2}}{\epsilon^{\prime}}+\frac{D_{n}^{\prime 2}}{\epsilon^{\prime \prime}}\right)
$$

where $D_{t}^{\prime}$ and $D_{n}^{\prime}$ are the tangential and normal components of the displacement in $\epsilon^{\prime}$.
5b-5. Dielectric Bodies in Electrostatic Fields. A sphere of radius a and capacitivity $\epsilon$ is placed in a uniform field of intensity $\mathbf{E}$. The uniform field intensity inside and the potential outside due to its polarization are, respectively,

$$
\mathbf{E}_{i}=\frac{3 \epsilon_{v} \mathbf{E}}{\epsilon+2 \epsilon_{v}} \quad V_{p}=E \frac{\epsilon_{v}-\epsilon}{\epsilon+2 \epsilon_{v}} \frac{a^{3}}{r^{2}} \cos \theta
$$

where $r$ is measured from the center of the sphere and $\mathbf{E}$ is directed along $\theta=0$.
An oblate dielectric spheroid of capacitivity $\epsilon$ whose minor (rotational) axis on $\theta=0$ is $2 a$ and whose focal circle is of radius $c$ is placed in a uniform electric field $\mathbf{E}$ parallel to $\theta=0$. The uniform field inside and the potential outside due to its polarization are, respectively,

$$
\begin{gathered}
\mathbf{E}_{i}=\mathbf{E} \epsilon_{v} v^{3} M \quad V_{p}=M\left(\epsilon-\epsilon_{v}\right) a\left(a^{2}+c^{2}\right) E\left(\cot ^{-1} \zeta-\zeta^{-1}\right) r \cos \theta \\
\left.M=\left\{a\left(\epsilon_{v}-\epsilon\right)\left[\left(a^{2}+c^{2}\right) \cot ^{-1}\left(c^{-1} a\right)-a c\right]+\epsilon \epsilon\right\}^{3}\right\}^{-1} \\
\zeta^{2}=\frac{1}{2} c^{-2}\left\{r^{2}-c^{2}+\left[\left(r^{2}-c^{2}\right)^{2}+4 r^{2} c^{2} \cos ^{2} \theta\right]^{\frac{1}{2}}\right\}
\end{gathered}
$$

where
and
The above spheroid is placed in a field $\mathbf{E}^{\prime}$ in the $\varphi=0$ direction, normal to the $\theta=0$ axis. The uniform field intensity inside and the potential outside due to its polarization are, respectively,

$$
\begin{aligned}
& \mathbf{E}_{i}^{\prime}=2 \mathbf{E}^{\prime} \epsilon_{v} c^{3} M^{\prime} \quad V_{p}^{\prime}=M^{\prime}\left(\epsilon-\epsilon_{v}\right) a\left(c^{2}+a^{2}\right) E^{\prime}\left[\cot ^{-1} \zeta-\zeta\left(1+\zeta^{2}\right)^{-1}\right] r \sin \theta \cos \varphi \\
& \text { where }
\end{aligned} M^{\prime}=\left\{a\left(\epsilon-\epsilon_{v}\right)\left[\left(a^{2}+c^{2}\right) \cot ^{-1}\left(c^{-1} a\right)-a c\right]+2 \epsilon_{v} c^{3}\right\}^{-1}-1 .
$$

The above spheroid is placed in a uniform field $\mathbf{E}_{0}$ which makes an angle $\alpha$ with its rotational $\theta=0$ axis. The uniform field inside and the potential outside due to its polarization are, respectively,

$$
\mathbf{E}_{0 i}=\mathbf{E}_{0 \epsilon_{v} v^{3}\left[M \cos \alpha+M^{\prime} \sin \alpha\right] \quad V_{0 p}=E_{0}\left[V_{p} E^{-1} \cos \alpha+V_{p}^{\prime} E^{\prime-1} \sin \alpha\right]}^{\text {and }}
$$

where $V_{p}^{\prime}, V_{p}, \mathbf{E}$, and $\mathbf{E}^{\prime}$ are given in the preceding formulas.
A prolate spheroid of capacitivity $\epsilon$ whose major (rotational) axis on $\theta=0$ is $2 b$ and whose focal distance is $2 c$ is placed in a uniform electric field $\mathbf{E}$ parallel to $\theta=0$. The uniform field intensity inside and the potential outside due to its polarization are, respectively,
where
and

$$
\begin{gathered}
\mathbf{E}_{i}=\mathbf{E}_{\epsilon_{\epsilon}} c^{3} N \quad V_{p}=N\left(\epsilon-\epsilon_{v}\right) b\left(c^{2}-b^{2}\right) E\left(\operatorname{coth}^{-1} \eta-\eta^{-1}\right) r \cos \theta \\
N=\left\{b\left(\epsilon_{v}-\epsilon\right)\left[\left(c^{2}-b^{2}\right) \operatorname{coth}^{-1}\left(c^{-1} b\right)+b c\right]+\epsilon c^{3}\right\}^{-1}
\end{gathered}
$$

The above spheroid is placed in a field $\mathbf{E}^{\prime}$ in the $\varphi=0$ direction normal to the $\theta=\mathbf{0}$ axis. The uniform field inside and the potential outside due to its polarization are, respectively,

$$
\begin{aligned}
& \mathbf{E}_{i}=\mathbf{E}^{\prime} \epsilon_{v} c^{3} N^{\prime} \quad V_{p}^{\prime}=N^{\prime}\left(\epsilon-\epsilon_{v}\right) b\left(b^{2}-c^{2}\right) E^{\prime}\left[\operatorname{coth}^{-1} \eta-\eta\left(1-\eta^{2}\right)^{-1}\right] r \sin \theta \cos \varphi \\
& \text { where } N^{\prime}=\left\{b\left(\epsilon_{v}-\epsilon\right)\left[\left(b^{2}-c^{2}\right) \operatorname{coth}^{-1} c^{-1} b-b c\right]+2 \epsilon_{v} c^{3}\right\}^{-1} .
\end{aligned}
$$

The above prolate spheroid is placed in a uniform field $\mathbf{E}_{0}$ which makes an angle $\alpha$ with its rotational $\theta=0$ axis. The uniform field inside and the potential outside due to its polarization are, respectively,

$$
\mathbf{E}_{0 i}=\mathbf{E}_{0 \epsilon_{v}} c^{3}\left[N \cos \alpha+N^{\prime} \sin \alpha\right] \quad V_{0 p}=E_{0}\left[V_{p} E^{-1} \cos \alpha+V_{p}^{\prime} E^{\prime-1} \sin \alpha\right]
$$

where $V_{p}, V_{p}^{\prime}, E$, and $E^{\prime}$ are given in the foregoing formulas.
5b-6. Static-current-flow Formulas. Linear-circuit Formulas. See steady-state alternating-current formulas.

Currents in Extended Media (Three Dimensions). The following formulas assume the medium to be uniform, homogeneous, and isotropic and to have a resistivity $\rho$ which obeys Ohm's law.

The resistance between a single perfectly conducting electrode immersed in an infinite medium and the concentric infinite sphere is related to the capacitance of the same electrode by the formula

$$
R=\rho \epsilon_{v} C^{-1}
$$

where the capacitance $C$ for a sphere, prolate or oblate spheroid, ellipsoid, circular disk, elliptic disk, two spheres in contact, two spheres connected by a wire, two spheres intersecting at an angle $\pi / m$, a spherical bowl, torus, cube, and circular plane annulus are given in the electrostatic section. The resistance between widely separated source and sink electrodes immersed in an infinite medium is

$$
R_{12} \approx R_{1}+R_{2}-\rho(2 \pi r)^{-1}
$$

where $R_{1}$ and $R_{2}$ are the resistances to infinity of each alone and $r$, the distance between them, is large compared with their dimensions. The resistance to infinity of a single electrode, sunk into the plane surface of a semi-infinite medium such as the earth in such a way that the submerged part, if combined with its mirror image in the surface, would form one of the above electrodes is

$$
R=2 \rho \epsilon_{v} C^{-1}
$$

When both source and sink electrodes are half submerged in the plane face just described, the resistance between them is

$$
R=R_{12} \approx 2\left[R_{1}+R_{2}-\rho(2 \pi r)^{-1}\right]
$$

where $R_{12}, R_{1}$, and $R_{2}$ have the same significance as before and $r$, the distance between them, is much larger than the electrode dimensions. In the preceding case, if the medium has a resistivity $\rho_{1}$ to a depth $a$ and $\rho_{2}$ below this depth, then the resistance between electrodes is

$$
R \approx 2\left\{R_{1}+R_{2}-\frac{\rho_{1}}{2 \pi r}+\frac{\rho_{1}}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-\beta)^{n}}{2 n a}-\frac{(-\beta)^{n}}{\left(4 n^{2} a^{2}+r^{2}\right)^{\frac{1}{2}}}\right]\right\}
$$

where $\beta=\left(\rho_{1}-\rho_{2}\right)\left(\rho_{1}+\rho_{2}\right)^{-1}$ and both $a$ and $r$ are large compared with the electrode dimensions.
Two perfectly conducting disk electrodes of radii $a$ and $b$ are applied to the plane horizontal face of a semi-infinite homogeneous medium whose horizontal and vertical resistivities are $\rho_{1}$ and $\rho_{2}$. If the electrode spacing $r$ is much greater than $a$ and $b$, the resistance between them is

$$
R \approx\left(\rho_{1} \rho_{2}\right)^{\frac{1}{2}}\left[(4 a)^{-1}+(4 b)^{-1}-(\pi r)^{-1}\right]
$$

Two conical perfectly conducting electrodes of half angle $\beta$ with an angle $\alpha$ between their axes pass normally through a spherical shell of thickness $b$ and resistivity $\rho$.

The resistance between them is rigorously

$$
R=\rho(\pi b)^{-1} \cosh ^{-1}\left(\csc \beta \sin \frac{1}{2} \alpha\right)
$$

A cylindrical column of length $l$ and radius $a$ of material of resistivity $\rho$ connects normally the plane faces of two semi-infinite masses of the same resistivity. The resistance $R$ between the infinite hemispherical perfectly conducting electrodes bounding the masses lies within the limits

$$
\frac{\rho l}{\pi a^{2}}+\frac{\rho}{2 a}<R<\frac{\pi \rho}{2[\pi a-l \ln (1+\pi a / l)]}
$$

This formula is most accurate for small values of $l / a$ and is exact at $l=0$. For large values of $l$

$$
R \approx \rho a^{-1}\left(0.31831 l a^{-1}+0.522\right)
$$

Perfectly conducting disk electrodes of radius $b$ are applied concentrically to the ends of a solid right circular cylinder of radius $a$, length $c$, and resistivity $\rho$. The resistance between them is

$$
R \approx 2 \rho\left(\pi a^{2}\right)^{-1}[c+f(b)]
$$

where $f(0.25 a)=2.05164 a, f(0.50 a)=0.5336 a$, and $f(0.75 a)=0.1060 a$. The errors are less than 0.05 per cent if $c$ is greater than $4 a$.

Currents in Extended Media (Two Dimensions). The resistance between perfectly conducting plane electrodes covering the ends and orthogonal to the sides of a bar of rectangular section, resistivity $\rho$, and thickness $b$ bent in a circular arc with inner radius $a$ and outer radius $c$, which subtends an angle $\alpha$ at the center, is

$$
R=\rho \alpha b^{-1}\left[\ln \left(a^{-1} c\right)\right]^{-1}
$$

The resistance between two small cylindrical electrodes of radius $r$ passing normally through a strip of width $a$, thickness $b$, and resistivity $\rho$ at a distance $2 c$ apart on a line midway between its edges is, if $r \ll a$ and $r \ll c$,

$$
R \approx \frac{\rho}{\pi b} \ln \frac{a \sinh 2 \pi a^{-1} c}{\pi r}
$$

The resistance between the electrodes in the above strip when they are equidistant from its center on a line normal to its edges is

$$
R \approx \frac{\rho}{\pi b} \ln \frac{2 a \tan \pi a^{-1} c}{\pi r}
$$

In the following six configurations the bars of resistivity $\rho$ have rectangular cross sections and are of uniform thickness $b$. Perfectly conducting electrodes cover the ends which are at right angles to the sides. For 1 per cent accuracy the interval between each end and the beginning of the boundary perturbation should exceed about twice the width of the intervening straight bar.
A bar of width $a$ has an infinitely narrow cut of depth $c$ normal to one side. The additional resistance due to the cut is

$$
\Delta R=-4 \rho(\pi b)^{-1} \ln \cos \frac{1}{2} \pi a^{-1} c
$$

One side of a bar is straight and the other has a rectangular step in it. The width on one side of the step is $a$ and on the other $c$ where $a>c$. The additional resistance due to the distortion of the flow near the step over the sum of the resistances of the two straight portions alone is

$$
\Delta R=\frac{\rho}{\pi b}\left(\frac{a^{2}+c^{2}}{a c} \ln \frac{a+c}{a-c}+2 \ln \frac{a^{2}-c^{2}}{4 a c}\right)
$$

In the preceding case the corner of the step is cut off at 45 deg so that the width increases linearly from $c$ to $a$. The additional resistance due to the tapered section over that of the two straight portions alone is

$$
\Delta R=\frac{2 \rho}{\pi b}\left(\frac{a^{2}+c^{2}}{a c} \tanh ^{-1} \frac{c}{a}+\frac{a^{2}-c^{2}}{a c} \tan ^{-1} \frac{c}{a}+\ln \frac{a^{4}-c^{4}}{8 a^{2} c^{2}}\right)
$$

A straight rectangular bar has a right-angle bend, the width on one side of the bend being $a$ and on the other $c$. The increase of resistance over the sum of the resistances of the two straight portions alone, the corner rectangle common to both being excluded, is

$$
\Delta R=\frac{2 \rho}{\pi b} \ln \left(\frac{a^{2}+c^{2}}{4 a c}+\frac{a}{c} \tan ^{-1} \frac{c}{a}+\frac{c}{a} \tan ^{-1} \frac{a}{c}\right)
$$

A straight rectangular bar of width $a$ has a hole drilled through it equidistant from its edges. The increase in resistance due to the hole is less than

$$
\Delta R \approx-2 \rho c(a b \theta)^{-1} \ln \cos \theta
$$

where $\theta$ is a parameter chosen so that $\sin \theta=\tanh \left[\pi c \theta(a \theta-\pi c)^{-1}\right]$.
These formulas are practically exact for small holes far from the ends. When the diameter of the hole is half the strip width $R$ is about 0.1 per cent too large. For small values of $c / a$ the parameter is given by

$$
\theta \approx \frac{2 \pi c}{a}\left(1-\frac{\pi^{2} c^{2}}{3 a^{2}}+\frac{\pi^{4} c^{4}}{3 a^{4}}\right)
$$

The value of $\Delta R$ given above is unchanged if the hole is replaced by two semicircular notches of the same radius in opposite edges of the strip.

Perfectly conducting electrodes are applied to a block of thickness $b$, width $a$, length $c$, and resistivity $\rho$ in such a way as to cover the full thickness over a band of width $w$ at the center of opposite ends. The resistance between the electrodes lies between the limits

$$
\frac{2 \rho}{\pi b} \cosh ^{-1} \frac{\cosh \frac{1}{2} \pi a^{-1} c}{\sin \frac{1}{2} \pi a^{-1} w}>R>\frac{2}{\pi b} \sinh ^{-1} \frac{\sinh \frac{1}{2} \pi a^{-1} c}{\sin \frac{1}{2} \pi a^{-1} w}
$$

5b-7. Static-magnetic-field Formulas. Magnetic Field of Various Circuit Configurations. The magnetic induction due to a current density $\mathbf{i}$ flowing in a volume $v$ is

$$
\mathbf{B}=\frac{\mu}{4 \pi} \nabla \times \int_{v} \frac{\mathrm{i} d v}{r}
$$

The magnetic induction of a thin linear circuit with total current $I$ is

$$
B=\frac{\mu I}{4 \pi} \oint \frac{\sin \theta d s}{r^{2}}
$$

where $\theta$ is the angle between ds and $r$ and $B$ is normal to the plane of ds and $r$.
The magnetic induction due to a long straight cylinder carrying current parallel to its axis, when both current density and permeability are independent of the azimuth angle $\theta$, is $B_{\theta}=\mu_{a} I_{a}(2 \pi a)^{-1}$ where $a$ is distance of field point from axis, $I_{a}$ is current inside radius $a$, and $\mu$ is the permeability at the field point.
The edges of a flat strip lie at $x=a$ and $x=-a$ and it carries a uniformly distributed current $I$ in the $z$ direction. The distances of a field point in the positive quadrant from the near and far edges are, respectively, $r_{1}$ and $r_{2}$ and the angle between $r_{1}$ and $r_{2}$
is $\alpha$. The magnetic induction components are

$$
B_{y}=\frac{\mu I}{4 \pi a} \ln \frac{r_{2}}{r_{1}} \quad B_{x}=-\frac{\mu I}{4 \pi a} \alpha
$$

A conductor of rectangular section of area $A$ is bounded by the planes $x=a, x=-a$, $y=b$, and $y=-b$ and carries a uniformly distributed current $I$ in the $z$ direction. The distances from a field point in the positive quadrant to the corners, starting with the nearest and proceeding clockwise about the $z$ axis, are $r_{1}, r_{2}, r_{3}$, and $r_{4}$. The angles between successive $r$ 's are $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and $\alpha_{4}$, and the $x$ and $y$ components of $r_{1}$ and $r_{3}$ are $x_{1}, y_{1}$ and $x_{3}, y_{3}$. If all the above quantities are taken positive, the magneticinduction components are

$$
\begin{aligned}
& B_{x}=-\frac{1}{2} \mu I(\pi A)^{-1}\left(y_{3} \alpha_{4}-y_{1} \alpha_{1}+x_{3} \ln \frac{r_{3}}{r_{2}}-x_{1} \ln \frac{r_{4}}{r_{1}}\right) \\
& B_{y}=\frac{1}{2} \mu I(\pi A)^{-1}\left(x_{3} \alpha_{2}-x_{1} \alpha_{3}+y_{3} \ln \frac{r_{3}}{r_{4}}-y_{1} \ln \frac{r_{2}}{r_{1}}\right)
\end{aligned}
$$

The space inside and outside the conductor has the same permeability $\mu$.
The magnetic induction outside the conductors of a long bifilar line that consists of a cylinder whose axis is $y=a$ which carries a uniformly distributed $x$-directed current $I$ and another cylinder whose axis is $y=-a$ that carries the same current in the opposite direction is

$$
B_{y}=\frac{1}{2} \pi^{-1} \mu I z\left(r_{2}^{-2}-r_{1}^{-2}\right) \quad B_{z}=-\frac{1}{2} \pi^{-1} \mu I\left[r_{2}^{-2}(y+a)-r_{1}^{-2}(y-a)\right]
$$

where $r_{1}$ and $r_{2}$ are the distances from positive and negative wire axes, respectively, and $\mu$ is the permeability of the conductors and surrounding space.
The magnetic induction of bifilar lines composed of flat strips or rectangular bars can be found by taking the vector sum of the inductions already given for each conductor alone.
A long circular conducting cylinder of radius $b$ has a longitudinal hole of radius $a$ whose axis is displaced a distance $c$ from the cylinder axis. If a longitudinal current $I$ is uniformly distributed over the conducting area, the induction $\mathbf{B}$ in the hole is uniform and normal to $c$ and its magnitude is

$$
B=\mu c I\left[2 \pi\left(b^{2}-a^{2}\right)\right]^{-1}
$$

A circular loop of wire lies at $z=0, \rho=a$ and carries a current clockwise about the $z$ axis. The magnetic-induction components are

$$
B_{z}=A\left(I_{1}-a^{-1} \rho I_{2}\right) \quad B_{\rho}=A a^{-1} z I_{2}
$$

where ${ }^{1} I_{1}=\pi^{-1} \int_{0}^{\pi}(1-b \cos \theta)^{-\frac{3}{2}} d \theta, I_{2}=\pi^{-1} \int_{0}^{\pi}(1-b \cos \theta)^{\frac{3}{2}} \cos \theta d \theta, A=$ $\frac{1}{2} \mu I a^{2}\left(a^{2}+z^{2}-\rho^{2}\right)^{-\frac{2}{2}}$, and $b=2 a \rho\left(a^{2}+z^{2}-\rho^{2}\right)^{-1}$.
Two coaxial wire loops of radius $a$ at a distance $a$ apart carry currents $I$ in the same direction and constitute a Helmholtz coil which gives a nearly uniform field on the axis midway between them. For a small distance $r$ around this point the field varies as $(r / a)^{4}$. The induction there is

$$
B=8 \mu I 5^{-\frac{3}{2}} a^{-1}
$$

Accurate values of $B$ may be found by a superposition of the fields calculated separately by the preceding formula for a single loop.

[^205]The magnetic-induction components at a great distance from a small loop of wire at $\theta=\frac{1}{2} \pi, r=a$ which carries a current $I$ are

$$
B_{r}=\frac{1}{2} \mu I r^{-3} a^{2} \cos \theta \quad B_{\theta}=\frac{1}{4} \mu I r^{-3} a^{2} \sin \theta
$$

A rectangular loop of wire lies at $x= \pm a, y= \pm b$ and carries a current $I$ clockwise about the $z$ axis. The distances of the field point at $x, y, z$ in the positive octant from successive corners, starting with the nearest, are $r_{1}, r_{2}, r_{3}$, and $r_{4}$ and the components of $r_{1}$ and $r_{3}$ are $x_{1}, y_{1}, z$ and $x_{3}, y_{3}, z$. The components of the magnetic induction are

$$
\begin{aligned}
B_{x}= & \frac{1}{4} \pi^{-1} \mu I z\left\{\left[r_{1}\left(r_{1}-y_{1}\right)\right]^{-1}+\left[r_{3}\left(r_{3}+y_{3}\right)\right]^{-1}-\left[r_{4}\left(r_{4}+y_{3}\right)\right]^{-1}-\left[r_{2}\left(r_{2}-y_{1}\right)\right]^{-1}\right\} \\
B_{y}= & \frac{1}{4} \pi^{-1} \mu I z\left\{\left[r_{3}\left(r_{3}+x_{3}\right)\right]^{-1}+\left[r_{1}\left(r_{1}-x_{1}\right)\right]^{-1}-\left[r_{4}\left(r_{4}-x_{1}\right)\right]^{-1}-\left[r_{2}\left(r_{2}+x_{3}\right)\right]^{-1}\right\} \\
B_{z}= & \frac{1}{4} \pi^{-1} \mu I\left\{x_{1}\left[r_{1}\left(r_{1}-y_{1}\right)\right]^{-1}-x_{1}\left[r_{4}\left(r_{4}+y_{3}\right)\right]^{-1}+x_{3}\left[r_{2}\left(r_{2}-y_{1}\right)\right]^{-1}-x_{3}\left[r_{3}\left(r_{3}+y_{3}\right)\right]^{-1}\right. \\
& \left.\quad+y_{1}\left[r_{1}\left(r_{1}-x_{1}\right)\right]^{-1}-y_{1}\left[r_{2}\left(r_{2}+x_{3}\right)\right]^{-1}+y_{3}\left[r_{4}\left(r_{4}-x_{1}\right)\right]^{-1}-y_{3}\left[r_{3}\left(r_{3}+x_{3}\right)\right]^{-1}\right\}
\end{aligned}
$$

All lengths are to be taken positive. If the single wire of the preceding formulas is replaced by $N$ wires, the fields may be found rigorously by superimposing $N$ solutions of the type given, one for each wire, or by integration over the section. In case the area of this section is small compared with other coil dimensions, a sufficiently accurate result is often given by substitution of $N I$ for $I$ in these formulas and the use of the dimensions of the center turn for that of the loop.
A helix of pitch $\alpha$ is wound on a cylinder of radius $a$. The angles between the positive axis and.vectors drawn from the field point to the ends of the helix wire are $\beta_{1}$ and $\beta_{2}$. The axial component of the induction is then given rigorously by

$$
B_{a}=\frac{1}{4} \mu I \cot \alpha(\pi a)^{-1}\left(\cos \beta_{2}-\cos \beta_{1}\right)
$$

There is also a component normal to the axis which becomes negligible when $\alpha$ is small. The axial component of the induction on the axis of a solenoid with $n$ turns per unit length is, using the notation of the preceding formula,

$$
B_{a}=\frac{1}{2} \mu n I\left(\cos \beta_{2}-\cos \beta_{1}\right)
$$

The induction approaches uniformity everywhere inside an infinitely long solenoid as the pitch decreases and its limiting value is $B_{2}=n \mu I$.
When any figure, such as a torus, generated by the rotation of a closed curve about a coplanar external line, is closely and uniformly wound with $N$ turns of wire so that each turn nearly coincides with one position of the generating curve, then, when carrying a current $I$, the exterior induction is zero and the interior induction is

$$
B_{\varphi}=\frac{1}{2} \mu N I(\pi r)^{-1}
$$

A coil of $N$ circular turns wound closely over the entire surface of an oblate spheroid whose major and minor semiaxes are $a$ and $b$ will give a uniform induction $B$ inside, provided that the projections of these turns on the $b$ axis are uniformly spaced. The total number of ampere-turns needed is

$$
N I=\frac{B}{4 \pi \mu}\left[\frac{a^{2}-b^{2}}{b-a^{2}\left(a^{2}-b^{2}\right)^{-\frac{1}{2}} \cos ^{-1}(b / a)}\right]
$$

When $b=a$, this becomes $N I=b B /(4 \pi \mu)$.
A coil of $N$ circular turns wound closely over the entire surface of a prolate spheroid whose major and minor semiaxes are $b$ and $a$ will give a uniform induction $B$ inside, provided that the projections of these turns on the $b$ axis are uniformly spaced. The total number of ampere-turns needed is

$$
N I=\frac{B}{4 \pi \mu}\left[\frac{b^{2}-a^{2}}{b-a^{2}\left(b^{2}-a^{2}\right)^{-\frac{1}{2}} \cosh ^{-1}(b / a)}\right]
$$

Self- and Mutual Inductance for Static Fields. The mutual inductance between two circuits is given by the formulas

$$
M=L_{12}=10^{-7} \oint_{1} \oint_{2} r^{-1} \mathrm{ds}_{1} \cdot \mathrm{ds}_{2}=\frac{1}{4} \pi^{-1} 10^{7} \int_{v} \mathbf{B}_{1} \cdot \mathbf{B}_{2} d v
$$

where $d s_{1}$ and $d s_{2}$ are elements of circuit 1 and circuit 2 and $B_{1}$ and $B_{2}$ are their separate magnetic inductions for unit current. One line integral covers each circuit and the volume integral covers the whole field region.
The self-inductance of a circuit is a special case of the above formula

$$
L=\frac{1}{4} \pi^{-1} 10^{7} \int_{v} B^{2} d v
$$

where $B$ is the magnetic induction per unit current and $v$ includes the entire field region.
The energy in the field of $n$ circuits carrying currents $I_{1}, I_{2}, \ldots, I_{n}$ is

$$
W=\frac{1}{2} \sum_{p=0}^{n} \sum_{q=0}^{n} L_{p q} I_{p} I_{q}
$$

Note. In the following material there are many references to Grover. These refer to F. W. Grover, "Inductance Calculations," D. Van Nostrand Company, Inc., New York, 1946. In this book most inductances are given in microhenrys and lengths in centimeters. In the following formulas mks units are used; so the inductances are in henrys and the lengths in meters. Unless otherwise stated, the permeability throughout is that of a vacuum.

The self-inductance of a round wire of relative permeability $K_{m}$ and length $l$ in a vacuum is

$$
L \approx 2 l\left[\ln \left(2 a^{-1} l\right)-1+\frac{1}{4} K_{m}\right] \times 10^{-7}
$$

The self-inductance of a rectangular bar of perimeter $p$ is

$$
L \approx 2 l\left[\ln \left(4 p^{-1} l\right)+\frac{1}{2}+0.1118 l^{-1} p\right] \times 10^{-7}
$$

The self-inductance of a bar of elliptical section, semiaxes $a$ and $b$, is

$$
L \approx 2 l\left\{\ln \left[2 l(a+b)^{-1}\right]-0.05685\right\} \times 10^{-7}
$$

The self-inductance of a tube of external and internal radii $a$ and $b$ is

$$
L \approx 2 l\left[\ln \frac{2 l}{a}+\frac{b^{4}}{\left(a^{2}-b^{2}\right)^{2}} \ln \frac{a}{b}+\frac{7 b^{2}-5 a^{2}}{4\left(a^{2}-b^{2}\right)}\right] \times 10^{-7}
$$

Note. In the following formulas for bifilar lines the inductance per unit length is found by setting $l=1$. In all cases $l$ is supposed to be much greater than the pair spacing. The current densities are taken uniform. The current goes out on one element and returns on the other.

The self-inductance of two parallel cylinders of radii $a$ and $b$ and length $l$ with a distance $d$ between axes is

$$
L=l\left\{1+2 \ln \left[(a b)^{-1} d^{2}\right]\right\} \times 10^{-7}
$$

The self-inductance of two similar parallel wires of radius $a$ and relative permeability $K_{m}$ with a distance $d$ between axes is

$$
L \approx l\left[4 \ln \left(a^{-1} d\right)+K_{m}-4 d\right] \times 10^{-7}
$$

The self-inductance of two similar parallel rectangular wires of perimeter $p$ with a distance $d$ between centers is

$$
L \approx\left[4 l \cdot \ln \left(2 p^{-1} d\right)+6 l+0.447 p-4 d\right] \times 10^{-7}
$$

The self-inductance of two similar parallel tubes, external radius $a$, internal radius $b$, with a distance $d$ between centers is

$$
L \approx l\left[4 \ln \frac{d}{a}+\frac{4 b^{4}}{\left(a^{2}-b^{2}\right)^{2}} \ln \frac{a}{b}+\frac{3 b^{2}-a^{2}}{a^{2}-b^{2}}\right] \times 10^{-7}
$$

The self-inductance of a coaxial line when the external radii of the inside conductor, insulation space, and outside conductor are $c, b$, and $a$, respectively, and the relative permeabilities $K_{m}, K_{m}^{\prime}$, and $K_{m}^{\prime \prime}$ and when the length $l$ is great compared with $a$ is

$$
L=2 l\left\{\frac{1}{4} K_{m}+K_{m}^{\prime} \ln \frac{b}{c}+\frac{1}{4} K_{m}^{\prime \prime}\left[\frac{4 a^{4}}{\left(a^{2}-b^{2}\right)^{2}} \ln \frac{a}{b}-\frac{3 a^{2}-b^{2}}{a^{2}-b^{2}}\right]\right\} \times 10^{-7}
$$

If $K_{m}=K_{m}^{\prime}=K_{m}^{\prime \prime}$, this formula also holds for a noncoaxial line provided the axes are parallel.
The self-inductance of a wire of radius $r$ and relative permeability $K_{m}$ which is bent into a circular loop of mean radius $a$, neglecting small terms in $r^{4} / a^{4}$, is

$$
L \approx 4 \pi a\left[\left(1+\frac{r^{2}}{8 a^{2}}\right) \ln \frac{8 a}{r}+\frac{r^{2}}{24 a^{2}}-2+\frac{1}{4} K_{m}\right] \times 10^{-7}
$$

The self-inductance of a wire of radius $r$ and relative permeability $K_{m}$ which is bent into a rectangular loop with sides $a$ and $b$ and diagonal $d=\left(a^{2}+b^{2}\right)^{\frac{1}{2}}$ is ${ }^{1}$

$$
L \approx 4\left[a \ln \frac{2 a b}{r(a+d)}+b \ln \frac{2 a b}{r(b+d)}+2 d-\left(2-\frac{1}{4} K_{m}\right)(a+b)\right] \times 10^{-7}
$$

The self-inductance of a wire with rectangular section of perimeter $p$ which is bent into a rectangular loop with sides $a$ and $b$ and diagonal $d$, is

$$
L \approx 4\left[a \ln \frac{4 a b}{p(a+d)}+b \ln \frac{4 a b}{p(b+d)}+2 d+\frac{1}{2}(a+b)+0.223 p\right] \times 10^{-7}
$$

The self-inductance of a thin band of radius $a$ and width $b$ is

$$
L \approx 4 \pi a\left[\ln \left(8 b^{-1} a\right)-\frac{1}{2}\right] \times 10^{-7}
$$

The mutual inductance of two thin coaxial circular loops of radii $a$ and $b$, when $r_{1}$ and $r_{2}$ are the farthest and nearest distances between the loops, is given in terms of complete elliptic integrals by ${ }^{2}$

$$
\begin{aligned}
M & =8 \pi k^{-1} a^{\frac{1}{2}} b^{\frac{1}{2}}\left[\left(1-\frac{1}{2} k^{2}\right) K(k)-E(k)\right] \times 10^{-7} \\
& =8 \pi k_{1}^{-1} a^{\frac{1}{2}} b^{\frac{1}{2}}\left[K\left(k_{1}\right)-E\left(k_{1}\right)\right] \times 10^{-7}
\end{aligned}
$$

where $k^{2}=r_{1}^{-2}\left(r_{1}^{2}-r_{2}^{2}\right)$ and $k_{1}^{2}=\left(r_{1}-r_{2}\right)\left(r_{1}+r_{2}\right)^{-1}$.
The mutual inductance between a long straight wire and a loop of radius a whose diameter it intersects at right angles at a distance $c$ from the loop center is

$$
\begin{array}{ll}
M=4 \pi\left[c \sec \alpha-\left(c^{2} \sec ^{2} \alpha-a^{2}\right)^{\frac{1}{2}}\right] \times 10^{-7} & c>a \\
M=4 \pi c \tan \left(\frac{1}{4} \pi-\frac{1}{2} \alpha\right) \times 10^{-7} & c<a
\end{array}
$$

[^206]
## ELECTRICITY AND MAGNETISM

where $\alpha$ is the acute angle between the plane of the loop and the plane defined by its center and the straight wire.
The mutual inductance of two parallel coaxial identical rectangular loops whose sides are $a$ and $b$ and which are spaced so that the distance from any corner of one loop to the most distant corner of the other is $d$, is ${ }^{1}$

$$
M=4\left[a \ln \frac{(a+A) B}{(a+D) d}+b \ln \frac{(b+B) A}{(b+D) d}+8(D-A-B+d)\right] \times 10^{-7}
$$

where $A^{2}=a^{2}+d^{2}, B^{2}=b^{2}+d^{2}$ and $D^{2}=a^{2}+b^{2}+d^{2}$.
The mutual inductance between two circular loops of wire whose axes intersect at an angle $\gamma$ at a point where the radius $a$ of one loop subtends an angle $\alpha$ and the radius $b$ of the other an angle $\beta$ is

$$
M=4 \pi^{2} a \sum_{n=1}^{\infty} \frac{a^{n} \sin \alpha \sin \beta}{n(n+1) b^{n}} P_{n}^{1}(\cos \alpha) P_{n}^{1}(\cos \beta) P_{n}(\cos \gamma) \times 10^{-7}
$$

where the last terms include two associated Legendre functions and one polynomial. ${ }^{2}$ The mutual inductance of two circular loops with parallel axes can be calculated from tables in Grover, pages 177 to 192.

Note. The self- or mutual inductance of thin coils whose cross section is small compared with other dimensions is given approximately by insertion of the factor $N^{2}$ or $N_{1} N_{2}$, respectively, where $N$ is the total number of turns, in the corresponding loop formula and the use of the mean coil dimensions for the corresponding loop dimensions.

A circular ring encircles or is encircled by a coaxial helix, the larger radius being $A$ and the smaller $a$. The distances from the plane of the ring to the farther and nearer ends of the helix are $b_{1}$ and $b_{2}$ and $n$ is the number of turns per meter on the helix. The mutual inductance is

$$
\begin{array}{r}
M=2 \pi n(A+a)\left\{c\left[k_{1}^{-1}\left(K_{1}-E_{1}\right) \pm k_{2}^{-1}\left(K_{2}-E_{2}\right)\right]+(A-a)\left(b_{1}^{-1} \psi_{1} \pm b_{2}^{-1} \psi_{2}\right)\right\} \\
\times 10^{-7}
\end{array}
$$

where the subscript 1 or 2 indicates the use of $b_{1}$ or $b_{2}$ for $b$ in the following formulas:

$$
\begin{gathered}
k^{2}=4 A a\left[(A+a)^{2}+b^{2}\right]^{-1} \quad k^{\prime}=\left(1-k^{2}\right) \quad c^{2}=4 A a(A+a)^{-2} \quad k^{\prime} \sin \beta=\left(1-c^{2}\right)^{\frac{1}{2}} \\
\psi=K(k) E\left(k^{\prime}, \beta\right)-[K(k)-E(k)] F\left(k^{\prime}, \beta\right)-\frac{1}{2} \pi
\end{gathered}
$$

The upper sign in the $\pm$ is taken when the plane of the ring cuts the helix; otherwise the lower sign is used. Complete elliptic integrals of modulus $k$ are indicated by $K$ or $K(k)$ and $E$ or $E(k)$ and $E\left(k^{\prime}, \beta\right)$ and $F\left(k^{\prime}, \beta\right)$ are incomplete elliptic integrals of modulus $k^{\prime}$ and amplitude $\beta$. ${ }^{3}$

Note. The following current-sheet formulas assume that the current density on the shell is uniform and flows around the cylinder normal to the axis in an infinitely thin sheet. A correction may be added to take account of the fact that the current is actually concentrated in wires of definite radius and spacing as in Grover, pages 148 to 150, but is often not needed for close windings. By a process equivalent to integration of the preceding formula, an exact formula for the mutual inductance between a cylindrical current sheet or helix and a coaxial concentric current sheet can be derived. ${ }^{4}$

[^207]The self-inductance of a current sheet of radius $a$, length $b$, and diagonal $d=$ $\left(4 a^{2}+b^{2}\right)^{\frac{1}{2}}$ having a total number of turns $N$ is ${ }^{1}$

$$
L=\frac{4}{3} \pi b^{-2} N^{2}\left[d\left(4 a^{2}-b^{2}\right) E(k)-b^{2} d K(k)-8 a^{3}\right] \times 10^{-7}
$$

where $k=2 d^{-1} a$.
A current sheet is wound on the surface of the toroid formed by the rotation in the $\varphi$ direction of a plane area $S$ about an external line. If there are $N$ turns and if the current density is independent of $\varphi$ and has no $\varphi$ component, then the self-inductance is

$$
L=2 K_{m} N^{2} \int_{8} r^{-1} d S \times 10^{-7}
$$

where $K_{m}$ is the relative permeability inside the current sheet and $r$ is the distance of the area element $d S$ from the rotational axis. The self-inductance in the above case, if $S$ is a circle of radius $a$ whose center is at a distance $b$ from the rotational axis, is

$$
L=4 \pi K_{m} N^{2}\left[b-\left(b^{2}-a^{2}\right)^{\frac{1}{2}}\right] \times 10^{-7}
$$

The self-inductance, if $S$ is a rectangular section with sides parallel to the axis of length $a$ and sides normal to it of length $b$ and with the inside surface a distance $R$ from the axis, is

$$
L=2 N^{2} a K_{m} \ln \left(1+R^{-1} b\right) \times 10^{-7}
$$

The self-inductance of a circular coil of $N$ turns and circular section is

$$
L \approx 4 \pi N^{2} a\left[\left(1+\frac{1}{8} r^{2} a^{-2}\right) \ln \left(8 r^{-1} a\right)+r^{2}\left(24 a^{2}\right)^{-1}-1.75\right] \times 10^{-7}
$$

where $r$ is the radius of the section, $a$ the radius of the axis of the section, and $(r / a)^{n}$ is neglected when $n>2$. The self-inductance of the above coil if it has a square section of side $c$ is, if $c \ll a$,

$$
L \approx 4 \pi a N^{2}\left\{\frac{1}{2}\left[1+c^{2}\left(24 a^{2}\right)^{-1}\right] \ln \left(32 c^{-2} a^{2}\right)-0.84834+0.051 a^{-2} c^{2}\right\} \times 10^{-7}
$$

The self-inductance of coils of rectangular section can be calculated from tables given in Grover, pages 94 to 113.
The mutual inductance of coils of rectangular section and parallel axes can be calculated from tables given in Grover, pages 225 to 235 . The mutual inductance of coils of rectangular section with inclined axes can be found from tables given by Grover on pages 209 to 214.
The increase in self-inductance of a circuit due to the placement of a sphere of radius $a$ and relative permeability $K_{m}$ in a position near it where the induction $B$ per unit current is nearly uniform is

$$
\Delta L \approx a^{3} B^{2}\left(K_{m}-1\right)\left(K_{m}+2\right)^{-1} \times 10^{7}
$$

The increase of self-inductance of a loop of radius $a$ due to the insertion concentrically of a sphere of radius $b$ and infinite permeability is

$$
\Delta L=8 \pi a^{-2} b^{3} K\left(a^{-2} b^{2}\right) \times 10^{-7}
$$

The mutual inductance between two coaxial loops of radii $a$ and $b$ when the distance between centers is $c$ and there is an infinite slab of thickness $t$ and relative permeability $K_{m}$ between and parallel to them, is

$$
\begin{aligned}
& M=8 \pi(a b) \frac{1}{\frac{1}{2}}\left(1-\beta^{2}\right) \sum_{n=0}^{\infty} k_{n}-1 \beta^{2 n}\left[\left(1-k_{n}^{2}\right) K\left(k_{n}\right)-E\left(k_{n}\right)\right] \\
& k_{n}^{2}=4 a b\left[(a+b)^{2}+(c+2 n t)^{2}\right]^{-1} \quad \beta=\left(K_{m}-1\right)\left(K_{m}+2\right)^{-1}
\end{aligned}
$$

[^208]Magnetic Forces on Circuits. The component of force in newtons tending to displace one of a pair of circuits in the $x$ direction, the other being fixed, is

$$
F_{x}=I_{1} I_{2} \frac{\partial M}{\partial x}
$$

where $I_{1}$ and $I_{2}$ are the currents and $M$ is the mutual inductance. The torque in newton meters tending to rotate one of a pair of circuits through an angle $\alpha$, the other being fixed, is

$$
T_{\alpha}=I_{1} I_{2} \frac{\partial M}{\partial \alpha}
$$

Thus any desired forces or torques may be computed from the mutual-inductance formulas of the last few pages by differentiation, provided that it is possible to express $M$ explicitly in terms of $x$ or $\alpha$. When this is not possible the difference in the mutualinductance values calculated for the position $x$ or $\alpha$ and the position $x+d x$ or $\alpha+d \alpha$ using the Grover tables may be multiplied by $I_{1} I_{2}$ and divided by $d x$ or $d \alpha$. In many cases the tabular intervals are small enough so this will give adequate accuracy; in other cases careful interpolation will be needed. Notice that in Grover's tables distances are in centimeters.

The force per unit length between two long parallel circular cylinders or tubes carrying uniformly distributed currents $I_{1}$ and $I_{2}$ is

$$
F_{1}=2 I_{1} I_{2} a^{-1} \times 10^{-7}
$$

The force is attractive when $I_{1}$ and $I_{2}$ have the same direction; otherwise it is repulsive.
The force per unit length between two parallel strips ${ }^{1}$ of width $a$ symmetrically placed with their faces a uniform distance $b$ apart and carrying currents $I_{1}$ and $I_{2}$ is

$$
4 I_{1} I_{2} a^{-1}\left[\tan ^{-1}\left(b^{-1} a\right)-\frac{1}{2} a^{-1} b \ln \left(1+b^{-2} a^{2}\right)\right] \times 10^{-7}
$$

The force is attractive when $I_{1}$ and $I_{2}$ have the same direction; otherwise it is repulsive.
The force between two coaxial loops of radii $a$ and $b$ with centers at a distance $c$ apart that carry currents $I_{1}$ and $I_{2}$ is

$$
F=I_{1} I_{2 \pi} c k\left[a^{\frac{1}{2}} b^{\frac{1}{2}}\left(1-k^{2}\right)\right]^{-1}\left[\left(2-k^{2}\right) E(k)-2\left(1-k^{2}\right) K(k)\right] \times 10^{-7}
$$

where $k^{2}=4 a b\left[(a+b)^{2}+c^{2}\right]^{-1}$. The force is attractive when $I_{1}$ and $I_{2}$ encircle the axis in the same direction.

The axial force between a circular loop of radius $a$ and a coaxial helix of radius $b$ ( $a$ may be greater or less than $b$ ) and $n$ turns per meter is

$$
F=I_{1} I_{2} n\left(M-M^{\prime}\right) \times 10^{-7}
$$

The loop center may lie inside or outside the helix. Here $M$ and $M^{\prime}$ are the mutual inductances between a loop of radius $a$ and coaxial loops of radius $b$ whose planes pass through the extreme near end and extreme far end of the helix, respectively. The force is toward the center of the helix if the currents circle the axis in the same direction.

The force between a helix and a coaxial circular coil of mean radius $a$, square section of side $c$, and $N$ turns is given approximately by the foregoing formula if $N I_{1}$ is used for $I_{1}$ and $a\left[1+c^{2}\left(24 a^{2}\right)^{-1}\right]$ for $a$. The force between two coaxial single-layer coils may be calculated by a formula in Grover on page 258 and a table on page 115.

The torque on a circular coil of rectangular section with internal and external radii $a$ and $b$ and any length which carries a current $I$, has $N$ turns, and whose axis makes
${ }^{1}$ The force between two parallel rectangular bus bars is given by B. Hague, "Electromagnetic Problems in Electrical Engineering," p. 338, Oxford University Press, New York, 1929.
an angle $\alpha$ with a uniform field of induction B is

$$
T=\frac{1}{3} \pi B N I\left(a^{2}+a b+b^{2}\right) \sin \alpha
$$

The torque on the above coil if it has a circular section of radius $b$ whose center is at a distance $a$ from the axis is

$$
T=\frac{1}{4} \pi B N I\left(4 a^{2}-b^{2}\right) \sin \alpha
$$

The torque on one of two concentric circular loops of wire of radii $a$ and $b$ which carry currents $I_{1}$ and $I_{2}$ is

$$
T=4 \pi^{2} a I_{1} I_{2} \times 10^{-7} \sum_{n=0}^{\infty} \frac{2 n+2}{2 n+1}\left[\frac{(2 n+1)!!}{(2 n+2)!!}\right]^{2}\left(\frac{a}{b}\right)^{2 n+1} P_{2 n+1^{1}}(\cos \alpha)
$$

where $\alpha$ is the angle between their axes and $P_{2 n+1}(\cos \alpha)$ is a Legendre function. It is directed so as to set one current parallel to the other.
The force on any circuit near the plane face of a semi-infinite block of material having a uniform relative permeability $K_{m}$ which is independent of field strength equals the force between the circuit carrying a current $I$ and its mirror-image circuit in the plane face carrying a current $I^{\prime}=\left(K_{m}-1\right)\left(K_{m}+1\right)^{-1} I$. The direction of $I^{\prime}$, if $K_{m}$ is greater than one, is such that the projections of $I$ and $I^{\prime}$ on the interface coincide in position and direction. It is evident that if $K_{m} \gg 1$ then $I \approx I^{\prime}$ and the exact value of $K_{m}$ need not be known.
The force per unit length on an infinite wire carrying a current $I$ parallel to the walls of an infinite evacuated rectangular conduit of infinite permeability is

$$
F_{x}=4 \pi b^{-1} I^{2} \times 10^{-7} \sum_{m=1}^{\infty} \operatorname{csch}\left(m \pi a b^{-1}\right) \sinh \left[m \pi b^{-1}(2 c-a)\right] \cos ^{2}\left(m \pi d b^{-1}\right)
$$

where the walls of the conduit are at $x=0, x=a$ and $y=0, y=b$. The wire lies at $x=c, y=d$. To get $F_{y}$, interchange $a$ with $b$ and $c$ with $d$. The series converges very rapidly unless the wire is near the wall. The force per unit length toward the nearest wall on an infinite wire parallel to and at a distance $c$ from the axis of an evacuated cylindrical hole of radius $a$ in a block of material of relative permeability $K_{m}$ is

$$
F_{1}=2\left(a^{2}-c^{2}\right)^{-1} c I^{2}\left(K_{m}-1\right)\left(K_{m}+1\right)^{-1} \times 10^{-7}
$$

Permeable Bodies in Magnetic Fields. The energy of an unmagnetized body of volume $v$ when placed in a field of induction B produced by fixed sources in a region of constant permeability $\mu$ is

$$
W=\frac{1}{2} \int_{v}\left(\mu^{-1}-\mu_{i}^{-1}\right) \mathbf{B} \cdot \mathbf{B}_{i} d v
$$

where $B_{i}$ and $\mu_{i}$ are the final values of the magnetic induction and permeability in the volume element $d v$ inside the body and the integration is over the volume of the body. The torque tending to decrease the angle $\alpha$ between $B$ and the major axis of an oblate permeable spheroid of relative permeability $K_{m}$ with semiaxes $a$ and $b$, where $b>a$, placed in a uniform field of induction $B$ produced by fixed sources in a vacuum is

$$
T=\frac{\left(K_{m}-1\right)^{2} b^{2} a B^{2}(3 P-2) \sin 2 \alpha}{6\left[\left(K_{m}-1\right)^{2} P^{2}+\left(K_{m}-1\right)\left(2-K_{m}\right) P-2 K_{m}\right]} \times 10^{7}
$$

where $P=A\left[\left(1+A^{2}\right) \cot ^{-1} A-A\right]$ and $A=a\left(b^{2}-a^{2}\right)^{-t}$.
The torque tending to decrease the angle $\alpha$ between $B$ and the major axis of a prolate
permeable spheroid of relative permeability $K_{m}$ with semiaxis $a$ and $b$ where $b<a$ placed in a uniform field of induction B produced by fixed sources in a vacuum is

$$
T=\frac{\left(K_{m}-1\right)^{2} b^{2} a B^{2}(2-3 Q) \sin 2 \alpha}{6\left[\left(K_{m}-1\right)^{2} Q^{2}+\left(K_{m}-1\right)\left(2-K_{m}\right) Q-2 K_{m}\right]} \times 10^{7}
$$

where $Q=c\left[\left(1-c^{2}\right) \operatorname{coth}^{-1} c+c\right]$ and $c=a\left(a^{2}-b^{2}\right)^{-\frac{1}{2}}$.
The attractive force between a long cylinder carrying a uniformly distributed current $I$ and an external sphere of relative permeability $K_{m}$ and radius $a$ whose center is at a distance $b$ from the cylinder axis is

$$
F=4 I^{2} \times 10^{-7} \sum_{n=1}^{\infty} \frac{(2 n-2)!!n\left(K_{m}-1\right)}{(2 n-1)!!\left(n K_{m}+n+1\right)}\left(\frac{a}{b}\right)^{2 n+1}
$$

If the permeability is very large in the above case, the force is

$$
F=4 I^{2} a^{2} b^{-1}\left(b^{2}-a^{2}\right)^{-\frac{1}{2}} \sin ^{-1}\left(b^{-1} a\right) \times 10^{7}
$$

Magnetic Shielding. Two long wires of a bifilar lead at $\rho=c, \varphi=0$ and $\rho=c$, $\varphi=\pi$ carry currents $I$ and $-I$ and are shielded by a cylinder of relative permeability $K_{m}$ of internal and external radius $a$ and $b$. The components of the induction outside the shield are

$$
\begin{aligned}
& B_{\rho}=-16 I \times 10^{-7} \sum_{n=0}^{\infty} \frac{b^{4 n+2} c^{2 n+1} \rho^{-2 n-2} \sin (2 n+1) \theta}{\left(K_{m}+1\right)^{2} b^{4 n+2}-\left(K_{m}-1\right)^{2} a^{4 n+2}} \\
& B_{\varphi}=16 I \times 10^{-7} \sum_{n=0}^{\infty} \frac{b^{4 n+2} c^{2 n+1} \rho^{-2 n-2} \cos (2 n+1) \theta}{\left(K_{m}+1\right)^{2} b^{4 n+2}-\left(K_{m}-1\right)^{2} a^{4 n+2}}
\end{aligned}
$$

A long cylindrical shield of internal and external radius $a$ and $b$ and relative permeability $K_{m}$ is placed across a uniform field of induction $B$. The induction $B_{i}$ inside is uniform and of magnitude

$$
B_{i}=\frac{4 K_{m} b^{2} B}{4 K_{m} b^{2}+\left(K_{m}-1\right)^{2}\left(b^{2}-a^{2}\right)}
$$

A spherical shield of internal and external radius $a$ and $b$ and relative permeability $K_{m}$ is placed in a uniform field of induction $B$. The induction $B_{i}$ inside is uniform and its magnitude is

$$
B_{i}=\frac{9 K_{m} b^{3} B}{9 K_{m} b^{3}+2\left(K_{m}-1\right)^{2}\left(b^{3}-a^{3}\right)}
$$

The Magnetic Circuit. The reluctance $R$ of a magnetic circuit is well defined only when all the magnetic flux $\Phi$ links all $N$ turns of the magnetizing coils which when carrying a current $l$ generate the magnetomotance $\mathfrak{F}$. Then

$$
\mathcal{F}=\mathbb{R} \Phi=N I
$$

The reluctance of a toroid of such high and uniform relative permeability $K_{m}$ that there is no flux leakage can be calculated regardless of the position of the magnetizing coil from the current-sheet self-inductance formulas for $N$ turns already given for toroids of various sections. Thus

$$
\mathfrak{R}=N^{2} L^{-1}
$$

The change in reluctance of a closed magnetic plane circuit of thickness $b$, rectangular section and uniform relative permeability $K_{m}$ so high that leakage is negligible due to
the presence of corners, steps, tapered sections, and circular holes can be calculated from the formulas already given for resistance change $\Delta R$ for two-dimensional current flow in media of resistivity $\rho$. Thus

$$
\Delta \mathbb{R}=4 \pi \times 10^{7} K_{m} \rho^{-1} \Delta R
$$

If a gap of uniform width $a$ is cut out of a magnetic circuit of high relative permeabifity $K_{m}$, normal to the induction $B$, and if $a$ is small compared with all dimensions of the section of area $A$ cut, then the increase in reluctance is

$$
\Delta \mathfrak{R} \approx 4 \pi a A^{-1}\left(K_{m}-1\right) \times 10^{-7}
$$

where the surrounding space is empty and the fringing field at the edge of the gap is neglected.

The fringing field may be calculated when the region of negative $x$ is filled with an infinitely permeable medium except for a gap bounded by $y=\frac{1}{2} a$ and $y=-\frac{1}{2} a$ which extends to $x=-\infty$. A magnetomotance is applied across the gap so that far from the edge the induction is $B_{0}$. The induction $B_{y}$ anywhere on the $x$ axis is then given implicitly by

$$
x=\pi^{-1} a\left[B_{0} B_{y}^{-1}-\tanh ^{-1}\left(B_{y} B_{0}^{-1}\right)\right]
$$

where $0<B_{y}<B_{0}$.
If the magnetomotance across a gap with faces at $z=\frac{1}{2} b$ and $z=-\frac{1}{2} b$ in an infinitely permeable cylinder bounded by $\rho=a$ is $\mathfrak{F}_{0}$, then the magnetomotance in the gap, when $\rho<a$ is

$$
\mathcal{F} \approx \mathfrak{F}_{0}\left[\frac{z}{b}+\sum_{n=1}^{\infty} C_{n} \frac{I_{0}\left(\frac{1}{2} n \pi \rho / b\right)}{I_{0}\left(\frac{1}{2} n \pi a / b\right)} \sin \frac{n \pi z}{2 b}\right]
$$

where $C_{1}=-0.17232$ and when $n>1$.

$$
C_{n}=\frac{(-1)^{n}}{n}\left[0.5836 \frac{0.1775 \cdot 1.1775 \cdots(n-0.8225)}{0.8225 \cdot 1.8225 \cdots(n-0.1775)}-0.0201 n^{-2}\right]
$$

The induction is $\mathrm{B}=-4 \pi \times 10^{-7} \nabla \mathfrak{F}$. This formula assumes that the field across the edge of the gap is two-dimensional. If this is the only gap in an infinitely permeable circuit, then $\mathscr{F}_{0}=N I$ where $N$ is the number of turns of the magnet coil and $I$ is its current. ${ }^{1}$

Permanent Magnets. In the following formulas it is assumed that the magnetization $M$ of a permanent magnet is absolutely rigid and that any magnetization induced in it by external fields is negligible compared with $M$. The energy of such a magnet when placed in an external field of induction $\mathbf{B}$ in a vacuum is $W=-\int \mathbf{M} \cdot \mathbf{B} d v$, where the integration is over the volume of the magnet and the "loop" definition of $\mathbf{M}$ is used rather than the "pole" definition. The forces and torques acting on the magnet are

$$
F_{x}=\frac{\partial W}{\partial x} \quad T=\frac{\partial W}{\partial \theta}
$$

The moment of a magnet is $\mathrm{m}=\int \mathbf{M} d v$ where the integration is over the magnet volume.

The mutual (apparently potential) energy of two thin needles magnetized lengthwise at a distance $a$ apart large compared with their length and having loop moments of magnitude $m_{1}$ and $m_{2}$, when immersed in a medium of relative permeability $K_{m}$, is

$$
W=m_{1} m_{2} K_{m}^{-1} r^{-3}\left(\sin \theta_{1} \sin \theta_{2} \cos \psi-2 \cos \theta_{1} \cos \theta_{2}\right) \times 10^{-7}
$$

${ }^{1}$ Tables of $\frac{1}{2} C_{n}$ are given by W. R. Smythe, Revs. Modern Phys. 20, 176 (1948).
where $\theta_{1}$ and $\theta_{2}$ are the angles between $m_{1}$ and $m_{2}$, respectively, and $r$. The angle between the planes that contain $m_{1}$ and $m_{2}$ and intersect in $r$ is $\psi$. The repulsive force between two needles is $-\partial W / \partial r$ and if $\alpha$ is the azimuth angle about any line the torque on either magnet about that line is $-\partial W / \partial \alpha$, the other magnet being fixed. In a vacuum where $K_{m}$ is unity this formula applies to magnets of moments $\mathrm{m}_{1}$ and $\mathrm{m}_{2}$ of any shape provided their dimensions are small compared with $r$. In other media the mutual energy depends on the shape.

Uniformly magnetized bodies may be replaced by their equivalent current sheets for the purpose of calculating fields and mutual torques in a vacuum. The current sheet coincides with the surface of the body and the current density encircles the body in a path normal to the direction $x$ of magnetization and is uniform in terms of $x$ and numerically equal to $M$. Thus the fields of thin disks magnetized normal to their faces and the torques and forces between them are identical with those between circular loops already given, if $I_{1}$ and $I_{2}$ are replaced by $M_{1}$ and $M_{2}$. Similarly, in a vacuum the fields and forces involving uniformly magnetized bars may be calculated from the formulas already given for solenoids provided $n I$, where $n$ is the number of turns per meter, is replaced by $M$. The mutual-inductance tables given by Grover and already referred to may be used.

A right circular cylinder of length $b$ and radius $a$ uniformly magnetized lengthwise with an intensity $M$, when placed with its flat end against an infinitely permeable flat surface, adheres with a force

$$
F=8 \pi a b M^{2}\left\{k^{-1}[K(k)-E(k)]-k_{1}^{-1}\left[K\left(k_{1}\right)-E\left(k_{1}\right)\right]\right\} \times 10^{-7}
$$

where the moduli of the complete elliptic integrals are $k=2 a\left(4 a^{2}+b^{2}\right)^{-\frac{1}{2}}$ and $k_{1}=a\left(a^{2}+b^{2}\right)^{-\frac{1}{2}}$. If $M$ is very large, this gives, approximately

$$
F \approx 2 \pi^{2} a^{2} M^{2} \times 10^{-7}
$$

The same force is experienced by two identical cylindrical magnets placed $N$ to $S$. The same force, but repulsive, appears if they are placed $N$ to $N$ or $S$ to $S$.
A long straight bar of uniform cross-sectional area $S$ has a uniform lengthwise magnetization $M$. The flat end, when placed in contact with an infinitely permeable flat block, adheres with a force

$$
F \approx 2 \pi S M^{2} \times 10^{-7}
$$

The above bar bent in the shape of a horseshoe with coplanar ends will, if the magnetization remains uniform, adhere with twice this force.
The torque on a sphere with uniform magnetization $M$ immersed in a medium of relative permeability $K_{m}$ in a field of induction $B$ such that the angle between $B$ and $M$ is $\alpha$ is

$$
T=\frac{4 \pi a^{3} M B \sin \alpha}{2 K_{m}+1}
$$

The torque on any body of volume $v$ with a uniform magnetization $M$ when placed in a uniform field of induction $B$ in a vacuum so that the angle between $B$ and $M$ is $\alpha$ is

$$
T=B M v \sin \alpha
$$

## DYNAMIC-FIELD EQUATIONS

## 5b-8. Field Equations

## Equations of Continuity between Currents and Charges

Integral Formulations. volume distributions: Consider a region $V$, bounded by a surface $S$, in which the net positive charge at time $t$ is $Q(t) ; I(t)$ is the net current
flowing out from the region across the boundary $S$; then

$$
\begin{equation*}
I(t)=-\frac{\partial Q}{\partial t} \tag{5~b-1}
\end{equation*}
$$

Let $\mathrm{J}(x, y, z, t)$ designate the current-density vector, $\rho(x, y, z, t)$ the charge density, and n the unit vector at a point on $S$ directed outward from the region $V$. The equation of continuity in terms of the density functions is

$$
\begin{equation*}
\oiint \mathrm{J} \cdot \mathrm{n} d S=-\frac{\partial}{\partial t} \iiint_{V} \rho d v \tag{5b-2}
\end{equation*}
$$

surface distributions: In the discussion of time-varying fields it is useful to consider limiting cases of volume distributions confined to thin layers as surface distributions. Let $A$ be an area of a surface $S$ on which there is a surface current density $\mathrm{J}^{\prime}$ and surface charge density $\rho_{s}$. Let $\Gamma$ be the curve on $S$ bounding the area $A$. Equation ( $5 \mathrm{~b}-1$ ) applies with the interpretation that $I(t)$ is the net current flowing out from $A$ across the boundary $\Gamma$ and $Q(t)$ is the charge on the area $A$. In terms of the source functions

$$
\begin{equation*}
\oint_{\Gamma} \mathrm{J}^{\prime} \cdot \mathbf{n}_{1} d l=-\frac{\partial}{\partial t} \iint_{A} \rho_{s} d S \tag{5b-3}
\end{equation*}
$$

where $n_{1}$ is the unit vector in the tangent plane at a point on $\Gamma$, normal to $\Gamma$ and directed outward from the area $A$.
magnetic sources: While magnetic charges and currents do not exist per se, certain time-varying field phenomena can be interpreted most conveniently formally in terms of equivalent magnetic distributions. The source functions will be designated by $\mathrm{J}_{m}, \rho_{m}$ for volume distributions, and $\mathrm{J}_{m}^{\prime}, \rho_{s m}$ for surface distributions. The source functions are related by equations of continuity of the same forms as Eqs. (5b-2) and (5b-3).

Differential Formulations. volume distributions:

$$
\begin{gather*}
\boldsymbol{\nabla} \cdot \mathrm{J}+\frac{\partial \rho}{\partial t}=0  \tag{5b-4}\\
\boldsymbol{\nabla} \cdot \mathbf{J}_{m}+\frac{\partial \rho_{m}}{\partial t}=0 \tag{5b-5}
\end{gather*}
$$

surface distributions: Suppose the equations of the surface $S$ to be given in terms of generalized coordinates $u_{1}, u_{2}$ by

$$
x=x\left(u_{1}, u_{2}\right) \quad y=y\left(u_{1}, u_{2}\right) \quad z\left(u_{1}, u_{2}\right)
$$

Let $a_{1}$ and $a_{2}$ be unit vectors in the tangent plane to the surface such that $a_{1}$ is in the direction of increasing $u_{1}$ (tangent to the curve $u_{2}=$ constant) and $\mathbf{a}_{2}$ is in the direction of increasing $u_{2}$ (tangent to the curve $u_{1}=$ constant), and let the corresponding components of the current be $J_{1}^{\prime}$ and $J_{2}^{\prime}$, i.e.,

$$
\mathrm{J}^{\prime}=J_{1}^{\prime} \mathbf{a}_{1}+J_{2}^{\prime} \mathbf{a}_{2}
$$

Further let $E, F, G$ be the differential parameters of the surface defined by

$$
\begin{aligned}
E & =\left(\frac{\partial x}{\partial u_{1}}\right)^{2}+\left(\frac{\partial y}{\partial u_{1}}\right)^{2}+\left(\frac{\partial z}{\partial u_{1}}\right)^{2} \\
F & =\frac{\partial x}{\partial u_{1}} \frac{\partial x}{\partial u_{2}}+\frac{\partial y}{\partial u_{1}} \frac{\partial y}{\partial u_{2}}+\frac{\partial z}{\partial u_{1}} \frac{\partial z}{\partial u_{2}} \\
G & =\left(\frac{\partial x}{\partial u_{2}}\right)^{2}+\left(\frac{\partial y}{\partial u_{2}}\right)^{2}+\left(\frac{\partial z}{\partial u_{2}}\right)^{2}
\end{aligned}
$$

The differential form of the surface equation of continuity is

$$
\begin{equation*}
\frac{1}{\sqrt{g}}\left[\frac{\partial}{\partial u_{1}}\left(J_{1}^{\prime} \sqrt{\frac{g}{E}}\right)+\frac{\partial}{\partial u_{2}}\left(J_{2}^{\prime} \sqrt{\frac{g}{G}}\right)\right]+\frac{\partial \rho_{s}}{\partial t}=0 \tag{5b-6}
\end{equation*}
$$

with $g=E G-F^{2}$.
equations in terms of the velocity field: In dealing with problems of electron beams or more generally with charged particles, the currents are defined by the charge densities and the velocities of flow. Let $\mathbf{v}(x, y, z, t)$ be the velocity of the charge at instant $t$ at the point $x, y, z$; then

$$
\mathbf{J}=\rho \mathbf{v} \quad \mathbf{J}_{m}=\rho_{m} \mathbf{\nabla}
$$

The equations of continuity take the form

$$
\begin{gathered}
\rho \nabla \cdot \nabla+\nabla \cdot \nabla \rho+\frac{\partial \rho}{\partial t}=\rho \nabla \cdot \nabla+\frac{D \rho}{D t}=0 \\
\rho_{m} \nabla \cdot v+\nabla \cdot \nabla \rho_{m}+\frac{\partial \rho_{m}}{\partial t}=\rho_{m} \nabla \cdot \mathrm{v}+\frac{D \rho_{m}}{D t}=0
\end{gathered}
$$

The derivative $D / D t$ is known as the flow derivative. These equations are hydrodynamical expressions of the continuity between charge and current.

## Field Vectors and Constitutive Parameters

The electromagnetic field is comprised of two electric vectors $\mathbf{E}$ and $\mathbf{D}$ and two magnetic vectors $B$ and $H$. The relationship between the members of the respective pairs of field vectors in a given medium may be characterized by the constitutive parameters of the medium, $\epsilon$, the capacitivity, and $\mu$, the permeability. The interpretation of these quantities for a time-varying field will be made more precise subsequently.

Isotropic Media. The constitutive parameters are scalar quantities:

$$
\begin{align*}
& \mathbf{D}=\epsilon \mathbf{E}  \tag{5b-7}\\
& \mathbf{B}=\mu \mathbf{H} \tag{5b-8}
\end{align*}
$$

Anisotropic Media. The vectors D and E and respectively the vectors $\mathbf{B}$ and $\mathbf{H}$ are not collinear but are linear vector functions of one another. The constitutive parameters $\epsilon$ and $\mu$ constitute tensors of second rank. Let $D_{i}$, etc., represent the components of the vectors and [ ] a column matrix of the components; $\epsilon_{i j}, \mu_{i j}$ represent the components of the constitutive tensors and ( ) the square matrix of these components. The constitutive relations for an anisotropic medium have the form

$$
\begin{align*}
{[\mathbf{D}] } & =(\epsilon)[\mathbf{E}]  \tag{5b-9}\\
{[\mathbf{B}] } & =(\mu)[\mathbf{H}] \tag{5b-10}
\end{align*}
$$

or, in component form,

$$
\begin{align*}
D_{i} & =\sum_{j=1}^{3} \epsilon_{i j} E_{j}  \tag{5b-11}\\
B_{i} & =\sum_{j=1}^{3} \mu_{i j} H_{j} \tag{5b-12}
\end{align*}
$$

Both symmetric and antisymmetric forms of the constitutive tensors may be encountered.

Conductivity Parameters. A conducting medium is characterized by a linear relation between the current density and the electric vector $\mathbf{E}$,

$$
\begin{equation*}
\mathrm{J}=\sigma \mathrm{E} \tag{5b-13}
\end{equation*}
$$

In an isotropic medium $\sigma$, the conductivity is a scalar; in an anisotropic medium $\sigma$ is a tensor of second rank and Eq. ( $5 \mathrm{~b}-13$ ) is to be read as a matrix equation of the same form as Eqs. ( $5 \mathrm{~b}-11$ ) and ( $5 \mathrm{~b}-12$ ).

Time-periodic Fields. Time-periodic phenomena in which all the field vectors and source functions are periodic functions of time are dealt with most conveniently by using the complex time representation $e^{j \omega t}$, where $\omega$ is the angular frequency $=2 \pi \nu$, $\nu$ being the frequency in cycles per second. Each quantity can be expressed in the form

$$
\begin{equation*}
F=F e^{j \omega t} \tag{5b-14}
\end{equation*}
$$

where $\mathfrak{F}$, the complex amplitude, is a function of position only. The amplitude is a complex number

$$
\begin{equation*}
\mathfrak{F}=\mathfrak{F}_{r}+j \mathfrak{F}_{i} \tag{5b-15}
\end{equation*}
$$

and Eq. (5b-14) has the meaning that the instantaneous value of the quantity $F$ at a time $t$ at the point $(x, y, z)$ in space is

$$
\begin{equation*}
\operatorname{Re} \mathscr{F} e^{j \omega t}=\mathfrak{F}_{r} \cos \omega t-\mathfrak{F}_{i} \sin \omega t \tag{5b-16}
\end{equation*}
$$

The complex representation is applicable to each component of a time-periodic vector quantity. A time-periodic vector $\mathbf{F}$ can accordingly be represented by

$$
\begin{equation*}
\mathbf{F}=\mathfrak{F} e^{j \omega t} \tag{5b-17}
\end{equation*}
$$

where the amplitude $\mathcal{F}$ is a complex vector function of position,

$$
\begin{equation*}
\mathfrak{F}=\mathfrak{F}_{r}+j \mathfrak{F}_{i} \tag{5b-18}
\end{equation*}
$$

The constitutive relationships ( $5 \mathrm{~b}-9$ ) and ( $5 \mathrm{~b}-10$ ) are strictly definable only for time-periodic phenomena; the relationships become relationships between the respective complex amplitudes

$$
\begin{align*}
& {[\mathbb{D}]=(\epsilon)[\mathcal{E}]}  \tag{5b-19}\\
& {[\mathcal{B}]=(\mu)[\mathscr{H}]} \tag{5b-20}
\end{align*}
$$

with the matrix components $\epsilon_{i j}$ and $\mu_{i j}$ being complex numbers that are functions of the frequency $\omega$. The frequency dependence of the constitutive parameters is known as the dispersive property of the medium. The conductivity parameter $\sigma$ is in general also frequency-dependent.

The relations (5b-7) and (5b-8) are applicable to other than time-periodic timevarying fields only when over the significant part of the frequency spectrum covered by the Fourier components of the time dependence the constitutive parameters $\epsilon$ and $\mu$ are sensibly independent of frequency.

Polarization Vectors. The role of a material medium in an electromagnetic field is expressed by distributions of electric and magnetic dipoles. The medium can be characterized by two polarization density functions $P$, electric dipole moment per unit volume, and M, magnetic dipole moment per unit volume. The polarization may be induced under action of the field from other sources, or it may be virtually permanent and independent of external fields. The permanent polarizations will be designated by $\mathbf{P}_{0}$ and $\mathbf{M}_{0}$. The relationships between the field vectors and the polarization vectors are

$$
\begin{align*}
& \mathbf{D}=\boldsymbol{\epsilon}_{v} \mathbf{E}+\mathbf{P}+\mathbf{P}_{\mathbf{0}}  \tag{5~b-21}\\
& \mathbf{B}=\mu_{v}\left(\mathbf{H}+\mathbf{M}+\mathbf{M}_{0}\right) \tag{5b-22}
\end{align*}
$$

where $\epsilon_{v}$ and $\mu_{v}$ are the constitutive parameters of free space.

## Maxwell's Equations

The basic equations relating the field vectors to physically realizable sources are as follows:

Integral Forms. Let $\Gamma$ be a closed curve spanned by an arbitrary surface $S$, both stationary in the observer's frame of reference; let $n$ be a unit vector normal to $S$

$$
\begin{align*}
& \oint_{\Gamma} \mathrm{E} \cdot d \mathbf{l}=-\frac{\partial}{\partial t} \iint_{S} \mathbf{B} \cdot \mathbf{n} d S  \tag{5~b-23}\\
& \oint_{\Gamma} \mathbf{H} \cdot d \mathbf{l}=\iint_{S}\left[\mathrm{~J}+\frac{\partial \mathbf{D}}{\partial t}\right] \cdot \mathbf{n} d S \tag{5b-24}
\end{align*}
$$

Associated with these relations are "Gauss's laws" relating the net outward flux of D and B through a closed surface to the charges contained within:

$$
\begin{align*}
& \oiint_{\mathbf{D} \cdot \mathbf{n} d S}=Q=\iiint \rho d v  \tag{5b-25}\\
& \oiint_{\mathbf{B}} \cdot \mathbf{n} d S=\mathbf{0} \tag{5b-26}
\end{align*}
$$

Differential Forms

$$
\begin{align*}
\nabla \times \mathrm{E} & =-\frac{\partial \mathrm{B}}{\partial t}  \tag{5b-27}\\
\nabla \times \mathbf{H} & =J+\frac{\partial \mathrm{D}}{\partial t}  \tag{5b-28}\\
\nabla \cdot \mathrm{D} & =\rho  \tag{5b-29}\\
\boldsymbol{\nabla} \cdot \mathrm{B} & =0 \tag{5b-30}
\end{align*}
$$

Equations ( $5 \mathrm{~b}-26$ ) and ( $5 \mathrm{~b}-30$ ) express the nonexistence of free magnetic charges.
Inclusion of Magnetic Sources. The field equations corresponding to both electric and magnetic sources would have the more general forms

$$
\begin{gather*}
\oint \mathbf{E} \cdot d \mathbf{l}=-\iint_{S}\left[\mathbf{J}_{m}+\frac{\partial \mathbf{B}}{\partial t}\right] \cdot \mathbf{n} d S  \tag{5b-31}\\
\oint \mathbf{H} \cdot d \mathbf{l}=\iint_{S}\left[\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}\right] \cdot \mathbf{n} d S  \tag{5b-32}\\
\oiint \mathbf{D} \cdot \mathbf{n} d S=\boldsymbol{Q}=\iiint_{V} \rho d v  \tag{5b-33}\\
\oiint \mathbf{B} \cdot \mathbf{n} d S=Q_{m}=\iiint_{V} \rho_{m} d v \tag{5b-34}
\end{gather*}
$$

These are useful in the treatment of problems in which magnetic sources enter as formalisms into the analysis. The corresponding differential forms are

$$
\begin{align*}
\boldsymbol{\nabla} \times \mathbf{E} & =-\mathrm{J}_{m}-\frac{\partial \mathbf{B}}{\partial t}  \tag{5b-35}\\
\boldsymbol{\nabla} \times \mathrm{H} & =\mathrm{J}+\frac{\partial \mathrm{D}}{\partial t}  \tag{5b-36}\\
\boldsymbol{\nabla} \cdot \mathbf{D} & =\rho  \tag{5b-37}\\
\boldsymbol{\nabla} \cdot \mathbf{B} & =\rho_{m} \tag{5b-38}
\end{align*}
$$

Representation of Media as Equivalent Distributions. The equations can be reduced to equivalent systems involving appropriate current and charge distributions in a medium having constitutive parameters $\epsilon_{v}, \mu_{v}$. Thus,

$$
\begin{align*}
& \nabla \times \mathbf{E}=-\mu_{v} \frac{\partial \mathrm{H}}{\partial t}-\left(\mathrm{J}_{m}+\mu_{v} \frac{\partial \mathrm{M}}{\partial t}\right)  \tag{5b-39}\\
& \nabla \times \mathbf{H}=\mathrm{J}+\frac{\partial \mathrm{P}}{\partial t}+\epsilon_{v} \frac{\partial \mathrm{E}}{\partial t} \tag{5b-40}
\end{align*}
$$

Time-varying polarizations are thus equivalent to current distributions,

$$
\begin{aligned}
\mu_{v} \frac{\partial \mathrm{M}}{\partial t} & \rightarrow \mathrm{~J}_{m} \\
\frac{\partial \mathrm{P}}{\partial t} & \rightarrow \mathrm{~J}
\end{aligned}
$$

Further,

$$
\begin{align*}
\boldsymbol{\nabla} \cdot \mathbf{E} & =\frac{\rho-\boldsymbol{\nabla} \cdot \mathbf{P}}{\epsilon_{v}}  \tag{5b-41}\\
\boldsymbol{\nabla} \cdot \mathbf{H} & =-\boldsymbol{\nabla} \cdot \mathbf{M} \tag{5b-42}
\end{align*}
$$

so that the equivalent charge distributions are

$$
\begin{gathered}
\rho_{p}=-\nabla \cdot \mathbf{P} \\
\rho_{m}=-\nabla \cdot \mathbf{M}
\end{gathered}
$$

Time-periodic Fields. All quantities have time dependence $e^{j \omega t}$. The time factor can be suppressed and the equations become relations between complex amplitudes. For the differential forms:

$$
\begin{align*}
\boldsymbol{\nabla} \times \mathbf{E} & =-\mathbf{J}_{m}-j \omega \mathbf{B}  \tag{5b-43}\\
\boldsymbol{\nabla} \times \mathbf{H} & =\mathbf{J}+j \omega \mathbf{D}  \tag{5b-44}\\
\boldsymbol{\nabla} \cdot \mathbf{D} & =\rho  \tag{5b-45}\\
\boldsymbol{\nabla} \cdot \mathbf{B} & =\rho_{m} \tag{5b-46}
\end{align*}
$$

Force Law
The force law, which from an experimental point of view is basically the defining expression for $E$ and $B$, is

$$
\begin{equation*}
\mathbf{F}=\iiint[\rho \mathbf{E}+(\mathbf{J} \times \mathbf{B})] d V \tag{5b-47}
\end{equation*}
$$

where $F$ is the resultant force acting on the charge and current distribution within a region $V$. The force density is

$$
\begin{align*}
& \mathbf{f}=\rho \mathbf{E}+(\mathbf{J} \times \mathbf{B})  \tag{5b-48}\\
& \mathbf{f}=\rho \mathbf{E}+\rho \mathbf{V} \times \mathbf{B} \tag{5b-49}
\end{align*}
$$

## Boundary Conditions

Boundaries between Media. Let $S$ be a surface separating two media having constitutive parameters $\epsilon_{1}, \mu_{1}, \sigma_{1}$, and $\epsilon_{2}, \mu_{2}, \sigma_{2}$, respectively; let $\mathbf{n}$ be the unit vector normal to $S$ directed from medium 1 into medium 2. The conditions at the boundary are:

1. Tangential components of the electric vector $\mathbf{E}$ are continuous,

$$
\begin{equation*}
\mathbf{n} \times\left(\mathbf{E}_{2}-\mathbf{E}_{1}\right)=0 \tag{5~b-50}
\end{equation*}
$$

2. Discontinuity in the normal component of the vector $\mathbf{D}$ equals the surface charge density of the boundary,

$$
\begin{equation*}
\mathbf{n} \cdot\left(\mathbf{D}_{2}-\mathbf{D}_{1}\right)=\rho_{s} \tag{5b-51}
\end{equation*}
$$

3. Tangential components of the vector $H$ are continuous,

$$
\begin{equation*}
\mathbf{n} \times\left(\mathbf{H}_{2}-\mathbf{H}_{1}\right)=\mathbf{0} \tag{5b-52}
\end{equation*}
$$

provided that neither $\sigma_{1}$ nor $\sigma_{2}$ is infinite.
4. Normal component of the vector $B$ is continuous,

$$
\begin{equation*}
\mathbf{n} \cdot\left(\mathbf{B}_{2}-\mathbf{B}_{1}\right)=0 \tag{5b-53}
\end{equation*}
$$

When the conductivity of one of the media is infinite, the fields inside that medium
vanish and there is correspondingly a discontinuity in the tangential component of the magnetic field associated with a surface sheet; if $\sigma_{1}=\infty$,

$$
\mathbf{n} \times \mathbf{H}=\mathrm{J}^{\prime}
$$

where $\mathbf{H}$ is the total magnetic field in region 2.
The boundary conditions ( $5 \mathrm{~b}-50$ ) and ( $5 \mathrm{~b}-53$ ) are applicable to total fields. In diffraction theory it is convenient to work with partial fields for which there may be discontinuities across surfaces in the region under consideration. These can be associated with equivalent magnetic sources and the appropriate relations are

$$
\begin{aligned}
\mathbf{n} \times\left(\mathbf{E}_{2}-\mathbf{E}_{1}\right) & =\mathbf{J}_{m}^{\prime} \\
\mathbf{n} \cdot\left(\mathbf{B}_{2}-\mathbf{B}_{1}\right) & =\rho_{s m}
\end{aligned}
$$

Boundary Conditions at Infinity. The field associated with a finite distribution of sources must satisfy conditions at infinity which pertain to the energy radiated by the sources. For a time-periodic field in a homogeneous medium the conditions at infinity take the form

$$
\begin{gathered}
\lim _{R \rightarrow \infty} R\left[\mathbf{H}-\left(\frac{\epsilon}{\mu}\right)^{\frac{1}{2}}\left(\mathbf{a}_{R} \times \mathbf{E}\right)\right]=0 \\
\lim _{R \rightarrow \infty} R E \text { is finite }
\end{gathered}
$$

where $R$ is the radial distance from an arbitrary origin in the neighborhood of the sources and $\mathbf{a}_{R}$ is a unit vector directed from the origin in the radial direction.

## The Wave Equations for the Field Vectors

The field vectors satisfy second-order differential equations which characterize wave phenomena. The equations for homogeneous isotropic media are as follows:

$$
\begin{align*}
& \nabla \times \nabla \times \mathrm{E}+\mu \epsilon \frac{\partial^{2} \mathrm{E}}{\partial t^{2}}=-\mu \frac{\partial \mathrm{J}}{\partial t}-\nabla \times \mathrm{J}_{m}  \tag{5b-54}\\
& \nabla \times \nabla \times \mathrm{H}+\mu \epsilon \frac{\partial^{2} \mathrm{H}}{\partial t^{2}}=-\epsilon \frac{\partial \mathrm{J}_{m}}{\partial t}+\nabla \times \mathrm{J}
\end{align*}
$$

When the vectors are expressed componentwise in a rectangular-coordinate system, the equations can be put in the form

$$
\begin{align*}
& \nabla^{2} \mathrm{E}-\mu \epsilon \frac{\partial^{2} \mathrm{E}}{\partial t^{2}}=\frac{1}{\epsilon} \nabla \rho+\mu \frac{\partial \mathrm{J}}{\partial t}+\nabla \times \mathrm{J}_{m}  \tag{5b-55}\\
& \nabla^{2} \mathrm{H}-\mu \epsilon \frac{\partial^{2} \mathrm{H}}{\partial t^{2}}=\frac{1}{\mu} \nabla \rho_{m}+\epsilon \frac{\partial \mathrm{J}_{m}}{\partial t}-\nabla \times \mathrm{J} \tag{5b-56}
\end{align*}
$$

where $\nabla^{2}$ is the conventional Laplacian operator.

## Poynting Vector and Poynting's Theorem

The Poynting vector

$$
\begin{equation*}
\Pi=\mathbf{E} \times \mathbf{H} \tag{5b-57}
\end{equation*}
$$

serves to describe the flow of energy associated with an electromagnetic field. The energy flowing out per second from a volume $V$ bounded by a surface $S$ is

$$
\begin{equation*}
P=\int \boldsymbol{\Pi} \cdot \mathbf{n} d S \tag{5b-58}
\end{equation*}
$$

where $\mathbf{n}$ is the unit vector normal to $d S$ directed outward from the region $V$.
When dealing with time-periodic fields it is useful to introduce the complex Poynting vector

$$
\begin{equation*}
\check{\mathbf{I}}=\mathbf{E} \times \mathbf{H}^{*} \tag{5b-59}
\end{equation*}
$$

where the complex representation of the time-periodic quantities is implied and the asterisk denotes the complex conjugate. The real part of the complex Poynting vector then represents the average value of the power flow over a cycle of the time variation; precisely

$$
\begin{equation*}
\langle\boldsymbol{\Pi}\rangle=\frac{1}{2} \operatorname{Re} \check{\mathbf{\Pi}}=\frac{1}{2} \operatorname{Re} \mathbf{E} \times \mathbf{H}^{*} \tag{5b-60}
\end{equation*}
$$

The Poynting theorem is the equation of continuity for the energy associated with the field.

## Differential Form

where

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}+\mathbf{E} \cdot \mathbf{J}=-\frac{\partial}{\partial t}\left(w_{e}+w_{m}\right) \tag{5b-61}
\end{equation*}
$$

$$
\begin{align*}
\boldsymbol{w}_{e} & =\frac{1}{2} \mathbf{E} \cdot \mathbf{D}  \tag{5b-62}\\
\boldsymbol{w}_{m} & =\frac{1}{2} \mathrm{~B} \cdot \mathrm{H} \tag{5b-63}
\end{align*}
$$

are the electric and magnetic energy per unit volume, respectively. The theorem is written here for the total field and the magnetic-source formalisms accordingly are not included.
.Integral Form. Given a volume $V$ bounded by a surface $S$,

$$
\begin{equation*}
\int \mathbf{\Pi} \cdot \mathbf{n} d \mathbf{S}+\int(\mathbf{E} \cdot \mathbf{J}) d v=-\frac{\partial}{\partial t} \int\left(w_{e}+w_{m}\right) d v \tag{5b-64}
\end{equation*}
$$

The time-average energy relationships in case of a time-periodic field in an isotropic medium are given by the complex Poynting theorem:

$$
\begin{equation*}
\nabla \cdot \breve{\mathbf{I}}=-\left(\sigma+\omega \epsilon_{i}\right) \frac{\mathbf{E} \cdot \mathbf{E}^{*}}{2}-\sigma \frac{\mathbf{E} \cdot \mathbf{E}_{0}^{*}}{2}-\omega \mu_{i} \frac{\mathbf{H} \cdot \mathbf{H}^{*}}{2}-2 j \omega\left(\mu_{r} \frac{\mathbf{H} \cdot \mathbf{H}^{*}}{4}-\epsilon_{r} \frac{\mathbf{E} \cdot \mathbf{E}^{*}}{4}\right) \tag{5b-65}
\end{equation*}
$$

The current density J has been expressed in terms of the electric field

$$
\mathrm{J}=\sigma\left(\mathbf{E}+\mathbf{E}_{0}\right)
$$

where $\mathbf{E}_{0}$ represents impressed electric-field intensity. The constitutive parameters $\epsilon$ and $\mu$ enter into Eq. (5b-65) as complex quantities. The subscripts designate real and imaginary parts in the obvious manner. One-half the real part of Eq. (5b-65) expresses the time-average energy flow and dissipation; one-half the imaginary part represents the mean value of the energy stored in the field.
The Vector and Scalar Potentials
An electromagnetic field can, in general, be divided into two parts, one associated with electric-type sources J and $\rho$, the other associated with magnetic-type sources $\mathrm{J}_{m}$ and $\rho_{m}$. Each part can be developed by means of vector and scalar potentials as follows:

$$
\begin{align*}
\mathbf{E}_{e} & =-\boldsymbol{\nabla} \phi_{e}-\frac{\partial \mathbf{A}_{e}}{\partial t}  \tag{5b-66}\\
\mathbf{B}_{e} & =\boldsymbol{\nabla} \times \mathbf{A}_{e}  \tag{5b-67}\\
\mathbf{D}_{m} & =-\boldsymbol{\nabla} \times \mathbf{A}_{m}  \tag{5b-68}\\
\mathbf{H}_{m} & =-\boldsymbol{\nabla} \phi_{m}-\frac{\partial \mathbf{A}_{m}}{\partial t} \tag{5b-69}
\end{align*}
$$

The general representation of the field in terms of potentials is accordingly

$$
\begin{align*}
\mathrm{E} & =-\nabla \phi_{\epsilon}-\frac{\partial \mathrm{A}_{e}}{\partial t}-\frac{1}{\epsilon} \nabla \times \mathrm{A}_{m}  \tag{5b-70}\\
\mathrm{H} & =\frac{1}{\mu} \nabla \times \mathrm{A}_{e}-\nabla \phi_{m}-\frac{\partial \mathrm{A}_{m}}{\partial t} \tag{5b-71}
\end{align*}
$$

For homogeneous isotropic media the differential equations relating the potentials to the source functions are ${ }^{1}$

$$
\begin{align*}
\nabla^{2} \mathbf{A}_{e}-\mu \epsilon \frac{\partial^{2} \mathbf{A}_{e}}{\partial t^{2}} & =-\mu \mathrm{J}  \tag{5b-72}\\
\nabla^{2} \phi_{e}-\mu \epsilon \frac{\partial^{2} \phi_{e}}{\partial t^{2}} & =-\frac{\rho}{\epsilon}  \tag{5b-73}\\
\nabla^{2} \mathbf{A}_{m}-\mu \epsilon \frac{\partial^{2} \mathbf{A}_{m}}{\partial t^{2}} & =-\epsilon \mathrm{J}_{m}  \tag{5b-74}\\
\nabla^{2} \phi_{m}-\mu \epsilon \frac{\partial^{2} \phi_{m}}{\partial t^{2}} & =-\frac{\rho_{m}}{\mu} \tag{5b-75}
\end{align*}
$$

Subject to the auxiliary conditions

$$
\begin{array}{r}
\boldsymbol{\nabla} \cdot \mathbf{A}_{e}+\mu \epsilon \frac{\partial \phi_{e}}{\partial t}=0 \\
\boldsymbol{\nabla} \cdot \mathbf{A}_{m}+\mu \epsilon \frac{\partial \phi_{m}}{\partial t}=0 \tag{5b-77}
\end{array}
$$

The solutions to the differential equation appropriate to all space when the source distributions are themselves bounded in extent are

$$
\begin{align*}
\mathbf{A}_{e} & =\frac{\mu}{4 \pi} \int_{V} \frac{[\mathrm{~J}]}{r} d v  \tag{5b-78}\\
\phi_{\epsilon} & =\frac{1}{4 \pi \epsilon} \int_{V} \frac{[\rho]}{r} d v  \tag{5b-79}\\
\mathbf{A}_{m} & =\frac{1}{4 \pi \epsilon} \int_{V} \frac{\left[\mathbf{J}_{m}\right]}{r} d v  \tag{5b-80}\\
\phi_{m} & =\frac{1}{4 \pi \mu} \int_{V} \frac{\left[\rho_{m}\right]}{r} d v \tag{5b-81}
\end{align*}
$$

where $r$ is the distance from the element of volume $d v$ to the field point $P$ and the bracketed source quantities denote retarded values; i.e., for a given instant $t$ at the field point $P$ the corresponding values of the source functions at time $t^{\prime}=t-r / c$, $c=(\mu \epsilon)^{-\frac{1}{2}}$, are to be used. For time-periodic fields the complex amplitudes are

$$
\begin{align*}
\mathbf{A}_{e} & =\frac{\mu}{4 \pi} \int_{V} \mathrm{~J} \frac{e^{-j k r}}{r} d v  \tag{5b-82}\\
\phi_{\epsilon} & =\frac{1}{4 \pi \epsilon} \int_{V} \rho \frac{e^{-j k r}}{r} d v  \tag{5b-83}\\
\mathbf{A}_{m} & =\frac{1}{4 \pi \epsilon} \int_{V} \mathrm{~J}_{m} \frac{e^{-j k r}}{r} d v  \tag{5b-84}\\
\phi_{m} & =\frac{1}{4 \pi \mu} \int_{V} \rho_{m} \frac{e^{-j k r}}{r} d v \tag{5b-85}
\end{align*}
$$

where $k=2 \pi / \lambda=\omega(\mu \epsilon)^{\frac{1}{2}}$.

## References

- Schelkunoff, S. A.: "Electromagnetic Waves," D. Van Nostrand Company, Inc., New York, 1943.
Smythe, W. R.: "Static and Dynamic Electricity," 2d ed., McGraw-Hill Book Company, Inc., New York, 1950.
Stratton, J. A.: "Electromagnetic Theory," McGraw-Hill Book Company, Inc., New York, 1941.
${ }^{1}$ In Eqs. (5b-72) and (5b-74), $\nabla^{2}$ is the conventional Laplacian operator, provided that the vectors are expressed componentwise with respect to a rectangular-coordinate reference frame.

5b-9. Basic Wave Functions for Time-periodic Fields. This section is a collection of basic sets of solutions to Maxwell's equations in a homogeneous isotropic region, free from generators, which are appropriate to the rectangular, cylindrical (circular), and spherical coordinate systems. They are particularly useful for boundary-value problems in regions bounded by surfaces which correspond to coordinate surfaces of the various systems.

## Plane Wave Functions

A plane wave is specified by the complex amplitude of either $\mathbf{E}$ or $\mathbf{H}$ and the propagation vector $k$. The propagation vector may be real or complex,

$$
\begin{equation*}
\mathbf{k}=\mathbf{k}_{r}-j \mathbf{k}_{i} \tag{5b-86}
\end{equation*}
$$

and in the case of a complex $k$ the real and imaginary parts may be collinear or in different directions. In all cases the propagation vector must satisfy the relation

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{k}=k^{2}=\omega^{2} \mu \epsilon_{T} \tag{5b-87}
\end{equation*}
$$

The constitutive parameter $\epsilon_{T}$ here signifies the effective complex capacitivity.

$$
\begin{equation*}
\epsilon_{T}=\epsilon_{r}-j\left(\epsilon_{i}+\frac{\sigma}{\omega}\right) \tag{5b-88}
\end{equation*}
$$

including the effects of both dielectric and conductive dissipation factors. ${ }^{1}$
Let $\mathbf{E}_{0}$ and $\mathbf{H}_{0}$ be the complex amplitudes of the respective field vectors; the basic wave function is

$$
\begin{align*}
\mathbf{E} & =\mathbf{E}_{0} e^{-j \mathbf{k} \cdot \mathbf{r}}  \tag{5b-89}\\
\mathbf{H} & =\mathbf{H}_{0} e^{-i \mathbf{k} \cdot \mathbf{r}}  \tag{5b-90}\\
\mathbf{H}_{0} & =\frac{1}{\omega \mu}\left(\mathbf{k} \times \mathbf{E}_{0}\right)  \tag{5b-91}\\
\mathbf{E}_{0} & =-\frac{1}{\omega \epsilon_{\boldsymbol{T}}}\left(\mathbf{k} \times \mathbf{H}_{0}\right) \tag{5b-92}
\end{align*}
$$

with
and $\mathbf{r}$ the position vector, expressed in rectangular coordinates by

$$
\mathbf{r}=x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z}
$$

TEM Waves. ${ }^{2}$ The vectors $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$ are collinear; $\mathbf{E}_{0}$ and $\mathbf{H}_{0}$ are mutually orthogonal and lie in a plane normal to the direction of $k$. If $\mathbf{E}_{0}$ is linearly polarized, $\mathbf{H}_{0}$ is likewise linearly polarized.
$T E$ Waves. ${ }^{2}$ The vectors $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$ are not collinear; $\mathbf{E}_{0}$ is perpendicular to the plane defined by $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$ and $\mathbf{H}_{0}$ lies in the plane defined by $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$. For a given linearly polarized $E_{0}$ the magnetic vector $H_{0}$ is elliptically polarized.
$T M$ Waves. ${ }^{2}$ The vectors $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$ are not collinear; $\mathbf{H}_{0}$ is perpendicular to the plane defined by $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$ and $\mathbf{E}_{0}$ lies in the plane defined by $\mathbf{k}_{r}$ and $\mathbf{k}_{i}$. For a given linearly polarized $\mathbf{H}_{0}$ the electric vector $\mathbf{E}_{0}$ is elliptically polarized.

## Cylindrical Wave Functions

The circular cylindrical wave functions are expressed in terms of the cylindrical coordinates $r, \theta, z ; r$ and $\theta$ being polar coordinates in the $x y$ plane. There are three distinct types of basic function characterized by the relationship between the field vectors and the $z$ axis.

[^209]$T E M$ Waves. The vectors $E$ and $H$ are wholly transverse to the $z$ axis and are related by
\[

$$
\begin{align*}
\mathbf{H} & =\frac{k}{\omega \mu}\left(\mathbf{a}_{z} \times \mathrm{E}\right)  \tag{5b-93}\\
\mathbf{E} & =-\frac{k}{\omega \epsilon}\left(\mathbf{a}_{z} \times \mathrm{H}\right) \tag{5b-94}
\end{align*}
$$
\]

The complex propagation constant $k$ has the value given by Eq. (5b-87). Two general groups of solutions can be distinguished:

$$
\begin{array}{ll}
E_{r}=\frac{\partial U_{n}}{\partial r} & E_{\theta}=\frac{1}{r} \frac{\partial U_{n}}{\partial \theta} \\
H_{r}=\frac{\partial U_{n}}{\partial r} & H_{\theta}=\frac{1}{r} \frac{\partial U_{n}}{\partial \theta} \tag{2}
\end{array}
$$

where $U_{n}$ is a separable solution of Laplace's equation in two dimensions; explicitly

$$
\begin{align*}
& U_{0}=\left(A_{0} \theta+B_{0}\right)\left(C_{0} \ln r+D_{0}\right)  \tag{5b-97}\\
& U_{n}=\left(C_{n} r^{n}+D_{n} r^{-n}\right) e^{-i n \theta} \tag{5b-98}
\end{align*}
$$

TE Waves

$$
\begin{align*}
E_{r} & =-\frac{n \omega \mu}{r} \psi_{n} & & H_{r}=-j h \frac{\partial \psi_{n}}{\partial r} \\
E_{\theta} & =j \omega \mu \frac{\partial \psi_{n}}{\partial r} & & H_{\theta}=-\frac{n h}{r} \psi_{n}  \tag{5b-99}\\
E_{z} & =0 & & H_{z}=\left(k^{2}-h^{2}\right) \psi_{n}
\end{align*}
$$

TM Waves

$$
\begin{array}{rlr}
E_{r}=-j h \frac{\partial \psi_{n}}{\partial r} & H_{r}=\frac{n k^{2}}{\omega \mu} \frac{\psi_{n}}{r} \\
E_{\theta}=-\frac{n h}{r} \psi_{n} & H_{\theta}=-\frac{j k^{2}}{\omega \mu} \frac{\partial \psi_{n}}{\partial r}  \tag{5b-100}\\
E_{z}=\left(k^{2}-h^{2}\right) \psi_{n} & H_{z}=0
\end{array}
$$

The function $\psi_{n}$ is

$$
\begin{align*}
\psi_{n} & =Z_{n}(\Lambda r) e^{-j h z} e^{-i n \theta}  \tag{5b-101}\\
\Lambda & =\left(k^{2}-h^{2}\right)^{\frac{1}{2}} \tag{5b-102}
\end{align*}
$$

where $Z_{n}(\Lambda r)$ is a suitable linear combination of two linearly independent solutions to the Bessel differential equation of order $n$. The function may be multivalued corresponding to the multivalued definition of $\Lambda$; the choice of the branch of the function is governed by the physical conditions of the problem. The parameters $h$ and $n$ may take on real and complex values according to the requirements of a particular problem.

## Spherical Wave Functions

The spherical wave functions are expressed in terms of the spherical coordinates $r, \theta, \phi$; where $\theta$ is the colatitude angle with respect to the pole axis and $\phi$ is the azimuthal angle. The functions again fall into three classes characterized by the relationship between the field vectors and the radial direction.
TEM Waves

$$
\begin{gather*}
E_{r}=H_{r}=0 \\
E_{\phi}=\frac{e^{ \pm j k r}}{r \sin \theta} \quad H_{\phi}= \pm\left(\frac{\epsilon}{\mu}\right)^{\frac{1}{2}} E_{\theta} \tag{5b-103}
\end{gather*}
$$

TE Waves

$$
\begin{array}{cc}
E_{r}=0 \quad H_{r}=\frac{\partial^{2}}{\partial r^{2}}\left(r \psi_{n m}\right)+k^{2}\left(r \psi_{n m}\right) \\
E_{\theta}=-\frac{j \omega \mu}{r \sin \theta} \frac{\partial}{\partial \phi}\left(r \psi_{n m}\right) & H_{\theta}=\frac{1}{r} \frac{\partial^{2}}{\partial r \partial \theta}\left(r \psi_{n m}\right)  \tag{5b-104}\\
E_{\phi}=\frac{j \omega \mu}{r} \frac{\partial}{\partial \theta}\left(r \psi_{n m}\right) & H_{\phi}=\frac{1}{r \sin \theta} \frac{\partial^{2}}{\partial r \partial \phi}\left(r \psi_{n m}\right)
\end{array}
$$

TM Waves

$$
\begin{array}{cc}
E_{r}=\frac{\partial^{2}}{\partial r^{2}}\left(r \psi_{n m}\right)+k^{2}\left(r \psi_{n m}\right) & H_{r}=0 \\
E_{\theta}=\frac{1}{r} \frac{\partial^{2}}{\partial r \partial \theta}\left(r \psi_{n m}\right) & H_{\theta}=\frac{j \omega \epsilon}{r \sin \theta} \frac{\partial}{\partial \phi}\left(r \psi_{n m}\right) \\
E_{\phi}=\frac{1}{r \sin \theta} \frac{\partial^{2}}{\partial r \partial \phi}\left(r \psi_{n m}\right) & H_{\phi}=\frac{j \omega \epsilon}{r} \frac{\partial}{\partial \theta}\left(r \psi_{n m}\right) \tag{5b-105}
\end{array}
$$

where

$$
\begin{equation*}
\psi_{n m}=\mathcal{Z}_{n}(k r) \mathscr{L}_{n}^{m}(\cos \theta) e^{-j m \phi} \tag{5b-106}
\end{equation*}
$$

The function $Z_{n}(k r)$ is a spherical function defined in terms of a general cylinder function $Z_{n+\frac{1}{2}}(k r)$ by

$$
\begin{equation*}
\mathcal{Z}_{n}(k r)=\left(\frac{\pi}{2 k r}\right)^{\frac{1}{2}} Z_{n+\frac{1}{2}}(k r) \tag{5b-107}
\end{equation*}
$$

the cylinder function being a suitable linear combination of two linearly independent solutions to the Bessel differential equation of order $n+\frac{1}{2}$. The function $\mathscr{L}_{n}{ }^{m}(\cos \theta)$ is a general solution of the associated Legendre differential equation; it is a linear combination of the functions $P_{n^{m}}(\cos \theta), Q_{n}{ }^{m}(\cos \theta)$. Note that

$$
\begin{equation*}
\frac{\partial^{2}}{\partial r^{2}}\left(r \psi_{n m}\right)+k^{2}\left(r \psi_{n m}\right)=\frac{n(n+1)}{r} \mathcal{Z}_{n}(k r) \mathscr{L}_{n}{ }^{m}(\cos \theta) e^{-i m \phi} \tag{5b-108}
\end{equation*}
$$

## References

Schelkunoff, S. A.: "Electromagnetic Waves," D. Van Nostrand Company, Inc., New York, 1943.
Stratton, J. A.: "Electromagnetic Theory," McGraw-Hill Book Company, Inc., New York, 1941.

5b-10. Waves Guided by Conductors. If guides of electromagnetic waves are restricted to those of arbitrary but uniform cross section, i.e., cylindrical in shape, and if a harmonic time dependence of the form $e^{j \omega t}$ is assumed, then the axial dependence of all the field components is of the form $e^{\mp} \gamma_{z}$. The propagation constant may be written

$$
\gamma=\alpha+j \beta
$$

## Basic Wave Types

Waves containing neither an electric nor a magnetic field component in the direction of propagation are called transverse electromagnetic waves (TEM). These transmissionline waves along a multiconductor guide are also known as principal waves.

Waves containing an electric-field but not a magnetic-field component in the direction of propagation are called transverse magnetic (TM) waves, $E$ waves, or waves of electric type.

Waves containing a magnetic-field but not an electric-field component in the direction of propagation are called transverse electric ( $T E$ ) waves, $H$ waves, or waves of magnetic type.

## Conventional Transmission Lines

For a two-conductor uniform line, the differential equations for the voltage $V$ and current $I$ are

$$
\begin{aligned}
& \frac{\partial V}{\partial z}=-L \frac{\partial I}{\partial t}-R I \\
& \frac{\partial I}{\partial z}=-C \frac{\partial V}{\partial t}-G V
\end{aligned}
$$

where $L, C, R$, and $G$ are the inductance, capacitance, resistance, and conductance, respectively, all per unit length $z$ of the line.
Table 5b-1. Some Constants of Coaxial, Parallel-wire, Shielded Pairs and Parallelrbar Transmission Lines*

| \% |  |  |  | Formulas for $a \ll b$ |
| :---: | :---: | :---: | :---: | :---: |
| Capacitance $C$, farads/m | $\frac{2 \pi \epsilon}{\ln \left(\frac{r_{0}}{r_{i}}\right)}$ | $\frac{\pi \epsilon}{\cosh ^{-1}\left(\frac{s}{d}\right)}$ | .................................. | $\frac{\epsilon}{a}$ |
| External inductance $L$, henrys/m | $\frac{\mu}{2 \pi} \ln \left(\frac{r_{0}}{r_{i}}\right)$ | $\frac{\mu}{\pi} \cosh ^{-1}\left(\frac{s}{d}\right)$ |  | $\mu \frac{a}{b}$ |
| Conductance $G$, mhos $/ \mathrm{m}$ | $\frac{2 \pi \sigma}{\ln \left(\frac{r_{0}}{r_{i}}\right)}=\frac{2 \pi \omega \epsilon_{\epsilon} \epsilon_{r}^{\prime \prime}}{\ln \left(\frac{r_{0}}{r_{i}}\right)}$ | $\frac{\pi \sigma}{\cosh ^{-1}\left(\frac{s}{d}\right)}=\frac{\pi \omega \epsilon_{v} \epsilon_{r}^{\prime \prime}}{\cosh ^{-1}\left(\frac{s}{d}\right)}$ | .............................. . | $\frac{\sigma b}{a}=\frac{\omega \epsilon_{r} \epsilon_{r}{ }^{\prime} b}{a}$ |
| Resistance $R$, ohms/m | $\frac{R_{s}}{2 \pi}\left(\frac{1}{r_{0}}+\frac{1}{r_{i}}\right)$ | $\frac{2 R_{s}}{\pi d}\left[\frac{s / d}{\sqrt{(s / d)^{2}-1}}\right]$ | $\begin{aligned} & \frac{2 R_{s 2}}{\pi d}\left[1+\frac{1+2 p^{2}}{4 p^{4}}\left(1-4 q^{2}\right)\right] \\ & \quad+\frac{8 R_{s 3}}{\pi D} q^{2}\left[1+q^{2}-\frac{1+4 p^{2}}{8 p^{4}}\right] \end{aligned}$ | $\frac{2 R_{s}}{b}$ |
| Internal inductance $L_{i}$, henrys/m (for high frequency) |  |  | $\frac{R}{\omega}$ | $\longrightarrow$ |

- FORMULAS


5-49
Table 5b-2. Several Important Formulas for Some Common Transmission Lines*

| Quantity | General line | Ideal line | Approximate results for low-loss lines |
| :---: | :---: | :---: | :---: |
| Propagation constant $\gamma=\alpha+j \beta$ | $\sqrt{(R+j \omega L)(G+j \omega C)}$ | $j \omega \sqrt{\overline{L C}}$ | (See $\alpha$ and $\beta$ below) |
| Phase constant $\beta$............. . | $\operatorname{Im}(\gamma)$ | $\omega \sqrt{L C}=\frac{\omega}{v}=\frac{2 \pi}{\lambda}$ | $\omega \sqrt{L C}\left(1-\frac{R G}{4 \omega^{2} L C}+\frac{G^{2}}{8 \omega^{2} C^{2}}+\frac{R^{2}}{8 \omega^{2} L^{2}}\right)$ |
| Attenuation constant $\alpha$. | $\boldsymbol{R e}(\gamma)$ | 0 | $\frac{R}{2 Z_{0}}+\frac{G Z_{0}}{2}$ |
| Characteristic impedance $Z_{0} \ldots \ldots$ | $\sqrt{\frac{R+j \omega L}{G+j \omega C}}$ | $\sqrt{\frac{L}{C}}$ | $\sqrt{\frac{L}{C}}\left[1+j\left(\frac{G}{2 \omega C}-\frac{R}{2 \omega L}\right)\right]$ |
| Input impedance $\boldsymbol{Z}_{\boldsymbol{i}}$. | $Z_{0}\left(\frac{Z_{L} \cosh \gamma l+Z_{0} \sinh \gamma l}{Z_{0} \cosh \gamma l+Z_{L} \sinh \gamma l}\right)$ | $Z_{0}\left(\frac{Z_{L} \cos \beta l+j Z_{0} \sin \beta l}{Z_{0} \cos \beta l+j Z_{L} \sin \beta l}\right)$ |  |
| Impedance of shorted line..... | $Z_{0} \tanh \gamma l$ | $j Z_{0} \tan \beta l$ | $Z_{0}\left(\frac{\alpha l \cos \beta l+j \sin \beta l}{\cos \beta l+j \alpha l \sin \beta l}\right)$ |
| Impedance of open line. . . . . . . | $Z_{0} \operatorname{coth} \gamma l$ | $-j Z_{0} \cot \beta l$ | $Z_{0}\left(\frac{\cos \beta l+j \alpha l \sin \beta l}{\alpha l \cos \beta l+j \sin \beta l}\right)$ |
| Impedance of quarter-wave line | $Z_{0}\left(\frac{Z_{L} \sinh \alpha l+Z_{0} \cosh \alpha l}{Z_{0} \sinh \alpha l+Z_{L} \cosh \alpha l}\right)$ | $\frac{Z_{0}{ }^{2}}{Z_{L}}$ | $Z_{0}\left(\frac{Z_{0}+Z_{L} \alpha l}{Z_{L}+Z_{0 \alpha} \alpha}\right)$ |
| Impedance of half-wave line.... | $Z_{0}\left(\frac{Z_{L} \cosh \alpha l+Z_{0} \sinh \alpha l}{Z_{0} \cosh \alpha l+Z_{L} \sinh \alpha l}\right)$ | $Z_{L}$ | $Z_{0}\left(\frac{Z_{L}+Z_{0} \alpha l}{Z_{0}+Z_{L} \alpha l}\right)$ |
| Voltage alone line $V(z)$. | $V_{i} \cosh \gamma z-I_{i} Z_{0} \sinh \gamma z$ $V_{i}$ | $V_{i} \cos \beta z-j I_{i} Z_{0} \sin \beta z$ |  |
| Current along line $I(z)$. . | $\begin{gathered} I_{i} \cosh \gamma z-\frac{V_{i}}{Z_{0}} \sinh \gamma z \\ \underline{Z_{L}-Z_{0}} \end{gathered}$ | $\begin{gathered} I_{i} \cos \beta z-j \frac{v_{i}}{Z_{0}} \sin \beta z \\ \underline{Z_{L}-Z_{0}} \end{gathered}$ |  |
| Reflection coefficient $K_{R} \ldots \ldots .$. | $\frac{Z_{L}+Z_{0}}{Z_{L}}$ | $\overline{Z_{L}+Z_{0}}$ |  |
| Standing-wave ratio. | $\frac{1+\left\|K_{R}\right\|}{1-\left\|K_{R}\right\|}$ | $\frac{1+\left\|K_{R}\right\|}{1-\left\|K_{R}\right\|}$ |  |

[^210]If steady-state sinusoidal conditions of the form $e^{j \omega t}$ are considered, then the equations become

$$
\begin{aligned}
& \frac{d V}{d z}=-(R+j \omega L) I \\
& \frac{d I}{d z}=-(G+j \omega C) V
\end{aligned}
$$

and $d^{2} V / d z^{2}=\gamma^{2} V$ where $\omega=2 \pi \nu, \nu$ is the frequency, and $\gamma$ is the propagation constant

$$
\begin{equation*}
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=\alpha+j \beta \tag{5b-109}
\end{equation*}
$$

The real and imaginary parts of this constant are the attenuation constant and the wave number, respectively.

The solution for the voltage along the line is of the form

$$
\begin{equation*}
V=A e^{-\gamma_{z}}+B e^{+\gamma_{z}} \tag{5b-110}
\end{equation*}
$$

The current then is

$$
\begin{equation*}
I=\frac{1}{Z_{0}}\left[A e^{-\gamma z}-B e^{\gamma_{z}}\right] \tag{5b-111}
\end{equation*}
$$

where $Z_{0}=(R+j \omega L) / \gamma=\sqrt{(R+j \omega L) /(G+j \omega C)}$ and is called the characteristic or surge impedance. Tables $5 \mathrm{~b}-1$ and $5 \mathrm{~b}-2$ summarize constants for some common lines and some important formulas for transmission lines.

Velocities of Wave Propagation. The phase velocity, $v_{p}=\omega / \beta$, for the loss-free transmission line is $v_{p}=1 / \sqrt{L C}$.

The group velocity is that velocity of the envelope of a high-frequency wave whose amplitude varies at a low-frequency rate

$$
\begin{equation*}
v_{g}=\frac{d \omega}{d \beta}=\frac{v_{p}}{1-\left(\omega / v_{p}\right)\left(d v_{p} / d \omega\right)} \tag{5b-112}
\end{equation*}
$$

Measurement of Load Impedance. A method of determining the impedance which terminates a transmission line ${ }^{1}$ consists in the measurement of the following:

1. Position of voltage (or electric-field intensity) minimum as measured from the load in electrical degrees, $\beta d_{\text {min }}$ where $\beta=2 \pi / \lambda$.
2. Standing-wave ratio $S=V_{\max } / V_{\min }$. Then, the load impedance is

$$
\begin{equation*}
Z_{L}=Z_{0} \frac{1-j S \tan \beta d_{\min }}{S-j \tan \beta d_{\min }} \tag{5b-113}
\end{equation*}
$$

Impedance Matching. In order to reduce a given standing-wave ratio to unity, either a closed stub or an open stub, both of less than a quarter of a wavelength, may be used (Fig. $5 \mathrm{~b}-1$ ). Figure $5 \mathrm{~b}-2$ is a set of curves ${ }^{2}$ which simplifies matching.

## OPEN- AND CLOSED-STUB MATCHING:

$l_{c}=$ length of closed stub
$d_{c}=$ location of closed stub measured from $V_{\text {min }}$ toward load
$l_{o}=$ length of open stub
$d_{o}=$ location of open stub measured from $V_{\min }$ toward transmitter

[^211]Standard Radio-frequency Cables. Table 5b-3 contains data ${ }^{1}$ on standard flexible solid-dielectric radio-frequency cables. Figure 5b-3 illustrates the attenuation characteristics of cables listed according to their standard number.


LOAD

Fig. 5b-1. Impedance matching with a stub.


Fig. 5b-2. Impedance-matching curves.

Waves in Bounded Regions. Maxwell's equations for uniform guiding systems in terms of a propagation factor $e^{\left(j \omega t-\gamma_{z}\right)}$ may be stated in terms of the field components in the direction of propagation $z$ for:

RECTANGULAR COORDINATES:

$$
\begin{align*}
H_{x} & =\frac{1}{\gamma^{2}+k^{2}}\left(j \omega \epsilon \frac{\partial E_{z}}{\partial y}-\gamma \frac{\partial H_{z}}{\partial x}\right) \\
H_{y} & =-\frac{1}{\gamma^{2}+k^{2}}\left(j \omega \epsilon \frac{\partial E_{z}}{\partial x}+\gamma \frac{\partial H_{z}}{\partial y}\right) \\
E_{x} & =-\frac{1}{\gamma^{2}+k^{2}}\left(\gamma \frac{\partial E_{z}}{\partial x}+j \omega \mu \frac{\partial H_{z}}{\partial y}\right)  \tag{5b-114}\\
E_{y} & =\frac{1}{\gamma^{2}+k^{2}}\left(-\gamma \frac{\partial E_{z}}{\partial y}+j \omega \mu \frac{\partial H_{z}}{\partial x}\right)
\end{align*}
$$

[^212]Table 5b-3. List of Standard Radio-frequency Cables

| Class of cables | JAN type | Inner conductor | Dielectric material* | Nominal diam of dielectric, in. | Shielding braid | Protective covering | Nominal over-all diam, in. | Weight, lb/ft | Approx. impedance, $\dagger$ ohms | Nominal capacitance, $\mu \mu \mathrm{f} / \mathrm{ft}$ | Max operating voltage (rms) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| General purpose | $\begin{aligned} & \text { RG-5A/U } \\ & \text { RG-5B/U } \ddagger \end{aligned}$ | 16 Awg silvered copper | A | 0.181 | Silver-coated copper, double braid | Noncontaminating synthetic resin | 0.332 | 0.087 | 50.0 | 28.5 | 3,000 | Small-sized microwave cable |
|  | $\begin{aligned} & \text { RG-8/U } \\ & \text { RG-8A/U } \ddagger \end{aligned}$ | $7 / 21 \mathrm{Awg}$ copper | A | 0.285 | Copper, single braid | Synthetic resin | 0.405 | 0.106 | 50.0 | 29.5 | 4,000 | Medium-sized flexible cable |
|  | $\begin{aligned} & \text { RG-9A/U } \\ & \text { RG-9B/U } \ddagger \end{aligned}$ | 7/21 Awg silvered copper | A | 0.280 | Silver-coated copper, double braid | Noncontaminating synthetic resin | 0.420 | 0.150 | 50.0 | 30.0 | 4,000 | Special medium-sized flexible cable |
|  | $\begin{aligned} & \text { RG-10/U } \\ & \text { RG-10A/U } \ddagger \end{aligned}$ | 7/21 Awg copper | $A$ | 0.285 | Copper, single braid | Noncontaminating synthetic resin and armor | $\begin{gathered} 0.475 \\ \max \end{gathered}$ | 0.146 | 50.0 | 29.5 | 4,000 | Same as RG-8/U and RG-8A/U but with armor |
|  | $\begin{aligned} & \text { RG-14/U } \\ & \text { RG-14A/U } \ddagger \\ & \hline \end{aligned}$ | 10 Awg copper | A | 0.370 | Copper, double braid | Noncontaminating synthetic resin | 0.545 | 0.216 | 50.0 | 29.5 | 5,500 | Medium-sized power-transmission cable |
|  | $\begin{aligned} & \text { RG-17/U } \\ & \text { RG-17A/U } \ddagger \end{aligned}$ | $0.188-\mathrm{in} .$ copper | A | 0.680 | Copper, single braid | Noncontaminating synthetic resin | 0.870 | 0.460 | 50.0 | 29.5 | 11,000 | Large-sized, low-attenuation, high-power-transmission cable |
|  | $\begin{aligned} & \text { RG-18/U } \\ & \text { RG-18A/U } \ddagger \end{aligned}$ | 0.188 -in. copper | A | 0.680 | Copper, single braid | Noncontaminating synthetic resin and armor | $\begin{gathered} 0.945 \\ \max \end{gathered}$ | 0.585 | 50.0 | 29.5 | 11,000 | Same as RG-17/U and RG-17A/U but with armor |
|  | $\begin{aligned} & \text { RG-19/U } \\ & \text { RG-19A/U } \ddagger \end{aligned}$ | $\begin{array}{\|} 0.250 \text {-in. } \\ \text { copper } \end{array}$ | A | 0.910 | Copper, single braid | Noncontaminating synthetic resin | 1.120 | 0.740 | 50.0 | 29.5 | 14,000 | Very large, low-attenuation, high-power-transmission cable |
|  | $\begin{aligned} & \text { RG-20/U } \\ & \text { RG-20A/U } \ddagger \end{aligned}$ | $\underset{\text { copper }}{0.250-i n .}$ | A | 0.910 | Copper, single braid | Noncontaminating synthetic resin and armor | $\begin{gathered} 1.195 \\ \max \end{gathered}$ | 0.925 | 50.0 | 29.5 | 14,000 | Same as RG-19/U and RG-19A/U but with armor |
|  | RG-55/U | 20 Awg copper | A | 0.116 | Tinned copper, double braid | Polyethylene | $\begin{gathered} 0.206 \\ \max \end{gathered}$ | 0.034 | 50.0 | 28.5 | 1,900 | Small-sized flexible cable |
|  | $\begin{aligned} & \text { RG-58A/U } \\ & \text { RG-58C/U } \ddagger \end{aligned}$ | $\begin{aligned} & 19 / 0.0068 \mathrm{in} . \\ & \text { tinned copper } \end{aligned}$ | A | 0.116 | Tinned copper, single braid | Synthetic resin | 0.195 | 0.025 | 50.0 | 28.5 | 1,900 | Small-sized flexible cable |
|  | $\begin{aligned} & \text { RG-74/U } \\ & \text { RG-74A/U } \ddagger \end{aligned}$ | 10 Awg copper | A | 0.370 | Copper, double braid | Noncontaminating synthetic resin and armor | $\begin{gathered} 0.615 \\ \max \end{gathered}$ | 0.310 | 50.0 | 29.5 | 5,500 | Same as RG-14/U and RG-14A/U but with armor |
|  | $\begin{aligned} & \text { RG-59/U } \\ & \text { RG-59A/U } \ddagger \end{aligned}$ | 22 Awg coppercovered steel | A | 0.146 | Copper, single braid | Synthetic resin | 0.242 | 0.032 | 70.0 | 21.0 | 2,300 | General-purpose small-sized video cable |

Table 5b-3. List of Standard Radio-frequency Cables (Continued)

| Class of cables | JAN type | $\begin{gathered} \text { Inner } \\ \text { conductor } \end{gathered}$ | $\begin{gathered} \text { Dielec- } \\ \text { tric } \\ \text { ma- } \\ \text { trial }{ }^{*} \\ \hline \end{gathered}$ |  | Shielding braid | Protective covering | Nominal over-all diam, in. | Weight, $\mathrm{lb} / \mathrm{ft}$ | Approx. impedohms | Nominal capacitance, $\mu \mu \mathrm{f} / \mathrm{ft}$ | $\underset{\text { Max }}{\text { Maxating }}$ voltage (rms) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \mathrm{RG}-11 / \mathrm{U} \\ & \mathrm{RG}-11 \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}$ | $\begin{aligned} & 7 / 26 \text { Awg } \\ & \text { tinned copper } \end{aligned}$ | $A$ | 0.285 | $\begin{aligned} & \text { Copper, single } \\ & \text { braid } \end{aligned}$ | Synthetic resin | 0.405 | 0.096 | 70.0 | 20.5 | 4,000 | Medium-sized flexible video and communication cable |
|  | $\begin{aligned} & \mathrm{RG}-35 / \mathrm{U} \\ & \mathrm{RG}-35 \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}$ | 9 Awg copper | A | 0.680 | Copper, single braid | Noncontaminating synthetic resin and armor | ${ }_{\max }^{0.945}$ | 0.525 | 70.0 | 21.5 | 10,000 | Large-sized high-power low-attenuation video and communication cable |
|  | $\left\lvert\, \begin{aligned} & \mathrm{RG}-6 / \mathrm{U} \\ & \mathrm{RG}-6 \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}\right.$ | 21 Awg coppercovered steel | $A$ | 0.185 | Inner: silvercoated copper; outer: copper | Noncontaminating synthetic resin | 0.332 | 0.082 | 70.0 | 20.0 | 2,700 | Small-sized video and communication cable |
|  | $\begin{aligned} & \mathrm{RG}-13 / \mathrm{U} \\ & \mathrm{RG}-13 \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}$ | $\begin{aligned} & 7 / 26 \text { Awg } \\ & \text { tinned copper } \end{aligned}$ | $A$ | 0.280 | Copper, double braid | Synthetic resin | 0.420 | 0.126 | 70.0 | 20.5 | 4,000 | Medium-sized flexible video and communication cable |
|  | $\begin{aligned} & \text { RG-12/U } \\ & \text { RG-12A/U } \ddagger \end{aligned}$ | $\begin{array}{\|l\|} \hline 7 / 26 \text { Awg } \\ \text { tinned copper } \end{array}$ | $A$ | 0.285 | Copper, single braid | Noncontaminating synthetic resin | $\begin{aligned} & 0.475 \\ & \max \end{aligned}$ | 0.141 | 75.0 | 20.5 | 4,000 | Similar to RG-11/U but with armor |
|  | $\begin{aligned} & \mathrm{RG}-84 / \mathrm{U} \\ & \mathrm{RG}-84 \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}$ | 9 Awg copper | A | 0.680 | Copper, single braid | Noncontaminating synthetic resin | 1.000 | 1.325 | 71.0 | 21.5 | 10,000 | Same as RG-35/U except lead sheath instead of armor for subterranean installations |
|  | $\begin{aligned} & \mathrm{RG}-85 / \mathrm{U} \\ & \text { RG-85A/U } \ddagger \end{aligned}$ | 9 Awg copper | A | 0.680 | Copper, single braid | Noncontaminating synthetic resin | ${ }_{\max }^{1.565}$ | 2.910 | 71.0 | 21.5 | 10,000 | Same as RG-84/U with special armor for subterranean installations |
| High temperature | RG-87A/U | 7/20 Awg silvered copper | $\underset{\text { (solid) }}{F}$ | 0.280 | Silver-coated copper, double braid | Teflon-tape moisture seal, two braids fiber glass, silicone-varnish impregnated | 0.425 | ...... | 50.0 | 29.5 | 4,000 | Semiflexible cable, operating at temp. -55 to $250^{\circ} \mathrm{C}$ |
|  | RG-115/U | 7/21 Awg silvered copper | $\begin{gathered} F \\ \text { (tape) } \end{gathered}$ | 0.250 | Silver-coated copper, double braid | Teflon-tape moisture seal, two braids fiber glass, silicone-varnish impregnated | 0.370 | $\ldots$ | 50.0 | 29.5 | 4,000 | Semiflexible cable, operating at temp. -55 to $250^{\circ} \mathrm{C}$ |
|  | RG-116/U | 7/20 Awg silvered copper | $\underset{\text { (solid) }}{F}$ | 0.280 | Silver-coated copper, double braid | Teflon-tape moisture seal, two braids fiber glass, silicone-varnish impregnated and armor | 0.475 | ...... | 50.0 | 29.5 | 4,000 | Same as RG-87A/U but with armor |
|  | RG-117/U | 0.188 -in. copper | $\underset{\text { (solid) }}{F}$ | 0.620 | Copper, single braid | Teflon-tape moisture seal, two braids fiber glass, | 0.730 | $\cdots$ | 50.0 | 29.0 | 22,000 | Semiflexible cable, operating at temp. -55 to $250^{\circ} \mathrm{C}$ |

FORMULAS


| Class of cables | JAN type | $\begin{aligned} & \text { Inner } \\ & \text { conductor } \end{aligned}$ | $\begin{gathered} \text { Dielec- } \\ \text { tric } \\ \text { ma- } \\ \text { terial } \end{gathered}$ | Nominal dielectric, in. | Shielding braid | Protective covering | Nominal over-all diam, in. | Weight, $\mathrm{lb} / \mathrm{ft}$. | Approx. impedance, $\dagger$ ohms | Nominal capacitance, $\mu \mu / \mathrm{ft}$ | $\begin{gathered} \text { Max } \\ \text { operating } \\ \text { voitage } \\ \text { (rms) } \end{gathered}$ | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{RG}-57 / \mathrm{U} / \mathrm{UG} \ddagger \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}$ | Each conductor $7 / 21 \mathrm{Awg}$ copper | A | 0.472 | Tinned copper, single braid | Synthetic resin | 0.625 | 0.225 | 95.0 | 17.0 | 3,000 | Large-sized twin-conductor cable |
|  | $\begin{aligned} & \text { RG-111/U } \\ & \text { RG-111A/U } \ddagger \end{aligned}$ | $\begin{aligned} & \text { Each conductor } \\ & 7 / 0.0152-\mathrm{in} \text {. } \\ & \text { copper } \end{aligned}$ | A | 0.285 | Tinned copper, double braid | Noncontaminating synthetic resin and armor | $\begin{gathered} 0.490 \\ \max \end{gathered}$ | 0.146 | 95.0 | 16.0 | 1,000 | Same as RG-22/U and RG-22A/U but with armor |
|  | $\stackrel{\mathrm{RG}-21 / \mathrm{U}}{\mathrm{RG}-21 \mathrm{~A} / \mathrm{U} \ddagger}$ | 16 Awg resistance wire | $A$ | 0.185 | Silver-coated copper, double braid | Noncontaminating synthetic resin | 0.332 | 0.087 | 50.0 | 29.0 | 2,700 | Special high-attenuation cable with small temp. coefficient of attenuation |
|  | $\begin{aligned} & \mathrm{RG}-62 / \mathrm{U} \\ & \mathrm{RG}-62 \mathrm{~A} / \mathrm{U} \ddagger \end{aligned}$ | 22 Awg coppercovered steel | A | 0.146 | Copper, single braid | Synthetic resin | 0.242 | 0.0382 | 93.0 | 13.5 | 750 | Small-sized low-capacitance airspaced cable |
|  |  | $\begin{aligned} & 7 / 32 \mathrm{Awg} \\ & \text { copper-covered } \\ & \text { steel } \end{aligned}$ | A | 0.146 | Copper, single braid | Noncontaminating synthetic resin | 0.242 | 0.0283 | 93.0 | 13.5 | 750 | Same as RG-62/U and RG-62A/U except inner conductor is stranded |
|  | RG-71/U | 22 Awg coppercovered steel | A | 0.146 | Tinned copper, double braid | Polyethylene | $\begin{gathered} 0.250 \\ \max \end{gathered}$ | 0.0457 | 93.0 | 13.5 | 750 | Small-sized low-capacitance airspaced cable |
|  | $\begin{aligned} & \text { RG-63/U } \\ & \text { RG-63B/U } \ddagger \end{aligned}$ | 22 Awg coppercovered steel | $A$ | 0.285 | Copper, single braid | Synthetic resin | 0.405 | 0.0832 | 125.0 | 10.0 | 1,000 | Medium-sized low-capacitance airspaced cable |
|  | $\begin{aligned} & \text { RG-79/U } \\ & \text { RG-79B/U } \ddagger \end{aligned}$ | 22 Awg coppercovered steel | $A$ | 0.285 | Copper, single braid | Synthetic resin and armor | $\underset{\max }{0.475}$ | 0.136 | 125.0 | 10.0 | 1,000 | Same as RG-63/U and RG-63B/U but with armor |
|  | $\begin{aligned} & \text { RG-65/U } \\ & \text { RG-65A/U } \ddagger \end{aligned}$ | No. 32 formex, <br> $F, 0.128-\mathrm{in}$. <br> diam <br> (helix) | $A$ | 0.285 | Copper, single | Synthetic resin | 0.405 | 0.096 | 950.0 | 44.0 | 1,000 | High-impedance video cable, high delay line |

[^213]CYLINDRICAL COORDINATES:

$$
\begin{align*}
H_{r} & =\frac{1}{\gamma^{2}+k^{2}}\left(\frac{j \omega \epsilon}{r} \frac{\partial E_{z}}{\partial \phi}-\gamma \frac{\partial H_{z}}{\partial r}\right) \\
H_{\phi} & =-\frac{1}{\gamma^{2}+k^{2}}\left(j \omega \epsilon \frac{\partial E_{z}}{\partial r}+\frac{\gamma}{r} \frac{\partial H_{z}}{\partial \phi}\right) \\
E_{r} & =-\frac{1}{\gamma^{2}+k^{2}}\left(\gamma \frac{\partial E_{z}}{\partial r}+\frac{j \omega \mu}{r} \frac{\partial H_{z}}{\partial \phi}\right)  \tag{5b-115}\\
E_{\phi} & =\frac{1}{\gamma^{2}+k^{2}}\left(-\frac{\gamma}{r} \frac{\partial E_{z}}{\partial \phi}+j \omega \mu \frac{\partial H_{z}}{\partial r}\right)
\end{align*}
$$

where $k^{2}=\omega^{2} \mu \epsilon$.
If the dielectric has finite conductivity $\sigma$ substitute $\epsilon(1+\sigma / j \omega \epsilon)$ for $\epsilon$ in the above expressions. ${ }^{1}$

For a wave traveling in the negative $z$ direction, substitute $-\gamma$ for $\gamma$ above.


Fig. 5b-3. Attenuation of standard r-f cables vs. frequency.
Wave Types. transverse electromagnetic waves (TEM): The longitudinal components $E_{z}$ and $H_{z}$ are zero. This requires that $\gamma^{2}+k^{2}=0$, whence

$$
\begin{equation*}
\gamma= \pm j k= \pm \frac{j \omega}{v}= \pm j \omega \sqrt{\mu \epsilon} \tag{5b-116}
\end{equation*}
$$

The wave equation, for the electric field

$$
\begin{equation*}
\nabla_{x y}{ }^{2} \mathrm{E}=-\left(\gamma^{2}+k^{2}\right) \mathbf{E} \tag{5b-117}
\end{equation*}
$$

[^214]reduces to $\nabla_{x y}{ }^{2} \mathbf{E}=0$ and for the magnetic field, $\nabla_{x y}{ }^{2} \mathbf{H}=0$, where $\nabla_{x y}{ }^{2}$ is the twodimensional Laplacian ( $\nabla_{t}{ }^{2}$ ) in the plane transverse to $z$, representing contributions to $\nabla^{2}$ from derivatives in this plane.
transverse magnetic waves (TM): The longitudinal component $H_{z}$ of the magnetic field is zero. The wave equation is $\nabla_{t}{ }^{2} E_{z}=-k_{c}{ }^{2} E_{z}$, where
\[

$$
\begin{equation*}
k_{c}{ }^{2}=\left(\gamma^{2}+k^{2}\right)=\gamma^{2}+\omega^{2} \mu \epsilon \tag{5b-118}
\end{equation*}
$$

\]

The propagation constant is $\gamma=\sqrt{k_{c}{ }^{2}-k^{2}}$ where $k_{c}$ is determined from the solution of the wave equation subject to the boundary condition that $E_{z}=0$ on the conducting boundary. The allowable values of $k_{c}$ are called characteristic values, or eigen values, and any one of the values determines a particular TM mode for the given guide.

$$
k_{c}=\frac{2 \pi}{\lambda_{c}}=2 \pi f_{c} \sqrt{\mu \epsilon}
$$

where $\lambda_{c}$ and $f_{c}$ are the cutoff wavelength and frequency, respectively.
For propagation, i.e., above cutoff, $f>f_{c}$ and

$$
\begin{equation*}
\gamma=j \beta=j k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} \tag{5b-119}
\end{equation*}
$$

For nonpropagating fields, $f<f_{c}$ and

$$
\begin{equation*}
\gamma=\alpha=k_{c} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}} \tag{5b120}
\end{equation*}
$$

The group velocity is

$$
\begin{equation*}
v_{g}=\frac{d \omega}{d \beta}=v\left[1-\left(\frac{f_{c}}{f}\right)^{2}\right]^{\frac{1}{2}} \tag{5b-121}
\end{equation*}
$$

and the phase velocity is

$$
\begin{equation*}
v_{p}=\frac{\dot{\omega}}{\beta}=v\left[1-\left(\frac{f_{c}}{f}\right)^{2}\right]^{-\frac{1}{2}} \tag{5b-122}
\end{equation*}
$$

Field components are related as follows:

$$
\begin{align*}
& \frac{E_{x}}{H_{y}}=-\frac{E_{y}}{H_{x}}=\frac{\gamma}{j \omega \epsilon}=\eta\left[1-\left(\frac{f_{c}}{f}\right)^{2}\right]^{\frac{1}{2}}=Z_{T M}  \tag{5b-123}\\
& \frac{E_{r}}{H_{\phi}}=-\frac{E_{\phi}}{H_{r}}=\eta\left[1-\binom{f_{c}}{f}^{2}\right]^{\frac{1}{2}}=Z_{T_{M}}
\end{align*}
$$

Attenuation due to imperfectly conducting boundaries:

$$
\begin{equation*}
\alpha=\frac{\text { power loss }}{2 \text { power transfer }}=\frac{W_{L}}{2 W_{T}} \tag{5b-124}
\end{equation*}
$$

where

$$
W_{L}=\frac{R_{s}}{2} \oint_{\text {bound }}\left|H_{t}\right|^{2} d l=\frac{R_{s}}{2 \eta^{2} k_{c}{ }^{2}}\left(\frac{f}{f_{c}}\right)^{2} \oint\left(\frac{\partial E_{z}}{\partial n}\right)^{2} d l
$$

and $\quad W_{T}=\frac{Z_{T M}}{2} \int_{\substack{\text { cross } \\ \text { section }}}\left|H_{t}\right|^{2} d S=\frac{Z_{T M}}{2 \eta^{2}}\left(\frac{f}{f_{c}}\right)^{2} \int_{\substack{\text { cross } \\ \text { section }}} E_{z^{2}} d S$
$\left|H_{t}\right|^{2}=H_{x}{ }^{2}+H_{y}{ }^{2}$ is the square of the total transverse magnetic field, $\partial / \partial n$ is the normal derivative at the bounding conductor wall, $R_{s}=\sqrt{\pi f \mu / \sigma_{c}}$ is the surface resistance, and $\sigma_{c}$ is the conductivity of the boundary conductor.

Attenuation due to imperfect dielectric:

$$
\begin{equation*}
\alpha_{d}=\frac{\sigma_{d} \eta}{2 \sqrt{1-\left(f_{c} / f\right)^{2}}} \tag{5b-125}
\end{equation*}
$$

where $\sigma_{d}$ is the conductivity of the dielectric.
transverse electric waves ( $T E$ ): The longitudinal component $E_{z}$ of the electric field is zero.

The wave equation is $\nabla_{t}{ }^{2} H_{z}=k_{c}{ }^{2} H_{z}$, where $k_{c}$ and $\gamma$ are identical with the values defined for the $T M$ waves above except that the wave equation is now subject to the boundary condition that the normal derivative of $H_{z}$ is zero at the conducting boundary (e.g., $\partial H_{z} / \partial x=0$ along $y$ ).

The allowable values of $k_{c}$ determine the particular TE modes for the given guide.
For propagation, $f>f_{c}$ and $\gamma$ is given by Eq. ( $5 \mathrm{~b}-119$ ).
For nonpropagation, $f<f_{c}$ and $\gamma$ is given by Eq. (5b-120).
$v_{g}$ and $v_{p}$ are given by Eq. (5b-121) and Eq. (5b-122), respectively. Field components are related as follows:

$$
\begin{align*}
& \frac{E_{x}}{H_{y}}=-\frac{E_{y}}{H_{x}}=\frac{j \omega \mu}{\gamma}=\eta\left[1-\left(\frac{f_{c}}{f}\right)^{2}\right]^{-\frac{1}{2}}=Z_{T E}  \tag{5~b-126}\\
& \frac{E_{r}}{H_{\phi}}=-\frac{E_{\phi}}{H_{r}}=\eta\left[1-\left(\frac{f_{c}}{f}\right)^{2}\right]^{-\frac{1}{2}}=Z_{T E}
\end{align*}
$$

Attenuation due to imperfectly conducting boundaries:

$$
\begin{equation*}
\alpha=\frac{W_{L}}{2 W_{T}}=\frac{\frac{R_{z}}{2} \oint\left\{H_{z}{ }^{2}+\left(\frac{f}{f_{c}}\right)^{2} \frac{\left(1-\left(f_{c} / f\right)^{2}\right]}{k_{c}{ }^{2}}\left[\frac{\partial H_{z}}{\partial l}\right]^{2}\right\} d l}{\frac{\eta^{2}\left(f / f_{c}\right)^{2}}{Z_{T E}} \int_{\substack{\text { cross } \\ \text { section }}} H_{z}{ }^{2} d S} \tag{5b-127}
\end{equation*}
$$

where $\partial H_{z} / \partial l$ is the tangential component of the transverse gradient along the boundary of the transverse plane.

Attenuation due to imperfect dielectrics:
$\alpha_{d}$ as given by Eq. (5b-125)
Common Waveguides. Rectangular Waveguides: See Fig. 5b-4.
$a$. No TEM wave is possible within the guide.
b. $T M_{m n}$ waves:


Fig. 5b-4. Coordinate system for rectangular guide.

$$
\begin{align*}
E_{z} & =E_{0} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \\
H_{x} & =j \frac{(n \pi / b) f}{k_{c} \eta f_{c}} E_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right)  \tag{5~b-128a}\\
H_{y} & =-j \frac{(m \pi / a) f}{k_{c} f_{c}} E_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \\
E_{x} & =Z_{T M} H_{y} \\
E_{y} & =-Z_{T M} H_{x}
\end{align*}
$$

c. $T E_{m n}$ waves:

$$
\begin{align*}
H_{z} & =H_{0} \cos \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \\
E_{x} & =j \frac{\eta(n \pi f / b)}{k_{c} f_{c}} H_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \\
E_{y} & =-j \frac{\eta(m \pi f / a)}{k_{c} f_{c}} H_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right)  \tag{5~b-128b}\\
H_{x} & =\frac{-E_{y}}{Z_{T E}} \\
H_{y} & =\frac{E_{x}}{Z_{T E}}
\end{align*}
$$

The propagation factor $e^{\left(j \omega t-\gamma_{z}\right)}$ is understood for a wave traveling in a positive $z$ direction where $\gamma, Z_{T M}$, and $Z_{T E}$ are given by Eqs. ( $5 \mathrm{~b}-119$ ) to ( $5 \mathrm{~b}-123$ ).

For a negatively traveling wave, $e^{\left(j \omega t+\gamma_{z}\right)}$ is used and the signs of $Z_{T M}$ and $Z_{T E}$ are reversed.

The characteristics determined from the dimensions of the waveguide are

$$
\begin{align*}
& \quad\left(k_{c}\right) m n=\sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}}  \tag{5b-129}\\
& \text { Cutoff wavelength } \quad\left(\lambda_{c}\right) m n=\frac{2 \pi}{k_{c}}=\frac{2}{\sqrt{(m / a)^{2}+(n / b)^{2}}} \\
& \text { Cutoff frequency } \quad\left(f_{c}\right)_{m n}=\frac{k_{c}}{2 \pi \sqrt{\mu \epsilon}}=\frac{1}{2 \sqrt{\mu_{\epsilon}} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}} \\
& \text { Guide wavelength }
\end{align*} \quad\left(\lambda_{o}\right)_{m n}=\frac{\lambda}{\sqrt{1-\left[\left(f_{c}\right)_{m n} / f\right]^{2}}} .
$$

The allowable values of $m$ and $n$ are
$T E_{m n}: m, n$ are integers; either $m$ or $n$ may be zero, but not both.
$T M_{m n}: m, n$ are integers; neither $m$ nor $n$ can be zero.
Attenuation above cutoff due to imperfect conductivity:

$$
\begin{align*}
&\left(\alpha_{c}\right)_{T E_{m o}}=\frac{R_{s}}{b \eta\left[1-\left(f_{c} / f\right)^{2}\right]^{\frac{1}{2}}}\left[1+\frac{2 b}{a}\left(\frac{f_{c}}{f}\right)^{2}\right]  \tag{5b-130}\\
&\left(\alpha_{c}\right)_{T E_{m n}}=\frac{2 R_{s}}{b \eta\left[1-\left(f_{c} / f\right)^{2}\right]^{\frac{1}{2}}}\left\{\left(1+\frac{b}{a}\right)\left(\frac{f_{c}}{f}\right)^{2}+\left[1-\left(\frac{f_{c}}{f}\right)^{2}\right] \frac{(b / a)\left[(b / a) m^{2}+n^{2}\right]}{\left(b^{2} m^{2} / a^{2}\right)+n^{2}}\right\}  \tag{5b-132}\\
&\left(\alpha_{c}\right)_{T M m n}=\frac{2 R_{s}}{b \eta\left[1-\left(f_{c} / f\right)^{2}\right]^{\frac{1}{2}}}\left[\frac{m^{2}(b / a)^{3}+n^{2}}{m^{2}(b / a)^{3}+n^{2}}\right] \tag{5b-131}
\end{align*}
$$

The dominant $T E_{10}$ wave in a rectangular guide:
For this principal mode, $m=1$ and $n=0$
The field components are

$$
\begin{align*}
H_{z} & =H_{0} \cos \left(\frac{\pi x}{a}\right) \\
E_{y} & =-j \frac{\eta 2 a}{\lambda} H_{0} \sin \left(\frac{\pi}{a} x\right)  \tag{5b-133}\\
H_{x} & =-\frac{E_{\nu}}{Z_{T E_{10}}}=\frac{j \eta 2 a}{\lambda Z_{T E_{10}}} H_{0} \sin \left(\frac{\pi}{a} x\right) \quad H_{y}=0 \\
Z_{T E_{10}} & =\frac{\eta}{\sqrt{1-(\lambda / 2 a)^{2}}} \\
v_{p} & =\frac{1}{\sqrt{\mu \epsilon} \sqrt{1-(\lambda / 2 a)^{2}}} \quad \text { phase velocity } \\
v_{g} & =\frac{1}{\sqrt{\mu \epsilon}} \sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}} \quad \text { group velocity } \\
\lambda_{c} & =2 a \\
f_{c} & =\frac{1}{2 a \sqrt{\mu \epsilon}} \quad \text { cutoff wavelength }
\end{align*}
$$

The waveguide wavelength is

$$
\begin{equation*}
\lambda_{g}=\frac{\lambda}{\sqrt{1-(\lambda / 2 a)^{2}}}=\bar{V}_{f^{2} \mu \epsilon}-\frac{1}{(1 / 2 \bar{a})^{2}} \tag{5b-134}
\end{equation*}
$$

Table 5b-4. Summary of Wave Types for Rectangular Guides*
(10)
*The solid dots represent vectors coming out of the paper, and the crosses represent vectors going into the paper.

Attenuation due to imperfect dielectric, of conductivity $\sigma$ :

$$
\begin{equation*}
\alpha_{d}=\frac{\sigma \sqrt{\mu / \epsilon}}{2 \sqrt{1-(1 / 2 a \sqrt{\mu \epsilon} f)^{2}}} \tag{5b-135}
\end{equation*}
$$

Attenuation due to imperfect conductor, of conductivity $\sigma_{c}$ :

$$
\begin{equation*}
\alpha_{c}=\frac{\sqrt{\pi f \mu / \sigma_{c}}}{b \sqrt{\mu / \epsilon} \sqrt{1-(1 / 2 a \sqrt{\mu \epsilon} f)^{2}}}\left[1+\frac{2 b}{a}\left(\frac{1}{2 a \sqrt{\mu \epsilon} f}\right)^{2}\right] \tag{5b-136}
\end{equation*}
$$

Common rectangular waveguides used in the dominant $T E_{10}$ wave are listed in Table 5b-4. Table 5b-5 lists letter notation for certain bands of microwave frequencies.

> Table 5b-5. Letter Notation for Certain Bands of Microwave Frequencies*

| Band | Frequency, <br> mcps | Wavelength $\lambda$, <br> cm |
| :---: | :---: | :---: |
| $P$ | $225-390$ | $133.3-76.9$ |
| $L$ | $390-1,550$ | $76.9-19.37$ |
| $S$ | $1,550-5,200$ | $19.37-5.77$ |
| $X$ | $5,200-10,900$ | $5.77-2.75$ |
| $K$ | $10,900-36,000$ | $2.75-0.834$ |
| $Q$ | $36,000-46,000$ | $0.834-0.652$ |
| $V$ | $46,000-56,000$ | $0.652-0.536$ |

* Signal Corps Engineering Laboratories, Fort Monmouth, N.J.

Circular Cylindrical Waveguides (see Fig. 5b-5.)
a. No TEM wave is possible within the guide.
b. $T M_{n l}$ waves:


Fig. 5b-5. Coordinate system for circular cylindrical waveguide.

$$
\left.\begin{array}{l}
E_{z}=E_{0} J_{n}\left(k_{c} r\right)\left[\begin{array}{l}
\cos n \phi \\
\sin n \phi
\end{array}\right. \\
H_{r}=-j \frac{n f}{k_{c} \eta r f_{c}} E_{0} J_{n}\left(k_{c} r\right)\left[\begin{array}{l}
\sin n \phi \\
-\cos n \phi
\end{array}\right) \\
H_{\phi}=-j \frac{f}{f_{c} \eta} E_{0} J_{n}^{\prime}\left(k_{c} r\right)\left[\begin{array}{l}
\cos n \phi \\
\sin n \phi
\end{array}\right. \\
E_{\phi}=-H_{r} Z_{T M} \\
E_{r}=H_{\phi} Z_{T M}
\end{array}\right\}(5 \mathrm{~b}-137 a)
$$

Boundary condition requires $J_{n}\left(k_{c} a\right)=0$ where $J_{n}(x)$ is a Bessel function. ${ }^{1}$ If $p_{n l}$ is the $l$ th root of $J_{n}(x)=0$, then

$$
\left(k_{c}\right)_{n l}=\frac{p_{n l}}{a}
$$

Boundary condition requires the derivative of the Bessel function to be zero, i.e., $J_{n}^{\prime}\left(k_{c} a\right)=0$. If $p_{n l}^{\prime}$ is the $l$ th root of $J_{n}^{\prime}(x)=0$, then

$$
\left(k_{c}\right)_{n l}=\frac{p_{n l}^{\prime}}{a}
$$

[^215]c. $T E_{n l}$ waves
\[

$$
\begin{align*}
& \left.\begin{array}{rl}
H_{z} & =H_{0} J_{n}\left(k_{c} r\right)\left[\begin{array}{l}
\cos n \phi \\
\sin n \phi
\end{array}\right. \\
E_{r} & =j \frac{n \eta f}{k_{c} f_{c}} H_{0} J_{n}\left(k_{c} r\right)\left[\begin{array}{l}
\sin n \phi \\
-\cos n \phi
\end{array}\right. \\
E_{\phi} & =j \eta \frac{f}{f_{c}} H_{0} J_{n}^{\prime}\left(k_{c} r\right)\left[\begin{array}{l}
\cos n \phi \\
\sin n \phi
\end{array}\right. \\
H_{\phi} & =\frac{E_{r}}{Z_{r E}} \\
H_{r} & =-\frac{E_{\phi}}{Z_{T E}}
\end{array}\right\}  \tag{5b-137b}\\
& \left(\lambda_{c}\right)_{T M_{n l}}=\frac{2 \pi a}{p_{n l}} \quad\left(\lambda_{c}\right)_{T E_{n l}}=\frac{2 \pi a}{p_{n l}^{\prime}} \quad \text { cutoff wavelength } \\
& \left(f_{c}\right)_{T M_{n l}}=\frac{p_{n l}}{2 \pi a \sqrt{\mu \epsilon}} \quad\left(f_{c}\right)_{T E_{n l}}=\frac{p_{n l}^{\prime}}{2 \pi a \sqrt{\mu \epsilon}} \quad \text { cutoff frequency } \\
& \left(\lambda_{g}\right)_{n l}=\frac{\lambda}{\sqrt{1-\left[\left(f_{c} / f\right) n l\right]^{2}}} \quad \text { guide wavelength } \tag{5b-138}
\end{align*}
$$
\]

The allowable values of $n$ and $l$ are
$T E_{n l}: n, l$ are integers; $n$ can be zero but not $l$.
$T M_{n l}: n, l$ are integers; $n$ can be zero but not $l$.
Table 5b-6. Summary of Wave Types for Circular Guides


Attenuation due to imperfect conducting walls:

$$
\begin{gather*}
\left(\alpha_{c}\right)_{T M n l}=\frac{R_{s}}{a_{\eta} \sqrt{1-\left(f_{c} / f\right)^{2}}} \quad \text { nepers } / \mathrm{m}  \tag{5b-139}\\
\left(\alpha_{c}\right)_{T E_{n l}}=\frac{R_{s}}{a_{\eta} \sqrt{1-\left(f_{c} / f\right)^{2}}}\left[\left(\frac{f_{c}}{f}\right)^{2}+\frac{n^{2}}{\left(p_{n l}^{\prime}\right)^{2}-n^{2}}\right] \tag{5b-140}
\end{gather*}
$$

The expressions for $\gamma, Z_{T M}, Z_{T E}$ are the same as described under the general considerations of waves in bounded regions and are used with the cutoff frequencies determined above.

## Waveguide Discontinuities

Discontinuities in waveguides and their scattering properties may be represented by equivalent networks and conventional transmission lines. ${ }^{1}$

For example, a symmetrical obstacle strip of small thickness with its edges perpendicular to the electric field ( $T E_{10}$ mode) in rectangular guide is represented by a capacitance across the line, whereas a strip parallel to the electric field is represented by an inductance across the line.

## Anisotropic Wave-propagation Systems

The use of ferrites (Sec. $5 \mathrm{~h}-10$ ) at microwave frequencies is possible because of their high resistivity (typical values from $10^{+4}$ to $10^{+6} \mathrm{ohm}-\mathrm{m}$ as compared with $10^{-3} \mathrm{ohm}-\mathrm{m}$ for iron). These ferrites have typical relative dielectric constants ranging in value from 9 to 20.

The tensor permeability property of the ferrite is what makes the ferrite so useful at microwave frequencies. This property is used in many ways, among which the following two are more common.

Faraday Rotation at Microwave Frequencies. Polder ${ }^{2}$ has shown that a ferrite region which is uniformly magnetized and saturated and subjected to uniform r-f fields will have the following uniform flux densities:

$$
\begin{align*}
b_{x} & =\mu h_{x}-j k h_{y} & b_{y}=j k h_{x}-\mu h_{y} \quad b_{z}=\mu_{v} h_{z} \\
\mu & =\mu_{v}-\frac{\gamma M \omega_{0}}{\omega_{0}{ }^{2}-\omega^{2}} & \gamma=-\frac{0.035 \mathrm{Mc}}{\operatorname{amp} / \mathrm{m}}  \tag{5b-141}\\
k & =\frac{\gamma M \omega}{\omega_{0}^{2}-\omega^{2}} & \omega_{0}=\gamma H_{i}
\end{align*}
$$

where $\mu_{v}=$ permeability of free space and $M=$ magnetization. Here, the d-c field $H_{a}$ is applied in the $z$ direction, which is the direction of the propagating electromagnetic wave of angular frequency $\omega$. The resulting d-c magnetic field $H_{i}$ internal to the medium is calcuiated for the specific shape of the ferrite region by standard magnetostatic techniques.

This arrangement of fields results in a rotation of the field components in the following way. If an exciting linearly polarized r-f field is separated into a sum of a clockwise circularly polarized field vector and a counterclockwise circularly polarized field vector, the tensor permeability sets up the following fields:

$$
\begin{array}{ll}
b_{x}=(\mu-k) h_{x} & \text { clockwise components } \\
b_{y}=-j(\mu-k) h_{x} & h_{y}=-j h_{x} \\
b_{x}=(\mu+k) h_{x} & \text { counterclockwise component } \\
b_{y}=+j(\mu+k) h_{x} & h_{y}=+j h_{x}
\end{array}
$$

The result is a net rotation of the linearly polarized wave through an angle ${ }^{3}$

$$
\begin{equation*}
\theta=\frac{\omega l}{2} \sqrt{\epsilon_{\mathrm{t}}}\left(\phi_{\mathrm{ow}} \sqrt{\mu_{\mathrm{c}_{\mathrm{cw}}}}-\phi_{\mathrm{ocw}} \sqrt{\mu_{e_{\mathrm{cow}}}}\right) \tag{5b-144}
\end{equation*}
$$

[^216]where $\omega=2 \pi \nu$
$l=$ length of ferrite sample
$\epsilon_{G}=$ effective relative dielectric constant of composite thin ferrite rod and cross-sectional region of the guiding system
$\phi_{\text {ow }}=$ cutoff factor of the clockwise rotating component of the total linearly polarized r-f field
$\phi_{\text {cow }}=$ cutoff factor of the counterclockwise rotating component of the total linearly polarized r-f field
$\mu_{e_{\mathrm{cw}}}$ and $\mu_{\mathrm{eccew}}$ are the effective relative permeabilities of the composite system for the clockwise and counterclockwise components, respectively.

A ferrite loaded round guide propagating the $T E_{11}$ mode and having an axial d-c magnetic field is generally used to obtain the Faraday rotation.

Transversely Applied D-C Magnetic Field. If a transverse d-c magnetic field is applied to a ferrite region in a rectangular waveguide, the properties of the dominant mode are affected in the following way:

1. Phase constants for the two directions of transmission are different.
2. The attenuation constants for the two directions of transmission may be different.
3. The electric- and magnetic-field configurations in the waveguide are different for the two directions of propagation.

Any one or combinations of these effects can be used to obtain a nonreciprocal behavior.

5b-11. Resonant Cavities. Resonant cavities are used at high frequencies in place of lumped-circuit elements, primarily because they eliminate radiation and in general possess very high $Q$ 's.
The $Q$ of a resonator is defined as follows:

$$
\begin{equation*}
Q=\frac{2 \pi \nu_{\text {resonance }} \text { (energy stored in circuit) }}{\text { average power loss }}=\frac{\omega_{0} U}{W_{L}} \tag{5b-145}
\end{equation*}
$$

The $Q$ may be estimated from a measurement of the $1 / \sqrt{2}$ amplitude points on each side of resonance; then $1 / Q=\Delta \nu / \nu_{0}$.

## Common Resonators

Rectangular Resonators. The modes are designated by $T E_{m n p}$ or $T M_{m n p}$ where the letters $m, n, p$ represent number of variations in $x, y, z$ directions, respectively. simple $T E_{101}$ mode (see Fig. 5b-6)

$$
\begin{align*}
E_{y} & =E_{0} \sin \frac{\pi x}{a} \sin \frac{\pi z}{d} \\
H_{x} & =-j \frac{E_{0} \lambda}{\eta 2 d} \sin \frac{\pi x}{a} \cos \frac{\pi z}{d} \\
H_{z} & =j \frac{E_{0}}{\eta} \frac{\lambda}{2 a} \cos \frac{\pi x}{a} \sin \frac{\pi z}{d} \quad(5 \mathrm{~b}-146)  \tag{5b-146}\\
\eta & =\sqrt{\frac{\mu}{\epsilon}} \\
Q & =\frac{\pi \eta}{4 R_{z}}\left[\frac{2 b\left(a^{2}+d^{2}\right) \frac{z}{2}}{a d\left(a^{2}+d^{2}\right)+2 b\left(a^{3}+d^{3}\right)}\right] \tag{5b-147}
\end{align*}
$$



Fig. 5b-6. Electric and magnetic fields in rectangular resonator with $T E_{101}$ mode.

For silver:
$R_{s}=2.52 \times 10^{-7} \sqrt{\nu}$
For copper:
$R_{s}=2.61 \times 10^{-7} \sqrt{\nu}$
For brass:
$R_{s}=3.26 \times 10^{-7} \sqrt{\nu}$
For air:
$\eta=377$ ohms

For dielectric constant $\epsilon_{r}$ :

$$
\eta=\frac{377}{\sqrt{\epsilon_{r}}}
$$

$T E_{m n p}$ MODe:

$$
\begin{align*}
H_{z} & =C \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \sin \frac{p \pi z}{d} \\
H_{y} & =-\frac{C}{k_{c}{ }^{2}}\left(\frac{p \pi}{d}\right)\left(\frac{n \pi}{b}\right) \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \cos \frac{p \pi z}{d} \\
H_{x} & =-\frac{C}{k_{c}{ }^{2}}\left(\frac{p \pi}{d}\right)\left(\frac{m \pi}{a}\right) \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \cos \frac{p \pi z}{d}  \tag{5b-148}\\
E_{x} & =\frac{j \omega \mu C}{k_{c}{ }^{2}}\left(\frac{n \pi}{b}\right) \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \sin \frac{p \pi z}{d} \\
E_{y} & =-\frac{j \omega \mu C}{k_{c}{ }^{2}}\left(\frac{m \pi}{a}\right) \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \sin \frac{p \pi z}{d}
\end{align*}
$$

$T M_{m p}$ MODE:

Note:

$$
\begin{align*}
E_{z} & =D \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \cos \frac{p \pi z}{d} \\
E_{x} & =-\frac{D}{k_{c}{ }^{2}}\left(\frac{p \pi}{d}\right)\left(\frac{\pi}{a}\right) \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \sin \frac{p \pi z}{d} \\
E_{y} & =-\frac{D}{k_{c}{ }^{2}}\left(\frac{p \pi}{d}\right)\left(\frac{n \pi}{b}\right) \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \sin \frac{p \pi z}{d}  \tag{5b-149}\\
H_{x} & =\frac{j \omega \epsilon D}{k_{c}{ }^{2}}\left(\frac{n \pi}{b}\right) \sin \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \cos \frac{p \pi z}{d} \\
H_{y} & =-\frac{j \omega \epsilon D}{k_{c}{ }^{2}}\left(\frac{m \pi}{a}\right) \cos \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \cos \frac{p \pi z}{d} \\
k_{c}{ }^{2} & =\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{p \pi}{b}\right)^{2}=\left(\frac{2 \pi}{\lambda_{c}}\right)^{2} \\
k & =\frac{2 \pi}{\lambda}=\left[\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{p \pi}{d}\right)^{2}\right]^{\frac{1}{2}}
\end{align*}
$$



- ELECTRIC FIELD
---MAGNETIC FIELD

Fig. 5b-7. Simple $T M_{010}$ mode in a cylindrical cavity.

## Circular Cylindrical Resonator

A simple mode ( $T M_{010}$ ) exists and is shown in Fig. 5b-7.

$$
\begin{align*}
E_{z} & =E_{0} J_{0}(k r) \\
H_{\phi} & =j \frac{E_{0}}{\eta} J_{1}(k r)  \tag{5b-150}\\
k & =\frac{p_{01}}{a}=\frac{2.405}{a} \\
\lambda & =2.61 a \text { (resonant wavelength) } \\
Q & =\frac{\eta}{R_{s}} \frac{2.405}{2[a / h+1]}
\end{align*}
$$

where $a=$ radius and $h=$ length of cavity. Other modes are shown in Fig. 5b-8.

## Spherical Resonators

Figures $5 \mathrm{~b}-9$ and $5 \mathrm{~b}-10$ show the field patterns for the $T M_{101}$ and $T E_{101}$ modes, respectively.
General Considerations. degenerate modes: Modes with different field distributions but with the same resonant frequency are called degenerate modes.


$$
\lambda_{1}=\frac{21}{\sqrt{1+\left(\frac{21}{3.41 a}\right)^{2}}}
$$



$$
\lambda_{1}=\frac{21}{\sqrt{1+\left(\frac{21}{2.610}\right)^{2}}}
$$



$$
\lambda_{1}=\frac{21}{\sqrt{1+\left(\frac{21}{1.64 a}\right)^{2}}}
$$

Fig. 5b-8. Other modes in a cylindrical cavity.


Fig. 5b-9. Field patterns for simple $T M_{101}$ mode in spherical resonator. $Q=\eta / R_{s}$, $\lambda=2.29 a$.


Fig. 5b-10. Field patterns for $T E_{101}$ mode in spherical resonator. Resonant wavelength $\lambda=1.39 a$.
coupling to cavities: Coupling to cavities may be accomplished by:

1. Introduction of a conducting probe or antenna in the direction of the electricfield lines, driven by an external coaxial transmission line.
2. Introduction of a conducting loop with plane normal to the magnetic-field lines, also driven by an external transmission line.
3. Introduction of a hole or iris between the cavity and a driving waveguide, the hole being located so that some field component in the cavity mode has a common direction to one in the waveguide, e.g., directional couplers, etc.
4. Introduction of a pulsating electron beam passing through a small gap in the resonator, in the direction of electric-field lines, e.g., klystron tube.
coupling between cavities: Coupling of energy from one cavity to another may be accomplished by means of an iris in the wall common to the cavities and by other means listed above. ${ }^{1}$

5b-12. Radiation, Scattering, and Diffraction. Radiation Field of a Current Distribution. Given a distribution of electric and magnetic currents, specified by the density functions $\mathrm{J}(x, y, z)$ and $\mathrm{J}_{m}(x, y, z)$ occupying a finite region of space. Consider a reference frame with its origin in the vicinity of the sources and let $R, \theta, \phi$ be the spherical coordinates of a field point $P ; a_{R}, a_{\theta}, a_{\phi}$ be the unit vectors constituting the basis vectors of the spherical coordinate system; and $\mathbf{r}=x \mathrm{a}_{x}+y \mathrm{a}_{y}+z \mathrm{a}_{z}$ be the position vector from the origin to a point in the distribution.

The far-zone region is that region of field points at which the distance $R$ is very much greater than the distance $r$ from the origin to any point in the distribution. The far-zone or radiation field consists of the dominant terms, of order $1 / R$, of the components of the field vectors. To order $1 / R$ the field is transverse to the radial direction and its components in the spherical-coordinate basis system are

$$
\begin{align*}
& E_{\theta}=-j \omega \mu \frac{e^{-j k R}}{4 \pi R} \int_{V}\left[\mathrm{~J} \cdot \mathbf{a}_{\theta}+\left(\frac{\epsilon}{\mu}\right)^{\frac{1}{2}} \mathrm{~J}_{m} \cdot \mathbf{a}_{\phi}\right] e^{j k r \cdot \mathbf{a}_{R}} d v=\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} H_{\phi}  \tag{5b-151}\\
& E_{\phi}=-j \omega \mu \frac{e^{-j k R}}{4 \pi R} \int_{V}\left[\mathrm{~J} \cdot \mathbf{a}_{\phi}-\left(\frac{\epsilon}{\mu}\right)^{\frac{1}{2}} \mathrm{~J}_{m} \cdot \mathbf{a}_{\theta}\right] e^{j k r \cdot \mathbf{a}_{R}} d v=-\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} H_{\theta} \tag{5b-152}
\end{align*}
$$

The quantities

$$
\begin{align*}
& F_{\theta}(\theta, \phi)=\int_{V}\left[\mathrm{~J} \cdot \mathbf{a}_{\theta}+\left(\frac{\epsilon}{\mu}\right)^{\frac{1}{2}} \mathrm{~J}_{m} \cdot \mathbf{a}_{\phi}\right] e^{j k r \cdot a_{R}} d v  \tag{5b-153}\\
& F_{\phi}(\theta, \phi)=\int_{V}\left[\mathbf{J} \cdot \mathbf{a}_{\phi}-\left(\frac{\epsilon}{\mu}\right)^{\frac{1}{2}} \mathrm{~J}_{m} \cdot \mathbf{a}_{\theta}\right] e^{j \mathbf{k r} \cdot a_{R}} d v \tag{5b-154}
\end{align*}
$$

are the complex space factors of the field components.
The Poynting vector-the time average intensity of power flow-is

$$
\begin{equation*}
\overline{\mathbf{I}}=\frac{1}{2} \operatorname{Re}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \doteq \frac{1}{8 \lambda^{2} R^{2}}\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} \Psi(\theta, \phi) \mathbf{a}_{R} \tag{5~b-155}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(\theta, \phi)=\left|F_{\theta}\right|^{2}+\left|F_{\phi}\right|^{2} \tag{5b-156}
\end{equation*}
$$

is the space factor of the power flow. The power per unit solid angle is

$$
\begin{equation*}
P(\theta, \phi)=R^{2}|\mathbf{\Pi}|=\frac{1}{8 \lambda^{2}}\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} \Psi(\theta, \phi) \tag{5b-157}
\end{equation*}
$$

Gain Function and Gain. The directivity characteristics of the radiating system are expressed by the gain function, the ratio of the power radiated per unit solid angle in a direction $(\theta, \phi)$ to average power radiated per unit solid angle. It is also referred to

[^217]as the gain function with respect to an isotropic radiator radiating the same total power. Thus,
\[

$$
\begin{equation*}
G(\theta, \phi)=\frac{P(\theta, \phi)}{\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} P(\theta, \phi) \sin \theta d \theta d \phi}=\frac{4 \pi \Psi(\theta, \phi)}{\int_{0}^{2 \pi} \int_{0}^{\pi} \Psi(\theta, \phi) \sin \theta d \theta d \phi} \tag{5b-158}
\end{equation*}
$$

\]

The absolute gain is the maximum value of the gain function. The directivity is the absolute gain expressed in decibels:

$$
\begin{equation*}
\text { Directivity }=10 \log _{10}[G(\theta, \phi)]_{\max } \tag{5b-159}
\end{equation*}
$$

The directivity characteristics may also be specified in a more detailed manner in terms of the power associated with each of the orthogonal components $E_{\theta}$ and $E_{\phi}$ :

$$
\begin{align*}
& G_{\theta}=\frac{4 \pi\left|F_{\theta}\right|^{2}}{\int_{0}^{2 \pi} \int_{0}^{\pi} \Psi(\theta, \phi) \sin \theta d \theta d \phi}  \tag{5~b-160}\\
& G_{\phi}=\frac{4 \pi\left|F_{\phi}\right|^{2}}{\int_{0}^{2 \pi} \int_{0}^{\pi} \Psi(\theta, \phi) \sin \theta d \theta d \phi} \tag{5b-161}
\end{align*}
$$

It is evident that

$$
\begin{equation*}
G(\theta, \phi)=G_{\theta}(\theta, \phi)+G_{\phi}(\theta, \phi) \tag{5b-162}
\end{equation*}
$$

The Electric Dipole. A short linear structure designed so that the current distribution is uniform over its extent is equivalent to an oscillating electric dipole of moment

$$
\begin{equation*}
p=\frac{I l}{j \omega} \tag{5b-163}
\end{equation*}
$$

where $I$ is the current and $l$ is the length of the structure.
If the dipole is taken to be at the origin of the coordinate system and the dipole axis is taken as the polar axis of a spherical-coordinate system, the components of the field are

$$
\begin{align*}
E_{R} & =\frac{1}{2 \pi \epsilon}\left(\frac{1}{R^{3}}+\frac{j k}{R^{2}}\right) \cos \theta p_{0} e^{-j k R}  \tag{5b-164}\\
E_{\theta} & =\frac{1}{4 \pi \epsilon}\left(\frac{1}{R^{3}}+\frac{j k}{R^{2}}-\frac{k^{2}}{R}\right) \sin \theta p_{0} e^{-j k R}  \tag{5b-165}\\
H_{\phi} & =\frac{j \omega}{4 \pi}\left(\frac{1}{R^{2}}+\frac{j k}{R}\right) \sin \theta p_{0} e^{-j k R} \tag{5b-166}
\end{align*}
$$

where $p_{0}$ is the amplitude of the time-varying dipole moment.

$$
\begin{equation*}
p=p_{0} e^{j \omega t} \tag{5b-167}
\end{equation*}
$$

The Poynting vector-intensity of power flow-is

$$
\begin{equation*}
\mathbf{I}=\frac{\omega k^{3}}{32 \pi^{2} \epsilon}\left|p_{0}\right|^{2} \frac{\sin ^{2} \theta}{R^{2}} \mathbf{a}_{R} \tag{5b-168}
\end{equation*}
$$

and the gain function is

$$
\begin{equation*}
G(\theta, \phi)=\frac{3}{2} \sin ^{2} \theta \tag{5~b-169}
\end{equation*}
$$

The Magnetic Dipole. A small current loop encompassing an area $A$ and carrying a current $I$ is the equivalent of an oscillating magnetic dipole of moment

$$
\begin{equation*}
m=I A \tag{5b-170}
\end{equation*}
$$

The magnetic moment is normal to the area $A$. Taking again the dipole at the origin
and the dipole axis as the polar axis of a spherical-coordinate system we have for the field components

$$
\begin{align*}
& E_{\phi}=\frac{k^{2}}{4 \pi}\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}}\left(\frac{1}{R}-\frac{j}{k R^{2}}\right) \sin \theta m_{0} e^{-j k R}  \tag{5b-171}\\
& H_{R}=\frac{1}{2 \pi}\left(\frac{1}{R^{3}}+\frac{j k}{R^{2}}\right) \cos \theta m_{0} e^{-j k R}  \tag{5b-172}\\
& H_{\theta}=\frac{1}{4 \pi}\left(\frac{1}{R^{3}}+\frac{j k}{R^{2}}-\frac{k^{2}}{R}\right) \sin \theta m_{0} e^{-j k R} \tag{5b-173}
\end{align*}
$$

where $m_{0}$ is the amplitude of the time-varying magnetic moment.
The gain function is the same as that of an electric dipole.
Scattering and Absorption. The scattering and absorption characteristics of a system in otherwise free space are formulated in terms of the interaction of the system with a homogeneous plane wave. From a wave-theory standpoint the elements are as follows: Under the action of the primary incident wave $\mathbf{E}_{i}, \mathbf{H}_{i}$ the system is excited and produces a secondary field $\mathbf{E}_{8}, \mathbf{H}_{8}$. The Poynting vector of the resultant field is then

$$
\begin{align*}
& \check{\mathbf{\Pi}}=\frac{1}{2} \operatorname{Re}\left[\left(\mathbf{E}_{i}+\mathbf{E}_{s}\right) \times\left(\mathbf{H}_{i}^{*}+\mathbf{H}_{s}^{*}\right)\right] \\
& =\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{i} \times \mathbf{H}_{i}^{*}\right)+\frac{1}{2} \operatorname{Re}\left[\left(\mathbf{E}_{i} \times \mathbf{H}_{s}^{*}\right)+\left(\mathbf{E}_{s} \times \mathbf{H}_{i}^{*}\right)\right]+\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}_{s}\right)  \tag{5b-174}\\
& \text { or } \quad \quad \mathbf{\Pi}=\mathbf{M}_{i}+\mathbf{H}_{i s}+\mathbf{\Pi}_{s}
\end{align*}
$$

The subscripts make the obvious identification of the parts of ( $5 \mathrm{~b}-175$ ) with those of ( $5 \mathrm{~b}-174$ ). The term $\boldsymbol{\Pi}_{i s}$ is the representation of the interaction between the primary and secondary fields. The term $\Pi_{s}$ is the intensity of power flow that is formally associated with the secondary field regarded as an independent entity.

The integral of the normal component of the resultant Poynting vector over a closed surface enclosing the scattering system measures the energy transferred from the incident wave to the system. The net contribution of $\Pi_{i}$ in this computation is zero, and thus

$$
\begin{equation*}
\int_{\substack{\text { enclosing } \\ \text { surface }}}(\boldsymbol{\Pi} \cdot \mathbf{n}) d S=\int_{\substack{\text { enclosing } \\ \text { surface }}}\left(\boldsymbol{\Pi}_{i s} \cdot \mathbf{n}\right) d S+\int_{\substack{\text { enclosing } \\ \text { surface }}}\left(\boldsymbol{\Pi}_{s} \cdot \mathbf{n}\right) d S \leq 0 \tag{5b-176}
\end{equation*}
$$

with $\mathbf{n}$ the unit vector normal to the surface directed outward from the region occupied by the system. If the system is such that it absorbs no energy from the incident wave, the net power flow out from the region must be zero; whereas if the system absorbs energy, the net power flow out from the region must be negative. That is,

$$
\begin{equation*}
P_{\mathrm{abs}}=-\int_{\substack{\text { enclosing } \\ \text { surface }}}\left(\boldsymbol{\Pi}_{i s} \cdot \mathbf{n}\right) d S-\int_{\substack{\text { enclosing } \\ \text { surface }}}\left(\boldsymbol{\Pi}_{s} \cdot \mathbf{n}\right) d S \tag{5b-177}
\end{equation*}
$$

The surface integral of the normal component of the Poynting vector $\boldsymbol{H}_{8}$ associated with the secondary field alone is necessarily positive since the secondary field must take the form of an outgoing wave from the system. . This quantity is defined to be the power scattered by the system

$$
\begin{equation*}
P_{\text {soat }}=\int_{\substack{\text { enclosing } \\ \text { surface }}}\left(\check{\mathbf{\Pi}}_{s} \cdot \mathbf{n}\right) d S=\int_{\substack{\text { enclosing } \\ \text { surface }}}\left[\mathbf{n} \cdot \frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{s} \times \mathbf{H}_{s}^{*}\right)\right] d S \tag{5b-178}
\end{equation*}
$$

The complete exchange of energy is expressed accordingly,

$$
\begin{equation*}
P_{\mathrm{abs}}+P_{\mathrm{seat}}=-\int_{\substack{\text { enclosing } \\ \text { surface }}}\left\{\mathbf{n} \cdot\left[\frac{1}{2} \operatorname{Re}\left(\mathbf{E}_{i} \times \mathbf{H}_{s}^{*}\right)+\left(\mathbf{E}_{s} \times \mathbf{H}_{i}^{*}\right)\right]\right\} d S \tag{5b-179}
\end{equation*}
$$

The absorption cross section is defined as the ratio of the power absorbed to the incident power intensity:

$$
\begin{equation*}
P_{\mathrm{abs}}=\left|\Pi_{i}\right| A_{\mathrm{abs}} \tag{5b-180}
\end{equation*}
$$

When applied to antennas the absorption cross section is referred to more commonly as the receiving cross section $A_{R}$.

The scattering cross section is defined as the ratio of the power scattered to the incident power intensity:

$$
\begin{equation*}
P_{\mathrm{scat}}=\left|\Pi_{i}\right| A_{\mathrm{s}} \tag{5b-181}
\end{equation*}
$$

The sum $A_{a}+A_{s}$ is the total cross section of the system.
The scattering cross section defined in the foregoing is the total scattering cross section for the particular direction of incidence of the plane wave. It is also customary to speak of the differential cross section which is the ratio of the power scattered per unit solid angle in a given direction to the incident power intensity; thus

$$
\begin{equation*}
\sigma=\frac{R^{2}\left|\mathbf{\Pi}_{s}\right|}{\left|\bar{\Pi}_{i}\right|} \tag{5b-182}
\end{equation*}
$$

All the cross sections which have been defined are functions of the direction of incidence of the primary wave. The functional dependance of the receiving cross section of an antenna is referred to as the receiving pattern of the antenna.

The polarization of the incident wave must be specified when the cross sections are discussed. In particular, when values are given for the receiving cross section of an antenna it is implied that the polarization of the incident wave is that for which the response is a maximum. If the antenna radiates linear polarization in a given direction when transmitting, the incident plane wave, on reception, is considered to be polarized correspondingly; if the antenna on transmission radiates elliptical polarization, the cross section is referred to an incident plane with proper sense of elliptical polarization (opposite in sense to the transmission characteristic) with corresponding ellipticity. Separate cross sections may be defined corresponding to the separate components $E_{\theta}$ and $E_{\phi}$ of the transmitting pattern. The total cross section corresponding to a given direction of incidence is, however, not in general equal to the sum of the component cross sections.

Reciprocity Theorem and Universal Average Absorption Cross Section. The reciprocity theorem states that the transmitting and receiving patterns of an antenna system are the same when the external medium, the antenna structure, and its associated networks are linear and bilateral (the constitutive parameters of all media are either scalars or symmetric tensors).

The receiving cross section of an antenna is dependent on the impedance relationships between the antenna and its associated networks (transmission line and detector). The maximum value is attained when the system is matched, i.e., the input impedance to the antenna is the conjugate of the input impedance of the associated networks as viewed from the antenna terminals.

The average value of the absorption cross section of a matched system over all aspects is a universal constant:

$$
\begin{equation*}
\bar{A}_{r}=\frac{\lambda^{2}}{4 \pi} \tag{5b-183}
\end{equation*}
$$

The reciprocity theorem is embodied in the relationship

$$
\begin{equation*}
A_{r}(\theta, \phi)=G(\theta, \phi) \frac{\lambda^{2}}{4 \pi} \tag{5b-184}
\end{equation*}
$$

between the cross section presented to a plane wave incident from a given direction $(\theta, \phi)$ and the gain function of the antenna system on transmission in that same direction.

Fourier-transform Relation between Far-zone Field and Current Distribution. The vector potential of a current distribution in the far-zone region of the distribution [cf. (5b-78)] assumes the form

$$
\begin{equation*}
\mathbf{A}=\frac{\mu}{4 \pi R} e^{-j k R} \int_{V} \mathrm{~J} e^{j k r \cdot \mathbf{a}_{R}} d v \tag{5b-185}
\end{equation*}
$$

The radiation-field components are simply related to the vector potential by

$$
\begin{align*}
& E_{\theta}=-j \omega \mathbf{A} \cdot \mathbf{a}_{\theta}=-j \omega A_{\theta}  \tag{5b-186}\\
& E_{\phi}=-j \omega \mathbf{A} \cdot \mathbf{a}_{\phi}=-j \omega A_{\phi} \tag{5b-187}
\end{align*}
$$

The complex space factors $F_{\theta}$ and $F_{\phi}$ are thus the corresponding components of the vector quantity

$$
\begin{equation*}
\mathbf{F}=\int_{V} \mathrm{~J} e^{j \mathrm{kr} \cdot \mathrm{a}_{r}} d v \tag{5b-188}
\end{equation*}
$$

Let the propagation vector $\mathbf{k}$ be defined by

$$
\begin{equation*}
\mathbf{k}=k \mathbf{a}_{r} \tag{5b-189}
\end{equation*}
$$

Then we have a vector function

$$
\begin{equation*}
\mathbf{F}(\mathbf{k})=\int_{V} \mathbf{J} e^{i \mathbf{k} \cdot \mathbf{r}} d v \tag{5b-190}
\end{equation*}
$$

Except for constants the vector function $F(\mathbf{k})$ is the Fourier transform of the current distribution. It is the equivalent of the transform encountered in X-ray diffraction theory. The transform is defined for values of $\mathbf{k}$ embracing all possible values of its components. The radiation pattern is associated with only those vectors $\mathbf{k}$ for which the components satisfy the relations

$$
\begin{equation*}
k_{1}^{2}+k_{2}^{2}+k_{3}^{2}=k^{2}=\frac{4 \pi^{2}}{\lambda^{2}} \tag{5b-191}
\end{equation*}
$$

The current distribution is in turn the transform of vector function F, namely,

$$
\begin{equation*}
\mathrm{J}(\mathbf{r})=\frac{1}{(2 \pi)^{3}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{F}(\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{r}} d k_{1} d k_{2} d k_{3} \tag{5b-192}
\end{equation*}
$$

with, of course,

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{r}=k_{1} x+k_{2} y+k_{3} z \tag{5~b-193}
\end{equation*}
$$

This transform relationship is useful in the general theory of radiating systems.
Development of a Field from Boundary Values-Huygens-Fresnel Principle. Given a surface $S$ enclosing the sources and the values of $\mathbf{E}$ and $\mathbf{H}$ over the surface $S$. The field at a point $P$ outside the region of the surfaces is given by

$$
\begin{align*}
& \mathbf{E}_{p}=\frac{1}{4 \pi} \int_{s}[-j \omega \mu(\mathbf{n} \times \mathbf{H}) \psi+(\mathbf{n} \times \mathbf{E}) \times \nabla \psi+(\mathbf{n} \cdot \mathbf{E}) \nabla \psi] d S  \tag{5b-194}\\
& \mathbf{H}_{p}=\frac{1}{4 \pi} \int_{s}[j \omega \epsilon(\mathbf{n} \times \mathbf{E}) \psi+(\mathbf{n} \times \mathbf{H}) \times \nabla \psi+(\mathbf{n} \cdot \mathbf{H}) \nabla \psi] d S \tag{5b-195}
\end{align*}
$$

where $\boldsymbol{n}$ is the unit vector normal to $S$ directed outward from the region of the sources; $\psi=e^{-j k r} / r$ with $r$ the distance from $d S$ to $P ; \nabla$ the gradient in terms of the coordinates on $S$.

Equivalent representations are

$$
\begin{align*}
& \mathbf{E}_{p}=-\frac{1}{4 \pi} \int_{S}\left[\psi \frac{\partial \mathbf{E}}{\partial n}-\mathbf{E} \frac{\partial \psi}{\partial n}\right] d S  \tag{5b-196}\\
& \mathbf{H}_{p}=-\frac{1}{4 \pi} \int_{S}\left[\psi \frac{\partial \mathbf{H}}{\partial n}-\mathbf{H} \frac{\partial \psi}{\partial n}\right] d S \tag{5b-197}
\end{align*}
$$

and

$$
\begin{align*}
\mathbf{E}_{p} & =\frac{1}{4 \pi j \omega \epsilon} \int_{S}\left[(\mathbf{n} \times \mathbf{H}) \cdot \boldsymbol{\nabla}(\nabla \psi)+k^{2}(\mathbf{n} \times \mathbf{H}) \psi\right] d S  \tag{5b-198}\\
\mathbf{H}_{p} & =\frac{1}{4 \pi j \omega \mu} \int_{S}\left[(\mathbf{n} \times \mathbf{E}) \cdot \nabla(\nabla \psi)+k^{2}(\mathbf{n} \times \mathbf{E}) \psi\right] d S \tag{5b-199}
\end{align*}
$$

The representations are transformable one into the other only when closed surfaces are considered.

Representations (5b-194), (5b-195) and (5b-198), (5b-199) are forms corresponding to equivalent distributions,

| Surface electric current | $\mathrm{J}^{\prime}=\mathbf{n} \times \mathbf{H}$ |
| :--- | ---: |
| Surface magnetic current | $\mathrm{J}_{m}^{\prime}=-\mathbf{n} \times \mathbf{E}$ |
| Surface electric charge | $\left.\rho_{s}=\epsilon \cdot \mathbf{n} \cdot \mathbf{E}\right)$ |
| Surface magnetic charge | $\rho_{s_{m}}=\mu(\mathbf{n} \cdot \mathbf{H})$ |

When the surface $S$ is an equiphase surface of the wave field the representations constitute the mathematical expression of the Huygens-Fresnel principle for the electromagnetic field. The equivalent source functions ( $5 \mathrm{~b}-200$ ) are in toto the appropriate system of Huygens' sources to be associated with an element of surface $d S$.

The representations ( $5 b-198$ ) and ( $5 b-199$ ) embody the required equation of continuity between the current and charge distributions on a surface. The development of the field is thus based on just two fundamental source functions $\mathrm{J}^{\prime}$ and $\mathrm{J}_{\boldsymbol{m}}^{\prime}$.

Large-aperture Systems-Reflectors, Lenses, Horns. The formation of beams by reflectors, lenses, and horns in which the aperture is the dominant factor is by a process of diffraction. When the aperture involved is large compared with the wavelengththe radiation process can be treated reasonably well by the following line of analysis. The field over the aperture is related in the most simple way possible to the primary sources-in the case of lenses and reflectors, by the use of geometrical optics; in the case of horns, by considering the field distribution which would exist over the aperture plane of the horn extended to infinity. All Huygens' sources are considered to be negligible in comparison with those over the aperture plane associated with the simple aperture field. The field appropriate to those Huygens' sources over the aperture is then

$$
\begin{align*}
& \mathbf{E}_{p}=\frac{1}{4 \pi j \omega \epsilon} \int_{\text {aperture }}\left[(\mathbf{n} \times \mathbf{H}) \cdot \nabla(\nabla \psi)+k^{2}(\mathbf{n} \times \mathbf{H}) \psi\right] d S  \tag{5b-201}\\
& \mathbf{H}_{p}=\frac{1}{4 \pi j \omega \mu} \int_{\text {aperture }}\left[(\mathbf{n} \times \mathbf{E}) \cdot \nabla(\nabla \psi)+k^{2}(\mathbf{n} \times \mathbf{E}) \psi\right] d S \tag{5b-202}
\end{align*}
$$

with the quantities having the definition given in the previous section. It is to be noted that in the present case the integration is carried out over an open surface in contrast with that of the previous section.

When the aperture field is obtained by the simple considerations stated before, there is an elementary relation between the tangential components of the electric and magnetic vectors over the aperture. For the particular case of a plane aperture and condi-
tions such that the aperture is virtually an equiphase surface the relationship has the form

$$
\begin{equation*}
\mathbf{H}=\alpha(\mathbf{n} \times \mathbf{E}) \tag{5~b-203}
\end{equation*}
$$

where $\alpha$ is a constant for the particular system. In the case of lenses and reflectors $\alpha=(\epsilon / \mu)^{\frac{1}{2}}$ whereas in the case of a horn it is the transverse wave admittance corresponding to the infinite horn.

The far-zone field of the system of Huygens' sources is then

$$
\begin{equation*}
\mathbf{E}_{p}=\frac{-j k e^{-j k R}}{4 \pi R} \mathbf{a}_{R} \times\left[\left(\mathbf{n}+\alpha\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} \mathbf{a}_{R}\right) \times \mathbf{N}\right] \tag{5b-204}
\end{equation*}
$$

where $\mathbf{N}$ is the radiation vector

$$
\begin{equation*}
\mathbf{N}=\int_{A p} \mathbf{E} e^{i k(x \sin \theta \cos \phi+y \sin \theta \sin \phi)} d x d y \tag{5b-205}
\end{equation*}
$$

with $a_{R}$ a unit vector in the radial direction from an origin in the aperture, $R, \theta, \phi$ spherical coordinates of the field point (the polar axis being normal to the aperture plane) and $\mathbf{E}$ the electric-field vector in the aperture. Componentwise:

$$
\begin{align*}
& E_{\theta}=\frac{j k e^{-j k R}}{4 \pi R}\left[1+\alpha\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} \cos \theta\right]\left(N_{x} \cos \phi+N_{y} \sin \phi\right)=\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} H_{\phi}  \tag{5b-206}\\
& E_{\phi}=\frac{j k e^{-j k R}}{4 \pi R}\left[\cos \theta+\alpha\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}}\right]\left(N_{x} \sin \phi-N_{y} \cos \phi\right)=-\left(\frac{\mu}{\epsilon}\right)^{\frac{1}{2}} H_{\theta} \tag{5b-207}
\end{align*}
$$

## References

Schelkunoff, S. A.: "Electromagnetic Waves," D. Van Nostrand Company, Inc., New York, 1943.
Schelkunoff, S. A.: "Advanced Antenna Theory," John Wiley \& Sons, Inc., New York, 1952.
Schelkunoff, S. A., and H. T. Friis: "Antennas, Theory and Practice," John Wiley \& Sons, Inc., New York, 1952.
Silver, S., ed., "Microwave Antenna Theory and Design," MIT Radiation Laboratory Series, vol. 12, McGraw-Hill Book Company, Inc., New York, 1949.
'Stratton, J. A.: "Electromagnetic Theory," McGraw-Hill Book Company, Inc., New York, 1941.

5b-13. Waves in Space-charge Regions. Plasma Oscillations. Langmuir and Tonks ${ }^{1}$ observed the phenomenon of oscillation in a plasma consisting of approximately equal density of electrons and positive ions, and showed the angular frequency to be

$$
\begin{equation*}
\omega_{p}=\left(\frac{\rho \eta}{\epsilon_{v}}\right)^{\frac{1}{2}} \tag{5b-208}
\end{equation*}
$$

where $\rho=$ charge density, coulombs $/ \mathrm{m}^{3}$
$\eta=$ charge-to-mass ratio, coulombs $/ \mathrm{kg}$
$\epsilon_{v}=$ capacitivity of space, $8.854 \times 10^{-12}$ farad $/ \mathrm{m}$
For electrons, $\eta=1.759 \times 10^{11}$, oscillation frequency is

$$
\nu_{p}=8.979 N^{\frac{1}{2}} \mathrm{cps}
$$

where $N=$ number of electrons $/ \mathrm{m}^{3}$
Oscillations of ions in the plasma have also been observed ${ }^{2}$ but the frequency is lower by the square root of charge-to-mass ratio.

The mechanism of plasma oscillation has been studied in detail for both the longi-
${ }^{1}$ I. Langmuir and L. Tonks, Phys. Rev. 33, 195 (1929).
${ }^{2}$ R. Rompe and H. Steenbeck, Ergeb. exakt. Naturwiss. 18, 303 (1939).
tudinal (irrotational) oscillations, ${ }^{1}$ which do not radiate, and the transverse oscillation, ${ }^{2}$ which do radiate.

The general dispersion relation giving wave number $\mathbf{k}$ as a function of angular frequency $\omega$ in a region having a distribution of velocities following a given distribution function $f(v)$ is ${ }^{3}$

$$
\begin{equation*}
1=\frac{\rho \eta}{\epsilon_{v}} \int \frac{f(\mathbf{v}) d v}{(\omega-\mathbf{k} \cdot \mathbf{v})^{2}} \tag{5b-209}
\end{equation*}
$$

Space-charge Waves in a Drifting Stream. Hahn ${ }^{4}$ and Ramo ${ }^{5}$ studied electro-magnetic-wave phenomena along an electron stream drifting with a constant d-c velocity (much greater than the thermal velocities) in the axial direction. All d-c fields in the drift region were neglected (as when the beam is neutralized by positive ions) and alternating current and velocity were assumed small compared with the $\mathrm{d}-\mathrm{c}$ values. Assuming time and axial variations as $\exp [j(\omega t-\beta z)]$, the following differential equation applies within the beam:

$$
\begin{equation*}
\nabla_{t}{ }^{2} E=\left(\beta^{2}-k^{2}\right)\left[1-\frac{\omega_{p}{ }^{2}}{\left(\omega-\beta v_{0}\right)^{2}}\right] E \tag{5b-210}
\end{equation*}
$$

where $\boldsymbol{\nabla}_{\boldsymbol{t}}{ }^{\mathbf{2}}=$ transverse part of div grad
$k=$ free-space wave number, $\omega / c$
$\omega_{p}=$ as in Eq. (5b-208)
$v_{0}=\mathrm{d}-\mathrm{c}$ electron velocity
$E=$ axial component of a-c electric field
For a one-dimensional stream, $\nabla_{t}{ }^{2} E=0$, four values of $\beta$ result from Eq. (5b-210), two field waves in this simple case completely uncoupled from the electrons, and two space-charge waves which correspond to plasma oscillations in the moving-coordinate system.
Field waves:

$$
\begin{gather*}
\beta= \pm k  \tag{5b-211}\\
\beta=\frac{\omega \pm \omega_{p}}{v_{0}} \tag{5b-212}
\end{gather*}
$$

Space-charge waves:
If transverse variations in the a-c solutions are allowed and the beam is enclosed by a perfectly conducting cylinder, the field waves are only slightly perturbed from the waveguide solutions for the corresponding hollow cylinder. Space-charge waves occur in pairs bracketing the d-c electron velocity. For $\omega>\omega_{p}$, the phase constant corresponding to the $n$th eigen value of Eq. ( $5 \mathrm{~b}-210$ ) may be written

$$
\begin{equation*}
\beta_{n}=\frac{\omega \pm \omega_{q n}}{v_{0}} \tag{5b-213}
\end{equation*}
$$

$\omega_{g_{n}}$ is an effective plasma frequency, reduced from $\omega_{p}$ by the image charges on the drift-tube walls. Curves of $\omega_{q_{n}} / \omega_{p}$ for $n=1,2$ are given in Fig. $5 \mathrm{~b}-11$ applying to a circularly cylindrical beam of radius $b$ in a perfectly conducting drift tube of radius $a$.

A-C velocity and current vary along the beam as follows, in terms of the initial value for the $n$th mode:

$$
\begin{align*}
& i_{n}(z)=i_{n}(0) \cos \beta_{n} z+j \frac{\rho_{0} \omega}{\omega_{q n}} v_{n}(0) \sin \beta_{n} z \\
& v_{n}(z)=v_{n}(0) \cos \beta_{n} z+j \frac{\omega_{q n}}{\rho_{0} \omega} i_{n}(0) \sin \beta_{n} z \tag{5b-214}
\end{align*}
$$

where $\rho_{0}=$ magnitude of d-c charge density

[^218]Growing Waves. The a-c space-charge waves may grow along the electron stream because of various interaction processes which transfer energy from the kinetic energy of the beam to the a-c fields. These processes are important for producing practical microwave amplifiers of the beam type, but also in the amplifications of noise


Frg. 5b-11. Effective plasma-frequency reduction factor for circular cylindrical solid electron beam of radius $b$ in perfectly conducting drift tube of radius $a$, for modes 1 and 2. [From C. K. Birdsall and J. R. Whinnery, Waves in an Electron Stream with General Admittance Walls, J. Appl. Phys. 24, 314 (1953).]
fluctuations in electron tubes, gaseous-discharge devices, and possibly in stellar atmospheres. Some of the basic interactions which produce growing waves are

1. Traveling-wave interaction ${ }^{1}$
2. Velocity-jump interaction ${ }^{5}$
3. Multiple-velocity stream interaction ${ }^{2}$
4. Inductive-wall interaction ${ }^{3}$
5. Resistive-wall interaction ${ }^{4}$
6. Rippled-wall and rippled-stream interaction ${ }^{6}$
7. Magnetron-type amplification ${ }^{7}$
8. Slipping-stream amplification ${ }^{8}$
[^219]Technical applications of traveling-wave interaction, in which an electron stream interacts with a circuit having a slow wave in approximate synchronism with the electron velocity, are the most important of the above. Pierce ${ }^{1}$ has shown that gain of a traveling-wave device may be written

$$
\begin{equation*}
G=A+B C N \quad \mathrm{db} \tag{5b-215}
\end{equation*}
$$

where $N=$ number of guide wavelengths in interaction circuit
$C=$ Pierce gain parameter $=\left(I_{0} K / 4 V_{0}\right)^{\frac{1}{3}}$
$I_{0}=\mathrm{d}$-c beam current
$V_{0}=$ d-c beam velocity
$K=$ interaction impedance $=\left(E^{2} / 2 \beta^{2} P\right)$
$E=$ effective electric-field magnitude acting on electrons
$\beta=$ phase constant
$P=$ average power flow in the slow wave
$A$ and $B$ are functions of loss, space-charge effects, and departure from synchronism of beam and circuit. Limiting values for negligible loss and space charge, and with operation in synchronism are $A=-9.54, B=47.3$. More complete values are given by Pierce ${ }^{1}$ and Cutler. ${ }^{2}$ Technical applications of the traveling-wave magnetron ${ }^{3}$ also seem very promising for power applications, since in this type the beam is focused by crossed electric and magnetic fields, and the r-f energy comes from the potential energy of the crossed field, and not from an average slowing down of the beam. The beam may thereby stay in synchronism with the circuit over a greater distance and higher efficiency is expected.

A special case of traveling-wave interaction, for which the wave on the slow-wave circuit has oppositely directed phase and group velocities, was shown by Kompfner ${ }^{4}$ to have practical application in producing amplifiers and oscillators with a wide range (one or more octaves) of electric tuning. Warnecke ${ }^{5}$ has also described this, giving results on backward-wave interaction in crossed electric and magnetic fields (M-type Carcinotron), where the higher efficiency of the crossed-field devices was observed.

Space-charge Waves in Accelerated Streams. The differential equation ${ }^{6}$ governing small-signal space-charge waves in unidirectional flow for a general d-c velocity variation $v_{0}(z)$ is

$$
\begin{equation*}
I_{1}^{\prime \prime}+I_{1}^{\prime}\left(\frac{2 j \omega}{v_{0}}+\frac{3}{v_{0}} \frac{d v_{0}}{d z}\right)+I_{1}\left(\frac{\eta I_{0}}{\epsilon_{v} v_{0}^{3}}+\frac{2 j \omega}{v_{0}^{2}} \frac{d v_{0}}{d z}-\frac{\omega^{2}}{v_{0}^{2}}\right)=\frac{-j \omega \eta I_{0}}{v_{0}^{3}} E \tag{5b-216}
\end{equation*}
$$

where $I_{1}=$ a-c density
$I_{0}=$ d-c density
$\eta=$ electronic charge-to-mass ratio
$E=$ impressed a-c electric field
Primes denote derivatives with distance $z$.
The case studied in greatest detail ${ }^{7}$ is that for a d-c potential distribution corresponding to that consistent with the d-c space-charge effects in the stream. The most useful form of the relations between first-order a-c quantities is that given by Llewellyn and Peterson. ${ }^{8}$

[^220]
## General Equations for a Parallel-plane Region

$$
\begin{align*}
V_{b}-V_{a} & =A^{*} I+B^{*} q_{a}+C^{*} v_{a} \\
q_{b} & =D^{*} I+E^{*} q_{a}+F^{*} v_{a}  \tag{5b-217}\\
v_{b} & =G^{*} I+H^{*} q_{a}+I^{*} v_{a}
\end{align*}
$$

where $V_{b}-V_{a}=$ first-order a-c voltage between $a$ and $b$ planes
$I=$ first-order a-c density
$q_{a}=$ first-order alternating convection current at $a$ plane
$q_{b}=$ first-order alternating convection current at $b$ plane
$v_{a}=$ first-order a-c velocity at $a$ plane
$v_{b}=$ first-order a-c velocity at $b$ plane
The Constants in the Above Equations

$$
\begin{aligned}
A^{*} & =\frac{I}{\epsilon}\left(u_{a}+u_{b}\right) \frac{T^{2}}{2} \frac{1}{\beta}\left[1-\frac{\zeta}{3}\left(1-\frac{12 S}{\beta^{3}}\right)\right] \\
B^{*} & =\frac{1}{\epsilon} \frac{T^{2}}{\beta^{3}}\left[u_{a}(P-\beta Q)-u_{b} P+\zeta\left(u_{a}+u_{b}\right) P\right] \\
C^{*} & =-\frac{1}{\eta} 2 \zeta\left(u_{a}+u_{b}\right) \frac{P}{\beta^{2}} \\
D^{*} & =2 \zeta\left(\frac{u_{a}+u_{b}}{u_{b}}\right) \frac{P}{\beta^{2}} \\
E^{*} & =\frac{1}{u_{b}}\left[u_{b}-\zeta\left(u_{a}+u_{b}\right)\right] e^{-\beta} \\
F^{*} & =\frac{\epsilon}{\eta} \frac{2 \zeta}{T^{2}}\left(\frac{u_{a}+u_{b}}{u_{b}}\right) \beta e^{-\beta} \\
G^{*} & =\frac{-\eta}{\epsilon} \frac{T^{2}}{\beta^{3}} \frac{1}{u_{b}}\left[u_{b}(P-\beta Q)-u_{a} P+\zeta\left(u_{a}+u_{b}\right) P\right] \\
H^{*} & =-\frac{\eta}{\epsilon} \frac{T^{2}}{2}\left(\frac{u_{a}+u_{b}}{u_{b}}\right)(1-\zeta) \frac{e^{-\beta}}{\beta} \\
I^{*} & =\frac{1}{u_{b}}\left[u_{a}-\zeta\left(u_{a}+u_{b}\right)\right] e^{-\beta}
\end{aligned}
$$

where $P=1-(1+\beta) e^{-\beta} \doteq \beta^{2} / 2-\beta^{3} / 3+\beta^{4} / 8+\cdots \cdot$
$Q=1-e^{-\beta} \doteq \beta-\beta^{2} / 2+\beta^{3} / 6-\beta^{4} / 24+\cdots \cdot$
$S=2-\beta-(2+\beta) e^{-\beta} \doteq-\beta^{3} / 6+\beta^{4} / 12-\beta^{5} / 40+\beta^{6} / 180+\cdots$.
$\beta=j \theta=j \omega T$
D-C Equations
Limiting current density:

$$
I_{m}=2.33 \times 10^{-6} \frac{\left[\left(V_{0 a}\right)^{\frac{1}{2}}+\left(V_{0 b}\right)^{\frac{1}{2}}\right]^{3}}{d^{2}}
$$

Definition of space-charge factor:

Transit time:

$$
\begin{gathered}
\frac{I_{D}}{I_{m}}=\frac{9}{4} \zeta\left(1-\frac{\zeta}{3}\right)^{2} \\
T=\frac{T_{0}}{1-\zeta / 3}
\end{gathered}
$$

where $T_{0}=\frac{2 d}{u_{a}+u_{b}}=$ transit time in absence of space charge
D-C velocity:

$$
u=\left(2 \eta V_{D}\right)^{\frac{1}{2}}
$$

Distance equation:

$$
x=\left(1-\frac{\zeta}{3}\right)\left(u_{a}+u_{b}\right) \frac{T}{2}
$$

```
where \(\eta=e / m=1.76 \times 10^{11}\) coulombs \(/ \mathrm{kg}\)
 \(I_{D}=\) density of direct current
 \(\epsilon=1 /\left(36 \pi \times 10^{9}\right)\) farads \(/ \mathrm{m}\)
 \(V_{D}=\mathrm{d}\)-c potential
 \(\eta / \epsilon=2 \times 10^{22}\)
```

Space-charge Waves of Noise. Shot-noise fluctuations ${ }^{1}$ at the cathode excite spacecharge waves of noise in an electron beam, as observed experimentally by Cutler and Quate. ${ }^{2}$ The ratio of maximum to minimum noise amplitude in the noise waves may be modified by "space-charge-wave transducers," ${ }^{3}$ such as jumps in d-c velocity, to minimize noise figures of practical electron tubes. The absolute minimum that may be obtained ${ }^{4}$ will depend upon the degree of correlation between velocity and current fluctuations in the beam passing the potential minimum.

Energy Relations in Space-charge Waves. Tonks ${ }^{5}$ displayed a form of the Poynting theorem suitable for regions containing electric charges having a single-valued velocity function $v(x, y, z)$.

$$
\begin{align*}
\int_{S}(\mathbf{E} \times \mathbf{H}) \cdot d \mathbf{S}+\frac{\partial}{\partial t} \int_{V} \frac{1}{2}[\mathbf{E} \cdot \mathbf{D}+\mathbf{H} \cdot \mathbf{B}] d V+ & \frac{\partial}{\partial t}
\end{aligned} \begin{aligned}
& \int_{V} \frac{n m v^{2}}{V^{2}} d V \\
&  \tag{5b-218}\\
& +\int_{S} \frac{m v^{2}}{2} n \mathbf{V} \cdot d \mathbf{S}=\mathbf{0}
\end{align*}
$$

$n(x, y, z)=$ volume density of particles of mass $m$
The first term represents the usual Poynting flow of electromagnetic energy out of the surface surrounding the region, the second the rate of change of stored energy in the electromagnetic field, the third the rate of change of kinetic energy within the region, and the fourth the net kinetic power flow through the surface. Gabor ${ }^{6}$ has studied applications to electronic devices.

The complex form ${ }^{7}$ of the above appropriate to the first-order a-c solution in onedimensional space-charge waves is

$$
\begin{align*}
\int_{S}\left(\mathbf{E}_{1} \times \mathbf{H}_{1}^{*}\right) \cdot d \mathbf{S}+j \omega & \int_{V}\left[\mu \mathbf{H}_{1} \cdot \mathbf{H}_{1}^{*}-\epsilon \mathbf{E}_{1} \cdot \mathbf{E}_{1}^{*}\right] d V+\frac{j \omega}{\eta} \int_{V} \rho_{0} \mathbf{V}_{1} \cdot \nabla_{1}^{*} d V \\
& +\int_{\text {cross section }}\left[U_{1}\left(z_{2}\right) i_{1}^{*}\left(z_{2}\right)-U_{1}\left(z_{1}\right) i_{1}^{*}\left(z_{1}\right)\right] d S=0 \tag{5b-219}
\end{align*}
$$

where $U_{1}=-\frac{v_{0} v_{1}}{\eta}$
$v_{0}=\mathrm{d}-\mathrm{c}$ velocity
$v_{1}=$ a-c velocity
$i_{1}=$ a-c density
$\rho_{0}=\mathrm{d}-\mathrm{c}$ charge density
The real part of $\frac{1}{2} U_{1} i_{1}^{*}$ thus represents the average of the a-c kinetic power flow across a cross section.

5b-14. Circuit Theory. Basis of Circuit Theory. The basic circuit problem is the special case of the electromagnetic-field problem with currents flowing in nearly filamentary paths, and the field interaction largely localized. Thus the field analysis of the various parts may be made separately to obtain macroscopic parameters to be
${ }^{1}$ W. Schottky, Physik. Z. 15, 526 (1914) ; A. J. Rack, Bell System Tech. J. 17, 592 (1938).
${ }^{2}$ C. C. Cutler and C. F. Quate, Phys. Rev. 80, 875 (1950).
${ }^{3}$ D. A. Watkins, Proc. IRE 40, 65 (1952) ; R. W. Peter, RCA Rev. 13, 345 (1952).
4 J. R. Pierce, J. Appl. Phys. 25, 931 (1954).
${ }^{5}$ L. Tonks, Phys. Rev. 54, 863 (1938).
${ }^{6}$ D. Gabor, J. Inst. Elec. Engrs. (London) 91 :3, 178 (1944).
${ }^{7}$ J. R. Pierce, Bell System Tech. J. 33, 1343 (1954); originally given by L. J. Chu in unpublished work.
combined according to certain rules (called the network equations) in order to obtain the over-all behavior of the system.
In the topological form of a typical circuit or network (Fig. 5b-12) a junction of current paths (as $a$ ) is called a node or branch point; the path between two nodes (as $a b$ ) is called a branch; a complete closed path taken along various branches (as $a b c d a$ ) is called a mesh; a pair of terminals across which voltage may be applied or input current measured (as $a a^{\prime}$ ) is called a terminal pair.

Kirchhoff's two laws form the basis of circuit theory:

1. The algebraic sum of the currents meeting at a junction is zero.
2. In any closed-circuit path the algebraic sum of applied and induced voltages is zero.

For stationary current flow, the first


Fig. 5b-12. A typical circuit or network. Kirchhoff law expresses the continuity of current, and the second law the conservative property of a stationary electric field. For systems with time-varying currents, the basis of the two laws lies in Maxwell's equations. The first law is correct if total current, displacement plus convection or conduction current, is used, and the basis is the continuity of this total current. The second law is correct if the applied and induced voltages are interpreted by the following equation, obtained by integrating the vector-potential form of the field equations (see Sec. 5b-8) about a circuit path following surfaces of conductors: ${ }^{1}$

$$
\begin{equation*}
\int_{1}^{2} \mathbf{E}_{0} \cdot d \mathbf{l}-\int_{1}^{2} \frac{\mathbf{i}}{\sigma} \cdot d \mathbf{l}-\int_{1}^{2} \frac{\partial \mathbf{A}}{\partial t} \cdot d \mathbf{l}-\int_{1}^{2} \nabla \boldsymbol{\nabla} \cdot d \mathbf{l}=0 \tag{5b-220}
\end{equation*}
$$

The terms may be considered as follows: the first an applied voltage about the path produced by an applied electric-field vector $\mathbf{E}_{0}$; the second an induced voltage from ohmic and internal-inductance effects within the conductor; the third an induced voltage arising primarily from magnetic effects of the circuit; the fourth an induced voltage arising primarily from electric charges of the circuit.

To apply Eq. (5b-220) in general, it is necessary to have a solution of the field problem in order to perform the indicated integrations. The last two terms, in the general case, will contribute to radiation fields (see Sec. 5b-12) as well as local fields. However, the great usefulness of the approach, as indicated in the first paragraph, comes when fields may be considered as localized and individual parts of the circuit considered separately. Equation ( $5 \mathrm{~b}-220$ ) may then be written for current as a function of time, $I(t)$, in a single-mesh circuit with applied voltage $V_{0}(t)$,

$$
\begin{gather*}
V_{0}(t)-R I(t)-L \frac{d I(t)}{d t}-\frac{1}{\bar{C}} \int_{0}^{t} I(\tau) d \tau=0  \tag{5b-221}\\
R=\int_{1}^{2} \frac{d l}{\sigma A} \tag{5b-222}
\end{gather*}
$$

where $A=$ cross-sectional area of conductor (not skin eflect)
$L=\frac{1}{I} \int_{1}^{2} \mathrm{~A} \cdot d \mathbf{l}=$ magnetic flux enclosed per unit current
$C=\frac{\phi_{2}-\phi_{1}}{\int_{0}^{t} I(\tau) d \tau}=$ scalar-potential difference per unit charge
1 J. R. Carson, Bell System Tech. J. 6, 1 (1927).
$R, L$ ，and $C$ are resistance，inductance，and capacitance coefficients，respectively．In the approximation of localized fields and negligible retardation effects，capacitance and inductance are the same as the coefficients defined for the electrostatic and magneto－ static cases，respectively，so that the extensive formulas and curves of Secs． $5 \mathrm{~b}-1$ to $5 \mathrm{~b}-4$ may be used for these．The resistance coefficient is modified from the low－ frequency value by skin effect（see Sec． $5 \mathrm{~b}-15$ ）．

Couplings to other parts of the system may also be included in the circuit approach by means of mutual resistances，inductances，and capacitances when the couplings are localized．For the $i$ th current in a system of $N$ currents，

$$
\begin{equation*}
V_{0 i}-\sum_{j=1}^{N}\left[R_{i j} I_{j}+L_{i j} \frac{d I_{j}}{d t}+\frac{1}{C_{i j}} \int_{0}^{t} I_{i}(\tau) d \tau\right]=0 \tag{5b-225}
\end{equation*}
$$

Equation（5b－225）may be applied to a mesh，provided that the currents of the system are mesh currents，or to a branch，provided that the currents are branch currents．

Steady－state Sinusoids：N－Terminal－pair Networks．If steady－state sinusoidal voltages and currents are represented by the complex phasors $\check{V}$ and $\check{I}$ where

$$
V(t)=\operatorname{Re} \check{V} e^{j \omega t}
$$

and $I(t)=\operatorname{Re} ⿳ 亠 丷 厂 e^{j \omega t}$ ，Eq．（5b－225）may be written

$$
\begin{equation*}
\check{V}_{i}-\sum_{j=1}^{N} Z_{i j} \check{I}_{j}=0 \tag{5b-226}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{i j}(\omega)=R_{i j}+j\left[\omega L_{i j}-\left(\omega C_{i j}\right)^{-1}\right] \tag{5b-227}
\end{equation*}
$$

Some network theorems of importance are：${ }^{1}$
1．Superposition Theorem．The current that flows in a linear network，or the potential difference that exists between any＇two points in such a network，resulting from the simul－ taneous application of a number of voltages distributed in any manner whatsoever through－ out the network is the sum of the component currents at the first point（or the component potential differences between the two points）that would be caused by the individual voltages acting separately．
2．Reciprocity Theorem．In any network composed of linear impedances，if an electromotive force E applied between two terminals produces a current I at some branch in the network，then the same voltage $E$ acting at the second point in the circuit will produce the same current I at the first point．
3．Thevenin＇s Theorem．Any linear network containing one or more sources of voltage and having two terminals behaves，in so far as a load impedance connected across the terminals is concerned，as though the network and its generators were equivalent to a simple generator having an internal impedance $Z$ and a generated voltage $E$ ，where $E$ is the voltage that appears across the terminals when no load impedance is connected and $Z$ is the impedance that is measured between the terminals when all sources of voltage in the network are short－circuited．${ }^{2}$
4．Compensation Theorem．If an impedance $\Delta Z$ is inserted in a branch of a network， the resulting current increment produced at any point in the network is equal to the current that would be produced at that point by a compensating voltage acting in series uith the

[^221]modified branch, whose value is $-I \Delta Z$, where I is the original current that flowed where the impedance was inserted before the insertion was made.

The form of Eq. (5b-226) also applies to the $N$ terminal pairs of a network and represents a set of $N$ linear equations relating the $N$ terminal voltages to the $N$ currents at those terminals. Sign convention is as in Fig. 5b-12. Solving (5b-226) for the currents gives an alternative form in terms of the admittance parameters.
where

$$
\begin{gather*}
\check{I}_{i}-\sum_{j=1}^{N} Y_{i j} \check{V}_{j}=0  \tag{5~b-228}\\
Y_{i j}=\frac{M_{i i}}{\operatorname{det} Z} \tag{5b-229}
\end{gather*}
$$

$$
\begin{aligned}
\operatorname{det} Z & =\text { determinant of } Z_{i j} \text { coefficients } \\
M_{j i} & =\text { cofactor of } Z_{i i} \text { in the above determinant }
\end{aligned}
$$

Another form useful for networks to be connected to transmission lines or waveguides at the $N$ terminals is in terms of the scattering matrix coefficients: ${ }^{1}$
where

$$
\begin{gather*}
b_{i}-\sum_{j=1}^{N} S_{i i} a_{i}=0  \tag{5~b-230}\\
a_{i}=\frac{1}{2} Z_{0 i}-\frac{1}{2}\left(\check{V}_{i}+Z_{0 i} \check{I}_{i}\right)  \tag{5b-231}\\
b_{i}=\frac{1}{2} Z_{0 i}-\frac{1}{2}\left(V_{i}-Z_{0 i} I_{i}\right) \tag{5b-232}
\end{gather*}
$$

$Z_{0 i}$ is a normalization parameter, usually taken as the characteristic impedance of the transmission system to be joined to the $i$ th terminal pair, so that $a_{i}$ and $b_{i}$ represent, respectively, incident and reflected voltage amplitudes in the $i$ th transmission system. In matrix form

$$
\begin{equation*}
[S]=([Z]-[U])([Z]+[U])^{-1} \tag{5b-233}
\end{equation*}
$$

where $[U]=$ unit matrix.
One-terminal-pair Networks. For a one-terminal-pair, passive, linear network, the input-impedance function $Z(\omega)=R(\omega)+j X(\omega)$ has these properties for real $\omega$ :

1. $R(\omega) \geq 0$ (equality holds only for loss-free networks).
2. $R(\omega)$ is even function of $\omega$.
3. $X(\omega)$ is odd function of $\omega$.
4. $X$ is positive if time-average stored energy in magnetic fields is greater than that in electric field, negative if stored energy in electric field is greater, and zero (resonant) if the two stored energies have equal time averages.
5. If $R=0, d X / d \omega>0$.

Real and imaginary parts of the admittance function $Y(\omega)=Z^{-1}$ have identical properties to real and imaginary parts, respectively, of the impedance function.

Considered as function of a complex variable, $Z(\sigma+j \omega)$ or $Y(\sigma+j \omega)$ have no singularities but simple poles, and all poles and zeros lie in the negative half plane, $\sigma \leq 0$. Since $Z$ is meromorphic, by the Mittag-Leffler theorem, it may be expanded in "partial fractions." ${ }^{2}$

$$
\begin{equation*}
Z(\omega)=\frac{j a_{0}}{\omega}+j \omega L_{\infty}+\sum_{n=1}^{N} \frac{2 j \omega a_{n}}{\omega^{2}-\omega_{n}^{2}} \tag{5b-234}
\end{equation*}
$$

[^222]where $\omega_{n}=n$th pole of $Z(\omega)$
\[

$$
\begin{aligned}
a_{n} & =\text { residue at the } n \text {th pole }=-\frac{1}{[d Y / j d \omega] \omega_{\omega=\omega_{n}}} \\
a_{0} & =\text { residue at } \omega=0
\end{aligned}
$$
\]

If Eq. (5b-234) is not convergent, or is slowly convergent, a convergence factor may be added.

$$
\begin{equation*}
Z(\omega)=j \omega L_{0}+j \frac{a_{0}}{\omega}+\sum_{n=1}^{\infty} 2 j \omega a_{n}\left[\frac{1}{\omega^{2}-\omega_{n}^{2}}+\frac{1}{\omega_{n}^{2}}\right] \tag{5b-235}
\end{equation*}
$$

A similar expression applies to $Y(\omega)$ in terms of its poles and residues.


Fig. 5b-13. Canonical Foster forms for lossless one-terminal pairs.
If no convergence term is needed, as in ( $5 \mathrm{~b}-234$ ), the circuit may be interpreted for the loss-free case in terms of the first Foster canonical form ${ }^{1}$ (Fig. 5b-13a); the similar expression for admittance $Y$ leads to the second Foster form ${ }^{1}$ (Fig. 5b-13b); if one convergence term is retained in Eq. (5b-235), the equivalent circuit ${ }^{2}$ is as in Fig. 5b-14 and conyergence is faster. The first and second canonical Cauer forms ${ }^{3}$ (Figs. $5 \mathrm{~b}-15 a, b)$ are obtained by continued fraction expansion of $Z$ and $Y$, respectively.

Two-terminal-pair Networks. The most important class of linear networks is the tuo-terminal-pair network, sometimes called four-terminal network, quadripole, or


Fig. 5b-14. Equivalent circuit for one-terminal pair with rapid convergence. transducer (Fig. 5b-16). Either the form (5b-226) or (5b-228) or (5b-230) may be used,


Fig. 5b-15. Canonical Cauer forms for lossless one-terminal pairs.
or a number of other forms. ${ }^{4}$ Of these, the most useful for cascaded networks are the transfer parameters.

[^223]\[

\left[$$
\begin{array}{l}
\check{V}_{1}  \tag{5b-236}\\
\check{I}_{1}
\end{array}
$$\right]=\left[$$
\begin{array}{ll}
A & B \\
C & D
\end{array}
$$\right]\left[$$
\begin{array}{c}
\check{V}_{2} \\
-\check{I}_{2}
\end{array}
$$\right]
\]

$A D-B C=1$ for a network satisfying reciprocity

$$
\begin{align*}
A & =-\frac{Y_{22}}{Y_{12}}=\frac{Z_{11}}{Z_{12}} \\
B & =-\frac{1}{Y_{12}}=\frac{\operatorname{det} Z}{Z_{12}} \\
C & =-\frac{\operatorname{det} Y}{Y_{12}}=\frac{1}{Z_{12}} \\
D & =-\frac{Y_{11}}{Y_{12}}=\frac{Z_{22}}{Z_{12}} \tag{5b-237}
\end{align*}
$$

Input impedance $Z_{i}$ in terms of load impedance $Z_{L}$ is

$$
\begin{equation*}
Z_{i}=Z_{11}-\frac{Z_{12^{2}}}{Z_{22}+Z_{L}}=\frac{A Z_{L}+B}{C Z_{L}+D} \tag{5b-238}
\end{equation*}
$$

Similarly for admittances

$$
\begin{equation*}
Y_{i}=Y_{11}-\frac{Y_{12^{2}}}{Y_{22}+Y_{L}}=\frac{D Y_{L}+C}{B Y_{L}+A} \tag{5~b-239}
\end{equation*}
$$

Input reflection coefficient in terms of output reflection coefficient is

$$
\begin{gather*}
\Gamma_{1}=S_{11}+\frac{S_{12}}{\left(1 / \Gamma_{2}\right)-S_{22}}  \tag{5b-240}\\
\Gamma_{1}=\frac{b_{1}}{a_{1}} \quad \Gamma_{2}=\frac{a_{2}}{b_{2}}
\end{gather*}
$$

Another common formulation utilizes image impedances and transfer functions

$$
\begin{equation*}
Z_{i 1}=\left(\frac{Z_{11}}{Y_{11}}\right)^{\frac{2}{2}} \quad Z_{i 2}=\left(\frac{Z_{22}}{Y_{22}}\right)^{\frac{1}{2}} \quad \theta=\cosh ^{-1}\left(Y_{11} Z_{11}\right)^{\frac{1}{2}} \tag{5b-241}
\end{equation*}
$$

In terms of these parameters, the insertion loss, or ratio of current through receiver after quadripole is inserted between source and receiver to current through receiver before quadripole is inserted, is

$$
\begin{equation*}
\frac{I_{2}}{I_{20}}=\frac{\left(Z_{R}+Z_{s}\right)\left(Z_{i 1} Z_{i 2}\right)^{\frac{1}{2}}}{\left(Z_{s} Z_{i 2}+Z_{R} Z_{i 1}\right) \cosh \theta+\left(Z_{R} Z_{S}+Z_{i 1} Z_{i 2}\right) \sinh \theta} \tag{5b-242}
\end{equation*}
$$

$Z_{s}$ is source impedance and $Z_{R}$ receiver impedance.
Many two-terminal pairs are used as filters, to pass signals over a desired frequency range with little attenuation, while giving


Fig. 5b-16. Two-terminal pair. large attenuations to signals outside the desired range. The classical constant- $k$ filters for low-pass, high-pass, bandpass, and bandelimination filters ${ }^{1}$ are pictured in Table 5b-7. Lower reflection loss and more rapid attenuation increase outside the pass band are obtained by adding half sections of $m$-derived ${ }^{2}$ filters at each end. The corresponding $m$-derived sections are also pictured in Table 5b-7.

The lattice network in Fig. 5b-17 gives more flexibility in achieving desired response characteristics. It is the most general symmetrical two-terminal pair in the sense

[^224]that if a symmetrical two-terminal-pair reactive network is realizable at all, it is realızable in the lattice form. Image impedance and transfer constants are
\[

$$
\begin{align*}
Z_{i 1} & =Z_{i 2}=\left(Z_{a} Z_{b}\right)^{\frac{1}{2}} \\
\theta_{x} & =2 \tanh ^{-1}\left(\frac{Z_{a}}{Z_{b}}\right)^{\frac{1}{2}} \tag{5b-243}
\end{align*}
$$
\]

Thus for purely reactive elements, pass bands occur when $Z_{a}$ and $Z_{b}$ are of opposite sign, and attenuation bands when $Z_{a}$ and $Z_{b}$ are of like sign. Attenuation is infinite when $Z_{a}=Z_{b}$.

The approximation problem in network synthesis is to arrive at physically realizable $Z_{a}$ and $\boldsymbol{Z}_{b}$ to give response curves agreeing with the desired curves within certain specified tolerances. The errors may be either oscillatory ${ }^{1}$ or monotonic. ${ }^{2}$ Potential-analogue methods are also useful in the approximation problem. ${ }^{3}$

5b-15. Skin Effect. Definition of the Effect. An applied high-frequency field near the surface of a conductor causes current to concentrate on the surface near the applied field, the decay into the conductor being approximately exponential. This concentration increases as frequency, conductivity, or permeability increases. The result is an increased resistance and decreased internal inductance at frequencies for which the effect is significant. The localized joule heating which results causes little temperature gradient throughout the conductor because of the high thermal conductivity of the metal. The current changes in phase as well as in magnitude as one progresses into the conductor.

The results given neglect displacement current within the conductors, an assumption well justified for good conductors, but results should consequently not be used for materials with appreciable dielectric losses.

Steady-state Formulas for a Plane Solid. For a plane semi-infinite solid extending from $x=0$ to $x=\infty$ and with an applied field $E_{0}$ in the $z$ direction at $x=0$, current density varies with depth $x$ as

$$
\begin{equation*}
\breve{J}_{z}=\sigma \breve{E}_{0} e^{-x / \delta} e^{-j x / \delta} \quad \mathrm{amp} / \mathrm{m}^{2} \tag{5b-244}
\end{equation*}
$$

$\delta$, the skin depth or depth of penetration, is defined as

$$
\begin{equation*}
\delta=\left(\frac{\omega \mu \sigma}{2}\right)^{-\frac{1}{2}} \quad \mathrm{~m} \tag{5b-245}
\end{equation*}
$$

The surface impedance $Z_{s}$ is the ratio of (complex) applied electric field at the surface to (complex) current flow per unit width. It is found to be

$$
\begin{equation*}
Z_{s}=\frac{\check{E}_{0}}{\check{J}_{z}^{\prime}}=(1+j) R_{s} \tag{5b-246}
\end{equation*}
$$

where $R_{s}$, the surface resistivity, is

$$
\begin{equation*}
R_{s}=\frac{1}{\sigma \delta}=\left(\frac{\omega \mu}{2 \sigma}\right)^{\frac{1}{2}} \quad \text { ohms/square } \tag{5b-247}
\end{equation*}
$$

Power loss per unit area is

$$
\begin{equation*}
P_{L}=\frac{1}{2} R_{s} \check{\mathrm{~J}}{ }^{\prime} \cdot \check{\mathrm{J}}^{\prime} * \quad \text { watts } / \mathrm{m}^{2} \tag{5b-248}
\end{equation*}
$$

[^225]Table 5b-7. Design of Low-pass, High-pass and Band-pass Filter Sections* $R_{1}=$ load resistance $\underset{\text { (lowest frequency transmitted) }}{f_{1}=\text { cut-off frequency }} \quad f_{\infty}=\underset{\text { a frequency of very }}{\text { high attenuation }}$ $m=\sqrt{1-\left(\frac{f_{\infty}}{f_{1}}\right)^{2}}$ (lowest frequency transmitted) $C_{k}=\frac{1}{4 \pi f_{1} R}$ Design of Sections

| Type | Attenuation characteristic | A. Filters having T intermediate sections |  | $B$. Filters having $\pi$ intermediate sections |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Configuration | Formulas | Configuration | Formulas |
| $\begin{aligned} & \text { End } \\ & (m \text { of } \\ & \text { approxi- } \\ & \text { matelely } \\ & 0.6) \end{aligned}$ |  |  | $\begin{aligned} & C_{1}=\frac{C_{k}}{m} \\ & C_{2}=\frac{4 m}{1-m^{2}} C_{k} \\ & L_{2}=\frac{L_{k}}{m} \end{aligned}$ |  | $\begin{aligned} & L_{1}=\frac{4 m}{1-m^{2}} L_{k} \\ & C_{1}=\frac{C_{k}}{m} \\ & L_{2}=\frac{L_{k}}{m} \end{aligned}$ |
| I |  |  | $\begin{aligned} & C_{1}=\frac{C_{k}}{m} \\ & C_{2}=\frac{4 m}{1-m^{2}} C_{k} \\ & L_{2}=\frac{L_{k}}{m} \end{aligned}$ |  | $\begin{aligned} & L_{1}=\frac{4 m}{1-m^{2}} L_{k} \\ & C_{1}=\frac{C_{k}}{m} \\ & L_{2}=\frac{L_{k}}{m} \end{aligned}$ |
| $\stackrel{\text { II }}{f_{\infty}}=0$ |  |  | $\begin{aligned} & C_{1}=C_{k} \\ & L_{2}=L_{k} \end{aligned}$ |  | $\begin{aligned} & C_{1}=C_{k} \\ & L_{2}=L_{k} \end{aligned}$ |

Table 5b-7. Design of Low-pass, High-pass and Band-pass Filter Sections (Continued) $R=$ load resistance $\quad f_{2}=$ cut-off frequency $\quad f_{\infty}=\mathrm{a}$ frequency of very $\begin{array}{ll}\text { frequency transmitted) } & \text { high attenuatio } \\ C_{k}=\frac{1}{\pi f_{2} R} & m=\sqrt{1-\left(\frac{f_{2}}{f_{\infty}}\right)^{2}}\end{array}$ $C_{k}=\frac{1}{\pi f_{2} R}$
Design of S

| Type | Attenuation characteristic | A. Filters having T intermediate sections |  | $B$. Filters having $\pi$ intermediate sections |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Configuration | Formulas | Configuration | Formulas |
| $\begin{aligned} & \text { End } \\ & (m \text { of } \\ & \text { approxi- } \\ & \text { mately } \\ & 0.6) \end{aligned}$ |  |  | $\begin{aligned} & L_{1}=m L_{k} \\ & L_{2}=\frac{1-m^{2}}{4 m} L_{k} \\ & C_{2}=m C_{k} \end{aligned}$ |  | $\begin{aligned} & L_{1}=m L_{k} \\ & C_{1}=\frac{1-m^{2}}{4 m} C_{k} \\ & C_{2}=m C_{k} \end{aligned}$ |
| I |  | $\stackrel{1}{2} L_{1} L_{2} \frac{1}{T} C_{2}$ | $\begin{aligned} & L_{1}=m L_{k} \\ & L_{2}=\frac{1-m^{2}}{4 m} L_{k} \\ & C_{2}=m C_{k} \end{aligned}$ |  | $\begin{aligned} & L_{1}=m L_{k} \\ & C_{1}=\frac{1-m^{2}}{4 m} C_{k} \\ & C_{2}=m C_{k} \end{aligned}$ |
| $\left.\stackrel{\text { II }}{\left(f_{\infty}\right.}={ }_{\infty}\right)$ |  | $\frac{1}{2} L_{1} I_{C_{2}}^{\infty}$ | $\begin{aligned} & L_{1}=L_{k} \\ & C_{2}=C \end{aligned}$ | ${ }_{\sim}^{\frac{1}{2} c_{2}} L_{1}^{L_{1}} \quad \frac{1}{2} c_{2}$ | $\begin{aligned} & L_{1}=L_{k} \\ & C_{2}=C_{k} \end{aligned}$ |

5-88
Table 5b-7. Design of Low-pass, High-pass and Band-pass Filter Sections (Continued) $\boldsymbol{R}=\mathrm{load}$ resistance $\quad f_{1}=$ Fundamental Relations

Design of Sections

| Type | Attenuation characteristic | A. Filters having T intermediate sections |  | $B$. Filters having $\pi$ intermediate sections |  | Notation for both T and $\pi$ sections |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Configuration | Formulas | Configuration | Formulas |  |
| End ( $m_{1}=m_{2}$ $=$ approximately 0.6) |  |  | $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & L_{2}=a L_{1 k} \\ & L_{2}^{\prime}=c L_{1 k} \quad C_{1}=\frac{C_{1 k}}{m_{2}} \\ & C_{2}=\frac{C_{1 k}}{b} \quad C_{2}^{\prime}=\frac{C_{1 k}}{d} \end{aligned}$ |  | $\begin{aligned} L_{1} & =\frac{L_{2 k}}{b} \\ L_{1}^{\prime} & =\frac{L_{2 k}}{d} \\ L_{2} & =\frac{L_{2 k}}{m_{2}} C_{1}=a C_{2 k} \\ C_{1}^{\prime} & =c C_{2 k} \\ C_{2} & =m_{1} C_{2 k} \end{aligned}$ |  |
| I |  |  | $\begin{aligned} L_{1} & =m_{1} L_{1 k} \\ L_{2} & =a L_{1 k} \\ L_{2} & =c L_{1} . \quad C_{1}=\frac{C_{1 k}}{m_{2}} \\ C_{2} & =\frac{C_{1 k}}{b} C_{2}=\frac{C_{1 k}}{d} \end{aligned}$ |  | $\begin{aligned} L_{1} & =\frac{L_{2 k}}{b} L_{1}=\frac{L_{2 k}}{d} \\ L_{2} & =\frac{L_{2 k}}{m_{2}} C_{1}=a C_{2 k} \\ C_{1} & =c C_{2 k} \\ C_{2} & =m_{1} C_{2 k} \end{aligned}$ | $\left.\begin{array}{l} b=\frac{14}{4 g}\left(1-\frac{1_{\infty}}{f_{2}^{2}}\right) \quad c=\frac{\left(1-m_{1}^{2}\right) f_{2}^{2}}{4 h}\left(1-\frac{f_{1}^{2}}{f_{2}^{2}}\right)=\frac{\left(1-m_{2} 2\right) f_{1} f_{2}}{4 h f_{1} f_{\infty}^{2}}\left(1-\frac{f_{1}^{2}}{f_{2}}\left(f_{2 \infty}^{2}\right.\right. \end{array}\right)$ <br> when ( $m_{1}=m_{2}$ ), $g=h, a=d, b=c, f_{1 \infty}=\frac{f_{1} f_{2}}{f_{2 \infty}^{2}}, m_{1}=m_{2}=\frac{h}{1-\frac{f_{1} f_{2}}{f_{2}^{2}}}$ <br> and $f_{2}{ }^{\infty}=\frac{f_{1}{ }^{2}+f_{2}{ }^{2}-2 m^{2} f_{1} f_{2}}{2\left(1-m^{2}\right)}+\left[\left(\frac{f_{1}{ }^{2}+f_{2}{ }^{2}-2 m^{2} f_{1} f_{2}}{2\left(1-m^{2}\right)}\right)^{2}-f_{1}{ }^{2} f_{2}{ }^{2}\right]^{1 / 2}$ |
| $\begin{gathered} \text { II } \\ f_{1 \infty}=0 \\ f_{2 \infty}=f_{2} \end{gathered}$ | $\begin{aligned} & \frac{5}{\frac{0}{7}} \\ & \frac{0}{2} \\ & \frac{2}{2} \\ & \frac{0}{4} \end{aligned} f_{1}$ |  | $\begin{aligned} & L_{1}=\frac{f_{1} R}{\pi f_{2}\left(f_{2}-f_{1}\right)} \\ & L_{2}=\frac{\left(f_{1}+f_{2}\right) R}{4 \pi f_{1} f_{2}} \\ & C_{1}=C_{1 k} \end{aligned}$ |  | $\begin{aligned} & C_{1}=\frac{f_{1}+f_{2}}{4 \pi f_{1} f_{2} R} \\ & C_{2}=\frac{f_{1}}{\pi f_{2}\left(f_{2}-f_{1}\right) R} \\ & L_{2}=L_{2 k} \end{aligned}$ | - |


| $\begin{gathered} \text { III } \\ f_{1 \infty}=f_{1} \\ f_{2 \infty}=\infty \end{gathered}$ |  |  | $\begin{aligned} L_{1} & =L_{1 k} \\ C_{2} & =\frac{1}{\pi\left(f_{1}+f_{2}\right) R} \\ C_{1} & =\frac{f_{2}-f_{1}}{4 \pi f_{1}^{2} R} \end{aligned}$ |  | $\begin{aligned} L_{1}^{\prime} & =\frac{R}{\pi\left(f_{1}+f_{2}\right)} \\ L_{2} & =\frac{\left(f_{2}-f_{1}\right) R}{4 \pi f_{1}^{2}} \\ C_{2} & =C_{2 k} \end{aligned}$ | ', | $\because$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { IV } \\ f_{1 \infty}=0 \\ f_{2 \infty}=\infty \end{gathered}$ |  | $\begin{aligned} & \frac{1}{2} L_{1}=11-C_{1} C_{2}^{2} C_{1} \frac{1}{2} L_{1} \\ & 2 C_{1} \end{aligned}$ | $\begin{aligned} & L_{1}=L_{1 k} \\ & L_{2}=L_{2 k} \\ & C_{1}=C_{1 k} \\ & C_{2}=C_{2 k} \end{aligned}$ |  | $\begin{aligned} & L_{1}=L_{1 k} \\ & L_{2}=L_{2 k} \\ & C_{1}=C_{1 k} \\ & C_{2}=C_{2 k} \end{aligned}$ | - - |  |
| $\stackrel{V}{f_{200}}=f_{2}$ |  |  | $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & L_{2}=\frac{\left(1-m_{1} 2\right)}{4 m_{1}} L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m_{2}} \\ & C_{2}=\frac{4 m_{2}}{1-m_{2}^{2}} C_{1 k} \end{aligned}$ <br> See notation for $m_{1}$ and $m_{2}$ |  | $\begin{aligned} & L_{1}=\frac{4 m_{2}}{1-m_{2}{ }^{2}} L_{2 k} \\ & L_{2}=\frac{L_{2 k}}{m_{2}} \\ & C_{1}=\frac{\left(1-m_{1}^{2}\right)}{4 m_{1}} C_{2 k} \\ & C_{2}=m_{1} C_{2 k} \end{aligned}$ <br> See notation for $m$ and $m_{2}$ | $m_{1}=\frac{f_{1}}{f_{2}} m_{2} \quad m_{2}=\sqrt{\frac{1-\frac{f_{1}^{2}}{f_{1}^{2}}}{1-\frac{f_{1}^{2}}{f_{2}^{2}}}}$ |  |
| $\stackrel{\text { VI }}{f_{1 \infty}}=f_{1}$ |  | Same circuit as above for Type V | Same formulas as above for Type V See notation for $m_{1}$ and $m_{2}$ | Same circuit as above for Type V | Same formulas as above for Type V See notation for $m_{1}$ and $m_{2}$ | $m_{1}=\sqrt{\frac{1-\frac{f_{2}{ }^{2}}{f_{2}{ }^{2}}}{1-\frac{f_{1}{ }^{2}}{f_{2}{ }^{2}}}} \quad m_{2}=\frac{f_{1}}{f_{2}} m_{1}$ |  |
| $\stackrel{\text { VII }}{f_{1 \infty}}=0$ |  |  | $\begin{aligned} & L_{1}=m_{1} L_{1 k} \\ & L_{2}=a L_{1 k} \\ & L_{2}^{\prime}=\frac{\left(1-m_{1}^{2}\right)}{4 h} L_{1 k} \\ & C_{1}=C_{1 k} C_{2}^{\prime}=\frac{h}{a} C_{1 k} \end{aligned}$ |  | $\begin{aligned} L_{1}^{\prime} & =\frac{h}{a} L_{2 k} L_{2}=L_{2 k} \\ C_{1} & =a C_{2 k} \\ C_{2} & =m_{1} C_{2 k} \\ C_{1}^{\prime} & =\frac{\left(1-m_{1}^{2}\right)}{4 h} C_{2 k} \end{aligned}$ | $h=\sqrt{\left(1-\frac{f_{1}^{2}}{f_{2 \infty}^{2}}\right)\left(1-\frac{f_{2}{ }^{2}:}{f_{2}^{2}}\right)}$ | $\begin{aligned} & m_{1}=\frac{f_{1} f_{2}}{f_{2}^{2}}+h \\ & a=\frac{\left(1-m_{1}\right) f_{2}^{2}}{4 f_{1} f_{2}} \end{aligned}$ |
| $\stackrel{\text { VIII }}{f_{2 \infty}=\infty}$ |  |  | $\begin{aligned} & L_{1}=L_{1 k} L_{2}=\frac{d}{g} L_{1 k} \\ & C_{1}=\frac{C_{1 k}}{m_{2}} \\ & C_{2}=\frac{4 g}{1-m_{2}{ }^{2}} C_{1 k} \\ & C_{2}^{\prime}=\frac{C_{1 k}}{d} \end{aligned}$ |  | $\begin{aligned} & L_{1}=\frac{4 g}{1-m_{2}^{2}} L_{2 k} \\ & L_{2}=\frac{L_{2 k}}{m_{2}} L_{1}{ }^{1}=\frac{L_{2 k}}{d} \\ & C_{1}=\frac{d}{g} C_{2 k} \quad C_{2}=C_{2 k} \end{aligned}$ | $g=\sqrt{\left(1-\frac{f_{1}{ }^{2}}{f_{1}{ }^{2}}\right)\left(1-\frac{f_{1}{ }^{2}}{f_{2}^{2}}\right)}$ | $\begin{aligned} & m_{2}=g+\frac{f_{1}^{2}}{f_{1} f_{2}} \\ & d=\frac{\left(1-m_{2}^{2}\right) f_{1} f_{2}}{4 f_{1}^{2}} \end{aligned}$ |

In terms of the surface magnetic intensity $H$ and a unit vector $n$ normal to the surface, current per unit width is

$$
\begin{equation*}
\mathrm{J}=\mathbf{n} \times \mathbf{H} \tag{5b-249}
\end{equation*}
$$

Formulas for $\delta$ and $R_{s}$ as functions of frequency are given for several common materials in Table 5b-8.

Table 5b-8. Skin-effect Quantities for Conductors

| Metal | $\begin{aligned} & \text { Resistivity } \\ & (\mathrm{ohm}-\mathrm{m}) 10^{8} \end{aligned}$ | Relative* permeability at 0.002 weber $/ \mathrm{m}^{2}$ | $\begin{gathered} \delta \sqrt{\nu} \\ \delta=\text { depth of } \\ \text { penetration, } \\ m, \nu= \\ \text { frequency, cps } \end{gathered}$ | $10^{7} R_{s} / \sqrt{\nu}$ <br> $R_{s}=$ surface resistivity, ohms/m ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Aluminum. | 2.828 | 1 | 0.085 | 3.33 |
| Brass ( $65.8 \mathrm{Cu}, 34.2 \mathrm{Zn}$ ) | $6.29 \dagger$ | 1 | 0.126 | 4.99 |
| Brass (90.9 Cu, 9.1 Zn). . | $3.65 \dagger$ | 1 | 0.096 | 3.79 |
| Graphite.. | 1,000 | 1 | 1.592 | 62.81 |
| Chromium. | $2.6 \dagger$ | 1 | 0.081 | 3.21 |
| Copper. | 1.724 | 1 | 0.066 | 2.61 |
| Gold... | $2.22 \dagger$ | 1 | 0.075 | 2.96 |
| Lead. | 22 | 1 | 0.236 | 9.32 |
| Magnesium. | 4.6 | 1 | 0.108 | 4.26 |
| Mercury . | $95.8 \dagger$ | 1 | 0.493 | 19.43 |
| Nickel. . | 7.8 | 100 | 0.014 | 55.71 |
| Phosphor bronze. ..... . | $7.75 \dagger$ | 1 | 0.140 | 5.54 |
| Platinum. | $9.83 \dagger$ | 1 | 0.158 | 6.22 |
| Silver. | 1.629 | 1 | 0.064 | 2.55 |
| Tin. | 11.5 | 1 | 0.171 | 6.73 |
| Tungsten............... | 5.51 | 1 | 0.118 | 4.67 |
| Zinc.................... . | $5.38 \dagger$ | 1 | 0.117 | 4.60 |
| Magnetic iron.... | 10 | 200 | 0.011 | 90.9 |
| Permalloy (78.5 Ni, 21.5 Fe )..................... | 16 | 8,000 | 0.0022 | 727 |
| $\begin{gathered} \text { Supermalloy (5 Mo, } 79 \\ \text { Ni, } 16 \mathrm{Fe} \text { )............. } \end{gathered}$ | 60 | $10^{5}$ | 0.0012 | 4,880 |
| $\begin{aligned} & \text { Mumetal (75 Ni, } 2 \mathrm{Cr}, 5 \\ & \mathrm{Cu}, 18 \mathrm{Fe}) \ldots \ldots \ldots . . \end{aligned}$ | 62 | 20,000 | 0.0029 | 2,140 |

[^226]where Ber and Bei ${ }^{1}$ are Bessel functions.
$$
\text { Ber } x+j \text { Bei } x=J_{0}\left(j^{-\frac{1}{2}} x\right)
$$
${ }^{1}$ Defined by Lord Kelvin and tabulated in H. B. Dwight, "Tables of Integrals," rev. ed., The Macmillan Company, New York, 1947; or McLachlan, "Bessel Functions for Engineers," Oxford University Press, New York, 1934.

Internal impedance (resistance and internal reactance) per unit length is

$$
\begin{equation*}
Z_{i}=R+j \omega L_{i}=\frac{j R_{s}}{\sqrt{2} a \pi}\left[\frac{\operatorname{Ber}(\sqrt{2} a / \delta)+j \operatorname{Bei}(\sqrt{2} a / \delta)}{\operatorname{Ber}^{\prime}(\sqrt{2} a / \delta)+j \operatorname{Bei}^{\prime}(\sqrt{2} a / \delta)}\right] \quad \text { ohm } / \mathrm{m} \tag{5b-251}
\end{equation*}
$$

where $\operatorname{Ber}^{\prime} x+j \operatorname{Bei}^{\prime} x=d(\operatorname{Ber} x+j \operatorname{Bei} x) / d x$ is also tabulated. A low-frequency approximation to Eq. (5b-251) valid for $a / \delta<1$ is

$$
Z_{i} \approx\left\{\frac{1}{\pi a^{2} \sigma}\left[1+\frac{1}{48}\left(\frac{a}{\delta}\right)^{4}\right]+j \frac{\omega \mu}{8 \pi}\right\}
$$ $\mathrm{ohm} / \mathrm{m} \quad$ (5b-252)

A high-frequency approximation to Eq. ( $5 \mathrm{~b}-251$ ) valid for $a / \delta>10$ is

$$
Z_{i} \approx(1+j) \frac{R_{s}}{2 \pi a} \quad \text { ohm } / \mathrm{m} \quad(5 \mathrm{~b}-253)
$$

Curves of $R / R_{0}, \omega L_{i} / R_{R}$, and $L_{i} /\left(L_{i}\right)_{0}$ are given in Fig. $5 \mathrm{~b}-18$ as functions of $a / \delta$. $R_{0}$ is d-c resistance and $\left(L_{i}\right)_{0}$ the internal inductance at zero frequency,


Fig. 5b-18. Skin effects for solid round conductors.

$$
R_{0}=\frac{1}{\pi a^{2} \sigma} \quad \text { ohm } / \mathrm{m} \quad\left(L_{i}\right)_{0}=\frac{\mu}{8 \pi} \quad \text { henrys } / \mathrm{m}
$$

Tubular Conductor. For a tubular conducting cylinder of internal radius $b$ and external radius $a$, and with an applied field at the external radius, impedance per unit length is
$R_{i}+j \omega L_{i}=\frac{R_{s}}{\sqrt{2 j \pi a}}\left[\frac{J_{0}(T a) H_{0}^{(1)}(T b)-J_{0}^{\prime}(T b) H_{0}^{(1)}(T a)}{J_{0}^{\prime}(T a) H_{0}{ }^{(1) \prime}(T b)-J_{0}^{\prime}(T b) H_{0}{ }^{(1) \prime}(T a)}\right] \quad$ ohms $/ \mathrm{m}$
where $T$ is the complex quantity $(-j \omega \mu \sigma)^{\frac{1}{2}}$. The real and imaginary parts of the first Hankel function $H_{0}{ }^{(1)}$ of complex argument ( $j^{-\frac{1}{2}} x$ ) are given in Jahnke and Emde. ${ }^{1}$ Note that

$$
H_{0}{ }^{(1) \prime}(x)=\frac{d}{d x} H_{0}^{(1)}(x)=-H_{1}^{(1)}(x)
$$

If the applied field is at the inner radius (as when the tubular conductor is used as the outer conductor of a coaxial transmission system), interchange $a$ and $b$ in Eq. (5b-254).

For a thin-walled tubular conductor ${ }^{2}$ with thickness $d=a-b$, an approximation to Eq. (5b-254) is

$$
\begin{array}{rlr}
R & =\frac{R_{s}}{2 \pi a}\left[\frac{\sinh (2 d / \delta)+\sin (2 d / \delta)}{\cosh (2 d / \delta)-\cos (2 d / \delta)}\right] & \text { ohm } / \mathrm{m} \\
\omega L_{i} & =\frac{R_{s}}{2 \pi a}\left[\frac{\sinh (2 d / \delta)-\sin (2 d / \delta)}{\cosh (2 d / \delta)-\cos (2 d / \delta)}\right] & \text { ohm } / \mathrm{m} \tag{5b-256}
\end{array}
$$

Figure $5 \mathrm{~b}-19$ shows $R / R_{0}$ and $\omega L_{i} / R_{0}$ as functions of $d / \delta$ where $R_{0}$ is d-c resistance, $R_{0}{ }^{-1}=\pi\left(a^{2}-b^{2}\right) \sigma$.

[^227]Conductors of Other Shapes. For a conductor of arbitrary shape, solution of the following equation yields current


Fig. 5b-19. Skin-effect resistance and reactance for thin-walled tubular conductors. distribution

$$
\begin{equation*}
\nabla^{2} \check{J}=j \omega \mu \sigma \check{J} \tag{5b-257}
\end{equation*}
$$

with boundary conditions at the surface of $n \cdot J=0$ and $J=\sigma E_{0}$ where $E_{0}$ is the applied field at the surface. Solutions are not available for many shapes. Figure 5b-20 shows resistance compared with d-c resistance for a conducting cylinder of rectangular cross section ${ }^{1}$ determined mostly by experimental methods.

For any conductor at frequencies high enough so that thickness and all radii of curvature are large compared with skin depth defined by Eq. (5b-245), the planar analysis may be used as a good approximation. Internal impedance (resistance and internal reactance) for a length $l$ and width $w$ over which fields are uniform are then

$$
\begin{equation*}
Z \approx(1+j) \frac{R_{s} l}{w} \quad \text { ohms } \tag{5b-258}
\end{equation*}
$$

For a given surface magnetic field, power loss per unit area may then be found approxi-


Fig. 5b-20. A-C resistance of rectangular conductors. [From Terman, "Radio Engineer's Handbook," p. 43, McGraw-Hill Book Company, Inc., New York, 1943, as extended from data of S. J. Haefner, Proc. IRE 25, 434 (April, 1937).]
mately by Eqs. ( $5 \mathrm{~b}-248$ ) and ( $5 \mathrm{~b}-249$ ). A very general method of determining the skin resistance of certain polygons has been given by Wheeler. ${ }^{2}$

Similitude is useful in the study of skin effect in arbitrarily shaped conductors. If

[^228]two systems are geometrically similar, distribution of currents in the two systems will be similar, provided that linear dimensions are in the same ratio as skin depth for the materials of the two systems. Impedance of the two systems will then be inversely as the ratio of linear dimensions. Tests made on a small system at high frequencies may then be used to predict results for a large system at lower frequencies.

Coated and Laminated Conductors. If a coating of one conducting material is placed on another material, resistance and internal reactance will be nearly the same as for a solid of the coating material, provided that coating thickness is large compared with $\boldsymbol{\delta}$ for that material; resistance and internal react-


Fig. 5b-21. Skin-effect resistance and reactance for coated conductor with $\sqrt{\mu_{2} \sigma_{1} / \mu_{1} \sigma_{2}}=0.34$. ance will be nearly the same as for a solid of the base material if coating thickness is very small compared with $\delta$ for the coating material. For a semi-infinite solid of constants $\sigma_{2}, \mu_{2}$ coated with a sheet of depth $d$ of a material with constants $\sigma_{1}$, $\mu_{1}$, internal impedance for the general thickness is

$$
\begin{equation*}
Z_{i}=(1+j) R_{s 1}\left\{\frac{\sinh \left[(1+j) d / \delta_{1}\right]+\left(R_{s 2} / R_{s i}\right) \cosh \left[(1+j) d / \delta_{1}\right]}{\cosh \left[(1+j) d / \delta_{1}\right]+\left(R_{a_{2}} / R_{s 1}\right) \sinh \left[(1+j) d / \delta_{1}\right]}\right\} \quad \text { ohms } / \mathrm{m} \tag{5b-259}
\end{equation*}
$$

Surface resistivity $R_{s}$ and skin depth $\delta$ are as defined in Eqs. (5b-245) and (5b-247).


Fig. 5b-22. Skin-effect resistance and reactance for coated conductors with $\sqrt{\mu_{2} \sigma_{1} / \mu_{1} \sigma_{2}}$ $=1.6$.

Figure $5 \mathrm{~b}-21$ shows the way in which resistance and internal reactance vary with $d / \delta_{1}$ for a particular case of the coating of a poorer high-frequency conductor than the base, $R_{s_{2}} / R_{s_{1}}=0.34$; Fig. $5 \mathrm{~b}-22$ shows curves for the particular case of $R_{s_{2}} / R_{s_{1}}=1.6$, the coating being the better high-frequency conductor.

An important use of laminated conductor interspersed with insulating layers to produce more efficient use of the current-carrying cross section has been given by Clogston. ${ }^{1}$

Transient Penetration in the Plane Solid. If a constant magnetic field $H_{0}$ is suddenly applied at time $t=0$ to the surface of a semi-infinite plane solid, field at depth $x$, time $t>0$ is

$$
\begin{equation*}
H(x, t)=H_{0}\left[1-\operatorname{erf}\left(\frac{x}{2} \sqrt{\frac{\mu \sigma}{t}}\right)\right] \quad \operatorname{amp} / \mathrm{m} \tag{5b-260}
\end{equation*}
$$

If the applied field increases linearly with time, $H(0, t)=C t$ for $t>0$,

$$
\begin{equation*}
H(x, t)=C t\left\{\left(1+\frac{\mu \sigma x^{2}}{2 t}\right)\left[1-\operatorname{erf}\left(\frac{x}{2} \sqrt{\frac{\mu \sigma}{t}}\right)\right]-x \sqrt{\frac{\mu \sigma}{\pi t}} \exp \left(\frac{-\mu \sigma x^{2}}{4 t}\right)\right\} \tag{5b-261}
\end{equation*}
$$

Universal curves of $H(x, t) / H(0, t)$ are given in Fig. $5 \mathrm{~b}-23$ for the two cases.

[^229]Thin-sheet Shielding Formulas. ${ }^{1}$ The shielding effect on both transient and steadystate time-varying fields of plane, spherical, or cylindrical conducting sheets of area resistivity $\sigma$ whose thickness is small compared with the skin depth and with other dimensions involved which in turn are small compared with a wavelength are given by formulas mostly due to Maxwell.
infinite plane sheet: The shielding is independent of the position of the sheet which is at $z=0$. Let the vector potential of the source, located in the region of


Fig. 5b-23. Penetration of pulsed fields into a conductor. $x=$ depth fron surface, $m$; $t=$ time, sec; $\sigma=$ conductivity, mhos $/ \mathrm{m} ; \mu=$ permeability, henrys $/ \mathrm{m}$. (From J. R. Whinnery, General Electric Co. Data Folder 46217, Oct. 20, 1942).
positive $z$, be given without the sheet by $f(t, x, y, z)$. After the sheet is introduced the vector potential in the region of negative $z$ is given by

$$
\begin{equation*}
A=\frac{2 \sigma}{\mu_{v}} \frac{\partial}{\partial z} \int_{0}^{\infty} f\left(t-\tau, x, y, z-\frac{2 \sigma}{\mu_{v}} \tau\right) d \tau \tag{5b-262}
\end{equation*}
$$

The instantaneous rate of dissipation of energy in the sheet is

$$
\begin{equation*}
P=\frac{2 \sigma}{\mu_{v}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\frac{\partial^{2}}{\partial t \partial z} \int_{0}^{\infty} f_{0}\left(t-\tau, x, y,-z-\frac{2 \sigma}{\mu_{v}} \tau\right) d \tau\right]_{z=0}^{2} d x d y \tag{5b-263}
\end{equation*}
$$

where $f_{0}$ is the component of $f$ parallel to the sheet.

[^230]SPHERICAL SHELL: Let the vector potential at $r=a$ without the shell due to an axially symmetrical field be $\Sigma C_{n} P_{n}{ }^{1}(\cos \theta) f_{n}(t)$. After the shell is placed at $r=a$, the vector potential inside due to external sources is

$$
\begin{equation*}
A_{\phi}=-\frac{\sigma}{\mu_{v} a} \sum(2 n+1) r^{n} a^{-n} C_{n} P_{n}^{1}(\cos \theta) \int_{0}^{\infty} f_{n}(t-\tau) e^{-(2 n+1) \sigma \tau / \mu_{v} a} d \tau \tag{5b-264}
\end{equation*}
$$

The vector potential outside due to internal sources is the same but with $(a / r)^{n+1}$ substituted for $(r / a)^{n}$. The instantaneous energy-dissipation rate in the shell is

$$
\begin{equation*}
P=\frac{4 \pi \sigma}{\mu_{v}{ }^{2} a} \sum n(n+1)(2 n+1) C_{n}^{2}\left[\frac{\partial}{\partial t} \int_{0}^{\infty} f(t-\tau) e^{-(2 n+1) \sigma \tau / \mu_{v} a} d \tau\right]^{2} \tag{5b-265}
\end{equation*}
$$

CYLINDRICAL SHELL: Let the vector potential at $\rho=a$ without the shell of sources which consist of currents parallel to the $z$ axis be

$$
\Sigma C_{n} \cos \left(n \phi+\alpha_{n}\right) f_{n}(t)
$$

When the shell is placed at $\rho=a$, the vector potential inside due to external sources is

$$
\begin{equation*}
A_{z}=-\frac{2 \sigma}{\mu_{v} a} \sum n \rho^{n} a^{-n} C_{n} \cos \left(n \phi+\alpha_{n}\right), \int_{0}^{\infty} f_{n}(t-\tau) e^{-2 n \sigma \tau / \mu_{v} a} d \tau \tag{5b-266}
\end{equation*}
$$

The vector potential outside due to internal sources is given by writing $a / \rho$ for $\rho / a$. The instantaneous rate of energy dissipation per unit length is given by

$$
\begin{equation*}
P=\frac{4 \pi \sigma}{\mu_{v}^{2} a} \sum n^{2} C_{n}^{2}\left[\frac{\partial}{\partial t} \int_{0}^{\infty} f(t-\tau) e^{-2 n \sigma \tau / \mu_{v} a} d \tau\right]^{2} \tag{5b-267}
\end{equation*}
$$

EDDY-CURRENT HEATING OF SPHERE: When the wavelength is very long compared with the radius $a$ of a sphere of conductivity $\sigma$ and relative permeability $K_{m}=\mu / \mu_{v}$ which is placed in a uniform alternating magnetic field of flux density $B$ and angular frequency $\omega$, the rate of energy dissipation is

$$
\begin{equation*}
\frac{3 \pi a^{5} \omega^{2} K_{m}{ }^{2} \sigma[1 / 2 u(S+s)-C+c] B^{2}}{U^{2}\left[\left(p a^{2}+1\right) C+\left(p a^{2}-1\right) c-u(S+s)\right]+U p a^{2} u(S-s)+p^{2} a^{4}(C-c)} \tag{5b-268}
\end{equation*}
$$

where $U=K_{m}-1, p=\sigma \mu \omega, u=(2 p)^{\frac{1}{3}} a, S=\sinh u, C=\cosh u, s=\sin u$, and $c=\cos u$. Note that, when the relative permeability is one, all the terms in the denominator except the last vanish.

## SOME SOLID-STATE FORMULAS

5b-16. Electrical Conductivity. In a solid where ohmic conduction occurs, the current density $\mathbf{J}$ is given by

$$
\mathbf{J}=\sigma \mathbf{E}
$$

where $\sigma$ is the conductivity and $E$ the applied electric field. In a homogeneous isothermal crystal $\sigma$ is a tensor having the symmetry of the crystal. The current density may be written as

$$
\mathbf{J}=n e \mathbf{v}_{D}
$$

where $n$ is the density of charge carriers and $v_{D}$ is their drift velocity. The drift velocity depends on the distribution function assumed for dynamic equilibrium ${ }^{1}$

[^231]
## Metals (Free-electron Theory)

$$
\begin{align*}
\sigma & =\frac{4}{3} \frac{n e^{2} \lambda}{(2 \pi m k T)^{\frac{1}{2}}} \text { Maxwell-Boltzmann statistics }  \tag{5b-269}\\
\sigma & =\frac{n e^{2} \lambda\left(W_{F}\right)}{m v\left(W_{F}\right)} \text { Fermi-Dirac statistics } \tag{5b-270}
\end{align*}
$$

$m$ is the electronic mass, $k$ the Boltzmann constant, $\lambda$ is the mean free path of the electrons, $\lambda\left(W_{F}\right)$ is a function of the Fermi energy, and $v\left(W_{F}\right)$ is the velocity of the electrons near the Fermi level
where

$$
\begin{aligned}
W_{F} & \cong W_{F^{0}}\left[1-\frac{\pi^{2}}{12}\left(\frac{k T}{W_{F^{0}}}\right)^{2}\right] \\
W_{F^{0}} & =\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{\frac{2}{3}}=\frac{h^{2}}{2 m}\left(\frac{3 n}{8 \pi}\right)^{\frac{2}{3}}
\end{aligned}
$$

Equation (5b-269) gives the correct magnitude of the conductivity at room temperature if $\lambda$ is taken as the interatomic distance; however, the temperature dependence is not $T^{-1}$ as is found by experiment. Equation (5b-270) requires that $\lambda\left(W_{F}\right)$ be 10 to 100 times the interatomic distance to match room-temperature data and approach infinity as $T \rightarrow 0$. An empirical relation given by Grüneisen ${ }^{1}$

$$
\rho=\frac{1}{\sigma}=A T^{5} \int_{0}^{\theta / T} \frac{x^{5} d x}{\left(e^{x}-1\right)\left(1-e^{-x}\right)}
$$

gives the proper temperature dependence for some simple metals. ${ }^{2}$
Semiconductors. When electrons (see Sec. 5e) are the only charge carriers

$$
\begin{equation*}
\sigma=\frac{J}{E}=n e \mu_{n} \tag{5b-271}
\end{equation*}
$$

where $n$ is the density of electrons in the conduction band and $\mu_{n}=v_{D} / E$ is the mobility of the electrons. The drift velocity is frequently written

$$
\boldsymbol{\nabla}_{D}=-\frac{e \tau}{m} \mathbf{E}
$$

where $\tau$ is mean free time. In terms of $\tau$
and

$$
\begin{aligned}
\mu_{n} & =\frac{e \tau_{n}}{m_{n}} \\
\sigma_{n} & =\frac{n e^{2} \tau_{n}}{m_{n}} .
\end{aligned}
$$

If holes are the only charge carriers,

$$
\begin{equation*}
\sigma=p e \mu_{p}=\frac{p e^{2} \tau_{p}}{m_{p}} \tag{5b-272}
\end{equation*}
$$

where $p$ is the density of the holes in the valence band and $\mu_{p}$ is the hole mobility. In a mixed semiconductor (electrons and holes)

$$
\begin{equation*}
\sigma=e\left(n \mu_{n}+p \mu_{p}\right) \tag{5b-273}
\end{equation*}
$$

The values of $n, p$, and $\mu$ depend on both the model used and the temperature. ${ }^{3}$ At
${ }^{1}$ E. Grüneisen, Ann. Physik 16, 530 (1933).
${ }^{2}$ For a detailed discussion of the conductivity in metals see ref. I, chap. XV; refs. II, III, and J. Bardeen, J. Appl. Phys. 11, 88 (1940).
${ }^{3}$ See ref. VI, chap. 11.
temperatures for which the Fermi-Dirac statistics can be replaced by the classical case, i.e.,

$$
T>\left(\frac{3}{\pi}\right)^{\frac{3}{2}} \frac{h^{2}}{8 k m} n^{\frac{2}{3}}
$$

Equation (5b-269) may be used for $\sigma$ in Eqs. (5b-271), (5b-272), and (5b-273) with the proper substitution for $n$ and $\lambda$.

$$
\begin{array}{cc}
\text { Electron Conduction ( } n \text { Type) } & \text { Hole Conduction ( } p \text { Type) } \\
\sigma=\frac{4}{3} \frac{n e^{2} \lambda_{n}}{\left(2 \pi m_{n} k T\right)^{\frac{1}{2}}} & \sigma=\frac{4}{3} \frac{p e^{2} \lambda}{\left(2 \pi m_{p} k T\right)^{\frac{1}{3}}} \tag{5b-274}
\end{array}
$$

Ionic Conductors. Ionic conductivity, in most cases (see Sec. 5f-6), at high temperatures can be represented by

$$
\begin{equation*}
\sigma=\frac{N e^{2} D}{k T} e^{-W / k T}=A e^{-W / k T} \tag{5b-275}
\end{equation*}
$$

The factor $A$, derived by Einstein, ${ }^{1}$ is the contribution to the conductivity from electrolytic migration of a given atom. $N$ is the number of diffusing atoms per cubic centimeter, $D$ is the diffusion coefficient in zero field, and $W$ is the activation energy which depends on the transport mechanism involved in the conduction.
$\mathbf{5 b - 1 7}$. Thermoelectric, Thermomagnetic, and Galvanomagnetic Effects. Thermionic Emission. The current density of electrons emitted from a metal at a temperature $T$ is

$$
\begin{equation*}
J=A T^{2}(1-r) e^{-\varphi / k T} \exp \left(-\sqrt{E} e^{\frac{1}{2}} / k T\right) \tag{5b-276}
\end{equation*}
$$

where $A=4 \pi m e k^{2} / h^{3}=120 \mathrm{amp} / \mathrm{cm}^{2} / \mathrm{deg}^{2}, r$ is the reflection coefficient representing the probability that an electron with sufficient energy to exceed the surface barrier will be reflected back, $\varphi$ is the work function, $\sqrt{E} e^{\frac{z}{2}}$ is the maximum potential near the surface due to an electric field $E$ at the surface.
Thompson Coefficient. If a homogeneous conductor carries a current of density $J_{x}$ and has a uniform temperature gradient $d T / d x$, then the heat per second developed per unit volume

$$
\frac{d H}{d t}=\rho J_{x}^{2}-\sigma_{T} J_{x} \frac{d T}{d x}
$$

The Thompson coefficient ${ }^{2}$ is

$$
\begin{equation*}
\sigma_{T}=-\frac{\pi k^{2} T}{3 e}\left(\frac{1}{W_{F^{0}}}+\frac{1}{\lambda} \frac{d \lambda}{d W_{F^{0}}}\right) \tag{5b-277}
\end{equation*}
$$

A knowledge of the mean free path $\lambda$ as a function of the energy is required to evaluate $\sigma_{T}$. For example, Sommerfeld and Frank ${ }^{3}$ considered the number of free electrons per unit volume to be independent of the temperature and the mean free path of the electrons independent of their velocity. These assumptions give for metals

$$
\sigma_{T}=\frac{2 \pi^{2} m k^{2} T \lambda_{B}}{3 e h^{2}}
$$

where $\lambda_{B}$ is the de Broglie wavelength of those electrons which have the critical velocity of the Fermi distribution. Johnson and Lark-Horovitz ${ }^{4}$ have calculated the Thompson coefficient for a two-carrier model of a semiconductor for the intrinsic,

[^232]impurity, and transition ranges. For the intrinsic range
$$
\sigma_{T}=-\frac{T}{e} \frac{d}{d T}\left\{\frac{2 k(b-1)}{b+1}\right\}+\frac{T}{e} \frac{k(b-1)}{b+1} \frac{d}{d T}\left(\frac{-E_{g}}{2 k T}\right)
$$
where $b=\mu_{n} / \mu_{p}$ and $E_{g}=E_{0}+\alpha T$ is the energy gap at the temperature $T$.
Absolute Thermoelectric Power. When a temperature gradient is applied to a homogeneous electronic conductor in which no electric current flows, a thermal emf $\epsilon$, called absolute thermoelectric power, is given by
\[

$$
\begin{equation*}
\epsilon=\frac{1}{e} \frac{d \bar{\mu}}{d \bar{T}} \tag{5b-278}
\end{equation*}
$$

\]

where $\bar{\mu}$ is the electrochemical potential of the free electrons. For metals

$$
\begin{equation*}
\epsilon=\int_{0}^{T} \frac{\sigma_{T}}{T} d T \tag{5b-279}
\end{equation*}
$$

When two conductors form a couple and the temperature difference across the junctions is small, $T$ and $T+d T$, the thermoelectric power $Q$ is given by

$$
\begin{equation*}
Q=\int \frac{\sigma_{T_{2}}-\sigma_{T_{1}}}{T} d T \tag{5b-280}
\end{equation*}
$$

Seebeck Effect. When two metals form a closed circuit through a potentiometer ( $\mathrm{J}=0$ ) and their junctions are maintained at different temperatures $T_{1}$ and $T_{2}$, a Seebeck emf $\varepsilon_{s}$ results which is given by

$$
\begin{equation*}
\varepsilon_{s}=\int_{T_{1}}^{T_{2}}\left(\epsilon_{1}-\epsilon_{2}\right) d T \tag{5b-281}
\end{equation*}
$$

Peltier Effect. When a current $I$ passes through the junction of two conductors, the junction will be heated or cooled. When the current is reversed the junction is cooled or heated. The heat per second at the junction is

$$
H_{12}=\Pi_{12} I
$$

$\Pi_{12}$ is called the Peltier coefficient $\left(\Pi_{21}=-\Pi_{12}\right)$

$$
\begin{equation*}
\Pi_{12}=T \int \frac{\sigma_{T_{2}}-\sigma_{T_{1}}}{T} d T=T\left(\epsilon_{2}-\epsilon_{1}\right) \tag{5b-282}
\end{equation*}
$$

Isothermal Hall Effect. When a magnetic field is applied to a conductor carrying a current density $\mathbf{J}$, an electric field $\mathbf{E}_{H}$ (Hall field) is developed given by the relation

$$
\begin{equation*}
\mathbf{E}_{H}=R \mathbf{J} \times \mathbf{B} \tag{5~b-283}
\end{equation*}
$$

$R$ is called the Hall coefficient. When the current density is in the long direction of the sample ( $J_{x}$ ) and the field is in the $z$ direction, the Hall coefficient is (see Sec. 5e-2)

$$
\begin{equation*}
R=-\frac{1}{n e}=-\frac{\mu}{\sigma} \tag{5b-284}
\end{equation*}
$$

where $n=$ carriers $/ \mathrm{m}^{3}, \quad e=1.60 \times 10^{19}$ coulombs, $\mu=\mathrm{m}^{2} / \mathrm{volt} \mathrm{sec}$, and $\sigma=$ (ohm-m) ${ }^{-1}$.
The Hall coefficient for a semiconductor depends on the charge carrier involved

$$
\begin{align*}
& \left(n \text { type) } R=-\frac{3 \pi}{8 e} \frac{1}{n} \quad(p \text { type }) R=\frac{3 \pi}{8 e} \frac{1}{p}\right.  \tag{5b-285}\\
& (\text { mixed }) R=-\frac{3 \pi}{8 e}\left[\frac{n b^{2}-p}{(n b+p)^{2}}\right]
\end{align*}
$$

where $b=\mu_{n} / \mu_{p}$. In ferromagnetic materials an effective field

$$
\mathbf{H}_{\text {eff }}=\mathbf{H}+4 \pi \alpha \mathbf{M}
$$

is substituted for the applied field (see Sec. 5h-12).
Nernst Effect. If a temperature gradient is maintained in an electronic conductor $(\mathrm{J}=0)$ in the presence of a transverse magnetic field a transverse electric field develops which is given by

$$
\begin{equation*}
\mathbf{E}_{t}=Q \boldsymbol{\nabla} T \times \mathbf{H} \tag{5b-286}
\end{equation*}
$$

$Q$ is called the Nernst coefficient. For semiconductors the isothermal Nernst coefficient ${ }^{1}$ at temperatures high enough for classical statistics to apply is

$$
\begin{array}{cc}
(n \text { Type }) & (p \text { Type })  \tag{5b-287}\\
Q_{n}=-\frac{3 \pi}{16} \frac{k}{e} \mu_{n} & Q_{p}=-\frac{3 \pi}{16} \frac{k}{e} \mu_{p}
\end{array}
$$

Ettingshausen Effect. If a temperature difference is maintained across an electronic conductor perpendicular to a current of density $J$ in the presence of a magnetic field, a transverse temperature gradient is established. The heat current $q=0$

$$
\begin{equation*}
\nabla_{t} T=P \mathrm{~J} \times \mathbf{H} \tag{5b-288}
\end{equation*}
$$

$P$ is called the Ettingshausen coefficient.
Righi-Leduc E.ffect. If a difference in temperature is maintained in an electronic conductor in the presence of a magnetic field in which $\mathbf{J}=0$, a transverse temperature gradient is established

$$
\begin{equation*}
\nabla_{t} T=S H \times \nabla T \tag{5b-289}
\end{equation*}
$$

$S$ is called the Righi-Leduc coefficient.
Magnetoresistance. The resistance of a metal or semiconductor is altered by the presence of a magnetic field. 'A calculation ${ }^{2}$ of the change in resistance due to the application of a magnetic field, based on the free-electron theory, provides the expression

$$
\begin{equation*}
\frac{\Delta \rho}{\rho}=\frac{B H^{2}}{1+C H^{2}} \tag{5b-290}
\end{equation*}
$$

This expression agrees with the form of the experimentally determined curve of $\Delta \rho / \rho$ vs. $H$, i.e., for low fields $C H^{2} \ll 1$

$$
\frac{\Delta \rho}{\rho} \sim H^{2}
$$

and for very high fields a saturation is approached

$$
\frac{\Delta \rho}{\rho}=A \text { (const) }
$$

The values of $B$ and $C$ in Eq. (5b-290) do not agree quantitatively, indicating that the free-electron theory is too simple. ${ }^{3}$

Cyclotron Resonance of Electrons and Holes. Current carriers in a solid, when accelerated by a microwave electric field perpendicular to an externally applied static

[^233]magnetic field $H$, will spiral about the magnetic field. Under certain conditions ${ }^{1}$ a resonance absorption is observed when the angular frequency of the electron is related to the magnetic field by the cyclotron equation
\[

$$
\begin{equation*}
\omega_{c}=\frac{ \pm e H}{m^{*} c} \tag{5b-291}
\end{equation*}
$$

\]

where the $\pm$ sign refers to the sign of the carrier ( + for holes), $m$ * is the effective mass, and $c$ is the velocity of light. The technique provides a direct measurement of the effective mass of electrons and holes.

5b-18. Types of Magnetism. Diamagnetism. Substances whose magnetic susceptibility

$$
x=\frac{M}{H}
$$

is negative are called diamagnetic. The Langevin-Pauli formula for the diamagnetic susceptibility of an atom is (ref. VIII)

$$
\begin{equation*}
\chi=-\frac{N e^{2}}{6 m c^{2}} \sum \bar{r}^{2} \tag{5b-292}
\end{equation*}
$$

where $\bar{r}^{2}$ is the mean square distance of the electron from the nucleus and the summation is over all the electrons in the atom.

Paramagnetism. Substances whose magnetic susceptibility is positive are called paramagnetic. Langevin made a classical statistical analysis of an ensemble of dipole moments in thermal equilibrium in a magnetic field. The magnetization is given by

$$
\begin{equation*}
M=N \mu L\left(\frac{\mu H}{k T}\right) \tag{5b-293}
\end{equation*}
$$

where $N$ is the number of atoms per unit volume and $\mu$ is their dipole moment. The Langevin function is

$$
L(a)=\operatorname{coth} a-\frac{1}{a}
$$

If $\mu H \ll k T$, the Langevin formula reduces to the Curie law

$$
\begin{equation*}
\chi=\frac{N \mu^{2}}{3 k T}=\frac{C}{T} \tag{5b-294}
\end{equation*}
$$

Introduction of the quantum theory into the statistics for atoms with total angular momentum quantum number $J$ gives

$$
\begin{equation*}
M=N g J \mu_{B} B_{J}\left(\frac{g J \mu_{B} H}{k T}\right) \tag{5b-295}
\end{equation*}
$$

where $g$ is the Lande factor, $\mu_{B}$ is the Bohr magneton, eh/4 $m m=-0.927 \times 10^{-20}$ ergs/oersted, and the Brillouin function is

$$
\begin{equation*}
B_{J}(x)=\frac{2 J+1}{2 J} \operatorname{coth} \frac{(2 J+1) x}{2 J}-\frac{1}{2 J} \operatorname{coth} \frac{x}{2 J} \tag{5b-296}
\end{equation*}
$$

For $x \ll 1$ susceptibility becomes

$$
\begin{equation*}
\chi=N J(J+1) \frac{g^{2} \mu_{B}{ }^{2}}{3 k T} \tag{5b-297}
\end{equation*}
$$

Note. The above equations were derived on the assumption that the atoms are free and therefore do not in general apply to solids. For details, see ref. VIII.
${ }^{1}$ G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).

Ferromagnetism. Ferromagnetic substances are characterized by the onset of a spontaneous magnetization (in a zero applied field) at temperatures for which $T<T c$ where $T c$ is called the Curie temperature.
i. weiss molecular field: Consider the magnetic field applied to the dipoles in the Langevin function to consist of the applied field plus an internal field which is proportional to the magnetization. The effective field is

The magnetization is

$$
H_{e}=H_{a}+q M
$$

$$
\begin{equation*}
M=N \mu L\left(\frac{H_{a}+q M}{k T}\right) \tag{5b-298}
\end{equation*}
$$

A nonvanishing solution for $M$ exists for $H_{a}=0$ when $T \leq T_{c}$, where

$$
\begin{equation*}
T_{c}=\frac{N \mu^{2} q}{3 k} \tag{5b-299}
\end{equation*}
$$

For $T>T_{c}$ the susceptibility is

$$
\begin{equation*}
\chi=\frac{N \mu^{2}}{3 k\left(T-T_{c}\right)}=\frac{C}{T-T_{c}} \tag{5b-300}
\end{equation*}
$$

This equation is called the Curie-Weiss law. It is usually written

$$
x=\frac{C}{T-\theta}
$$

where $\theta$, called the paramagnetic Curie point, is found by experiment to be slightly larger than $T_{c}$ when $T \gg T_{c}$ (see $5 \mathrm{~h}-13$ ).
ii. heisenberg exchange coupling: Heisenberg replaces ${ }^{1}$ the molecular field assumption with the idea that the interaction between a pair of atoms $i$ and $j$ has the form

$$
\begin{equation*}
V_{i j}=-2 \mathfrak{g} S_{i} \cdot S_{j} \tag{5b-301}
\end{equation*}
$$

where $S_{i}$ and $S_{j}$ are quantum-mechanical spin operators and $\mathfrak{J}$ is the exchange energy. This problem has not been solved exactly; the most usual approximations are to consider interactions only between nearest neighbors and to assume that all states of the crystal with the same total spin have the same energy. For these approximations, the Heisenberg results can be taken over directly from (i) with the following substitutions:

$$
\begin{aligned}
\mu \rightarrow g \mu_{B} S \quad \mu^{2} & \rightarrow g^{2} \mu_{B}{ }^{2} S(S+1) \\
L(x) & \rightarrow B_{S}(x) \\
q & \rightarrow \frac{2 z \mathscr{J}}{N g^{2} \mu_{B}{ }^{2}}
\end{aligned}
$$

where the $z$ is the number of nearest neighbors of a given atom. These procedures and results usually go by the name of "the first Heisenberg approximation." The literature (see ref. VIII) should be consulted for information about other approximate solutions of the spin-operator problem. The magnetization in this approximation is

$$
\begin{equation*}
M=g N S \mu_{B} B_{S}(x) \tag{5b-302}
\end{equation*}
$$

where $x=\frac{g S \mu_{B}}{k T}(H+q M)$
The Curie temperature is

$$
\begin{equation*}
T_{c}=\frac{2 z \mathcal{I} S(S+1)}{3 k} \tag{5b-303}
\end{equation*}
$$

For $T>T_{c}$

$$
\begin{equation*}
x=\frac{4 N \mu_{B}{ }^{2} S(S+1)}{3 k\left(T-T_{c}\right)} \tag{5b-304}
\end{equation*}
$$

${ }^{1}$ W. Heisenberg, Z. Physik 49, 619 (1928).

Antiferromagnetism. Antiferromagnetic substances are those in which the magnetic ions can be divided into equivalent sublattices which become spontaneously magnetized in an antiparallel arrangement below some temperature $T_{c}$. The antiparallel alignment occurs because of a large negative exchange integral. Van Vleck ${ }^{1}$ considered two simple interpenetrating cubic lattices and nearest-neighbor interactions. Call one sublattice $A$ and the other $B$. The effective field on an ion of lattice $A$ is due to the ions of $B$; thus

$$
\begin{aligned}
& H_{e_{A}}=H_{a}-q M_{B} \\
& H_{e_{B}}=H_{a}-q M_{A}
\end{aligned}
$$

where $q$ is the same as in the ferromagnetic case except that $\mathfrak{J}$ is now negative. The susceptibility for $T>T_{c}$ is

$$
\begin{equation*}
\chi=\frac{g^{2} N \mu_{B}{ }^{2} S(S+1)}{3 k(T+\theta)}=\frac{C}{T+\theta} \tag{5b-305}
\end{equation*}
$$

where $\theta=c T_{c}$ and $c=1$ for the simple model. ${ }^{2}$ The susceptibility below the Curie temperature for this simple model consists of two parts; the susceptibility parallel $(x \|)$ and perpendicular ( $\chi_{\perp}$ ) to the antiferromagnetic axis. $\quad x \|$ decreases and becomes zero as $T \rightarrow 0$; thus the susceptibility at absolute zero is

$$
\begin{equation*}
\chi_{T-0}=\frac{2}{3} \chi_{T-T_{c}} \tag{5b-306}
\end{equation*}
$$

Ferrimagnetism. Ferrimagnetic substances are those in which the magnetic ions can be divided into nonequivalent sublattices which become spontaneously magnetized in an antiparallel arrangement below some temperature $T_{c}$. A ferrite, i.e., $\mathrm{NiFe}_{2} \mathrm{O}_{4}$, is used as an example. It is a spinel structure having a close-packed cubic oxygen lattice in which there are 8 tetrahedral and 16 octahedral sites occupied by magnetic ions. The sites are labeled $A$ and $B$, respectively. Néel, ${ }^{3}$ using the Weiss theory, gave the effective fields at the $A$ and $B$ sites as
where

$$
\begin{gathered}
H_{A}=H_{a}+\gamma_{A A} M_{A}-\gamma_{A B} M_{B} \\
H_{B}=H_{a}-\gamma_{A B} M_{A}+\gamma_{B B} M_{B} \\
\gamma_{i j}=\frac{2 z_{i j} \mathcal{I}_{i j}}{N_{i} g^{2} \mu_{B}{ }^{2}}
\end{gathered}
$$

$z_{i j}$ is the number of nearest neighbors on the $j$ sublattice to an atom on the $i$ sublattice, $\mathscr{I}_{i j}$ is the exchange coupling between the electrons of those atoms, and $N_{i}$ is the total number of magnetic ions on the $j$ sublattice.
For $T>T_{\text {。 }}$

$$
\begin{equation*}
\chi=\frac{C}{T-T_{c}} \frac{T-\theta^{\prime}}{T-T_{c}^{\prime}} \tag{5b-307}
\end{equation*}
$$

where $C=\frac{N g^{2} \mu_{B}{ }^{2} S(S+1)}{3 k} \quad \lambda=\frac{N_{A}}{N} \quad \mu=\frac{N_{B}}{N}$

$$
T_{c}=\frac{1}{2} C\left[\lambda \gamma_{A A}+\mu \gamma_{B B}+\sqrt{\left(\lambda \gamma_{A A}-\mu \gamma_{B B}\right)^{2}+4 \lambda \mu \gamma_{A B} B^{2}}\right]
$$

$$
T_{c}^{\prime}=\frac{1}{2} C\left[\lambda \gamma_{A A}+\mu \gamma_{B B}-\sqrt{\left.\left(\lambda \gamma_{A A}-\mu \gamma_{B B}\right)^{2}+4 \lambda \mu \gamma_{A B}{ }^{2}\right]}\right.
$$

$$
\theta^{\prime}=\lambda \mu C\left[\gamma_{A A}+\gamma_{B B}+2 \gamma_{A B}\right]
$$

For $T<T_{c}$

[^234]\[

$$
\begin{equation*}
M_{A}=N_{A} g \mu_{B} S y_{A} \quad M_{B}=N_{B} g \mu_{B} S y_{B} \tag{5b-308}
\end{equation*}
$$

\]

where $y_{A}=B_{S} \frac{N g^{2} \mu_{B}{ }^{2} S^{2}}{3 k T}\left(\lambda \gamma_{A A} y_{A}-\mu \gamma_{A B} y_{B}\right)$

$$
y_{B}=B_{S} \frac{N g^{2} \mu_{B}^{2} S}{3 k T}\left(-\lambda \gamma_{A B} y_{A}+\mu \gamma_{B B} y_{B}\right)
$$

where $B_{S}(x)$ is the Brillouin function.
5b-19. Gyromagnetic Effects. Gyromagnetic Ratio. The magnetic moment of an amperian current loop is proportional to its angular momentum

$$
\begin{equation*}
\mathbf{u}=\frac{g^{\prime} e}{2 m c} \mathbf{j}=\gamma^{\prime} \mathbf{j} \tag{5b-309}
\end{equation*}
$$

or summed over an entire body

$$
\begin{equation*}
\mathbf{M}=\gamma^{\prime} \mathbf{J} \tag{5b-310}
\end{equation*}
$$

where $J$ is the total angular momentum corresponding to the magnetic moment $M$. A change in either $J$ or $M$ produces a corresponding change in the other.
barnett ${ }^{1}$ effect: Change of magnetization by rotation.
einstein-de hass effect: ${ }^{2}$ Change of rotation by magnetization.
Measurements by these methods yields values of $g^{\prime} \leq 2$ indicating that the electron spin is the predominant source of magnetism. Kittel (see ref. IV) gives the relation $g-2 \cong 2-g^{\prime}$, where $g$ is the spectroscopic splitting factor.

Spin Resonance. A substance with a magnetic moment in a static magnetic field $H$ will absorb energy from an oscillating magnetic field of small intensity at right angles to the static field. The peak of the absorption curve occurs at the angular frequency

$$
\begin{equation*}
\omega=\frac{2 \pi g \mu H}{h}=\gamma H \tag{5b-311}
\end{equation*}
$$

where $\mu$ is the appropriate unit for the magnetic moment and $g$ is the spectroscopic splitting factor.

PROTONS. $\quad \mu$ is the nuclear magneton $\mu_{P}=e h / 4 \pi M_{P} c$ and $g=5.58$

$$
\begin{equation*}
\frac{\omega}{2 \pi}=\nu(\mathrm{kc} / \mathrm{sec})=4.26 H \text { (oersteds) } \tag{5b-312}
\end{equation*}
$$

FREE ELECTRONS:

$$
\begin{array}{ccc}
\mu=\mu_{B} & \text { and } \quad g=2 \\
\nu(\mathrm{Mc} / \mathrm{sec}) & =2.80 H \text { (oersteds) } \tag{5b-313}
\end{array}
$$

paramagnetic salts: ${ }^{3}$ The equation of motion, treating the body as a whole, may be obtained ${ }^{4}$ by the use of Eq. (5b-310), $\mathbf{M}=\gamma \mathrm{J}$, and the torque $d \mathrm{~J} / d t=\mathbf{M} \times \mathbf{H}$,

$$
\begin{equation*}
\frac{d \mathbf{M}}{d t}=\gamma(\mathbf{M} \times \mathbf{H}) \tag{5b-314}
\end{equation*}
$$

where the components of $H$ are

$$
H_{x}=2 H_{1} \cos \omega t \quad H_{y}=0 \quad H_{z}=\text { static field }
$$

the amplitude of the oscillatory field is small compared with the static field, and the resonance frequency is

$$
\begin{equation*}
\omega_{0}=\gamma H_{z} \tag{5b-315}
\end{equation*}
$$

[^235]ferromagnetic resonance: Kittel ${ }^{1}$ has shown that the above equations hold for ferromagnetic resonance if all demagnetizing effects are included. For example, the resonance frequency becomes
\[

$$
\begin{equation*}
\omega=\gamma(B H)^{\frac{1}{2}} \tag{5b-316}
\end{equation*}
$$

\]

for a specimen in the form of a thin disk with the static field parallel to the disk.
antiferromagnetic resonance: Above the Curie temperature, paramagnetic resonance is found. Below the Curie temperature, the effective field ${ }^{2}$ becomes

$$
\begin{equation*}
H_{\mathrm{eff}}=\left[H_{A}\left(2 H_{E}+H_{A}\right)\right]_{\frac{1}{2}} \tag{5b-317}
\end{equation*}
$$

where $H_{A}$ is the effective anisotropy field of one sublattice and $H_{E}$ is the exchange field.
ferrimagnetic resonance: The individual sublattices must be considered in the resonance equation. An effective splitting factor ${ }^{3}$ for the combined sublattices is given by

$$
\begin{equation*}
g_{\mathrm{eff}} \frac{e}{2 m c}=\frac{|\mathbf{M}|}{|\mathbf{S}|}=\frac{\left|\Sigma \mathbf{M}_{i}\right|}{\left|\Sigma\left(\mathbf{M}_{i} / \gamma_{i}\right)\right|} \tag{5b-318}
\end{equation*}
$$

where $M_{i}$ is the magnetization of the individual sublattice and $\gamma_{i}=g_{i}(e / 2 m c)$ describes its gyromagnetic ratio.

## General References

I. Seitz, F.: "The Modern Theory of Solids," McGraw-Hill Book Company, Inc., New York, 1940.
II. Wilson, A. H.: "Theory of Metals," 2d ed., Cambridge University Press, New York, 1953.
III. Mott, N. F., and H. Jones: "Theory of the Properties of Metals and Alloys," Oxford University Press, New York, 1936.
IV. Kittel, C.: "Introduction to Solid State Physics," John Wiley \& Sons, Inc., New York, 1953.
V. Mott, N. F., and R. W. Gurney: "Electronic Processes in Ionic Crystals," 2d ed., Oxford University Press, New York, 1948.
VI. Shockley, W.: "Electrons and Holes in Semiconductors," D. Van Nostrand Company, Inc., New York, 1950.
VII. Lark-Horovitz, Karl: The New Electronics, "The Present State of Physics," AAAS, Washington, D.C., 1954.
VIII. Van Vleck, J. H.: "The Theory of Electric and Magnetic Susceptibilities," Oxford University Press, New York, 1932.
IX. Bozorth, Richard M.: "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.
${ }^{1}$ C. Kittel, Phys. Rev. 71, 270 (1947); 73, 155 (1948).
${ }^{2}$ C. Kittel, Phys. Rev. 82, 565 (1951).
${ }^{3}$ Roald K. Wangsness, Phys. Rev. 93, 68 (1954).

# 5c. Electrical Standards 

F. K. HARRIS<br>The National Bureau of Standards

- 5c-1. Fundamental Considerations. The standards in terms of which electrical quantities are evaluated are derived from absolute measurements which serve to establish the magnitudes of the electrical units in terms of the basic mechanical units. The relations between the fundamental mechanical units and the electrical units derived from them are required to satisfy two conditions: (1) the electrical watt should equal the mechanical watt; and (2) in a rationalized system the unit of resistance must be such as to make the wave impedance of free space numerically equal to $\mu_{v} c$, where $\mu_{v}$ is the conventionally assigned value of the permeability of free space and $c$ is the velocity of the electromagnetic wave. ${ }^{1}$ The first condition fixes the product of the volt and the ampere (the watt), while the second fixes their quotient (the ohm).

Two types of absolute measurements have been used in assigning values to the electrical units. In one type of experiment an inductor (either self or mutual) is constructed of such form that its inductance can be computed from its measured dimensions together with the conventionally assumed permeability of the space around it. This inductor is then supplied with a periodically varying current, and its reactance at the known frequency is compared with the resistance of a standard resistor. ${ }^{2}$ In this absolute ohm experiment a value is assigned to the resistor in terms of length, frequency, and permeability.

In a second type of experiment, a pair of coils is so arranged that the force or torque exerted between them when they carry a current can be measured accurately. This arrangement is called a current balance. The current, thus measured in absolute amperes, is passed through a resistor whose value is known in absolute ohms. The resulting voltage drop is opposed to the electromotive force of a standard cell, and its emf is determined in absolute volts. ${ }^{3}$

Values having been assigned to physical standards of resistance and voltage on the basis of absolute measurements, the values of the other electrical units can be derived from them using appropriate relationships. Thus the ohm and volt become the basic units of electrical measurement, and their physical embodiments in resistance coils and standard cells become the fundamental electrical standards.

5c-2. History of Electrical Standards. The British Association ohm (1864), resulting from the work of a committee under the leadership of Maxwell, represented the first concerted attempt by a responsible organization to realize an electrical standard based on absolute measurements correlating a mechanical and electrical system of units. At that time the Daniell cell was commonly used as the standard of emf. Later the Clark cell (1872) and its modification by Lord Rayleigh (1884) were used. Still more recently (by international agreement in 1908) the cadmium

[^236]cell, invented by Weston (1891), has entirely replaced the Clark cell and is in use today as the standard of emf.

Although the assignment of values to electrical standards on the basis of an absolute system of units has been generally recognized as desirable since the initial proposal of the British Association, the difficulties encountered in absolute measurements led to rather large uncertainties in the values of the standards. This resulted in the adoption (1894) of an auxiliary set known as the "international" units, which were a "reasonable approximation" of the absolute units and which could, it was hoped, be experimentally reproduced with sufficient accuracy for measurement purposes. These units were defined by the resistance of a uniform column of mercury of specified length and mass, and by the current required for the deposition of silver at a specified rate from a silver nitrate solution. The units defined in terms of the "mercury" ohm and the "silver" ampere could be established easily within a few hundredths of a per cent, but presently there was need for greater accuracy in measurements. Fortunately the techniques needed in absolute measurement also improved and it became possible to establish values of the electrical units within about 10 parts in a million by absolute methods.

Accordingly, on Jan. 1, 1948, the "international" system of units was formally abandoned and the "absolute" system was universally adopted. This required small changes in the values assigned to the various units, because of differences between the magnitudes of the "international" units last assigned in 1910 and the newly determined "absolute" units. Table 5c-1 may be used to compute the value in "absolute" units of any quantity that is known in the "international" units used in the United States. Corresponding tables based on the "international" units maintained by other countries would be slightly different because each country maintained its own standárds, and small differences developed over the years between the units of one country and another.

$$
\begin{aligned}
& \text { Table 5c-1. United States Values } \\
& 1 \text { international ohm }=1.000495 \text { absolute ohms } \\
& 1 \text { international volt }=1.000330 \text { absolute volts } \\
& 1 \text { international ampere }=0.999835 \text { absolute ampere } \\
& 1 \text { international coulomb }=0.999835 \text { absolute coulomb } \\
& 1 \text { international henry }=1.000495 \text { absolute henrys } \\
& 1 \text { international farad }=0.999505 \text { absolute farad } \\
& 1 \text { international watt }=1.000165 \text { absolute watts } \\
& 1 \text { international joule }=1.000165 \text { absolute joules }
\end{aligned}
$$

6c-3. Maintenance of the Electrical Units. The National Bureau of Standards in Washington, D.C., is assigned the task of maintaining the electrical units defined by an Act of Congress and used in science and technology in the United States. It also plays an active part in disseminating accurate values of the various electrical quantities by the measurement and certification of electrical standards belonging to other laboratories. ${ }^{1}$

The absolute measurements which are made to assign values to the ohm and the volt require much care and skill and are so time-consuming that they can be justified only at intervals of several years. In the intervals between absolute measurements, values of the ohm and volt are maintained by groups of wire-wound resistors and of standard cells. These groups constitute the primary electrical standards of the country and, in effect, all values of the various electrical quantities are derived from them.
${ }^{1}$ This service is voluntary on the part of the organization requesting certification, as the bureau has no police powers. Also, with certain exceptions, a fee is charged covering the cost of certification.

5c-4. Standards of Resistance. The primary standard of resistance in the United States is a group of ten $1-o h m$ resistors of special construction. The present group comprising the primary standard are of the Thomas ${ }^{1}$ type, made in 1933. They were wound of No. 12 Awg manganin wire, vacuum annealed at $550^{\circ} \mathrm{C}$, and sealed in air in double-walled containers. The individual members of the group are intercompared annually. The maximum net change in any member of the group, with respect to the group average, has been 3.7 parts per million and the average change 1.2 ppm during the 22 years (to 1955) that have elapsed since the group was set up. They can be intercompared or can be compared with other similar standards to about one part in $10^{7}$. By suitable comparisons (successively in series and in parallel) ratios of resistance can be established to a few parts in $10^{7}$, and the primary group of standards can be used to extend the range of measurement to higher and lower values of resistance.

Secondary standards of resistance can be calibrated (or assigned values) stepwise from the primary group up to a maximum of perhaps 1 megohm, and to a minimum of 10 microhms or less. Almost without exception manganin is used as the alloy in resistance standards, as sheet material for resistors of low value and wire for resistors of high value. Manganin has two advantages in this application: (1) its temperature coefficient of resistance at ordinary room temperatures is very low, a few parts in $10^{6}$, and (2) its thermal emf against copper is small, 2 to $3 \mu \mathrm{v}$ per degree centigrade. Manganin is, however, a strain-sensitive material, and also it oxidizes to some extent at ordinary temperatures. Hence the stability of a resistance standard depends on its construction, the extent to which initial strains have been relieved by annealing, its freedom from strain in use, and its protection from air and moisture. These factors vary considerably for standards of various types and values. The construction used in the Thomas-type standards which make up the primary group probably represents the best approach yet made to the ideal: the complete elimination of initial strain by a high-temperature anneal; practically strain-free mounting in use; a reasonably large ratio of volume to surface area; and protection by sealing from atmospheric effects. The stability of these standards is better by a factor of 10 or even 100 times than that of the usual resistance standard. No general statement is possible concerning the stability of standards, except that those of higher value are usually less stable, because of both more unrelieved strain and more exposed surface area per unit volume of the material.

5c-5. Standards of Electromotive Force. The primary standard consists of a group of 47 saturated cadmium (Weston) cells which are maintained at a temperature of $28^{\circ} \mathrm{C}$, held constant to within $0.01^{\circ} \mathrm{C}$. Of these cells, 33 are of the acid type, sulfuric acid being present in the electrolyte at a concentration of $0.03-0.05 \mathrm{~N}$. The remainder of the group are neutral in the sense that no acid has been added. The presence of acid prevents hydrolysis of the mercurous sulfate in the cell and decreases the solvent action of the electrolyte on the glass container. Thus it contributes to the constancy of emf of the cell. However, the emf of an acid cell is lower than that of a neutral cell by an amount proportional to the concentration of the acid ( $30 \mu \mathrm{v}$ for 0.05 normal acid). ${ }^{2}$ Of the cells which make up the primary standard, 12 have been in the group since 1906 and 2 since 1913. Of the remainder 7 made in 1932, and 26 made in 1949 were added in 1955. New cells are made periodically, employing carefully purified materials, and are used to supplement the primary group. ${ }^{3}$ The cells of the primary standard are intercompared periodically and the group average is used as the

[^237]
## ELECTRICITY AND MAGNETISM

standard of emf. An international intercomparison made in 1955 indicated that, at that time, the United States standard differed by $0.7 \mu \mathrm{v}$ from that maintained by the International Bureau of Weights and Measures at Sevres, France.

Secondary standards of emf may be cadmium cells of either the saturated or unsaturated type. Most modern cells, both saturated and unsaturated, are of the "acid" type, containing sulfuric acid at a normality of about 0.05 . Saturated cells maintain a more nearly constant emf over long periods of time than do unsaturated cells and are being used to an increasing extent as reference standards by many laboratories. The temperature coefficient of emf of the saturated cell is considerably larger than that of the unsaturated cell, and its temperature must be held constant to within about $0.02^{\circ} \mathrm{C}$ if the emf is to be constant to $1 \mu \mathrm{v}$. Temperature control for saturated cells may be maintained by a thermostatically regulated oil bath or air bath. If oil is used it should be clear, of medium viscosity, acid-free, and without appreciable vapor pressure. An air bath for maintaining standard cells at a constant temperature ${ }^{1}$ is used in a number of laboratories. It consists of a thick-walled aluminum box which is enclosed by and thermally insulated from a second aluminum box. The outer box is again protected by thermal insulation and is maintained at a constant temperature somewhat above ambient (usually about $35^{\circ} \mathrm{C} \pm 0.01$ ). Temperature fluctuations within the inner compartment are attenuated to less than $0.001^{\circ} \mathrm{C}$. The international formula (adopted in 1908) relating the emf of a saturated cadmium cell to its temperature is

$$
E_{t}=E_{20}-0.000040(t-20)-0.00000095(t-20)^{2}+0.00000001(t-20)^{3}
$$

where $E_{t}$ is the emf at temperature $t$ and $E_{20}$ is the emf at $20^{\circ} \mathrm{C}$. This formula is stated to apply to either acid or neutral cells, and holds to within $1 \mu \mathrm{v}$ for temperatures between 0 and $40^{\circ} \mathrm{C}$.

Unsaturated cells (becoming saturated at $4^{\circ} \mathrm{C}$ ) are used almost universally as working standards of emf in this country. ${ }^{2}$ Their temperature coefficient of emf (approximately $-5 \mu \mathrm{v} /{ }^{\circ} \mathrm{C}$ ) is much lower than that of the saturated cell; and they will withstand parcel-post or express shipment (the solid electrode material being held in place by porous plugs) whereas saturated cells cannot be shipped but must be hand-carried. However, the emf of unsaturated cells generally decreases with time, usually between 50 and $100 \mu \mathrm{v}$ per year, so that their life span is limited to about 10 years. Because of this change of emf with time, it is advisable that unsaturated cells be checked periodically against a stable standard. For accurate work they should be certified once a year, and discarded when their emf has dropped to 1.0183 volts.

Certain precautions should always be observed in using standard cells.

1. They should be protected from large or sudden changes in temperature, because of the large temporary change in emf that accompanies a sudden temperature change. This "hysteresis" and the cell's recovery time vary considerably in different cells. Its cause is not understood, but there is evidence that the effect is larger in old than in new cells.
2. Cells should not be exposed to nearby sources of heat that may produce temperature inequalities in the two limbs. This would cause a large change in emf since the temperature coefficients of the individual electrodes are quite large (one positive and one negative) and annul each other only if their temperatures are equal. Many cells are equipped with a copper-lined protective case to reduce temperature inequalities between the limbs.
3. Temperatures above $40^{\circ} \mathrm{C}$ and below $4^{\circ} \mathrm{C}$ should be avoided. The 10 per cent amalgam generally used in cells solidifies at a temperature slightly below this lower

[^238]limit and gives rise to abnormal changes in emf, while the cadmium sulfate has a transition point only a little higher (at $43.6^{\circ} \mathrm{C}$ ) than the recommended upper limit. The monohydrate formed at the transition temperature is undesirable and persists as a metastable form when the temperature is again lowered.
4. The elements of a cell should not be exposed to strong light, as the mercurous sulfate is photosensitive. Cells with exposed elements usually have a band of black paint covering the mercurous sulfate layer.
5. The internal resistance of a standard cell is about 500 ohms in the high-resistance type, and 100 ohms in the low-resistance type. The latter should be used with a deflection potentiometer. Loss of sensitivity in potentiometer measurements, which is traced to the standard-cell circuit, may indicate the presence of a gas bubble forming in the negative limb of the cell. Such a cell should be discarded.
6. Current drawn from a cell which is used as an emf standard should be kept small and should be drawn only for very short periods of time, a few seconds at most. Currents should never exceed $100 \mu$ a. A standard cell that has been short-circuited may be presumed to have been permanently damaged, and should be discarded. Laboratory conditions should be avoided which will result in moisture condensation on the cell case and a lowering of the insulation resistance between terminals.
7. Cells which have been shipped or otherwise roughly handled may not be dependable. A recovery period of a week should be allowed before the cell is used as a reference standard.
8. The emf of an unsaturated cell should be checked periodically. When it falls to 1.0183 the cell should be discarded, as it is no longer a reliable standard.

5c-6. Capacitance Standards. Capacitors whose values can be computed accurately from their measured dimensions are necessarily small, perhaps 150 picofarads ${ }^{1}$ at most. Their geometry must be simple: concentric spheres, coaxial cylinders, or parallel plates. The dielectric is usually air. The problem is complicated by the fact that solid dielectric must be used to support one or both electrodes of the system. The presence of solid dielectric in the electric field of the capacitor precludes its exact computation and introduces losses so that the current does not lead the impressed voltage by exactly 90 deg in a-c applications. These complications can be largely avoided by appropriate design, using a three-electrode guard-ring capacitor with the solid insulation so located that it is not exposed to the field of the working capacitor. The coplanarity of the guarded electrode with its guard ring is critical in a computable standard because a displacement of this electrode results in the exposure of a sharp edge with consequent field concentration. Moon ${ }^{2}$ has built a series of computable parallel-plate guard-ring capacitors in the range from 5 to 0.1 picofarads, and

[^239]| Prefix | Value | Prefix | Value |
| :---: | :---: | :---: | :---: |
| Tera. | $10^{12}$ | Deci. | $10^{-1}$ |
| Giga. | $10^{9}$ | Centi. | $10^{-2}$ |
| Mega | $10^{6}$ | Milli. | $10^{-3}$ |
| Kilo. . | $10^{3}$ | Micro. | $10^{-6}$ |
| Hecto. | $10^{2}$ | Nano. | $10^{-9}$ |
| Deka. | $10^{1}$ | Pico. | $10^{-12}$ |

[^240]has estimated that his accuracy was limited to 0.1 per cent for the 1 -pf capacitor by the accuracy with which mechanical dimensions could be measured. Taking advantage of the fact that the field is concentrated at an exposed sharp edge, he also constructed a series of computable "guard-well" capacitors ${ }^{1}$ in which the working electrode is recessed behind the plane of the guard ring. In this construction the capacitance is a function of the depth of the recess, and the capacitance can be as small as desired while linear dimensions remain large enough for precise construction and measurement. Moon estimated that the uncertainty in his guard-well capacitors was 0.5 per cent at 0.01 pf and 2 per cent at 0.001 pf .

Air capacitors consisting of groups of interleaved parallel plates have been built for use as secondary standards up to $0.01 \mu \mathrm{f}$; and adjustable air capacitors (up to about $10^{3} \mathrm{pf}$ ) in which a group of movable parallel plates rotates with respect to a group of fixed interleaved parallel plates. The values of such capacitors can be determined stepwise by comparison with computable standards in a suitable capacitance bridge or may be determined in terms of resistance and frequency in a Maxwell bridge. The losses (and hence the phase-defect angles), which are always small in such capacitors, depend largely on the extent to which solid dielectric is present in the working field, and to a very much lesser extent ${ }^{2}$ on the presence of surface films on the electrodes. The accuracy of adjustable air capacitors depends on the closeness with which the angular position of the movable plates with respect to the fixed plates can be set and reproduced, and on the quality of the bearings on which the electrode system rotates.

Solid-dielectric capacitors, in which thin mica sheets are interleaved with metal foil, are used as working standards up to about $1 \mu \mathrm{f}$. The assembly is impregnated with wax to eliminate voids and air pockets and is compressed through massive end plates to squeeze out excess wax. The quality and constancy of such a standard depends critically on the construction, being a function of the assembly pressure as well as the quality of the mica. Absorption and losses are always present in such capacitors. The phase-defect angles of the best mica capacitors may amount to 1 to 2 minutes throughout the audio-frequency range, and their capacitance values may be expected to remain constant within 0.01 or 0.02 per cent over a period of many years. Mica is the only solid dielectric material that has been successfully used in standard capacitors.

5c-7. Inductance Standards. Self and mutual inductors, whose values may be computed from measured dimensions, have been built at the National Bureau of Standards and at other national laboratories for use in absolute-ohm measurements. Computable self-inductors are single-layer solenoids wound on marble, porcelain, low-expansion-glass, or fused-silica forms. In some instances an accurate screw thread has been cut into the cylindrical form to control the spacing of the winding. ${ }^{3}$ Computable mutual inductors have been built following a design of Campbell ${ }^{4}$ or Wenner's modification ${ }^{5}$ of it. In each of these designs the primary consists of singlelayer helical windings on a marble or porcelain cylinder, the sections of the winding being spaced in such a way that a relatively large annular space is available around the central portion of the cylinder, within which the field is very small. The multilayer secondary winding is located in this space, and since the field is small, the exact location of the secondary becomes relatively less critical. Such mutual inductors can be computed as accurately as can the self-inductance standards. However, both types of inductor, apart from being very difficult and expensive to build and compute,

[^241]have relatively low time constants and are not generally useful for work outside the special field (absolute measurements) for which they are designed.
Self-inductance standards for laboratory work are usually multilayer coils of such shape that their inductance is maximum for a given size and length of wire. ${ }^{1}$ Their accurate computation from measured dimensions is not possible and their values are usually established from electrical measurements in terms of other inductors, or a combination of resistance and capacitance. Laboratory mutual inductors also are usually designed to achieve a maximum time constant.

Higher inductance in a given volume or with a given amount of copper can be obtained if the winding is on a core of high-permeability material. Special ferromagnetic alloys are used for this purpose in sheet or strip form, or as a bonded granular or powder material. The gain in time constant is achieved at the expense of some nonlinearity in the inductor, since the permeability of the core is a function of the current in the winding. Also increased losses are to be expected from eddy currents and from hysteresis in the iron. By proper construction and the use of suitable core materials, these defects can be kept small, so that "iron-cored" inductance standards of moderate accuracy and stability are practicable.

Inductors wound as multilayer cylindrical coils of rectangular cross section, to achieve maximum time constant, set up an external field and, conversely, are subject to "pickup" from stray fields in which they are placed. These effects are considerably reduced by dividing the coil into two equal sections wound in opposite directions so that the emfs induced in them by a changing external field tend to cancel. Such an arrangement is called astatic. A much greater degree of astaticism is attained when the coil is toroidal, with the winding uniformly distributed around the torus.

Adjustable standards of self and mutual inductance are of two general kinds: the cross-coil type, in which the plane of a movable coil is turned to make various angles with the plane of the fixed coil; and the parallel-coil type, in which the plane of the movable coil is always parallel to the plane of the fixed coil. A familiar example of the cross-coil type is the Ayrton and Perry inductometer, in which the fixed and movable coils are zones of concentric spheres, with the movable coil pivoted on the common polar axis. Probably the best example of the parallel-coil type is the Brooks inductometer with three pairs of link-shaped coils, designed to provide a uniform scale over most of its range. The coil dimensions are such that, at the maximum reading, the conditions for maximum time constant are approximately met. Also, the system is arranged to be nearly astatic. The rotor, holding the movable pair of coils, turns on a shaft between pairs of fixed parallel coils. The coils are all connected in series when the instrument is used as a self-inductor, and for use as a mutual inductor the circuits of the fixed and movable coils are separated.

All inductors are to some extent frequency-sensitive as a result of distributed selfcapacitance, eddy currents, and imperfect insulation between turns and layers of the winding. The effect of distributed capacitance is to increase both the effective resistance and inductance above their low-frequency values. At values well below resonance the following formulas hold approximately:

$$
R_{\text {eff }}=R_{0}\left(1+2 \omega^{2} L_{0} C\right) \quad \text { and } \quad L_{\text {eff }}=L_{0}\left(1+\omega^{2} L_{0} C\right)
$$

where $R_{0}$ and $L_{0}$ are the values at zero frequency, and $C$ is the equivalent capacitance considered to be connected across the terminals of the inductor. The effect of eddy currents is to increase the effective resistance and to decrease the effective inductance in accordance with the following formulas:

$$
R_{\text {eff }}=R_{0}+\frac{M^{2} \rho \omega^{2}}{\rho^{2}+l^{2} \omega^{2}} \quad \text { and } \quad L_{\text {eff }}=L_{0}-\frac{M^{2} l \omega^{2}}{\rho^{2}+l^{2} \omega^{2}}
$$

${ }^{1}$ Brooks, J. Research Natl. Bur. Standards 7, 293 (1931).
where $\rho$ and $l$ are, respectively, the equivalent resistance and self-inductance of the eddy-current circuit, and $M$ is its coupling with the inductor. The effect of imperfect insulation (equivalent to a shunt resistance across the terminals of the inductor) is to decrease the effective inductance. However, it may increase or decrease the effective resistance ${ }^{1}$ depending on conditions. If the leakage resistance $\rho$ is very high compared with the coil resistance, the following formulas hold:

$$
L_{\text {eff }}=L_{0}\left(1-\frac{\omega^{2} L_{0}{ }^{2}}{\rho^{2}}\right) \quad \text { and } \quad R_{\text {eff }}=R_{0}\left(1+\frac{\omega^{2} L_{0}{ }^{2}}{R_{0 \rho} \rho}\right)
$$

It must be borne in mind that $\rho$ is the a-c resistance of the insulation and therefore may itself be a function of frequency.
bc-8. Frequency Standards. All standards of frequency are derived from the standard of time, the second, which is derived in turn from the motion of the earth. The standard second is the $1 / 86,400$ part of a mean solar day, the average interval (throughout the year) between passages of the sun through a given meridian. The United States Naval Observatory checks and regulates the standard of time from observations of the passage of fixed stars through the vertical meridian.

The primary standard of frequency is a 100 -kc quartz-crystal oscillator maintained under constant temperature and pressure conditions by the National Bureau of Standards. It is checked for constancy by using it to operate a clock that is compared with Naval Observatory time. A large number of frequencies are obtained from this crystal through multiplier and divider circuits. Standard frequencies, monitored against the primary standard, are continuously broadcast from the NBS radio transmitter WWV at Beltsville, Md., near Washington, D.C. ${ }^{2}$ These frequencies include 2.5,5,10,15, and $25 \mathrm{Mc} / \mathrm{sec}$, each modulated at 440 cps (A above middle C on the international musical scale) or at 600 cps . These audio frequencies are given in alternate 5 -min periods. In addition, second signals are given on each carrier frequency, consisting of a 5 -cycle pulse at a frequency of 1 kc . This pulse is omitted at the beginning of the last second of each minute. The second signals are accurate to $1 \mu \mathrm{sec}$, and the standard frequencies (including the audio frequencies) to 1 part in 50 million. ${ }^{3}$
Quartz crystals are used in vast numbers to control the frequencies of oscillators throughout much of the radio spectrum, in both measurement and communication applications. Their constancy depends on the closeness with which their temperature and pressure are controlled.
Tuning forks may be used as laboratory standards at power and audio frequencies. A precision fork, operating at a constant temperature, may have a frequency that is stable to 10 ppm and, when corrected for barometric pressure, to 1 ppm . A batterydriven fork without temperature control may have a temperature coefficient less than -0.015 per cent $/{ }^{\circ} \mathrm{C}$, and a voltage coefficient less than 0.01 per cent/volt. It should provide a frequency known to better than 0.1 per cent under any specified laboratory condition.

The frequency of $60-\mathrm{cps}$ power in most localities affords a convenient reference point. However, even where power is supplied from a network that includes generating sta-
${ }^{1}$ Campbell and Childs, "Measurement of Inductance, Capacitance, and Frequency," p. 191, D. Van Nostrand Company, Inc., New York, 1935.
${ }^{2}$ Standard frequencies and time signals are also broadcast from the bureau's auxiliary station WWVH in Hawaii. Signals either from Beltsville or from Hawaii can usually be received anywhere in the world.
${ }^{3}$ This is the error in transmission. The error in reception may amount instantaneously to as much as 1 ppm as a result of motions of reflecting layers of the ionosphere. The standard oscillators by which the broadcast frequencies are monitored are themselves accurate to 3 parts in $10^{9}$, actually more nearly constant than the rate of rotation of the earth itself.
tions over an area of many hundreds of square miles, the frequency is not continuously held precisely to 60 cps . It may depart by as much as 0.1 or 0.2 cps , occasionally even more. Also the frequency can be corrected only very slowly because of the large inertia of the system, perhaps as much as half an hour being required. The average frequency will be very close to 60 cps over an extended time period and synchronous clocks will usually keep time within a few seconds. However, a commercial power source cannot be reliably employed as a frequency standard to much better than 1 per cent.

5c-9. Deflecting Instruments. Instruments customarily used for the measurement of current, voltage, or power are made in a number of accuracy classes. The best grades, called "laboratory standards" may be in the $\frac{1}{10}$ (or $\frac{1}{20}$ ) per cent class, meaning that, over the useful part of the scale, no marked point is in error by more than $\frac{1}{10}$ (or $\frac{1}{20}$ ) per cent of the full-scale value. These are large instruments and must be carefully leveled to ensure good performance. Smaller portable instruments are made in accuracy classes of $0.2,0.5$, and $\frac{3}{4}$ per cent. The class of an instrument is usually stated in the maker's catalogue. Switchboard instruments are generally in a 1 per cent class, and panel instruments in the 1,2 , or even 5 per cent class. D-c ammeters and voltmeters are almost universally permanent-magnet moving-coil instruments, while the construction of a-c instruments depends on the intended application. Moving-iron or electrodynamic instruments are used at power frequencies and, if suitably compensated, in the lower audio-frequency range. Thermocouple ammeters are useful from low frequencies up to many megacycles per second, while thermocouple voltmeters are generally applicable only at power and audio frequencies unless they have special multipliers designed for high-frequency operation. Electrostatic voltmeters have no frequency limitations other than that imposed by low impedance at very high frequencies, and many vacuum-tube voltmeters are designed to operate from power frequencies up to many megacycles per second without serious error.
Depending on operating principle and construction, deflecting instruments are subject to errors of various types: temperature, magnetic field, frequency, waveform; spring hysteresis, use in other than the intended position, and others. ${ }^{1}$

## References

Curtis: "Electrical Measurements," McGraw-Hill Book Company, Inc., New York, 1937.

Campbell and Childs: "Measurement of Inductance, Capacitance, and Frequency," D. Van Nostrand Company, Inc., New York, 1935.

Electrochemical Constants, Natl. Bur. Standards (U.S.) Circ. 524 (1953).
Establishment and Maintenance of the Electrical Units, Natl. Bur. Standards (U.S.) Circ. 475 (1949).
Extension and Dissemination of Electrical and Magnetic Units by the National Bureau of Standards, Natl. Bur. Standards (U.S.) Circ. 531 (1952).
Golding: "Electrical Measurements," Pitman Publishing Corporation, New York, 1946.

Harris: "Electrical Measurements," John Wiley \& Sons, Inc., New York, 1952.
Drysdale and Jolley: "Electrical Measuring Instruments,"'2d ed., John Wiley \& Sons, Inc., New York, 1952.
Keinath: "Die Technik electrischer Messgerate," R. Oldenbourg-Verlag, Munich, 1928.

Palm: "Electrische Messgerate," Springer-Verlag OHG, Berlin, 1948.
Vinal: "Primary Batteries," John Wiley \& Sons, Inc., New York, 1950.

[^242]Historical Reports of the Committee on Electrical Standards Appointed by the British Association for the Advancement of Science, Cambridge University Press, London, 1913.
U.S. Law of 1894 (Public Law 105, 53d Cong.) 28 Stat., Ch. 131, p. 102.
U.S. Law of 1949 (Public Law 619, 81st Cong., Ch. 486, 2d Sess.), Title 15, U.S.C.A. 221.

# 5d. Properties of Dielectrics 

S. o. MORGAN, ${ }^{1}$ D. EDELSON, ${ }^{2}$ AND W. MCMAHON ${ }^{3}$<br>Bell Telephone Laboratories, Inc.

W. J. MERZ ${ }^{4}$

RCA Laboratories

5d-1. Dielectric Constants of Crystalline Solids. Crystalline solids are divided into inorganic (Table 5d-1) and organic (Table 5d-2) groups. Compounds are listed alphabetically in the first column and the chemical formula is given in the second. The column headed mp, ${ }^{\circ} \mathrm{C}$ under Organic Solids gives the melting point in degrees centigrade. The columns headed $t,{ }^{\circ} \mathrm{C}$ give the temperature of the measurements in degrees centigrade, the columns headed $\nu \sim / \sec$ give the frequency of the measurement in cycles per second, the columns headed $\epsilon / \epsilon_{v}$ gives the dielectric constant (relative capacitivity) and the final columns the reference to the source of the information.
Figures 5d-1 and 5d-2, taken from ref. 21.2, display data for typical crystalline solids whose molecules can rotate in the solid state above a transition temperature. High values of dielectric constant are thus observed for polar compounds in a certain range of temperatures. Below the transition point the dielectric constant decreases to approximately the same value for each substance and is typical of most organic solids where dipole rotation is impossible. For one type of compound, illustrated by camphor and its derivatives, this decrease is sharp and independent of frequency. For the other type, illustrated by the hexachlorobenzenes, this decrease is gradual and frequency-dependent. Other examples of this behavior will be found in refs. 21.2, and 32 through 42 on page $5-119$.
${ }^{1}$ Dielectric constants of crystalline solids.
${ }^{2}$ Dielectric constants of amorphous solids and of gases.
${ }^{3}$ Dielectric constants of pure liquids.
${ }^{4}$ Piezoelectric and pyroelectric constants, ferroelectric and antiferroelectric properties.

Table 5d-1. Inorganic Solids-Crystalline

| Name | Formula | $t,{ }^{\circ} \mathrm{C}$ | $\nu \sim / \mathrm{sec}$ | $\epsilon / \epsilon_{0}$ | Ref.* | |
|---|---|---|---|---|---|---|
| Alums: |  |  |  |  |  |
| Ammonium alum. | $\mathrm{Al}\left(\mathrm{NH}_{4}\right)\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | r.t. | $10^{12}$ | 6 | 18 |
| Cesium alum.. | $\mathrm{CsAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ |  | $10{ }^{12}$ | 5.0 | 18 |
| Potassium alum. | $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ |  | aud. | 6.5 | 5 |
| Rubidium alum. | $\mathrm{RbAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ |  | $10^{12}$ | 5.1 | 18 |
| Rubidium chrome alum. | $\mathrm{RbCr}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ |  | $10^{12}$ | 5.0 | 18 |
| Aluminum phosphate. | $\mathrm{AlPO}_{4}$ | r.t. | $10^{3}$ | 6.05 | 21 |
| Ammonium bromide. | $\mathrm{NH}_{4} \mathrm{Br}$ | r.t. | 1012 | 7.3 | 18 |
| Ammonium chloride. | $\mathrm{NH}_{4} \mathrm{Cl}$ | r.t. | $2 \times 10^{6}$ | 6.96 | 13 |
| Ammonium tartrate. | $\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)$ | r.t. | $10^{3}$ | 6.45 | 21 |
| Barium carbonate. | $\mathrm{BaCO}_{3}$ | 18 | $2 \times 10^{5}$ | 8.53 | 27 |
| Barium chloride. | $\mathrm{BaCl}_{2}$ | ......... |  | 9.81 | 15 |
| Barium chloride dihydrate.. | $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |  |  | 9.00 | 15 |
| Barium fluoride. | $\mathrm{BaF}_{2}$ |  | $2 \times 10^{6}$ | 7.33 | 13 |
| Barium formate. | $\mathrm{Ba}(\mathrm{COOH})_{2}$ | r.t. | $10^{3}$ | 7.9 | 21 |
| Barium nitrate. | $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ | 19 | $2 \times 10^{5}$ | 4.95 | 27 |
| Barium oxide. | BaO | -25 to 60 | $60 \sim$ to $6 \times 10^{7}$ | 34 | 1 |
| Barium peroxide. | $\mathrm{BaO}_{2}$ | r.t. | $2 \times 10^{6}$ | 10.7 | 11 |
| Barium sulfate. | $\mathrm{BaSO}_{4}$ | 15 | $10^{8}$ | 11.4 |  |
| Beryllium carbonate. | $\mathrm{BeCO}_{3}$ | 18 | $2 \times 10^{5}$ | 9.7 | 27 |
| Beryllium oxide. | BeO | 18 | $2 \times 10^{6}$ | 7.35 | 13 |
| Bismuth trioxide. | $\mathrm{Bi}_{2} \mathrm{O}_{3}$ | r.t. | $2 \times 10^{6}$ | 18.2 | 11 |
| Cadmium bromide. | $\mathrm{CdBr}_{2}$ | 20 | $5 \times 10^{5}$ | 8.6 | 8 |
| Cadmium malonate. | $\mathrm{Cd}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)$ | 20 | $5 \times 10^{5}$ | 4.5 | 8 |
| Calcium carbonate. | $\mathrm{CaCO}_{3}$ | 18 | $2 \times 10^{5}$ | 9.15 | 27 |
| Calcium fluoride. | $\mathrm{CaF}_{2}$ |  | $10^{5}$ | 6.76 | 14, 18, 24, 25 |
|  |  |  | aud. | 6.85 | 5, 23, 28, 22 |
| Calcium nitrate. | $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ | 19 | $2 \times 10^{5}$ | 6.54 | 27 |
| Calcium oxide. | CaO | 10 | $2 \times 10^{6}$ | 11.8 | 13 |
| Ceric oxide. | $\mathrm{CeO}_{2}$ | r.t. | $2 \times 10^{6}$ | 7.0 | 11 |
| Cesium bromide. | CsBr |  | $2 \times 10^{6}$ | 6.51 | 13 |
| Cesium carbonate. | ${\mathrm{Cs} 2 \mathrm{CO}_{3}}$ | 18 | $2 \times 10^{5}$ | 6.53 | 27 |
| Cesium chloride. | CsCl | 19 | $2 \times 10^{5}$ | 6.34 | 27 |
| Cesium iodide. | CsI | 25 | $1 \times 10^{6}$ | 5.65 | 13, 12 |
| Chromic oxide. | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | r.t. | $2 \times 10^{6}$ | 12.0 | 11 |
| Cupric oxide. | CuO | r.t. | $2 \times 10^{6}$ | 18.1 | 11 |
| Cupric sulfate pentahydrate | $\mathrm{CuSO}_{4} \cdot \mathrm{HH}_{2} \mathrm{O}$ |  |  | 6.60 | 15 |
| Cuprous bromide. | CuBr | 20 | $5 \times 10^{5}$ | 8.0 | 8 |
| Cuprous chloride. | CuCl | 20 | $5 \times 10^{5}$ | 10.0 | 8, 13 |
| Cuprous oxide. | $\mathrm{Cu}_{2} \mathrm{O}$ | r.t. | $2 \times 10^{6}$ | 12.0 | 11 |
| Dextrose sodium bromide. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \cdot \mathrm{NaBr}$ | ......... | $10^{3}$ | 4.0 | 21 |
| Diamond. | C |  |  | 5.5 | 26.1 |
| Ferrous oxide. | FeO | r.t. | $2 \times 10^{6}$ | 14.2 | 11 |
| Iodic acid... | $\mathrm{HIO}_{3}$ |  | $10^{3}$ | 7.5 | 21 |
| Iodine. | $\mathrm{I}_{2}$ |  | $10^{8}$ | 4.0 |  |
| Lead acetate. | $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)_{2}$ | 17-22 | $10^{6}$ | 2.6 |  |
| Lead bromide. | $\mathrm{PbBr}_{2}$ | 20 | $0.5-3 \times 10^{6}$ | $>30$ | 8 |
| Lead carbonate. | $\mathrm{PbCO}_{3}$ | 15 | $10^{8}$ | 18.6 |  |
| Lead chloride. | $\mathrm{PbCl}_{2}$ | 20 | $0.5-3 \times 10^{6}$ | 33.5 | 8 |
| Lead iodide. | $\mathrm{PbI}_{2}$ | 29 | $0.5-3 \times 10^{6}$ | 20.8 | 8 |
| Lead molybdate (wulfenite) . | $\mathrm{PbMoO}_{4}$ |  | $3 \times 10^{8}$ | 26.8\\| | 26.1 |
| Lead nitrate. | $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ |  | $0.5-3 \times 10^{6}$ | 16.8 | 8 |
| Lead oxide. | PbO | r.t. | $2 \times 10^{6}$ | 25.9 | 11 |
| Lead sulfate. | $\mathrm{PbSO}_{4}$ | 17-22 | $10^{6}$ | 14.3 |  |
| Lithium bromide. | LiBr |  | $2 \times 10{ }^{6}$ | 12.1 | 13 |
| Lithium chloride. | LiCl |  | $2 \times 10^{6}$ | 11.05 | 8 |
| Lithium carbonate. | $\mathrm{Li}_{2} \mathrm{CO}_{3}$ | 18 | $2 \times 10^{5}$ | 4.9 | 27 |

> Table 5d-1. Inorganic Solids-Crystalline (Continued)

| Name | Formula | $t,{ }^{\circ} \mathrm{C}$ | $\nu \sim / \mathrm{sec}$ | $\boldsymbol{\epsilon} / \epsilon_{v}$ | Ref.* | |
|---|---|---|---|---|---|---|
| Lithium fluoride. | LiF | 20 | $10^{6}$ | 9.27 | 13 |
|  |  | 25 | $10^{2}-10^{7}$ | 9.00 | 31 |
|  |  | 80 | $10^{2-10} 0^{7}$ | 9.11 | 31 |
| Lithium iodide. | LiI |  | $2 \times 10^{6}$ | 11.03 | 13 |
| Lithium sulfate monohydrate............ | $\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ |  | $10^{3}$ | 5.6 | 21 |
| Lithium trisodium chromate... | $\mathrm{LiNa}_{3} \mathrm{CrO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |  | $10^{3}$ | 8.0 | 21 |
| Lithium trisodium molybdate. . . . . . . . . . | $\mathrm{LiNa}_{3} \mathrm{MoO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |  | $10^{3}$ | 8.1 | 21 |
| Magnesium carbonate.............. . . . . . | $\mathrm{MgCO}_{3}$ | 18 | $2 \times 10^{5}$ | 8.1 | 27 |
| Magnesium malonate.. | $\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)$ | 20 | $5 \times 10^{5}$ | 5.8 | 8 |
| Magnesium oxalate... | $\mathrm{Mg}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ | 20 | $5 \times 10^{5}$ | 5.2 | 8 |
| Magnesium oxide... | MgO | 25 | $10^{2}-10^{8}$ | 9.65 | 31 |
| Magnesium sulfate. | $\mathrm{MgSO}_{4}$ | 20 | $5 \times 10^{5}$ | 8.2 | 8 |
| Magnesium sulfate heptahydrate........ | $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ |  |  | 5.46 | 15 |
| Mercuric chloride. ........................ | $\mathrm{HgCl}_{2}$ |  | $10^{12}$ | 6.5 | 18 |
| Mercurous chloride. | HgCl |  | $10^{12}$ | 14.01 | 18 |
| Mica-ruby, muscovite.................. |  | 26 | $10^{2-3} \times 10^{9}$ | 5.4 | 31 |
| Mica-Canadian...................... |  | 25 | $10^{2}-10^{4}$ | 6.91 | 31 |
|  |  | 25 | $10^{4}$ | 7.3\\| | 31 |
| Nickel sulfate hexahydrate.............. | $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |  | $10^{3}$ | 6.2 | 21 |
| Phosphorus, red......................... . | P |  | $10^{8}$ | 4.1 |  |
| Yellow. . . . . . . . . . . . . . . . . . . . . . . . . . |  |  | $10^{8}$ | 3.6 | 26.1 |
| Potassium bromate. . . . . . . . . . . . . . . . . . | $\mathrm{KBrO}_{3}$ | r.t. | $2 \times 10^{6}$ | 7.3 | 29 |
| Potassium bromide. | KBr | r.t. | $2 \times 10^{6}$ | 4.78 | 13 |
| Potassium carbonate. | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | 18 | $2 \times 10^{5}$ | 4.96 | 27 |
| Potassium chlorate... | $\mathrm{KClO}_{3}$ | r.t. | $2 \times 10^{6}$ | 5.1 | 29 |
| Potassium chloride. | KCl | 29.5 | $10^{6}$ | 4.64 | 12 |
|  |  | 80 | $10^{6}$ | 4.80 | 12 |
| Potassium chromate | $\mathrm{K}_{2} \mathrm{CrO}_{4}$ | .. | $6 \times 10^{7}$ | 7.3 |  |
| Potassium cyanide...................... | KCN | r.t. | $2 \times 10^{6}$ | 6.15 | 29 |
| Potassium dihydrogen arsenate......... | $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ | r.t. | $2 \times 10^{6}$ | 31 | 29 |
| Potassium dihydrogen phosphate........ | $\mathrm{KH}_{2} \mathrm{PO}_{4}$ |  | $10^{3}$ | 46 | 21 |
| Potassium fluoride. . . . . . . . . . . . . . . . . . | KF | . | $2 \times 10^{6}$ | 6.05 | 13 |
| Potassium iodate. | $\mathrm{KIO}_{3}$ | r.t. | $2 \times 10^{6}$ | 16.85 | 29 |
| Potassium iodide. | KI | $\cdots$ | $2 \times 10^{6}$ | 4.94 | 13 |
| Potassium nitrate. | $\mathrm{KNO}_{3}$ | 20 | $2 \times 10^{5}$ | 4.37 | 27 |
| Potassium perchlorate... | $\mathrm{KClO}_{4}$ | r.t. | $2 \times 10^{6}$ | 5.9 | 29 |
| Potassium orthophosphate. . . . . . . . . . . | $\mathrm{K}_{8} \mathrm{PO}_{4}$ | r.t. | $2 \times 10^{6}$ | 7.75 | 29 |
| Potassium monohydrogen orthophosphate | $\mathrm{K}_{2} \mathrm{HPO}_{4}$ | r.t. | $2 \times 10^{6}$ | 9.05 | 29 |
| Potassium dihydrogen orthophosphate... | $\mathrm{KH}_{2} \mathrm{PO} 4$ | r.t. | $2 \times 10^{6}$ | >31 | 29 |
| Potassium sulfate | $\mathrm{K}_{2} \mathrm{SO}_{4}$ | r.t. | $2 \times 10^{6}$ | 6.4 | 29 |
| Potassium thiocyanate. . . . . . . . . . . . . . . | KSCN | r.t. | $2 \times 10^{6}$ | 7.9 | 29 |
| Rubidium bromide...................... | RbBr |  | $2 \times 10^{6}$ | 5.0 | 13 |
| Rubidium carbonate.................... | $\mathrm{Rb}_{2} \mathrm{CO}_{3}$ | 19 | $2 \times 10^{5}$ | 6.73 | 27 |
| Rubidium chloride... | RbCl |  | $2 \times 10^{6}$ | 5.0 | 13 |
| Rubidium fluoride. | RbF |  | $2 \times 10^{6}$ | 5.91 | 13 |
| Rubidium iodide.. | RbI |  | $2 \times 10^{6}$ | 5.0 | 13 |
| Selenium. . . . . . | Se | 25 | $3 \times 10^{8}$ | 11.0 | 31 |
|  |  | 25 . | $3 \times 10^{9}$ | 10.4 | 31 |
|  |  | 25 | $2 \times 10^{10}$ | 7.5 | 31 |
| Selenium, amorphous................... . | . Se | 25 | $10^{2-10} 10$ | 6.00 | 31 |
| Silver bromide............. . . . . . . . . . . . . | AgBr | . ........ | $2 \times 10^{6}$ | 13.1 | 13, 8 |
| Silver chloride. | AgCl | ......... | $2 \times 10^{6}$ | 12.3 | 13, 8 |
| Silver cyanide............. . . . . . . . . . . . . | . AgCN | $\cdots$ | $10^{6}$ | 5.6 |  |
| Silver nitrate | . $\mathrm{AgNO}_{3}$ | 20 | $5 \times 10^{5}$ | 9.0 | 8 |
| Sodium ammonium tartrate tetrahydrate. | . $\mathrm{NaNH}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | .......... | ${ }^{10^{3}}$ | 9.0 | 21 |
| Sodium bromide | . NaBr | …..... | $2 \times 10^{6}$ $2 \times 10^{5}$ | 5.99 | 13 |
| Sodium carbonate | . $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | 18 | $2 \times 10^{5}$ $8 \times 10^{7}$ | 8.75 | 27 |
| Sodium carbonate decahydrate.......... | - $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ |  | $6 \times 10^{7}$ | 5.3 | 15 |

Table 5d-1. Inorganic Solids-Crystalline (Continued)

| Name | Formula | $t,{ }^{\circ} \mathrm{C}$ | $\nu \sim / \mathrm{sec}$ | $\epsilon / \epsilon_{0}$ | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sodium chlorate. | $\mathrm{NaClO}_{3}$ |  |  | 5.28 | 16 |
| Sodium chloride. | NaCl | 20 | $2 \times 10^{6}$ | 5.62 | 13 |
|  |  | 25 | $10^{2} 10^{7}$ | 5.9 | 31 |
|  |  | 85 | $10^{4}-10^{7}$ | 5.98 | 31 |
| Sodium cyanide. | NaCN | 20 | $10^{5}$ | 7.55 | 32 |
| Sodium fluoride. | NaF | 19 | $2 \times 10^{6}$ | 6.0 | 13 |
| Sodium iodide. | NaI |  | $2 \times 10^{6}$ | 6.60 | 13 |
| Sodium nitrate.. | $\mathrm{NaNO}_{3}$ | 19 | $2 \times 10^{5}$ | 6.85 | 27 |
| Sodium perchlorate. | $\mathrm{NaClO}_{4}$ |  | $10^{3}$ | 5.76 | 21 |
| Sodium sulfate.. | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | ........ |  | 7.90 | 15 |
| Sodium sulfate decahydrate. | $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ | . |  | 5.0 | 15 |
| Strontium carbonate. | $\mathrm{SrCO}_{3}$ | 18 | $2 \times 10^{5}$ | 8.85 | 27 |
| Strontium chloride. | $\mathrm{SrCl}_{2}$ | ......... |  | 9.19 | 15 |
| Strontium chloride hexahydrate. | $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |  |  | 8.52 | 15 |
| Strontium fluoride. | $\mathrm{SrF}_{2}$ |  | $2 \times 10^{6}$ | 7.69 | 13 |
| Strontium formate dihydrate | $\mathrm{Sr}(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |  | $10^{3}$ | 6.1 | 21 |
| Strontium nitrate. | $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ | 19 | $2 \times 10^{5}$ | 5.33 | 27 |
| Strontium oxide. | SrO |  | $2 \times 10^{6}$ | 13.3 | 13 |
| Sulfur (100). | S | 25 | $10^{-103}$ | 3.75 | 31 |
| (010)... |  | 25 | $10^{2}-10^{3}$ | 3.95 | 31 |
| (001).... |  | 25 | $10^{2}-10^{3}$ | 4.44 | 31 |
| Sublined. |  | 25 | $10^{2}-10^{3}$ | 3.69 | 31 |
| Tantalum oxide. | $\mathrm{Ta}_{2} \mathrm{O}_{5}$ | r.t. | $2 \times 10^{6}$ | 11.6 | 11 |
| Thallous bromide. | TlBr | 25 | $10^{3}-10^{7}$ | 30.3 | 31 |
| Thallous chloride. | TICl |  | $2 \times 10^{6}$ | 31.9 | 13 |
| Thallous iodide. | TII | 25 | $10^{3}-10^{7}$ | 21.8 | 31 |
|  |  | 193 | $10^{7}$ | 37.3 | 31 |
| Thallous nitrate.. | TINO3 | 20 | $5 \times 10^{5}$ | 16.5 | 8 |
| Thallous sulfate. | $\mathrm{Tl}_{2} \mathrm{SO}_{4}$ | 20 | $5 \times 10^{5}$ | 25.5 | 8 |
| Thorium oxide. | ThO2 | r.t. | $2 \times 10^{6}$ | 10.6 | 11 |
| Zinc malonate. | $\mathrm{Zn}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)$ | 20 | $5 \times 10^{5}$ | 5.6 |  |
| Zinc sulfide. . | ZnS |  | $10^{12}$ | 8.2 | 19 |
| Zirconium oxide. | $\mathrm{ZrO}_{2}$ | r.t. | $2 \times 10^{6}$ | 12.5 | 11 |

* References are on p. 5-119.

5-118
Table 5d-2. Organic Solids-Crystalline

| Name | Formula | mp, ${ }^{\circ} \mathrm{C}$ | $t,{ }^{\circ} \mathrm{C}$ | $\nu \sim / \mathrm{sec}$ | $\epsilon / \epsilon_{v}$ | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Acetoxime. | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ | 61 | 23 | $10^{5}$ | 3.00 | 35 |
| $p$-Amino benzoic acid. | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$ | 187 | 12 | $10^{5}$ | 3.1 | 35 |
|  |  |  |  | $10^{3}$ | 6.7 | 35 |
| Anethole. | $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ | 32.5 | -30 | $10^{5}$ | 3.0 | 35 |
| Benzamide. | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}$ | 130 | 29 | $10^{5}$ | 3.0 | 35 |
| Benzaphenone. | $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}$ | 48.5 | 25 | $10^{5}$ | 3.2 | 35 |
| Benzene. | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 5 | 0 | $10^{5}$ | 2.44 | 21.1 |
| Benzene hexachloride. | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}$ | 157 | 28 | $10^{5}$ | 2.7 | 35 |
| Borneol. | $\mathrm{C}_{10} \mathrm{H}_{1} \stackrel{\mathrm{O}}{ }$ | 208.6 | 25 | $10^{5}$ | 2.78 | 34 |
|  |  |  | 90 | $10^{5}$ | 3.85 | 34 |
| $d$-Camphene. | $\mathrm{C}_{10} \mathrm{H}_{16}$ | 42.7 | 25 | $10^{5}$ | 2.36 | 35 |
| d-Camphor.. | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | 179 | 25 | $10^{5}$ | 11.2 | 34 |
| $l$-Camphor. | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | 180 | 25 | $10^{5}$ | 11.35 | 35 |
| $d l$-Camphor. | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | 174 | 25 | $10^{5}$ | 10.3 | 34 |
| Carbon tetrachloride. | $\mathrm{CCl}_{4}$ | -22.5 | -30 | $10^{5}$ | 2.43 | 21.1 |
| Chloroform..... | $\mathrm{CHCl}_{3}$ | -63.2 | -70 | $10^{5}$ | 2.40 | 21.1 |
| Cholestrol. | $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}$ | 148.5 | 27 | $10^{5}$ | 2.86 | 35 |
| Cyclohexanol. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ | 24 | 20 | $10^{5}$ | 16.0 | 33 |
| Cyclohexyl adipate. | $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}$ | 35.5 | 25 | $10^{5}$ | 2.56 | 35 |
| Dibenzyl. | $\mathrm{C}_{14} \mathrm{H}_{14}$ | 52.5 | 23 | $10^{5}$ | 2.59 | 35 |
| $p$-Dichlorobenzene. | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$ | 53 | 20 | $10^{5}$ | 2.88 | 21.1 |
| 1,4-Bromochloronaphthalene. | $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrCl}$ | .... | 26 | $10^{5}$ | 2.86 | 35 |
| 2,3-Dichlorodioxane........ | $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2}$ | 37 | 10 | $10^{5}$ | 3.06 | 35 |
| 1,2-Dichloronaphthalene. | $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2}$ | 107 | 25 | $10^{5}$ | 2.6 | 35 |
| 1,5-Dichloronaphthalene. | $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{Cl}_{2}$ | 135 | 25 | $10^{5}$ | 2.26 | 35 |
| 2,6-Dichloronaphthalene. | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{Cl}_{2}$ | 29 | 20 | $10^{5}$ | 2.90 | 35 |
| $o$-Dinitrobenzene. | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$ | 116.5 | 24 | $10^{5}$ | 3.5 | 35 |
| Dioxane. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ | 12 | 0 | $10^{5}$ | 2.28 | 35 |
| Ethylene bromide. | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ | 10 | 0 | $10^{5}$ | 2.80 | 32 |
| Ethylene chloride. | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ | -35.5 | -40 | $10^{5}$ | 4.65 | 32 |
| Ethylene cyanide. | $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ | 54.2 | 25 | $10^{5}$ | 65.9 | 32 |
| Ethylene diamine. | $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ | 10 | 6.7 | $10^{5}$ | 5.9 | 32 |
| Ethylene iodide... | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{I}_{2}$ | 82 | 26 | $10^{5}$ | 3.45 | 35 |
| Ethylene thiocyanate. | $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{SCN})_{2}$ | 89.8 | 25 | $10^{5}$ | 3.33 | 32 |
| $\beta$-Fluoronaphthalene. | $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}$ | 59 | 25 | $10^{5}$ | 3.0 | 35 |
| Naphthalene. | $\mathrm{C}_{10} \mathrm{H}_{8}$ | 80.1 | 25 | $10^{3-3} \times 10^{9}$ | 2.85 | 31 |
| Nonachlorobiphenyl. | $\mathrm{C}_{12} \mathrm{HCl}_{9}$ | ..... | 25 | $10^{2}-10^{7}$ | 2.64 | 31 |
| Pentachlorobenzene. | $\mathrm{C}_{6} \mathrm{HCl}_{5}$ | 85 | 25 | $10^{5}$ | 3.05 | 35 |
| Pentaerythritol. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{4}$ | 253 | 29 | $10^{5}$ | 2.44 | 35 |
| Phenanthraquinone. | $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{O}_{2}$ | 207 | 25 | $10^{5}$ | 3.45 | 35 |
| Phenyl urethane. | $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$ | 52 | 22.5 | $10^{5}$ | 2.71 | 35 |
| Quinone........ | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}$ | 115.7 | 23 | $10^{5}$ | 2.66 | 35 |
| Succinic acid. | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ | 185 | 25 | $10^{5}$ | 2.40 | 35 |
| Tartaric acid. | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$ | 170 | 21 | $10^{5}$ | 6.0 | 35 |
|  |  |  |  | $10^{3}$ | 9.7 | 35 |
| $o$-Terphenyl. | $\mathrm{C}_{18} \mathrm{H}_{14}$ |  | 25 | $10^{2}-10^{7}$ | 2.8 | 31 |
| $m$-Terphenyl. | $\mathrm{C}_{18} \mathrm{H}_{14}$ | 186 | 25 | $10^{3}-10^{9}$ | 2.86 | 31 |
| $p$-Terphenyl. | $\mathrm{C}_{18} \mathrm{H}_{14}$ | 213 | 25 | $3 \times 10^{9}$ | 2.95 | 31 |
| Thiocamphor. | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~S}$ | 139 | 25 | $10^{5}$ | 9.7 | 35 |
| $o, p$-Toluene sulfonamide. | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{~S}$ |  | 25 | $2.5 \times 10^{10}$ | 3.21 | 31 |
| Tri-o-cresyl phosphate.. | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ | $\ldots .$. | -46 | $10^{5}$ | 3.0 | 35 |
| Tri-m-cresyl phosphate. | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ |  | -46 | $10^{5}$ | 3.1 | 35 |
| Tri-p-cresyl phosphate. | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ |  | 25 | $10^{5}$ | 2.9 | 35 |
| Triphenyl phosphate. | $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P}$ | 49.9 | 25 | $10^{5}$ | 2.8 | 35 |

[^243]
## References

1. Bever and Sproull: Phys. Rev. 83, 801 (1951).
2. Blandin: Compt. rend. 231, 828 (1950).
3. Boltzmann: Sitzber. Akad. Wiss. Wien Math. naturw. Kl. 68II, 81 (1873).
4. Borel: Compt. rend. 116, 1509 (1893) ; Arch. sci. phys. nat. 30, 131, 181, 219, 327, 422 (1893).
5. Curie: Ann. chim. et de phys. 17, 385 (1889).
6. Errera and Brasseur: Physik. Z. 34, 368 (1933).
7. Errera and Ketelaar: J. phys. radium 3 (7), 239 (1932).
8. Eucken and Buchner: Z. physik. Chem. 27 (B), 321 (1934).
9. Fellinger: Ann. Physik 60, 181 (1919).
10. Fellinger: Ann. Physik 7, 333 (1902).
11. Guntherschultze and Keller: Z. Physik 75, 78 (1932).
12. Højendahl: Z. physik. Chem. 20 (B), 54 (1933).
13. Højendahl: Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 16, 1-132 (1938).
14. Jaeger: Ann. Physik 53, 409 (1917).
15. Kamiyoshi and Miyamoto: Science Repts. Research Insts. Tôhoku Univ., ser. A, 2, 370 (1950).
16. Kiriyama: Science (Japan) 17, 239 (1947).
17. Kyropolous: Z. Physik 63, 849 (1930).
18. Liebisch and Rubens: Sitzber. preuss. Akad. Wiss., Physik-math. Kl. 1919, 876.
19. Liebisch and Rubens: Sitzber. preuss. Akad. Wiss., Physik-math. Kl. 1921, 211.
20. Malone and Ferguson: J. Chem. Phys. 2, 99 (1934).
21. Mason: "Piezoelectric Crystals," D. Van Nostrand Company, Inc., New York, 1950.
21.1. Morgan and Lowry: J. Phys. Chem. 34, 2385 (1930).
21.2. Morgan and Yager: Ind. Eng. Chem. 32, 1519 (1940).
22. Naragamo Rao: Proc. Indian Acad. Sci. 30A, 82 (1949).

22a. Pirani: Dissertation, Berlin, 1903.
23. Romich and Nowak: Sitzber. Akad. Wiss. Wien, Math. naturw. Kl. 70II, 380 (1875).
24. Rubens: Sitzber. preuss. Akad. Wiss., Physik-math. Kl. 1915, I, 4.
25. Rubens: Z. Physik 1, 11 (1920).
26. Schmidt: Ann. Physik 9, 919 (1902).
26.1. Schmidt: Ann. Physik 11, 114 (1903).
27. Schupp: Z. Physik 75, 84 (1932).
28. Starke: Ann. Physik 60, 629 (1897).
28.1. Starke: Ann. Physik 61, 804 (1897).
29. Steulmann: Z. Physik 77, 114 (1932).
30. Voigt: "Lehrbuch der Kristallphysik," p. 459.
31. Von Hippel: "Dielectric Materials and Applications," John Wiley \& Sons, Inc., New York, 1954.
32. White and Morgan: J. Chem. Phys. 5, 655 (1937).
33. White and Morgan: J. Am. Chem. Soc. 57, 2078 (1935).
34. Yager and Morgan: J. Am. Chem. Soc. 57, 2071 (1935).
35. Yager and White: unpublished results of Bell Telephone Laboratories.
36. Smyth and Hitchcock: J. Am. Chem. Soc. 55, 1830 (1933).
37. Smyth: Chem. Rev. 19, 329 (1936).
38. Baker and Smyth: J. Am. Chem. Soc. 60, 1229 (1938); 61, 1695, 2063, 2798 (1939).
39. White and Bishop: J. Am. Chem. Soc. 62, 8 (1940).
40. White, Biggs, and Morgan: J. Am. Chem. Soc. 62, 16 (1940).
41. Hoffman and Smyth: J. Am. Chem. Soc. 72, 171 (1950).
42. Crowe and Smyth: J. Am. Chem. Soc. 73, 5401, 5404 (1951).

## 5d-2. Dielectric Properties of Amorphous Solids

Table 5d-3. Dielectric Prop
(Values for $\tan \delta$ are multiplied

| Ceramic | $T,{ }^{\circ} \mathrm{C}$ |  | Frequency |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1 \times 10^{2}$ | $1 \times 10^{3}$ | $1 \times 10^{4}$ | $1 \times 10^{5}$ | $1 \times 10^{6}$ | $1 \times 10^{7}$ | $1 \times 10^{8}$ |
| Steatite bodies: AlSiMag A-351 | 23 | $\epsilon^{\prime} / \epsilon_{v}$ | 6.10 | 5.96 | 5.89 | 5.86 | 5.84 | 5.80 | 5.75 |
|  |  | $\epsilon / \epsilon v$ $\tan \delta$ | 150 | 100 | 70 | 50 | 38. | 35 | 37 |
|  | 85 | $\epsilon^{\prime} / \epsilon_{v}$ | 6.84 | 6.37 | 6.11 | 5.96 | 5.86 | 5.80 | 5.75 |
|  |  | $\tan \delta$ | 890 | 370 | 175 | 103 | 77 | 50 | 50 |
| AlSiMag A-196 ${ }^{1}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 5.90 | 5.88 | 5.84 | 5.80 | 5.70 | 5.65 | 5.60 |
|  |  | $\tan \delta$ | 30 | 59 | 79.5 | 55 | 30.5 | 19 | 16 |
|  | 81 | $\epsilon^{\prime} / \epsilon_{v}$ | 5.90 | 5.88 | 5.84 | 5.80 | 5.70 | 5.65 | 5.60 |
|  |  | $\tan \delta$ | 58 | 40 | 46.5 | 70.5 | 66 | 40.5 | 24 |
| AlSiMag $211^{1}$ | 25 | $\epsilon^{\prime} / \epsilon v$ | 6.00 | 5.98 | 5.98 | 5.97 | 5.97 | 5.96 | 5.96 |
|  |  | $\tan \delta$ | 92 | 34 | 12 | 6 | 5 | 4 | 4 |
| AlSiMag $228{ }^{1}$ | 81 | $\epsilon^{\prime} / \boldsymbol{\epsilon} \boldsymbol{v}$ | 6.52 | 6.46 | 6.40 | 6.40 | 6.36 | 6.30 | ...... |
|  |  | $\tan \delta$ | 35.6 | 22 | 18 | 21.5 | 18.4 | 11.8 | 5... |
| Steatite type 302\% | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 5.80 | 5.80 | 5.80 | 5.80 | 5.80 | 5.80 | 5.80 |
|  |  | $\tan \delta$ | 32 | 20 | 16 | 13 | 12 | 12 | 12 |
| Steatite body $7292{ }^{3}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 6.55 | 6.55 | 6.54 | 6.53 | 6.53 | 6.53 | 6.53 |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 14 | 7 | 4.8 | 3.9 | 4.9 | 5.2 | 6.2 |
| Crolite No. 294 | 24 | $\epsilon^{\prime} / \epsilon_{0}$ | 6.04 | 6.04 | 6.04 | 6.04 | 6.04 | 6.04 | $\cdots$ |
|  |  | $\tan \delta$ | 25 | 19 | 15 | 13 | 11 | 10 |  |
| Forsterite bodies: AlSiMag $243{ }^{1}$ | 85 |  | 6.37 | 6.37 | 6.37 | 6.36 | 6.32 | 6.28 |  |
|  |  | $\tan \delta$ | 21 | 13.7 | 8.0 | <9 | 3.7 | 3.5 | $\ldots$ |
| Titania and titanate bodies: Ceramic NPOT $\mathbf{9 6}^{1}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 | 29.5 |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 12 | 4.9 | 3.3 | 2.5 | 1.6 | 1.7 | 2 |
| Ceramic N750T96 ${ }^{1}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 83.4 | 83.4 | 83.4 | 83.4 | 83.4 | 83.4 | 83.4 |
|  |  | $\tan \delta$ | 5.7 | 4.5 | 3.5 | 2.5 | 2.2 | 2.3 | 4.6 |
| Ceramic N1400T1101 | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 131 | 130.8 | 130.7 | 130.5 | 130.2 | 130.2 | 130.0 |
|  |  | $\tan \delta$ | 6.7 | 5.5 | 3.3 | 1.4 | 3.0 | 5.5 | 7.0 |
| Body T106 ${ }^{1}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 1,518 | 1,508 | 1,480 |  |  |  |  |
|  |  | $\tan \delta$ | 31 | 87 | 99 |  |  |  |  |
| Porcelains: <br> Zircon porcelain Zi-45 | 25 |  |  |  | 6.35 | 6.32 | 6.32 | 6.30 | 6.30 |
|  |  | $\begin{aligned} & \boldsymbol{\epsilon}^{\prime} / \boldsymbol{\epsilon v} \\ & \tan \delta \end{aligned}$ | ${ }^{69} 9$ | ${ }^{60} 40$ | 31 | 27. | ${ }_{23}{ }^{\text {b.32 }}$ | 21 | 25. |
| Electrical porcelain, wet process ${ }^{6}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 6.47 | 6.24 | 6.08 | 5.98 | 5.87 | 5.82 | 5.80 |
|  |  | $\tan \delta$ | 280 | 180 | 130 | 105 | 90. | 115 | 135 |
| Electrical porcelain, dry process ${ }^{8}$ | 25 | $\epsilon^{\prime} / \epsilon_{\boldsymbol{v}}$ | 5.50 | 5.36 | 5.23 | 5.14 | 5.08 | 5.04 | 5.04 |
|  |  | $\tan \delta$ | 220 | 140 | 105 | 85 | 75 | 70 | 78 |
| Coors AI-200-high alumina ${ }^{5}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | ${ }^{8.83}$ | 8.83 5.7 | 8.82 4.8 | 8.80 3.8 | 8.80 3.3 | 8.80 3.2 | 8.80 3.0 |
| Porcelain No. 4462-high alumina ${ }^{7}$ | 25 | $\tan \delta$ $\epsilon^{\prime} / \epsilon_{v} \boldsymbol{t}$ | 14.8 | 5.7 8.95 | 4.8 8.95 | 3.8 8.95 | 3.3 8.95 | 8.95 | 8.95 |
|  |  | $\begin{aligned} & \epsilon^{\prime} / \epsilon_{v} \\ & \tan \end{aligned}$ | 22. | 8.1 9.18 | 8.0 6.0 | 8.0 3.0 | 2.0 8.10 | 2.0 | 4.0 8.10 |
| Coors AB-2-high alumina ${ }^{5}$ | 25 | $\epsilon^{\prime} / \epsilon^{\prime}$ | 8.22 | 8.18 | 8.17 | 8.17 | 8.16 | 8.16 | 8.16 |
|  |  | $\tan \delta$ | 20 | 13.4 | 11.4 | 10.5 | 9.0 | 7.5 | 9.0 |
| AlSiMag 491-high alumina ${ }^{1}$ | 25 | $\epsilon^{\prime} / \epsilon_{v}$ $\tan \delta$ |  | . | ........ | . | ${ }_{22}^{8.74}$ | ...... | …. |

Manufactured by:

1. American Lava.
2. Centralab.
3. General Ceramics and Steatite.
4. Crowley.
5. Coors.
6. Knox.
7. Frenchtown Porcelain.

* Data taken from Tables of Dielectric Materials, vol. IV, Laboratory for Insulation Research, MIT Technical Report 57; and Chart 501, American Lava Co.
$\dagger$ Frequency $=1 \times 10^{3}$.
erties of Selected Ceramics* by $10^{4}$; frequency given in cps)

Table 5d-4. Properties of Selected Glasses*
(Values for $\tan \delta$ are multiplied by $10^{4}$; frequency given in cps )

| Glass | T, ${ }^{\circ} \mathrm{C}$ |  | Frequency |  |  |  |  |  |  |  |  |  |  | $\log _{10}$ volume resistivity |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1 \times 10^{2}$ | $1 \times 10^{3}$ | $1 \times 10^{4}$ | $1 \times 10^{5}$ | $1 \times 10^{6}$ | $1 \times 10^{7}$ | $1 \times 10^{8}$ | $3 \times 10^{8}$ | $3 \times 10^{9}$ | $1 \times 10^{10}$ | $2.5 \times 10^{10}$ | $25^{\circ} \mathrm{C}$ | $250{ }^{\circ} \mathrm{C}$ | $350^{\circ} \mathrm{C}$ |
| Corning 0010 (potash, soda, lead) | 24 | $\begin{array}{\|l\|} \hline \epsilon^{\prime} / \epsilon_{v} \\ \tan \delta \end{array}$ | ${ }^{6} 6.68$ | 6.63 <br> 53.5 | ${ }_{35}^{6.57}$ | ${ }_{23}{ }^{6.50}$ | ${ }^{6.43} 16.5$ | ${ }_{15}^{6.39}$ | ${ }_{23}^{6.33}$ | $\ldots$ | ${ }_{60}^{6.1}$ | ${ }_{90}^{5.96}$ | $\underset{110}{5.87}$ | >17 | 8.9 | 7.0 |
| Corning 0014 (lead, barium) | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 6.78 | 6.77 | 6.76 | 6.75 | 6.73 | 6.72 | 6.70 | 6.69 | $\ldots . .$. | 6.64 |  |  |  |  |
|  |  | $\tan \delta$ | 23.1 | 17.2 | 14.4 | 12.2 | 12.4 | 13.8 | 17.0 | 19.5 |  | 70 |  |  |  |  |
| Corning 0080 (soda lime) | 23 | $\epsilon^{\prime} / \epsilon_{v}$ $\tan \delta$ | ${ }_{780}^{8.30}$ | ${ }_{400}^{7.70}$ | ${ }_{220}{ }^{7.35}$ | ${ }_{140}^{7.08}$ | $100{ }^{6.90}$ | ${ }^{6} 8.82$ | ${ }_{90}^{6.75}$ | ..... | ${ }_{126}^{6.71}$ | $17{ }^{6.71}$ | ${ }_{180}^{6.62}$ | 12.4 | 6.4 | 5.1 |
| Corning 0090 (potash, lead, silicate) | 20 | $\epsilon^{\prime} / \epsilon^{\prime}$ | 9.15 | 9.15 | 9.15 | 9.14 | 9.12 | 9.10 | 9.02 | $\ldots$ | 8.67 | 8.45 | 8.25 |  |  |  |
|  |  | $\tan \delta$ | 12 | 8 | 7 | 7 | 8 | 12 | 18 | $\ldots$. | 54 | 103 | 122 |  |  |  |
| Corning 0100 (potash, soda, barium, silicate) | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 7.18 | 7.17 | 7.16 | 7.14 | 7.10 | 7.10 | 7.07 | $\ldots$. | 7.00 | 6.95 | 6.87 |  |  |  |
|  |  | $\tan \delta$ | 24 | 16 | 13.5 | 13 | 14 | 17 | 24 | $\ldots$ | 44 | 63 | 106 |  |  |  |
| Corning 0120 (potash, soda, lead) | 23 | $\epsilon^{\prime} / \epsilon_{0}$ | 6.75 | 6.70 | 6.66 | 6.65 | 6.65 | 6.65 | 6.65 | $\ldots$. | 6.64 | 6.60 | 6.51 | >17 | 10.1 | 8.0 |
|  |  | $\tan \delta$ | 46 | 30 | 20 | 14 | 12 | 13 | 18 | $\ldots$ | 41 | 63 | 127 |  |  |  |
| Corning 1770 (soda lime) | 25 | $\epsilon^{\prime} / \epsilon^{\prime}$ | 6.25 | 6.16 | 6.10 | 6.03 | 6.00 | 6.00 | 6.00 | $\ldots$ | 5.95 | 5.83 | 5.44 |  |  |  |
|  |  | $\tan \delta$ | 49.5 | 42 | 33 | 26 | 27 | 34 | 38 | $\ldots$ | 56 | 84 | 140 |  |  |  |
| Corning 1990 (iron-sealing glass) | 24 | $\epsilon^{\prime} / \epsilon_{0}$ | 8.40 | 8.38 | 8.35 | 8.32 | 8.30 | 8.25 | 8.20 | $\ldots$ | 7.99 | 7.94 | 7.84 |  |  |  |
|  |  | $\tan \delta$ | 4 | 4 | 3 | 4 | 5 | 7 | 9 | $\ldots$ | 19.9 | 42 | 112 |  |  |  |
| Corning 1991 (iron-sealing glass) | 24 | $\epsilon^{\prime} / \epsilon_{0}$ | 8.10 | 8.10 | 8.08 | 8.08 | 8.08 | 8.06 | 8.00 | $\ldots$ | 7.92 | 7.83 |  |  |  |  |
|  |  | $\tan ^{\prime} \delta$ | 12 | 9 | 6 | 5 | 5 | 7 | 12 | $\ldots$ | 38 |  |  |  |  |  |
| Corning 3320 (soda, potash, borosilicate) | 24 | $\epsilon^{\prime} / \epsilon_{0}$ | 5.00 | 4.93 | 4.88 | 4.82 | 4.79 | 4.78 | 4.77 | $\ldots$ | 4.74 | 4.72 | 4.7 |  |  |  |
|  |  | $\tan ^{\prime} \delta$ | 80 | 58 | 43 | 34 | 30 | 30 | 32 | $\ldots$ | 55 | 73 | 120 |  |  |  |
| Corning 7040 (soda, potash, borosilicate) | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 4.84 | 4.82 | 4.79 | 4.77 | 4.73 | 4.70 | 4.68 | $\ldots$ | 4.67 | 4.64 | 4.52 |  |  |  |
| Corning 7050 (soda, borosilicate) |  | $\tan \delta$ | 50 | 34 | 25.5 | 20.5 | 19 | 22 | 27 |  |  |  |  |  |  |  |
|  | 25 | $\epsilon^{\prime} / \epsilon_{0}$ $\tan \delta$ $\epsilon^{\prime} / \epsilon_{0}$ | ${ }_{81}^{4.88}$ | 4.84 56 | 4.82 43 | $\stackrel{4.80}{33}$ | 4.78 27 | ${ }^{4.76}$ | ${ }_{35}^{4.75}$ | $\ldots$ | 4.74 | 4.71 61 | 4.64 | 16 | 8.8 | 7.2 |
| Corning 7052 (soda, potash, lithia, borosilicate) | 23 | $\epsilon^{\prime} / \epsilon^{\prime}$ | 5.20 | 5.18 | 5.14 | 5.12 | 5.10 | 5.10 | 5.09 |  | 5.04 | 4.93 | 4.85 | 17 | 9.2 | 7.4 |
|  |  | $\tan \delta$ | 68 | 49 | 34 | ${ }^{26}$ | 24 | 28 | 34 |  | 58 | 81 | 114 |  |  |  |
| Corning 7055 | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 5.45 | 5.41 | 5.38 | 5.33 | 5.31 | 5.30 | 5.27 | 5.25 |  | 5.08 |  |  |  |  |
|  |  | $\tan \delta$ | 45 | 36 | 30 | 28 | 28 | 29 | 38 | 49 |  | 130 |  |  |  |  |
| Corning 7060 (soda, borosilicate) | 25 | $\epsilon^{\prime} / \epsilon^{\prime}$ | 5.02 | 4.97 | 4.92 | 4.86 | 4.84 | 4.84 | 4.84 |  | 4.82 | 4.80 | 4.65 |  |  |  |
|  |  | $\tan \delta$ | 89 | 55 | 42 | 40 | 36 | 30 | 30 |  |  |  | 90 |  |  |  |
| Corning 7070 (potash, lithia, borosilicate) | 23 | $\epsilon^{\prime} / \epsilon \epsilon^{0}$ | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 3.9 | $>17$ | 11.2 | 9.1 |
|  | 100 | $\tan _{\tan ^{\prime} \delta} \epsilon_{0}$ | ${ }_{4}^{6} 17$ | 5 4.16 | 5 4.15 | ${ }_{4}^{6} 14$ | 8 | ${ }^{11} 4.10$ | 12 | 12 | ${ }^{12} 4.00$ | ${ }_{4.00}$ | 31 |  |  |  |


*Taken from Tables of Dielectric Materials, vol. IV, Laboratory for Insulation Research, MIT Technical Report 57; and Properties of Commercial Glasses, Bull. B-83, Corning Glass Works.

[^244]Table 5d-5. Dielectric Properties of Selected Plastics and Rubbers*


Table 5d-5. Dielectric Properties of Selected Plastics and Rubbers* (Continued)


Table 5d-5. Dielectric Properties of Selected Plastics and Rubbers* (Continued)


| Marco resin MR-21C | 25 | $\epsilon^{\prime} / \varepsilon_{0}$ | 3.37 | 3.35 | 3.31 | 3.25 | 3.16 | 3.08 |  | 2.90 | 2.84 | 2.82 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ${ }^{53} 4.02$ | 51 4.00 | ${ }_{6}^{65}$ | ${ }^{102} 3$ | ${ }^{150}$ | 170 |  | 149 | 106 | 123 |
| Paraplex P13 (flexible) | 25 | $e^{\prime} / \cos ^{0}$ | 4.02 | 4.00 | 3.92 | 3.92 | 3.65 | 3.32 | 3.08 | 2.8 | 2. | 2.77 |
|  |  | $\boldsymbol{t a n} \delta$ | 73 | 108 | 184 | 310 | 530 | 590 | 600 | $440 \dagger$ | 320 | 290 |
| Paraplex P43 (rigid) | 25 | $e^{\prime} / \epsilon_{0}$ | 3.23 | 3.22 | 3.19 | 3.16 | 3.11 | 3.04 | 2.98 | $2.89 \dagger$ | 2.85 | 2.85 |
|  |  |  | 33 | 43 <br> 3.4 <br> 1 | 68 | 98 | ${ }_{3.1}^{130}$ | 160 3.1 | 160 | $110 \dagger$ | 100 | 80 |
| Selectron 5003 | 25 | $\epsilon^{\prime} / \epsilon_{0}$ |  | 3.4 |  |  | 3.1 | 3.1 |  |  |  |  |
|  |  | $\tan \delta$ |  | 53 |  |  | 150 | 160 |  |  |  |  |
| Stypol 507E | 25 | $e^{\prime} / \operatorname{cov}^{0}$ |  | 4.3 |  |  | 4.0 | 3.7 |  |  |  |  |
|  |  | tan $\delta$ |  | 190 |  |  | 230 | 290 |  |  |  |  |
| Alkyd resins: |  |  |  |  |  |  |  |  |  |  |  |  |
| Alkyd, diisocyanate, foamed | 25 | $e^{\prime} / \cos _{0}$ | 1.223 | 1.223 | 1.223 | 1.223 | 1.218 | 1.205 | 1.20 |  | 1.20 | 1.19 |
|  |  | $\boldsymbol{\operatorname { t a n } \delta}$ | 19.8 | 14.7 | 22.7 | 33.5 | 41 | 42 | 38 |  | 34 |  |
| Red glyptal No. 1201 | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 4.9 | 4.5 | 4.1 | 4.0 | 3.9 | 3.8 |  |  |  |  |
|  |  | $\boldsymbol{t a n} \delta$ | 780 | 600 | 500 | 400 | 320 | 290 |  |  |  |  |
| Plaskon alkyd | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 5.47 | 5.26 | 5.14 | 5.01 | 4.92 | 4.85 | 4.77 | $4.75 \dagger$ | 4.75 | 4.72 |
| (clay-filled) |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 365 | 213 | 151 | 134 | 120 | 113 | 110 | $100 \dagger$ | 104 | 126 |
| Plaskon alkyd 440 | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 5.13 | 5.04 | 4.95 | 4.85 | 4.73 | 4.61 | 4.50 | $4.42 \dagger$ | 4.38 | 4.33 |
| - (glase-filled) |  | $\boldsymbol{\operatorname { t a n } \delta}$ | 191 | 151 | 154 | 185 | 196 | 188 | 172 | ${ }^{133} \dagger$ | 137 | 146 |
| Epoxy resins: |  |  |  |  |  |  |  |  |  |  |  |  |
| Araldite casting resin | 25 | $\epsilon^{\prime} / \mathrm{ev}$ | 3.67 | 3.67 | 3.67 | 3.65 | 3.62 | 3.49 | 3.35 | 3.28 | 3.09 | 3.01 |
| CN-501 |  | $\boldsymbol{\operatorname { t a n }} \boldsymbol{\delta}$ | 17 | 24 | 50 | 110 | 190 | 270 | 340 | 340 | 270 | 220 |
| Araldite E-134 (flexible) | 25 | $e^{\prime} / \epsilon_{0}$ | 7:3 | 6.1 | 5.3 | 4.7 | 4.4 | 4.1 | 3.7 | 3.5 | 3.2 | 3.1 |
|  |  | $\tan \delta$ | 1,200 | 1,050 | 920 | 760 | 770 | 1,000 | 1,300 | 750 | 460 | 390 |
| Hysol 6020 | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 3.96 | 3:90 | 3.82 | 3.67 | 3.54 | 3.42 | 3.29 |  | 3.01 | 2.99 |
|  |  | $\tan \delta$ | 68 | 113 | 206 | 260 | 272 | 266 | 299 |  | 274 | 252 |
| Epon resin 828 | 25 | $e^{\prime} / \mathrm{m}_{0}$ | 3.64 | 3.63 | 3.61 | 3.57 | 3.52 | 3.44 | 3.32 | $3.13 \dagger$ | 3.04 | 2.91 |
|  |  | $\tan \delta$ | 31 | 38 | 68 | 111 | 142 | 191 | 264 | $220 \dagger$ | 210 | 184 |
| Rubbers |  |  |  |  |  |  |  |  |  |  |  |  |
| Natural rubber: Hevea rubber, vulcanized |  |  |  |  |  |  |  |  |  |  |  |  |
| Hevea rubber, vulcanized | 27 | $\epsilon^{\prime} / \epsilon_{0}$ | 2.94 | 2.94 | 2.93 | 2.88 | 2.74 | 2.52 | 2.42 |  | 2.36 |  |
|  |  | $\tan \delta$ | 48 | 24 | 62 | 220 | 446 | 410 | 180 |  | 47 |  |
| Hevea rubber compound | 27 | ¢'¢0 |  | 36 | 27 | 14 | 9.0 | 7.0 | 6.8 |  | 6.3 |  |
|  |  | $\tan \delta$ |  | 25,000 | 12,000 | 4,000 | 2,500 | 1,600 | 850 |  | 234 |  |
| Gutta-percha | 25 | $e^{\prime} / \mathrm{cov}^{0}$ | 2:61 | 2.60 | 2.58 | 2.55 | 2.53 | 2.50 | 2.47 | 2.45 | 2.40 | 2.38 |
|  |  | tan $\delta$ | 5 | 4 | 9 | 21 | 42 |  | 120 | 110 |  | 50 |
| Balata | 25 | $\epsilon^{\prime} / \mathrm{cto}^{0}$ | 2.50 | 2.50 | 2.50 | 2.50 | 2.50 | 2.47 | 2.42 | 2.41 | 2.40 | 2.39 |
|  |  | $\tan \delta$ | 2 | 5 |  |  | 15 | 33 | 62 | 63 |  |  |
| Buna rubber, GR-S (Buna S) compound | 26 | $\epsilon^{\prime} / e_{v}$ | ${ }_{7}^{2.66}$ | 2.66 | ${ }_{25}^{2.66}$ | ${ }_{60}^{2.65}$ | ${ }_{120}^{2.56}$ | ${ }_{160}^{2.52}$ | ${ }_{95}^{2.52}$ |  | ${ }_{56}^{2.49}$ | $2.44$ |
| compound |  | $\tan \delta$ | 7 | 9 | 25 | 60 | 120 | 160 | 95 |  | 56 | 50 |

Table 5d-5. Dielectric Properties of Selected Plastics and Rubbers* (Continued)

| Material | $T,{ }^{\circ} \mathrm{C}$ |  | Frequency, cps |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $1 \times 10^{2}$ | $1 \times 10^{3}$ | $1 \times 10^{4}$ | $1 \times 10^{5}$ | $1 \times 10^{6}$ | $1 \times 10^{7}$ | $1 \times 10^{8}$ | $3 \times 10^{8}$ | $3 \times 10^{9}$ | $1 \times 10^{10}$ | $2.5 \times 10^{10}$ |
| Butyl rubber, GR-I compound | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 2.43 | 2.42 | 2.41 | 2.40 | 2.40 | 2.40 | 2.39 |  | 2.38 | 2.38 |  |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 50 | 60 | 58 | 38 | 22 | 15 | 10 |  | 9.3 | 9.9 |  |
| Nitrile rubber, Royalite149-11 | 25 | $\epsilon^{\prime} / e_{v}$ | 5.41 | 5.20 | 5.12 | 4.87 | 4.41 | 3.62 |  | $3.18 \dagger$ | 3.13 | 3.03 |  |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 320 | 165 | 250 | 590 | 1,080 | 900 | ........ | $260 \dagger$ | 200 | 190 |  |
| Neoprene | 24 | $\epsilon^{\prime} / \epsilon^{\prime}$ | 6.70 | 6.60 | 6.54 | 6.47 | 6.26 | 5.54 | 4.5 | 4.24 | 4.00 | 4.00 | 4 |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 160 | 110 | 115 | 150 | 380 | 1,190 | 900 | 636 | 339 | 261 | 250 |
| Thiokol, type FA compound | 23 | $\epsilon^{\prime} / \epsilon_{v}$ |  | 2,260 | 515 | 200 | 110 | 70 | 30 | 24 | 16 | 14 | 13.6 |
|  |  | $\tan \delta$ |  | 12,900 | 8,000 | 5,100 | 3,900 | 3,200 | 2,800 | 2,800 | 2,200 | 1,500 | 1,000 |
| Silicone rubbers: | 25 |  |  |  |  |  |  |  |  |  |  |  |  |
| Silastic 181 |  | $\epsilon^{\prime} / \epsilon_{v}$ | 3.36 | 3.30 | 3.26 | 3.23 | 3.20 | 3.19 | 3.18 | 3.16 | 3.11 | 3.09 |  |
| Silastic 250 |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 62 | 67 | 65 | 58 | 37 | 28 | 29 | 36 | 100 | 174 |  |
|  | 25 |  | 3.19 | 3.18 | 3.17 | 3.16 | 3.10 | 3.07 | 3.05 | 3.04 | 3.02 | 3.00 |  |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 55 | 30 | 69 | 106 | 64 | 29 | 28 | 44 | 190 | 200 |  |
| SE-450 | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 3.09 | 3.08 | 3.08 | 3.08 | 3.07 | 3.06 | 3.05 | $3.00 \dagger$ | 2.97 | 2.88 |  |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 16 | 7.2 | 5.3 | 7 | 11 | 17 | 30 | 74† | 158 | 183 |  |
| SE-460 | 25 | $\epsilon^{\prime} / \epsilon_{v}$ | 3.14 | 3.12 | 3.11 | 3.10 | 3.10 | 3.09 | 3.07 | $3.05 \dagger$ | 3.02 | 2.94 |  |
|  |  | $\tan \delta$ | 56 | 54 | 44 | 25 | 12 | 15 | 23 | $57 \dagger$ | 98 | 180 |  |
| SE-550 | 25 | $\epsilon^{\prime} / \epsilon_{0}$ | 3.14 | 3.12 | 3.10 | 3.10 | 3.10 | 3.08 | 3.06 | 3.02† | 3.00 | 2.94 |  |
|  |  | $\boldsymbol{\operatorname { t a n }} \delta$ | 13 | 7.8 | 6.5 | 7 | 9.5 | 16 | 31 | $84 \dagger$ | 143 | 195 |  |

[^245]

Fig. 5d-1. Dielectric constant of camphor (1), chlorocamphor (2), nitrocamphor (3), cyanocamphor (4), camphor quinone (5), and camphoric anhydride (6). Heavy arrow indicates the melting point; values are independent of frequency below 100 kc (see ref. 21.2).


Fig. 5d-2. Dielectric constant of polar hexa-substituted chloromethylbenzenes at 100 kc . (1) dichlorophrenitene, (2) trichlorohemimellitene, (3) tetrachloro-o-xylene, (4) trichloropseudocumene, (5) pentamethylchlorobenzene, (6) tetrachloro-m-xylene, (7) pentachlorotoluene (see ref. 33).

Table 5d-6. Relative Capacitivity of Some Semiconductors*

| Semiconductor | $\epsilon / \epsilon_{v}$ | Ref. |
| :---: | :---: | :---: |
| Germanium. | 16 | 1 |
| Silicon. | 11.83 | 1 |
| $\mathrm{TiO}_{2}$ (1) | 173 | 2 |
| $\mathrm{TiO}_{2}$ (11). |  |  |
| CdS. | $11.6+$ | 3 |
| ZnS | 8.3 | 4 |
| BaO . | 34 | 5 |
| InP. | 9 | 6 |
| InAs. | 11.7 | 7 |
| GaAs. | 11.1 | 7 |
| AlSb. | 10.1 | 7 |
| GaSb. | 14.0 | 7 |
| InSb . | 16 | 7 |

* Compiled by R. L. Sproull.


## References for Table 5d-6

1. Briggs, H. B.: Phys. Rev. 77, 287 (1950).
2. Schmidt, W.: Ann. Physik 9, 919 (1902); 11, 114 (1903).
3. Kroger, F. A., and H. J. Vink: Philips, Eindhoven.
4. Hohendahl, K.: Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 16 (2) (1938).
5. Bever, R. S., and R. L. Sproull: Phys. Rev. 83, 801 (1951).
6. Oswald, F.: Z. Naturforsch. 9a, 181 (1954).
7. Briggs, H. B., R. F. Cummings, H. J. Hrostowski, and M. Tanenbaum: Phys. Rev. 93, 912 (1954).
5d-3. Dielectric Constants of Pure Liquids. The data in Table 5d-7 have been selected from A. A. Maryott and E. R. Smith, Table of Dielectric Constants of Pure Liquids, National Bureau of Standards Circular 514.

Compounds are listed in alphabetical order. Empirical chemical formulas are given in the second column. Dielectric constants $\left(\epsilon / \epsilon_{v}\right)$ listed in the third column are "static" values or limiting values at low frequencies unless otherwise noted. Temperatures in column 4 are given in degrees centigrade. In the fifth column the temperature coefficients $a=-d\left(\epsilon / \epsilon_{v}\right) / d t$ and $\alpha=-d\left(\log _{10} \epsilon / \epsilon_{v}\right) / d t$. Column 6 indicates the temperature range in which these coefficients apply. Footnotes pertaining to the organic compounds are given at the end of the table, and these are followed by literature references, which are listed in the last column of the tables.

Table 5d-7. Standard Liquids*

| , Compound | Formula | $\begin{gathered} \epsilon / \epsilon_{v} \\ 20^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \epsilon / \epsilon_{v} \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $a($ or $\alpha$ ) |
| :---: | :---: | :---: | :---: | :---: |
| Benzene. | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 2.284 | 2.274 | 0.0020 |
| Cyclohexane. | $\mathrm{C}_{6} \mathrm{H}_{12}$ | 2.023 | 2.015 | 0.0016 |
| Chlorobenzene. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 5.708 | 5.621 | $0.00133(\alpha)$ |

[^246]Table 5d-8. Inorganic Liquids

| Compound | Formula | $\epsilon /{ }_{\text {co }}$ | $t,{ }^{\circ} \mathrm{C}$ | $\begin{gathered} a\left(\begin{array}{c} \text { or } \alpha \\ \times 10^{2} \end{array}\right. \\ \hline \end{gathered}$ | $\underset{t_{1}, t_{2}}{\text { Range }}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ammonia. | $\mathrm{NH}_{3}$ | 25.4 22.4 18.9 17.8 16.9 16.3 | $\begin{gathered} -77.7 \\ -33.4 \\ 5 \\ 15 \\ 25 \\ 35 \end{gathered}$ |  |  | $\begin{aligned} & 103 \\ & 98 \\ & 117 \end{aligned}$ |
| Argon. | A | $1.538^{\text {a }}$ | -191 | 0.34 | -191, - 184 |  |
| Bromine. | $\mathrm{Br}_{2}$ | 3.09 | 20 | 0.7 | 0, 50 | 45, 62, 150 |
| Charbon dioxide | $\mathrm{Cl}_{2}$ | 1.60 ${ }^{1}$ | - 20 | 0.31 | -65, -33 | ${ }_{128}^{96}$ |
| Deuterium. | $\mathrm{D}_{2}$ | 1.277 | $-20^{\circ} \mathrm{K}$ | 0.4 | 18.8, $21.2^{\circ} \mathrm{K}$ | 169 |
| Deuterium oxide. | $\mathrm{D}_{2} \mathrm{O}$ | 78.25 | 25 |  | 0.4, 98 | 140 |
| Dinitrogen oxide. | $\mathrm{N}_{2} \mathrm{O}$ | 1.97 | -90 |  |  | 9, 66 |
| Dinitrogen tetroxide.: | $\mathrm{N}_{2} \mathrm{O}_{4}$ | 2. 5 5 ${ }^{\text {c }}$ | -15 |  |  |  |
| Fluorine. <br> Helium. | +28 | 1.54 1.0555 1.0559 1.0558 1.053 1.0518 1.048 | -202. $2.06^{\circ} \mathrm{K}$ $2.300^{f}$ 2.63 3.09 3.58 4.19 | 0.19 | -216, -190 | $\begin{aligned} & 128,51,52 \end{aligned}$ |
| Hydrogen. | $\mathrm{H}_{2}$ | 1.228 | $20.4{ }^{\circ} \mathrm{K}$ | 0.34 | 14, $21^{\circ} \mathrm{K}$ | $30,83,145,152 \text {, }$ |
| Hydrogen bromide... | HBr | 7.00 | -85 | 0.26( $\alpha$ ) | -85, -70 | 94 |
| Hydrogen chloride... | HCl | $3.8{ }^{\text {e }}$ 6.35 12.6 | 25 -15 -113 | 0.288( $\alpha$ ) | -85, -15 | $\begin{aligned} & 19 \\ & 115 \\ & 73,94,128 \end{aligned}$ |
| Hydrogen fluoride. . . | HF | $14^{4.6}$ 17.6 $13_{4}$ $11_{1}$ 84 | $\begin{array}{r}28 \\ -73 \\ -42 \\ -27 \\ \hline 0\end{array}$ |  |  | $\begin{aligned} & 19 \\ & 53 \end{aligned}$ |
| Hydrogen iodide. | HI | 3.39 | -50 | 0.8 | $-51,-37$ | 94 |
| Hydrogen peroxide... | $\mathrm{H}_{2} \mathrm{O}_{2}$ | 84.2 ${ }^{2 .}$ | 0 | 0 | -30, 20 | ${ }_{196}^{19}$ |
| Hydrogen sulfide. . . | $\mathrm{H}_{2} \mathrm{~S}$ |  | -85.5 -78.5 |  |  | 1103 |
| Iodine. | $\mathrm{I}_{2}$ | 11.1 | 118 |  |  | 82 |
|  |  | 11.7 | 140 |  |  |  |
|  |  | ${ }_{13.0}^{1354}$ | 168 |  |  |  |
| Oxygen.. | $\mathrm{O}_{2}$ | 1.507 | -193 | 0.29 0.24 | -210, -195 | 36, 136, 152 |
| Phosphorus............ | ${ }^{\mathbf{P}}$ | 4.10 4.06 4.86 | $\begin{array}{r} 39 \\ 34 \\ 46 \end{array}$ |  | 183 | $88{ }^{\text {4, }}$ |
| Selenium............ | Se | 3.86 5.40 | $\begin{array}{r}85 \\ 250 \\ \hline\end{array}$ | 0.25 | 237, 301 |  |
| Sulfur. | S | 3.52 | 118 |  |  | 87 |
| Sulfur dioxide. . . . . . | $\mathrm{SO}_{2}$ | 3.48 17.6 | -231 | 0.287( $\alpha$ ) |  |  |
|  |  | 15.08 | 0 |  |  | 199 |
|  |  | 14.1 | $\stackrel{20}{154}{ }^{\text {i }}$ | 7.7 | 14, 140 | 3, 8, 13 |
| Sulfur trioxide <br> Water. | $\mathrm{SO}_{3}$ | 3.11 | 18 |  |  |  |
|  | $\mathrm{H}_{2} \mathrm{O}$ | 78.54 34.59 | 25 200 | $\cdots$ | $\begin{aligned} & 0,100 \\ & 100,370 \end{aligned}$ | $\begin{aligned} & 64,71,140 \\ & 143,75,80,83 \end{aligned}$ |

[^247]Table 5d-9. Organic Liquids


Footnotes appear at end of table.

Table 5d-9. Organic Liquids (Continued)

| Compound | Formula | $\epsilon / \epsilon_{v}$ | $t,{ }^{\circ} \mathrm{C}$ | $\begin{gathered} a(\text { or } \alpha) \\ \times 10^{2} \end{gathered}$ | $\begin{gathered} \text { Range } \\ t_{1}, t_{2} \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bromocyclohexane.. | $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Br}$ | 7.9211.0 | 25 | 1.07 | 25, 55 | 185 |
|  |  |  | -65 |  |  | 158 |
| 1-Bromodecane. | $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Br}$ | 4.44 | 25 |  |  | 185 |
|  |  | 4.75 | 1 |  | 10,70 |  |
| Bromoform. | $\mathrm{CHBr}_{3}$ | 4.39 | 20 | 0.105( $\alpha$ ) |  | 69, 105, 107 |
| Bromoethane. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Br}$ | 9.39 | 20 | 0.196( $\alpha$ ) | -30, 30 | $\begin{gathered} 23,49,67,89, \\ 185 \end{gathered}$ |
|  |  | 16.1 | -90 |  |  |  |
|  |  | 13.6 | -60 |  |  |  |
| 4-Bromoheptane. | $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Br}$ | 6.81 | 22 |  |  | 65 |
| 1-Bromohexadecane. | $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{Br}$ | 3.71 | 25 | 0.7 | 25, 55 | 185, 198 |
| 1-Bromohexane | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Br}$ | 5.82 | 25 | 1.73 | 25, 55 | 185 |
|  |  | 6.30 | 1 |  |  |  |
| Bromomethane. | $\mathrm{CH}_{3} \mathrm{Br}$ | 9.82 | 0 | ${ }^{k}$ | -80, 0 | 67 |
| 1-Bromo-2-methylpropane. | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ | $\begin{array}{r} 7.18 \\ 10.1_{5} \end{array}$ | 25 | 2.8 | 1,55 | 185 |
| 2-Bromo-2-methylpropane |  |  | 25 | 5.20 | -15, 55 | 142, 163, 185 |
| 1-Bromonaphthalene. | $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$ | 4.83 | 25 | 0.87 | 25, 55 | 185 |
| 1-Bromononane. | $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{Br}$ | 5.42 | -20 | 1.3 | -35, 16 | 195 |
|  |  | 4.74 | 25 | 1.13 | 1,55 | 185 |
| 1-Bromooctadecane. | $\mathrm{C}_{18} \mathrm{H}_{77} \mathrm{Br}$ | 3.53 | 30 | 0.5 | 27, 58 | 198 |
| 1-Bromoctane. | $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$ | $\begin{aligned} & 6.35 \\ & 5.00 \end{aligned}$ | -50 | 1.9 | $\xrightarrow[1,55]{-55,} \mathbf{- 3 9}$ | 195185 |
|  |  |  | 25 | 1.33 |  |  |
| 1-Bromopentadecane. | $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{Br}$ | 3.89 | 20 |  | 1, 55 | 195 |
| 1-Bromopentane. | $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$ | 6.329.90 | 25 | 0.152( $\alpha$ ) | -45, 55 | 141, 185 |
|  |  |  | -90-25 |  |  |  |
| 1-Bromopropane. | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ | 8.09 |  | 3.35 | 1,55 | 185 |
| 2-Bromopropane. |  | 9.46 | 25 | 4.40 | 1,55 | 185 |
|  |  | 16.1 | -85 |  |  |  |
| 3-Bromo-1-propene. | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}$ | 7.4 | 1 |  |  | 20 |
|  |  | 7.0 | 19 |  |  |  |
| 1-Bromotetradecane. | $\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{Br} \\ & \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Br} \end{aligned}$ | 3.84 | 25 | 0.80 | 1,55 | $\begin{array}{l\|l\|} \hline 185 \\ 43 \end{array}$ |
| $o$-Bromotoluene. $m$-Bromotoluene. |  | 4.28 | 58 |  |  |  |
|  |  | 5.36 | 58 |  |  | 43 |
| $p$-Bromotoluene.. |  | 5.49 | 58 |  |  | 43 |
| 1-Bromotridecane. | $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{Br}$ $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{2}$ | 4.20 | 10 |  |  | 195 |
| 1,4-Butanediol. |  | 32.9 | 15 |  |  | 157 |
|  |  | $\begin{aligned} & 30.2 \\ & 17.8 \end{aligned}$ | 30 |  |  |  |
| 1-Butanol. | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ |  | 20 |  | $\begin{array}{\|l\|l} -40,20 \\ 25,70 \end{array}$ | $\begin{aligned} & 56,146,189 \\ & 190 \\ & 26 \end{aligned}$ |
|  |  | $\begin{array}{r} 17.1 \\ 8.2 \end{array}$ | 25 |  |  |  |
|  |  |  | 118 |  |  |  |
| 2-Butanol. |  | 15.8 | 25 | $\begin{aligned} & 0.300(\alpha) \\ & 0.335(\alpha) \end{aligned}$ |  | 146 |
| 2-Butanone | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | 18.51 | 20 | 0.207( $\alpha$ ) | -60,60 | 160 |
| Butyl ether. | $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}$ | 3.06 | 25 |  |  | 98, 132 |
| Butyraldehyde. | $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ | 13.4 | 26 |  |  | 26 |
|  |  | 10.8 | 77 |  |  |  |
| Butyronitrile.. | $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$ | $20.3^{\text {b }}$ | 21 |  |  | 11 |
| Carbon dioxide. | $\mathrm{CO}_{2}$ | $1.604_{4}{ }^{\text {c }}$ | 0 |  |  | 96 |
| Carbon disulfide. | $\mathrm{CS}_{2}$ | 2.641 | 20 | 0.268 | -90, 130 | 14, 100, 124, |
|  |  | 3.001 | -110 |  |  | 130, 135, 161, |
|  |  | 2.19 | 180 |  |  | 197 |
| Carbon tetrachloride. | $\mathrm{CCl}_{4}$ | 2.238 | 20 | 0.200 | -10,60 | $\begin{gathered} 100,111,154, \\ 161,165,197 \end{gathered}$ |
| Chloral. | $\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}$ | 4.94 | 20 | 0.17( $\alpha$ ) | 15, 45 | 27 . |
|  |  | 7.6 | -40 |  |  |  |
|  |  | 4.2 | 62 |  |  |  |
| m-Chloroaniline. | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{ClN}$ | $13.4{ }^{n}$ | 19 |  |  |  |
| Chlorobenzene. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ | 5.708 | 20 |  |  | 42, 95; 112, 171 |
|  |  | 5.621 | 25 |  |  |  |

Table 5d-9. Organic Liquids (Continued)

| Compound | Formula | $\epsilon / \epsilon_{v}$ | $t,{ }^{\circ} \mathrm{C}$ | $\begin{gathered} a(\text { or } \alpha) \\ \times 10^{2} \end{gathered}$ | $\begin{gathered} \text { Range } \\ t_{1}, t_{2} \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chlorobenzene (Continued). | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ | 5.71 | 20 | 0.173( $\alpha$ ) | -10, 70 | $\begin{array}{lll} 26,48,49,61 ; \\ 86, & 92, \quad 123, \\ 129,137 & \end{array}$ |
|  |  | 7.28 | -50 |  |  |  |
|  |  | 6.30 | -20 |  |  |  |
|  |  | 4.21 | 130 |  |  |  |
| 1-Chlorobutane |  | 7.39 | 20 |  |  | 69, 162 |
|  |  | 12.2 | -90 |  |  |  |
|  |  | 9.94 | -50 |  |  |  |
|  |  | 9.07 | -30 |  |  |  |
| 3-Chloro-1, 2-epoxy-propane(epi- | $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{ClO}$ | 25.6 | 1 |  |  | 20 |
| chlorohydrin) $\quad \cdots$ |  | 22.6 | 22 |  |  |  |
| Chloroethane.... | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Cl}$ | 6.29 | 170 |  |  | 13 |
|  |  | 6.0 ${ }^{\text {b }}$ | 179 |  |  |  |
|  |  | 5.13 | 183 |  |  |  |
|  |  | 4.68 | $185.5^{h}$ |  |  |  |
| Chloroform. | $\mathrm{CHCl}_{3}$ | 4.806 | 20 | 0.160( $\alpha$ ) | 0,50 | $\begin{array}{\|l} 60,100,111 \\ 49,67,123 \end{array}$ |
|  |  | 6.76 | -60 |  |  |  |
|  |  | 6.12 | -40 . |  |  |  |
|  |  | 5.61 | -20 |  |  |  |
|  |  | 3.71 | 100 |  |  |  |
|  |  | 3.38 | 140 |  |  |  |
|  |  | 2.93 | 180 |  |  |  |
| 4-Chloroheptane. | $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Cl}$ | 6.54 | 22 | ${ }^{1}$ |  |  |
| Chloromethane... | $\mathrm{CH}_{3} \mathrm{Cl}$ | 12.6 | -20 |  | -70, -20 |  |
| 1-Chloro-2-methyl propane. | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}$ | 12.2 | -120 |  |  | $167$ |
|  |  | 10.1 | -89 |  |  |  |
|  |  | 7.87 | -38 |  |  |  |
|  |  | 6.49 | 14 |  |  |  |
| 2-Chloro-2-methyl propane.... |  | 10.96 | 0 | 0.225( $\alpha$ ) | -23, 30 | 77,142 |
| 1-Chloronaphthalene.... |  | 5.04 | 25 | 1.07 | 1,55 |  |
| 1-Chloro-2-nitrobenzene.. | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClNO}_{2}$ | 37.7 | 50 |  |  | 118 |
|  |  | 31.8 | 80 |  |  |  |
|  |  | 27.8 | 110 |  |  |  |
|  |  | 23.7 | 140 |  |  |  |
|  |  | 21.6 | 163 |  |  |  |
|  |  | 20.9 | 50 |  |  | 118 |
| 1-Chloro-3-nitrobenzene........ |  | 18.1 | 80 |  |  |  |
|  |  | 15.9 | 110 |  |  |  |
|  |  | 14.1 | 140 |  |  |  |
|  |  | 13.0 | 160 |  |  |  |
|  |  | 8.09 | 120 | 0.16( $\alpha$ ) | 85, 160 |  |
| 1-Chlorooctane... ..... | $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl}$ | 5.05 | 25 | 1.70 | 1, 55 | 185 |
| 1-Chloropentane. | $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$ | 6.6 | 11 |  |  |  |
| o-Chlorophenol. . | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClO}$ | 6.31 | 25 | 2.7 | 25, 58 | 39, 43, 176 |
| $p$-Chlorophenol. . |  | 9.47 | 55 | 3.7 | 55, 65 | 43, 176 |
| 1-Chloropropane........ | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{Cl}$ | $7.7^{n}$ | 20 |  |  | 21 |
| 3-Chloro-1,2-propanediol. | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{ClO}_{2}$ | 37 | 3 |  |  | 20 |
|  |  | 31 | 19 |  |  |  |
| 1-Chloro-2-propanone. | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{ClO}$ | $30^{n}$ | 19 |  |  | 21 |
| 3-Chloro-1-propane. . | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}$ | 8.7 | 1 |  |  | 20 |
|  |  | 8.2 | 20 |  |  |  |
| $\alpha$-Chlorotoluene...... | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}$ | 7.0 | 13 |  |  | 18 |
| $\boldsymbol{o}$-Chlorotoluene. | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Cl}$ | 4.45 | 20 |  |  | 58 |
|  |  | 4.16 | 58 |  |  | 43 |
| m-Chlorotoluene.. |  | 5.55 | 20 |  |  | 58 |
|  |  | 5.04 | 58 |  |  | 43 |
| p-Chlorotoluene.............. |  | 6.08 | 20 58 |  |  | 58 43 |
|  |  | 5.55 | 58 |  |  | 43 |

Table 5d-9. Organic Liquids (Continued)


Table 5d-9. Organic Liquids (Continued)

| Compound | Formula | $\epsilon / \epsilon \boldsymbol{v}$ | $t,{ }^{\circ} \mathrm{C}$ | $\begin{gathered} a(\text { or } \alpha) \\ \times 10^{2} \end{gathered}$ | Range $t_{1}, t_{2}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,1-Dichloro-2-propanone. | $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}$ | $14.6{ }^{\text {n }}$ | 20 |  |  | 21 |
| 2,5-Dichlorostyrene. | $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{2}$ | 2.58 | 25 |  |  | 190 |
| Diethyl sebacate. | $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4}$ | 5.00 | 30 | 1.2 | 30, 40 | 175 |
| $m$-Diiodobenzene | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{I}_{2}$ | $4.2{ }^{\text {b }}$ | 25 |  |  | 37 |
| $\boldsymbol{o}$-Diiodobenzene. |  | 5.7 | 20 |  |  | 37 |
| $p$-Diiodobenzene. |  | 2.88 | 120 |  |  | 37 |
| cis-1,2-Diiodoethylene. . | $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}_{2}$ | 4.46 | 83 |  |  | 31 |
| trans-1,2-Diodoethylene. |  | 3.18 | 83 |  |  | 31 |
| Diiodomethane......... . | $\mathrm{CH}_{2} \mathrm{I}_{2}$ | 5.32 | 25 |  |  | 69 |
| Dimethoxymethane (methylal). | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ | $2.7{ }^{\text {a }}$ | 20 |  |  | 15 |
| Dimethylamine............... | $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$ | 6.32 | 0 |  |  | 182 |
|  |  | 5.26 | 25 |  |  |  |
| Dioctyl phthalate. | $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$ | 5.1 | 25 |  |  | 181 |
| Dioctyl sebacate.. | $\mathrm{C}_{26} \mathrm{H}_{50} \mathrm{O}_{4}$ | 4.01 | 26 |  |  | 190 |
| Diphenyl........ | $\mathrm{C}_{12} \mathrm{H}_{10}$ | 2.53 | 75 | 0.18 | 75, 155 | 47 |
| Dodecanol. | $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}$ | 6.5 | 25 |  |  | 192 |
| Epichlorohydrin (3-chloro-1,2epoxypropane) | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{ClO}$ | 22.6 25.6 | 22 1 |  |  | 20 |
| Erythritol (1,2,3,4-butanetetrol). | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{4}$ | 28.2 | 120 |  |  | 91, 97 |
| 1,2-Ethanediamine............ . | $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$ | 14.2 | 20 | 10 | 10, 27 | 133 |
| Ethanethiol. . . . . . | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$ | 6.91 | 15 |  |  | 157 |
| Ethanol. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ | 24.30 | 25 |  |  | 79, 116 |
|  |  | $24.3{ }^{x}$ | 25 | 0.270( $\alpha$ ) | -5, 70 | 79, 80, 137 |
|  |  | $41.0^{x}$ | -60 | 0.297( $\alpha$ ) | $-110,-20$ | 56 |
| Ethylamine. | $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$ | 6.94 | 10 | - | $-20,10$ | 86 |
| Ethyl alcohol (see Ethanol) (Ethylene) glycol. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$ | 37.7 | 25 | 0.224( $\alpha$ ) | 20,100 | 80 |
| Ethylene oxide............ | $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ | 13.9 | -1 |  |  | 20 |
| Ethyl ether.. | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ | 4.335 | 20 | 2.0 | At 20 | $\begin{aligned} & 10,24,44,68 \\ & 171 \end{aligned}$ |
|  |  | $4.34{ }^{\text {x }}$ | 20 | 0.217( $\alpha$ ) | -40, 30 | 137 |
|  |  | 10.4 | -116 |  |  | 120 |
|  |  | 3.97 | 40 | 0.170( $\alpha$ ) | 40, 140 | 14 |
|  |  | 2.12 | 180 |  |  |  |
|  |  | 1.89 | 190 |  |  |  |
|  |  | 1.53 | $193.3{ }^{\text {h }}$ |  |  |  |
| Ethyl mercaptan (see Ethanethiol) |  |  |  |  |  |  |
| Ethyl nitrate. | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{3}$ | 19.4 | 20 | 9 | 0,50 |  |
| Fenchone. | $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}$ | 12.8 | 21 |  |  | $153$ |
| Fluorobenzene. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ | 5.42 | 25 |  |  | 104, 174, 58 |
|  |  | 4.76 | 60 |  |  |  |
| 1-Fluoropentane . . . . . . . . . . . . . . . | $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~F}$ | 4.24 | 20 |  |  | 163 |
| $o$-Fluorotoluene. . . . . . . . . . . . . . .m-Fluorotoluene . . . . . . . . . . . . . . . | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~F}$ | 4.22 | 30 |  |  | 174 |
|  |  | 3.88 | 60 |  |  |  |
|  |  | 5.42 | 30 |  |  | 174 |
|  |  | 4.90 | 60 |  |  |  |
| $p$-Fluorotoluene. |  | 5.86 | 30 |  |  | 174 |
|  |  | 5.34 | 60 |  |  |  |
|  | $\mathrm{CH}_{3} \mathrm{NO}$ | 109 | 20 | 72 | 18, 25 | 183, 191 |
| Formic acid. | $\mathrm{CH}_{2} \mathrm{O}_{2}$ | $58.5{ }^{\text {a }}$ | 16 |  |  | 5 |
| Furfural. | $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}$ | 46.9 | 1 |  |  | 20 |
|  |  | 41.9 | 20 |  |  |  |
|  |  | 34.9 | 50 |  |  |  |
| Glycerol. . | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ | 42.5 | 25 | 0.208( $\alpha$ ) | 0,100 | $25,80,122$ |
| Glycolonitrile. <br> Guaiacol (see $o$-Methoxyphenol) <br> Heptaldehyde. | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NO}$ | $68{ }^{\text {a }}$ | 20 |  |  | $15$ |
|  | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ | 9.07 | 2 |  |  | 65 |
|  |  |  |  |  |  |  |

Table 5d-9. Organic Liquids (Continued)

| Compound | Formula | $\epsilon / \epsilon_{v}$ | $t,{ }^{\circ} \mathrm{C}$ | $\begin{gathered} a(\text { or } \alpha) \\ \times 10^{2} \end{gathered}$ | $\begin{gathered} \text { Range } \\ t_{1}, t_{2} \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heptane.................... | $\mathrm{C}_{7} \mathrm{H}_{16}$ | 1.924 | 20 | 0.140 | $-50,50$ | 50, 63, 197 |
|  |  | 2.074 | -90 |  |  |  |
|  |  | 1.850 | 70 |  |  |  |
| 4-Heptanol... | $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}$ | 6.17 | 22 |  |  | 65 |
| 4-Heptanone. | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ | 12.58 | 20 | 0.205( $\alpha$ ) | 0, 100 | 65, 160 |
|  |  | 15.1 | -20 |  |  |  |
|  |  | 8.00 | 120 |  |  |  |
| Hexachloro-1,3-butadiene. . . | $\mathrm{C}_{4} \mathrm{Cl}_{6}$ | 2.55 | 25 |  |  | 190 |
| 1-Hexadecanol. | $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}$ | 3.82 | 50 | 1.7 | 48, 67 | 126, 134 |
| 1-Hexanol..... | $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ | 13.3 | 25 | 0.35( $\alpha$ ) | 15, 35 | 74, 119 |
|  |  | 8.55 | 75 |  |  |  |
| Hydrocyanic acid. . | HCN | 158.1 | 0 | $\stackrel{i}{0.63(\alpha)}$ | $\begin{array}{\|l} -13,18 \\ 18,26 \end{array}$ | 173 |
|  |  | 114.9 | 20 |  |  |  |
| Iodobenzene.. | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}$ | 4.63 | 20 |  |  | 163, 58 |
| 1-Iodobutane. | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$ | 6.22 | 20 | 0.135( $\alpha$ ) | 0, 80 | 26, 69, 162 |
|  |  | 8.89 | -80 |  |  |  |
|  |  | 7.53 | -40 |  |  |  |
|  |  | 4.52 | 130 |  |  |  |
| Iodoethane.. | $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{I}$ | 7.82 | 20 | 0.150( $\alpha$ ) | -20,70 | 56, 137 |
|  |  | 12.3 | -90 |  |  |  |
|  |  | 10.2 | -50 |  |  |  |
| 1-Iodohexadecane.......... | $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{I}$ | 3.50 | 20 |  |  | 162 |
| 1-Iodohexane. | $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{I}$ | 5.37 | 20 | m |  | 162 |
| Iodomethane. | $\mathrm{CH}_{3} \mathrm{I}$ | 7.00 | 20 |  | -70,40 | 67 |
| 1-Iodo-2-methyl propane.... | $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}$ | 6.47 | 20 |  |  | 162 |
| 2-Iodo-2-methyl propane.. |  | 8.42 | 20 |  |  | 162 |
|  |  | 10.5 | -33 |  |  | 142 |
| 1-Iodooctane.. | $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{I}$ | 4.62 | 25 | 1.17 | 1,55 | 162, 185 |
| 1-Iodopentane. | $\mathrm{C}_{5} \mathrm{H}_{\mathrm{nI}}$ | 5.81 | 20 |  |  | 162 |
| 1-Iodopropane. | $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{I}$ | 7.00 | 20 |  |  | 162 |
| 2-Iodopropane. |  | 8.19 | 20 |  |  | 162 |
| $p$-Iodotoluene.. | $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{I}$ | 4.4 | 35 |  |  | 22 |
| Isobutyronitrile. | $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}$ | $20.4{ }^{\text {b }}$ | 24 |  |  | 11 |
| Isocapronitrile. | $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}$ | $15 .{ }^{\text {b }}$ | 22 |  |  | 11 |
| Isoquinoline.. | $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$ | 10.7 | 25 |  |  | 106 |
| Lactonitrile.. | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}$ | 38. | 20 |  |  | 15 |
| Linoleic acid. | $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$ | 2.61 | 0 |  |  | 138, 156, 177 |
|  |  | 2.71 | 20 |  |  |  |
|  |  | 2.70 | 70 |  |  |  |
|  |  | 2.60 | 120 |  |  |  |
| 1- $\alpha$-Menthol. | $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ | 3.95 | 42 |  |  | 158 |
| Menthone. | $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ | $8.8{ }^{\text {b }}$ | 18 |  |  | 18, 153 |
|  |  | 11.8 | -35 |  |  |  |
| Methane. | $\mathrm{CH}_{4}$ | 1.70 | -173 | 0.2 | -181, -159 | 66 |
| Methanol. | $\mathrm{CH}_{4} \mathrm{O}$ | 32.63 | 25 | 0.264( $\alpha$ ) | 5,55 | $143,179$ |
|  |  | 64 | -113 |  |  |  |
|  |  | 54 | -80 |  |  |  |
|  |  | 40 | -20 |  |  |  |
| Methoxybenzene (anisole). | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ | 4.33 | 25 | 1.1 | 20, 40 | 46, 98, 175, 188 |
|  |  | 3.89 | 70 |  |  |  |
| 2-Methoxyethanol. | $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$ | 16.0 | 30 |  |  | 129, 176 |
| o-Methoxyphenol (guaiacol).. | $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}$ | $11.7^{n}$ | 28 |  |  | 21 |
| Methyl alcohol (see Methanol) Methylamine |  |  |  |  |  |  |
|  | $\mathrm{CH}_{5} \mathrm{~N}$ | 11.4 | -10 | 0.26( $\alpha$ ) | $-30,-10$ | $\begin{array}{\|l} 86 \\ 182 \\ 106,113,12,20 \\ 153 \end{array}$ |
|  |  | 9.4 | 25 |  |  |  |
| $N$-Methylaniline. | $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ | 5.97 | 22 |  |  |  |
| 4-Methylcyclohexanol. . . . . . . | $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ | 13.3 | 20 | 0.41( $\alpha$ ) | At 20 |  |

Table 5d-9. Organic Liquids (Continued)


Table 5d-9. Organic Liquids (Continued)


## Table 5d-9. Organic Liquids (Continued)

| Compound | Formula | $\epsilon / \boldsymbol{\epsilon}_{\boldsymbol{v}}$ | $t,{ }^{\circ} \mathrm{C}$ | $\begin{gathered} a(\text { or } \alpha) \\ \times 10^{2} \end{gathered}$ | Range $t_{1}, t_{2}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Toluene. | $\mathrm{C}_{7} \mathrm{H}_{8}$ | 2.438 | 0 | 0.0455 ( $\alpha$ ) | -90,0 | 14, 42, 63, 130 |
|  |  | 2.379 | 25 | 0.243 | 0,90 | 147, 152 |
|  |  | 2.157 | 127 |  |  |  |
|  |  | 2.042 | 181 |  |  |  |
| o-Toluidine. | $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ | 6.34 | 18 |  |  | 113 |
|  |  | 5.71 | 58 |  |  | 43 |
|  |  | 4.00 | 200 |  |  | 26 |
| m-Toluidine. |  | 5.95 | 18 |  |  | 113 |
|  |  | 5.45 | 58 |  |  | 43 |
| $p$-Toluidine. |  | 4.98 | 54 |  |  | 22, 43, 99 |
| $o$-Tolunitrile. | $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$ | $18.5{ }^{\text {b }}$ | 23 |  |  | 11 |
| 1,2,3,-Tribromopropane.. | $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Br}_{3}$ | 6.45 | 20 |  |  | 164 |
| Trichloroacetic acid... | $\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{O}_{2}$ | 4.6 | 60 |  |  | 20 |
| 1,1,1-Trichloroethane....Trichloroethylene. . . . . . | $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}_{2}$ | $\begin{aligned} & 7.1_{0} \\ & 7.5_{2} \end{aligned}$ | 0 | 3.6 | $-33,2$ | 155 |
|  |  |  | 20 |  |  | 105 |
|  | $\mathrm{C}_{2} \mathrm{HCl}_{3}$ | 3.42 | ca. 16 |  |  | 28 |
| Trichloroethylene....... $\alpha, \alpha, \alpha$-Trichlorotoluene. | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{Cl}_{3}$ | 6.9 n | 21 |  |  | 18, 21 |
| Tricresyl phosphate.: <br> Trifluoroacetic acid | $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}$ | 6.9 | 40 |  |  | 144 |
|  | $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ | 39.5 | 20 | -50 | 0, 28 | 201a |
| Trifluoroacetic acid......$\boldsymbol{\alpha}, \boldsymbol{\alpha}, \boldsymbol{\alpha}$-Trifuorotoluene... |  | 26.2 | -11 |  |  |  |
|  | $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{3}$ | 9.18 | 30 |  |  | 174 |
|  |  | 8.09 | 60 |  |  |  |
| 2-Undecanone. | $\mathrm{CuH}_{22} \mathrm{O}$ | 8.4 | 14.5 |  |  | 59 |
| Vinyl ether... | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$ | 3.94 | 20 |  |  | 84 |
| o-Xylene..... | $\mathrm{C}_{8} \mathrm{H}_{10}$ | 2.568 | 20 | 0.266 | $-20,130$ |  |
| $m$-Xylene... |  | 2.374 | 20 | 0.195 | -40, 170 | $\begin{gathered} 2,10,14,24,76 \\ 81,137,152 \end{gathered}$ |
| p-Xylene.... |  | 2.270 | 20 | 0.160 | 20, 130 | $\begin{gathered} 44,76,81,90 \\ 130,168,184 \end{gathered}$ |

$a_{\nu}=4 \times 10^{8} \mathrm{cps}$.
${ }^{6} \nu=3.6 \times 10^{8} \mathrm{cps}$.
© At pressure of 50 atm
${ }^{h}$ Critical temperature.
${ }^{i} \log _{10} \epsilon=2.199-0.0079 t+0.00005 t^{2}$.
$i \epsilon / \epsilon_{v}=(3,320 / T)-2.24$.
${ }^{\boldsymbol{k}} \epsilon / \epsilon_{v}=(3,320 / T)-2.34$.
${ }^{t} \epsilon / \epsilon_{v}=12.6-0.061(t+20)+0.0005(t+20)^{2}$.
$m_{\epsilon} / \epsilon_{v}=(2,160 / T)-0.39$.
$n \nu=5 \times 10^{8}$ cps.
$\bullet \epsilon / \epsilon_{v}=6.94-0.036(t-10)+0.0004(t-10)^{2}$.
$p$ Critical temperature $=126.9^{\circ} \mathrm{C}$.
a cis-trans isomers.

- Br and $\mathrm{CH}_{3}$ trans.
- Br and $\mathrm{CH}_{3}$ cis.
${ }^{6}$ Silicone oil of average molecular weight corresponding to this formula.
s Value chosen to conform with the remainder of the tabulated data for this substance.


## References

1. Jahn, H., and G. Möller: Z. physik. Chem. 13, 385 (1894).
2. Nernst, W.: Z. physik. Chem. 14, 622 (1894).
3. Linde, F.: Ann. Physik 56, 546 (1895).
4. Ratz, F.: Z. physik. Chem. 19, 94 (1896).
5. Drude, P.: Z. physik. Chem. 23, 267 (1897).
6. Löwe, K. F.: Ann. Physik 66, 390 (1898).
7. Abegg, R., and W. Seitz: Z. physik. Chem. 29, 242 (1899).
8. Coolidge, W. D.: Ann. Physik 69, 130 (1899).
9. Hasenoehrl, F.: Proc. Koninkl. Ned. Akad. Wetenschap. 2, 211 (1900); Commun. Phys. Lab. Univ. Leiden 52 (1900).
10. Turner, B. B.: Z. physik. Chem. 35, 385 (1900).
11. Schlundt, H.: J. Phys. Chem. 5, 157 (1901).
12. Schlundt, H.: J. Phys. Chem. 5, 503 (1901).
13. Eversheim, P.: Ann. Physik 8, 539 (1902).
14. Tangl, K.: Ann. Physik 10, 748 (1903).
15. Walden, P.: Z. physik. Chem. 46, 103 (1903).
16. Eggers, H. E.: J. Phys. Chem. 8, 14 (1904).
17. Schlundt, H.: J. Phys. Chem. 8, 122 (1904).
18. Mathews, J. H.: J. Phys. Chem. 9, 641 (1905).
19. Schaefer, O. C., and H. Schlundt: J. Phys. Chem. 13, 669 (1909).
20. Walden, P.: Z. physik. Chem. 70, 569 (1910).
21. Dobroserdov, D. K.: J. Russ. Phys.-Chem. Soc. 43, 73 (1911).
22. Cauwood, J. D., and W. E. S. Turner: J. Chem. Soc. 107, 276 (1915).
23. Harrington, E. A.: Phys. Rev. 8, 581 (1916).
24. Richards, T. W., and J. W. Shipley: J. Am. Chem. Soc. 41, 2002 (1919).
25. Graffunder, W.: Ann. Physik 70, 225 (1923).
26. Grimm, F. V., and W. A. Patrick: J. Am. Chem. Soc. 45, 2794 (1923).
27. Meyer, E. H. L.: Ann. Physik 75, 801 (1924).
28. Walden, P., and O. Werner: Z. physik. Chem. 111, 465 (1924).
29. Wolfke, M., and H. K. Onnes: Proc. Koninkl. Ned. Akad. Wetenschap. 27, 627 (1924); Commun. Phys. Lab. Univ. Leiden 171b (1924).
30. Wolfke, M., and H. K. Onnes: Proc. Koninkl. Ned. Akad. Wetenschap. 27, 621 (1924) ; Commun. Phys. Lab. Univ. Leiden 171c (1924).
31. Errera, J., and M. Lepingale: Bull. classe sci. Acad. roy. Belg. 2, 150 (1925).
32. Errera, J.: J. phys. radium 6, 390 (1925).
33. Lange, L.: Z. Physik 33, 169 (1925).
34. Schlundt, H., and A. F. O. Germann: J. Phys. Chem. 29, 353 (1925).
35. Walden, P., H. Ulich, and O. Werner: Z. physik. Chem. 116, 261 (1925).
36. Ebert, L., and W. H. Keesom: Proc. Koninkl. Ned. Akad. Wetenschap. 29, 1188 (1926); Commun. Phys. Lab. Univ. Leiden 182d (1926).
37. Errera, J.: Physik. Z. 27, 764 (1926).
38. Kerr, R. N.: J. Chem. Soc. 1926, 2796.
39. Sayce, L. A., and H. V. A. Briscoe: J. Chem. Soc. 1926, 2623.
40. Werner, W., and W. H. Keesom: Proc. Koninkl. Ned. Akad. Wetenschap. 29, 34 (1926); Commun. Phys. Lab. Univ. Leiden 178a (1926).
41. Werner, W., and W. H. Keesom: Proc. Koninkl. Ned. Akad. Wetenschap. 29, 306 (1926); Commun. Phys. Lab. Univ. Leiden 178c (1926).
42. Williams, J. W., and I. J. Krchma: J. Am. Chem. Soc. 48, 1888 (1926).
43. Kerr, R. N., Phil. Mag. 3, 330 (1927).
44. Krchma, I. J., and J. W. Williams: J. Am. Chem. Soc. 49, 2408 (1927).
45. Anderson, A. I.: Proc. Phys. Soc. (London) 40, 62 (1928).
46. Esterman, J.: Z. physik. Chem. B1, 134 (1928).
47. Lautsch, W.: Z. physik. Chem. B1, 115 (1928).
48. Smyth, C. P., S. O. Morgan, and J. C. Boyce: J. Am. Chem. Soc. 50, 1536 (1928).
49. Smyth, C. P., and S. O. Morgan: J. Am. Chem. Soc. 50, 1547 (1928).
50. Smyth, C. P., and W. N. Stoops: J. Am. Chem. Soc. 60, 1883 (1928).
51. Wolfke, M., and W. H. Keesom: Proc. Koninkl. Ned. Akad. Wetenschap. 31, 81 (1928); Commun. Phys. Lab. Univ. Leiden 190a (1928).
52. Wolfke, M., and W. H. Keesom: Proc. Koninkl. Ned. Akad. Wetenschap. 31, 800 (1928) ; Commun. Phys. Lab. Univ. Leiden 192a (1928).
53. Fredenhagen, K., and J. Dahmlos: Z. anorg. u. allgem. Chem. 178, 272 (1929).
54. Hartshorn, L., and D. A. Oliver: Proc. Roy. Soc. (London), ser. A, 123, 664 (1929).
55. Lattey, R. T., and O. Gatty, Phil. Mag. 7, 985 (1929).
56. Smyth, C. P., and W. N. Stoops: J. Am. Chem. Soc. 51, 3312 (1929).
57. Smyth, C. P., and W. N. Stoops: J. Am. Chem. Soc. 51, 3330 (1929).
58. Walden, P., and L. Werner: Z. physik. Chem. B2, 10 (1929).
59. Wolf, K. L.: Z. physik. Chem. B2, 39 (1929).
60. Ball, A. O.: J. Chem. Soc. 1930, 570.
61. Das, L. M., and S. C. Roy: Indian J. Phys. 5, 441 (1930).
62. Doborzynski, D.: Z. Physik 66, 657 (1930).
63. Dornte, R. W., and C. P. Smyth: J. Am. Chem. Soc. 52, 3546 (1930).
64. Drake, F. H., G. W. Pierce, and M. T. Dow: Phys. Rev. 35, 613 (1930).
65. Errera, J., and M. L. Sherrill: J. Am. Chem. Soc. 52, 1993 (1930).
66. McLennan, J. C., R. C. Jacobsen, and J. O. Wilhelm: Trans. Roy. Soc. Can. 24, 37 (1930).
67. Morgan, S. O., and H. H. Lowry: J. Phys. Chem. 34, 2385 (1930).
68. Smyth, C. P., and H. E. Rogers: J. Am. Chem. Soc. 52, 1824 (1930).
69. Smyth, C. P., and H. E. Rogers: J. Am. Chem. Soc. 52, 2227 (1930).
70. Williams, J. W.: J. Am. Chem. Soc. 52, 1831 (1930).
71. Wyman, J.: Phys. Rev. 35, 623 (1930).
72. Bretscher, E.: Physik. Z. 32, 765 (1931).
73. Cone, R. M., G. H. Denison, and J. D. Kemp: J. Am. Chem. Soc. 53, 1278 (1931).
74. Danforth, W. E.: Phys. Rev. 38, 1224 (1931).
75. Lattey, R. T., O. Gatty, and W. G. Davies: Phil. Mag. 12, 1019 (1931).
76. Pyle, W. R.: Phys. Rev. 38, 1057 (1931).
77. Smyth, C. P., and R. W. Dornte: J. Am. Chem. Soc. 53, 545 (1931).
78. Smyth, C. P., R. W. Dornte, and E. B. Wilson: J. Am. Chem. Soc. 53, 4242 (1931).
79. Wyman, J.: J. Am. Chem. Soc. 53, 3292 (1931).
80. Åkerlöf, G.: J. Am. Chem. Soc. 54, 4125 (1932).
81. Heil, L. M.: Phys. Rev. 39, 666 (1932).
82. Jagielski, A.: Bull. intern. acad. polon. sci., Classe sci. math. et nat. A1932, 327 (1932).
83. Linton, E. P., and O Maass: J. Am. Chem. Soc. 54, 1863 (1932).
84. Smyth, C. P., and W. S. Walls: J. Am. Chem. Soc. 54, 3230 (1932).
85. Smyth, C. P., and C. S. Hitchcock: J. Am. Chem. Soc. 54, 4631 (1932).
86. Ulich, H., and W. Nespital: Z. physik. Chem. B16, 221 (1932).
87. Curtis, H. J.: J. Chem. Phys. 1, 160 (1933).
88. Dobinski, S.: Z. Physik 83, 129 (1933).
89. Fairbrother, F.: J. Chem. Soc. 1933, 1541.
90. Fairbrother, F.: Proc. Roy. Soc. (London), ser. A, 142, 173 (1933).
91. Girard, P., and P. Abadie: Compt. rend. 197, 146 (1933).
92. Højendahl, K.: Z. physik. Chem. B20, 54 (1933).
93. Oncley, J. L., and J. W. Williams: Phys. Rev. 43, 341 (1933).
94. Smyth, C. P., and C. S. Hitchcock: J. Am. Chem. Soc. 55, 1830 (1933).
95. Sugden, S.: J. Chem. Soc. 1933, 768.
96. Uhlig, H. H., J. G. Kirkwood, and F. G. Keyes: J. Chem. Phys. 1, 155 (1933).
97. Girard, P.: Trans. Faraday Soc. 30, 763 (1934).
98. Hooper, G. S., and C. A. Kraus: J. Am. Chem. Soc. 56, 2265 (1934).
99. Howell, O. R., and W. Jackson: Proc. Roy. Soc. (London), ser. A, 145, 539 (1934).
100. Jenkins, H. O.: J. Chem. Soc. 1934, 480.
101. Olson, A. R., and W. Maroney: J. Am. Chem. Soc. 56, 1320 (1934).
102. Sherrill, M. L., M. E. Smith, and D. D. Thompson: J. Am. Chem. Soc. 66, 611 (1934).
103. Smyth, C. P., and C. S. Hitchcock: J. Am. Chem. Soc. 56, 1084 (1934).
104. Snoek, J. L.: Physik. Z. 35, 196 (1934).
105. Earp, D., and S. Glasstone: J. Chem. Soc. 1935, 1709.
106. Le Fevre, R. J. W.: J. Chem. Soc. 1935, 773.
107. Le Fevre, C. G., and R. J. W. Le Fevre: J. Chem. Soc. 1935, 1747.
108. Marsden, J., and O. Maass: Can. J. Research B13, 296 (1935).
109. Otto, M. M., and H. H. Wenzke: J. Am. Chem. Soc. 57, 294 (1935).
110. Bickford, W. G.: Iowa State Coll. J. Sci. 11, 35 (1936).
111. Davies, R. M.: Phil. Mag. 21, 1 (1936).
112. Davies, R. M.: Phil. Mag. 21, 1008 (1936).
113. Freymann, R.: Compt. rend. 202, 952 (1936).
114. Glockler, G., and R. E. Peck: J. Chem. Phys. 4, 624 (1936).
115. Glockler, G., and R. E. Peck: J. Chem. Phys. 4, 658 (1936).
116. Gore, R. C., and H. T. Briscoe: J. Phys. Chem. 40, 619 (1936).
117. Grubb, H. M., J. E. Chittum, and H. Hunt: J. Am. Chem. Soc. 58, 776 (1936).
118. Jagielski, A.: Bull. intern. acad. polon. sci., Classe sci. math. et nat. A1936, 451 (1936).
119. Keutner, E.: Ann. Physik 29 (1936).
120. McNeight, S. A., and C. P. Smyth: J. Am. Chem. Soc. 58, 1718 (1936).
121. Piekara, B.: Physik. Z. 37, 624 (1936).
122. Albright, P. S.: J. Am. Chem. Soc. 59, 2098 (1937).
123. Coop, I. E.: Trans. Faraday Soc. 33, 583 (1937).
124. Cowley, E. G., and J. R. Partington: J. Chem. Soc. 1937, 130.
125. Hadamard, J.: Compt. rend. 204, 1234 (1937).
126. Higasi, K., and M. Kubo: Bull. Chem. Soc. Japan 12, 326 (1937).
127. Hrynakowski, K., and A. Zochowski: Ber. deut. chem. Ges. 70B, 1739 (1937).
128. Kanda, E.: Bull. Chem. Soc. Japan 12, 473 (1937).
129. Martin, A. R.: Trans. Faraday Soc. 33, 191 (1937).
130. Müller, F. H.: Physik. Z. 38, 283 (1937).
131. Smits, A., and N. F. Moerman: Rec. trav. chim. 56, 169 (1937).
132. Thomas, G.: J. Chem. Soc. 1937, 1051.
133. White, A. H., and S. O. Morgan: J. Chem. Phys. 5, 655 (1937).
134. Baker, W. O., and C. P. Smyth: J. Am. Chem. Soc. 60, 1229 (1938).
135. Guillien, R.: Compt. rend: 206, 1001 (1938).
136. Guillien, R.: Compt. rend. 207, 393 (1938).
137. Le Fevre, R. J. W.: Trans. Faraday Soc. 34, 1127 (1938).
138. Paranjpe, G. R., and D. J. Davar: Indian J. Phys. 12, 283 (1938).
139. Wesolowski, J.: Bull. intern. acad. polon. sci., Classe sci. math. et nat. A1938, 290 (1938).
140. Wyman, J., and E. N. Ingalls: J. Am. Chem. Soc. 60, 1182 (1938).
141. Baker, W. O., and C. P. Smyth: J. Am. Chem. Soc. 61, 1695 (1939).
142. Baker, W. O., and C. P. Smyth: J. Am. Chem. Soc. 61, 2798 (1939).
143. Davies, R. M., and T. T. Jones: Phil. Mag. 28, 307 (1939).
144. Fuoss, R. M.: J. Am. Chem. Soc. 61, 2334 (1939).
145. Guillien, R.: Rev. sci. 77, 575 (1939).
146. Larson, R. G., and H. Hunt: J. Phys. Chem. 43, 417 (1939).
147. Lewis, G. L., and C. P. Smyth: J. Chem. Phys. 7, 1085 (1939).
148. Lewis, G. L., and C. P. Smyth: J. Am. Chem. Soc. 61, 3062 (1939).
149. Lewis, G. L., and C. P. Smyth: J. Am. Chem. Soc. 61, 3067 (1939).
150. Plotnikov, V. A., I. A. Sheka, and Z. A. Yankelevich: J. Gen. Chem. (U.S.S.R.) 9, 868 (1939).
151. Wood, R. E., and R. G. Dickinson: J. Am. Chem. Soc. 61, 3259 (1939).
152. Guillien, R.: J. phys. radium 1, 29 (1940).
153. Morgan, S. O., and W. A. Yager: Ind. Eng. Chem, 32, 1519 (1940).
154. Rodebush, W. H., C. R. Eddy, and L. D. Eubank: J. Chem. Phys. 8, 889 (1940).
155. Turkevich, A., and C. P. Smyth: J. Am. Chem. Soc. 62, 2468 (1940).
156. Volarovich, M. P., and N. M. Stepanenko: Acta Physicochim. U.R.S.S. 13, 647 (1940).
157. Wang, Y. L.: Z. physik. Chem. B45, 323 (1940).
158. White, A. H., and W. S. Bishop: J. Am. Chem. Soc. 62, 8 (1940).
159. Winstein, S., and R. E. Wood: J. Am. Chem. Soc. 62, 548 (1940).
160. Cole, R. H.: J. Chem. Phys. 9, 251 (1941).
161. Skinner, L. A.: Dissertation, Duke University, Durham, N.C.
162. Audsley, A., and F. R. Goss: J. Chem. Soc. 1942, 358.
163. Audsley, A., and F. R. Goss: J. Chem. Soc. 1942, 497.
164. de Kreuk, L. J.: Rec. trav. chim. 61, 819 (1942).
165. Miller, J. G.: J. Am. Chem. Soc. 64, 117 (1942).
166. Sambursky, S., and G. Wolfsohn: Phys. Rev. 62, 357 (1942).
167. Turkevich, A., and C. P. Smyth: J. Am. Chem. Soc. 64, 737 (1942).
168. van Arkel, A. E., P. Meerburg, and C. R. v.d. Handel: Rec. trav. chim. 61, 767 (1942).
169. van Itterbeek, D. A., and J. Spaepen: Physica 9, 339 (1942).
170. Backer, H. J., and W. G. Perdok: Rec. trav. chim. 62, 533 (1943).
171. Clay, J., A. J. Dekker, and J. Hemelrijk: Physica 10, 178 (1943).
172. Watanabe, I., S. Midzushima, and Y. Masiko: Sci. Papers Inst. Phys. Chem. Research (Tokyo) 40, 425 (1943).
173. Coates, G. E., and J. E. Coates: J. Chem. Soc. 1944, 77.
174. Deal, C. H.: Dissertation, Duke University, Durham, N.C.
175. Phadke, S. R., S. D. Gokhale, N. L. Phalnikar, and B. V. Bhide: J. Indian Chem. Soc. 22, 235 (1945).
176. Phadke, S. R., N. L. Phalnikar, and B. V. Bhide: J. Indian Chem. Soc. 22, 239 (1945).
177. Stephanenko, N., and T. Novikova: Acta Physicochim. U.R.S.S. 20, 653 (1945).
178. Vernon, A. A., J. Wyman, and R. A. Avery: J. Am. Chem. Soc. 67, 1422 (1945).
179. Albright, P. S., and L. J. Gosting: J. Am. Chem. Soc. 68, 1061 (1946).
180. Sauer, R. O., and D. J. Mead: J. Am. Chem. Soc. 68, 1794 (1946).
181. Elliott, M. A., A. R. Jones, and L. B. Lockhart: Anal. Chem. 19, 10 (1947).
182. Le Fevre, R. J., and P. Russell: Trans. Faraday Soc. 43, 374 (1947).
183. Vasenko, E. N.: J. Phys. Chem. (U.S.S.R.) 21, 361 (1947).
184. Fairbrother, F.: J. Chem. Soc. 1948, 1051.
185. Heston, W. A., E. T. Hennelly, and C. P. Smyth: Tech. Rept. 10, ONR Contract N6ori-105, Task Order IV; also J. Am. Chem. Soc. 72, 2071 (1950).
186. Mouradoff-Fouquet, L.: Compt. rend. 226, 1970 (1948).
187. Reynolds, M. B., and C. A. Kraus: J. Am. Chem. Soc. 70, 1709 (1948).
188. Strobel, H. A., and H. C. Eckstrom: J. Chem. Phys. 16, 817 (1948).
189. Stroble, H. A., and H. C. Eckstrom: J. Chem. Phys. 16, 827 (1948).
190. von Hipple, A.: Tables of Dielectric Materials, vol. III, Technical Report X, Laboratory for Insulation Research, Massachusetts Institute of Technology, Cambridge, Mass.
191. Burdun, G. D., and P. B. Kantor: Doklady Akad. Nauk U.S.S.R. 67, 985 (1949).
192. Hoffman, J. D., and C. P. Smyth: J. Am. Chem. Soc. 71, 431 (1949).
193. van der Maesen, F.: Physica 15, 481 (1949).
194. Barclay, G. A., and R. J. W. Le Fevre: J. Chem. Soc. 1950, 556.
195. Crowe, R. W., and C. P. Smyth: J. Am. Chem. Soc. 72, 4427 (1950).
196. Gross, P. M., Jr., and R. C. Taylor: J. Am. Chem. Soc. 72, 2075 (1950).
197. Heston, W. M., and C. P. Smyth: J. Am. Chem. Soc. 72, 99 (1950).
198. Hoffman, J. D., and C. P. Smyth: J. Am. Chem. Soc. 72, 171 (1950).
199. Le Fevre, R. J. W., and I. G. Ross: J. Chem. Soc. 1950, 283.
200. Malmberg, C. G., and A. A. Maryott: Unpublished data, National Bureau of Standards.
201. Vierk, A. L.: Z. anorg. Chem. 261, 283 (1950).

201a. Simons, J. H., and K. H. Lorentzen: J. Am. Chem. Soc. 72, 1426 (1950).

Table 5d-10. Representative Values of Dielectric Constant of Miscellaneous Commercial Dielectrics

| Material | $T,{ }^{\circ} \mathrm{C}$ | $\nu$, cps | $\epsilon / \epsilon_{v}$ |
| :---: | :---: | :---: | :---: |
| Asphalt. | 26 | $1 \times 10^{3}$ | 2.66 |
|  |  | $1 \times 10^{6}$ | 2.58 |
|  |  | $1 \times 10^{10}$ | 2.55 |
| Asbestos. | 25 | $1 \times 10^{3}$ | 4.8 |
| Castor oil. | 15 | $1 \times 10^{3}$ | 4.7 |
|  | 23 | $3 \times 10^{9}$ | 2.68 |
| Castor oil, hydrogenated. | 24 | $1 \times 10^{3}$ | 10.3 |
|  | 24 | $1 \times 10^{6}$ | 3.2 |
| Chlorinated diphenyl: |  |  |  |
| $54 \%$ chlorine. | 25 | $1 \times 10^{3}$ | 5.05 |
| 42\% chlorine. | 25 | $1 \times 10^{3}$ | 6.70 |
| Chlorinated naphthalene (hot-molded). | 25 | $1 \times 10^{3}$ | 3.78 |
|  | 25 | $1 \times 10^{6}$ | 3.70 |
|  | 25 | $3 \times 10^{9}$ | 2.57 |
| Hydrocarbon oils: |  |  |  |
| Transformer oil. | 25 | $1 \times 10^{3}$ | 2.22 |
|  | 25 | $3 \times 10^{9}$ | 2.18 |
| Cable oil. | 25 | $1 \times 10^{3}$ | 2.25 |
| Mineral oil. | 25 | $1 \times 10^{3}$ | 2.15 |
| Hydrocarbon waxes: : |  |  |  |
| Paraffin. | 25 | $1 \times 10^{3}$ | 2.20 |
|  | 27 | $3 \times 10^{9}$ | 2.20 |
| Biwax. | 25 | $1 \times 10^{3}$ | 2.5 |
| Ceresin. | 25 | $1 \times 10^{3}$ | 2.2 |
| Superla No. 8. | 25 | $1 \times 10^{3}$ | 2.34 |
|  | 25 | $3 \times 10^{9}$ | 2.26 |
| Mica, clear ruby muscovite. | 25 | $10^{3}-10^{6}$ | 7.0 |
| Polyisobutylenes: 1 |  |  |  |
| Vistanex.. | 21 | $2 \times 10^{3}$ | 2.20 |
| Vistac. | 25 | $1 \times 10^{3}$ | 2.22 |

## 5d-4. Dielectric Properties of Gases

Table 5d-11. Dielectric Constants of Reference Gases* (At $20^{\circ} \mathrm{C}$ and 1 atm )

|  | $\left(\epsilon^{\prime} / \epsilon_{v}-1\right) \times 10^{6}$ |
| :---: | :---: |
| Helium. | $65.0 \pm 0.4$ |
| Hydrogen. | $253.8 \pm 0.3$ |
| Oxygen. | $494.7 \pm 0.2$ |
| Argon. | $517.2 \pm 0.4$ |
| Air (dry, $\mathrm{CO}_{2}$-free) | $536.4 \pm 0.3$ |
| Nitrogen. | $548.0 \pm 0.5$ |
| Carbon dioxide. | $922 \pm 1$ |

*Taken from Maryott and Buckley, Natl. Bur. Standards ( (U.S.) Circ. 537. Dielectric constants of
other gases may be calculated from dipole moment and molar refraction data given in the above reference.

Table 5d-12. Relative Dielectric Strengths of Various Gases and Nitrogen-Vapor Mixtures*

| Gas or $\mathrm{N}_{2}$ vapor mixture saturated at $23^{\circ} \mathrm{C}$ and 760 mm Hg total pressure | Pressure of vapor, mm Hg | Relative dielectric strength |
| :---: | :---: | :---: |
| Fluorotrichloromethane, $\mathrm{CCl}_{3} \mathrm{~F}$ | 725 | 3.0 |
| Tetrafluorodichloroethane, $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}$ | 760 | 2.8 |
| Trifluorotrichloroethane, $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ | 306 | 2.6 |
| Sulfur hexafluoride, $\mathrm{SF}_{6}$. | 760 | $2.41 \dagger$ |
| Difluorodichloromethane, $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ | 760 | 2.4 |
| Boron trichloride, $\mathrm{BCl}_{3}$ | 760 | 2.3 |
| Methyl iodide, $\mathrm{CH}_{3} \mathrm{I}$. | 370 | 2.2 |
| Sulfur dioxide, $\mathrm{SO}_{2}$. | 760 | 1.9 |
| Phosphorus trichloride, $\mathrm{PCl}_{3}$ | 113 | 1.9 |
| Thionyl chloride, $\mathrm{SOCl}_{2}$. | 110 | 1.65 |
| Carbon tetrachloride, $\mathrm{CCl}_{4}$. | 105 | 1.65 |
| Chloroform, $\mathrm{CHCl}_{3}$. | 180 | 1.58 |
| Sulfuryl chloride, $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ |  | 1.56 |
| Chlorine, $\mathrm{Cl}_{2}$. | 760 | 1.55 |
| Carbon disulfide, $\mathrm{CS}_{2}$. | 330 | 1.50 |
| Fluorodichloromethane, $\mathrm{CHCl}_{2} \mathrm{~F}$ | 760 | 1.33 |
| Hydrogen sulfide, $\mathrm{H}_{2} \mathrm{~S}$. | 760 | 1.30 |
| Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$. | 760 | 1.21 |
| Titanium tetrachloride, $\mathrm{TiCl}_{4}$ | 12 | 1.17 |
| Methyl formate, $\mathrm{HCOOCH}_{3}$. | 570 | 1.16 |
| Trichloroethylene, $\mathrm{CHCl}: \mathrm{CCl}_{2}$ | 65 | 1.15 |
| Nitrous oxide, $\mathrm{N}_{2} \mathrm{O}$. | 760 | 1.14 |
| Phosphoryl chloride, $\mathrm{POCl}_{3}$ | 34 | 1.11 |
| Dichloromethane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. | 400 | 1.11 |
| Acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$. | 760 | 1.10 |
| Trichloroethane, $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ |  | 1.08 |
| Ethyl amine, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$. | 760 | 1.06 |
| Chloromethane, $\mathrm{CH}_{3} \mathrm{Cl}$. | 760 | 1.06 |
| Dimethyl amine, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ | 760 | 1.04 |
| Acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$. | 760 | 1.03 |
| Fluorochloromethane, $\mathrm{CH}_{2} \mathrm{ClF}$. |  | 1.03 |
| Carbon monoxide, CO: | 760 | 1.02 |
| Tetrachloroethane, $\mathrm{CHCl}_{2} \mathrm{CHCl}_{2}$ | 6.8 | 1.02 |
| Sulfur dichloride, $\mathrm{S}_{2} \mathrm{Cl}_{2}$. | 12.5 | 1.02 |
| Nitrobenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$. | 0.3 | 1.02 |
| Methyl bromide, $\mathrm{CH}_{3} \mathrm{Br}$ | 760 | 1.02 |
| Ethyl ether, ( $\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$. | 495 | 1.00 |
| Methane, $\mathrm{CH}_{4}$. | 760 | 1.00 |
| Ethyl alcohol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. | 52 | 1.00 |
| Dichloroethane, $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$. | 70 | 1.00 |
| Ethyl chloride, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$. | 760 | 1.00 |
| Nitromethane, $\mathrm{CH}_{3} \mathrm{NO}_{2}$. | 34 | 1.00 |
| Benzoyl chloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$. | est. 0.2 | 1.00 |

## Table 5d-12. Relative Dielectric Strengths of Various Gases and Nitrogen-Vapor Mixtures (Continued)

| Gas or $\mathrm{N}_{2}$ vapor mixture saturated at $23^{\circ} \mathrm{C}$ and 760 mm Hg total pressure | Pressure of vapor, mm Hg | Relative dielectric strength |
| :---: | :---: | :---: |
| Thioacetic acid, $\mathrm{CH}_{3} \mathrm{COSH}$ |  | 1.00 |
| Acetone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$. | 210 | 0.98 |
| Dibromoethane, $\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$. | 12.5 | 0.98 |
| Air. | 760 | $0.97 \ddagger$ |
| Methyl acetate, $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$ | 195 | 0.95 |
| Ethylene oxide, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ | 760 | 0.95 |
| Benzaldehyde, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$. | 0.6 | 0.95 |
| Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$. | 14 | 0.94 |
| Methyl alcohol, $\mathrm{CH}_{3} \mathrm{OH}$ | 110 | 0.94 |
| Formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$. | 760 | 0.93 |
| Bromobenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$. | ca. 4 | 0.93 |
| Ethyl acetate, $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$. | 86 | 0.91 |
| Tetrachloroethylene, $\mathrm{CCl}_{2}: \mathrm{CCl}_{2}$. | ca. 18 | 0.90 |
| Carbon dioxide, $\mathrm{CO}_{2}$. | 760 | 0.88 |
| Aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$. | ca. 0.3 | 0.87 |
| Oxygen, $\mathrm{O}_{2}$. | 760 | $0.86 \ddagger$ |
| Toluene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ | 25 | 0.86 |
| Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. | 85 | 0.84 |
| Ammonia, $\mathrm{NH}_{3}$ (over $\mathrm{NH}_{4} \mathrm{OH}$ ) |  | 0.82 |
| Chlorobenzene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$. | 10.5 | 0.81 |
| Methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$. | 760 | 0.81 |
| Diethyl amine, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH}$. | 215 | 0.78 |
| Difluoromethane, $\mathrm{CH}_{2} \mathrm{~F}_{2}$ |  | 0.69 |
| Hydrogen, $\mathrm{H}_{2}$. | 760 | $0.54 \ddagger$ |

* The relative dielectric strength is defined as the ratio of dielectric strength of the gas or nitrogenvapor mixture to that of nitrogen at atmospheric pressure and room temperature, when measured in the same gap. Taken from Charlton and Cooper, Gen. Elec. Rev. 40, 438 (1937).
$\dagger$ Hochberg and Sandberg, J. Tech. Phys. (U.S.S.R.) 12, 65 (1942).
$\ddagger$ Landolt-Börnstein, "Physikalisch-Chemischen Tabellen," vol. III, p. 1264.


## 5d-5. Piezoelectric and Pyroelectric Constants

Table 5d-13. Piezoelectric Strain Constants

| Substance |
| :--- |
|  |

Table 5d-13. Piezoelectric Strain Constants (Continued)

| Substance | Formula | $d_{15}$ | $d_{22}$ | ${ }_{24}$ | $d_{31}$ | $d_{32}$ | $d_{33}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35. Ammonium pentaborate tetrahydrate. | $\mathrm{NH}_{4} \mathrm{~B}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | +13 |  | +6.7 | -6.6 | -1.9 | +6.9 | 5* |
| 36. Barium antimonyl tartrate | $\mathrm{Ba}(\mathrm{SbO})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ |  |  |  |  |  | +3.7 | 20 |
| 37. Barium titanate. | $\mathrm{BaTiO}_{3}$ |  |  |  | -37 |  | 84 | 7* |
| 38. Barium titanate ceramic. | $\mathrm{BaTiO}_{3}$ | 283 |  |  | -78 |  | 190 | $5^{*}$ |
| 39. Lithium trisodium chromate hexahydrate.. | $\mathrm{LiNa}_{3}\left(\mathrm{CrO}_{4}\right)_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |  | $\pm 2.9$ |  |  |  |  | 11* |
| 40. Lithium trisodium molybdate hexahydrate. | $\mathrm{LiNa}_{3}\left(\mathrm{MoO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ |  | $\pm 2.5$ |  | $\pm 1.3$ |  | $\pm 1.9$ | 11* |
| 41. Potassium lithium sulfate. | $\mathrm{KLiSO}_{4}$ | +0.9 |  |  | -2.35 |  | +5.2 | 5* |
| 42. Potassium pentaborate tetrahydrate | $\mathrm{KB}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | +9.5 |  | +1.7 | -5.4 |  | +5.6 | 5* |
| 43. Sodium lithium sulfate | $\mathrm{NaLiSO}_{4}$ |  | 0.85 |  | +0.01 |  | +0.3 | 5* |
| 44. Tourmaline. | Variable | +3.7 | -0.23 |  | +0.25 |  | +1.9 | 16 |
|  |  | -3.6 | -0.33 |  | -0.34 |  | -1.8 | $11^{*}$ |


| Substance | Formula | $d_{14}$ | $d_{16}$ | $d_{21}$ | $d_{22}$ | $d_{23}$ | $d_{25}$ | $d_{34}$ | $d_{56}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45. Cane sugar | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ | +1.2 | -2.4 | +1.5 | -3.3 | +0.7 | -0.9 | -4.2 | +0.4 | 8 |
| 46. Diammonium tartrate | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | +3.1 | -2.8 | +5.9 | -8.7 | +0.6 | -2.0 | $-4.7$ | +1.9 | 18 |
|  |  | +3.3 | +1.7 | $-6.7$ | +8.6 | $-0.6$ | +2.4 | +1.8 | +2.0 | 5* |
| 47. Dipotassium tartrate hemihydrate. | $\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ | +7.9 | +3.5 | -0.8 | +4.5 | -5.3 | -6.5 | -12.3 | $-23.2$ | 4* |
| 48. Ethylene diamine tartrate | $\mathrm{C}_{6} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{~N}_{2}$ | $-10.0$ | -12.2 | +10.1 | +2.2 | $-11.3$ | -18.0 | -17.0 | -18.4 | 1* |
| 49. Guanidine tartrate. | $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{6} \mathrm{~N}_{3}$ |  |  | +2.6 |  | -3.9 | +3.3 |  |  | 5* |
| 50. Lithium sulfate monohydrate | $\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ | +0.76 | -2.0 | -3.6 | +16.3 | +1.7 | $-5.0$ | $-2.1$ | -4.2 | 3* |
| 51. Rhamnose. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ | +0.7 | $+5.0$ | +2.7 | -3.0 | $-5.0$ | +12.2 | $-12.0$ | +1.1 | 14 |
| 52. Sorbitol hexa-acetate | $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{12}$ | 1.4 | 23 | 0.5 | -8 | 0.8 |  | 2 | 2 | 5 |
| 53. Tartaric acid. | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$ | -12.2 | +9.5 | +2.0 | -2.2 | +0.65 | +1.3 | +9.3 | -8.0 | 19 |
|  |  | $+8.0$ | +5.3 | -0.8 | -2.2 | -2.1 | +0.4 | -10.8 | +11.7 | 11* |

*According to the standards on piezoelectric crystals of the IRE [Proc. IRE 37, 1378 (1949)], we define the piezoelectric strain constants $d_{i k}=\frac{\partial D_{i}}{\left(\partial T_{k}\right) \boldsymbol{B}}$ or $d_{i k}=\frac{\partial S_{k}}{\left(\partial E_{i}\right) T}$ where $i=1,2,3$ and $k=1$ to $6 ; T_{k}=$ stress; $S_{k}=$ strain; $D_{i}=$ electric displacement; and $E_{i}=$ electric field. The units are coulomb/newton or meter/volt (rationalized mks). The listed numbers have to be multiplied by $10^{-12}$. In all cases marked by an asterisk, the IRE convention of tension being a positive stress has been followed. For the other values quoted the convention used is somewhat uncertain, although pressure is usually taken as positive.

## References

1. Bechmann, R.: Proc. Phys. Soc. (London) 63B, 577 (1950).
2. Bechmann, R.: Proc. Phys. Soc. (London) 64B, 323 (1951).
3. Bechmann, R.: Proc. Phys. Soc. (London) 65B, 375 (1952).
4. Bechmann, R., and S. Ayers: Proc. Phys. Soc. (London) 67B, 422 (1954).
5. Brush Laboratories Company, Cleveland, Ohio: reports.
6. Cady, W.: "Piezoelectricity," McGraw-Hill Book Company, Inc., New York, 1946.
7. Caspari, M. E., and W. J. Merz: Phys. Rev. 80, 1082 (1950).
8. Holman, W. F.: Ann. Phys. 29, 160 (1909).
9. Knol, K. S.: Konink. Akad. Wetenschap. Amsterdam 35, 99 (1932).
10. Mandell, W.: Proc. Roy. Soc. (London) 121, 130 (1928).
11. Mason, W. P.: "Piezoelectric Crystals and Their Application to Ultrasonics," D. Van Nostrand Company, Inc., New York, 1950.
12. Mason, W. P., and A. N. Holden: Phys. Rev. 57, 54 (1940).
13. Mason, W. P., and B. T. Matthias: Phys. Rev. 88, 477 (1952).
14. Meyer, G.: Dissertation, Göttingen, 1937.
15. Niemiec, T.: Phys. Rev. 75, 215 (1949).
16. Riecke, E., and W. Voigt: Wied. Ann. Phys. 45, 523 (1892).
17. Scholz, H.: Dissertation, Göttingen, 1941.
18. Spitzer, F.: Dissertation, Göttingen, 1938.
19. Tamaru, T.: Phys. Z. 6, 379 (1905).
20. Van der Veen, A. L.: Z. Krist. 51, 545 (1913).
Table 5d-14. Temperature Dependence of Some Piezoelectric Strain Constants ( $\times 10^{-12}$ in coulomb/newton or meter/volt)

| Substance | Formula | $d_{i k}$ | $123{ }^{\circ} \mathrm{K}$ | $153^{\circ} \mathrm{K}$ | $193{ }^{\circ} \mathrm{K}$ | $243^{\circ} \mathrm{K}$ | $258^{\circ} \mathrm{K}$ | $273^{\circ} \mathrm{K}$ | $293^{\circ} \mathrm{K}$ | $307^{\circ} \mathrm{K}$ | $321^{\circ} \mathrm{K}$ | $343^{\circ} \mathrm{K}$ | $390^{\circ} \mathrm{K}$ | $423{ }^{\circ} \mathrm{K}$ | $473^{\circ} \mathrm{K}$ | Re |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ammonium dihydrogen phosphate | $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ | $d_{36}$ |  | -83 | -69 | -55 | -51 | -48 | -46 |  |  | $\ldots$ | $\ldots$ | $\ldots$ |  | 6 |
| Barium titanate................ | $\mathrm{BaTiO}_{3}$ | $d_{31}$ |  | .... | .... | .... |  |  | -37 | -38 | -39 | -42 | -170 | 0 | 0 | 4* |
| Barium titanate ceramics. | $\mathrm{BaTiO}_{3}$ | $d_{31}$ |  | $\cdots$ | $\ldots$ | -60 | -65 | -75 | -85 | -69 | -64 | -55 | ..... | $\ldots$ | $\ldots$ | 2* |
| Heavy rochelle salt. | $\mathrm{KNaC}_{4} \mathrm{H}_{2} \mathrm{D}_{2} \mathrm{O}_{6} \cdot 4 \mathrm{D}_{2} \mathrm{O}$ | $d_{14}$ |  | $\ldots$ | $\ldots$ | .... | 195 | 140 | 193 | 2,800 | 213 | $\ldots$ |  | $\ldots$ |  |  |
| Potassium dihydrogen phosphate. | $\mathrm{KH}_{2} \mathrm{PO}_{4}$ | ${ }^{d}{ }_{36}$ | 20,000 | 135 | 50 | 29 | 26 | 23 | 21 | ..... | .... | $\ldots$ |  | $\ldots$ | $\ldots$ | 1 |
| Rochelle salt................... | $\mathrm{KNaC} \mathbf{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | $d_{14}$ |  | $\ldots$ | $\ldots$ | 96 | 700 | 765 | 780 | 250 | $\ldots$ | $\cdots$ |  | ... | $\ldots$ | 7 |
|  |  |  |  |  | 5.5 | 22 | 1,200 | 2,250 | 2,700 | 250 | $\cdots$ | $\ldots$ |  | $\ldots$ |  | 8 |
|  |  |  |  |  |  | 150 | 2,100 | 350 | 740 | 320 | 120 |  |  |  |  | 2 |
| Sodium bromate. | $\mathrm{NaBrO}_{3}$ | $d_{14}$ |  |  | $\ldots$ | $\ldots$ | ..... |  | 2.7 | 2.8 | 3.0 | 3.2 | 3.7 | 4.1 | 5.1 | 5* |
| Sodium chlorate. | $\mathrm{NaClO}_{3}$ | $d_{14}$ |  |  | $\ldots$ | $\cdots$ |  |  | 2.0 | 2.2 | 2.3 | 2.5 | 3.1 | 3.8 | 5.4 | 5* |

[^248]Table 5d-15. Temperature Coefficient of Some Piezoelectric Strain Constants at Room Temperature

| Substance | Formula | $\alpha_{11}$ | $\alpha_{14}$ | $\alpha_{25}$ | $\alpha_{36}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iodic acid. | $\mathrm{HIO}_{3}$ |  | $+3.5$ | $\overline{-3.5}$ | -0.9 | 3 |
| Lithium ammonium tartrate monohydrate | $\mathrm{LiNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ |  | +39 | -50 | +31 | 3 |
| Quartz. | $\mathrm{SiO}_{2}$ | $\sim-10$ |  |  |  | 2 |
|  |  | -2.15 | 12.9 |  |  | 1 |
| Rochelle salt. | $\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |  | See <br> Table | +49 | +10.9 | 4 |
|  |  |  | 5d-14 |  |  |  |
| Sodium ammonium tartrate tetrahydrate. | $\mathrm{NaNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ |  | +2.1 | -19 | +12.1 | 3 |
| Strontium formate dihydrate. | $\mathrm{Sr}(\mathrm{HCOO})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ |  | -8 | -3.8 | -14.7 | 3 |

Temperature coefficient $\alpha$ is defined as $\alpha_{i k}=\frac{1}{d_{i k}} \frac{\partial d_{i k}}{\partial \theta}$ where $\theta$ is the temperature. $\alpha_{i k}$ is measured in degrees ${ }^{-1}$. The listed numbers have to be multiplied by $10^{-4}$.

## References

1. Bechmann, R.: Proc. Phys. Soc. (London) 64B, 323 (1951).
2. Cady, W.: "Piezoelectricity," McGraw-Hill Book Company, Inc., New York, 1946.
3. Mason, W. P.: "Piezoolectric Crystals and Their Application," D. Van Nostrand Company, Inc., New York, 1950.
4. Valasek, J.: Science 65, 235 (1927).

Table 5d-16. Table of Pyroelectric Constants

| Substance | Formula | $p$ | Ref. |
| :---: | :---: | :---: | :---: |
| 1. Calamine. | $2 \mathrm{ZnO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 2.0 | 2, 4 |
| 2. Cane sugar | $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ | 0.18 |  |
| 3. Diammonium tartrate | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | 0.95 | 1,3 |
| 4. Dipotassium tartrate hemihydrate. | $\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ | 2.0 | 1, 3 |
| 5. Lithium selenate monohydrate. | $\mathrm{Li}_{2} \mathrm{SeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ | 5.7 | 1, 3 |
| 6. Lithium sodium sulfate. | $\mathrm{LiNaSO}_{4}$ | 0.75 | 1, 3 |
| 7. Lithium sulfate monohydrate. | $\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ | 7.7 | 1, 3 |
| 8. Lithium trisodium selenate hexahydrate . | $\mathrm{LiNa}_{3}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 1.8 | 1, 3 |
| 9. Potassium lithium sulfate | $\mathrm{KLiSO}_{4}$ | 1.6 | 1, 3 |
| 10. Resorcinol. | $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$ | 2.6 | 3 |
| 11. Rhamnose. | $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.2 | 3 |
|  |  | 0.17 |  |
| 12. Scolecite | $\mathrm{CaAl}_{2} \mathrm{Si}_{3} \mathrm{O}_{10} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 0.33 | 3 |
| 13. Strontium dit | $\mathrm{Sr}\left(\mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 0.24 | 1 |
|  |  | 2.7 | 4 |
|  | $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$ | 2.5 | 3 |
| 15. Tourmaline. | Variable | 0.35-0.44 | 1 |

The pyroelectric constant is defined as $p=\left(\frac{\partial D}{\partial \theta}\right)_{B_{-0}}$ where $D$ is the electric displacement and $\theta$ the temperature. The units for $p$ are coulomb/meter ${ }^{2}$ degree (rationalized mks). The listed numbers have to be multiplied by $10^{-5}$. They include both the true and the false pyroeffect.

## References

1. Ackermann, W.: Ann Physik 46, 197 (1915).
2. Curie and Curie: Compt. rend. 91, 383 (1880).
3. Hayashi, F.: Dissertation, Göttingen, 1912.
4. Van der Veen, A.: Thesis, Delft, 1911.

ELECTRICITY AND MAGNETISM
Table 5d-17. Temperature Dependence of Some Pyroelectric Constants*

| Substance | Formula | $23^{\circ} \mathrm{K}$ | $88^{\circ} \mathrm{K}$ | $198^{\circ} \mathrm{K}$ | $253{ }^{\circ} \mathrm{K}$ | $274{ }^{\circ} \mathrm{K}$ | $293{ }^{\circ} \mathrm{K}$ | $352^{\circ} \mathrm{K}$ | $372{ }^{\circ} \mathrm{K}$ | $408^{\circ} \mathrm{K}$ | $488^{\circ} \mathrm{K}$ | $578{ }^{\circ} \mathrm{K}$ | $648^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Diammonium tartrate. | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$ | 0.05 | 0.10 | 0.39 | 0.80 | 0.86 | 0.95 | 1.14 |  |  |  |  |  |
| Lithium selenate monohydrate. | $\mathrm{Li}_{2} \mathrm{SeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ | 0.31 | 0.77 | 3.28 | 4.82 | 5.33 | 5.70 | 6.45 |  |  |  |  |  |
| Lithium sodium sulfate. | $\mathrm{LiNaSO}_{4}$ | 0.04 | 0.10 | 0.29 | 0.54 | 0.68 | 0.75 | 0.91 |  |  |  |  |  |
| Lithium sulfate monohydrate | $\mathrm{Li}_{2} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ | 0.40 | 1.27 | 4.07 | 6.15 | 6.82 | 7.75 | 9.0 |  |  |  |  |  |
| Lithium trisodium selenate hexahydrate | $\mathrm{LiNa}_{3}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 0.12 | 0.31 | 0.98 | 1.53 | 1.69 | 1.80 | 2.12 |  |  |  |  |  |
| Potassium lithium sulfate.... | $\mathrm{KLiSO}_{4}$ |  | 0.23 | 0.83 | 1.36 | 1.50 | 1.61 | 1.78 |  |  |  |  |  |
| Dipotassium tartrate hemihydrate. | $\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ | 0.13 | 0.33 | 1.10 | 1.70 | 1.87 | 1.99 | 2.30 |  |  |  |  |  |
| Strontium ditartrate tetrahydrate. | $\mathrm{Sr}\left(\mathrm{HC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 0.013 | 0.04 | 0.15 | 0.21 | 0.23 | 0.24 | 0.27 |  |  |  |  |  |
| Tourmaline.. | Yellow-green | 0.027 | 0.097 | 0.32 | 0.40 | 0.41 | 0.43 | 0.44 | 0.45 | 0.46 | 0.50 | 0.56 | 0.62 |
|  | Rose-red | 0.027 | 0.10 | 0.33 | 0.41 | 0.42 | 0.44 | 0.47 | 0.48 | 0.49 | 0.51 | 0.58 | 0.65 |
|  | Blue-green | 0.013 | 0.047 | 0.22 | 0.31 | 0.34 | 0.35 | 0.39 | 0.40 | 0.41 | 0.42 | 0.46 | 0.51 |

[^249]
## 5d-6. Ferroelectric and Antiferroelectric Properties

Table 5d-18. Ferroelectric Crystals

| Substance | Formula | Structure at room temp. | Ferroelectric axis | Curie point, ${ }^{\circ} \mathrm{K}$ | Max spont. polarization, coulomb/ meter ${ }^{2}$ | Small-signal dielectric const at room temp. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\epsilon_{a /} / \epsilon_{0}$ | $\epsilon_{6} / \epsilon_{v}$ | $\epsilon_{c} / \epsilon_{v}$ |
| Heavy rochelle salt. . | $\mathrm{KNaC}_{4} \mathrm{H}_{2} \mathrm{D}_{2} \mathrm{O}_{6} \cdot 4 \mathrm{D}_{2} \mathrm{O}$ | monoc. | $a$ | 308 upper, <br> 251 lower | $0.37 \times 10^{-2}$ | 2,300 | 9.4 | 9.8 |
| Lithium ammonium tartrate monohydrate | $\mathrm{LiNH}_{4} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | orthorh. | b | 106 | $\begin{aligned} & 0.21 \times 10^{-2} \\ & \text { at } T \ll \theta \end{aligned}$ | 7.2 | 8.0 | 6.9 |
| Lithium thallium tartrate monohydrate | $\mathrm{LiTIC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | orthorh. | $a$ | 10 | $\begin{aligned} & 0.14 \times 10^{-2} \\ & \text { at } T \ll \theta \end{aligned}$ |  |  |  |
| Rochelle salt.......... | $\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | monocl. | $a$ | 297 upper, 255 lower | $\begin{aligned} & 0.24 \times 10^{-2} \\ & \text { at } 276^{\circ} \mathrm{K} \end{aligned}$ | $\left\|\begin{array}{l} 4,000 \\ \text { at } \theta \text { up } \end{array}\right\|$ | 10.0 | 9.6 |
| Cesium dideuterium arsenate. $\qquad$ | $\mathrm{CsD}_{2} \mathrm{AsO}_{4}$ | tetrag. | $c$ | 212 |  |  |  |  |
| Cesium dihydrogen arsenate. | $\mathrm{CsH}_{2} \mathrm{AsO}_{4}$ | tetrag. | c | 143 |  |  |  |  |
| Potassium dideuterium arsenate. | $\mathrm{KD}_{2} \mathrm{AsO}_{4}$ | tetrag. | c | 162 |  |  |  |  |
| Potassium dideuterium phosphate | $\mathrm{KD}_{2} \mathrm{PO} 4$ | tetrag. | $c$ | 213 | $4.8 \times 10^{-2}$ | 88 | 88 | 90 |
| Potassium dihydrogen arsenate | $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ | tetrag. | $c$ | 97 | $\begin{gathered} 5.0 \times 10^{-2} \\ \text { at } T \ll \theta \end{gathered}$ | 62 | 62 | 22 |
| Potassium dihydrogen phosphate | $\mathrm{KH}_{2} \mathrm{PO}_{4}$ | tetrag. | $c$ | 123 | $\begin{gathered} 4.95 \times 10^{-2} \\ \text { at } T \ll \theta \end{gathered}$ | 42 | 42 | 21 |
| Rubidium dideuterium arsenate. | $\mathrm{RbD}_{2} \mathrm{AsO}_{4}$ | tetrag. | $c$ | 178 |  |  |  |  |
| Rubidium dideuterium phosphate. | RbD2PO4 | tetrag. | c | 218 |  |  |  |  |
| Rubidium dihydrogen arsenate. $\qquad$ | $\mathrm{RbH}_{2} \mathrm{AsO}_{4}$ | tetrag. | c | 111 |  |  |  |  |
| Rubidium dihydrogen phosphate........ | $\mathrm{RbH}_{2} \mathrm{PO}_{4}$ | tetrag. | $c$ | 146 | ........... | 35 | 35 | 22 |
| Barium titanate..... | $\mathrm{BaTiO}_{3}$ | tetrag. | $c$ | 393 | $\begin{array}{\|c} 26 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{array}$ | $\sim 5,000$ | $\sim 5,000$ | $\sim 160$ |
| Cadmium niobate (ceramics) | $\mathrm{Cd}_{2} \mathrm{Nb}_{2} \mathrm{O}_{7}$ | cubic | $\ldots$ | 185 | $\begin{aligned} & 1.8 \times 10^{-2} \\ & \text { at } 100^{\circ} \mathrm{K} \end{aligned}$ | $\ldots$ | $\sim 310$ |  |
| Lead metaniobate (ceramics) | $\mathrm{Pb}\left(\mathrm{NbO}_{3}\right)_{2}$ | orthorh. | $\ldots$ | 843 |  |  | $\sim 280$ |  |
| Lead titanate (ceramics). . | $\mathrm{PbTiO}_{3}$ | tetrag. | $c$ | 763 |  |  | $\sim 50$ |  |
| Lithium niobate... | $\mathrm{LiNbO}_{3}$ | trigonal | $c$ |  |  |  |  |  |
| Lithium tantalate.. | $\mathrm{LiTaO}_{3}$ | trigonal | c |  | $\begin{array}{\|c} 23 \times 10^{-2} \\ \text { at } 723^{\circ} \mathrm{K} \end{array}$ | $\ldots$ | $\ldots$ | $\sim 40$ |
| Potassium niobate...... | KNbO3 | orthorh. | $c$ | 707 | $\begin{gathered} 3.78 \times 10^{-2} \\ \text { at } 683^{\circ} \mathrm{K} \end{gathered}$ | $\ldots$ | $\ldots$ | $\sim 500$ |
| Potassium tantalate... | $\mathrm{KTaO}_{3}$ | cubic | $c$ | 13 | .......... |  |  | $\sim 500$ |
| Sodium niobate... | $\mathrm{NaNbO}_{3}$ | orthorh. | c | <64 |  | 76 | 76 | $\sim 670$ |
| Tungsten trioxyd....... | $\mathrm{WO}_{3}$ | triclinic | $\cdots$ | 983 |  |  |  |  |
| Guanidine aluminum sulfate hexahydrate |  | trigonal | $c$ |  | $\begin{aligned} & 0.35 \times 10^{-2} \\ & \text { at } 296^{\circ} \mathrm{K} \end{aligned}$ | 5 | 5 | 6 |
| Guanidine chromium sulfate hexahydrate | $\mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Cr}\left(\mathrm{SO}_{4}\right)_{2}$. $6 \mathrm{H}_{2} \mathrm{O}$ | trigonal | $c$ |  | $\begin{gathered} 0.36 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{gathered}$ | 5 | 5 | 6 |
| Guanidine gallium sulfate hexahydrate | $\begin{array}{r} \mathrm{C}\left(\mathrm{NH}_{2}\right) ; \mathrm{Ga}\left(\mathrm{SO}_{4}\right)_{2} \cdot \\ 6 \mathrm{H}_{2} \mathrm{O} \end{array}$ | trigonal | $c$ |  | $\begin{gathered} 0.36 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{gathered}$ | 5 | 5 | 6 |
| Guanidine vanadium sulfate hexahydrate | $\begin{array}{r} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{~V}\left(\mathrm{SO}_{4}\right)_{2} \cdot \\ 6 \mathrm{H}_{2} \mathrm{O} \end{array}$ | trigonal | $c$ | $\ldots$ | $\begin{aligned} & 0.36 \times 10^{-2} \\ & \text { at } 296^{\circ} \mathrm{K} \end{aligned}$ |  |  |  |

Table 5d-18. Ferroelectric Crystals (Continued)

| Substance | Formula | Structure at room temp. | Ferroelectric axis | Curie point, ${ }^{\circ} \mathrm{K}$ | Max spont. polarization, coulomb/ meter ${ }^{2}$ | Small-signal dielectris const at room temp. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\epsilon_{a} / \epsilon_{\tau}$ | $\epsilon_{b} / \epsilon_{v}$ | $\epsilon_{c} / \epsilon_{v}$ |
| Guanidine aluminum selenate hexahydrate | $\begin{array}{r} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Al}\left(\mathrm{SeO}_{4}\right)_{2} \cdot \\ 6 \mathrm{H}_{2} \mathrm{O} \end{array}$ | trigonal | c |  | $\begin{gathered} 0.45 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{gathered}$ | 5 | 5 | 6 |
| Guanidine chromium selenate hexahydrate | $\begin{array}{r} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Cr}\left(\mathrm{SeO}_{4}\right)_{2}{ }^{\circ} \\ 6 \mathrm{H}_{2} \mathrm{O} \end{array}$ | trigonal | $c$ | ....... | $\begin{gathered} 0.47 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{gathered}$ | 5 | 5 | 6 |
| Guanidine gallium selenate hexahydrate | $\begin{array}{r} \mathrm{C}\left(\mathrm{NH}_{2}\right)_{3} \mathrm{Ga}\left(\mathrm{SeO}_{4}\right)_{2} \cdot \\ 6 \mathrm{H}_{2} \mathrm{O} \end{array}$ | trigonal | $c$ | ........ | $\begin{gathered} 0.47 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{gathered}$ | 5 | 5 | 6 |
| Deutero guanidine aluminum sulfate hexadeuterate | $\begin{array}{r} \mathrm{C}\left(\mathrm{ND}_{2}\right)_{\mathrm{z}} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{2} \\ 6 \mathrm{D}_{2} \mathrm{O} \end{array}$ | trigonal | $c$ |  | $\begin{gathered} 0.35 \times 10^{-2} \\ \text { at } 296^{\circ} \mathrm{K} \end{gathered}$ | 5 | 5 | 6 |

Table 5d-19. Antiferroelectric Crystals

| Substance | Formula | Structure at room temp. | Transition temp., ${ }^{\circ} \mathrm{K}$ | Small-signal dielectric const at room temp. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\epsilon_{a} / \epsilon_{v}$ | $\epsilon_{b} / \epsilon_{v}$ | $\epsilon_{c} / \epsilon_{v}$ |
| Ammonium dihydrogen arsenate. | $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO} 4$ | tetrag. | 216 | 75 | 75 | 12 |
| Ammonium dihydrogen phosphate. | $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ | tetrag. | 148 | 56 | 56 | 15.5 |
| Ammonium paraperiodate. | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{H}_{3} \mathrm{IO}_{6}$ | trigonal | 251 | 143 | 143 | 180 |
| Deutero-ammonium dideuterium arsenate.... | $\mathrm{ND}_{4} \mathrm{D}_{2} \mathrm{AsO}_{4}$ | orthorh. | 304 |  |  |  |
| Deutero-ammonium dideuterium phosphate.. | $\mathrm{NH}_{4} \mathrm{D}_{2} \mathrm{PO}_{4}$ | tetrag. | 243 | 73 | 73 | 22.5 |
| Deutero-ammonium paraperiodate. | $\left(\mathrm{ND}_{4}\right)_{2} \mathrm{D}_{3} \mathrm{IO}_{6}$ | trigonal | 266 |  |  |  |
| Lead hafnate (ceramics). | $\mathrm{PbHfO}_{3}$ | tetrag. | 488 |  | 90 |  |
| Lead zirconate (ceramics). | $\mathrm{PbZrO}_{3}$ | orthorh. | 506 |  | 80 |  |
| Silver paraperiodate (powder). | $\mathrm{Ag}_{2} \mathrm{H}_{3} \mathrm{IO}_{6}$ | trigonal | 227 |  | 57 |  |
| Sodium niobate. . . . . . . . | $\mathrm{NaNbO}_{3}$ | orthorh. | 911 | 76 | 76 | 670 |
| Sodium tantalate. | $\mathrm{NaTaO}_{3}$ | orthorh. |  |  |  |  |

# 5e. Properties of Semiconductors 

R. L. SPROULL<br>Cornell University

5e-1. Energy Gap. The energy gap $\varepsilon_{g}$ is the minimum energy required to excite an electron from the normally filled (valence) band to the normally empty (conduction) band. The "thermal" $\varepsilon_{g}$ is determined from data on electron and hole concentrations ( $n$ and $p$, respectively) in thermal equilibrium at temperature $T^{\circ} \mathrm{K}$. Frequently both $n$ and $p$ per cubic centimeter are measured and the expression

$$
\begin{equation*}
n p=2.33 \times 10^{31}\left(\frac{m_{n} m_{p}}{m^{2}}\right)^{3 / 2} T^{3} \exp \left(-\varepsilon_{g} / k T\right) \tag{5e-1}
\end{equation*}
$$

is used to obtain $\varepsilon_{g} . \quad m_{n}$ and $m_{p}$ are the effective masses of electrons and holes, $m$ is the free electron mass, and $k$ is the Boltzmann constant. If $\mathcal{E}_{g}$ varies linearly with $T$, the slope of $\log n p$ vs. $1 / T$ gives the value of $\varepsilon_{g}$ at $T=0^{\circ} \mathrm{K}$. Many of the values of $\varepsilon_{g}$ tabulated in Table $5 \mathrm{e}-1$ are obtained in less direct ways than by use of Eq. ( $5 \mathrm{e}-1$ ).

The "optical" $\varepsilon_{g}$ is the minimum energy required to excite an electron from the valence band to the conduction band by an allowed optical transition. It is generally greater than the thermal $\varepsilon_{g}$. It is usually determined by measuring the optical absorption constant as a function of photon energy, but it can sometimes be inferred from photoconductivity or other measurements. In determination by optical absorption, the absorption constant should be at least $10^{5} \mathrm{~cm}^{-1}$ in order to be sure the transition is allowed ("forbidden" transitions can produce absorption constants of the order of 10 to $10^{4} \mathrm{~cm}^{-1}$ in imperfect crystals). There should be good theoretical arguments that the observed absorption is not caused by exciton production, or else the exciton binding energy should be computed and added to the optical absorption threshold energy. These requirements have rarely been met. The optical $\varepsilon_{g}$ values in Table 5e-1 are intended primarily as estimates, and the original literature should be consulted to determine their reliability.

5e-2. Mobility of Current Carriers. The mobility $\mu$ of a hole or electron is the drift velocity per unit electric field. It can be measured directly on materials with sufficiently long minority carrier lifetime $\tau$. Table $5 \mathrm{e}-2$ gives values from carrier injection, time-of-flight measurements of $\mu_{n}$ (electrons) and $\mu_{p}$ (holes).

The "Hall mobility" $\mu_{n}{ }^{(H)}$ or $\mu_{p}{ }^{(H)}$ can be measured on a much wider group of materials. The Hall effect is the transverse field $E_{y}$ produced when a current of current density $J_{x}$ is flowing in the $x$ direction and a magnetic induction $B$ is present in the $z$ direction. If the specimen is long and thin enough so that the shunting effect of the electrodes can be neglected, the Hall constant is defined as

$$
\begin{equation*}
R=\frac{E_{y}}{B_{z} J_{x}} \tag{5e-2}
\end{equation*}
$$

If the conductivity is exclusively by electrons,

$$
\begin{equation*}
R \sigma=\mu_{n}^{(H)} \tag{5e-3}
\end{equation*}
$$

where $\sigma$ is the electrical conductivity. Expressions similar to this and to the following equations can be obtained for conduction exclusively by holes if $\mu_{p}{ }^{(H)}, \mu_{p}$, and $p$ are substituted for $\mu_{n}{ }^{(H)}, \mu_{n}$, and $n$, respectively.

Table 5e-1. Energy Gap $\mathcal{E}_{\boldsymbol{g}}$

| Material | Measurement | $\varepsilon_{0}$ | Ref.* |
| :---: | :---: | :---: | :---: |
| C (graphite) ( $P$ ) | $T$ | $\sim 0$ | 1 |
| Ge | $\begin{aligned} & T \\ & T \\ & O \end{aligned}$ | $\begin{aligned} & 0.785-0.0003 T \\ & 0.75-0.0001 T \\ & 0.72-0.0001 T \end{aligned}$ | $\begin{aligned} & 2 \\ & 3,4,5 \\ & 6,7 \end{aligned}$ |
| P (black) ( $P$ ) | $T$ | 0.4 | 8 |
| Se (amorph) | 0 | $\sim 2$ | 9, 10 |
| Si <br> (P) | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 1.21-0.0004 T \\ & 1.35-0.0004 T \end{aligned}$ | $\begin{aligned} & 11 \\ & 5,12,13 \end{aligned}$ |
| Sn (gray, $\alpha$ ) (P) | $T$ | 0.08 | 9, 14, 15, 16 |
| Te | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.32 \text { and } 0.37 \end{aligned}$ | $\begin{aligned} & 17 \\ & 18 \end{aligned}$ |
| $\underset{(P)}{\operatorname{AlSb}(P)}$ | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 1.67-0.0004 T \end{aligned}$ | $\begin{aligned} & 19,20,21 \\ & 21,22,23 \end{aligned}$ |
| BaO | 0 | 4.2 | 24 |
| CdS | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 1.6 \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 25,26 \\ & 27,28 \end{aligned}$ |
| CdSe | 0 | 1.8 | 27, 28 |
| CdTe | 0 | 1.4 | 28 |
| $\mathrm{Cu}_{2} \mathrm{O}(P)$ | $T$ | $\sim 1$ | 29 |
| GaAs | 0 | 1.45 | 23 |
| GaSb | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 0.80 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 30 \\ & 23,30 \end{aligned}$ |
| InAs ( $P$ ) | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{array}{\|l} \sim 0.5 \\ \\ 0.35 \end{array}$ | $\begin{array}{\|l} 31 \\ 23 \end{array}$ |
| InP | 0 | 1.25 | 32 |
| InSb | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.23-0.0002 T \end{aligned}$ | $\begin{aligned} & 33 \\ & 33,34,35,36 \end{aligned}$ |
| $\mathrm{Mg}_{2} \mathrm{Ge}(P)$ | $T$ | 0.55 | 37 |
| $\mathrm{Mg}_{2} \mathrm{Si}(P)$ | $T$ | 0.7 | 37 |

Table 5e-1. Energy Gap $\varepsilon_{o}$ (Continued)

| Material | Measurement | $\varepsilon_{g}$ | Ref.* |
| :---: | :---: | :---: | :---: |
| $\mathrm{Mg}_{2} \mathrm{Sn}$ | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$ | $\begin{aligned} & 37,38,39 \\ & 38 \end{aligned}$ |
| PbS | $\begin{aligned} & T \\ & O \end{aligned}$ | $\begin{aligned} & 0.37 \\ & 0.3+0.0004 T \end{aligned}$ | $\begin{aligned} & 40 \\ & 41,42 \end{aligned}$ |
| PbSe | 0 | $0.14+0.0002 T$ | 43 |
| PbTe | 0 | $0.18+0.0002 T$ | 44 |
| $\mathrm{SiC}(P)$ | $T$ | .................. | 44, 45 |
| $\mathrm{TiO}_{2}$ | $\begin{aligned} & T \\ & O \end{aligned}$ | 3.7 | $\begin{aligned} & 46,47 \\ & 46,47 \end{aligned}$ |
| $\mathrm{UO}_{2}(P)$ | $T$ | 0.2 | 48 |
| ZnS | 0 | 3.6 | 49, 50 |
| ZnO | 0 | 3.37-0.0008T | 51 |

The tabulated values are in electron volts and should be multiplied by $1.60 \times 10^{-19}$ to obtain values in mks units. The data are for single crystals unless ( $P$ ) appears in the first column. Thermal values are designated $T$ and are for $0^{\circ} \mathrm{K}$ unless the temperature dependence is given. Optical values are designated $O$ and are for room temperature unless the temperature dependence is given. Optical values should be considered as only estimates.

* References are on p. 5-164.

Table 5e-2. Drift Mobilities $\mu_{n}$ and $\mu_{p}$

| Material | Electrons |  | Holes |  | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mu_{n}$ | $T,{ }^{\circ} \mathrm{K}$ | $\mu_{p}$ | T, ${ }^{\circ} \mathrm{K}$ |  |
| Ge | $\begin{aligned} & 3,900 \\ & 3.5 \times 10^{7} T^{-1.6} \end{aligned}$ | $\begin{aligned} & 300 \\ & 200-300 \end{aligned}$ | $\begin{aligned} & 1,900 \\ & 9.1 \times 10^{8} T^{-2.3} \end{aligned}$ | $\begin{aligned} & 300 \\ & 170-300 \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| Si | $\begin{aligned} & 1,200 \\ & 4.4 \times 10^{6} T^{-1.5} \end{aligned}$ | $\begin{aligned} & 300 \\ & 170-300 \end{aligned}$ | $\begin{aligned} & 500 \\ & 2.4 \times 10^{8} T^{-2.3} \end{aligned}$ | $\begin{aligned} & 300 \\ & 150-300 \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ |

The tabulated values are in $\mathrm{cm}^{2} /$ volt sec and should be multiplied by $10^{-4}$ to obtain mobilities in mks units ( $\mathrm{m}^{2} /$ volt sec). The data are for single crystals with a room-temperature conductivity less than $0.1 \mathrm{mho} / \mathrm{cm}$.

## References for Table 5e-2

1. Prince, M. B. Phys. Rev. 92, 681 (1953).
2. Prince, M. B. Phys. Rev. 93, 1204 (1954).

The Hall effect is sometimes described in terms of the "Hall angle" $\theta$ which is the angle through which the equipotential planes in a long rectangular specimen carrying
a current are tilted when a magnetic induction $B$ is applied normal to the direction of current flow. For conduction exclusively by electrons

$$
\begin{equation*}
\theta=\mu_{n}^{(H)} B \tag{5e-4}
\end{equation*}
$$

For simple metals and "highly doped" (degenerate) semiconductors in which the energy of an electron or hole is a spherically symmetrical function of the momentum $k$

$$
\begin{equation*}
\mu_{n}=\mu_{n}^{(H)} \tag{5e-5}
\end{equation*}
$$

The conductivity $\sigma$ of a semiconductor containing only electron carriers and with $n$ carriers per unit volume is

$$
\begin{equation*}
\sigma=n e \mu_{n} \tag{5e-6}
\end{equation*}
$$

Combining (5e-3), (5e-5), and (5e-6) gives

$$
\begin{equation*}
R=\frac{1}{n e} \tag{5e-7}
\end{equation*}
$$

For semiconductors in which the energy of an electron or hole is a spherically symmetrical and single-valued function of the momentum $k$ and in which the temperature and purity are high enough so that thermal scattering predominates,
and

$$
\begin{gather*}
\mu_{n}^{(H)}=\frac{3 \pi}{8} \mu_{n}  \tag{5e-8}\\
R=\frac{3 \pi}{8} \frac{1}{n e} \tag{5e-9}
\end{gather*}
$$

Many reported values of mobility determined by Hall-effect experiments are the product of $8 / 3 \pi$ and the observed Hall mobility. The values of $\mu^{(H)}$ reported in Table $5 \mathrm{e}-3$ are simply the observed Hall mobilities, since in most solids the validity of Eq( $5 \mathrm{e}-8$ ) has not yet been established.
The above equations are all written in mks units, in which $\mu$ and $\mu^{(H)}$ are in $\mathrm{m}^{2} /$ volt sec and $R$ is in $\mathrm{m}^{3}$ /coulomb. It is convenient to have expressions in practical units: cm , volt, gauss, coulomb, and sec. In these units $\mu$ and $\mu^{(H)}$ are in $\mathrm{cm}^{2} /$ volt sec and $R$ is in $\mathrm{cm}^{3} /$ coulomb. The expressions replacing Eqs. (5e-2) and (5e-4) are
and

$$
\begin{align*}
R & =\frac{10^{8} E_{y}}{B_{z} J_{x}}  \tag{5e-10}\\
\theta & =10^{-8} \mu_{n}(H) B \tag{5e-11}
\end{align*}
$$

The diffusion constants $D_{n}$ and $D_{p}$ for electrons and holes can be calculated from the mobilities $\mu_{n}$ and $\mu_{p}$ by the Einstein relation:

$$
\begin{equation*}
D_{n}=\frac{k T}{e} \mu_{n} \tag{5e-12}
\end{equation*}
$$

If $T=300^{\circ} \mathrm{K}, D_{n}=0.026 \mu_{n}$. If $\mu_{n}$ is in $\mathrm{cm}^{2} /$ volt sec, $D_{n}$ from this equation is in $\mathrm{cm}^{2} / \mathrm{sec}$; if $\mu_{n}$ is in mks units, $D_{n}$ is in $\mathrm{m}^{2} / \mathrm{sec}$.

5e-3. Representative Conductivity Values. In general the conductivity is

$$
\begin{equation*}
\sigma=e\left(n \mu_{n}+p \mu_{p}\right) \tag{5e-13}
\end{equation*}
$$

For intrinsic conduction, $n=p$. In most practical cases either $n \gg p$ (" $n$ type") or $p \gg n$ (" $p$ type"). Since $\sigma$ depends so sensitively upon the concentration and kind of intentionally added chemical elements ("impurities" or "doping agents"), only a few typical values can be given.
5e-4. Binding Energies of Carriers to Donors and Acceptors. Chemical additives or physical imperfections (vacancies, interstitials) create localized energy states which can provide free carriers or can trap free carriers. These are of two kinds: 1) "donors," or "hole traps," which can release (donate) an electron to the conduction or valence bands; 2) "acceptors," or "electron traps," which can remove (accept) an electron from the conduction or valence bands. The binding energy of an electron

Table 5e-3. Hall Mobilities $\mu_{n}{ }^{(H)}$ and $\mu_{p}{ }^{(H)}$

| Material | Electrons |  | Holes |  | Notes | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mu_{n}{ }^{(H)}$ | $T,{ }^{\circ} \mathrm{K}$ | $\mu_{p}{ }^{(H)}$ | T, ${ }^{\circ} \mathrm{K}$ |  |  |
| $\overline{\mathrm{C} \text { (graphite) ( } P \text { ) }}$ | $\sim 10^{4}$ | 300 | $\sim 10^{4}$ | 300 | $\ldots$ | 1,55 |
| Ge | $\begin{gathered} 4,200 \\ 3.9 \times 10^{7} T^{-1.6} \end{gathered}$ | $\begin{gathered} 300 \\ 150-300 \end{gathered}$ | $\begin{gathered} \cdots \cdots, 400 \\ 9.5 \times 10^{7} T^{-1.8} \end{gathered}$ | $\left\|\begin{array}{c} \cdots 300 \\ 30-300 \end{array}\right\|$ | $\begin{aligned} & \hline a \\ & b \\ & b, c \\ & c, d \\ & c, d \end{aligned}$ | $\begin{aligned} & \hline 56 \\ & 56 \\ & 57 \\ & 57 \end{aligned}$ |
| P (black) (P) |  | . . . ${ }^{\text {a }}$ | 400 | 300 | . . | 8 |
| Si | 1,700 | 300 | 350 | 300 | - | 11 |
| Sn (gray, $\alpha$ ) (P) | $10^{7} T^{-1.5}$ | >250 | ............. | ....... | $f$ | 14, 15, 16 |
| Te | ............ | ...... | $\sim 600$ | 300 | $\ldots$ | 58 |
| AlSb | > 100 | 300 | $>100$ | 300 | $\ldots$ | 20, 21 |
| BaO | $\sim 5$ | 700 | ............. | ....... | ... | 59 |
| CdS | $\sim 250$ | 290 | ...... | ....... | ... | 26 |
| CdTe | $\sim 300$ | ....... | >30 | . | . | 28 |
| $\mathrm{Cu}_{2} \mathrm{O}(P)$ | ............. | ..... | 70 | 300 | $\ldots$ | 60 |
| GaSb | $\sim 4,000$ | 300 | 700 | 300 | $\ldots$ | 30, 61, 62 |
| InAs | 14,000 | 300 | 1,900 | 300 | 0 | 31 |
| InSb | $\begin{array}{r} 67,000 \\ 325,000 \end{array}$ | $\begin{array}{r} 300 \\ 78 \end{array}$ | $\begin{array}{r} 2,400 \\ 10,000 \end{array}$ | $\begin{array}{r} 140 \\ 78 \end{array}$ | $\ddot{i}$ | $\begin{array}{\|l\|} \hline 63 \\ 64 \\ \hline \end{array}$ |
| $\mathrm{Mg}_{2} \mathrm{Ge}$ | $\sim 170$ | 300 | ....... |  | $\ldots$ | 37 |
| $\mathrm{Mg}_{2} \mathrm{Si}$ | $\sim 125$ | 300 | ............. | ....... | ... | 37 |
| $\mathrm{Mg}_{2} \mathrm{Sn}$ | 3,500 | 100 | $\begin{array}{r} 2,900 \\ 200 \end{array}$ | $\begin{aligned} & 100 \\ & 273 \end{aligned}$ | $i$ | $\begin{array}{\|l} 37,38 \\ 37,38 \end{array}$ |
| PbS | $>400$ | 290 | $>500$ | 290 | $i$ | 43, 66 |
| PbSe | $>1,000$ | 290 | $>1,000$ | 290 | $i$ | 43, 66 |
| PbTe | >1,500 | 290 | >1,200 | 290 | i | 43, 66 |
| $\mathrm{TiO}_{2}$ | $\sim 0.7$ | 300 | ............. | $\cdots$ | ... | 48 |
| ZnO | $\sim 200$ | 300 | ............ | ....... | ... | 52 |

The tabulated values are in $\mathrm{cm}^{2} /$ volt sec and should be multiplied by $10^{-4}$ to obtain $\mu_{n}(A)$ and $\mu_{p}(A)$ in mks units. The data are for single crystals unless ( $P$ ) appears in the first column.

* References are on p. 5-164.
${ }^{a}$ For specimens with $\sigma<1 \mathrm{mho} / \mathrm{cm}$ at $300^{\circ} \mathrm{K}$. o $10^{17}$ to $10^{19}$ carriers per $\mathrm{cm}^{3}$.
$b$ For specimens with $\sigma<0.2 \mathrm{mho} / \mathrm{cm}$ at $300^{\circ} \mathrm{K}$. $\quad \mathrm{h} 3$ to $10 \times 10^{14}$ carriers per $\mathrm{cm}^{8}$.
c At a magnetic induction of 3,000 gauss.
${ }^{i} \mu_{n}(H) / \mu_{p}(H)=1.2$.
$d$ For specimens with $\sigma<0.1 \mathrm{mho} / \mathrm{cm}$ at $300^{\circ} \mathrm{K} . \quad i \mu$ values are proportional to $T^{-\frac{5}{4} ; \mu_{n}(B) / \mu_{p}(B)}$
e For specimens with $\sigma<0.03 \mathrm{mho} / \mathrm{cm}$ at $300^{\circ} \mathrm{K} . \quad$ 2.5.
$f \mu_{n}(H) / \mu_{\nu}(H)=1.3$.

Table 5e-4. Representative Values of the Conductivity $\sigma$

| Material | No. of host crystal atoms per $\mathrm{cm}^{3}$ | No. of donors or acceptors per $\mathrm{cm}^{3}$ | Donor or acceptor | Con- <br> duc- <br> tion <br> type | $\begin{gathered} \sigma \text { at } \\ 290-300^{\circ} \mathrm{K} \end{gathered}$ | $\begin{gathered} \sigma \text { at } \\ \text { another } T \end{gathered}$ |  | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\sigma$ | $T,{ }^{\circ} \mathrm{K}$ |  |
| C (graphite) | $1.15 \times 10^{23}$ | Intrinsic | $\cdots$ | $\cdots$ | $\stackrel{\sim}{2.6 \times 10^{4}}$ | $\begin{aligned} & \sim 600 \\ & 2.5 \times 10^{5} \end{aligned}$ | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 67 \dagger \\ & 67 \ddagger \end{aligned}$ |
| Ge | $4.41 \times 10^{22}$ | $\begin{aligned} & \text { Intrinsic } \\ & 8 \times 10^{13} \\ & 1.5 \times 10^{15} \\ & 9 \times 10^{13} \\ & 8 \times 10^{14} \end{aligned}$ | As <br> As <br> Ga <br> Ga | $\begin{aligned} & \cdots \\ & n \\ & n \\ & p \\ & p \end{aligned}$ | 0.022 0.05 0.9 0.03 0.3 | 0.45 6 0.5 3 | $\begin{aligned} & 78 \\ & 78 \\ & 78 \\ & 78 \end{aligned}$ | $\begin{aligned} & 56 \\ & 56 \\ & 56 \\ & 57 \\ & 57 \end{aligned}$ |
| P (black) (P) | $1.31 \times 10^{22}$ | Intrinsic | . . | $\ldots$ | ........... | 3 | 400 | 8 |
| Si | $5.00 \times 10^{22}$ | $\begin{aligned} & \text { Intrinsic } \\ & 5 \times 10^{14} \\ & 5 \times 10^{15} \\ & 5 \times 10^{16} \\ & 5 \times 0^{14} \\ & 5 \times 10^{15} \\ & 2 \times 10^{16} \end{aligned}$ | $\begin{aligned} & \ddot{\mathrm{As}} \\ & \mathrm{As} \\ & \mathrm{As} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$ | $\dddot{n}$ $n$ $n$ $p$ $p$ $p$ | $\begin{aligned} & 1.57 \times 10^{-6} \\ & 0.1 \\ & 0.77 \\ & 3.3 \\ & 0.4 \\ & 3.3 \\ & 10 \end{aligned}$ |  |  | $\begin{aligned} & 68 \\ & 68 \\ & 68 \\ & 68 \\ & 68 \\ & 68 \\ & 68 \end{aligned}$ |
| Sn (gray, $\alpha$ ) | $2.92 \times 10^{22}$ | $\begin{aligned} & \text { Intrinsic } \\ & 2 \times 10^{18} \\ & 6 \times 10^{18} \end{aligned}$ | $\begin{gathered} \underset{\mathrm{Sb}}{\mathrm{Al}} \end{gathered}$ | $\cdots$ $n$ $p$ | $\begin{aligned} & 3,000 \\ & 5,000 \\ & 3,000 \end{aligned}$ | $\begin{aligned} & 4,000 \\ & 750 \end{aligned}$ | $\begin{aligned} & 78 \\ & 78 \end{aligned}$ | $\begin{array}{ll} 15, & 16 \\ 15, & 16 \\ 15, & 16 \end{array}$ |
| Te | $2.97 \times 10^{22}$ | Intrinsic | $\ldots$ | $\ldots$ | 2 | .... .... | $\ldots$ | 17 |
| AlSb | $3.45 \times 10^{22}$ | $\begin{aligned} & \because .5 \times 100^{15} \\ & 1.5 \times 10^{16} \\ & 3.8 \times 10^{18} \end{aligned}$ | $\cdots$ | $\boldsymbol{p}$ $\boldsymbol{p}$ $\boldsymbol{p}$ | $\begin{aligned} & 0.031 \\ & 0.30 \\ & 32 \end{aligned}$ | 3 0.032 0.28 29 | $\left.\begin{array}{r} 1,000 \\ 370 \\ 370 \\ 370 \end{array} \right\rvert\,$ | $\begin{aligned} & 21 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$ |
| CdS | $4.04 \times 10^{22}$ | $5 \times 10^{18}$ | Ga | $n$ | 80 | .......... |  | 26 |
| GaSb | $3.49 \times 10^{22}$ | Intrinsic | . | $\ldots$ | 0.01 | 2 | 500 | 83 |
| InSb | $2.97 \times 10^{22}$ | Intrinsic | $\ldots$ | $\ldots$ | 200 | 700 | 400 | 63 |
| $\mathrm{Mg}_{2} \mathrm{Ge}$ | $4.63 \times 10^{22}$ | Intrinsic | $\ldots$ | $\ldots$ | ........... | 50 | 660 | 37 |
| $\mathrm{Mg}_{2} \mathrm{Sn}$ | $3.86 \times 10^{22}$ | Intrinsic | $\ldots$ | $\ldots$ | 24 | .......... |  | 37, 38 |
| PbS | $3.84 \times 10^{22}$ | Intrinsic <br> $3 \times 10^{16}$ <br> $8 \times 10^{16}$ | $\underset{\mathrm{c}}{\mathrm{~Pb}}$ | $\cdots$ |  | $\begin{aligned} & 16 \\ & 54 \end{aligned}$ | 77 | $\begin{aligned} & 69 \\ & 69 \\ & 69 \end{aligned}$ |
| PbSe | $3.44 \times 10^{22}$ | $\begin{aligned} & \text { Intrinsic } \\ & 2 \times 10^{18} \\ & 5 \times 10^{18} \end{aligned}$ | $\begin{aligned} & \mathrm{Pb} \\ & \mathrm{Se} \end{aligned}$ | $\cdots$ $n$ $p$ | $\begin{aligned} & 18 \text { (est.) } \\ & 400 \\ & 900 \end{aligned}$ | $\begin{aligned} & 20,000 \\ & 16,000 \end{aligned}$ | 77 77 | $\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$ |
| PbTe | $2.96 \times 10^{22}$ | Intrinsic <br> $5 \times{ }^{10^{17}}$ <br> $3 \times 10^{17}$ | $\begin{aligned} & \mathrm{Pb} \\ & \mathrm{Te} \end{aligned}$ | $n$ $p$ | $\begin{aligned} & 1.8 \text { (est.) } \\ & 120 \\ & 40 \end{aligned}$ | $\begin{aligned} & 2,100 \\ & 1,000 \end{aligned}$ | 77 77 | $\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$ |
| $\mathrm{TiO}_{2}$ | $9.5 \times 10^{22}$ | $\begin{aligned} & 1.3 \times 10^{19} \\ & 2.8 \times 10^{19} \end{aligned}$ | $\begin{aligned} & \mathrm{Ti} \\ & \mathrm{Ti} \end{aligned}$ | $n$ $n$ | $\begin{aligned} & 0.23 \\ & 0.04 \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.04 \end{aligned}$ | $\begin{aligned} & 373 \\ & 373 \end{aligned}$ | $\begin{aligned} & 48 \dagger \\ & 48 \ddagger \end{aligned}$ |
| $\mathbf{U O}_{2}$ | $2.46 \times 10^{22}$ | $3 \times 10^{18}$ | 0 | $p$ | 0.01 | 0.04 | 373 | 49 |

The tabulated values are in mho/cm and should be multiplied by 100 to obtain $\sigma$ in mks units (mho/m.). The number of atoms per $\mathrm{cm}^{3}$ is included for convenience. $n$ and $p$ mean $n$-type and $p$-type conduction, respectively. The data are for single crystals unless ( $P$ ) appears in the " material" column.

* References are on p. 5-164.
$\dagger$ Parallel to $c$ axis.
$\ddagger$ Perpendicular to $c$ axis.
to a donor can be determined by measuring the fraction of the electrons that are released by the donor as a function of $T$ (and similarly for acceptors).

At large donor (or acceptor) concentrations the interaction between donors (or acceptors) modifies the binding energy. This effect has not been studied for most of the substances listed in Table 5e-5. In the cases where it has been studied (some donors and acceptors in Si and Ge ) the tabulated values are the limiting values at low concentrations.

Table 5e-5. Binding Energies of Carriers to Donors or Acceptors

| Host crystal | Donor | Binding energy | Acceptor | Binding energy | Ref.* |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ge | As <br> P <br> Sb <br> Li <br> Fe | $\begin{aligned} & 0.0127 \\ & 0.0120 \\ & 0.0097 \end{aligned}$ <br> 0.01 <br> 0.27 | Al <br> B <br> Ga <br> In <br> Au <br> Co <br> Cu <br> Ni <br> Pt <br> Zn <br> Fe | $\begin{array}{\|l} 0.0102 \\ 0.0104 \\ 0.0108 \\ 0.0112 \\ 0.15 ; 0.5 \\ 0.25 \\ 0.04 ; 0.25 \\ 0.25 \\ 0.04 ; 0.5 \\ 0.029 \\ \\ 0.34 \end{array}$ | $\begin{aligned} & \hline 71 \\ & 71 \\ & 71 \\ & 71 \\ & 72 \\ & 73 \\ & 74,75 \\ & 74 \\ & 71,75 \\ & 71,75 \\ & 76 \\ & 77 \end{aligned}$ |
| Si | $\begin{array}{\|l} \hline \text { As } \\ \mathrm{P} \\ \mathrm{Sb} \end{array}$ | $\begin{aligned} & 0.049 \\ & 0.039 \\ & 0.039 \end{aligned}$ | Al <br> B <br> Ga <br> In <br> Au | $\begin{aligned} & 0.057 \\ & 0.045 \\ & 0.065 \\ & 0.16 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 11,78 \\ & 11,78 \\ & 11,78 \\ & 11,78 \\ & 11,78 \end{aligned}$ |
| Sn (gray, $\alpha$ ) | Sb | 0.004 | $\begin{aligned} & \mathrm{Mg} \\ & \mathrm{Al} \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.005 \end{aligned}$ | $\begin{aligned} & 15,79,84 \\ & 15,79,84 \end{aligned}$ |
| CdS | $\mathrm{Cl}, \mathrm{Ga}$, and vacancies | 0.03 | ........... |  | 26, 80 |
| CdTe |  | ...... | .......... |  | 28 |
| $\mathrm{Cu}_{2} \mathrm{O}$ |  |  | Cu vacancy | 0.3 | 60 |
| PbS | Pb | 0.03 | S | 0.001 | 69 |
| $\mathrm{UO}_{2}$ |  |  | Oxygen | 0.4 | 49 |
| ZnS |  | $\ldots .$. | ........... |  | 81, 50 |
| ZnO | Zn interstitial | 0.02 | .......... |  | 82 |

[^250]
## References for Tables 5e-1 through 5e-5 ${ }^{1}$

1. Kinchin, G. H.: Proc. Roy. Soc. (London), ser. A, 217, 9 (1953).
2. Morin, F. J., and J. P. Maita: Phys. Rev. 94, 1525 (1954).
3. Conwell, E. M.: Proc. IRE 40, 1327 (1952).
4. Shockley, W.: "Electrons and Holes in Semiconductors," pp. 333ff., D. Van Nostrand Company, Inc., New York, 1953.
5. Bardeen, J., and W. Shockley: Phys. Rev. 80, 72 (1950).
6. Haynes, J. R., and H. B. Briggs: Phys. Rev. 86, 647 (1952).
7. Hall, Bardeen, and Blatt: Phys. Rev. 95, 559 (1954).
8. Keyes, R. W.: Phys. Rev. 92, 580 (1953).
9. Moss, T. S.: "Photoconductivity in the Elements," Butterworth \& Co. (Publishers) Ltd., London, 1952.
10. Weimer, P. K., and A. D. Cope: RCA Rev. 12, 314 (1951).
11. Morin, F. J., and J. P. Maita: Phys. Rev. 96, 28 (1954). See also refs. 2, 3, and 4.
12. Becker, M., and H. Y. Fan: Phys. Rev. 76, 1531 (1949).
13. Brattain, W. H., and H. B. Briggs: Phys. Rev. 75, 1705 (1949).
14. Becker, J. H.: Phys. Rev. 98, 1192 (1955).
15. Busch, G., and J. Wieland: Helv. Phys. Acta. 26, 697 (1953).
16. Kendall, J. T.: Phil. Mag. 45, 141 (1954).
17. Nussbaum, A.: Phys. Rev. 94, 337 (1954).
18. Loferski, J. J.: Phys. Rev. 93, 707 (1954).
19. Welker, H.: Z. Naturforsch. 8a, 248 (1953).
20. Willardson, Beer, and Middleton: J. Electrochem. Soc. 101, 354 (1954).
21. Blunt, Frederikse, Becker, and Hosler: Phys. Rev. 96, 578 (1954).
22. Blunt, Frederikse, and Becker: Phys. Rev. 94, 1431 (1954).
23. Briggs, Cummings, Hrostowski, and Tanenbaum: Phys. Rev. 93, 912 (1954).
24. Sproull, R. L.: Cornell University.
25. Boer, K. W.: Ann. Physik 10, 20 (1952).
26. Kroger, Vink, and van den Boomgaard, Z. physik. Chem. 203, 1 (1954).
27. Frerichs, R.: Northwestern University:
28. Jenny, D. A., and R. H. Bube: Phys. Rev. 96, 1190 (1954).
29. Anderson, J. S., and N. N. Greenwood: Proc. Roy. Soc. (London) 215, 353 (1952).
30. Leifer, H. N., and W. C. Dunlap: Phys. Rev. 94, 1431 (1954).
31. Folberth, Grimm, and Weiss: Z. Naturforsch. 8a, 826 (1953).
32. Oswald, F.: Z. Naturforsch. 9a, 181 (1954).
33. Breckenridge, Bluunt, Hosler, Frederikse, Becker, and Oshinsky: Phys. Rev. 96, 571 (1954).
34. Tanenbaum, M., and H. B. Briggs: Phys. Rev. 91, 1561 (1953).
35. Hrostowski, Wheatley, and Flood: Phys. Rev. 95, 1683 (1953).
36. Burstein, E.: Phys. Rev. 94, 1431 (1954); Phys. Rev. 93, 632 (1954).
37. Busch, G., and U. Winkler: Helv. Phys. Acta 26, 395, 578 (1953).
38. Frederikse, H. P. R., and R. F Blunt, "Photoconductivity," John Wiley \& Sons, Inc., New York, 1956.
39. Robertson, W. D., and H. H. Uhlig: Trans. Am. Inst. Mining Met. Engrs. 180, 345 (1949).
40. Scanlon, W. W.: Phys. Rev. 92, 1573 (1953).
41. Gibson, A. F.: Proc. Phys. Soc. (London), ser. B, 65, 378 (1952).
42. Avery, D. G.: Proc. Phys. Soc. (London), ser. B, 67, 2 (1954).
43. Putley, E. H.: Proc. Phys. Soc. (London), ser. B, 65, 993 (1952).
44. Calculations by G. G. MacFarlane, R.R.E., Great Malvern, from thermal and optical data of refs. 41, 42, and 43.
45. Busch, G., and H. Labhart: Helv. Phys. Acta 19, 463 (1946).
46. Kendall, J. T.: J. Chem. Phys. 21, 821 (1953).
47. Cronemeyer, D. C.: Phys. Rev. 87, 876 (1952).

[^251]48. Breckenridge, R. G., and W. R. Hosler: Phys. Rev. 91, 793 (1953).
49. Hartmann, W.: Z. Physik 102, 709 (1936).
50. Bube, R. H.: Phys. Rev. 90, 70 (1953).
51. Piper, W. W.: J. Chem. Phys. 20, 1343 (1952).
52. Reboul, T. T.: University of Pennsylvania.
53. Prince, M. B.: Phys. Rev. 92, 681 (1953).
54. Prince, M. B.: Phys. Rev. 98, 1204 (1954).
55. Mrozowski, S.: J. Chem. Phys. 21, 492 (1953).
56. Debye, P. P., and E. M. Conwell: Phys. Rev. 87, 1131 (1952); Phys. Rev. 93, 693 (1954).
57. P. P. Debye, Raytheon Mfg. Co., and E. M. Conwell, Sylvania Electric Products, Inc.
58. Fukuroi, F.: Science Repts. Research Insts. Tôhoku Univ. A1, 373 (1949).
59. Pell, E. M.: Phys. Rev. 87, 457 (1952).
60. Brattain, W. H.: Revs. Modern Phys. 23, 203 (1951).
61. Tanenbaum, Pearson, and Feldman: Phys. Rev. 93, 912 (1954).
62. Detwiler, D. P.: Phys. Rev. 94, 1431 (1954).
63. Tanenbaum, M., and J. P. Maita: Phys. Rev. 91, 1009 (1953).
64. Hrostowski, Morin, Geballe, and Wheatley: Phys. Rev. 100, 1672 (1955).
65. Putley, E. H.: Proc. Phys. Soc. (London), ser. B, 65, 388 (1952).
66. Petritz, Scanlon, and Lummis: Phys. Rev. 94, 1430 (1954).
67. Primak, W., and L. H. Fuchs: Phys. Rev. 95, 22 (1954).
68. Pearson, G. L., Bell Telephone Laboratories; Pearson, G. L., and J. Bardeen, Phys. Rev. 75, 865 (1949).
69. Brebrick, R. F., and W. W. Scanlon: Phys. Rev. 96, 598 (1954).
70. Putley, E. H., R.R.E., Great Malvern.
71. Geballe, T. H., and F. J. Morin: Phys. Rev. 95, 1085 (1954).
72. Dunlap, W. C.: Phys. Rev. 91, 1282 (1953).
73. Newman, R., and W. W. Tyler: Phys. Rev. 94, 1419 (1954).
74. Burton, Hull, Morin, and Severiens: J. Phys. Chem. 57, 853 (1953).
75. Dunlap, W. C.: Phys. Rev. 96, 40 (1954).
76. Fuller, C. S., and J. A. Ditzenberger: Phys. Rev. 91, 193 (1953).
77. Tyler, W. W., and H. H. Woodbury: Phys. Rev. 96, 874 (1954).
78. Morin, Maita, Shulman, and Hannay: Phys. Rev. 96, 833 (1954).
79. Busch, G., and E. Mooser: Z. physik. Chem. 198, 23 (1951).
80. Bube, R. H.: J. Chem. Phys. 18 (1955).
81. Hoogenstaaten, W.: J. Electrochem. Soc.; Schon, M.: Z. Naturforsch. 6A, 287 (1951); Garlick, G. F. J., and A. F. Gibson: J. Opt. Soc. Am. 39, 935 (1949).
82. Hahn, E. E.: J. Appl. Phys. 22, 855 (1951).
83. Blunt, Hosler, and Frederikse: Phys. Rev. 96, 576 (1954).
84. Busch, G., and E. Mooser: Helv. Phys. Acta. 26, 611 (1953).

## General References

## Principal

Shockley, W.: "Electrons and Holes in Semiconductors," D. Van Nostrand Company, Inc., New York, 1950.

## Other

Hunter, Lloyd P., ed.: "Handbook of Semiconductor Electronics," McGraw-Hill Book Company, Inc., New York, 1956.
Mott, N. F., and R. W. Gurney: "Electronic Processes in Ionic Crystals," 2d ed., Oxford University Press, New York, 1948.
Seitz, F.: "The Modern Theory of Solids," McGraw-Hill Book Company, Inc., New York, 1940.
Wright, D. A.: "Semiconductors," John Wiley \& Sons, Inc., New York, 1950.
"Abstracts of the Literature on Semiconducting and Luminescent Materials and Their Applications," John Wiley \& Sons, Inc., New York, 1955.

# 5f. Properties of Nonmetallic Conductors 

S. C. BROWN and W. P. ALLIS ${ }^{1}$<br>Massachusetts Institute of Technology<br>R. J. FRIAUF ${ }^{2}$<br>University of Kansas

## CONDUCTION IN GASES ${ }^{3}$

5f-1. Ionization by Electrons. The rate of ionization by electrons in a gas is related to the "probability" of ionization $P_{i}$. The "probability" of ionization $P_{i}$ by an electron is given in Sec. $(7 \mathrm{~m}-1)$. The ionization rate $\bar{\nu}_{i}$ is defined by

$$
\begin{equation*}
\frac{1}{n} \frac{d n}{d t}=\bar{\nu}_{i}=\int p_{0} P_{i} f 4 \pi v^{3} d v \tag{5f-1}
\end{equation*}
$$

where $p_{0}=273.16 p / T$ is the "reduced" pressure in millimeters of Hg , and $f$ is the normalized electron distribution function.

1. The first Townsend coefficient $\alpha_{i}$, the number of ionizations per electron per centimeter path, is

$$
\begin{equation*}
\alpha_{i}=\frac{1}{n} \frac{d n}{d x}=\frac{\bar{\nu}_{i}}{v_{d}}=\frac{\bar{\nu}_{i}}{\mu E} \tag{5f-2}
\end{equation*}
$$

$\alpha / p$ as a function of $E / p$ is plotted in Figs. $5 \mathrm{f}-1,2,3$, and 4. $\alpha_{i}$ can often can be represented by the function

$$
\begin{equation*}
\alpha_{i}=A e^{-B p / E} \tag{5f-3}
\end{equation*}
$$

where $A$ is a slowly increasing function of $E / p$.
2. The number of ionizations per electron per volt is

$$
\begin{equation*}
\eta=\frac{\alpha_{i}}{E}=\frac{\bar{\nu}_{i}}{\mu E^{2}} \quad(\mu=\text { mobility }) \tag{5f-4}
\end{equation*}
$$

'This quantity is a function of $E / p$ only.
bf-2. Deionization. 1. The attachment coefficient $\beta$ is similar to $\alpha_{i}$ and measures the rate of attachment of electrons to neutral atoms.

$$
\begin{equation*}
\beta=-\frac{1}{n} \frac{d n}{d x}=\frac{\bar{\nu}_{a}}{\mu E} \tag{5f-5}
\end{equation*}
$$

${ }^{1}$ Conduction in gases.
${ }^{2}$ Ionic conductivity in solid salts.
${ }^{3}$ Material taken from Sanborn C. Brown and W. P. Allis, Basic Data of Electrical Discharges, Tech. Rept. 83, Research Laboratory of Electronics, MIT, 1954.


Fig. 5f-1. First Townsend ionization coefficients. (A. von Engel and M. Steenbeck, "Elektrische Gasentladungen," vol. I, p. 105, Springer-Verlag OHG, Berlin, 1932).


Fig. 5f-2. First Townsend ionization coefficients. (A. von Engel and M. Steenbeck, "Elektrische Gasentladungen," vol. I, p. 106, Springer-Verlag OHG, Berlin, 1932.)


Frg. 5f-3. First Townsend coefficient in $\mathrm{CO}_{2}$. (D. R. Young, Laboratory for Insulation Research, M.I.T., Technical Report 22, August, 1949.)


Fig. 5f-4. First Townsend coefficients for benzene, toluene, and cyclohexane. [M. ValeriuPetrescu, Bull. soc. roumaine phys. 44, 3 (1943).]


Fig. 5f-5. Ionizations per volt per mm Hg at $0^{\circ} \mathrm{C}$ for the rare gases. $\quad$ [M.J. Druyvesteyn and F. M. Penning, Revs. Modern Phys. 12, 87 (1940).]


Frg. 5f-6. Ionizations per volt per mm Hg at $0^{\circ} \mathrm{C}$ for neon-argon mixtures. The numbers on each curve give the ratio of the argon pressure to the total pressure of the mixture. [A. A. Kruithof and F. M. Penning, Physica 4, 450 (1937).]


Fig. 5f-7. Ionizations per volt per mm Hg at $0^{\circ} \mathrm{C}$ in hydrogen. L. J. Varnerin, Jr., and S. C. Brown, Phys. Rev. 79, 946 (1950).]


Fig. 5f-8. Variation of $\eta$ with $p / E$ for high pressure $\mathrm{H}_{2}$. (C. C. Leiby, Jr., Thesis, MIT, May, 1954.)

The attachment efficiency $h$ is the number of attachments per collision

$$
\begin{equation*}
h=\frac{\bar{\nu}_{a}}{\bar{\nu}_{c}}=\frac{\beta \mu E}{\bar{\nu}_{c}} \approx \frac{4}{3} \frac{m E}{e} \beta \mu^{2} \tag{5f-6}
\end{equation*}
$$

The last expression is generally used to compute $h$ from experimental data but is correct only if $P_{c}$ (collision probability) is independent of electron velocity.
2. The ion recombination coefficient $\alpha_{r}$ is defined by

$$
\begin{equation*}
\alpha_{r}=-\frac{1}{n^{2}} \frac{d n}{d t} \tag{5f-7}
\end{equation*}
$$

Its dependence on pressure and temperature may be represented by

$$
\begin{equation*}
\frac{1}{\alpha_{r}}=a \frac{T^{4}}{p}+b \frac{p}{T} \tag{5f-8}
\end{equation*}
$$

where the first term was proposed by Thomson, the second by Langevin.

| Table $5 f-1$. Radiative Recombination Coeff |  |  |
| :---: | :---: | :---: |
| Element | $\alpha, \mathrm{cm}^{3} / \mathrm{sec}$ | $T,{ }^{\circ} \mathrm{K}$ |
| $\mathrm{H} * \ldots \ldots \ldots$. | $10^{-11}$ |  |
| $\mathrm{~A} \dagger \ldots \ldots \ldots$ | $2 \times 10^{-10}$ | 3100 |
| $\mathrm{Cs} \dagger \ldots \ldots$. | $3.4 \times 10^{-10}$ | 2000 |
| $\mathrm{Hg} \ddagger \ldots \ldots$. | $2.3 \times 10^{-10}$ | 2000 |

* Craggs and Hopwood, Proc. Roy. Soc. (London) 59, 771 (1947).
$\dagger$ Kenty, Phys. Rev. 32, 624 (1928).
$\ddagger$ Mobler, J. Research Natl. Bur. Standards 19, 447, 559 (1937).



## References for Table 5f-2.

1. M. A. Biondi and S. C. Brown, Phys. Rev. 76, 1697 (1949),
2. B. Holt, J. M. Richardson, B. Howland, and B. T. McClure, Phys. Rev. 77, 239 (1950).
3. R. A. Johnson, B. T. McClure, and R. B. Holt, Phys. Rev. 80, 376 (1950).
4. A. Redfield and R. B. Holt, Phys. Rev. 82, 874 (1951).
5. J. M. Richardson, Phys. Rev. 88, 895 (1952).

Table 5f-3. Three-body Recombination Coefficients for Electrons*

| Gas | $\alpha\left(\right.$ at $0^{\circ} \mathrm{C}$ and 760 <br> $\mathrm{mm}), \mathrm{cm}^{3} / \mathrm{sec}$ | Est. saturation <br> pressure, mm Hg |
| :---: | :---: | :---: |
| Helium........ | $6.8 \times 10^{-9}$ | $2.8 \times 10^{4}$ |
| Argon.......... | $6.8 \times 10^{-11}$ | $2.8 \times 10^{-5}$ |
| Air.......... | $1.7 \times 10^{-7}$ | $10^{4}$ |
| Hydrogen....... | $1.6 \times 10^{-7}$ | $10^{4}$ |

[^252]

Fig. 5f-9. Efficiency of electron attachment in nitric oxide. [N. E. Bradbury, J. Chem. Phys. 2, 827 (1934).]


Fig. 5f-10. Attachment coefficients in $\mathrm{O}_{2}$ per unit length in direction of drift. [R. Geballe and M. A. Harrison, Phys. Rev. 85, 372 (1952).]


Fig. 5f-11. Efficiency of electron attachment in HCl in argon. [N. E. Bradbury, J. Chem. Phys. 2, 827 (1934).]


Fig. 5f-12. Efficiency of electron attachment in $\mathrm{Cl}_{2}$ in argon. [N. E. Bradbury, J. Chem. Phys. 2, 827 (1934).]

5-174
ELECTRICITY AND MAGNETISM


Fig. 5f-13. Efficiency of electron attachment in $\mathrm{H}_{2} \mathrm{O}$ at different pressures. [N. E. Bradbury and H. E. Tatel, J. Chem. Phys. 2, 835 (1934).]


Frg. 5f-14. Efficiency of electron attachment in $\mathrm{H}_{2} \mathrm{~S}$. [N. E. Bradbury and H. E. Tatel, J. Chem. Phys. 2, 335 (1934).]


Fig. 5f-15. Efficiency of electron attachment in $\mathrm{N}_{2} \mathrm{O}$. [N. E. Bradbury and H. E. Tatel, J. Chem. Phys. 2, 835 (1934).]


Fig. 5f-16. Efficiency of electron attachment in $\mathrm{SO}_{2}$. [N.E. Bradbury and H. E. Tatel, J. Chem. Phys. 2, 835 (1934).]


Fig. 5f-17. Efficiency of electron:attachment in $\mathrm{NH}_{3}$. [N. E. Bradbury, J. Chem. Phys. 2, 827. (1934).]


Fig. $5 \mathrm{f}-18$. Efficiency of electron attachment in mixtures of $\mathrm{N}_{2} \mathrm{O}$ in equal parts of $\mathrm{N}_{2}$ or A. [N. E. Bradbury and H. E. Tatel, J. Chem. Phys. 2, 835 (1934).]


Fig. 5f-19. Efficiency of electron attachment in $\mathrm{NH}_{3}$ and equal parts of $\mathrm{He}, \mathrm{A}$, or $\mathrm{N}_{2}$. [N. E. Bradbury, J. Chem. Phys. 2, 827 (1934).]


Fig. 5f-20. Recombination coefficient in air. [J. Sayers, Proc. Roy. Soc. (London), ser. A, 169, 83 (1938).]

5-178


Fig. 5f-21. Recombination coefficient in air. [J. Sayers, Proc. Roy. Soc. (London), ser. A, 169, 83 (1938).]


Fig. 5f-22. Temperature variation of the recombination coefficient in oxygen at constant pressure. [M. E. Gardner, Phys. Rev. 53, 75 (1938).]

5f-3. Breakdown. Voltage. At low pressures the breakdown voltage $V_{B}$ is given by

$$
\begin{gather*}
\eta V_{B}=\ln \left(1-\frac{1}{\gamma}\right)  \tag{5f-9}\\
\gamma=\gamma_{i}+\gamma_{\phi} \tag{5f-10}
\end{gather*}
$$

where
is the secondary emission of the cathode attributable to ions and/or photons.
At high pressures the breakdown voltage by streamer formation (spark) is given by

$$
\begin{equation*}
N_{c}=e^{\alpha d}=38 \pi \epsilon_{0} \frac{D d}{\mu e} \tag{5f-11}
\end{equation*}
$$



Fig. 5f-23. Paschen curves for various gases. (M. Knoll, F. Ollendorff, and R. Rompe, "Gasentladungstabellen," p. 84, Springer-Verlag OHG, Berlin, 1935.)


Fig. 5f-24. Breakdown voltage in air at atmospheric pressure. (M. Knoll, F. Ollendorff and R. Rompe, "Gasentladungstabellen," p. 83, Springer-Verlag OHG, Berlin, 1935.)


Fig. 5f-25. Formative time lag for breakdown in air at low overvoltages. [L. H. Fisher and B. Bederson, Phys. Rev. 81, 109 (1951).]


Fig. 5f-26. Formative time lag for breakdown in air at high overvoltages. [R. C. Fletcher, Phys. Rev. 76, 1501 (1949).]

Time Lags. The formative time lag $t_{f}$ is the time necessary for the initial current $I_{0}$ existing before breakdown to build up to an observable current $I_{1}$.

For the Townsend mechanism

$$
\begin{equation*}
t_{f}=t_{i} \frac{\log \left[(M-1) I_{1} / I_{0}\right]}{\log M} \geq t_{ \pm} \tag{5f-12}
\end{equation*}
$$

where $t_{ \pm}$is the transit time for the slowest particle (ion or electron) and the multiplica-' tion factor $M$ has the value $M=\gamma\left(e^{\eta V}-1\right)$.

For the streamer mechanism

$$
\begin{equation*}
t_{f}=\frac{\log N_{c}}{\alpha \mu E} \leq t_{-} \tag{5f-13}
\end{equation*}
$$

## 5f-4. Electron Energy Loss



Fig. 5f-27. Distribution of electron energy losses in neon. [F. M. Penning, Physica 4, 286 (1938).]


Fig. 5f-28. Distribution of electron energy losses in argon. [F. M. Penning, Physica 4, 286 (1938).]


Fig. 5f-29. Fractional energy loss in $\mathrm{H}_{2}$.


Fig. 5f-30. Various power losses of an electron in a microwave discharge in helium, in percentage of input power. [F. H. Reder and S. C. Brown, Phys. Rev. 95, 885 (1954).]


Fig. 5f-31. Electron temperature and gas temperature of a discharge as a function of tube radius. (W. Elenbaas, " The High Pressure Mercury Vapour Discharge," p. 40, North Holland Publishing Company, Amsterdam, 1951.)

## 5f-5. Discharge Characteristics

Table 5f-4. Normal Cathode Fall in Volts

| Cathode | Air | A | He | $\mathrm{H}_{2}$ | Hg | Ne | $\mathrm{N}_{2}$ | $\mathrm{O}_{2}$ | CO | $\mathrm{CO}_{2}$ | Cl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al. | 229 | 100 | 140 | 170 | 245 | 120 | 180 | 311 |  |  |  |
| Ag. | 280 | 130 | 162 | 216 | 318 | 150 | 233 |  |  |  |  |
| Au. | 285 | 130 | 165 | 247 | ... | 158 | 233 |  |  |  |  |
| Ba. |  | 93 | 86 |  |  | $\ldots$ | 157 |  |  |  |  |
| Bi. | 272 | 136 | 137 | 240 |  | $\cdots$ | 210 |  |  |  |  |
| C. |  |  |  | 240 | 475 |  |  | $\cdots$ | 525 |  |  |
| Ca. |  | 93 | 86 |  | ... | 86 | 157 |  |  |  |  |
| Cd. | 266 | 119 | 167 | 200 |  | 160 | 213 |  |  |  |  |
| Co. | 380 |  |  |  |  |  |  |  |  |  |  |
| Cu . | 370 | 130 | - 177 | 214 | 447 | 220 | 208 |  | 484 | 460 |  |
| Fe. | 269 | 165 | 150 | 250 | 298 | 150 | 215 | 290 |  |  |  |
| Hg . |  |  | 142 | $\ldots$ | 340 |  | 226 |  |  |  |  |
| Ir. | 380 |  |  |  |  |  |  |  |  |  |  |
| K. | 180 | 64 | 59 | 94 | $\ldots$ | 68 | 170 | $\ldots$ | 484 | 460 |  |
| Mo. |  |  | . . | :.. | 353 | 115 |  |  |  |  |  |
| Mg. | 224 | 119 | 125 | 153 | ... | 94 | 188 | 310 |  |  |  |
| Na. | 200 |  | 80 | 185 |  | 75 | 178 |  |  |  |  |
| Ni. | 226 | 131 | 158 | 211 | 275 | 140 | 197 |  |  |  |  |
| Pb . | 207 | 124 | 177 | 223 |  | 172 | 210 |  |  |  |  |
| Pd. | 421 |  |  |  |  |  |  |  |  |  |  |
| Pt. | 277 | 131 | 165 | 276 | 340 | 152 | 216 | 364 | 490 | 475 | 275 |
| Sb . | 269 | 136 |  | 252 | $\ldots$ | . . | 225 |  |  |  |  |
| Sn. | 266 | 124 |  | 226 | $\cdots$ | $\cdots$ | 216 |  |  |  |  |
| Sr. | ... | 93 | 86 | . . | $\cdots$ |  | 157 |  |  |  |  |
| Th. | $\ldots$ | . . | . . | $\ldots$ |  | 125 |  |  |  |  |  |
| W. |  | $\ldots$ |  | $\ldots$ | 305 | 125 |  |  |  |  |  |
| Zn . | 277 | 119 | 143 | 184 |  |  | 216 | 354 | 480 | 410 |  |

Table 5f-5. Normal Cathode Fall Thickness
( $d_{n} p$ in cm-mm Hg at room temp.)

| Cathode | Air | A | $\mathrm{H}_{2}$ | He | Hg | $\mathrm{N}_{2}$ | Ne | $\mathrm{O}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al. ${ }^{\text {a }}$ | 0.25 | 0.29 | 0.72 | 1.32 | 0.33 | 0.31 | 0.64 | 0.24 |
| C. | .... | . $\cdot$. | 0.9 |  | 0.69 |  |  |  |
| Cd. |  |  | 0.87 |  |  |  |  |  |
| Cu . | 0.23 |  | 0.8 |  | 0.6 |  |  |  |
| Fe. | 0.52 | 0.33 | 0.9 | 1.30 | 0.34 | 0.42 | 0.72 | 0.31 |
| Mg. | ... | . . . | 0.61 | 1.45 |  | 0.35 |  | 0.25 |
| Hg . | $\ldots$ |  | 0.9 |  |  |  |  |  |
| Ni. |  |  | 0.9 | $\ldots$ | 0.4 |  |  |  |
| Pb . |  |  | 0.84 |  |  |  |  |  |
| Pt. |  |  | 1.0 |  |  |  |  |  |
| Zn . |  |  | 0.8 |  |  |  |  |  |

Table 5f-6. Normal Cathode Current Density in a Glow Discharge ( $\mu \mathrm{a} / \mathrm{sq} \mathrm{cm} \times \mathrm{mm}$ sq of Hg at room temp.)

| Cathode | Air | A | $\mathrm{H}_{2}$ | He | Hg | $\mathrm{N}_{2}$ | $\mathrm{O}_{2}$ | Ne |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Al. | 330 | $\ldots$ | 90 | $\ldots$ | 4 |  |  |  |
| Au. | 570 | ... | 110 |  |  |  |  |  |
| Cu . | 240 | . . | 64 |  | 15 |  |  |  |
| Fe. | ... | 160 | 72 | 2.2 | 8 | 400 |  |  |
| Mg . | $\ldots$ | 20 | . | 3 | 8 |  | $\ldots$ | 5 |
| Pt. |  | 150 | 90 | 5 |  | 380 | 550 | 18 |

Table 5f-7. Sputtered Mass in Micrograms per Ampere-second for Metals in Hydrogen

| Mg | Ta | Cr | Al | Cd | Mn | Mo | Co | W | Ni | Fe | Sn | C | Cu | Zn | Pb | Au | Ag |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.5 | 4.5 | 7.5 | 8 | 8.9 | 11 | 16 | 16 | 16 | 18 | 19 | 55 | 73 | 84 | 95 | 110 | 130 | 205 |

## IONIC CONDUCTIVITY IN SOLID SALTS

5f-6. Conductivity for Pure Ionic Conductors. For many ionic salts it has been established by transport measurements that the conductivity observed at high temperatures is caused exclusively by the motion of ions. This motion is possible because of the existence in the crystal of a small number of ionic defects-vacancies where ions are missing from normally occupied positions and ions in interstitial positions in the structure. Two combinations of such defects have been observed. Schottky defects, occurring in the alkali halides, consist of equal numbers of positive and negative ion vacancies. Frenkel defects, occurring in the silver halides, consist of equal numbers of positive ion vacancies and interstitial positive ions.
It is usually observed that for a certain temperature range below the melting point the conductivity is characteristic of the pure substance. At a temperature several hundred degrees below the melting point, the actual temperature depending on the particular specimen, there is a sharp break in the dependence of conductivity on temperature, and at lower temperatures the magnitude of the observed conductivity varies considerably from specimen to specimen. This behavior is explained by supposing that at high temperatures the number of defects is determined by thermal equilibrium, whereas at lower temperatures the number of defects may depend on the amount of impurity present. Hence it is to be understood that, wherever two distinct temperature ranges are given for the same substance in Table $5 f-8$, the conductivity in the lower temperature range is probably related to the presence of impurities.
The conductivity can be determined by passage of direct current through the sample if sufficient precautions are taken, but more recently most measurements have been made either with current pulses of the order of 0.01 sec duration or alternating currents with a frequency in the neighborhood of $1,000 \mathrm{cps}$. In most cases a plot of $\log \sigma$ vs. $1 / T$ is approximately a straight line, especially for the high-temperature range, indicating that the conductivity can be represented as

$$
\begin{equation*}
\sigma=\sigma_{0} \exp (-W / k T) \tag{5f-14}
\end{equation*}
$$

where $k$ is the Boltzmann constant and $T$ is the absolute temperature. $W$, the activation energy, and $\sigma_{0}$ are determined experimentally and are listed in Table 5f-8. The conductivity at the melting temperature has been calculated from Eq. (5f-14) if it is not given in the literature.

Table 5f-8. Conductivity for Pure Ionic Conductors

| Substance | $T_{m},{ }^{\circ} \mathrm{C}$ | $\sigma\left(T_{m}\right)$ | T, ${ }^{\circ} \mathrm{C}$ | $\sigma_{0}$ | $W(\mathrm{eV})$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LiF | 842 | $\begin{array}{ll} \hline 3 & (-3) \\ 6 & (-3) \end{array}$ |  | $\begin{array}{ll}3.0 & (6) \\ 4 & (7)\end{array}$ | $\begin{aligned} & 1.99 \\ & 2.20 \end{aligned}$ | $\begin{aligned} & \hline \text { H1 } \\ & \text { L1 } \end{aligned}$ |
| $\mathrm{LiCl}{ }^{*}$ | 606 | $\begin{aligned} & 1.0(-2) \\ & 1.5(-2) \\ & 1.8(-3) \end{aligned}$ | $\begin{array}{r} 400-550 \\ 30-350 \end{array}$ | $\begin{array}{ll} 2.51 & (6) \\ 5 & (7) \\ 2.5 & (5) \\ 1.15 & \end{array}$ | $\begin{aligned} & 1.47 \\ & 1.65 \\ & 1.42 \\ & 0.59 \end{aligned}$ | $\begin{aligned} & \text { H1 (B5) } \\ & \text { L1 } \\ & \text { G2 } \\ & \text { G2 } \end{aligned}$ |
| LiBr * | 550 | $\begin{aligned} & 1.8(-2) \\ & 1.4(-2) \end{aligned}$ | $\begin{array}{r} 350-500 \\ 30-300 \end{array}$ | $\begin{array}{ll} 1.41 & (6) \\ 4.2 & (5) \\ 3.3 & \end{array}$ | $\begin{aligned} & 1.29 \\ & 1.22 \\ & 0.56 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 1 \\ & \mathrm{G} 2 \\ & \mathrm{G} 2 \end{aligned}$ |
| LiI | 452 | $\begin{array}{ll} 5 & (-2) \\ 7 & (-2) \end{array}$ | $\begin{array}{r} 250-350 \\ 30-150 \end{array}$ | $\begin{array}{ll} 9.6 & (5) \\ 1.8 & (5) \\ 1.4 & (-1) \end{array}$ | $\begin{aligned} & 1.05 \\ & 0.92 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & \text { H1 } \\ & \text { G2 } \\ & \text { G2 } \end{aligned}$ |
| NaF | 992 | $\begin{aligned} & 1.7(-3) \\ & 3 \quad(-3) \end{aligned}$ | 330-980 | $\begin{array}{ll}1.5 & (6) \\ 1.3 & (3)\end{array}$ | $\begin{aligned} & 2.25 \\ & 1.42 \end{aligned}$ | $\begin{aligned} & \text { L1 } \\ & \text { P1 } \end{aligned}$ |
| $\mathrm{NaCl}{ }^{*}$ | 800 | $\begin{aligned} & 1.0(-4) \\ & 1.3(-3) \\ & 2.1(-4) \end{aligned}$ | $\begin{array}{r} 250-450 \\ 550-680 \\ \cdots \ldots \ldots \\ 560-800 \\ 370-560 \end{array}$ | 3.72 $(8) / T$ <br> 2.3 $(9) / T$ <br> 1 $(6)$ <br> 4.3 $(4)$ <br> $2.6-3.6$  | $\begin{aligned} & 1.86 \\ & 1.99 \\ & 1.90 \\ & 1.77 \\ & 0.88 \end{aligned}$ | E1 (J6) <br> B1 (T1) <br> L1 (V1) <br> P1 (S2) <br> P1 (H5) |
| $\mathrm{NaBr}{ }^{*}$ | 735 | $\begin{aligned} & 1.3(-3) \\ & 7 \quad(-3) \end{aligned}$ | $\begin{aligned} & 600-730 \\ & 250-400 \end{aligned}$ | $\begin{array}{ll} 1 & (6) \\ 1.5 & (6) \\ 2 & (-1) \end{array}$ | $\begin{aligned} & 1.78 \\ & 1.67 \\ & 0.80 \end{aligned}$ | $\begin{aligned} & \text { L1 (T1) } \\ & \text { P1 } \\ & \text { P1 } \end{aligned}$ |
| NaI | 661 | $\begin{aligned} & 4(-3) \\ & 1.9(-3) \end{aligned}$ | $\begin{aligned} & 350-600 \\ & 170-350 \end{aligned}$ | $\begin{array}{ll} 1.5 & (5) \\ 8.1 & (3) \\ 6 & (-2) \end{array}$ | $\begin{aligned} & 1.42 \\ & 1.23 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & \text { L1 } \\ & \text { P1 } \\ & \text { P1 } \end{aligned}$ |
| KF | 846 | 8 (-4) |  | 3 (7) | 2.35 | L1 |
| $\begin{aligned} \mathrm{KCl} & \\ & * \\ & * \\ & *\end{aligned}$ | 768 | $\begin{aligned} & 2.0(-4) \\ & 1.9(-4) \\ & 2.3(-4) \\ & \ldots \ldots \ldots \\ & 2 \quad(-3) \end{aligned}$ | $\begin{aligned} & 600-725 \\ & 500-725 \\ & 250-450 \\ & 220-560 \end{aligned}$ | $\begin{aligned} 2 & (6) \\ 5.5 & (5) \\ 1-1.5 & (6) \\ 1.3-20 & (-1) \\ 1-50 & (6) \end{aligned}$ | $\begin{aligned} & 2.06 \\ & 1.96 \\ & 2.02 \\ & 0.99 \\ & 1.99 \end{aligned}$ | $\begin{aligned} & \text { L1 (T1) } \\ & \text { W4 } \\ & \text { P3 } \\ & \text { P3 } \\ & \text { B7 } \end{aligned}$ |
| KBr | 728 | $\begin{aligned} & 2.0(-4) \\ & 1.5(-4) \end{aligned}$ | $\begin{array}{r} 500-725 \\ 250-400 \\ 40-440 \end{array}$ | $\begin{aligned} & 1.5 \quad(6) \\ & 1-1.3 \quad(6) \\ & 1-1,000(-2) \\ & 2-20 \end{aligned}$ | $\begin{aligned} & 1.97 \\ & 1.97 \\ & 0.97 \\ & 1.06 \end{aligned}$ | $\begin{aligned} & \text { L1 (T1) } \\ & \text { P3 } \\ & \text { P3 } \\ & \text { B7 } \end{aligned}$ |
| KI | 680 | $\begin{aligned} & 1.5(-4) \\ & 1.1(-4) \end{aligned}$ | $\begin{aligned} & 450-675 \\ & 220-400 \end{aligned}$ | $\begin{array}{ll} 3 & (5) \\ 3-5 & (4) \\ 9-30 & (-2) \\ \hline \end{array}$ | $\begin{aligned} & 1.77 \\ & 1.62 \\ & 0.85 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { L1 } \\ & \text { P3 } \\ & \text { P3 } \end{aligned}$ |

Table 5f-8. Conductivity for Pure Ionic Conductors (Continued)

| Substance | $T_{m},{ }^{\circ} \mathrm{C}$ | $\sigma\left(T_{m}\right)$ | $T,{ }^{\circ} \mathrm{C}$ | $\sigma_{0}$ | $W(\mathrm{eV})$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RbCl * | 717 | 5 (-5) |  | 3 (6) | 2.12 | L1 |
| RbBr * | 681 | 3.5(-5) |  | 1.8 (6) | 2.03 | L1 |
| $\mathrm{SrF}_{2}$ <br> $\mathrm{BaCl}_{2}$ <br> $\mathrm{BaBr}_{2}$ | $\begin{gathered} 1190 \\ -\ldots \\ 847 \end{gathered}$ | $\begin{gathered} 1.6(-1) \\ \ldots . . \\ 1.4(-3) \end{gathered}$ | $450-1100$ $\ldots \ldots \ldots$. $390-750$ | $\begin{gathered} 1.73(4) \\ \ldots \ldots \ldots . \\ 1.0 \quad(-1) \end{gathered}$ | $\begin{aligned} & 1.36 \\ & \ldots . . \\ & 0.41 \end{aligned}$ | $\begin{array}{\|l} \hline \text { C1 } \\ \text { (VI) } \\ \text { J2 } \end{array}$ |
| $\begin{aligned} & \mathrm{Na}_{2} \mathrm{CdCl}_{4} \\ & \mathrm{~K}_{2} \mathrm{BaBra}_{4} \end{aligned}$ |  |  | $\begin{array}{r} 230-350 \\ 430-600 \end{array}$ | $\begin{array}{ll} 2.8 & (3) \\ 7.1 & (4) \end{array}$ | $\begin{aligned} & 0.86 \\ & 1.33 \end{aligned}$ | $\begin{array}{\|l} \text { J2 } \\ \text { J2 } \end{array}$ |
| CuCl | 426 | $5(-1)$ | 315-404 | 4.9 (8) | 1.25 | T7 (B5) |
| $\alpha-\mathrm{CuBr}$ $\beta-\mathrm{CuBr}$ | tr. 470 | $\begin{aligned} & 3.58 \\ & 4.2 \\ & (2.24) \\ & (2.1) \end{aligned}$ | $\begin{aligned} & 470-491 \\ & 470-488 \\ & 391-470 \\ & 421-470 \end{aligned}$ | $\begin{aligned} & 6.57 \\ & 2.1 \quad(3) \\ & 1.12 \\ & 1.2 \quad(2) \\ & 1.2 \end{aligned}$ | $\begin{aligned} & 0.040 \\ & 0.42 \\ & 0.25 \\ & 0.26 \end{aligned}$ | $\begin{aligned} & \text { T9 } \\ & \text { G1 } \\ & \text { T9 } \\ & \text { G1 } \end{aligned}$ |
| $\alpha$-CuI | 602 | 1.7 | 402-602 | 2.5 (2) | 0.20 | T18 |
| AgCl | 455 | $\begin{array}{ll} 9 & (-2) \\ 6 & (-2) \\ 1.1(-1) \end{array}$ | 250-450 | $\begin{array}{ll} 3 & (4) \\ 1 & (5) \\ 1.5 & (6) \end{array}$ | $\begin{aligned} & 0.80 \\ & 0.90 \\ & 1.03 \end{aligned}$ | $\begin{aligned} & \mathrm{K} 4 \\ & \mathrm{~L} 1 \\ & \mathrm{~T} 12 \end{aligned}$ |
| AgBr | 422 | $\begin{aligned} & 4 \quad(-1) \\ & 1.0(-1) \\ & 5(-1) \\ & 7.3(-1) \\ & 6.8(-1) \end{aligned}$ | $\begin{aligned} & 250-419 \\ & 290-410 \\ & 200-290 \\ & 300-410 \\ & 175-300 \end{aligned}$ | 1.8 $(5)$ <br> 6.3 $(3)$ <br> 4.2 $(6)$ <br> 1.3 $(7)$ <br> 2.1 $(5)$ <br> 7.2 $(6)$ <br> 3.8 $(5)$ | 0.78 0.66 0.95 1.00 0.80 0.97 0.82 | K4 <br> L1 <br> T12 <br> K5 <br> K5 <br> T2 <br> T2 |
| $\begin{aligned} & \alpha-\mathrm{AgI} \\ & \beta-\mathrm{AgI} \end{aligned}$ | $\begin{gathered} 555 \\ \text { tr. } 144.6 \end{gathered}$ | $\begin{aligned} & 2.5 \\ & (4(-4)) \end{aligned}$ | $\begin{aligned} & 145-555 \\ & 125-144 \end{aligned}$ | $\begin{array}{ll} 5.5 & \\ 3.9 & \text { (6) } \end{array}$ | $\begin{aligned} & 0.052 \\ & 0.83 \end{aligned}$ | $\begin{aligned} & \mathrm{T} 12 \\ & \mathrm{~T} 12 \end{aligned}$ |
| $\alpha-\mathrm{Ag}_{2} \mathrm{HgI}_{4}$ |  |  | 50-93 | $4 \quad$ (2) | 0.37 | K2 |
| TlCl | 428 | $\begin{array}{ll} 5 & (-3) \\ 3 & (-3) \end{array}$ | 130-390 | $\begin{array}{ll} 2.5 & (3) \\ 4.7 & (2) \end{array}$ | $\begin{aligned} & 0.79 \\ & 0.72 \end{aligned}$ | $\begin{aligned} & \text { L1 (T12) } \\ & \text { P3 } \end{aligned}$ |
| TlBr | 458 | $\begin{array}{ll} 5 & (-3) \\ 2 & (-3) \end{array}$ | 150-400 | $\begin{array}{ll} 1.7 & \text { (3) } \\ 2.2 & \text { (2) } \end{array}$ | $\begin{aligned} & 0.80 \\ & 0.73 \end{aligned}$ | L1 (T12) P3 |
| TII | $\begin{array}{r} 438 \\ \text { tr. } 163 \end{array}$ | $\begin{gathered} 1.5(-3) \\ (5 \quad(-8)) \end{gathered}$ | $\begin{array}{r} 163-400 \\ 90-163 \end{array}$ | $\begin{array}{ll} 4.2 & (1) \\ 2.5 & (-3) \end{array}$ | $\begin{aligned} & 0.63 \\ & 0.41 \end{aligned}$ | $\begin{aligned} & \text { P3 (T12) } \\ & \text { P3 } \end{aligned}$ |
| $\begin{aligned} & \mathrm{ZnCl}_{2} \\ & \mathrm{CdCl}_{2} \end{aligned}$ | 568 | $\underset{1.1(-1)}{ }$ | 260-520 | 1.6 (5) | 1.03 | $\begin{aligned} & \text { (B5) } \\ & \text { J2 (B5) } \end{aligned}$ |

Table 5f-8. Conductivity for Pure Ionic Conductors (Continued)

| Substance | $\mathrm{T}_{\mathrm{m}},{ }^{\circ} \mathrm{C}$ | $\sigma\left(T_{m}\right)$ | T, ${ }^{\circ} \mathrm{C}$ | $\sigma_{0}$ | $W(e V)$ | Ref. | |
|---|---|---|---|---|---|---|---|
| $\mathrm{HgCl}_{2}$ |  |  |  |  |  | (H3) |
| $\mathrm{HgBr}_{2}$ |  |  |  |  |  | (H3) |
| $\mathrm{HgI}_{2}$ |  |  |  |  |  | (H3) |
| $\mathrm{SnCl}_{2}$ |  |  |  |  | ..... | (K3) |
| $\mathrm{PbCl}_{2}$ | 500 | $5 \quad(-3)$ |  | 1.4 | 0.47 | G5 |
|  | : | 5 (-3) | 100-450 | 6.6 | 0.48 | S3 |
| $\mathrm{PbBr}_{2}$ | 373 | $3(-3)$ | 200-300 | 5.7 (1) | 0.55 | S1 |
| $\mathrm{PbI}_{2}$ | 402 | 3 (-5) | 275-375 | 1.2 (5) | 1.29 | S3 |
|  |  |  | 150-275 | 9.8 (-4) | 0.41 | S3 |
| *\|| |  | $1(-5)$ | 270-400 | 2.1 (4) | 1.24 | S4 |
| * 1 |  | 9 (-5) | 180-370 | 4-8 (-2) | 0.38 | S4 |
| $\mathrm{La}_{2} \mathrm{O}_{3}$ | 2315 | ......... | 1000-1300 | 3.8 (3) | 1.94 | C2 (F2) |
|  |  |  | 700-1000 | 5.0 (1) | 1.46 |  |
|  |  |  | 500-700 | 3.5 (-5) | 0.27 | C2 |
| $\mathrm{CeO}_{2}$ | 1950 |  | 900-1300 | 3.0 (3) | 1.45 | C2 (F1) |
| - |  |  | 600-900 | 9.7 (1) | 1.10 |  |
|  |  |  | 300-500 | 5.0 (-4) | 0.26 | C2 |
| $\mathrm{Pr}_{2} \mathrm{O}_{3}$ |  |  |  |  |  | (F2) |
| $\mathrm{Nd}_{2} \mathrm{O}_{3}$ |  |  |  | ... |  | (F2) |
| $\mathrm{Sm}_{2} \mathrm{O}_{3}$ |  |  |  |  |  | (F2) |
| $\mathrm{GeO}_{2}$ | 1115 |  | 950-1080 | 5 | 1.41 | J4 |
| $\mathrm{MgAl}_{2} \mathrm{O}_{4} \dagger$ | 2135 |  | 900-1060 | 2.3 (-1) | 1.23 | J3 |
| $\mathrm{ZnAl}_{2} \mathrm{O}_{4} \dagger$ |  |  | 1000-1140 | 2.1 (-2) | 1.08 | J3 |
| $\mathrm{Mg}_{2} \mathrm{SiO}_{4} \dagger$ |  |  | 940-1160 | 1.5 (-2) | 0.83 | J4 |
| $\begin{aligned} & \mathrm{Mg}_{2} \mathrm{GeO}_{4} \\ & \quad \text { (rhomb.) } \ddagger \\ & \text { (cub.) } \dagger \end{aligned}$ | tr. 1065 |  | $\left\|\begin{array}{c} 1070-1150 \\ 1000-1040 \end{array}\right\|$ | $\begin{aligned} & 5-6 \\ & 2.0-2.5(-2) \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 0.97 \end{aligned}$ | $\begin{gathered} \text { J4 } \\ \text { J4 } \end{gathered}$ |
| $\mathrm{BaMoO}_{4} \dagger$ |  |  | 800-1050 | $6 \quad(-1)$ | 1.10 |  |
| $\mathrm{CaWO}_{4} \dagger$ |  |  |  |  |  | (J1) <br> (J1) |
| $\mathrm{SrWO}_{4} \dagger$ |  |  |  |  |  |  |
| BaWO4 $\dagger$ | ........ | ....... | 980-1120 | 1.4-1.8(2) | 1.83 | J1 |
|  |  |  | 830-980 | 1.7-2.3(-2) | 0.86 | J1 |
| $\mathrm{CdWO}_{4} \dagger$ | ......... | .... | 760-1090 | 2-5 (3) | 1.90 | J1 |

Conductivity $=\sigma_{0} \exp (-W / k T)$. Conductivities are expressed in ohm ${ }^{-1} \mathrm{~cm}^{-1} . \quad T_{m}=$ melting temperature. Where no temperature interval is indicated, it is to be assumed that the data apply to a certain temperature interval near the melting temperature. *indicates that measurements were performed on single crystals. Numbers are written as $3(-3)=3 \times 10^{-3}$. References are on p. 5-195. Additional references, enclosed in parentheses, refer only to the indicated substance, not to any particular data.

6f-7. Density and Mobility of Defects for Pure Ionic Conductors. The conductivity of a crystal containing several types of defects is

$$
\begin{equation*}
\sigma=N \sum_{j} e_{i} x_{j} \mu_{j} \tag{5f-15}
\end{equation*}
$$

where $N$ is the number of molecules per unit volume of the perfect crystal and $e_{j}$ is the magnitude of the charge, $x_{j}$ the mole fraction, and $\mu_{j}$ the mobility of the $j$ th type of defect. By measuring the conductivity of specimens containing known small amounts of impurities, it has been possible to evaluate separately the mole fractions and mobilities involved. In experiments of this type concerning the alkali halides it is usually observed that only the cations contribute appreciably to the conductivity; this observation is approximately in accord with the transport measurements except at the highest temperature (see Table $5 \mathrm{f}-10$ ). For the other salts the type of defect is indicated in Table 5f-9.

Table 5f-9. Density and Mobility of Defects for Pure Ionic Conductors

| Substance | $T_{m},{ }^{\circ} \mathrm{C}$ | $T,{ }^{\circ} \mathrm{C}$ | $x_{0}$ | $E(e V)$ | $\mu_{0}$ | $U(e V)$ | Notes | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LiF | 842 |  | 5.0(2) | 2.68 | 6.1(-1) | 0.65 | $a$ | H1 |
| LiCl | 606 |  | 17.0(2) | 2.12 | $3.15(-1)$ | 0.41 | $a$ | H1 |
| LiBr | 550 |  | 8.1(2) | 1.80 | 4.5(-1) | 0.39 | $a$ | H1 |
| LiI | 452 |  | 5 (2) | 1.34 | 6.5(-1) | 0.38 | $a$ | H1 |
| $\mathrm{NaCl}{ }^{*}$ | 800 | 250-400 | 5.4 | 2.02 | 1.96(4)/T | 0.85 | $a$ | E1 |
| * |  | 550-680 | 1.4(2) | 2.42 | 4.6(3)/T | 0.78 | $a$ | B1 |
| * |  | 160-250 |  |  | 6.3(5)/T | 0.98 | $a$ | B1 |
| KCl * | 768 | 600-725 | 1.02(1) | 2.08 | 3.1 | 0.78 | $a$ | W4, R6 |
| AgCl | 455 |  | 3.6(1) | 1.08 | $1.2(-1)$ | 0.26 | $b$ | K4 |
| AgBr | 422 |  | $\begin{aligned} & 2.9(1) \\ & 1.9(2) \\ & 5.3(2) \end{aligned}$ | $\begin{aligned} & 0.86 \\ & 1.19 \\ & 1.27 \end{aligned}$ | $9.5(-1)$ | 0.36 | $b$ | K4 |
|  |  |  |  |  | 1.5(2)/T | 0.20 | c | K5 |
|  |  |  |  |  | 1.9(4)/T | 0.48 | $d$ | K5 |
|  |  |  |  |  | 6.1(-2) | 0.15 | c | T2 |
|  |  |  |  |  | 1.83 | 0.36 | $d$ | T2 |
| $\mathrm{SrF}_{2}$ | 1190 | 450-700 | 3.9(-2) | 0.65 | 3.5(1) | 1.04 | $e$ | C1 |

[^253]The temperature dependence of the mole fraction and mobility can be represented satisfactorily by equations similar to Eq. ( $5 \mathrm{f}-14$ ) for the conductivity.

$$
\begin{align*}
& x=x_{0} \exp (-E / 2 k T) \\
& \mu=\mu_{0} \exp (-U / k T) \tag{5f-16}
\end{align*}
$$

$E$ is the energy required to form a pair of defects and $U$ is the height of the potential barrier a defect must overcome to move one interionic distance. Notice that when only one type of defect contributes to the conductivity, the activation energy in Eq. ( $5 \mathrm{f}-14$ ) should be given by $W=\frac{1}{2} E+U$. Equations ( $5 \mathrm{f}-16$ ) are the forms to be expected from the theory, except that $\mu_{0}$ should vary as $1 / T$. This variation is usually obscured by the exponential factor in $\mu$.

6f-8. Transport Numbers. The transport number $t_{j}$ of the $j$ th type of defect is the fraction of the total current carried by that type of defect. By the performance of electrolysis experiments in which several disks of the material are present and the determination of the relative changes in weight of the various disks, the transport numbers in Table $5 f-10$ have been obtained. The amount of variance of different observers, e.g., for NaCl , indicates that the results of such experiments are not very reliable.

For a number of ionic crystals Faraday's law of electrolysis is not valid, and it has usually been assumed that the extent of the deviation from this law is a measure of the amount of electronic conductivity which is present. In Table $5 \mathrm{f}-11$ transport numbers determined in this way when some electronic conductivity is present are given along with values of the conductivity. Occasionally this method of interpreting electrolysis experiments has led to incorrect conclusions, the most notable case being $\mathrm{Ag}_{2} \mathrm{~S}$.

5f-9. Effect of Pressure on Conductivity. When the effect of high pressure is taken into consideration, Eqs. (5f-16) are modified to give

$$
\begin{align*}
& x=x_{0} \exp [-(E+P \Delta V) / 2 k T]  \tag{5f-17}\\
& \mu=\mu_{0} \exp \left[-\left(U+P \Delta V_{\mu}\right) / k T\right]
\end{align*}
$$

$\Delta V$ is related to the change in volume of the crystal when a pair of defects is formed, and $\Delta V_{\mu}$ is related to the change in volume of the crystal which occurs when a defect moves from one position to another. If only one type of defect contributes appreciably to the conductivity, the conductivity should be given by an equation of the form of Eqs. (5f-17) with $\Delta V_{\sigma}=\frac{1}{2} \Delta V+\Delta V_{\mu}$. In Table $5 \mathrm{f}-12$ values of the various free volumes are given for AgBr , and additional values of $\alpha_{0}=-(d \log \sigma / d P)_{P=0}$ are given for AgBr and AgCl .

Table 5f-10. Transport Numbers for Pure Ionic Conductors (The transport number $t=t_{\text {cat }}=1-t_{\mathrm{an} \text { ion }}$ is given)

| Substance | $T,{ }^{\circ} \mathrm{C}$ | $t_{\text {cat }}$ | Ref. |
| :---: | :---: | :---: | :---: |
| NaF | 500 | 1.00 | T11 |
|  | 550 | 1.00 |  |
|  | 560 | 0.99 |  |
|  | 570 | 0.97 |  |
|  | 585 | 0.94 |  |
|  | 600 | 0.92 |  |
|  | 615 | 0.89 |  |
|  | 625 | 0.86 |  |
| $\overline{\mathrm{KCl}}$ | 435 | 0.96 | T5 |
|  | 500 | 0.94 |  |
|  | 550 | 0.92 |  |
|  | 600 | 0.88 |  |
| KBr | 605 | 0.5 | J10 |
|  | 660 | 0.4 |  |
| KI | 610 | 0.9 | J10 |
| $\mathrm{BaF}_{2}$ | 500 | 0.00 | T5 |
| $\mathrm{BaCl}_{2}$ | 400-700 | 0.00 | T5 |
| $\mathrm{BaBr}_{2}$ | 350-450 | 0.00 | T5 |
| CuCl | 315 | 1.00 | T7 |
|  | 366 | 1.00 |  |
| $\alpha-\mathrm{CuBr}$ | 470-491 | 1.00 | T8 |
| $\beta-\mathrm{CuBr}$ | 391-445 | 1.00 |  |
| $\alpha$-CuI | 402-500 | 1.00 | T21 |
| AgCl | 20 | 1.00 | T13 |
|  | 200-350 | 1.00 |  |
| $\overline{\mathrm{AgBr}}$ | 20 | 1.00 | T13 |
|  | 200-300 | 1.00 |  |
|  | 406 | 1.00 | K5 |
| $\alpha$-AgI | 150-400 | 1.00 | T13 |
| $\beta$-AgI | 20 | 1.00 |  |
| $\alpha-\mathrm{Ag}_{2} \mathrm{HgI}_{4}$ | 60 | $t_{\text {Ag }}=0.94$ | K2 |
|  |  | $t_{\mathrm{Hg}_{\mathrm{g}}}=0.06$ |  |
| $\mathrm{PbF}_{2}$ | 200 | 0.00 | T5 |
| $\mathrm{PbCl}_{2}$ | 200-450 | 0.00 | T5 |
|  | 90 | $10^{-10}$ | H4* |
|  | 270 | $10^{-5}$ |  |
|  | 484 | $10^{-3}$ |  |
| $\mathrm{PbBr}_{2}$ | 250-365 | 0.00 | T5 |

Table 5f-10. Transport Numbers for Pure Ionic Conductors (Continued)

| Substance | $T,{ }^{\circ} \mathrm{C}$ | $t_{\text {cat }}(1) \dagger$ | $t_{\text {cat }}(2)$ | $t_{\text {cat }}(3)$ | $t_{\text {cat }}(4)$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NaCl | 400 | 1.00 |  | 1.00 |  |  |
|  | 500 | - 0.98 |  | 0.95 | . . . . . | (1) T 19 |
|  | 550 | $\bigcirc 0.94$ |  | . . . | 0.99 | (2) J10 |
|  | 557 |  | 0.75-1.00 | . . . |  | (3) P2 |
|  | 580 | 0.92 |  |  |  | (4) J5 |
|  | 600 | 0.90-0.95 |  | 0.64 | 0.92-0.96 |  |
|  | 605 |  | 0.55-0.59 |  |  |  |
|  | 610 |  | 0.52-0.75 |  |  |  |
|  | 620 | 0.88-0.93 |  | 0.77 |  |  |
|  | 658 |  | 0.36-0.38 |  |  |  |
|  | 710 |  | 0.12 |  |  |  |
| $\mathrm{PbI}_{2}$ | 155 |  | 0.004 |  |  |  |
|  | 194 |  | 0.03 | ... |  | (1) T5 |
|  | 228 |  | 0. 12 | . . . |  | (2) $\mathrm{H} 4 *$ |
|  | 255 | 0.39 | 0.30-0.35 |  |  |  |
|  | 270 | 0.45 | 0.40-0.50 |  |  |  |
|  | 290 | 0.67 | 0.55-0.65 |  | : |  |
|  | 338 |  | 0.79-0.85 |  |  |  |
|  | 376 |  | 0.93-1.00 |  |  |  |

References are on p. 195.

* Calculated from diffusion data of Pb ions.
$\dagger$ Numbers in parenthesis refer to observer indicated in ref. column.
Table 5f-11. Conductivity and Transport Numbers for Mixed Ionic and Electronic Conductors
(1) Total conductivity $\sigma$ in $\mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline Substance \& $T_{m},{ }^{\circ} \mathrm{C}$ \& $T,{ }^{\circ} \mathrm{C}$ \& $\sigma_{0}$ \& $W(e V)$, \& Ref. <br>
\hline CuCl \& 426 \& $$
\begin{array}{r}
210-300 \\
150-210 \\
45-110
\end{array}
$$ \& $$
\begin{aligned}
& 1.2(6) \\
& 4.2(4) \\
& 3.0
\end{aligned}
$$ \& $$
\begin{aligned}
& 0.95 \\
& 0.81 \\
& 0.49
\end{aligned}
$$ \& T7
T7
T7 <br>
\hline $\gamma-\mathrm{CuBr}$ \& tr. 391 \& $$
\begin{aligned}
& 250-380 \\
& 140-230 \\
& 240-380
\end{aligned}
$$ \& $$
\begin{aligned}
& 5.9(9) \\
& 2.0(4) \\
& 8.1(10)
\end{aligned}
$$ \& $$
\begin{aligned}
& 1.36 \\
& 0.80 \\
& 1.51
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { T9 } \\
& \text { T9 } \\
& \text { G1 }
\end{aligned}
$$ <br>
\hline $\gamma$-CuI \& tr. 402 \& $$
\begin{aligned}
& 360-400 \\
& 100-180
\end{aligned}
$$ \& $$
\begin{aligned}
& 3.0(9) \\
& 6.0(-1)
\end{aligned}
$$ \& $$
\begin{aligned}
& 1.30 \\
& 0.047
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { T10 (M1) } \\
& \text { T10 (V2) }
\end{aligned}
$$ <br>
\hline $\alpha-\mathrm{Ag}_{2} \mathrm{~S}$

$\beta-\mathrm{Ag}_{2} \mathrm{~S}$ \& 835

tr. 179 \& $$
\begin{gathered}
179-500^{*} \\
179-500 \dagger \\
\text { Above } 179 \ddagger \\
35-179^{*} \\
110-179 \dagger
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 6.4(2) \\
& 1.73(2) \\
& 3-7(1) \\
& 9.0(6) \\
& 5.2(8)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
-0.009 \\
0.058 \\
0.14 \\
0.60 \\
0.91
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \text { T15 } \\
& \text { T15 } \\
& \text { W3, T16 } \\
& \text { R2 } \\
& \text { R2 }
\end{aligned}
$$
\] <br>

\hline
\end{tabular}

Table 5f-11. Conductivity and Transport Numbers for Mixed Ionig and Electronic Conductors (Continued)
(2) The transport number $t_{\text {cat }}=1-t_{\text {electron }}$ is given

| Substance | T, ${ }^{\circ} \mathrm{C}$ | $t_{\text {cat }}$ | Ref. |
| :---: | :---: | :---: | :---: |
| CuCl | 18 | 0.00 | T7 |
|  | 40 | 0.02 |  |
|  | 154 | 0.04 |  |
|  | 197 | 0.12 |  |
|  | 218 | 0.29 |  |
|  | 225 | 0.39 |  |
|  | 232 | 0.50 |  |
|  | 244 | 0.78 |  |
|  | 254 | 0.90 |  |
|  | 294 | 0.96 |  |
|  | 300 | 0.98 |  |
|  | 315 | 1.00 |  |
|  | 366 | 1.00 |  |
| $\gamma-\mathrm{CuBr}$ | 27 | 0.00 | T8 |
|  | 153 | 0.02 |  |
|  | 181 | 0.04 |  |
|  | 191 | 0.08 |  |
|  | 202 | 0.12 |  |
|  | 223 | 0.14 |  |
|  | 242 | 0.22 |  |
|  | 272 | 0.39 |  |
|  | 299 | 0.87 |  |
|  | 308 | 0.92 |  |
|  | 335 | 0.97 | - $\quad 3$ |
|  | 345 | 0.98 | - . |
|  | 390 | 1.00 |  |
| ${ }^{\text {- }}$ - CuI | 200 | $2.7 \times 10^{-6}$ |  |
|  | 200 | 0.00 | $\mathbf{T} 21$ |
|  | 255 | 0.01 |  |
|  | 300 | 0.25 |  |
|  | 325 | 0.50 |  |
|  | 350 | 0.75 |  |
|  | 375 | 0.98 |  |
|  | 390 | 0.997 |  |
|  | 400 | 1.00 |  |
| $\begin{gathered} \alpha-\mathrm{Ag}_{2} \mathrm{~S} \\ \beta-\mathrm{Ag}_{2} \mathrm{~S} \end{gathered}$ | 200 | $10^{-2}-10^{-3}$ | J9, R5, T17, W2 |
|  | $20 \dagger$ | 0.99 | T14 |
|  | $60 \dagger$ | 0.93 | (H2) |
|  | $100 \dagger$ | 0.90 |  |
|  | $150 \dagger$ | 0.84 | 4 |
|  | $170 \dagger$ | 0.81 |  |
| ${ }^{\alpha}-\mathrm{Ag}_{2} \mathrm{~S}$ |  | $t_{\text {sulfur }}$ |  |
|  | 179 |  | B6 |
|  | 571 | 6 (-5) |  |
|  | ${ }_{6}^{694}$ | $2.2(-5)$ |  |
|  | 836 | 7 (-4) |  |

Table 5f-11. Conductivity and Transport Numbers for Mixed Ionic and Electronic Conductors (Continued)

| Substance | $T,{ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |

References are on p. 5-195.

* In equilibrium with silver.
$\dagger$ In equilibrium with sulfur.
$\ddagger$ Ionic part of conductivity only.
II In equilibrium with selenium.


## References for Mixed Salts

In most cases values of the observed conductivity are the only data given. The number before the second substance indicates the maximum amount of the second substance in mole per cent.
LiF- $5 \mathrm{MgF}_{2}(\mathrm{H} 1) ; \operatorname{LiCl}-100 \mathrm{KCl}(\mathrm{B} 3), 5 \mathrm{MgCl}_{2}(\mathrm{H} 1) ; L i B r-5 \mathrm{MgBr}_{2}(\mathrm{H} 1) ; L i I-$ $5 \mathrm{MgI}_{2}(\mathrm{H} 1) ; \mathrm{NaCl}-100 \mathrm{KCl}(\mathrm{B} 4), 0.25 \mathrm{CaCl}_{2}(\mathrm{~B} 1), 100 \mathrm{AgCl}(\mathrm{T} 6), 0.1 \mathrm{CdCl}_{2}(\mathrm{E} 1)$; $\mathrm{NaBr}-100 \mathrm{AgBr}(\mathrm{T} 6) ; \mathrm{KF}-100 \mathrm{~K}_{2} \mathrm{SO}_{4}(\mathrm{~B} 2) ; \mathrm{KCl}-100 \mathrm{LiCl}(\mathrm{B} 3) ; 100 \mathrm{NaCl}(\mathrm{B} 4)$, $5.3 \mathrm{KBr}(\mathrm{T} 1), 1 \mathrm{SrCl}_{2}(\mathrm{~W} 4, \mathrm{~K} 1), 100 \mathrm{AgCl}(\mathrm{T} 6), 100 \mathrm{~K}_{2} \mathrm{CrO}_{4}(\mathrm{~B} 4) ; \mathrm{KBr}-100$ $\mathrm{AgBr}(\mathrm{T} 6) ; \mathrm{SrF}_{2}-10 \mathrm{LaF}_{3}(\mathrm{C} 1)$.
$\mathrm{CuBr}-100 \mathrm{AgBr}(\mathrm{R} 4) ; \mathrm{CuI}-100 \mathrm{AgI}(\mathrm{T} 21) ; \mathrm{AgCl}-100 \mathrm{NaCl}(\mathrm{T} 6), 100 \mathrm{KCl}(\mathrm{T} 6)$, $100 \mathrm{AgBr}(\mathrm{S} 1), 100 \mathrm{TlCl}(\mathrm{S} 1), 10 \mathrm{CdCl}_{2}(\mathrm{~K} 4), 10 \mathrm{PbCl}_{2}(\mathrm{~K} 4), 100 \quad \mathrm{PbCl}_{2}(\mathrm{~T} 22)$; $\mathrm{AgBr}-10 \mathrm{LiBr}(\mathrm{T} 3), 10 \mathrm{NaBr}(\mathrm{T} 3), 100 \mathrm{NaBr}(\mathrm{T} 6), 100 \mathrm{KBr}(\mathrm{T} 6), 10 \mathrm{CaBr}_{2}(\mathrm{~T} 2)$, 10 CuBr (T3), $100 \mathrm{CuBr}(\mathrm{R} 4), 10 \mathrm{AgCl}(\mathrm{T} 3), 100 \mathrm{AgCl}(\mathrm{S} 1), 10 \mathrm{AgI}(\mathrm{T} 3), 100 \mathrm{AgI}(\mathrm{T} 12)$, $10 \mathrm{ZnBr}_{2}(\mathrm{~T} 2), 0.1 \mathrm{CdBr}_{2}(\mathrm{~K} 5), 10 \mathrm{CdBr}_{2}(\mathrm{~K} 4), 40 \mathrm{CdBr}_{2}(\mathrm{~T} 2), 10 \mathrm{PbBr}_{2}(\mathrm{~K} 4), 20$ $\mathrm{PbBr}_{2}$ (T2), $100 \mathrm{PbBr}_{2}(\mathrm{~T} 22), 1 \mathrm{Ag}_{2} \mathrm{~S}(\mathrm{~T} 4), 1 \mathrm{CdS}(\mathrm{T} 4), 1 \mathrm{PbS}(\mathrm{T} 4) ; A g I-100 \mathrm{CuI}(\mathrm{T} 21)$, $100 \mathrm{AgBr}(\mathrm{T} 12), 100 \mathrm{PbI}_{2}(\mathrm{~T} 22)$; $T l C l-100 \mathrm{AgCl}(\mathrm{S1})$.
$\mathrm{SnCl}_{2}-100 \mathrm{PbCl}_{2}(\mathrm{~B} 3) ; \mathrm{PbCl}_{2}-100 \mathrm{AgCl}(\mathrm{T} 22), 100 \quad \mathrm{SnCl}_{2}(\mathrm{~B} 3), 100 \mathrm{PbBr}_{2}(\mathrm{~S} 1)$; $\mathrm{PbBr}_{2}-100 \mathrm{AgBr}(\mathrm{T} 22), 100 \mathrm{PbCl}_{2}(\mathrm{~S} 1) ; \mathrm{PbI}_{2}-100 \mathrm{AgI}(\mathrm{T} 22) ; \mathrm{CeO}_{2}-30 \mathrm{La}_{2} \mathrm{O}_{3}(\mathrm{C} 2)$.

Table 5f-12. Effect of Pressure on Conductivity
(1) Values of $\alpha_{0}=-(d \log \sigma / d P)$ at $P=0$

| Substance | $\underset{{ }^{\circ} \mathrm{C}}{\mathrm{Temp}},$ | Pressure, $\mathrm{kg} \mathrm{cm}^{-2}$ | $\begin{gathered} \alpha_{0}, \\ \mathrm{~cm}^{2} \mathrm{~kg}^{-1} \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| AgCl | 300 | 0-300 | $2.5 \times 10^{-4}$ | J8 |
|  | 256-313 | 0-300 | 2.9 | J7 |
| AgBr | 300 | 0-300 | 3.5 | J8 |
|  | 243-290 | 0-300 | 3.2 | J7 |
|  | 202 | 0-8,000 | 1.19 | K5 |
|  | 251 | 0-2,500 | 1.19 | K5 |
|  | 289 | 0-2,500 | 1.23 | K5 |
|  | 377 | 0-2,000 | 1.44 | K5 |
|  | 406 | 0-1,000 | 2.02 | K5 |

(2) Values of free volume of formation and of mobility for $\mathrm{AgBr}, 202-289^{\circ} \mathrm{C}$, $0-8,000 \mathrm{~kg} \mathrm{~cm}^{-2}$ (K5)

| Quantity | $\Delta V$, <br> $\mathrm{cm}^{3} \mathrm{~mole}^{-1}$ |
| :---: | :---: |
|  | 16 <br> Formation of Frenkel defects........... <br> Mobility of silver ion vacancy......... <br> Mobility of interstitial silver ion......... |

## References for Tables $\mathbf{5 f} \mathbf{- 8}$ through $\mathbf{5 f} \mathbf{- 1 2}$

1. "International Critical Tables," McGraw-Hill Book Company, Inc., New York, 1926.
2. Jost, W.: "Diffusion in Solids, Liquids, and Gases," Academic Press, Inc., New York, 1952.
3. Landolt-Börnstein: "Physikalisch-Chemische Tabellen," Springer-Verlag OHG, Berlin, 5th ed., Hauptwerk II, 1923; Ergänzungsband I, 1927; Ergänzungsband II, pt. 2, 1931; Ergänzungsband III, pt. 3, 1936.
4. Mott, N. F., and R. W. Gurney: "Electronic Processes in Ionic Crystals," 2d ed., Oxford University Press, New York, 1948.
5. Seitz, F.: "The Modern Theory of Solids," McGraw-Hill Book Company, Inc., New York, 1940.
B1. Bean, C.: Thesis, University of Illinois, 1952.
B2. Benrath, A., and K. Drekopf: Z. physik. Chem. 99, 57 (1921).
B3. Benrath, A., and H. Tesche: Z. physik. Chem. 96, 474 (1920).
B4. Benrath, A., and J. Wainoff: Z. physik. Chem. 77, 257 (1911).
B5. Biltz, W., and W. Klemm: Z. physik. Chem. 110, 318 (1924).
B6. Braune, H.: Z. Elektrochem. 31, 576 (1925).
B7. Brennicke, C. G.: J. Appl. Phys. 11, 202 (1940).
C1. Croatto, U., and M. Bruno: Gazz. chim. ital. 78, 95 (1948).
C2. Croatto, U., and A. Mayer: Gazz. chim. ital. 73, 199 (1943).
D1. Dünwald, H., and C. Wagner: Z. physik. Chem. B22, 215 (1933).
E1. Etzel, H. W., and R. J. Maurer: J. Chem. Phys. 18, 1003 (1950).
F1. Foëx, M.: Bull. Soc. Chim. 11, 6 (1944).
F2. Foëx, M.: Compt. rend. 220, 359 (1945).
G1. Geiler, J.: Dissertation, Halle, 1928.
G2. Ginnings, D. C., and T. E. Phipps: J. Am. Chem. Soc. 52, 1340 (1930).

G3. Gundermann, J., in ref. 2, p. 391.
G4. Gundermann, J., K. Hauffe, and C. Wagner: Z. physik. Chem. B37, 148, 155 (1937).

G5. Gyulai, Z.: Z. Physik 67, 812 (1931).
H1. Haven, Y.: Rec. trav. chim. 69, 1471 (1950).
H2. Hebb, M. H.: J. Chem. Phys. 20, 185 (1952).
H3. Hevesy, G. V.: Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 3 (13) (1921).
H4. Hevesy, G. V., and W. Seith: Z. Physik 56, 790 (1929).
H5. Hochberg, B., and A. Walther: Z. Physik 64, 392 (1930).
I1. Isensee, H.: Z. physik. Chem. B35, 309 (1937).
J1. Jander, W.: Z. anorg. u. allgem. Chem. 192, 295 (1930).
J2. Jander, W.: Z. anorg. u. allgem. Chem. 199, 306 (1931).
J3. Jander, W., and W. Stamm: Z. anorg. u. allgem. Chem. 199, 165 (1931).
J4. Jander, W., and W. Stamm: Z. anorg. u. allgem. Chem. 207, 289 (1932).
J5. Joffé, A., Z. Physik 62, 730 (1930).
J6. Joffé, A., and E. Zechnowitzer: Physica 6, 36 (1926).
J7. Jost, W., and S. Mennenöh: Z. physik. Chem. 196, 188 (1950).
J8. Jost, W., and G. Nehlep: Z. physik. Chem. B34, 348 (1936).
J9. Jost, W., and H. Rüter: Z. physik. Chem. B21, 48 (1933).
J10. Jost, W., and H. Schweitzer: Z. physik. Chem. B20, 118 (1933).
K1. Kelting, H., and H. Witt: Z. Physik 126, 697 (1949).
K2. Ketelaar, J. A. A.: Z. physik. Chem. B26, 327 (1934).
K3. Klemm, W., and W. Biltz: Z. anorg. u. allgem. Chem. 152, 225 (1926).
K4. Koch, E., and C. Wagner: Z. physik. Chem. B38, 295 (1937).
K5. Kurnick, S.: J. Chem. Phys. 20, 218 (1952).
L1. Lehfeldt, W.: Z. Physik 85, 717 (1933).
M1. Maurer, R. J.: J. Chem. Phys. 13, 321 (1945).
N1. Nagel, K., and C. Wagner: Z. physik. Chem. B25, 71 (1934).
P1. Phipps, T. E., W. D. Lansing, and T. G. Cooke: J. Am. Chem. Soc. 48, 112 (1926).

P2. Phipps, T. E., and R. T. Leslie: J. Am. Chem. Soc. 50, 2412 (1928).
P3. Phipps, T. E., and E. G. Partridge: J. Am. Chem. Soc. 51, 1331 (1929).
R1. Reinhold, H, and H. Bräuninger: Z. physik. Chem. B41, 397 (1938).
R2. Reinhold, H., and H. Möhring: Z. physik. Chem. B28, 182 (1935).
R3. Reinhold, H., H. Möhring, and H. Seidel: Z. physik. Chem. B38, 221 (1937).
R4. Reinhold, H., and R. Schulz: Z. physik. Chem. A164, 241 (1933).
R5. Reinhold, H., and H. Seidel: Z. Elektrochem. 41, 599 (1935).
R6. Ronge, G., and C. Wagner: J. Chem. Phys. 18, 74 (1950).
S1. Sandoninni, C.: Atti Accad. mazl. Lincei 24 (5), 842 (1915).
S2. von Seelen, D.: Z. Physik 29, 125 (1924).
S3. Seith, W.: Z. Physik 56, 802 (1929); 57, 869 (1929).
S4. Seith, W.: Z. Elektrochem. 39, 538 (1933).
S5. Sproull, R. L., and W. W. Tyler: "Semi-conducting Materials," H. K. Henisch, ed., Butterworth \& Co. (Publishers), Ltd., London, 1951.
T1. Tamman, G., and G. Veszi: Z. anorg. u. allgem. Chem. 150, 355 (1926).
T2. Teltow, J.: Ann. Physik 5, 63, 71 (1949).
T3. Teltow, J.: Z. physik. Chem. 195, 197 (1950).
T4. Teltow, J.: Z. physik. Chem. 195, 213 (1950).
T5. Tubandt, C.: "Handbuch exp. Physik," vol. XII, pt. 1, Akademische Verlagsgesellschaft M.B.H., Leipzig, 1932.
T6. Tubandt, C., and Abramowitsch: in ref. 3, 1927.
T7. Tubandt, C., and M. Baudouin: in ref. 3, 1931.
T8. Tubandt, C., and J. Geiler: in ref. 3, 1931.
T9. Tubandt, C., J. Geiler, and M. Baudouin: in ref. 3, 1931.
T10. Tubandt, C., and W. Jost: in ref. 3, 1927.
T11. Tubandt, C., and G. Leibold: in ref. 3, 1931.
T12. Tubandt, C., and E. Lorenz: Z. physik. Chem. 87, 513, 543 (1914).
T13. Tubandt, C., and H. Reinhold: Z. Elektrochem. 29, 313 (1923); 31, 84 (1925).
T14. Tubandt, C., and H. Reinhold: Z. anorg. u. allgem. Chem. 160, 222 (1927).

T15. Tubandt, C., and H. Reinhold: Z. Elektrochem. 37, 589 (1931).
T16. Tubandt, C., and H. Reinhold: Z. physik. Chem., Bodenstein Festband, 874 (1931).

T17. Tubandt, C., and H. Reinhold: Z. physik. Chem. B24, 22 (1934).
T18. Tubandt, C., H. Reinhold, and W. Jost: Z. anorg. u. allgem. Chem. 177, 253 (1928).

T19. Tubandt, C., H. Reinhold, and G. Leibold: Z. anorg. u. allgem. Chem. 197, 225 (1931).

T20. Tubandt, C., H. Reinhold, and A. Neumann: Z. Elektrochem. 39, 227 (1933).
T21. Tubandt, C., and E. Rindtorff: in ref. 3, 1927.
T22. Tubandt, C., and Schaefer: in ref. 3, 1927.
V1. Vaillant, P.: Compt. rend. 182, 1335 (1926).
V2. Vine, B. H., and R. J. Maurer: Z. physik. Chem. 198, 147 (1951).
W1. Wagener, S.: Proc. Phys. Soc. (London) 61, 521 (1948).
W2. Wagner, C.: Z. physik. Chem. B21, 25 (1933); B23, 469 (1933).
W3. Wagner, C.: Z. physik. Chem. B21, 42 (1933).
W4. Wagner, C., and P: Hantleman: J. Chem. Phys. 18, 72 (1950).

# 5g. Properties of Metallic Conductors 

STEPHEN J. ANGELLO

Westinghouse Electric Corporation

5g-1. Per Cent Conductivity, Definition. The per cent conductivity of a sample of copper is calculated by dividing the resistivity of the International Annealed Copper Standard at $20^{\circ} \mathrm{C}$ by the resistivity of the sample at $20^{\circ} \mathrm{C}$. Either mass or volume resistivity may be used. If another metal resistivity is expressed relative to copper, mass or volume resistivity must be specified. This use of per cent conductivity is, however, not recommended.

5g-2. Resistance of Copper as a Function of Temperature. On the basis of very careful measurements ${ }^{1}$ it has been found that the $20^{\circ} \mathrm{C}$ temperature coefficient of a sample of copper is given by multiplying the number expressing the per cent conductivity by 0.00393 . For example, for 100 per cent conductivity

$$
\alpha_{20}=0.00393=\frac{R_{t}-R_{20}}{R_{20}(t-20)}
$$

where $t$ is the temperature in degrees centigrade. The relation above holds surely for per cent conductivities above 94 per cent and is quite good over a wider range.

5g-3. Effect of Frequency upon the Conductivity of Copper Conductors. Low Frequency. When alternating currents are carried by homogeneous conductors the current density is not uniformly distributed over the area of the conductor. A tendency for the current density to be higher near the conductor surface is due to magnetic flux within the conductor cross section (see Sec. 5b-15). Such currentdensity concentration reduces the effective area of a conductor cross section. The

[^254]Table 5g-1. Copper Wire Tables-Solid Copper Wire,* MKS Units

| Gage <br> No. $\dagger$ | $\begin{gathered} \text { Diam, } \\ \text { m at } 20^{\circ} \mathrm{C} \\ \left(\times 10^{-3}\right) \end{gathered}$ | $\begin{gathered} \text { Cross section, } \\ \mathrm{m}^{2} \text { at } 20^{\circ} \mathrm{C} \\ \left(\times 10^{-6}\right) \end{gathered}$ | $\begin{aligned} & \text { Ohms } \ddagger / \mathrm{m} \\ & \text { at } 20^{\circ} \mathrm{C} \\ & \left(\times 10^{-3}\right) \end{aligned}$ | M/ohm $\ddagger$ at $20^{\circ} \mathrm{C}$ | $\begin{gathered} \mathrm{Kg} / \mathrm{m} \\ \left(\times 10^{-3}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 11.68 | 107.2 | 0.1608 | 6,219 | 953.2 |
| 000 | 10.40 | 85.03 | 0.2028 | 4,932 | 755.9 |
| 00 | 9.266 | 67.43 | 0.2557 | 3,911 | 599.5 |
|  | 8.252 | 53.48 | 0.3224 | 3,102 | 475.4 |
| 1 | 7.348 | 42.41 | 0.4066 | 2,460 | 377.0 |
| 2 | 6.544 | 33.63 | 0.5127 | 1,951 | 299.0 |
| 3 | 5.827 | 26.67 | 0.6465 | 1,547 | 237.1 |
| 4 | 5.189 | 21.15 | 0.8152 | 1,227 | 188.0 |
| 5 | 4.621 | 16.77 | 1.028 | 972.9 | 149.1 |
| 6 | 4.115 | 13.30 | 1.296 | 771.5 | 118.2 |
| 7 | 3.665 | 10.55 | 1.634 | 611.8 | 93.78 |
| 8 | 3.264 | 8.366 | 2.061 | 485.2 | 74.37 |
| 9 | 2.906 | 6.634 | 2.599 | 384.8 | 58.98 |
| 10 | 2.588 | 5.261 | 3.277 | 305.1 | 46.77 |
| 11 | 2.305 | 4.172 | 4.132 | 242.0 | 37.09 |
| 12 | 2.053 | 3.309 | 5.211 | 191.9 | 29.42 |
| 13 | 1.828 | 2.624 | 6.571 | 152.2 | 23.33 |
| 14 | 1.628 | 2.081 | 8.285 | 120.7 | 18.50 |
| 15 | 1.450 | 1.650 | 10.45 | 95.71 | 14.67 |
| 16 | 1.291 | 1.309 | 13.17 | 75.90 | 11.63 |
| 17 | 1.150 | 1.038 | 16.61 | 60.20 | 9.226 |
| 18 | 1.024 | 0.8231 | 20.95 | 47.74 | 7.317 |
| 19 | 0.9116 | 0.6527 | 26.42 | 37.86 | 5.803 |
| 20 | 0.8118 | 0.5176 | 33.31 | 30.02 | 4.602 |
| 21 | 0.7230 | 0.4105 | 42.00 | 23.81 | 3.649 |
| 22 | 0.6438 | 0.3255 | 52.96 | 18.88 | 2.894 |
| 23 | 0.5733 | 0.2582 | 66.79 | 14.97 | 2.295 1.820 |
| 24 | 0.5106 | 0.2047 | 84.21 | 11.87 | 1.820 |
| 25 | 0.4547 | 0.1624 | 106.2 | 9.417 | 1.443 |
| 26 | 0.4049 | 0.1288 | 133.9 | 7.468 | 1.145 0.9078 |
| 27 | 0.3606 | 0.1021 | 168.9 | 5.922 4.697 | 0.9078 0.7199 |
| 28 | 0.3211 | 0.08098 | 212.9 | 4.697 3.725 | 0.7199 0.5709 |
| 29 | 0.2859 | 0.06422 | 268.5 | 3.725 2.954 | 0.5709 0.4527 |
| 30 | 0.2546 | 0.05093 | 338.6 | 2.954 2.342 | 0.4527 0.3590 |
| 31 | 0.2268 | 0.04039 | 426.9 | 2.342 1.858 | 0.3847 |
| 32 | 0.2019 | 0.03203 | 538.3 | 1.858 1.473 | 0.2847 0.2258 |
| 33 | 0.1798 | 0.02540 | 678.8 | 1.473 | 0.1791 |
| 34 | 0.1601 | 0.02014 | 856.0 1,079 | 1.168 0.9265 | 0.1420 |
| 35 36 | 0.1426 0.1270 | 0.01597 0.01267 | 1,079 1,361 | 0.9265 0.7347 | 0.1126 |
| 37 | 0.1131 | 0.01005 | 1,716 | 0.5827 | 0.08931 |
| 38 | 0.1007 | 0.007967 | 2,164 | 0.4621 | 0.07083 |
| 39 | 0.08969 | 0.006318 | 2,729 | 0.3664 | 0.05617 |
| 40 | 0.07987 | 0.005010 | 3,441 | 0.2906 | 0.04454 |

[^255]PROPERTIES OF METALLIC CONDUCTORS
5-199
Table 5g-2. Copper Wire Tables-Solid Copper Wire,* English Units

| Gage <br> No. $\dagger$ | $\begin{aligned} & \text { Diam, } \\ & \text { mils } \\ & \text { at } 20^{\circ} \mathrm{C} \end{aligned}$ | Cross section at $20^{\circ} \mathrm{C}$ |  | Ohms $\ddagger /$ $1,000 \mathrm{ft}$ at $20^{\circ} \mathrm{C}$ | Ft/ohm at $20^{\circ} \mathrm{C}$ | $\mathrm{Lb} / 1,000 \mathrm{ft}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cir mils | Sq in. |  |  |  |
| 0000 | 460.0 | 211,600 | 0.1662 | 0.04901 | 20,400 | 640.5 |
| 000 | 409.6 | 167,800 | 0.1318 | 0.06180 | 16,180 | 507.9 |
| 00 | 364.8 | 133,100 | 0.1045 | 0.07793 | 12,830 | 402.8 |
| 0 | 324.9 | 105,500 | 0.08289 | 0.09827 | 10,180 | 319.5 |
| 1 | 289.3 | 83,690 | 0.06573 | 0.1239 | 8,070 | 253.3 |
| 2 | 257.6 | 66,370 | 0.05213 | 0.1563 | 6,400 | 200.9 |
| 3 | 229.4 | 52,640 | 0.04134 | 0.1970 | 5,075 | 159.3 |
| 4 | 204.3 | 41,740 | 0.03278 | 0.2485 | 4,025 | 126.4 |
| 5 | 181.9 | 33,100 | 0.02600 | 0.3133 | 3,192 | 100.2 |
| 6 | 162.0 | 26,250 | 0.02062 | 0.3951 | 2,531 | 79.46 |
| 7 | 144.3 | 20,820 | 0.01635 | 0.4982 | 2,007 | 63.02 |
| 8 | 128.5 | 16,510 | 0.01297 | 0.6282 | 1,592 | 49.98 |
| 9 | 114.4 | 13,090 | 0.01028 | 0.7921 | 1,262 | 39.63 |
| 10 | 101.9 | 10,380 | 0.008155 | 0.9989 | 1,001 | 31.43 |
| 11 | 90.74 | 8,234 | 0.006467 | 1.260 | 794.0 | 24.92 |
| 12 | 80.81 | 6,530 | 0.005129 | 1.588 | 629.6 | 19.77 |
| 13 | 71.96 | 5,178 | 0.004067 | 2.003 | 499.3 | 15.68 |
| 14 | 64.08 | 4,107 | 0.003225 | 2.525 | 396.0 | 12.43 |
| 15 | 57.07 | 3,257 | 0.002558 | 3.184 | 314.0 | 9.858 |
| 16 | 50.82 | 2,583 | 0.002028 | 4.016 | 249.0 | 7.818 |
| 17 | 45.26 | 2,048 | 0.001609 | 5.064 | 197.5 | 6.200 |
| 18 | 40.30 | 1,624 | 0.001276 | 6.385 | 156.6 | 4.917 |
| 19 | 35.89 | 1,288 | 0.001012 | 8.051 | 124.2 | 3.899 |
| 20 | 31.96 | 1,022 | 0.0008023 | 10.15 | 98.50 | 3.092 |
| 21 | 28.46 | 810.1 | 0.0006363 | 12.80 | 78.11 | 2.452 |
| 22 | 25.35 | 642.4 | 0.0005046 | 16.14 | 61.95 | 1.945 |
| 23 | 22.57 | 509.5 | 0.0004002 | 20.36 | 49.13 | 1.542 |
| 24 | 20.10 | 404.0 | 0.0003173 | 25.67 | 38.96 | 1.223 |
| 25 | 17.90 | 320.4 | 0.0002517 | 32.37 | 30.90 | 0.9699 |
| 26 | 15.94 | 254.1 | 0.0001996 | 40.81 | 24.50 | 0.7692 |
| 27 | 14.20 | 201.5 | 0.0001583 | 51.47 | 19.43 | 0.6100 |
| 28 | 12.64 | 159.8 | 0.0001255 | 64.90 | 15.41 | 0.4837 |
| 29 | 11.26 | 126.7 | 0.00009953 | 81.83 | 12.22 | 0.3836 |
| 30 | 10.03 | 100.5 | 0.00007894 | 103.2 | 9.691 | 0.3042 |
| 31 | 8.928 | 79.70 | 0.00006260 | 130.1 | 7.685 | 0.2413 |
| 32 | 7.950 | 63.21 | 0.00004964 | 164.1 | 6.095 | 0.1913 |
| 33 | 7.080 | 50.13 | 0.00003937 | 206.9 | 4.833 | 0.1517 |
| 34 | 6.305 | 39.75 | 0.00003122 | 260.9 | 3.833 | 0.1203 |
| 35 | 5.615 | 31.52 | 0.00002476 | 329.0 | 3.040 | 0.09542 |
| 36 | 5.000 | 25.00 | 0.00001964 | 414.8 | 2.411 | 0.07568 |
| 37 | 4.453 | 19.83 | 0.00001557 | 523.1 | 1.912 | 0.06001 |
| 38 | 3.965 | 15.72 | 0.00001235 | 659.6 | 1.516 | 0.04759 |
| 39 | 3.531 | 12.47 | 0.000009793 | 831.8 | 1.202 | 0.03774 |
| 40 | 3.145 | 9.888 | 0.000007766 | 1,049 | 0.9534 | 0.02993 |

[^256]consequence is a higher total resistance to a given rms alternating current vs. the total resistance to an equal direct current.

High Frequency. At very high frequencies the current in a conductor is nearly all concentrated at the surface to a depth called the "skin depth" which is given by

$$
\delta=\sqrt{\frac{12.57}{2 \pi}} \frac{1}{\sqrt{\pi}} \sqrt{\frac{\rho}{\mu \nu}} \quad \text { meters }
$$

where $\rho=$ resistivity, ohm-m
$\nu=$ frequency, cps
$\mu=$ permeability, henrys $/ \mathrm{m}$
The effective area of a conductor carrying current of sufficiently high frequency for the skin depth to be small compared with the conductor thickness and small compared with radii of curvature is given by the conductor perimeter times the skin depth.


Fia. 5g-1. Skin depth and high-frequency resistance of copper. (From F. E. Terman, "Radio Engineers' Handbook," p. 35, McGraw-Hill Book Company, Inc., New York, 1943.)

Anomolous Skin Effect. At sufficiently low temperatures and high frequencies, the mean free path of the electrons in a good conductor becomes greater than the classically predicted skin depth, and the classical skin-effect equations break down. ${ }^{1,2}$ Thus, the radio-frequency skin conductivity is practically independent of bulk conductivity (measured at direct current) when the mean free path of the electrons is sufficiently long. Data are given by Pippard ${ }^{1}$ on $\mathrm{Ag}, \mathrm{Au}, \mathrm{Cu}, \mathrm{Sn}$, and Al. Chambers ${ }^{3}$ gives additional data, and more recently Dingle ${ }^{4}$ has given data for $\mathrm{Na}, \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$, $\mathrm{Pt}, \mathrm{W}, \mathrm{Al}, \mathrm{Pb}$, and Sn .

5g-4. Other Wire Tables. National Bureau of Standards Circular 31 contains tables in additional to those for copper wire. These are for bare concentric-lay cables of standard annealed copper and hard-drawn aluminum wire.

[^257]PROPERTIES OF METALLIC CONDUCTORS
Table 5g-3. Ratio of A-C Resistance to D-C Resistance for a Solid Round Wire*

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x \dagger$ | $\frac{R_{\mathrm{a}-\mathrm{o}}}{R_{\mathrm{d}-\mathrm{c}}}$ | $x \dagger$ | $\frac{R_{\mathrm{a}-\mathrm{c}}}{R_{\mathrm{d}-\mathrm{c}}}$ | $x \dagger$ | $\frac{R_{\mathrm{a}-\mathrm{e}}}{R_{\mathrm{d}-\mathrm{c}}}$ |
| 0 | 1.0000 | 5.2 | 2.114 | 14.0 | 5.209 |
| 0.5 | 1.0003 | 5.4 | 2.184 | 14.5 | 5.386 |
| 0.6 | 1.0007 | 5.6 | 2.254 | 15.0 | 5.562 |
| 0.7 | 1.0012 | 5.8 | 2.324 | 16.0 | 5.915 |
| 0.8 | 1.0021 | 6.0 | 2.394 | 17.0 | 6.268 |
| 0.9 | 1.0034 | 6.2 | 2.463 | 18.0 | 6.621 |
| 1.0 | 1.005 | 6.4 | 2.533 | 19.0 | 6.974 |
| 1.1 | 1.008 | 6.6 | 2.603 | 20.0 | 7.328 |
| 1.2 | 1.011 | 6.8 | 2.673 | 21.0 | 7.681 |
| 1.3 | 1.015 | 7.0 | 2.743 | 22.0 | 8.034 |
| 1.4 | 1.020 | 7.2 | 2.813 | 23.0 | 8.387 |
| 1.5 | 1.026 | 7.4 | 2.884 | 24.0 | 8.741 |
| 1.6 | 1.033 | 7.6 | 2.954 | 25.0 | 9.094 |
| 1.7 | 1.042 | 7.8 | 3.024 | 26.0 | 9.447 |
| 1.8 | 1.052 | 8.0 | 3.094 | 28.0 | 10.15 |
| 1.9 | 1.064 | 8.2 | 3.165 | 30.0 | 10.86 |
| 2.0 | 1.078 | 8.4 | 3.235 | 32.0 | 11.57 |
| 2.2 | 1.111 | 8.6 | 3.306 | 34.0 | 12.27 |
| 2.4 | 1.152 | 8.8 | 3.376 | 36.0 | 12.98 |
| 2.6 | 1.201 | 9.0 | 3.446 | 38.0 | 13.69 |
| 2.8 | 1.256 | 9.2 | 3.517 | 40.0 | 14.40 |
| 3.0 | 1.318 | 9.4 | 3.587 | 42.0 | 15.10 |
| 3.2 | 1.385 | 9.6 | 3.658 | 44.0 | 15.81 |
| 3.4 | 1.456 | 9.8 | 3.728 | 46.0 | 16.52 |
| 3.6 | 1.529 | 10.0 | 3.799 | 48.0 | 17.22 |
| 3.8 | 1.603 | 10.5 | 3.975 | 50.0 | 17.93 |
| 4.0 | 1.678 | 11.0 | 4.151 | 60.0 | 21.47 |
| 4.2 | 1.752 | 11.5 | 4.327 | 70.0 | 25.00 |
| 4.4 | 1.826 | 12.0 | 4.504 | 80.0 | 28.54 |
| 4.6 | 1.899 | 12.5 | 4.680 | 90.0 | 32.07 |
| 4.8 | 1.971 | 13.0 | 4.856 | 100.0 | 35.61 |
| 5.0 | 2.043 | 13.5 | 5.033 | $\infty$ | $\infty$ |
|  |  |  |  |  |  |

* From Natl. Bur. Standards (U.S.) Circ. 74 and F. E. Terman, "Radio Engineers Handbook," p. 31, McGraw-Hill Book Company, Inc., New York, 1943.
$t$

$$
x=\frac{\pi d}{\sqrt{6.285}} \sqrt{\frac{\mu \nu}{\rho}}
$$

where $\rho=$ resistivity, ohm-m; $d=$ wire diameter, $\mathrm{m} ; \mu=$ permeability, henrys $/ \mathrm{m} ; \nu=$ frequency, cps.
A resistance wire table covering nichrome, advance, and manganin is given on page 29 of F. E. Terman, "Radio Engineers' Handbook."

5g-5. Electrical Properties of Pure Metals. Table 5g-5 gives a list of elements considered to be metals in a compilation by F. Seitz. ${ }^{2}$ The resistivities given are bulk resistivities. Resistivities of thin films have been omitted because of the extreme

[^258]Table 5g-4. Allowable Current-carrying Capacities of Insulated Conductors in Amperes*
(Single conductor in free air; based on room temperature of $30^{\circ} \mathrm{C}, 86^{\circ} \mathrm{F}$ )

|  | $\begin{gathered} \text { Rubber, } \\ \text { type R, } \dagger \\ \text { type } \\ \text { RW, } \\ \text { type RU, } \\ \text { type } \\ \text { RUW } \\ (12-4) ; \\ \text { type z } \\ \text { RH-RW } \ddagger ; \\ \text { thermo- } \\ \text { plastic, } \\ \text { type T, } \\ \text { type TW } \end{gathered}$ | Rubber, type RH; type RH-RW $\ddagger ;$ type RHW | Thermoplastic asbestos, type TA; Var-Cam type V; asbestos Var-Cam type AVB; <br> MI cable | Asbestos Var-Cam, type AVA, type AVL | ```Impreg- nated asbestos, type AI (14-8), type AIA``` | Asbestos, type A (14-8), type AA | Slowburning, type SB; weatherproof, type WP, type SBW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 20 | 20 | 30 | 40 | 40 | 45 | 30 |
| 12 | 25 | 25 | 40 | 50 | 50 | 55 | 40 |
| 10 | 40 | 40 | 55 | 65 | 70 | 75 | 55 |
| 8 | 55 | 65 | 70 | 85 | 90 | 100 | 70 |
| 6 | 80 | 95 | 100 | 120 | 125 | 135 | 100 |
| 4 | 105 | 125 | 135 | 160 | 170 | 180 | 130 |
| 3 | 120 | 145 | 155 | 180 | 195 | 210 | 150 |
| 2 | 140 | 170 | 180 | 210 | 225 | 240 | 175 |
| 1 | 165 | 195 | 210 | 245 | 265 | 280 | 205 |
| 0 | 195 | 230 | 245 | 285 | 305 | 325 | 235 |
| 00 | 225 | 265 | 285 | 330 | 355 | 370 | 275 |
| 000 | 260 | 310 | 330 | 385 | 410 | 430 | 320 |
| 0000 | 300 | 360 | 385 | 445 | 475 | 510 | 370 |
| 250 | 340 | 405 | 425 | 495 | 530 | . . . | 410 |
| 300 | 375 | 445 | 480 | 555 | 590 | . . | 460 |
| 350 | 420 | 505 | 530 | 610 | - 655 | . . | 510 |
| 400 | 455 | 545 | 575 | 665 | 710 | . . . | 555 |
| 500 | 515 | 620 | 660 | 765 | 815 | . . . | 630 |
| 600 | 575 | 690 | 740 | 855 | 910 | . . . | 710 |
| 700 | 630 | 755 | 815 | 940 | 1,005 | . . . | 780 |
| 750 | 655 | 785 | 845 | 980 | 1,045 | $\ldots$ | 810 |
| 800 | 680 | 815 | 880 | 1,020 | 1,085 | . . | 845 |
| 900 | 730 | 870 | 940 | . . . . |  | . . | 905 |
| 1,000 | 780 | 935 | 1,000 | 1,165 | 1,240 | $\ldots$ | 965 |
| 1,250 | 890 | 1,065 | 1,130 |  |  |  |  |
| 1,500 | 980 | 1,175 | 1,260 | 1,450 | $\ldots$ | $\ldots$ | 1,215 |
| 1,750 | 1,070 | 1,280 | 1,370 |  |  |  |  |
| 2,000 | 1,155 | 1,385 | 1,470 | 1,715 |  |  | 1,405 |

# Table 5g-4. Allowable Current-carrying Capacities of Insulated Conductors in Amperes* (Continued) 

|  | Rubber, type R, $\dagger$ type RW, type RU, type RUW $(12-4) ;$ type z RH-RW $\ddagger ;$ thermo- plastic, type T, type TW | Rubber type RH; type RH-RW $\ddagger$, type RHW | Thermoplastic asbestos, type TA, Var-Cam, type V; Asbestos Var-Cam; type AVB; MI cable | Asbestos Var-Cam, type AVA, type AVL | Impregnated asbestos, type AI (14-8), type AIA | Asbestos, type A (14-8), type AA | Slowburning, type SB; weatherproof, type WP, type SBW |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Correction Factors for Room Temperatures over $\mathbf{3 0}{ }^{\circ} \mathrm{C}, \mathbf{8 6}^{\circ} \mathrm{F}$


| * Data from Nation November, 1953. $\dagger$ Symbols in table: | al Board of Fire Underwriters, Pamphlet 70, p. 289, National Electrical Code, |
| :---: | :---: |
| Type Letter | Insulation and Covering |
|  | Asbestos without asbestos braid |
|  | Asbestos with asbestos braid |
|  | Impregnated asbestos without outer asbestos braid |
| AIA. | Impregnated asbestos with outer asbestos braid |
| AVA | Impregnated asbestos and varnished cambric with outer asbestos braid |
| AVB. | Impregnated asbestos and varnished cambric with flame-retardant cotton braid |
| AVL. | Impregnated asbestos and varnished cambric with asbestos braid and lead sheath |
|  | Magnesium oxide with copper covering |
|  | Code rubber with moisture-resistant, flame-retardant, nonmetallic covering |
| RH | Heat-resistant rubber with R covering |
| RHW | Moisture- and heat-resistant rubber with R covering |
| RU. | 90\% unmilled grainless rubber with R covering |
| RUW | Same as RU |
| RW. | Moisture-resistant rubber with $\mathbf{R}$ covering |
| SB. | Three braids of impregnated fire-retardant cotton thread with outer cover finished smooth and hard |
| SBW | Two layers of impregnated cotton thread with outer fire-retardant coating |
|  | Flame-retardant thermoplastic compound with no covering |
| TA | Thermoplastic and asbestos with flame-retardant cotton braid |
|  | Flame-retardant, moisture-resistant thermoplastic with no covering |
|  | Varnished cambric with nonmetallic covering or lead sheath |
|  | At least three impregnated cotton braids or equivalent |

[^259] tides shall be that of column 2, Table $5 \mathrm{~g}-4$. If used in dry locations, the allowable current-carrying eapacities shall be that of column 3.

Table 5g-5. Electrical Properties of Pure Metals (All measurements are at $20^{\circ} \mathrm{C}$ unless otherwise indicated)

| Metal | $\underset{\mathrm{ohm}-\mathrm{m}}{\rho \times 10^{-8}}$ | $\begin{gathered} \rho / \rho_{0} \mathrm{at} \\ 100,000 \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$ |
| :---: | :---: | :---: |
| Aluminum. | 2.828 | 0.770 |
| Antimony | $39.1 *$ | 0.605 |
| Arsenic... | 35* | 0.928 |
| Barium | 60 | 2.618 |
| Beryllium | 10.1 | 0.876 |
| Bismuth. | . $119.0 \dagger$ | 0.474 |
| Cadmium | $7.54 \dagger$ | 0.658 |
| Calcium. | 4.59 | 4.399 |
| Cesium. | 19.0 | 5.33 |
| Chromium | 2.6* | 0.558 |
| Cobalt. | 9.7 | 0.951 |
| Copper. | 1.692 | 0.866 |
| Gallium. | 53* |  |
| Gold. | 2.44 | 0.816 |
| Hafnium | 32.1 |  |
| Indium. | 8.37* | 0.493 |
| Iridium. | 6.10* | 0.886 |
| Iron. | 8.85* | 0.841 |
| Lanthanum | 57.6 | 0.842 |
| Lead. . | 19.8* | 0.487 |
| Lithium. | 8,55** | 1.704 |
| Magnesium | 4.35* | 0.767 |
| Manganese |  |  |
| Masurium. |  |  |
| Mercury (liq.) | 95.783 | 0.555 |
| Molybdenum. | 5.14* | 0.892 |
| Nickel... | 7.236 | 0.858 0.894 |
| Palladium | 10.21 * | 0.847 |
| Platinum. | 9.83* | 0.861 |
| Potassium | 6.1* | 0.596 |
| Radium. |  |  |
| Rhenium. | 18.9 |  |
| Rhodium. | 5.11* | 0.872 |
| Rubidium. | 11.6 * | 2.95 |
| Ruthenium | 7.64 |  |
| Scandium. |  |  |
| Silver. | 1.468* | 0.802 |
| Sodium. | 4.3* | 0.479 |
| Strontium | 24.8 | 1.810 |
| Tantalium | 15.5 | 0.882 |
| Thallium. | 17.60* | 0.265 |
| Thorium. | 18 | 0.821 |
| Tin. | 11.5 | 0.548 |
| Titanium | $55 \ddagger$ | 0.916 |
| Tungsten. | 5.51 | 0.895 |
| Uranium. | 29* | 0.724 |
| Vanadium | 58.8 | 0.878 |
| Ytterbium |  |  |
| Zinc....... | ${ }_{41.0}^{5.75}{ }^{\text {* }}$ | 0.679 0.9836 ๆ |
| Zirconium | 41.0 | $0.9836 \pi$ |

TI $80,000 \mathrm{lg} /$ omit
structure sensitivity of such data. The data on pressure effect upon resistivity are from P. W. Bridgman. ${ }^{1}$ Resistivity values have been gathered from many sources in the literature.

Table 5g-6. Superconducting Transition Temperature for Metals*

| Metal. | Nb | Pb | La | Ta | V | Hg | Sn | In | Tl | Th | U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transition temp., ${ }^{\circ} \mathrm{K}$. | 9.22 | 7.26 | 4.71 | 4.38 | 4.3 | 4.173 | 3.69 | 3.37 | 2.38 | 1.32 | 1.25 |
| Metal. | Al | Ga | Re | Zn | Os | Cd | Ti |  | Zr | Ru | Hf |
| Transition temp., ${ }^{\circ} \mathrm{K}$ | 1.14 | 1.07 | 0.95 | 0.79 | 0.71 | 0.602 | 0.5 |  | 546 | . 47 | . 374 |

${ }^{1}$ Compiled from E. Justi, "Leitfähigkeit und Leitungsmechanismus fester Stoffe," Table 17, p. 188, Vandenhoech und Ruprecht, Göttingen, 1948; and T. S. Smith and J. G. Daunt, Some Properties of Superconductors below $10^{\circ} \mathrm{K}$ III Zr, Hf, Cd, and Ti, Physi. Rev. 88, 1172-1176 (1952).

Table 5g-7. Superconducting Transition Temperatures for alloys* (In degrees Kelvin)

| Nonsuperconductor | Pb | Sn | Tl | Au |
| :---: | :---: | :---: | :---: | :---: |
| Bi . | $8.8 \dagger$ | $3.8 \dagger$ | $\left(\mathrm{Bi}_{5} \mathrm{Tl}_{3}\right)^{6} 6.4$ | $\left(\mathrm{Au}_{2} \mathrm{Bi}\right) 1.92$ |
| Sb. | $6.6 \dagger$ | $\left(\mathrm{Sb}_{2} \mathrm{Sn}_{3}\right) 3.8$ | $\left(\mathrm{Sb}_{2} \mathrm{Tl}\right) 5.2$ |  |
| As. | $8.4 \dagger$ |  |  |  |
| P. | $7.8 \dagger$ |  |  |  |
| Cd. |  | $3.6 \dagger$ | $2.5 \dagger$ |  |
| Zn. | $2.25 \dagger$ | $\left(\mathrm{Cu}_{3} \mathrm{Sn}\right) 1.31$ |  |  |
| Ag. | $7.2 \dagger$ | $\left(\mathrm{Ag}_{3} \mathrm{Sn}\right) 1.36$ | $2.67 \dagger$ |  |
| Au. | $7.0 \dagger$ |  | $1.92 \dagger$ |  |
| Ca. | $7.0 \dagger$ |  |  |  |
| Li.. | $7.2 \dagger$ |  |  |  |

[^260]
# 5h. Magnetic Properties of Materials 

R. M. BOZORTH<br>Bell Telephone Laboratories, Inc.

5h-1. Symbols (Units in cgs system)

| H | magnetic field strength, oersteds |
| :---: | :---: |
| B | magnetic induction, gauss |
| $\sigma$ | magnetic moment/gram |
| $\sigma_{*}$ | saturation magnetic moment/gram |
| $\sigma_{0}$ | $\sigma_{s}$ at $0^{\circ} \mathrm{K}$ |
| M | magnetic moment/ $\mathrm{cm}^{3}$ |
| M | saturation magnetic moment/ $\mathrm{cm}^{3}$ |
| $M_{0}$ | $M_{\text {s }}$ at $0^{\circ} \mathrm{K}$ |
| $\beta$ | Bohr magneton |
| $n_{B}$ | Bohr magneton number |
| $\theta$ | Curie point ( ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{K}$ ) |
| $\theta_{N}$ | Néel point (antiferromagnetic) |
| $B_{r}$ | residual induction (gauss) |
| $H_{\text {c }}$ | coercive force (oersteds) |
| $\mu_{0}$ | initial permeability (vacuum $=1$ ) |
| $\mu_{m}$ | maximum permeability |
| $\mu_{r}$ | reversible permeability |
| $K_{1}$ | magnetic crystal anisotropy constant (ergs/ $/ \mathrm{cm}^{3}$ ) |
| $\lambda$ | fractional increase in length (magnetostriction) |
| $\lambda_{0}$ | $\lambda$ at saturation |
| $\omega$ | fractional increase in volume (magnetostriction) |
| $\boldsymbol{x}$ | magnetic moment/oersted for $1 \mathrm{~g}(\sigma / H)$ |
| $\chi_{\text {A }}$ | magnetic moment/oersted for 1 g -atom |

5h-2. Saturation Magnetization and Curie Points. When a magnetic field of increasing strength is applied to a ferromagnetic material the magnetic moment of the material increases toward a limit called the saturation, which is usually expressed as moment per unit weight $\sigma$, or as moment per unit volume ( $M$, intensity of magnetization). The saturation can be determined as a function of temperature and extrapolated to $0^{\circ} \mathrm{K}$, and one can calculate from this the magnetic moment per molecule (or per atom), and by dividing by the Bohr magneton ( $\beta$, magnetic moment of the electron spin) one can obtain the Bohr magneton number $n_{B}$. The saturation decreases as the temperature increases and approaches zero in the neighborhood of the Curie point $\theta$, the exact location of which is a matter of careful definition.

Data are given in Tables $5 \mathrm{~h}-1$ to $5 \mathrm{~h}-9$ and Figs. $5 \mathrm{~h}-1$ and $5 \mathrm{~h}-2$.
5h-3. Properties of Some High-permeability Materials. The induction $B$ of a magnetic material is a function of the magnetic field $H$ to which it is subjected. Some of the quantities derived from the $B$ vs. $H$ curves of materials are given in the follow-


Fig. 5h-1. Approximate saturation ( $4 \pi M$ for $H=1,500$ ) and Curie points of $\mathrm{Fe}-\mathrm{Co}-\mathrm{Ni}$ alloys. [T. Kase, Science Repts. Tôhoku Imp. Univ. 16, 491 (1927).]


Fig. 5h-2. Saturation induction of Heusler $\mathrm{Mn}-\mathrm{Cu}-\mathrm{Al}$ alloys. (O. Heusler, see R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.)

Table 5h－1．Saturation Magnetization and Curie Points of Ferromagnetic Elements＊

| Element | $20^{\circ} \mathrm{C}$ |  |  | $0^{\circ} \mathrm{K}$ |  | 日，${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\sigma$ s | M ${ }_{\text {。 }}$ | $4 \pi M$ 。 | $\sigma 0$ | $n_{B}$ |  |
| Fe． | 218.0 | 1，714 | 21，580 | 221.9 | 2.219 | 770 |
| Co． | 161 | 1，422 | 17，900 | 162.5 | 1.715 | 1，131 |
| Ni． | 54.39 | 484.1 | 6，084 | 57.50 | 0.604 | 358 |
| Gd． | 0 | 0 | 0 | 253.5 | 7.12 | 16 |
| Dy． | 0 | 0 | 0 | $\dagger$ |  | －168 |

＊R．M．Bozorth，＂Ferromagnetism，＂D．Van Nostrand Company，Inc．，New York，1951．Refer－ ences to the original sources are given therein．
$\dagger \sigma=215$ for $H \approx 9,000$ ，at $88^{\circ} \mathrm{K}$ ．

Table 5h－2．Relative Saturation Magnetization $\sigma_{\mathrm{s}} / \sigma_{0}$ as Dependent on Temperature Relative ${ }^{\text {º }}$ Curie Point $T / \theta$
（Values of $\sigma_{0}$ are given in Table 5h－1）

|  | $\sigma_{s} / \sigma_{0}$ |  |  |
| :--- | :--- | :--- | :--- |
| $T / \theta$ | Fe |  | $\mathrm{Co}, \mathrm{Ni}$ |
|  |  | $j=\frac{1}{2}$（theory） |  |
| 0 | 1 | 1 | 1 |
| 0.1 | 0.996 | $0.996^{*}$ | 1.000 |
| 0.2 | 0.99 | 0.99 | 1.000 |
| 0.3 | 0.975 | 0.98 | 0.997 |
| 0.4 | 0.95 | 0.96 | 0.983 |
| 0.5 | 0.93 | 0.94 | 0.958 |
| 0.6 | 0.90 | 0.90 | 0.907 |
| 0.7 | 0.85 | 0.83 | 0.829 |
| 0.8 | 0.77 | 0.73 | 0.710 |
| 0.85 | 0.70 | 0.66 | 0.630 |
| 0.9 | 0.61 | 0.56 | 0.525 |
| 0.95 | 0.46 | 0.40 | 0.380 |
| 1.0 | 0 | 0 | 0 |

＊Value for Ni only．

Table 5h-3. Saturation Magnetization and Curie Points of Alloys
of Iron*

| Addition | Atomic \% | $\sigma_{s}$ | $n_{B} /$ atom | $\theta,{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| Cot $\dagger$ | 20 | 236 | 2.42 | 950 |
|  | 33 | 238 | 2.52 | 970 |
|  | 50 | 233 | 2.42 | 980 |
|  | 75 | 203 | 2.14 | 870 |
|  | 80 | 184 | 1.95 | 910 |
| $\mathrm{Ni} \ddagger$ | 10 | 217 | 2.26 | 750 |
|  | 20 | 209 | 2.22 | 720 |
|  | 40 | 152 | 1.82 | 330 |
|  | 60 | 136 | 1.45 | 560 |
|  | 80 | 98 | 1.04 | 560 |
| Alๆ | 7.1 | 207 | 2.05 | 756 |
|  | 19.7 | 184 | 1.74 | 664 |
|  | 24.9 | 134 | 1.29 | 441 |
|  | 26.0 | 149 | 1.40 | 494 |
| Si $\uparrow$ | 8.3 | 204 | 2.00 | 720 |
|  | 15.9 | 174 | 1.67 | 653 |
|  | 23.5 | 141 | 1.32 | 587 |
| VT | 5.9 | 204 | 2.09 | 815 |
|  | 10.6 | 184 | 1.91 | 805 |
|  | 18.6 | 149 | 1.58 | 783 |
| Crat | 17.7 | 166 | 1.70 | 678 |
|  | 47.5 | 90 | 0.98 | 483 |
|  | 67.8 | 35 | 0.53 | 268 |
| Ru§ | 7.0 | 200 | 2.18 | 660 |
|  | 12.5 | 105 | 1.17 |  |
| Rh§ | 10.0 | 209 | 2.32 |  |
|  | 25.0 | 192 | 2.39 | 714 |
|  | 40.0 | 161 | 2.26 | 624 |
| Pd§ | 5.5 | 203 | 2.19 | 754 |
|  | 40.0 | 129. | 1.89 |  |
|  | 74.8 | 45 | 0.97 | $\sim 250$ |
| Os§ | 8.1 | 158 | 1.97 |  |
|  | 12.5 | 50 | 0.69 |  |
| Sn 9 | 2.3 | 208 | 2.18 | 768 |
|  | 6.0 | 197 | 2.16 | 768 |
| Ir§ | 4.0 | 200 | 2.25 | 750 |
|  | 15.0 | 120 | 1.67 |  |
| Pt§ | 8.1 | 191 | 2.36 |  |
|  | 12.4 | 177 | 2.43 |  |
|  | 24.8 | 104 | 2.23 | 164 |
|  | 50.0 | 32 | 0.75 |  |
|  | 44.1 | 39 | 0.85 |  |
| Au ¢ | 6.2 | 174 | 2.08 | 767 |
|  | 10.5 | 154 | 2.02 | 768 |

[^261]Table 5h-4. Saturation Magnetization and Curie Points of Alloys of Cobalt*

| Element | Atomic $\%$ | $\sigma_{s}\left(20^{\circ} \mathrm{C}\right)$ | $n_{B} /$ atom | $\theta,{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ni} \dagger$ | 40 | 124 | 1.33 | 900 |
|  | 70 | 90 | 0.97 | 680 |
| $\mathrm{Cr} \ddagger$ | 5.6 | 134 | 1.42 |  |
|  | 10.6 | 100 | 1.07 |  |
|  | 16.7 | 59.5 | 0.64 |  |
| $\mathrm{Mn} \uparrow$ | 22.1 | 19 | 0.24 |  |
|  | 4.2 | 144 | 1.53 |  |
|  | 11.9 | 109 | 1.16 |  |
|  | 17.3 | 84 | 0.89 |  |
|  | 22.5 | 48 | 0.57 |  |

* Additional data are given in the references.
$\dagger$ P. Weiss, R. Forrer, and F. Birch, Compt. rend. 189, 789 (1929).
$\ddagger$ T. Farcas, Ann. phys. 8 (11), 146 (1937).
IT C. Sadron, Ann. phys. 17 (10), 371 (1932).

Table 5h-5. Saturation Magnetization and Curie Points of Alloys of Nickel*

| Addition | Atomic \% | $\sigma_{8}$ | $n_{B} /$ atom | $\theta,{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| Al | 2.0 | 47.1 | 0.54 | 293 |
| Au | 3.4 | 46.6 | 0.58 | 321 |
| Cr | 1.7 | $49.8\left(150^{\circ} \mathrm{K}\right)$ | 0.53 | 298 |
|  | 6.7 | 25.4 (150 ${ }^{\circ} \mathrm{K}$ ) | 0.30 | 72 |
| Mn | 25 (ordered) | 90 | 1.02 | 470 |
| Mo | 1.9 | 42.3 | 0.51 | 266 |
|  | 4.2 | 23.1 | 0.37 | 120 |
| Pd | 12.1 |  | 0.60 | 330 |
|  | 45.2 |  | 0.57 | 217 |
|  | 91.3 |  | . . . | $-116$ |
| Pt | 9.1 | 37.7 | 0.55 | 245 |
|  | 25.0 | 16.4 | 0.44 | 86 |
|  | 45.0 |  | 0.25 | -71 |
| Sb | 7.5 | 12.6 | 0.24 | 23 |
| Si | 3.7 | 40.3 | 0.48 | 234 |
|  | 6.8 | 23.7 | 0.36 | 117 |
|  | 8.8 |  | 0.28 | 19 |
| Sn | 2.7 | 40.1 | 0.49 | 234 |
|  | 9.0 | 9.9 | 0.30 | 225 |
| Ta $\dagger$ | 3.6 | . . . . . . . . . . | 0.41 |  |
|  | 6.3 |  | 0.28 |  |
| Ti | 4.8 | 34.5 | 0.43 | 207 |
|  | 10.3 |  | 0.22 | 30 |
| V | 5.5 | 15.3 | 0.29 | 67 |
| W | 2.1 | 39.2 | 0.49 | 270 |
|  | 3.9 | 19.9 | 0.34 | 150 |
| Zn | 4.1 | 45.3 | 0.52 | 300 |
|  | 10.8 | 25.4 | 0.37 | 157 |

[^262]$\dagger$ G. T, Rado and A. R, Kaufmann, Phys, Rev. 60, 336 (1941).

Table 5h-6. Saturation Magnetization and Curie Points of
Some Ferrites ${ }^{a}$
( $4 \pi M_{s}$ at room temperature ${ }^{b}$ )

| Ferrite | X-ray density | $4 \pi M$ 。 | $n_{B} /$ molecule | $\theta,{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{MnFe}_{2} \mathrm{O}_{4}$. | 5.00 | 5,200 | 4.4-5.0 | 300 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4}$. | 5.24 | 6,000 | 4.0-4.1 | 585 |
| $\mathrm{CoFe}_{2} \mathrm{O}_{4}$. | 5.29 | 5,000 | 3.7-3.9 | 520 |
| $\mathrm{NiFe}_{2} \mathrm{O}_{4}$. | 5.38 | 3,400 | 2.2-2.4 | 585 |
| $\mathrm{CuFe}_{2} \mathrm{O}_{4}$ | 5.35 | 1,700 ${ }^{\text {c }}$ | 1.3-2.3 ${ }^{\text {c }}$ | 455 |
| $\mathrm{MgFe}_{2} \mathrm{O}_{4}$. | 5.42 | 1,400 ${ }^{\text {c }}$ | 0.9-1.4 ${ }^{\text {c }}$ | 440 |
| $\mathrm{CdFe}_{2} \mathrm{O}_{4}$. | .... | 0 | 0 |  |
| $\mathrm{ZnFe}_{2} \mathrm{O}_{4}{ }^{\text {d }}$. |  | 0 | 0 | 60 |
| $\mathrm{Li}_{0.5} \mathrm{Fe}_{2.5} \mathrm{O}_{4}$. | 4.75 | 3,900 | 2.5-2.6 | 670 |
| $\mathrm{BaFe}_{12} \mathrm{O}_{19}{ }^{\text {b }}$. | 5.3 | 4,800 | 20 | 450 |
| $\mathrm{BaFe}_{18} \mathrm{O}_{22}{ }^{\text {b }}$. |  | - | 28 | 450 |

${ }^{\text {a }}$ E. W. Gorter, Philips Research Repts. 9, 295, 403 (1954); J. Smit and H. P. J. Wijn, "Advances in Electronics and Electron Physics," vol. VI, p. 83, Academic Press, Inc., New York, 1954.
${ }^{b}$ Private communication from E. W. Gorter.

- Depends on heat-treatment.
${ }^{d} \mathrm{ZnFe}_{2} \mathrm{O}_{4}$ magnetic when quenched, otherwise nonmagnetic; $\theta$ for rapid quench.
- $\sigma_{s}=72$ at $20^{\circ} \mathrm{C}$.

> Table 5h-7. Bohr Magneton Numbers of Solid Solutions of $\mathrm{ZnFe}_{2} \mathrm{O}_{4}$ with Other Ferbites* (Averaged values. $\dagger$ Additional data in references)

| Ferrite | $n_{B} /$ molecule for following molecular \% of $\mathrm{ZnFeO}_{4}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | 20 | 40 | 70 |
| $\mathrm{MnFe}_{2} \mathrm{O}_{4}$ | 5.7 | 6.5 | 6.3 |
| $\mathrm{FeFe}_{2} \mathrm{O}_{4}$. | 5.2 | 5.7 | 5.5 |
| $\mathrm{CoFe}_{2} \mathrm{O}_{4}$. | 4.6 | 5.5 | 5.1 |
| $\mathrm{NiFe}_{2} \mathrm{O}_{4}$. | 3.6 | 4.9 | 4.2 |
| $\mathrm{MgFe}_{2} \mathrm{O}_{4}$. | 3.0 | 3.8 | 2.9 |
| $\mathrm{Li}_{0.5} \mathrm{Fe}_{2.5} \mathrm{O}_{4}$. | 3.7 | 4.4 | 1.8 |

[^263]Table 5h-8. Bohr Magneton Numbers and Curie Points of Other Ferrites and Spinels

| Composition | $n_{B} /$ molecule | $\theta,{ }^{\circ} \mathrm{C}$ | Ref. |
| :---: | :---: | :---: | :---: |
| $\mathrm{CrFe}_{2} \mathrm{O}_{4}$. | 2.0 | ....... | 3 |
| $\mathrm{FeCr}_{2} \mathrm{O}_{4}$ | 0.8 | -185 | 5 |
| $\mathrm{MnCr}_{2} \mathrm{O}_{4}$. | 1.23 | -230 | 4 |
| $\mathrm{MnFeCrO}_{4}$. | 0.25 |  | 1 |
| $\mathrm{MnFe} 0.5 \mathrm{Cr}_{1.5} \mathrm{O}_{4}$. | 0.77 | -49 | 1 |
| $\mathrm{MnCo}_{2} \mathrm{O}_{4}$. | 0.04 | $\approx-70$ | 5 |
| $\mathrm{Fe}_{2.8} \mathrm{Al}_{0.2} \mathrm{O}_{4}$. | 3.4 | .... | 10 |
| $\mathrm{Mn}_{1.5} \mathrm{FeTTi}_{0.5} \mathrm{O}_{4}$ | 1.7 | 89 | 1 |
| $\mathrm{CoCr}_{2} \mathrm{O}_{4}$. | 0.09 | -175 | 4 |
| $\mathrm{NiFe}_{0.25} \mathrm{Al}_{1.75} \mathrm{O}_{4}$ | 0.07* |  | 6 |
| $\mathrm{NiCr}_{2} \mathrm{O}_{4}$. | 0.1 | -195 | 4 |
| $\mathrm{NiFe}_{0.5} \mathrm{Al}_{1.5} \mathrm{O}_{4}$. | $0.16{ }^{*}$ | ....... | 6 |
| NiFeAlO 4. | 0.57* | 171* | 6 |
|  | 0-0.6 | 198 | 1 |
| $\mathrm{NiFe}_{1.5} \mathrm{Al}_{0.5} \mathrm{O}_{4}$. | 0.5* | 385* | 6 |
| $\mathrm{NiFe} \mathrm{e}_{1.5} \mathrm{Sc}_{0.5} \mathrm{O}_{4}$. | 0.7 | 450 | 7 |
| $\mathrm{NiFe}_{1.5} \mathrm{Ga}_{0.5} \mathrm{O}_{4}$. | 2.9-3.2* | 385* | 6 |
| $\mathrm{NiFeGaO}_{4}$. | 2.8-3.0* | 171* | 6 |
| $\mathrm{NiFe}_{0.5} \mathrm{Ga}_{1.5} \mathrm{O}_{4}$. | 0.9 | -100 | 6 |
| $\mathrm{NiFe} \mathrm{l}_{1.5} \mathrm{In}_{0.5} \mathrm{O}_{4}$. | 3.3* | 325* | 7 |
| $\mathrm{NiFeInO}_{4}$. | $2.5 *$ | 40* | 7 |
| $\mathrm{NiFe}{ }_{0.5} \mathrm{In}_{1.5} \mathrm{O}_{4}$. | 0.6* | $-145^{*}$ | 7 |
| $\mathrm{Ni}_{1.5} \mathrm{FeTi}_{0.5} \mathrm{O}_{4}$. | 1.1-1.4 | $\approx 280$ | 1 |
| $\mathrm{NiZn}_{0.5} \mathrm{FeTi}_{0.5} \mathrm{O}_{4}$. | 2.1 | $\approx 200$ | 1 |
| $\mathrm{CuCr}_{2} \mathrm{O}_{4}$. | 0.39 | -140 | 4 |
| $\mathrm{Cu}_{0.5} \mathrm{Fe}_{2.5} \mathrm{O}_{4}$. | 4.1-4.5 | 390 | 2, 8 |
| $\mathrm{MgFeAlO}_{4}$... | 0.3 | 0 | 9 |
| $\mathrm{Li}_{0.5} \mathrm{Fe}_{0.5} \mathrm{Cr}_{2} \mathrm{O}_{4}$ | 0.1 | 80 | 1 |
| $\mathrm{MnCr}_{2} \mathrm{~S}_{4}$. | 2.0 | -170 | 5 |
| $\mathrm{FeCr}_{2} \mathrm{~S}_{4}$. | 1.5 | -80 | 5 |
| $\mathrm{CoCr}_{2} \mathrm{~S}_{4}$. | 2.55 | -35 | 5 |
| $\mathrm{MFeO}_{3} \dagger$. | small | 200 to 500 | 11 |

* Slowly cooled from $1400^{\circ} \mathrm{C}$.
$\dagger \mathbf{M}=$ trivalent rare-earth metal.


## References

1. Gorter, E. W.: Philips Research Repts. 9, 295, 403 (1954).
2. Private communication from E. W. Gorter.
3. Private communication from M. A. Gilleo.
4. T. R. McGuire, private communication following Phys. Rev. 86, 599 (1952).
5. Lotgering, F. K.: Thesis, Utrecht, 1956, and private communication.
6. Maxwell, L. R., and S. J. Pickart: Phys. Rev. 92, 1120 (1953).
7. Maxwell, L. R., and S. J. Pickart: Phys. Rev. 96, 1501 (1954).
8. Bertaut, F., and C. DeLorme: Compt. rend. 236, 74 (1953).
9. Jones, G. O., and F. F. Roberts: Proc. Phys. Soc. (London), ser. B, 65, 390 (1952).
10. Guillaud, C., and A. Michel: J. phys. radium 12, 65 (1951).
11. Forestier, H., and G. Guiot-Guillain: Compt. rend. 230, 1844 (1950).

Table 5h-9. Saturation Magnetization and Curie Points of Some Binary Compounds*

| Substance | $4 \pi M_{s}\left(20^{\circ} \mathrm{C}\right)$ | $n_{B} /$ molecule | $\theta,{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}_{3} \mathrm{Al}$. | 11,000 | 5.2 | 500 |
| $\mathrm{Fe}_{2} \mathrm{~B}$. | 15,100† | 5.7 | 739 |
| $\mathrm{FeBe}_{2}$. |  |  | 520 |
| $\mathrm{FeBe}_{5}$. |  |  | <0 |
| $\mathrm{Fe}_{3} \mathrm{C}$. | 12,400 | 5.3 | 213 |
| $\mathrm{Fe}_{2} \mathrm{Ce}$. |  |  | 116 |
| $\mathrm{Fe}_{4} \mathrm{~N}$. | 17,500 | 8.9 | 490 |
| $\mathrm{Fe}_{3} \mathrm{P}$. |  |  | 420 |
| $\mathrm{Fe}_{7} \mathrm{~S}_{8}$. | 780 | $2.0 \ddagger$ | 300 |
| $\mathrm{Co}_{2} \mathrm{~B}$. |  |  | 510 |
| $\mathrm{Co}_{2} \mathrm{P}$ |  |  | 920 |
| CoPt. | 7,200-0 | ........ | <600 |
| $\mathrm{CoS}_{2} \mathrm{~T}$. |  | 0.84 | -163 |
| CoZn. |  | . . . . . | 195 |
| $\mathrm{Co}_{4} \mathrm{Zr}$. |  |  | 490 |
| $\mathrm{Ni}_{2} \mathrm{Mg}$. |  |  | 235 |
| $\mathrm{Ni}_{3} \mathrm{Mn}$. | 9,000 | 4.1 | 460 |
| MnAs. | 8,400 | 3.4 | 45 |
| MnB . | 1,850 |  | 260 |
| MnBi . | 7,800 | 3.5 | 360 |
| $\mathrm{Mn}_{4} \mathrm{~N}$. | 2,300 | 0.97 | 470 |
| MnP. |  | 1.2 | 25 |
| $\mathrm{MnPt}_{3}$. | 5,000 |  |  |
| $\mathrm{Mn}_{2} \mathrm{Sb}$. | 2,900 | 1.9 | 277 |
| MnSb . | 8,900 | 3.5 | 314 |
| $\mathrm{Mn}_{4} \mathrm{Sn}$. | 1,250 |  | 150 |
| $\mathrm{Mn}_{2} \mathrm{Sn}$. | . | 2.7 | ca. -10 |
| $\mathrm{CrO}_{2}$. |  | 2.1 |  |
| CrS. |  |  | 30 |
| CrTe. | 3,100 | 2.4,2.5 $\dagger$ | 66 |

* R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.
$\dagger$ Private communication from E. W. Gorter.
$\ddagger$ F. K. Lotgering, thesis, Utrecht, and private communication.
II L. Néel and R. Benoit, Compt. rend. 237, 444 (1953).
ing tables. The initial permeability $\mu_{0}$ is the ratio $B / H$ obtained by extrapolation to $H=0$ and $B=0$ (at zero frequency). The maximum permeability is the largest ratio $B / H$ and occurs at intermediate values of $B$. When $H$ is increased indefinitely $B-H$ (in cgs units) approaches the limit $4 \pi M_{s}$, designated also $B_{s}$. The coercive force is that value of $H$ necessary to bring $B$ to zero after the material has been subjected to an indefinitely high field in the opposite direction. $B$ vs. $H$ curves for some common materials are in Fig. 5h-3.

The normal hysteresis loss is the energy dissipated as heat when the material is subjected to one or more cycles during which the induction is changed for one value


Fig. 5h-3. Representative magnetization curves of some commercial materials.
$B_{m}$ to $-B_{m}$; its magnitude for one cycle is $W_{h}=(1 / 4 \pi) \oint B d H$ and is in $\mathrm{ergs} / \mathrm{cm}^{3}$ when $B$ and $H$ are in gauss and oersteds, respectively. $W_{h}$ is dependent on $B_{m}$ and approaches a limiting value when $B_{m}$ approaches $H+4 \pi M_{s} . \quad W_{h}$ is plotted against $B_{m}$ for several materials in Fig. 5h-4. In low fields Rayleigh's laws apply; ${ }^{1}$ $W_{h}=(4 \pi / 3)(d \mu / d H) H_{m}^{3}, d \mu / d H$ being the slope of the $\mu$ vs. $H$ curve in low fields (near $\mu_{0}$ ).

Data are given in Tables $5 \mathrm{~h}-10$ to $5 \mathrm{~h}-12$.
5h-4. Properties of Some Materials for Permanent Magnets. In the use of materials for permanent magnets, important quantities are the coercive force $H_{c}$, the residual induction $B_{r}$, and the energy product $B H$. The latter is the product of $B$ and $-\mathbf{H}$ for points on the demagnetization curve, the portion of the hysteresis loop

[^264]

Fig. 5h-4. Variation of hysteresis loss with maximum induction in several materials.
Table 5h-10. Some Properties of High-permeability Materials

| Name | Composition* | $\begin{gathered} \text { Heat- } \\ \text { treatment, } \\ { }^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \begin{array}{c} \mu 0, \\ \text { initial } \\ \text { permea- } \\ \text { bility, } \end{array} \\ \text { gauss/ } \\ \text { oersted } \end{gathered}$ |  | $H_{c}$, coercive force, oersteds | $B_{\mathrm{e}}=4 \pi M_{\mathrm{s}}$ saturation induction, gauss | $W_{h}$, saturation hysteresis, ergs $/ \mathrm{cm}^{3} / \sim$ | $\theta$, Curie point, ${ }^{\circ} \mathrm{C}$ | $\rho$, electrical resistivity, microhm-cm | d, density, $\mathrm{g} / \mathrm{cm}^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grain-oriented Fe-Si. | 3 Si | 800 | 7,500† | 55,000 | 0.1 | 20,000 | 700 | 740 | 47 | 7.67 |
| Hot-rolled $\mathrm{Fe}-\mathrm{Si}$. | 4 Si | 800 | 1,500† | 7,000 | 0.3 | 19,500 | 4,000 | 730 | 55 | 7.61 |
| Thermoperm. | 30 Ni | 1000 | ... |  |  | 2,000 |  | 50 |  | 8.2 |
| 45 Permalloy. | 45 Ni | 1050 | 2,500 | 25,000 | 0.3 | 16,000 | 1,200 | 400 | 45 | 8.17 |
| Hipernik..... | 50 Ni | 1200 ( $\mathrm{H}_{2}$ ) | 4,000 | 70,000 | 0.05 | 16,000 | 220 | 500 | 45 | 8.25 |
| Monimax. | $3 \mathrm{Mo}, 47 \mathrm{Ni}$ | 1125 ( $\mathrm{H}_{2}$ ) | 2,000 | 35,000 | 0.1 | 14,500 | 800 | ... | 80 | 8.27 |
| Radio metal. | $5 \mathrm{Cu}, 45 \mathrm{Ni}$ | 1050 | 2,000 | 20,000 | 0.4 | 15,600 | 1,100 | $\ldots$ | 55 | 8.3 |
| 78 Permalloy. | 78.5 Ni | 1050, 600 (Q) | 8,000 | 100,000 | 0.05 | 10,800 | 580 | 600 | 16 | 8.60 |
| 4-79 Permalloy | $4 \mathrm{Mo}, 79 \mathrm{Ni}$ | 1100 (C) | 20,000 | 100,000 | 0.05 | 8,700 | 200 | 460 | 55 | 8.72 |
| Supermalloy. | $5 \mathrm{Mo}, 79 \mathrm{Ni}$ | 1300 ( $\mathrm{H}_{2}$ ) (C) | 100,000 | 1,000,000 | 0.002 | 7,900 | 8 | 400 | 60 | 8.77 |
| Mumetal... | $5 \mathrm{Cu}, 2 \mathrm{Cr}, 77 \mathrm{Ni}$ | 1175 ( $\mathrm{H}_{2}$ ) | 20,000 | 100,000 | 0.05 | 6,500 |  | ... | 62 | 8.58 |
| Permendur. | 50 Co | 800 | 800 | 5,000 | 2.0 | 24,500 | 12,000 | 980 | 7 | 8.3 |
| Vanadium Permendur | $1.8 \mathrm{~V}, 49 \mathrm{Co}$ | 800 | 800 | 4,500 | 2.0 | 24,000 | 6,000 | 980 | 26 | 8.2 |
| Supermendur. | $2 \mathrm{~V}, 49 \mathrm{Co}$ | 850 (F) | ... | 60,000 | 0.3 | 24,000 | 2,000 | 980 | 26 | 8.2 |
| 45-25 Perminvar. | $25 \mathrm{Co}, 45 \mathrm{Ni}$ | 1000, 400 | 400 | 2,000 | 1.2 | 15,500 | 2,500 | 715 | 19 | 8.7 |
| Thermalloy. | $67 \mathrm{Ni}, 30 \mathrm{Cu}, 2 \mathrm{Fe}$ |  |  |  | 2 | 2,000 |  |  |  |  |
| Alperm.... | 16 Al | 600 (Q) | 3,000 | 55,000 | 0.04 | 8,000 | 1,500 | 400 | 140 | 6.5 |
| Sendust. | $5 \mathrm{Al}, 10 \mathrm{Si}$ | Cast | 30,000 | 120,000 | 0.05 | 10,000 | 100 | 500 | 60 | 7.0 |
| 36 Isoperm. | $9 \mathrm{Cu}, 36 \mathrm{Ni}$ |  | 60 | 65 | 6 | .... | . | 300 | 70 | 8.2 |
| $\mathrm{Mn}-\mathrm{Zn}$ ferrite. | $\ddagger$ |  | 1,500 | 2,500 | 0.2 | 3,400 | 100 | 130 | $20(10)^{6}$ | 4.9 |
| $\mathrm{Ni}-\mathrm{Zn}$ ferrite. | $\ddagger$ |  | 800 | 2,500 | 0.4 | 3,700 | 140 | 140 | $10^{11}$ | 4.9 |

$\left(\mathrm{H}_{2}\right)$, annealed in hydrogen atmosphere; (Q), quenched from indicated temperature; (CR), severely cold-rolled; (C), controlled cooling rate; (F), magnetic anneal. * Approximate weight per cent, remainder iron and impurities.

+ For $B=100 ; \mu_{0}$ is lower and uncertain. $\dagger$ For $B=100 ; \mu_{0}$ is lower and uncertain.
$\ddagger$ See Tables $5 \mathrm{~h}-11$ and $5 \mathrm{~h}-12$.

Table 5h-11. Ferroxcube-type Ferrites*
(Commercial materials, representative values)

| Designation | $\begin{gathered} \mathrm{MnFe}_{2} \mathrm{O}_{4}, \\ \text { mole \% } \end{gathered}$ | $\begin{gathered} \mathrm{ZnFe}_{2} \mathrm{O}_{4}, \\ \text { mole } \% \end{gathered}$ | $B_{s},$ <br> gauss | $\begin{aligned} & \theta, \dagger \\ & { }^{\circ} \mathrm{C} \end{aligned}$ | $\mu_{0}$ | $\begin{gathered} d, \\ \mathrm{~g} \mathrm{~cm}^{-3} \end{gathered}$ | $\begin{gathered} H_{c}, \\ \text { oersteds } \end{gathered}$ | $\begin{gathered} \rho, \dagger \\ \mathrm{ohm}-\mathrm{cm} \end{gathered}$ | ```Loss: } fre- quency for tan}\delta 0.1, kc``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| III A | 48 | 52 ¢ | 3,300 | 100 | 1,400 | 4.9 | 0.2 | 20 | 300 |
| B | 58 | 42 | 4,500 | 150 | 900 | 4.9 | 0.3 | 20-100 | 460 |
| C2 | 62 | 38 | 4,700 | 150 | 1,100 | 4.9 | 0.4 | 80 | 420 |
| D2 | 79 | 21 | 5,100 | 210 | 700 | 4.8 | 0.5 | 80 | 420 |
|  | $\mathrm{NiFe}_{2} \mathrm{O}_{4}$, mole \% | $\begin{aligned} & \mathrm{ZnFe}_{2} \mathrm{O}_{4}, \\ & \text { mole \% } \end{aligned}$ |  |  |  |  |  |  |  |
| IV A | 36 | 64 | 3,600 | 125 | 650 | 4.9 | 0.4 | $10^{5}$ | 1,800 |
| B | 50 | 50 | 4,200 | 250 | 230 | 4.55 | 0.7 | $10^{5}$ | 7,000 |
| C | 64 | 36 | 4,100 | 350 | 90 | 4.2 | 2.1 | $10^{5}$ | 16,000 |
| D | 80 | 20 | 3,600 | 400 | 45 | 4.1 | 4.2 | $10^{5}$ | 29,000 |
| E | 100 | 0 | 2,300 | 500 | 17 | 4.0 | 11 | $10^{5}$ | 60,000 |

* Compiled by F. G. Brockman, Philips Laboratories, and E. W. Gorter, Philips Research Laboratories.
$\dagger$ Minimum value.
$\ddagger$ Loss angle $\delta . \quad \tan \delta=1 / Q=R /(\omega L)$. See Sec. $5 \mathrm{~h}-5$.
II All varieties of ferroxcube III include in the composition controlled amounts of ferrous ferrite The amount varies with the grade but is in general a few mole per cent.

Table 5h-12. Ferramic-type Ferrites ${ }^{a}$ (Commercial materials, representative values)

${ }^{\text {a }}$ Compiled by C. L. Snyder and E. Albers-Schoenberg, General Ceramics Corp.
${ }^{b}$ Loss angle $\delta . \tan \delta=1 / Q=R /(\omega L)$. See Sec. $5 \mathrm{~h}-5$.

- Square hysteresis loop, $\mathrm{Br} / \mathrm{Bs}=0.90$.
${ }^{d}$ Contains also 5 mole per cent copper.
${ }^{-}$Contains also 4 mole per cent copper.
${ }^{f}$ A little different in composition from ferramic A.
${ }^{0} \mu_{0} Q=67,000$ at $50 \mathrm{kc} / \mathrm{sec}$.


Fig. 5h-5. Demagnetization curve of Alnico 5, showing $B_{r}, H_{c}$, and optimum operating point $B_{d}, H_{d}$. Also energy-product curve and reversible permeability $\mu_{r}$, as function of $B$.


Fig. 5h-6. Demagnetization curves of some important materials for permanent magnets.
that lies in the second quadrant. The maximum energy product $(B H)_{m}$ is the largest value of $B H$ for points on the demagnetization curve, and this is the best single criterion for a material for use in permanent magnets. The point $B_{d}, H_{d}$ corresponding to $(B H)_{m}$ is the desirable point ${ }^{1}$ for operation (see Fig. 5h-5).

Demagnetization curves for several important materials are given in Fig. 5h-6, and constants for the commonly used materials in Table $5 \mathrm{~h}-13$. [Note improved properties of fine-powder magnets recorded in Table $5 \mathrm{~h}-13$ (private communication from T. O. Paine)].
${ }^{1}$ R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951; K. Hoselitz, "Ferromagnetic Properties of Metals and Alloys," Oxford University Press, New York, 1952.
MAGNETIC PROPERTIES OF MATERIALS
5-219
Table 5h-13. Constants of Commonly Used Materials for Permanent Magnets

| Name | Composition, \% by weight, remainder iron | $\underset{\substack{H_{c}, \\ \text { coercive }}}{ }$ force, oersteds | $\begin{gathered} B_{r}, \\ \text { remanence, } \\ \text { gauss } \end{gathered}$ | Optimum point |  | $\begin{gathered} (B H)_{m} \\ \times 10^{-6} \\ \text { gauss-- } \\ \text { oersteds } \end{gathered}$ | $\begin{aligned} & \mu_{r}, \\ & \text { revers- } \\ & \text { ible } \\ & \text { perme- } \\ & \text { ability } \\ & \text { at } H_{d,} \\ & B_{d} \end{aligned}$ | Preparation | Heat-treatment | Mechanical properties | Density, $\mathrm{g} / \mathrm{cm}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $B_{\text {d }}$ | $H_{d}$ |  |  |  |  |  |  |
| Carbon steel. | $0.9 \mathrm{C}, 1 \mathrm{Mn}$ | 50 | 10,000 | 6,200 | 32 | 0.2 | $\ldots$ | Hot roll, ma- | Q 800 | Hard, strong | 7.8 |
| Tungsten steel. | 0.7 C, $0.3 \mathrm{Mn}, 5 \mathrm{~W}$ | 70 | 10,300 | 6,800 | 45 | 0.3 | 30 | chine, punch | Q 850 | Hard, strong | 8.1 |
| 36 Co steel. | $0_{5} 7 \mathrm{~F} \mathrm{~W}, 36 \mathrm{Co}, 4 \mathrm{Cr}$, | 240 | 10,000 | 6,300 | 160 | 1.0 | 10 | chine, punch Hot roll, ma- | Q 930 | Hard, strong | 8.2 |
| Alnico 2. | $12.5 \mathrm{Co}, 17 \mathrm{Ni}, 10 \mathrm{Al} \text {, }$ | 540 | 7,200 | 4,500 | 360 | 1.6 | 6 | Chine, punch | AQ 1100 | Hard, brittle | 7.1 |
| Alnico 5 (Ticonal). |  | 600 | 12,500 | 10,000 | 300 | 5.0 | 4 | cround | AF 1300, | Hard, brittle | 7.3 |
| Alnico 5 (DG) | 34 Cu $24 \mathrm{Co}, 14 \mathrm{Ni}, 8 \mathrm{Al}$, | 660 | 13,100 | 10,800 | 560 | 6.0 | 5 | $\underset{\text { Cast and }}{\text { ground }}$ | A 600 , | Hard, brittle | 7.3 |
| Alnico 6 | $\begin{array}{r} 24 \mathrm{Co}, 15 \mathrm{Ni}, 8 \mathrm{Al}, \\ 3 \mathrm{Cu}, 125 \mathrm{Ti} \end{array}$ | 750 | 10,100 | 7,000 | 540 | 3.8 | 4 | ground | B 600 AF 1300 , | Hard, brittle | 7.4 |
| Alnico 7 | ${ }_{5}{ }^{3} 5 \mathrm{Cu}, 1,18 \mathrm{Ni}, 24 \mathrm{Co}$, | 1,050 | 7,000 | 3,700 | 670 | 2.5 | 4 | ground | B 600 AF 1300, | Hard, brittle | 7.2 |
| Alcomax II. | ${ }_{22}^{5} \mathrm{Ti} \mathrm{Co}, 11.5 \mathrm{Ni}, 8 \mathrm{Al}$, | 580 | 12,500 | 10,000 | 460 | 4.6 | 3 | ground | B 600 AF 1300 | Hard, brittle | 7.3 |
| Alcomax III | ${ }_{24}^{34 \mathrm{Cu}}{ }^{2} \mathrm{Co}, 14 \mathrm{Ni}, 8 \mathrm{Al}$, | 670 | 12,500 | 10,000 | 510 | 5.0 | 3.5 | ground Cast and | $\begin{aligned} & \text { B } 600 \\ & \text { AF } 1300, \end{aligned}$ | Hard, brittle | 7.3 |
| Remalloy (Comol)... | ${ }_{12}^{3 \mathrm{Co},{ }_{17}{ }^{17 \mathrm{Nb}} \mathrm{Mo}}$ | 250 | 10,500 | 6,400 | 170 | 1.1 | 10 | ground Hot roll, ma- | $\begin{aligned} & \mathrm{A} 1000 \\ & \text { B } 600 \\ & \text { Q } 1200 \end{aligned}$ | Hard, malle- | 8.15 |
| Vicalloy 2 | $52 \mathrm{Co}, 14 \mathrm{~V}$ | 510 | 10,000 | 8,000 | 430 | 3.5 |  | chine, punch Cold roll | B ${ }^{\text {B 700 }}$ D, B600 | able <br> Ductile | 8.15 |
| Cunife $1 .$. | $20 \mathrm{Ni}, 60 \mathrm{Cu}$ | 500 | 5,400 | 4,000 | 320 | 1.3 | 1.7 | Draw, machine, punch | $\begin{aligned} & \text { D, B600 } 60 \\ & \text { Q } 1700, \\ & \text { B 700, } \end{aligned}$ | Ductile | 8.1 8.6 |
| Cunico. | $41 \mathrm{Co}, 24 \mathrm{Ni}, 35 \mathrm{Cu}$ | 660 | 3,400 | 2,000 | 400 | 0.8 | 3 | Cold roll, ma- | D, B 600 Q 1080 | Ductile | 8.3 |
| Vectolite Ferroxdur 1, Indox 1 , | $16 \mathrm{Co}, 28 \mathrm{O}$ (E) | 900 | 1,600 | 1,000 | 500 | 0.5 | $\ldots$ | Sinter ${ }^{\text {chine, punch }}$ | B 625 A 1000 | Hard, brittle | 3.1 |
| Magnadur $1 .$. | $\mathrm{BaFe}_{12} \mathrm{O}_{19}$ | 1,600 | 2,000 | 1,100 | 800 | 0.9 | 1.1 | Sinter |  | Hard, brittle | 4.8 |
| $\xrightarrow[\text { dur 2, Indox } 5 \text {. }]{\text { dine-powder } \mathrm{Fe}}+\mathrm{Co}$ | $\mathrm{BaFe}_{12} \mathrm{O}_{19}$ | $1,600-2,000$ | $3,700-3,100$ | 2,100-1,800 | 1,400-1,200 | 3-2 | 1.1 |  |  |  | 4.8 |
| Fine-powder $\mathrm{Fe}+\mathrm{Co}$ Bismanol......... | ${ }^{30 \mathrm{Co}} \mathrm{MnBi}$ | $\begin{aligned} & 1,000 \\ & 3,400 \end{aligned}$ | $9,000$ |  |  | 5.0 |  | Press | None | Weak | 4.8 |
| Silmanal. | $8_{84 \mathrm{Ag},} 9 \mathrm{Mn}, 4 \mathrm{Al}$ | 1,400 550 | 4,300 550 | 280 | 280 | 4.3 0.08 | $\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$ | Sinter | $\begin{aligned} & \mathrm{PF} \\ & \mathrm{~B} 250 \end{aligned}$ | Ductile | 9.0 |

Q, quenched from indicated temperature $\left({ }^{\circ} \mathrm{C}\right)$ in oil or water; AQ, quenched in air; AF, cooled in a magnetic field; PF, pressed in magnetic field; B, baked; D, drawn
(wire); $\mathbf{E}$, raw-material composition.

5h-5. Losses at Low Inductions. Losses in magnetic materials in alternating fields at low inductions ( $<100$ gauss, approximately) are usually described by the following equation: ${ }^{1}$

$$
\frac{R}{\mu L f}=a B+c+e f
$$

$R$ is in ohms (series) and $L$ in henrys, as measured on an a-c bridge, $\mu$ the permeability, $f$ the frequency of alternating current in cps, $B$ the maximum induction in gauss during the cycle, and $a, c$, and $e$ the constants given in Table $5 \mathrm{~h}-14$. The constant $a$ is generally ascribed to hysteresis, $c$ to lag, and $e$ to eddy currents.

The loss angle $\delta$ is related to these constants and $Q$ as follows:

$$
\tan \delta=\frac{1}{Q}=\frac{R}{\omega L}=\frac{R}{2 \pi f L}
$$

This is valid only at low frequencies, when eddy-current shielding is negligible.
Table 5h-14. Material Constants for Losses at Low Inductions ( $a$ is hysteresis constant, $c$ the "lag" constant, and $e$ the eddy-current constant)

| Material | Size | $\mu_{0}$ | $a \times 10^{6}$ | $c \times 10^{6}$ | $e \times 10^{9}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Carbonyl iron | $5 \mu$ | 13 | 5 | 60 | 1 |
| Mo Permalloy. | 0.001-in. sheet | 13,000 | 2 | 0 | 10 |
| Mo Permalloy. | 120 mesh | 125 | 1.6 | 30 | 19 |
| Mo Permalloy. | 400 mesh | 14 | 11 | 140 | 7 |
| Mn Zn ferrite. |  | 1,500 | 1.6 | 4.8* | 0.3 |
| Ni Zn ferrite. |  | 200 | 7 |  | 0.2 |

* $f<1 \mathrm{Mc} / \mathrm{sec}$, higher values at higher frequencies.

Table 5h-15. Change of Curie Point with Pressure*

| Specimen | Change, ${ }^{\circ} \mathrm{C} / 1,000 \mathrm{~atm}$ | Approx $\boldsymbol{\theta},{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: |
| Fe | $0 \pm 0.2$ | 770 |
| Co. | $0 \pm 1$ | 1120 |
| Ni . | $+0.35 \pm 0.03$ | 360 |
| Gd | $-1.2 \pm 0.2$ | 16 |
| Fe with 4\% Si-Fe. | $-0.1 \pm 0.2$ | 733 |
| Fe with $10 \% \mathrm{Si}-\mathrm{Fe}$. | $+0.2 \pm 0.3$ | 615 |
| 30\% Ni-Fe. | $-5.8 \pm 0.2$ | 80 |
| 36\% Ni-Fe. | $-3.6 \pm 0.1$ | 210 |
| 68\% Ni-Fe. | $-0.1 \pm 0.2$ | 606 |
| Monel. | $+0.07 \pm 0.03$ | 50 |
| Alumel ( $94 \% \mathrm{Ni}$ ). | $+0.03 \pm 0.04$ | 143 |
| $\mathrm{Mn}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Fe}_{2} \mathrm{O}_{4}$. | $+0.9 \pm 0.05$ | 90 |
| $\mathrm{La}_{\text {ө } 75} \mathrm{Sr}_{0.25} \mathrm{MnO}_{3}$. | $+0.6 \pm 0.06$ | 80 |

* L. Patrick, Phys. Rev. 93, 384 (1954).

5h-6. Change of Curie Point with Pressure. Using magnetic material as the core of a transformer, the change in magnetic induction $B$ at a field strength of about 1 oersted has been measured under hydrostatic pressures up to $9,000 \mathrm{~atm}$. From this the change in Curie point has been derived. See Table 5h-15.

[^265]
## Table 5h-16. Magnetic Crystal Anisotropy Constants of Cubic Crystals ${ }^{a}$

| Material | $K_{1} \times 10^{-3}, \mathrm{ergs} / \mathrm{cm}^{3}$ |
| :---: | :---: |
| Fe: |  |
| $-196{ }^{\circ} \mathrm{C}$. | 520 |
| $20^{\circ} \mathrm{C}$. | 460 |
| $200^{\circ} \mathrm{C}$. | 290 |
| $400^{\circ} \mathrm{C}$. | 120 |
| Ni |  |
| $-253{ }^{\circ} \mathrm{C}$. | -750 |
| $-100^{\circ} \mathrm{C}$. | $-300$ |
| $20^{\circ} \mathrm{C}$. | $-51$ |
| $200^{\circ} \mathrm{C}$. | 5 |
| 40\% Ni-Fe ${ }^{\text {b }}$. | 10 |
| $75 \% \mathrm{Ni}-\mathrm{Fe},^{\text {b }}$ disordered | 0 |
| 75\% Ni-Fe, ${ }^{\text {b }}$ ordered | -40 |
| 90\% Ni-Fe ${ }^{\text {b }}$. | -15 |
| 30\% Co-Fe. | 102 |
| 50\% Co-Fe. | -70 |
| $70 \%$ Co-Fe. | -430 |
| 65\% Co-Ni. | -260 |
| 20\% Co-Ni. | -4 |
| $\mathbf{2 5 \% ~ C o , ~ 5 0 \% ~ N i , ~} 25 \%$ Fe. | 4 |
| 3\% Si-Fe. | 350 |
| $7 \% \mathrm{Si}-\mathrm{Fe}$. | 180 |
| $24 \% \mathrm{Cu}-\mathrm{Ni}$. | 5 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4}$. | -135 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4}{ }^{\text {a }}$. | $-110^{d}$ |
| $\mathrm{Fe}_{3} \mathrm{O}_{4},-150{ }^{\circ} \mathrm{C}$ | $+25^{\text {d }}$ |
| $\mathrm{Co}_{0.8} \mathrm{Fe}_{2.2} \mathrm{O}_{4}{ }^{\text {e }}$. | 3,400 |
| $\mathrm{Co}_{1.1} \mathrm{Fe}_{1.9} \mathrm{O}_{4}{ }^{\text {e }}$. | 1,800 |
| $\mathrm{Co}_{0.3} \mathrm{Zn}_{0.2} \mathrm{Fe}_{2.2} \mathrm{O}_{4}{ }^{\text {e }}$. | 1,500 |
| $\mathrm{Mn}_{0.45} \mathrm{Zn}_{0.55} \mathrm{Fe}_{2} \mathrm{O}_{4}{ }^{\prime}$. | -4 |
| $\mathrm{Mn}_{1.0} \mathrm{Fre}_{1.9} \mathrm{O}_{4}, 20^{\circ} \mathrm{C} \sigma$. | -33 |
| $\mathrm{Mn}_{1.0} \mathrm{Fe}_{1.9} \mathrm{O}_{4},-195^{\circ} \mathrm{C}$ 。 | -240 |
| $\mathrm{Ni}_{0.76} \mathrm{Fe}_{2.16} \mathrm{O}_{4}, 20^{\circ} \mathrm{C}^{h} \ldots$. | $-39,-43^{d}$ |
| $\mathrm{Ni}_{0.76} \mathrm{~F}_{2.16} \mathrm{O}_{4},-195^{\circ} \mathrm{C}^{h} \ldots$ | $-42,-74^{d}$ |

a Unless specified, values are for room temperature. See R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951, except as noted. Additional data are given in the original reports.
${ }^{\text {b }}$ R. M. Bozorth and J. G. Walker, Phys. Rev. 89, 624 (1953).
${ }^{c}$ L. R. Bickford, Phys. Rev. 78, 449 (1950).
${ }^{d}$ Using microwave technique.
e R. M. Bozorth, E. F. Tilden, and A. J. Williams, Phys. Rev. 99, 1788 (1955). Also other ferrites.
$f$ J. K. Galt, et al., Phys. Rev. 81, 470 (1951).

- Private communication from S. Geschwind and J. F. Dillon.
${ }^{\boldsymbol{h}}$ Bozorth, Cetlin, Galt, Yager, and Merritt, Phys. Rev. 99, 1898 (1955).
5h-7. Magnetic Crystal Anisotropy. For cubic crystals, anisotropy energy per unit volume is

$$
E=K_{1}\left(\alpha_{1}{ }^{2} \alpha_{2}{ }^{2}+\alpha_{2}{ }^{2} \alpha_{3}{ }^{2}+\alpha_{3}{ }^{2} \alpha_{1}{ }^{2}\right)+K_{2} \alpha_{1}{ }^{2} \alpha_{2}{ }^{2} \alpha_{3}{ }^{2}
$$

where the $\alpha$ 's are the direction cosines of saturation magnetization with respect to the crystal axes. Usually the $K_{2}$ term is negligible.

In uniaxial crystals (e.g., hexagonal) the energy is

$$
E=K_{1} \sin ^{2} \theta+K_{2} \sin ^{4} \theta
$$

| Material | Temperature, ${ }^{\circ} \mathrm{C}$ | $K_{1} \times 10^{-6}$ | $K_{2} \times 10^{-6}$ |
| :---: | :---: | :---: | :---: |
| Co | $\begin{array}{r} -176^{*} \\ 20^{*} \\ 20 \dagger \\ 220^{*} \\ 39^{*} \end{array}$ | $\begin{array}{r} 7.9 \\ 5.3 \\ 4.3 \\ 0.8 \\ -2.1 \end{array}$ | $\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.2 \\ & 0.65 \\ & 0.4 \end{aligned}$ |
| $\mathrm{BaFe}_{12} \mathrm{O}_{19}$ | $\begin{array}{r} 20 \\ -190 \end{array}$ | $\begin{aligned} & 3.2 \text { ๆ } \\ & 3.5 \text { ๆ } \end{aligned}$ | $\begin{aligned} & 0 \ddagger \\ & 0 \ddagger \end{aligned}$ |
| $\mathrm{BaFe}_{18} \mathrm{O}_{27}$ | $\begin{array}{r} 20 \pi \\ -190 \pi \end{array}$ | $\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$ |  |
|  |  | $K_{1}+K_{2}$ |  |
| MnBi§ | $\begin{array}{r} 20 \\ -190 \end{array}$ | $\begin{gathered} 12 \times 10^{6} \\ 0 \end{gathered}$ |  |
| $\mathrm{Mn}_{2} \mathrm{Sb}$ § | $\begin{array}{r} 20 \\ -190 \end{array}$ | $\begin{array}{r} 2,500 \\ -13,000 \end{array}$ |  |

* W. Sucksmith and J. E. Thompson, Proc. Roy. Soc. (London), ser. A, 225, 362 (1954).
$\dagger$ R. M. Bozorth, Phys. Rev. 96, 311 (1954).
$\ddagger$ Private communication from E. W. Gorter.
T J. J. Went, G. W. Rathenau, E. W. Gorter, and G. W. van Osterhout, Philips Tech. Rev. 13, 194 (1952).

8C. Guillaud, Thesis, Strasbourg, 1943.
$\theta$ being the angle between the saturation magnetization and the axis. Higher-order terms may occur. See Tables 5h-16 and 5h-17.

5h-8. Saturation Magnetostriction. Crystals. When a cubic crystal is magnetized to saturation in a direction defined by the direction $\operatorname{cosines} \alpha_{1}, \alpha_{2}, \alpha_{3}$, the fractional change in length measured in the direction $\beta_{1}, \beta_{2}, \beta_{3}$ is given to a first approximation by the relation

$$
\begin{aligned}
&\left(\frac{\Delta l}{l}\right)_{s} \equiv \lambda_{s}=\frac{3}{2} \lambda_{100}\left(\alpha_{1}{ }^{2} \beta_{1}{ }^{2}+\alpha_{2}{ }^{2} \beta_{2}{ }^{2}+\alpha_{3}{ }^{2} \beta_{3}{ }^{2}-\frac{1}{3}\right) \\
&+3 \lambda_{111}\left(\alpha_{1} \alpha_{2} \beta_{1} \beta_{2}+\alpha_{2} \alpha_{3} \beta_{2} \beta_{3}+\alpha_{3} \alpha_{1} \beta_{3} \beta_{1}\right)
\end{aligned}
$$

provided that in the initial condition, from which $\lambda_{s}$ is measured, the domains are distributed equally among the easy directions of magnetization ( $6\langle 100\rangle$ directions in $\mathrm{Fe}, 8\langle 111\rangle$ directions in Ni$)$. In any case, this equation gives the correct change in $\lambda_{s}$ as the $\alpha$ 's are varied. Higher-power terms are sometimes used. The constants $\lambda_{100}$ and $\lambda_{111}$ are given for some cubic materials in Table 5h-18.

The saturation magnetostriction of polycrystalline material with random crystal orientations and equally distributed domains can be calculated from these constants, and when the fractional change in length is measured parallel to the saturation magnetization (longitudinal magnetostriction) it is

$$
\bar{\lambda}_{s}=\frac{2 \lambda_{100}+3 \lambda_{111}}{5}
$$

Observed values of the saturation magnetostriction are given in Table 5h-19.

Table 5h-18. Magnetostriction Constants of Some Cubic Crystals*

| Material | $\lambda_{100} \times 10^{6}$ | $\lambda_{111} \times 10^{6}$ |
| :---: | :---: | :---: |
|  | 20 | -20 |
| 40\% Ni-Fe. | -7 | 30 |
| 60\% Ni-Fe. | 27 | 22 |
| 73\% Ni-Fe (annealed). | 19 | 7 |
| $73 \% \mathrm{Ni}-\mathrm{Fe}$ (quenched) | 15 | 14 |
| 80\% Ni-Fe. | 9 | 0 |
| Ni . | -46 | -24 |
| 3\% Si-Fe. | 27 | -5 |
| $7 \%$ Si-Fe. | -5 | 3 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4} \dagger$. | -20 | 80 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4},-150^{\circ} \mathrm{C} \dagger$. | -23 | 55 |
| $\mathrm{Ni}_{0.8} \mathrm{Fe}_{2.2} \mathrm{O}_{4} \ddagger$ | -36 | -4 |
| $\mathrm{MnFe}_{2} \mathrm{O}_{4} \mathrm{~T}$ | -35 | -1 |
| $\mathrm{Co}_{0.8} \mathrm{Fe}_{2.2} \mathrm{O}_{4} \mathrm{~T}$ | -590 | 120 |
| $\mathrm{Co}_{0.3} \mathrm{Zn}_{0.2} \mathrm{Fe}_{2,2} \mathrm{O}_{4} \mathrm{~T}$ | -210 | 110 |
| $\mathrm{Co}_{0.3} \mathrm{Mn}_{0.4} \mathrm{Fe}_{2.0} \mathrm{O}_{4} \mathrm{~T}$ | -200 | 65 |
| $\mathrm{Mn}_{0.6} \mathrm{Zn}_{0.1} \mathrm{Fe}_{2.1} \mathrm{O}_{4} \boldsymbol{T}$ | -14 | 14 |

[^266]
## Table 5h-19. Saturation Magnetostriction of Some Polycrystalline Materials

| Material ${ }^{\text {* (wt. \%) }}$ | $\lambda_{1} \times 10^{6}$ | Material $\dagger$ | $\lambda_{s} \times 10^{6}$ | |
|---|---|---|---|---|
| 100 Fe . |  | $\mathrm{MnFe}_{2} \mathrm{O}_{4}$ | -5 |
| $80 \mathrm{Fe}, 20 \mathrm{Co}$. | 30 | $\mathrm{Fe}_{3} \mathrm{O}_{4}$. | +40 |
| $60 \mathrm{Fe}, 40 \mathrm{Co}$. | 65 | $\mathrm{CoFe}_{2} \mathrm{O}_{4}$ | $-110 \ddagger$ |
| $40 \mathrm{Fe}, 60 \mathrm{Co}$. | 70 | $\mathrm{NiFe}_{2} \mathrm{O}_{4}$. | -26 |
| $30 \mathrm{Fe}, 70 \mathrm{Co}$. | 130¢ | $\mathrm{CuFe}_{2} \mathrm{O}_{4}$. | -10 |
| $20 \mathrm{Fe}, 80 \mathrm{Co}$. | 30 | $\mathrm{MgFe}_{2} \mathrm{O}_{4}$ | -5 |
| 100 Co . |  | $\mathrm{Li}_{0.5} \mathrm{Fe}_{2.5} \mathrm{O}_{4}$. | -1 |
| $80 \mathrm{Fe}, 20 \mathrm{Ni}$. | 35 | Ferroxcube III. | <\|1| |
| $70 \mathrm{Fe}, 30 \mathrm{Ni}$. | 0 | Ferroxcube IV A. | -4 |
| $60 \mathrm{Fe}, 40 \mathrm{Ni}$. | 15 | Ferroxcube IV E. | $\approx-22$ |
| $40 \mathrm{Fe}, 60 \mathrm{Ni}$. | 25 | Ferroxdur I. | $\approx-25$ |
| $20 \mathrm{Fe}, 80 \mathrm{Ni}$. | 2 |  |  |
| $10 \mathrm{Fe}, 90 \mathrm{Ni}$. | -25 |  |  |
| $20 \mathrm{Co}, 80 \mathrm{Ni}$. | -10 |  |  |
| $40 \mathrm{Co}, 60 \mathrm{Ni}$. | 5 |  |  |
| $60 \mathrm{Co}, 40 \mathrm{Ni}$. | -6 |  |  |
| $80 \mathrm{Co}, 20 \mathrm{Ni}$. | -25 |  |  |

[^267]The saturation magnetostriction of hexagonal crystals is described ${ }^{1}$ by the following 4-constant relation:

$$
\begin{aligned}
\lambda_{s} & =\lambda_{A}\left[\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right)^{2}-\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \alpha_{3} \beta_{3}\right] \\
& +\lambda_{B}\left[\left(1-\alpha_{3}{ }^{2}\right)\left(1-\beta_{3}\right)^{2}-\left(\alpha_{1} \beta_{1}+\alpha^{2} \beta_{2}\right)^{2}\right] \\
& +\lambda_{c}\left[\left(1-\alpha_{3}{ }^{2}\right) \beta_{3}{ }^{2}-\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \alpha_{3} \beta_{3}\right] \\
& +4 \lambda_{D}\left(\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}\right) \alpha_{3} \beta_{3}
\end{aligned}
$$

in which the direction cosines of $M_{s}\left(\alpha\right.$ 's) and $\lambda_{s}(\beta$ 's) are referred to rectangular axes so chosen that the 3 axis is the hexagonal crystal axis [001] and the 1 and 2 axes are, respectively, [100] and [12 0 ] crystallographic axes.

The constants for cobalt ${ }^{2}$ are

$$
\begin{array}{cc}
\lambda_{A}=-45 \times 10^{-6} & \lambda_{B}=-95 \times 10^{-6} \\
\lambda_{C}=+110 \times 10^{-6} & \lambda_{D}=-100 \times 10^{-6} \\
\lambda_{B}=\frac{2 \lambda_{A}}{5}+\frac{8 \lambda_{D}}{15}=-70 \times 10^{-6}(\mathrm{calc})
\end{array}
$$

Polycrystalline Materials. Values of saturation magnetostriction $\lambda_{s}$ of some alloys are given in Table $5 \mathrm{~h}-19$. The specimens do not necessarily have randomly oriented crystals and equally distributed domains. Further data and references to the original literature are found in Bozorth. ${ }^{3}$ Magnetostriction in unsaturated material is shown in Fig. $5 \mathrm{~h}-7$ for $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$, and 45 per cent Ni Fe .

Volume Magnetostriction. In high fields the isotropic fractional change in volume $\omega$ usually depends linearly on the field strength $H$ as shown in Table 5h-20. In low and intermediate field strengths when domain wall motion and domain rotation are taking place, there is some (anisotropic) change of volume; the only well-established observation of this kind is on cobalt ${ }^{2}$ when it is saturated perpendicular to the hexagonal axis, and then is observed to be $-26 \times 10^{-6}$.

Table 5h-20. Fractional Change in Volume with Field Strength in
High Fields*
(Temperature is $20^{\circ} \mathrm{C}$ unless otherwise noted)
Material $\quad \omega \times 10^{9} /$ oersted
$\begin{array}{lll}\mathrm{Fe} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots & 0.6 \\ \mathrm{Co} \dagger \ldots \ldots \ldots \ldots & 0.6\end{array}$
Ni...................... - 0.6
$\mathrm{Ni}\left(340^{\circ} \mathrm{C}\right) \ldots \ldots \ldots . . \quad 0.2$

$30 \%$ Ni-Fe............ 30
$67 \%$ Ni-Cu. . ........ 1.4
*As summarized by R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.
$\dagger$ R. M. Bozorth, Phys. Rev. 96, 311 (1954).
5h-9. Antiferromagnetism. Antiferromagnetism is characterized by the tendency of the magnetic dipoles of near-neighboring atoms to be arranged antiparallel. The temperature at which the heat motions destroy the spatial arrangement is called the antiferromagnetic Curie point or the Néel point $\theta_{N}$, and values for some materials are given in Table 5h-21. Here, the Néel points are based on specific heat and neutron diffraction as well as magnetic susceptibility measurements. Reference to original

[^268]

Fia. 5h-7. Longitudinal magnetostriction of some materials as dependent on field atrength. (Upper) Weak fields; (lower) strong fields.

Table 5h-21.a Antiferromagnetic or Néel Points, $\theta_{N}$

| Substance | $\boldsymbol{\theta}_{\boldsymbol{N}},{ }^{\circ} \mathrm{K}$ | Substance | $\theta_{N},{ }^{\circ} \mathrm{K}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{CoCl}_{2}$. | 25 | $\mathrm{GdFeO}_{3}{ }^{k}$. | 2.5 |
| $\mathrm{CoF}_{2}$. | 38 | MnAs ${ }^{\text {b }}$. | 318 |
| $\mathrm{CoI}_{2}{ }^{\text {c }}$. | 18 | $\mathrm{MnBi}{ }^{\text {b }}$. | 630 |
| CoO. | 291 | $\mathrm{MnBr}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. | 2.2 |
| $\mathrm{Co}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{j}$ | 0.08 | $\mathrm{MnCl}_{2} \ldots \ldots$ | 2 |
| $\mathrm{CrCl}_{2} \ldots \ldots . . . . . . . . . . .$. | 40 | $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. | 1.7 |
| $\mathrm{CrCl}_{3}{ }^{\text {c }}$. | 20 | $\mathrm{MnF}_{2}$. | 72 |
| $\mathrm{Cr}_{2} \mathrm{O}_{3}$. | 307 | MnO . | 116 |
| CrSb . | 670 | $\mathrm{MnO}_{2}$. | 90 |
| $\mathrm{CuBr}_{2}$. | 193 | MnS . | 140 |
| $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. | 4.3 | MnSe. | $\left\{\begin{array}{l}160 \\ 247\end{array}\right.$ |
| $\mathrm{CuCl}_{2} \ldots \ldots$. | 70 | MnSe. | 247 |
| CuO . | 230 | MnTe . | 307 |
| $\mathrm{ErFeO}_{3}{ }^{k}$ | 4.5 | $\mathrm{NiCl}_{2}$. | 50 |
| $\mathrm{FeCl}_{2}$. | 24 | $\mathrm{NiF}_{2}{ }^{e}$. | 73 |
| $\mathrm{FeCo}_{3}$. | 35 | NiO. | 520 |
| $\mathrm{FeF}_{2}$. | 79 | $\mathrm{NiSO}_{4}{ }^{f}$. | 30 |
| FeO . | 190 | $\mathrm{Ti}_{2} \mathrm{O}_{3}{ }^{0}$.. | 248 |
| $\alpha \mathrm{Fe}_{2} \mathrm{O}_{3}$. | 950 | $\mathrm{VCl}_{3}$. | 30 |
| FeS... | 613 | $\mathrm{V}_{2} \mathrm{O}_{3}$. | 173 |
| $\mathrm{FeSb}_{2}{ }^{\text {d }}$. | 773 | $\mathrm{V}_{2} \mathrm{O}_{4}$. | 343 |
| $\mathrm{FeSO}_{4}$. | 23 | $\mathrm{ZnCr}_{2} \mathrm{O}_{4}{ }^{\text {b }}$ | 15 |
| $\mathrm{Fe}_{2} \mathrm{SiO}_{4}$. | 65 | $\mathrm{ZnFe} \mathrm{S}^{\text {O }}{ }^{\text {h }}$. | 9 |
| FeTe. | 70 | $\mathrm{Cr}^{i}$. | 475 |
| $\mathrm{GdVO}_{3}{ }^{k}$ | 7.5 | Mn ${ }^{\text {i }}$. | 100 |

${ }^{a}$ Compiled by T. R. McGuire, Naval Ordnance Laboratory.
${ }^{b}$ First-order phase transitions which may be ferromagnetic-antiferromagnetic transitions.

- S. S. Shalyt, J. Exptl. Theoret. Phys. (U.S.S.R.) 8, 1073 (1939).
${ }^{d}$ T. Rosenquist, Acta Met. 1, 761 (1953).
e J. W. Stout and E. Catalano, Phys. Rev. 92, 1575 (1953).
$f$ J. C. Jackson, Commun. Phys. Lab. Univ. Leiden 163, 1923.
o S. F. Adler and P. W. Selwood, J. Am. Chem. Soc. 76, 346 (1954).
${ }^{h}$ Private communication from L. M. Corliss, J. M. Hastings, S. A. Friedberg, and J. E. Goldman.
${ }^{i}$ C. G. Shull and M. K. Wilkinson, Revs. Modern Phys. 25, 100 (1953); L. Patrick, Phys. Rev. 93, 370 (1954).
i C. B. G. Garrett, J. phys. radium 12, 219 (1951).
${ }^{k}$ R. M. Bozorth, H. J. Williams, D. E. Walsh, Phys. Rev. 103, 572 (1956).
work can be found in summaries. ${ }^{1}$ Where the compound is not listed in the summaries, original references are noted.

The neutron, by virtue of the fact that it possesses a magnetic moment, is capable of interacting with atoms having permanent electronic magnetic moments. Through this magnetic interaction, atoms with unpaired electrons act as scattering centers for neutrons. The scattering of neutrons by antiferromagnetic crystals gives rise to diffraction effects which are analogous to those obtained with X rays. From such diffraction patterns it is possible to determine the magnitudes of atomic moments and their orientations relative to one another. These are given in Table 5h-22. In favorable cases it is also possible to deduce the orientation of the magnetic moments
${ }^{1}$ H. Labhart, Z. angew. Math. Physik 4, 1 (1953); J. S. Smart, Phys. Rev. 90, 55 (1953); A. B. Lidiard, Repts. Prog. in Phys. 17, 240 (1954); T. Nagamiya, K. Yosida, R. Kubo, Advances in Physics 4, 1 (1955).

Table 5h-22. Antiferromagnetic Materials Studied by
Neutron Diffraction*

| Substance | Structure type | Magnetic unit cell in terms of cryst. cell | Néel <br> point from diffraction | Magnetic structure type (see Fig. 5h-8) | Direction of magnetic moments | Ref. | |
|---|---|---|---|---|---|---|---|
| MnO . | $\begin{aligned} & \mathrm{NaCl}(\mathrm{f} . \mathrm{c} . \\ & \text { cubic) } \end{aligned}$ | $2 a_{0}$ | $124{ }^{\circ} \mathrm{K}$ | MnO | \|| cube edge | 1 |
| MnS. | $\begin{array}{\|l} \mathrm{NaCl}(\mathrm{f} . \mathrm{c} . \\ \text { cubic) } \end{array}$ | $2 a_{0}$ |  | MnO | \|| cube edge | 1 |
| MnSe . | $\begin{aligned} & \mathrm{NaCl}(\mathrm{f} . \mathrm{c} . \\ & \text { cubic) } \end{aligned}$ | $2 a_{0}$ |  | MnO | \|| cube edge | 1 |
| FeO. | $\begin{aligned} & \mathrm{NaCl}(\mathrm{f} . \mathrm{c} . \\ & \text { cubic) } \end{aligned}$ | $2 a_{0}$ |  | MnO | $\perp$ ferromagnetic (111) sheets | 1 |
| CoO. | $\begin{aligned} & \mathrm{NaCl} \text { (f.c. } \\ & \text { cubic) } \end{aligned}$ | $2 a_{0}$ |  | MnO | \|| cube edge | 1 |
| NiO . | $\begin{array}{\|l} \mathrm{NaCl}(\mathrm{f} . \mathrm{c} . \\ \text { cubic) } \end{array}$ | $2 a_{0}$ |  | MnO | \|| cube edge | 1 |
| $\alpha-\mathrm{Fe}_{2} \mathrm{O}_{3}$. | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ (rhombohedral) | $a_{0}$ |  | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | $\left\lvert\, \begin{aligned} & \\| \text { or } \\ & \text { sheets } \dagger \end{aligned} \perp\right.$ | 1,2 |
| $\mathrm{Cr}_{2} \mathrm{O}_{3}$. | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ (rhombohedral) | $a_{0}$ |  | $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | ........ | 3 |
| MnF2. | $\mathrm{SnO}_{2}$ (tetragonal) | $a_{0}, c_{0}$ | $75^{\circ} \mathrm{K}$ | $\mathrm{MnF}_{2}$ | \|| tetragonal axis | 4 |
| $\mathrm{FeF}_{2}$. | $\mathrm{SnO}_{2}$ (tetragonal) | $a_{0}, c_{0}$ | $90^{\circ} \mathrm{K}$ | $\mathrm{MnF}_{2}$ | \|| tetragonal axis | 4 |
| CoF ${ }_{2} \ldots \ldots$ | $\mathrm{SnO}_{2}$ (tetragonal) | $a_{0}, c_{0}$ | $45^{\circ} \mathrm{K}$ | $\mathrm{MnF}_{2}$ | \|| tetragonal axis | 4 |
| NiF ${ }_{2}$. | $\mathrm{SnO}_{2}$ (tetragonal) | $a_{0}, c_{0}$ | $83^{\circ} \mathrm{K}$ | $\mathrm{MnF}_{2}$ | $10^{\circ}$ from tetragonal axis | 4 |
| MnO2 | $\mathrm{SnO}_{2}$ (tetragonal) | $2 a_{0}, 2 c_{0}$ | $120^{\circ} \mathrm{K}$ | $\mathrm{MnO}_{2}$ | $\perp$ tetragonal axis 1 | 5 |
| CrSb..... | NiAs (hexagonal) | $a_{0}, c_{0}$ | $\ldots$ | CrSb | $\\| ⿻ \mathrm{c}$ axis | 6 |
| $\begin{aligned} & \mathrm{MnBi} \\ & (>340- \\ & \left.360^{\circ} \mathrm{C}\right) . \end{aligned}$ | NiAs (hexagonal) | $a_{0}, c_{0}$ | ...... | CrSb | \||c axis | 7 |
| $\mathrm{FeS}_{1+x} \ldots \ldots$ | NiAs (hexagonal) | $a_{0}, c_{0}$ |  | CrSb | $\perp c$ axis | 8 |
| CuO....... | $\begin{aligned} & \text { Monoclinic } \\ & \left(\mathrm{C}_{2 h^{6}}\right) \end{aligned}$ | $a_{0}, b_{0}, c_{0}$ |  | $\ddagger$ | $\ldots . . . .$. | 9 |
| Cr. | b.c. cubic |  | $\approx 475^{\circ} \mathrm{K}$ |  |  | 10 |

Table 5h-22. Antiferromagnetic Materials Studied by Neutron Diffraction* (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Substance \& Structure type \& Magnetic unit cell in terms of cryst. cell \& $$
\begin{array}{c|}
\hline \text { Néel } \\
\text { point } \\
\text { from } \\
\text { dif- } \\
\text { fraction } \\
\hline
\end{array}
$$ \& Magnetic structure type (see Fig. 5h-8) \& Direction of magnetic moments \& Ref. <br>
\hline $\alpha-\mathrm{Mn}$. \& Cubic \& $a_{0}$ \& $\approx 100^{\circ} \mathrm{K}$ \& Complex \& \& 10, 11 <br>
\hline $$
\begin{aligned}
& \mathrm{MnCu} \\
& \text { alloys } \\
& (69-85 \% \\
& \mathrm{Mn})
\end{aligned}
$$ \& f.c. (tetragonal) \& $a_{0}, c_{0}$

$2 a_{0}$ \& $380^{\circ} \mathrm{K}$
$\approx 9^{\circ} \mathrm{K}$ \& $\mathrm{MnCu} \S$
Complex \& $\|$ ||caxis \& <br>
\hline $\mathrm{ZnCr}_{2} \mathrm{On}_{4}$ \& Spinel (cubic) \& $2 a_{0}$ \& $\approx 15^{\circ} \mathrm{K}$ \& Complex \& \& 14 <br>

\hline $\mathrm{LaMnO}_{8} \ldots$. \& Distorted perovskite (pseudocubic) \& $a_{0}, 2 a_{0}$ \& $140^{\circ} \mathrm{K}$ \& $\mathrm{LaMnO}_{3}$ \& | \|| cell edge |
| :--- |
| in (001) |
| plane $\perp$ |
| $c$ axis | \& 15 <br>

\hline $\mathrm{CaMnO}_{3} \ldots$ \& Distorted perovskite (pseudocubic) \& $2 a_{0}$ \& $\approx 100^{\circ} \mathrm{K}$ \& $\mathrm{CaMnO}_{8}$ \& ........ \& 15 <br>
\hline $\mathrm{LaFeO}_{3}{ }^{* *}$. \& Distorted perovskite (pseudocubic) \& $2 a_{0}$ \& \& $\mathrm{CaMnO}_{3}$ \& ......... \& 15 <br>
\hline $\mathrm{LaCrO}_{3} \ldots$ \& Distorted perovskite (pseudocubic) \& $2 a_{0}$ \& $\ldots . .$. \& $\mathrm{CaMnO}_{3}$ \& ......... \& 15 <br>

\hline $$
\begin{gathered}
\mathrm{La}_{3} \mathrm{Ca}_{3}- \\
\mathrm{MnO}_{3}
\end{gathered}
$$ \& Distorted perovskite (pseudocubic) \& $2 a_{0}, 2 a_{0}, a_{0}$ \& \& $\mathrm{La}_{\frac{1}{2}} \mathrm{Ca}_{3} \mathrm{MnO}_{3}$ \& $\ldots$ \& 15 <br>

\hline $$
\begin{gathered}
\mathrm{La}_{2} \mathrm{Ca}_{4}- \\
\mathrm{MnO}_{3}
\end{gathered}
$$ \& Distorted perovskite (pseudocubic) \& $4 a_{0}, 4 a_{0}, 2 a_{0}$ \& ....... \& Complex \& ......... \& 15 <br>

\hline
\end{tabular}

* Compiled by L. M. Corliss and J. M. Hastings, Brookhaven National Laboratory.
$\dagger$ Room temperature, || (111) planes; low temperatures, $\perp$ (111) planes.
$\ddagger$ Alternate ( $\overline{2} 02$ ) planes coupled antiferromagnetically.
II $x, y$ directions not determined.
\& Idealized for $\gamma \mathbf{M n}$.
** This compound and possibly all of the last 6 are orthorhomic [S. Geller and E. A. Wood, Aeta Cryst. 9, 563 (1956)].


## References

1. Shull, Strauser, and Wollan: Phys. Rev. 83, 333 (1951).
2. Corliss, Hastings, and Goldman: Phys. Rev. 93, 893 (1954).
3. Brockhouse, B. N.: Can. J. Phys. 21, 961 (1953).
4. Erickson, R. A.: Phys. Rev. 90, 779 (1953).
5. Erickson, R. A.: Phys. Rev. 85, 365 (1952).
6. Snow, A. I.: Phys. Rev. 85, 365 (1952).
7. Private communication from B. J. Roberts.
8. Sidhu, S. S.: Pittsburgh Diffraction Conference, 1954.
9. Brockhouse, B. N.: Phys. Rev. 94, 781 (1954).
10. Shull, C. G., and M. K. Wilkinson: Revs. Modern Phys. 25, 100 (1953).
11. Private communication from J. Kasper and B. J. Roberts.
12. Meneghetti, D., and S. S. Sidhu: Argonne Natl. Lab. Rept. ANL-5230 (1954).
13. Corliss, L. M., and J. M. Hastings: Third Intern. Congr. Cryst., Paris, 1954.
14. Hastings, Corliss, and Goldman: Pittsburgh Diffraction Conference, 1954.
15. Wollan, E. O., and W. C. Koehler: Oak Ridge Natl. Lab. Repts. ORNL-1705, 1798 (1954).


$\mathrm{MnF}_{2}$

$\mathrm{MnO}_{2}$


CrSb

$\mathrm{La}_{1 / 4} \mathrm{Ca}_{3 / 4} \mathrm{MnO}_{3}$


Fig. 5h-8. Orientations of magnetic moments in antiferromagnetic materials of various types. Here + and - signs indicate oppositely directed moments. The directions of the moments in any given material are given in Table 5h-22, column (6).
relative to the crystallographic axes. In the diagrams of Fig. $5 \mathrm{~h}-8$ plus and minus signs have been used whenever possible to denote oppositely directed magnetic moments. The orientation of the antiferromagnetically coupled system of moments relative to crystallographic axes is indicated in a separate column in Table 5h-22.

5h-10. Gyromagnetic Ratios and Spectroscopic Splitting Factors. ${ }^{1}$ The gyromagnetic ratio $g^{\prime}$ is defined by the relation

$$
g^{\prime}=\frac{M}{J} \frac{2 m c}{e}
$$

[^269]Table 5h-23. Spectroscopic (Lande) Splitting Factors g and Gyromagnetic Ratios $g^{\prime}$ of Various Substances
(Compiled July, 1953)

| Substance | $g^{\prime}$ | Ref. | $g$ | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| Fe | $1.934 \pm 0.006$ | 1 | 2.12 | 2 |
|  | $1.946 \pm 0.002$ | 3 | 2.14 | 4 |
| Co | $1.855 \pm 0.013$ | 1 | 2.22 | 2 |
|  | $1.873 \pm 0.008$ | 3 |  |  |
| Ni | $1.912 \pm 0.008$ | 1 | 2.19-2.42 | 2, 5 |
|  | $1.855 \pm 0.004$ | 3 |  |  |
| Binary Fe-Co-Ni alloys |  | 6 |  |  |
| $\mathbf{7 5 \% ~ F e}, \mathbf{2 4 . 5 \%} \mathrm{Ni}$ (Hopkinson's alloy) | $1.967 \pm 0.002$ | 1 |  |  |
| 65\% Fe, 34\% Co (Preuss' alloy) | $1.931 \pm 0.003$ | 1 |  |  |
| $50 \% \mathrm{Fe}, 50 \% \mathrm{Ni}$ (Hipernik) | 1.903 | 1 |  |  |
| 22\% Fe, 78\% Ni (Permalloy) | $1.910 \pm 0.002$ | 1 | 2.07-2 . 14 | $6 a$ |
| $15 \% \mathrm{Fe}, \mathbf{7 9 \%} \mathrm{Ni}, 5 \% \mathrm{Mo}, \mathbf{0 . 5 \%} \mathrm{Mn}$ (Supermalloy) |  |  | 2.17 | 7 |
| $54 \% \mathrm{Co}, 45 \% \mathrm{Ni}$ (Bloch's alloy) | $1.862 \pm 0.004$ | 1 |  |  |
| Heusler alloy | $2.000 \pm 0.022$ | 1 | 2.01 | 8 |
| $\mathrm{MnO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$ | $1.94 \pm 0.04$ | 10 | 2.00 | 11 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4}$ | $1.96 \pm 0.06$ | 9 | $2.11 \pm 0.04$ | 12 |
| $\sim \mathrm{FeS}_{1.12}$ | 0.62 | 9 |  |  |
| $\mathrm{NiO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$ | $1.94 \pm 0.04$ | 9 | 2.19 | 13 |
| $\mathrm{CuO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$ | $1.94 \pm 0.04$ | 9 |  |  |
| Copper ferrite* | ............ |  | 2.05 | 14 |
| Ni-Zn ferrite* | ............. |  | 2.12 | 15 |
| $\mathrm{MgO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$ |  |  | 2.04 | 16 |
| $\mathrm{Mn}_{0.45} \mathrm{Zn}_{0.55} \mathrm{Fe}_{2} \mathrm{O}_{4}$ | ............. | $\cdots$ | 2.00 | 17 |
| $\mathrm{Li}_{0.6} \mathrm{Fe}_{1.25} \mathrm{Cr}_{1.25} \mathrm{O}_{4}$ | ............. | $\cdots$ |  | 18 |
| $\mathrm{Li}_{0.5} \mathrm{FeCr}_{1.5} \mathrm{O}_{4}$ |  |  |  | 18 |
| $\mathrm{Fe}_{2} \mathrm{O}_{3}(\alpha)$ | $1.96 \pm 0.05$ | 9 |  |  |
| $\mathrm{NiAl}_{x} \mathrm{Fe}_{2-x} \mathrm{O}_{4}$ |  |  |  | 19 |

* Composition not certain.


## References

1. Barnett, S. J.: Proc. Am. Acad. Arts Sci. 75, 109 (1944).
2. Griffiths, J. H. E.: Nature 158, 670 (1946).
3. Scott, G. G.: Phys. Rev. 82, 542 (1951); 87, 697 (1952).
4. Kip, A. F., and R. D. Arnold: Phys. Rev. 75, 1556 (1949).
5. Bloembergen, N.: Phys. Rev. 78, 572 (1950).
6. Barnett, S. J., and G. S. Kenny: Phys. Rev. 87, 723 (1953). A study of Ni-Fe, $\mathrm{Ni}-\mathrm{Co}$, and $\mathrm{Co}-\mathrm{Fe}$ alloys. These results indicate that $g^{\prime}$ for these alloy systems varies linearly with composition as it changes from one pure element to the other.
6a. Kip, A. F., and R. D. Arnold: Progr. Rept., MIT Research Lab. Electronics, p. 31, Oct. 15, 1948.
7. Yager, W. A., and R. M. Bozorth: Phys. Rev. 72, 80 (1947).
8. Yager, W. A., and F. R. Merritt, Phys. Rev. 75, 318 (1949).
9. Ray Chaudhuri, D. P.: Indian J. Phys. 9, 383 (1935).
10. Coeterier, F.: Helv. Phys. Acta 8, 522 (1935).
11. Guillaud, Yager, Merritt, and Kittel: Phys. Rev. 79, 181 (1950).
12. Bickford, L. R., Jr.: Phys. Rev. 78, 449 (1950).
13. Yager, Galt, Merritt, and Wood: Phys. Rev. 80, 744 (1950).
14. Okamura, T., and Y. Kojima: Phys. Rev. 86, 1040 (1952).
15. Beljers, H. G.: Physica 14, 629 (1949).
16. Okamura, T., and Y. Torizuka: Nature 167, 986 (1951).
17. Galt, Yager, Remeika, and Merritt: Phys. Rev. 81, 470 (1950).
18. van Wieringen, J. S.: Phys. Rev. 90, 488 (1953). It is found that the $g$ value of $\mathrm{Li}_{0.5} \mathrm{Fe}_{1.25} \mathrm{Cr}_{1.25} \mathrm{O}_{4}$ spinel is 2.0 at low temperatures. However, as the temperature increases it deviates from this value much in the form of a dispersion curve in the neighborhood of the point at which the magnetization in this spinel changes sign. Similar behavior was found for $\mathrm{Li}_{0.5} \mathrm{FeCr}_{1.5} \mathrm{O}_{4}$.
19. Wangsness, R. K., and T. R. McGuire: Phys. Rev. 91 (1953). The $g$ factor in this material increases from $g=2.3$ at $x=0$ to a peak, then passes through $g=2$ at $x=0.7$ and drops to 1.5 at higher values of $x$.
where $m / e$ is the mass-to-charge ratio of the electron and $c$ is the velocity of light. $M / J$ is the ratio of the dipole moment to the angular momentum of the electrons which contribute to the spontaneous magnetization as measured in an Einstein-de Haas or a Barnett-effect experiment.

The spectroscopic splitting factor $g$ for ferromagnetic materials is defined thus:

$$
g=\frac{h \nu}{\beta H}
$$

where $\nu$ is the Larmor precession frequency of the moment associated with a sample of the material in a field $H$ as measured in a ferromagnetic-resonance experiment, $h$ is Planck's constant, and $\beta$ is the Bohr magneton. See Table 5h-23.

5h-11. Magneto-optical Rotation (Faraday Effect). ${ }^{1}$ This subject is treated in two parts, separate attention being given to the Faraday effect in ferrites and related materials at microwave frequencies.

In most nonferromagnetic materials the rotation of the plane of polarization can be represented by the relation

$$
\theta=K M L+V H L
$$

where $\theta=$ rotation, minutes of arc
$M=$ intensity of magnetization of medium, cgs units
$H=$ magnetic field, oersteds
$L=$ path length, cm
$V=$ Verdet's constant, minutes/(oersted-cm)
$K=$ Kundt's constant, (minutes/cm)/(magnetic moment/ $\mathrm{cm}^{3}$ )
This equation is valid for most paramagnetic and diamagnetic materials if measurements are not taken in the region of an absorption line. If the susceptibility of the diamagnetic or paramagnetic substance does not depend upon field strength, then the rotation can be written in terms of a Verdet's constant alone. In ferromagnetic materials no simple relation is valid. Data are given in Table 5h-24.

The Faraday effect which occurs at microwave frequencies is described by the relation

$$
\theta=\frac{\omega}{2 c} \sqrt{\epsilon}(\sqrt{\mu+K}-\sqrt{\mu-K}) L
$$

where $\theta=$ rotation, radians
$\omega=$ angular frequency, radians/sec
$c=$ velocity of light
$L=$ path length, cm
$\epsilon=$ dielectric constant

[^270]Table 5h-24. Faraday Rotation in Various Materials
Thin Films of Iron ${ }^{a}$ Wavelength $5,790 \AA, 4 \pi M_{s} \approx 21,000$ gauss

| Magnetic field, <br> oersteds | Path length, <br> $\mu$ | Rotation $\times 10^{-4}$ <br> deg $/ \mathrm{cm}$ |
| :---: | :---: | :---: |
| 0 | 0.1 | 0 |
| 1,000 | 0.1 | 2 |
| 10,000 | 0.1 | 20 |
| 24,000 | 0.1 | 38 |
| 27,000 | 0.1 | 38 |
| 24,000 | 0.05 | 19 |


| Diamagnetic Solids and Liquids |  |  |
| :---: | :---: | :---: |
| Substance | Wavelength, $\AA$ | $\underset{\text { min-oersted }{ }^{-1}, \mathrm{~cm}^{-1}}{ }$ |
| $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$ | 2,496 | $0.1042^{\text {b }}$ |
|  | 5,000 10,000 | $\begin{aligned} & 0.0184^{c} \\ & 0.00410^{d} \end{aligned}$ |
|  | 13,000 | $0.00264{ }^{\text {d }}$ |
|  | -5,893 | 0.1112 |
| $\mathrm{CH}_{3} \mathrm{OH}^{d}, 20^{\circ} \mathrm{C}$ | 5,893 | 0.0094 |
| $\mathrm{C}_{6} \mathrm{H}_{6}{ }^{\text {d }}, 20^{\circ}{ }^{\circ} \mathrm{C}$ | 5,893 | 0.0297 |
| $\mathrm{CS}_{2}{ }^{\text {d }}, 20^{\circ} \mathrm{C}$ | 5,893 | $0.04226$ |
| Quartz ${ }^{\text {d }} \perp$ to axis | 5,893 |  |

Gases ${ }^{e}$

| $\mathrm{O}_{2}, 7.0^{\circ} \mathrm{C}, 100 \mathrm{~kg} / \mathrm{cm}^{2}$ | 4,230 | 0.908 |
| :--- | :--- | :--- |
|  | 5,550 | 0.604 |
|  | 6,560 | 0.484 |
| Air, $17.6^{\circ} \mathrm{C}, 100 \mathrm{~kg} / \mathrm{cm}^{2}$ | 4,230 | 1.062 |
|  | 5,550 | 0.618 |
|  | 6,560 | 0.452 |
| $\mathrm{~N}_{2}, 100 \mathrm{~kg} / \mathrm{cm}^{2}, 14^{\circ} \mathrm{C}$ | 4,230 | 1.097 |
|  | 5,550 | 0.620 |
|  | 6,560 | 0.439 |
| $\mathrm{CO}_{2}, 1 \mathrm{~atm}, 6.5^{\circ} \mathrm{C}$ | 4,230 | 0.01723 |
|  | 5,550 | 0.00975 |
|  | 6,560 | 0.00691 |


| Liquefied Gases ${ }^{f}$ |  |  |
| :--- | :---: | :---: |
| $\mathrm{~N}_{2},-195.5^{\circ} \mathrm{C}$ | 5,893 | 4.15 |
| $\mathrm{O}_{2},-182.5^{\circ} \mathrm{C}$ | 5,893 | 7.82 |
| $\mathrm{SO}_{2},-10^{\circ} \mathrm{C}$ | 5,893 | 18 |
| $\mathrm{CS}_{2},+18{ }^{\circ} \mathrm{C}$ | 5,893 | 43 |
| $\mathrm{CH}_{3} \mathrm{Cl},+18^{\circ} \mathrm{C}$ | 5,893 | 12.9 |
| $\mathrm{CO}_{2},+26^{\circ} \mathrm{C}$ | 5,893 | 2.07 |
| $\mathrm{~N}_{2} \mathrm{O},-92^{\circ} \mathrm{C}^{g}$ | 5,893 | 5.54 |

a H. König, Optik 3, 101 (1948).
b S. Landau, Physik. Z. 9, 417 (1918).
${ }^{c}$ L. H. Siertsema, Arch. Néerl. 6, 826 (1901).
${ }^{d}$ L. R. Ingersoll, Phys. Rev. 23, 489 (1906).
e Siertsema, Vers, Konink. Ned. Akad. Wetenschap. Proc. 2, 31 (1894); 3, 230 (1895); 4, 317 (1896);
5, 132 (1897).
f S. Chaudier, Compt. rend. 156, 1008, 1529 (1913).

- Siertsema, Commun. Phus. Lab. Univ. Leiden 90, 91 (1904).
and $\mu$ and $K$ are components of a permeability tensor which describes the behavior of materials under the combined influence of a static and an orthogonal r-f magnetic field. When $\omega \gg 4 \pi M \gamma$ and $\omega \gg \gamma H$, the tensor components are given approximately by

$$
\mu \approx 1 \quad K \approx \frac{4 \pi M_{\gamma}}{\omega}
$$

where $\gamma=g e / 2 m c \approx 1.76 \times 10^{7}$ radians/(sec-oersted). The rotation is then independent of frequency and field and is ${ }^{1}$

$$
\theta=\frac{\sqrt{\epsilon}}{2 C} 4 \pi M_{\gamma}
$$

Table $5 \mathrm{~h}-25$ shows the Faraday rotation observed in a completely filled waveguide and in waveguides containing slender cylinders of ferrite along the waveguide axis. Measurements of completely filled waveguides are reliable only when the materials attenuate the wave appreciably because of the effects of internal reflections arising from the abrupt discontinuities at the ferrite-air interfaces. The data on the completely filled waveguide show the dependence of rotation upon magnetization as


Fig. $5 \mathrm{~h}-9$. Faraday rotation in $\mathrm{Mg}-\mathrm{Mn}$-ferrite as a function of the magnetic field strength. Wavelength, 3 cm ; path length, 5 cm .
evidenced by the fact that the rotation approaches a limit as the applied field saturates the sample.

The data on the slender samples give the rotation at a field just sufficient to saturate the sample. The losses observed under these conditions are also shown along with the figure of merit given by the rotation in degrees per decibel of loss.

The dependence of Faraday rotation on magnetizing field is given ${ }^{2}$ in Fig. 5h-9 for a slender sample.

Table 5h-26 giving data on ionized gases and semiconductors is included here because the phenomenon involved is closely related to the Faraday rotation in ferrites and can be described by an equation similar to that on page 5 -231 when the tensor permeability is replaced by a tensor dielectric constant.

5h-12. Hall Constants of Ferromagnetic Elements and Alloys. ${ }^{3}$ In ferromagnetic materials the Hall potential difference $E_{H}$ is given by the expression

$$
E_{H} \frac{t}{I}=R_{0} H+R_{1} M=R_{0}(H+4 \pi \alpha M)
$$

where $t$ is the thickness of the sample measured parallel to the magnetic field $H$, and $I$ is the electric current in the material. $M$ is the macroscopic magnetization within the

[^271]
## Table 5h-25. Faraday Rotation in Ferrite Materials Completely Filled Waveguide

(Note wavelength $\lambda$ and saturated magnetization $M_{s}$ )

| Material | Applied $H$, oersteds | Rotation, deg/cm |
| :---: | :---: | :---: |
| $\mathrm{Mn}_{0.5} \mathrm{Zn}_{0.5} \mathrm{Fe}_{2} \mathrm{O}_{4}{ }^{*}$ | 0 | 0 |
| $\left(4 \pi M_{s}=1,500\right)$ | 500 | 35 |
| ( $\lambda=3.33 \mathrm{~cm}$ ) | 1,000 | 80 |
|  | 1,500 | 120 |
|  | 2,000 | 123 |
|  | 2,500 | 123 |
| $\mathrm{MgFe}_{2} \mathrm{O}_{4} \dagger$ | 0 | 0 |
| $\left(4 \pi M_{8}=900\right)$ | 200 | 3 |
| ( $\lambda=3 \mathrm{~cm}$ ) | 600 | 9 |
|  | 1,000 | 14.3 |
|  | 1,400 | 14.3 |
| $\mathrm{MgAl}_{0.4} \mathrm{Fe}_{1.6} \mathrm{O}_{4} \dagger$ | 0 | 0 |
| $\left(4 \pi M_{s}=540\right)$ | 200 | 3 |
| ( $\lambda=3 \mathrm{~cm}$ ) | 400 | 6 |
|  | 500 | 7.4 |
|  | 1,400 | 7.4 |
| $\mathrm{MgAl}_{0.8} \mathrm{Fe}_{1.2} \mathrm{O}_{4} \dagger$ | 0 | 0 |
| $\left(4 \pi M_{s}=54\right)$ | 100 | 1.1 |
| ( $\lambda=3 \mathrm{~cm}$ ) | 1,000 | 1.1 |

## Waveguides Containing Slender Cylinders

(Faraday rotation at 4,000 Mc. $\ddagger$ Measurements on rods 1.35 cm diam, supported in polystyrene in 5 cm diam waveguide)

| Composition | $4 \pi M_{s},$ gauss | Rotation, $\mathrm{deg} / \mathrm{cm}$ | Loss, $\mathrm{db} / \mathrm{cm}$ | Fig. of merit, $\mathrm{deg} / \mathrm{db}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ni}_{0.6} \mathrm{Zn}_{0.4} \mathrm{Mn}_{0.2} \mathrm{Fe}_{1.8} \mathrm{O}_{4}$. | 3,840 | 17.5 | 0.9 | 19.5 |
| $\mathrm{Mg}_{1.5} \mathrm{Mn}_{0.2} \mathrm{Fe}_{1.5} \mathrm{O}_{4}$. | 1,800 | 13.3 | 0.6 | 21.7 |
| $\mathrm{Mg}_{1.0} \mathrm{Mn}_{0.1} \mathrm{Al}_{0.2} \mathrm{Fe}_{1.9} \mathrm{O}_{4}$ | 1,600 | 10.5 | 0.026 | 410 |

(Faraday rotation at $11,200 \mathrm{Mc} / \mathrm{sec} . \ddagger$ Measurements on rods 0.355 cm diam, supported in polyfoam in 1.9 cm diam waveguide)

| Composition | $\begin{aligned} & 4 \pi M_{s}, \\ & \text { gauss } \end{aligned}$ | Rotation, deg/cm | Loss, $\mathrm{db} / \mathrm{cm}$ | Fig. of merit, $\mathrm{deg} / \mathrm{db}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ni}_{0.4} \mathrm{Zn}_{0.6} \mathrm{Mn}_{0.02} \mathrm{Fe}_{1.9} \mathrm{O}_{4}$. | 3,850 | 9.4 | 0.013 | 730 |
| $\mathrm{Ni}_{0.7} \mathrm{Zn}_{0.2} \mathrm{Mn}_{0.1} \mathrm{Fe}_{1.5} \mathrm{O}_{4}$ | 2,800 | 5.6 |  | 2,150 |
| $\mathrm{Mg}_{0.1} \mathrm{Mn}_{0.02} \mathrm{Al}_{0.2} \mathrm{Fe}_{1.7} \mathrm{O}_{4}$ | 1,600 | 3.77 | $0.01+$ | 370 |

## Table 5h-25. Faraday Rotation in Ferrite Materials (Continued)

 (Faraday rotation at $24,000 \mathrm{Mc}$, rods 1.0 mm diam $\mathbb{T}$ )| Composition § | $4 \pi M_{s}$, <br> gauss | Rotation, <br> deg/cm |
| :---: | :---: | :---: |
| Ferroxcube 4A | 3,360 | 13.8 |
| 4B | 4,400 | 28.0 |
| 4C | 4,365 | 20.0 |
| 4D | 3,470 | 9.8 |
| 4E | 2,315 | 5.8 |

* C. L. Hogan, Bell System Tech. J. 31, 1-30 (1952).
$\dagger$ F. F. Roberts, J. phys. radium 12, 305 (1951).
$\ddagger$ Private communication from J. P. Schafer, Bell Telephone Laboratories.
IT A.A.T.M. van Trier, Thesis, Delft, 1953.
8 See Table 5h-11.


## Table 5h-26. Faraday Rotation in Other Materials <br> Free Electrons in Ionized Gases

| Substance | Wavelength, cm | Magnetic field, oersteds | Pressure, mm Hg | Electron density* No. $/ \mathrm{cm}^{3}$ | Rotation, deg/cm |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ne $\dagger$ | 4 | 38.8 | 0.040 | $4.10 \times 10^{11}$ | 0.649 |
|  |  | 51.8 | 0.030 | 5.31 | 1.28 |
| A $\dagger$ | 4 | 64.4 | 0.004 | 0.40 | 0.0653 |
|  |  | 64.4 | 0.042 | 4.08 | 0.995 |
|  |  | 75.0 | 0.040 | 5.21 | 1.74 |
| $\begin{aligned} & \mathrm{N} \dagger \\ & \mathrm{Ne}+1 \% \mathrm{~A} \ddagger \end{aligned}$ | $\begin{aligned} & 4 \\ & 5.45 \end{aligned}$ | 63.6 | 0.120 | 5.45 | 1.83 |
|  |  | 500 | 1.0 | ..... | 0.394 |
|  |  | 1,000 | ..... |  | 2.36 |
|  |  | 1,250 | ..... |  | 7.08 |
|  |  | 1,500 |  |  | 12.6 |

Semiconductors
(The only data available are on high-purity germanium II under the following conditions: temp., $77^{\circ} \mathrm{K} ; N$ type; electron mobility at $77^{\circ} \mathrm{K}, 28,000 \mathrm{~cm}^{2}$ volt $^{-1} \mathrm{sec}^{-1}$; carrier density, $10^{14}$ electrons $/ \mathrm{cm}^{3} ; \lambda, 1.25 \mathrm{~cm}$ )

| Magnetic <br> field, <br> oersteds | Rotation, <br> deg/cm | Magnetic <br> field, <br> oersteds | Rotation, <br> deg/cm |
| :---: | :---: | :---: | :---: |
| 1,690 | 364 | 8,450 | 324 |
| 3,380 | 532 | 10,140 | 212 |
| 5,070 | 538 | 11,830 | 109 |
| 6,760 | 458 | 13,520 | 212 |

[^272]material and $R_{0}, R_{1}$, and $\alpha$ are constants of the material when their temperatures are held constant. Table $5 \mathrm{~h}-27$ lists values of $R_{0}$ in ohm- $\mathrm{cm} /$ oersted and $R_{1}$ in ohm-cm per cgs unit of magnetization $M$. Negative signs indicate electronic-type conduction. $R_{1}=4 \pi \alpha R_{0}$.

5h-13. Susceptibility. ${ }^{1}$ The atomic susceptibilities of the elements at room temperature are shown in Fig. 5h-10.


Fig. 5h-10. Atomic susceptibility of the elements at room temperature.
Data are given in Table $5 \mathrm{~h}-28$ for materials which follow a Curie-Weiss law over a substantial temperature range. The law is

$$
\chi_{\mathrm{mole}}=\frac{C}{T-\theta}
$$

in which $\chi_{\text {mole }}$ is the molar susceptibility (cgs magnetic moment per mole per oersted), $C$ the Curie-Weiss constant, $T$ the temperature in ${ }^{\circ} \mathrm{K}$, and $\theta$ a constant. In addition to $C$ and $\theta$, the corresponding number of effective Bohr magnetons per formula unit is given, obtained from the relation

$$
n_{e f f}=\left(3 k \chi_{\mathrm{mole}} \frac{T-\theta}{N \beta^{2}}\right)^{1 / 2}=2.83 \sqrt{C}
$$

where $\beta$ is the magnetic moment of the Bohr magneton ( $9.274 \times 10^{-21} \mathrm{erg} / \mathrm{gauss}$ ).
${ }^{1}$ Compiled by J. K. Galt, Bell Telephone Laboratories.

Table 5h-27. Hall Constants of Some Materials
Elements

| Element | Purity, atomic \% | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $R_{0} \times 10^{13}$ | $R_{1} \times 10^{13}$ | $\alpha$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fe | 99.9 | 286 | 2.45 | 788 | 25.6 | 1 |
|  |  | 293 |  | 698 |  |  |
|  |  | 83 |  | 33.0 | . . . . . | 2 |
|  |  | 63.8 | . . . . ${ }^{\text {a }}$ | 28.6 |  |  |
|  |  | 20.4 |  | 34.5 |  |  |
|  |  | 14.2 | . . . ${ }^{\text {a }}$ | 35.0 |  |  |
| Co | 99.1 | 286 | -13.3 | 23.4 | -0.14 | 1 |
| Ni | .... | 283 | $-5.51$ | -879 | 12.7 | 2 |
|  |  | 83 | -3.51 | -111 | 2.51 |  |
|  |  | 63.3 | -3.27 | -78.9 | 1.92 |  |
|  |  | 20.4 | -3.01 | $-71.5$ | 1.89 |  |
|  |  | 14.2 | -3.06 | -74.2 | 1.93 |  |
| Ni | 99.6 | 282 | -5.6 | $-655$ | 9.3 | 3 |
|  |  | 77 | -4.8 | -80 | 1.33 |  |
|  |  | 4 | -5.5 | -86 | 1.24 |  |
|  | 99.99 | 306 | -5.7 | $-768$ | 10.7 | 3 |
|  |  | 77 | -4.1 | $-69.8$ | 1.36 |  |
|  |  | 20 | $-4.6$ | -67 | 1.16 |  |
|  |  | 14 | $-4.8$ | -70 | 1.16 |  |
|  |  | . 4 | $-5.0$ | -68 | 1.08 |  |
|  | 99.99 | 290 | $-12.6$ | -463 | 2.93 | 4 |
|  |  | 77 | -3.6 | -68 | 1.51 |  |
|  |  | 20 | -5.0 | -63 | 1.00 |  |

Alloys with Nickel

| Element and atomic \% |  | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $R_{0} \times 10^{13}$ | $R_{1} \times 10^{13}$ | $\alpha$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fe | 10.5 | 290 | -17 | -448 | 2.1 | 4 |
|  |  | 77 | -4.5 | -206 | 3.7 |  |
|  |  | 20 | -4 | -225 | 4.5 |  |
|  | 16 | 290 | -17 | -83 | 0.4 | 4 |
|  |  | 77 | -22 | -193 | 0.7 |  |
|  |  | 20 | -23.5 | -240 | 0.8 |  |
|  | 25 | 289 | -18.5 | 427 | $-1.81$ | 5 |
|  | 55 | 301 | $-18.7$ | 11,000 | -46.8 | 5 |
| Co | 10 | 290 | -22.5 | -1,210 | 4.3 | 4 |
|  |  | 77 | -11 | - -135 | 1.7 |  |
|  |  | 20 | -12 | -211 | 1.4 |  |
|  | 11 | 298 | -11.3 | -1,210 | 8.52 | 1 |
|  |  | 280 | -11.3 | -1,040 | 7.32 |  |
|  | 20 | 290 | -19 | -320 | 1.34 | 4 |
|  |  | 77 | -20 | -270 | 1.07 |  |
|  |  | 20 | -21 | -298 | 1.13 |  |
|  | 22 | 284 | -15.6 | -14 | 0.07 | 1 |

Table 5h-27. Hall Constants of Some Materials (Continued)
Alloys with Nickel

| Element and atomic \% |  | Temp., ${ }^{\circ} \mathrm{K}$ | $R_{0} \times 10^{13}$. | $R_{1} \times 10^{13}$ | $\boldsymbol{\alpha}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Co | 30 | 290 | -13 | 75 | -0.46 | 4 |
|  |  | 77 | -28 | -284 | 0.81 |  |
|  |  | 20 | -29 | -404 | 1.11 |  |
|  | 38 | 294 | -19.9 | 292 | -1.17 | 1 |
|  |  | 283 | -19.9 | 250 | -1.00 |  |
|  | 53 | 294 | -19.6 | 411 | -1.67 | 1 |
|  |  | 279 | -19.6 | 318 | -1.29 |  |
|  | 70 | 298 | -19.9 | 330 | -1.32 | 1 |
|  |  | 282 | -19.9 | 268 | -1.07 |  |
|  | 85 | 294 | -16.4 | 179 | -0.87 | 1 |
|  |  | 282 | -16.4 | 167 | -0.81 |  |
| Cu | 10 | 293 | -10.8 | -2,960 | 21.8 | 3 |
|  |  | 77 | -14.4 | -1,230 | 6.8 |  |
|  |  | 14 | -18.3 | -1,130 | 4.9 |  |
|  | 20 | 301 | -14.5 | -6,615 | 36.3 | 3 |
|  |  | 77 | -19.8 | -2,690 | 10.8 |  |
|  |  | 20 | -23.2 | -2,440 | 8.4 |  |
|  |  | 2 | -23.4 | -2,410 | 8.2 |  |
|  | 30* | 293 | -13 | -10,000 | 61.2 | 3 |
|  |  | 77 | -19.5 | -6,090 | 24.8 |  |
|  |  | 20 | -21.2 | $-5,530$ | 20.8 |  |
|  |  | 14 | -21.2 | $-5,470$ | 20.5 |  |
|  | 40* | 293 | -13 | $n$ | $n$ | 3 |
|  |  | 77 | -17.7 | -4,810 | 21.6 |  |
|  |  | 20 | -18.8 | -4,300 | 18.2 |  |
|  |  | 4 | -21.9 | -4,290 | 15.6 |  |
|  | 50* | 300 | -14 | $n$ | $n$ | 3 |
|  |  | 77 | -14.8 | 1,730 | 9.3 |  |
|  |  | 20 | -16.6 | 375 | 1.8 |  |
|  | 60 | 300 | -13.5 | $n$ | $n$ | 3 |
|  |  | 77 | -14.3 | $n$ | $n$ |  |
|  | 65 | 292 | -12.8 | $n$ | $n$ | 3 |
|  |  | 77 | -14.3 | $n$ | $n$ |  |
|  |  | 20 | -11.7 | $n$ | $n$ |  |
|  | 80 | 300 | -9.7 | $n$ | $n$ | 3 |
|  |  | 20 | -11.4 | $n$ | $n$ |  |
|  |  | 298 | -7.4 | $n$ | $n$ | 3 |
|  | 90 | 77 | -8.3 | $n$ | $n$ |  |
|  |  | 14 | -8.7 | $n$ | $n$ |  |
| Al | 8 | 293 | -10 | -10,800 | 86 | 4 |
|  |  | 77 | -18 | $-5,400$ | 24 |  |
|  |  | 20 | -18 | -4,700 | 21 |  |
| Si | 3 |  | -11 | -5,000 | 36 | 4 |
|  |  | 77 | -10 | -2,500 | 20 |  |
|  |  | 20 | -7 | -2,300 | 26 |  |
| Sn | 3 | 293 | -20 | -4,500 | 18 | 4 |
|  |  | 77 | -9 | -2,350 | 21 |  |
|  |  | 20 | -8.5 | -2,330 | 22 |  |

Table 5h-27. Hall Constants of Some Materials (Continued)
Alloys with Nickel

| Element and atomic \% |  | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $R_{0} \times 10^{13}$ | $R_{1} \times 10^{13}$ | $\boldsymbol{\alpha}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | 7 | 293 | -48 | -28,300 | 47 | 6 \% |
|  |  | 77 | -19.5 | $-32,300$ | 132 |  |
|  |  | 20 | -16 | -30,000 | 149 |  |
| Mo | 3 | 293 | -15 | -13,600 | 72 | 6 \% |
|  |  | 77 | -10.5 | -10,600 | 81 |  |
|  |  | 20 | -11.5 | -10,500 | 73 |  |
| W | 1.6 | 293 | -11 | -5,100 | 37 | a |
|  |  | 77 | -10.5 | -2,700 | 21 |  |
|  |  | 20 | -7 | -2,640 | 30 |  |
| Mn | $\begin{aligned} & 25^{d} \\ & 25^{p} \end{aligned}$ | 309 | +6.40 | 4,300 | 53 | 55 |
|  |  | 295 | +4.53 | 13,850 | 243 |  |
|  |  | 297 | -2.21 | 8,870 | $-320$ |  |
|  | $25^{\circ}$ | 304 | -16.40 | 4,100 | $-20$ | 5.1 |


| Si | 1.30 | 300 | ....... | 6,230 |  | 7 \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3.01 | 77 299 | $\cdots$ | 2,950 12,000 |  |  |
|  |  | 77 | $\ldots$ | 6,620 |  |  |
|  | 3.91 | 298 | ....... | 20,200 | ....... | 7 |
|  |  | 77 |  | 15,900 |  | ) |
|  | 5.09 | 300 77 | $\ldots$ | 24,000 |  | 7 |

$\quad$ ordered. ${ }^{p}$ partial order. disordered. $n$ values are indeterminate, since the alloys are not
ferromagnetic.

* Values for $R_{0}$ are obtained from the slope $\partial E_{H} / \partial B$ at high fields. For measurements near the Curie temperatures, $(\alpha-1) \partial M / \partial B$ is large enough to cause errors in $R_{0}$. Corrections for this error have been made in the room-temperature measurements on the alloys marked. These room-temperature results may be in error by as much as $15 \%$, since the values of $\partial M / \partial B$ are not well known. Values of $R_{1}$ are not affected by this correction.


## References

1. Foner, Simon, and Emerson M. Pugh: Phys. Rev. 91, 20 (1953).
2. Jan, J. P., and H. M. Gijsman: Physica 18, 277 (1952).
3. Cohen, P.: Thesis, Carnegie Institute of Technology, 1955; see also E. Pugh; Phys. Rev. 97, 647 (1955).
4. Smit, J., and J. Volger: Phys. Rev. 92, 1576 (1953).
5. Private communication from S. Foner.
6. Private communication from J. Smit and J. Volger.
7. Kooi, C.: Phys. Rev. 95, 843 (1954).

The chemical formulas as written are the simplest which include whole numbers only. In many cases, however, in order to make $n_{\text {eff }}$ per formula unit correspond to the magnetic moment of an actual paramagnetic ion, the magnetic data and calculations refer to this formula multiplied by $1 / 2$ or $1 / 3$ or $1 / 4$. When this is the case, the multiplying factor is indicated immediately after the formula thus: $\mathrm{Dy}_{2} \mathrm{O}_{3}(\times 1 / 2)$. If $n_{\text {eff }}$ does correspond to the moment of a single dipole, then under certain simplifying
assumptions it is related to $g$ and $J$ by

$$
n_{e f f}=g \sqrt{J(J+1)}
$$

where $J$ is the quantum number appropriate to the orientable angular momentum of the molecule.

All data in Table $5 \mathrm{~h}-28$ for which references are not given are taken from H. Staude. ${ }^{1}$ Paramagnetic properties of certain ferrites above their Curie temperatures have been discussed by Néel, ${ }^{2}$ who gives references to experimental work in this field. Further references to other materials which do not obey the Curie-Weiss law are also to be found in Staude, and in Selwood. ${ }^{3}$

5h-14. Demagnetizing and Form Factors. When a rod is magnetized by an applied field $H_{a}$, its ends carry magnetic poles which themselves cause magnetic fields in all parts of the rod. Normally these fields are directed in the opposite direction to the applied field and are therefore called demagnetizing fields. The true field acting on a given section of the bar, e.g., its middle, is then the resultant of the applied field and the demagnetizing field $\Delta H$ :

$$
H=H_{a}-\Delta H
$$

The demagnetizing field is approximately proportional to the intensity of magnetization:

$$
\Delta H=N M
$$

In ellipsoids of revolution, in which the ratio of the long to the short axis is $m$, the demagnetizing factor $N$ is as follows:
Prolate ellipsoid:

$$
N=\frac{4 \pi}{m^{2}-1}\left[\frac{m}{\sqrt{m^{2}-1}} \log _{e}\left(m+\sqrt{m^{2}-1}\right)-1\right]
$$

Oblate ellipsoid:

$$
N=2 \pi\left[\frac{m^{3}}{\left(m^{2}-1\right)^{\frac{1}{2}}} \arcsin \frac{\sqrt{m^{2}-1}}{m}-\frac{1}{m^{2}-1}\right]
$$

when the ellipsoid is magnetized in the direction of the long dimension. The sum of the demagnetizing factors for the three axial directions is $4 \pi$.

The demagnetizing factors of rods depend somewhat on their permeabilities. They have been determined empirically for materials of high permeability, and Table $5 \mathrm{~h}-29$ gives values of $N / 4 \pi$ for such rods, and for ellipsoids. The demagnetizing field is then

$$
\Delta H=\frac{N}{4 \pi}(B-H)
$$

in oersteds, when $B$ and $H$ are in gauss and oersteds, respectively. Formulas for ellipsoids of any axial ratio, magnetized in any direction, have been given by Osborn ${ }^{4}$ and by Stoner. ${ }^{5}$

In an analogous way the form of a body affects also its magnetostriction, causing it to be longer the smaller the dimensional ratio. As calculated by Becker, ${ }^{6}$ in a prolate ellipsoid magnetized parallel to a long axis the fractional increase in length caused by the form is

$$
\lambda_{b}=\frac{1}{2} M^{2} N\left(\frac{1}{3 k}+\frac{a}{2 G}\right)
$$

${ }^{1}$ H. Staude, "Physikalisch-Chemisches Taschenbuch," vol. 2, p. 1624, Akademische Verlagsgesellschaft m.b.H., Leipzig, 1949.
${ }^{2}$ L. Néel, Ann. phys. 3 [12], 137 (1948).
${ }^{3}$ P. W. Selwood, "Magnetochemistry," Interscience Publishers, Inc., New York, 1956.
4 J. A. Osborn, Phys. Rev. 67, 351 (1945).
${ }^{5}$ E. C. Stoner, Phil. Mag. 36 [7], 803 (1945).

- R. Becker, Z. Physik 87, 547 (1934).


## Table 5h-28. Molecular Susceptibilities, Curie Constants, and Effective Bohr Magneton Numbers of Some Paramagnetic Materials ( $\theta$ is constant in Curie-Weiss law)

| Substance | $\begin{gathered} x_{\text {mole }} \times 10^{6} \\ \left(20^{\circ} \mathrm{C}\right) \end{gathered}$ | Range of validity of Curie- <br> Weiss law, ${ }^{\circ} \mathrm{K}$ | $C$ | $\boldsymbol{\theta},{ }^{\circ} \mathrm{K}$ | $n_{\text {eff }}$ per for- mula unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{MgO}^{\text {a }}$. |  |  | 8.66 | -600 | 8.33 |
| $\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{CuO}^{\text {a }}$. |  |  | 10.5 | -635 | 9.16 |
| $\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{CoO}^{\text {a }}$. |  |  | 19.8 | -445 | 12.6 |
| $\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{NiO}^{\text {a }}$. |  |  | 16.9 | -832 | 11.6 |
| $\mathrm{CeCl}_{3}$. | 2,520 | $>80$ | 0.787 | -23 | 2.51 |
| $\mathrm{CeF}_{3}$. | 2,240 | $>80$ | 0.794 | -62 | 2.52 |
| $\mathrm{Ce}(\beta)^{\text {b }}$. | 2,430 | $>80$ | 0.81 | -50. | 2.55 |
| $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. | 2,335 |  | 0.717 | -17 | 2.39 |
| Co. |  | 1500-1720 | 1.24 | 1400 | 3.15 |
| $\mathrm{CoBr}_{2}$ | 11,640 |  | 3.43 | -6 | 5.24 |
| $\mathrm{Co}(\mathrm{CN})_{2}$ | $\sim 3,870$ |  | 1.21 | -9 | 3.11 |
| $\mathrm{CoCl}_{2}$. |  | > 400 | 3.19 | -48 | 5.05 |
|  | 13,060 | <400 | 3.56 | 18.5 | 5.33 |
| $\mathrm{CoCr}_{2} \mathrm{~S}_{4}{ }^{\text {c }}$ | 14,100 | $>500$ | 6.36 | -410 | 7.13 |
| $\mathrm{CoF}_{2}$. | 8,660 |  | 2.90 | -44 | 4.81 |
| $\mathrm{CoI}_{2}$. | 10,860 | $>195$ | 3.18 | 0 | 5.04 |
| $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{\text {d }}$. | 9,050 | $>8$ | 2.58 | 8 | 4.58 |
| $\mathrm{CoO}^{\text {e }}$. | 5,235 | $>300$ | 3.23 | 290 | 5.1 |
| $\mathrm{CoS}_{2}$. | 3,520 | > 155 | 0.49 | 155 | 1.97 |
| $\mathrm{CoSO}_{4}$ | 10,200 |  | 3.36 | -34 | 5.18 |
| $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 9,780 |  | 2.94 | -9 | 4.85 |
| $\mathrm{CrCl}_{2}$. | 7,330 | >225 | 2.97 | -116 | 4.88 |
| $\mathrm{CrCl}_{3}$. | 6,860 | 210-690 | 1.82 | 24 | 3.82 |
| $\mathrm{CrF}_{3}$. | 4,450 | >65 | 1.90 | -135 | 3.90 |
| CrS ${ }^{\text {c }}$ | 1,610 | $>560$ | 2.6 | $\approx-800$ | 4.6 |
| $\mathrm{Cr}_{0.85} \mathrm{~S}^{c}$. |  | $>400$ | 2.52 | $\approx-650$ | 4.49 |
| $\mathrm{Cr}_{0.675} \mathrm{~S}^{\text {c }}$ | 1,640 | > 300 | 1.90 | $\approx-500$ | 3.90 |
| $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}{ }^{\text {d }}$. | 10,500 | >11 | 2.94 | 11 | 4.89 |
| $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}^{\text {d }}$ | 10,600 | $>19$ | 2.88 | 19 | 4.85 |
| $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}^{d}$. | 5,320 | $>20$ | 1.41 | 20 | 3.43 |
| $\mathrm{CrK}\left(\mathrm{SO}_{4}\right)_{2} \cdot \mathbf{1 2} \mathrm{H}_{2} \mathrm{O}$ | 6,320 |  | 1.84 | 0 | 3.84 |
| $\mathrm{CuCl}_{2}$. | 1,340 | 155-670 | 0.457 | -52 | 1.92 |
| $\mathrm{CuSO}_{4}$. | 1,340 |  | 0.50 | -79 | 2.00 |
| $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1,570 |  | 0.46 | -0.7 | 1.92 |
| Dy. | 102,000 | > 150 | 14.6 | 150 | 10.8 |
| $\mathrm{Dy}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 43,200 |  | 13.6 | -24 | 10.5 |
| $\mathrm{Dy}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{HO}_{2}(\times 1 / 2)$. | $\sim 45,000$ |  | 13.74 | -5 | 10.5 |
| Er. | 44,500 | > 40 | 11.2 | 40 | 9.5 |
| $\mathrm{Er}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 38,600 |  | 11.6 | -8 | 9.65 |
| $\mathrm{Er}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\times 1 / 2)$ | 28,700 |  | 8.24 | -2 | 8.12 |
| $\mathrm{Er}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2)$. | 36,500 |  | 11.18 | -6 | 9.46 |
| Eu. | 30,400 | > 145 | 8.45 | 15 | 8.2 |
| EuCl 2 . | 26,600 |  | 7.80 | -1. | 7:90 |

Table 5h-28. Molecular Susceptibilities, Curie Constants, and Bohr Magneton Numbers of Some Paramagnetic Materials (Continued)

| Substance | $\begin{array}{\|c} x_{\text {mole }} \times 10^{6} \\ \left(20^{\circ} \mathrm{C}\right) \end{array}$ | Range of validity of CurieWeiss law, ${ }^{\circ} \mathrm{K}$ | C | $\theta,{ }^{\circ} \mathrm{K}$ | $n_{\text {eff }}$ per formula unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Eu}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 5,550 |  | 3.26 | -294 | 5.11 |
| EuS. | 23,800 |  | 6.81 | 6 | 7.38 |
| EuSO4. | 25,800 |  | 7.64 | -4 | 7.81 |
| Fe. |  | >1100 | 1.23 | 1093 | 3.14 |
| $\mathrm{FeCl}_{2}$. | 13,200 |  | 3.60 | 20.4 | 5.37 |
| $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. | 12,060 |  | 3.37 | 12 | 5.18 |
| $\mathrm{FeCl}_{3}$. | 13,900 |  | 3.93 | 10 | 5.6 |
| $\mathrm{FeCr}_{2} \mathrm{~S}_{4}{ }^{\text {c }}$. | 12,100 | >300 | 6.63 | -240 | 7.28 |
| $\mathrm{FeF}_{2}$. | 9,460 |  | 3.88 | -117 | 5.57 |
| $\mathrm{Fe}_{0.876} \mathrm{~S}^{\text {c }}$ |  | $>600$ | 3.6 |  | 5.4 |
| $\mathrm{Fe}_{0.902 \mathrm{Sc}}$ |  | $>600$ | 3.8 |  | 5.5 |
| $\mathrm{FeSO}_{4}$. | 10,800 |  | 3.60 | -39 | 5.35 |
| FeSO4. $7 \mathrm{H}_{2} \mathrm{O}$. | 11,930 |  | 3.52 | -3 | 5.30 |
| $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. | 13,100 |  | 3.78 | 2 | 5.49 |
| $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$. | 12,100 |  | 4.3 | -61 | 5.9 |
| $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O} .$. | 14,900 | >20 | 4.2 | 0 | 5.8 |
| $\begin{gathered} \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \\ 14.5 \mathrm{H}_{2} \mathrm{O}^{f}(\times 1 / 4) \end{gathered}$ |  | $>77$ | 3.92 | 14.7 | 5.6 |
| Gd. |  | $>300$ | 7.48 | 302 | 7.73 |
| $\mathrm{GdCl}_{3}$ | 24,700 |  | 7.51 | -11 | 7.75 |
| $\mathrm{Gd}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 24,500 |  | 7.61 | -18 | 7.80 |
| $\mathrm{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\times 1 / 2)$. | 26,600 |  | 7.81 | -0.4 | 7.90 |
| $\mathrm{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2)$ | 27,500 |  | 8.11 | -2 | 8.06 |
| Ho. | 68,200 | >87 | 14.0 | 87 | 10.6 |
| $\mathrm{Ho}_{2} \mathrm{O}_{3}(\times 1 / 2)$ | 44,800 |  | 13.7 | -14 | 10.5 |
| $\mathrm{Ho}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\times 1 / 2)$. | 45,900 |  | 13.8 | -8 | 10.5 |
| $\mathrm{Ho}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2) .$. | 44,300 |  | 13.6 | -7 | 10.43 |
| $\mathrm{KFe}\left[\mathrm{Fe}(\mathrm{CN})_{8}\right] \cdot 1.9 \mathrm{H}_{2} \mathrm{O}^{\prime} .$. | . ....... | $>77$ | 4.05 | 22 | 5.7 |
| $\mathrm{K}_{2} \mathrm{MnO}_{4}$. | 1,270 |  | 0.383 | -7 | 1.75 |
| MnBr 2. | 14,000 | 70-180 | 4.26 | -2 | 5.84 |
| $\mathrm{MnCO}_{3}$. | $\sim 11,500$ |  | 3.93 | -40 | 5.61 |
| $\mathrm{MnCl}_{2}$. | 14,500 |  | 4.17 | 3 | 5.78 |
| $\mathrm{MnCo}_{2} \mathrm{O}_{4}{ }^{\text {c }}$ | 8,600 | >300 | 5.73 | -380 | 6.77 |
| $\mathrm{MnCr}_{2} \mathrm{~S}_{4}{ }^{\text {c }}$. | 24,100 | $>300$ | 7.50 | -10 | 7.75 |
| $\mathrm{MnF}_{2}$. | 10,730 | >90 | $\sim 4.10$ | -92 | 5.7 |
| MnFs ${ }^{\text {o }}$ |  |  | 3.01 | 8 | 4.91 |
| $\mathrm{MnI}_{2}$. | 14,800 | 35-200 | 4.21 | -4 | 5.80 |
| MnO . | 5,040 | $>120$ | 4.90 | $-680$ | 6.26 |
| $\mathrm{Mn}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 7,080 | . | 3.40 | -188 | 5.21 |
| $\mathrm{MnO}_{2}$. | $\sim 2,300$ |  | 1.80 | -480 | 3.78 |
| $\mathbf{M n}(\mathrm{OH})_{2}$. | $\sim 13,700$ |  | 4.60 | -56 | 6.06 |
| $\left.\mathrm{Mn}_{2} \mathrm{P}_{2} \mathrm{O}\right)_{7}(\times 1 / 2)$. | 14,400 | 195-770 | 4.58 | -23 | 6.05 |
| $\mathrm{MnSO}_{4}$. | 13,960 |  | 4.34 | -18 | 5.88 |
| Nd. | 5,650 |  | 1.65 | 0 | 3.64 |

Table 5h-28. Molecular Susceptibilities, Curie Constants, and Bohr Magneton Numbers of Some Paramagnetic Materials (Continued)

| Substance | $\begin{gathered} \chi_{\text {mole }} \times 10^{6} \\ \left(20^{\circ} \mathrm{C}\right) \end{gathered}$ | Range of validity of CurieWeiss law, ${ }^{\circ} \mathrm{K}$ | C | $\theta,{ }^{\circ} \mathrm{K}$ | $n_{\text {eff }}$ per formula unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NdCl}_{3}{ }^{\text {a }}$. |  | 290-570 | 1.861 | -57.4 | 3.87 |
| $\mathrm{NdF}_{3}$ | 5,020 | > 155 | 1.76 | -56 | 3.75 |
| $\mathrm{Nd}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 4,700 |  | 1.53 | 32 | 3.50 |
| $\mathrm{Nd}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\times 1 / 2)$. | 5,070 |  | 1.70 | -42 | 3.69 |
| $\mathrm{Nd}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2)$. | 5,390 |  | 1.82 | -44 | 3.81 |
| Ni . |  | $>950$ | 0.402 | 538 | 1.79 |
| $\mathrm{NiCl}_{2}$ | 6,250 | > 540 | 1.50 | 28 | 3.47 |
|  |  | <510 | 1.37 | 71 | 3.32 |
| $\mathrm{NiF}_{2}$. | 3,450 | $>75$ | 1.34 | -97 | 3.27 |
| $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{d}$ | 3,700 | $>21$ | 1.01 | 21 | 2.86 |
| $\mathrm{O}_{2}$. | 3,380 | >90 | $0.99 \pm 0.02$ | 0 | 2.80 |
| $\mathrm{Pr}^{\text {b }}$ | 5,100 | $>77$ | 1.58 | -21 | 3.56 |
| $\mathrm{PrCl}_{3}{ }^{\text {b }}$ |  | 285-700 | 1.69 | -29.4 | 3.69 |
| $\mathrm{Pr}_{2} \mathrm{O}_{3}(\times 1 / 2)$ | 4,450 |  | 1.62 | -71 | 3.60 |
| $\mathrm{Pr}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\times 1 / 2)$ | $\sim 4,900$ | 65-370 | 1.64 | -44 | 3.62 |
| $\mathrm{Pr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2)$ | 5,070 | > 140 | 1.63 | -33 | 3.61 |
| Sc. | $315 \pm 10$ | . | 0.395 | -980 | 1.8 |
| $\mathrm{Tb}(\sim 85 \%)$. | 115,000 |  | 10.0 | 205 | $\sim 9.0$ |
| $\mathrm{Tb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2)$. | 37,500 |  | 11.86 | -16 | 9.74 |
| Tm. | $\sim 25,600$ |  | 7.19 | 10 | 7.6 |
| $\mathrm{Tm}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\times 1 / 2)$ | 20,800 |  | 6.33 | -11.7 | 7.11 |
| $\mathrm{UCl}_{4}{ }^{\text {i }}$. |  |  |  | -62 | 3.29 |
| $\mathrm{UBr}_{4}{ }^{\text {i }}$. |  |  |  | -35 | 3.12 |
| $\mathrm{UBr}^{\mathbf{i}}{ }^{\text {i }}$. |  | ...... |  | 25 | 3.29 |
| $\mathrm{UCl}_{3}{ }^{\mathbf{i}}$. |  | .......... |  | -29 | 3.03 |
| $\mathrm{UF}_{4}{ }^{\text {i }}$ |  |  | 1.36 | -147 | 3.30 |
| $\mathrm{UI}_{3}{ }^{\text {i }}$. |  |  |  | 5 | 3.31 |
| $\mathrm{KUF}_{5}{ }^{\text {i }}$ |  |  | 1.30 | -122 | 3.30 |
| $\mathrm{K}_{2} \mathrm{UF}_{6}{ }^{\text {b }}$. |  | $>198$ | 1.47 | -108 | 3.45 |
| $\mathrm{CaUF}_{6}{ }^{\text {a }}$. |  |  | 1.31 | -101 | 3.25 |
| $\mathrm{Na}_{3} \mathrm{UF}_{7}{ }^{\text {i }}$ |  |  | 1.45 | -290 | 3.40 |
| $\mathrm{UO}_{2}$ | 2,240 |  | 1.06 | -185 | 2.92 |
| $\mathrm{U}_{3} \mathrm{O}_{8}(\times 1 / 3)$ | 525 | ......... | 0.24 | -170 | 1.39 |
| $\mathrm{U}\left(\mathrm{SO}_{4}\right)_{2}$. | 3,060 |  | 1.32 | -140 | 3.25 |
| $\mathrm{Yb}_{2} \mathrm{O}_{3}(\times 1 / 2)$. | 6,700 |  | 2.43 | -68 | 4.40 |
| $\mathrm{Yb}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\times 1 / 2)$. | $\sim 8,600$ |  | 2.92 | -42 | 4.83 |
| $\mathrm{ZnCo}_{2} \mathrm{O}_{4}{ }^{\text {c }}$. | 1,960 | $>100$ | 0.62 | -20 | 2.2 |
| $\mathrm{ZnCr}_{2} \mathrm{~S}_{4}{ }^{\text {c }}$. | 11,800 | $>100$ | 3.34 | +10 | 5.17 |

[^273]Table 5h-29. Demagnetizing Factors, $N / 4 \pi$, for Rods and Ellipsoids Magnetized Parallel to Long Axis

| Dimensional ratio <br> (length/diam) | Rod | Prolate <br> ellipsoid | Oblate <br> ellipsoid |
| :---: | :--- | :--- | :--- |
|  | 1.0 | 1.0 | 1.0 |
| 1 | 0.27 | 0.3333 | 0.3333 |
| 2 | 0.14 | 0.1735 | 0.2364 |
| 5 | 0.040 | 0.0558 | 0.1248 |
| 10 | 0.0172 | 0.0203 | 0.0696 |
| 20 | 0.00617 | 0.00675 | 0.0369 |
| 50 | 0.00129 | 0.00144 | 0.01472 |
| 100 | 0.00036 | 0.000430 | 0.00776 |
| 200 | 0.000090 | 0.000125 | 0.00390 |
| 500 | 0.000014 | 0.0000236 | 0.001567 |
| 1000 | 0.0000036 | 0.0000066 | 0.000784 |
| 2000 | 0.0000009 | 0.0000019 | 0.000392 |

Table 5h-30. Magnetostriction Form Factors (See equation for $\lambda_{b}$ )

| $m=$ length/diam | $N$ | $a$ |
| :---: | :---: | :---: |
|  |  | 4.19 |
| 1 | 2.18 | 1.07 |
| 2 | 1.37 | 1.23 |
| 3 | 0.95 | 1.31 |
| 4 | 0.70 | 1.38 |
| 5 | 0.255 | 1.53 |
| 10 | 0.135 | 1.60 |
| 15 | 0.085 | 1.63 |
| 20 | 0.043 | 1.68 |

where $M$ is the intensity of magnetization, $N$ the demagnetizing factor, $k$ the compression modulus, and $G$ the shear modulus (respectively, 1.6 and $0.8 \times 10^{12}$ dynes $/ \mathrm{cm}^{2}$ for iron), and $a$ is $-(1 / N)\left(\partial N / \partial A_{11}\right), A_{11}$ being the principal component of the strain tensor. Values of $a$ have been calculated by Becker and are given in Table 5h-30.

In a cubic crystal ${ }^{1}$ magnetized parallel to a cube axis the increase in length caused by the form is

$$
\lambda_{f}=\frac{F M^{2}}{3\left(c_{11}-c_{12}\right)}
$$

where $c_{11}$ and $c_{12}$ are the elastic constants,

$$
F=\frac{3 \pi}{2 \epsilon^{4}}\left[\left(1-\epsilon^{2}\right)\left(3+2 \epsilon^{2}\right)-\frac{3}{\epsilon}\left(1-\epsilon^{2}\right)^{\frac{1}{2}} \arcsin \epsilon\right]
$$

and the three axes of the ellipsoid are related by

$$
a=b=\frac{c}{\left(1-\epsilon^{2}\right)^{\frac{1}{2}}}
$$

[^274]
# 5i. Electrical Power Practices 

K. A. FEGLEY and C. n. Weygandt<br>University of Pennsylvania

5i-1. National Electrical Code. The purpose of the National Electrical Code is the safeguarding of persons and of buildings and their contents from electrical hazards arising from the use of electricity. It deals with the installation of electrical wiring and apparatus installed in and around public and private buildings and other premises. The provisions of the code constitute a minimum standard and while adherence to the code will result in a safe installation, it will not necessarily yield a well-designed or efficient system. Many governmental bodies exercising legal jurisdiction over electrical installations have adopted the code as their standard. In some localities local ordinances conflict with the code, so that adherence to the code does not always constitute a legal installation.

The National Electrical Code is revised periodically by the National Fire Protection Association, ${ }^{1}$ an organization whose purpose is fire prevention. ${ }^{*}$ The revised code is submitted to the American Standards Association (see Sec. 5i-2) for approval. The code is also adopted by and published by the National Board of Fire Underwriters. ${ }^{2}$

National Board of Fire Underwriters. ${ }^{1}$ Membership in this organization is limited to fire-insurance companies. It compiles fire-insurance and fire-loss data and establishes standards for fire-protection apparatus and apparatus that may cause fire damage if improperly designed.

Underwriters' Laboratories, Inc. ${ }^{3}$ - This organization sets standards that are consistent with the National Electrical Code for a large number of electrical products. Manufacturers may submit their products to Underwriters' Laboratories for test. Those products which comply with the standard are listed in the List of Inspected Electrical Equipment, a publication of Underwriters' Laboratories. Manufacturers may elect to participate in the label service furnished by the laboratories. In this case, a product that complies with the standards is checked through factory inspections and laboratory tests. The manufacturer may attach an Underwriters' Laboratories label to the approved product.

5i-2. Electrical-apparatus Standards. NEMA Standards. NEMA, the National Electrical Manufacturers Association, has established voluntary standards that are generally used in the electrical industry. They are designed to promote production economies and assist the users in the proper selection of motors and generators. They set standards of nomenclature, construction, dimensions, operating characteristics, rating, and testing. ${ }^{4}$

[^275]AIEE Standards. AIEE standards are established by the American Institute of Electrical Engineers and deal with standards of temperature rise, classification of insulating materials, rating methods, and test codes. ${ }^{1}$

ASA Standards. ASA.standards are established by the American Standards Association which represents manufacturers, consumers, and others. An American standard implies a consensus of those substantially concerned with its scope. Although the existence of such a standard does not preclude the manufacture of machines that do not conform to ASA standards, most manufacturers adhere to them. ASA defines standards of nomenclature, composition, construction, tolerance, operating characteristics, rating, and testing. ${ }^{2}$

5i-3. A-C and D-C Motors and Generators. Principles of Motor Operation. In an electric motor, electrical energy is converted into mechanical energy. This electromechanical energy conversion is possible because a mechanical force is exerted on a current-carrying conductor lying in a magnetic field.
$D-C$ Motors. A steady-magnetic field is obtained by applying a d-c voltage to the coil of wire wound about the stator-pole structure. The rotor-winding conductors


Fig. 5i-1. Per cent full-load horsepower typical characteristic curves for d-c motors.
are connected to copper segments that make up the commutator. Carbon or copper brushes make sliding contact with the commutator and supply the connection between the external electrical source and the rotor winding. The current-carrying rotor conductors lie in the magnetic field set up by the currents in the stator winding and a force is exerted that tends to turn the rotor.
shunt-wound, constant speed: The stator winding and the rotor winding are placed in parallel. The stator winding consists of a large number of turns of smallsized wire. The current required by the stator winding is small in comparison with the rated current of the rotor winding. This motor is designed to operate at an almost constant speed (Fig. 5i-1).
shunt-wound, adjustable speed: This motor is similar to the shunt-wound, con-stant-speed motor, except that the current in the stator winding may be varied over a relatively wide range to obtain speed control. In fractional-horsepower motors speed control is obtained by varying the armature circuit resistance.
series-wound, varying speed: The stator winding and the rotor winding are placed in series. The stator winding consists of a small number of turns of largesized wire. Since the current in the stator winding increases with an increased motor load, the air-gap flux and motor speed vary with load (Fig. 5i-1).
${ }^{1}$ AIEE standards may be obtained from the American Institute of Electrical Engineers, 33 West 39th St., New York.
${ }^{2}$ For ASA standards, address requests to the American Standards Association, Inc., 70 East 45th St., New York.
compound-wound, constant speed: The compound-wound motor has two stator windings, one in parallel with the rotor winding and the second in series with the rotor winding. Usually the ampere-turns of the shunt winding greatly exceed those of the series winding, and hence the characteristics (Fig. 5i-1) of this motor are similar to those of the shunt-wound motor.

Polyphase A-C Induction Motor. A polyphase a-c voltage is applied to the stator windings. The_current in the stator windings sets up a magnetic field in the air gap


Fig. 5i-2. Typical characteristic curves for squirrel-cage induction motors.


PERCENT SYNCHRONOUS SPEED
Fig. 5i-3. Typical characteristic curves for the wound-rotor induction motor.
between the stator and rotor. The magnetic field in the air gap rotates around the air-gap periphery at a speed $n_{s}$ given by the equation

$$
n_{s}=\frac{120 \nu}{p}
$$

where $n_{s}=$ synchronous speed
$\nu=$ frequency, cps, of the applied voltage
$p=$ number of poles for which stator is wound
The rotor rotates at a lower speed than the revolving magnetic field in the air gap. The rotor conductors are linked, therefore, by a varying magnetic field and a voltage is induced in the rotor conductors. The rotor circuit is either short-circuited or closed through resistors. Since the rotor conductors carry a current and lie in the field of flux set up by the stator-winding currents, a force is exerted that tends to turn the rotor.
squirrel-cage rotor: Uninsulated copper bars set in slots cut in the magnetic iron rotor laminations form the rotor winding. These bars are short-circuited by copper end rings. In some designs the rotor bars are cast and are not copper. NEMA has established many standards for induction-motor design. Figure $5 \mathrm{i}-2$ shows torquespeed curves for the most used squirrel-cage motors, NEMA designs $B, C$, and $D$. The squirrel-cage induction motor operates at an almost constant speed. It generally has the lowest first cost and lowest maintenance costs of all motors.
wound rotor: The rotor winding is a distributed polyphase winding similar to the stator winding. The ends of the winding are connected to slip rings. Brushes make sliding contact with the slip rings and form the connection between the rotor winding and the external rotor resistance. Torque-speed curves for a typical wound-rotor induction motor are shown in Fig. 5i-3. As the resistance in the rotor circuit is increased, the full-load speed decreases, as does the speed at which maximum torque

## ELECTRICITY AND MAGNETISM

occurs. The speed control obtained by inserting rotor resistance is at the expense of reduced motor efficiency. Inserting additional resistance in the rotor circuit to start the motor reduces the starting current and makes it possible to obtain maximum torque at motor standstill (see curve $R_{4}$ of Fig. 5i-3).

Synchronous Motor. The synchronous motor has a polyphase a-c excited stator winding and a d-c excited rotor winding. A revolving magnetic field is set up in the air gap by the currents in the stator windings. A steady magnetic field is set up by the d-c current in the rotor winding. If the rotor is rotating at the same speed as the rotating field due to the stator currents, a force will act to keep the two magnetic fields lined up. If the rotor field and the stator field are not rotating at the same speed, the mechanical force will act first in one direction and then in the opposite direction, so that the net force will be zero. There is a net force exerted at one speed only, and so the synchronous motor must have an auxiliary means for starting. Usually a squirrel-cage winding is placed on the rotor and the motor started as a polyphase induction motor. Most synchronous motors have noncylindrical rotors


PERCENT SYNCHRONOUS SPEED
Fig. 5i-4. Typical torque-speed curve for a synchronous motor.


Fig. 5i-5. Typical torque curve for a splitphase motor.
and are called salient-pole machines. A typical torque-speed curve for a synchronous motor is shown in Fig. 5i-4. At speeds below synchronous speed, the torque developed is due to induction-motor action. At approximately 95 per cent of synchronous speed the motor will "pull in" to synchronism. After the motor is synchronized, it will continue to run at synchronous speed if the load torque does not exceed the "pull-out torque." Polyphase synchronous motors are not usually used in sizes below 20 hp . Their first cost is high, and for most constant-speed applications, the almost constant speed of the induction motor is satisfactory. For rating above 50 hp , there may be an economic advantage in using synchronous machines since their efficiency is higher than similarly rated induction motors, and they can be used for power-factor correction.

Single-phase A-C Induction Motor. If a single-phase voltage is applied to one phase winding on the stator of a polyphase motor, the motor will not start since there is no revolving field. If the motor is already running, however, single-phase excitation is sufficient to keep it running. For the single-phase motor, therefore, it is necessary to have some auxiliary means for starting the motor.

SPLIt-phase: An auxiliary stator winding is placed in electrical space quadrature with the main winding. This auxiliary winding has a different resistance to reactance ratio from the main winding, so that the currents in the two windings are not in phase. Since the windings are not in space phase and the currents in the windings are not in time phase, a component of the air-gap magnetic field will rotate even when the rotor
is stationary, and starting torque is provided. To prevent overheating, the auxiliary winding is disconnected by a centrifugal switch or other means, after the motor is started. Figure 5i-5 shows a typical torque-speed curve for a split-phase motor.
capacitor-start: As in the split-phase motor, an auxiliary winding is placed in quadrature with the main stator winding. A capacitor is placed in the external


Fig. 5i-6. Typical torque-speed curve for a capacitor-start motor.


Fig. 5i-7. Typical torque-speed curve for a permanent-split-capacitor motor.
circuit of the auxiliary winding. The current in the auxiliary winding leads the applied voltage. The phase difference between the currents in the main and auxiliary windings can be made approximately 90 deg . The component of the magnetic field that rotates is larger than in the split-phase motor and hence the starting torque is larger. The auxiliary winding is disconnected after the motor has come up to speed.
permanent-split-capacitor:The auxiliary winding circuit is similar to the auxiliary winding circuit in the capacitorstart motor. The auxiliary winding is not, however, disconnected after the motor has come up to speed. A comparison of Figs. 5i-6 and 5i-7 shows that the permanent-split-capacitor motor has a lower starting torque and lower maximum torque than the capacitor-start motor.
shaded-pole: A permanently shortcircuited auxiliary winding is placed at an electrical angle of 30 to 60 deg from the main winding. This auxiliary winding is called a "shading coil" and is


Fra. 5i-8. Typical torque-speed curve for a shaded-pole motor. usually an uninsulated copper strap. The voltage induced in the "shading coil" produces a current that is not in phase with the current in the main winding, so that a revolving field, and hence a starting torque (Fig. 5i-8), is produced.
repulsion-start: This motor operates on the repulsion-motor principle while accelerating. After it has approached normal speed, a centrifugal switch shortcircuits the rotor commutator segments. This rotor circuit is then similar to a squirrel-cage rotor and the motor operates as an induction motor. The repulsionstart motor is used in applications where a high starting torque is needed. In recent years, the less expensive capacitor-start motor has largely replaced the repulsion-start motor.

Synchronous Reluctance Motor. If the d-c rotor winding of a salient-pole synchronous machine is disconnected from the d-c supply lines, the motor will continue to run if the load connected to the shaft of the machine is small. A mechanical force tends to bring the salient pole structure into line with the magnetic field. The magnetic field in the air gap is revolving and the pole structure follows. This is the principle of operation of the reluctance motor. The reluctance motor therefore requires no d-c excitation. Usually the reluctance motor is a single-phase a-c machine with the revolving field set up by one of the methods used in the single-phase induction motor described above. The auxiliary winding in the single-phase reluctance motor cannot be disconnected after the motor has come up to speed. The motor operates as an induction motor until it has reached synchronous speed (Fig. 5i-9) and then operates on the reluctance principle.

Series Universal. The universal motor is a series-wound commutator machine and so is similar to the d-c series-wound machine. It is designed to operate satisfactorily


PERCENT SYNCHRONOUS SPEED
Fra. 5i-9. Typical torque-speed curve for a synchronous reluctance motor.


Fig. 5i-10. Typical torque-speed curve for a series universal motor.
with either a-c or d-c excitation. A variable resistance is frequently placed in series with the windings to secure speed control (Fig. 5i-10). Universal motors are employed in fractional-horsepower ratings where high speeds and/or variable speeds are needed. Applications include electric hand drills, vacuum cleaners, and food mixers.

Repulsion Motor. This motor has the commutator and distributed rotor winding of a d-c motor. The machine is a-c excited, however, and no direct electrical connection is made between the electrical source and the rotor circuit. An a-c voltage is applied to the stator winding, setting up an alternating field in the air gap. This field links the rotor winding and induces a voltage which causes a current in the rotor circuit. The brushes which make sliding contact with the commutator are shortcircuited together. The operating characteristics of this motor are similar to those of the universal motor.
bi-4. Motor Selection. The following factors should be considered in selecting a motor:

1. Power supply available. The motor must be selected to match the power supply if the expense of purchasing a motor-generator set or other conversion equipment is to be avoided. Determine these characteristics of the power supply: (a) a-c or d-c, (b) voltage, (c) number of phases if it is an a-c supply, and (d) frequency if it is an a-c supply. Tables $5 \mathrm{i}-1$ and $5 \mathrm{i}-2$ indicate what power supply is required for motors.
2. Horsepower required. One of the following methods may be used to determine the horsepower required.
$a$. If the required torque is known, the horsepower required may be found by applying the equation

$$
\mathrm{hp}=\frac{\text { torque }(\mathrm{ft}-\mathrm{lb}) \times \text { speed of shaft }(\mathrm{rpm})}{5,250}
$$

b. Connect a larger motor than the one needed to the machine to be driven. Use a wattmeter to determine the power input to the driving motor. The required horsepower is then

$$
\mathrm{hp}=\frac{(\text { wattmeter reading }) \times(\text { approx efficiency of driving motor })}{746}
$$

c. Ask the manufacturer of the machine to be driven what horsepower is required.

If the driven load imposes intermittent overloads on the driving motor, the motor must be able to handle these overloads.


Fig. 5i-11. Approximate relative cost of several types of motors.


Fig. 5i-12. Approximate relative cost of design $B$ induction motors at several speeds.
3. Torque requirements. The torque required to start and accelerate the load may exceed the torque needed to drive the load. This high starting torque is required for compressors, reciprocating pumps, and conveyors. In other applications, such as fans, centrifugal pumps, and many machine tools, the torque required at full load exceeds the starting torque. If the load torque fluctuates, the maximum torque the motor can develop must exceed the maximum load torque. Refer to Tables 5i-1 and 5i-2.
4. Speed requirements. Determine whether a constant-speed or adjustable-speed motor is needed. If an adjustable speed is required, what speed range is needed? If a constant speed, what is its value? Is it necessary to reverse the motor?

For a given horsepower, the size of the motor decreases as the speed is increased. The cost of the motor (Figs. 5i-11 and 5i-12) is largely dependent upon the size, and hence a saving usually results from using a high-speed motor. Above $3,600 \mathrm{rpm}_{\text {; }}$. however, the costs may increase with speed. A belt connection between the motoz and load may permit the use of a high-speed motor to drive a load at low speed. A cost and space saving may be effected by using a motor with a built-in gearbox.
5. Selection of motor enclosure. The following motor enclosures are available: (a) open; (b) dripproof; (c) splashproof; (d) totally enclosed nonventilated; (e) totally enclosed, fan-cooled; ( $f$ ) explosionproof; and ( $g$ ) waterproof. The open motor has the lowest cost and is used where unusual surroundings do not require a more expensive enclosure.
6. Starting current. The large starting currents of some motors cause light flicker.

For this reason, many power companies set limits on the allowable starting current. See Table 5i-2 for the approximate starting current of integral-horsepower motors.
7. Capacity of power line. Refer to Table $5 \mathrm{i}-3$ for the normal full-load motor current. Table 5i-4 gives the current-carrying capacity of conductors.

Standard Ratings. Horsepower: The following horsepower ratings are standard:

| 0.001 | $\frac{1}{20}$ | 1 | 15 | 100 |
| :--- | :---: | :---: | :---: | :---: |
| 0.0015 | $\frac{1}{20}$ | $1 \frac{1}{2}$ | 20 | 125 |
| 0.002 | $\frac{1}{8}$ | 2 | 25 | 150 |
| 0.003 | $\frac{1}{6}$ | 3 | 30 | 200 |
| 0.005 | $\frac{1}{4}$ | 5 | 40 |  |
| 0.0075 | $\frac{1}{3}$ | $7 \frac{1}{2}$ | 50 |  |
| 0.01 |  | 10 |  |  |

Not all the ratings listed are standard for all classes of motors.
Tables 5i-1 and 5i-2 indicate the horsepower ratings available for the several classes of motors.
frequency and voltage: Standard frequencies in the United States are 25, 50, and $60 \mathrm{cps} ; 400 \mathrm{cps}$ is also a much used frequency. Standard voltages are:

1. For direct-current and single-phase alternating current, 115 and 230 volts.
2. For polyphase alternating current, 110, 208 (for 60 cps only), 220, 440, 550, 2,300, $4,000,4,600$, and 6,600 volts.
SPEED: Standard speeds are:
3. For constant-speed d-c motors.

Fraetional-horsepower: 850, 1,140, 1,725, and $3,450 \mathrm{rpm}$
Integral-horsepower: $100,150,200,250,300,350,400,450,500,550,575,690,850$,
$1,150,1,750$, and $3,500 \mathrm{rpm}$
2. For fractional-horsepower induction motors.

All motors except shaded-pole and permanent-split capacitor:
At $60 \mathrm{cps}, 850,1,140,1,725$, and $3,450 \mathrm{rpm}$
At $50 \mathrm{eps}, 950,1,425$, and $2,850 \mathrm{rpm}$
At $25 \mathrm{cps}, 1,425 \mathrm{rpm}$
Shaded-pole motor:
At $60 \mathrm{cps}, 800,1,050,1,550$, and $3,000 \mathrm{rpm}$
At $50 \mathrm{cps}, 875,1,300$, and $2,500 \mathrm{rpm}$
At $25 \mathrm{cps}, 1,300 \mathrm{rpm}$
Permanent-split capacitor motor:
At $60 \mathrm{cps}, 825,1,075,1,625$, and $\mathbf{3 , 2 5 0} \mathrm{rpm}$
At $50 \mathrm{cps}, 900,1,350$, and 2,700 rpm
At $25 \mathrm{cps}, 1,350 \mathrm{rpm}$
3. For integral-horsepower induction motors. (The speeds given below are rated synchronous speeds. The motors operate at a speed slightly below synchronous speed.)
Single-phase motors:
At $60 \mathrm{cps}, 900,1,200,1,800$, and $3,600 \mathrm{rpm}$
At $50 \mathrm{cps}, 750,1,000,1,500$, and $3,000 \mathrm{rpm}$
At $25 \mathrm{cps}, 750$ and $1,500 \mathrm{rpm}$
Polyphase motors:
At $60 \cdot \mathrm{cps}, 450,514,600,720,900,1,200,1,800$, and $3,600 \mathrm{rpm}$
At $50 \mathrm{cps}, 750,1,000,1,500$, and $3,000 \mathrm{rpm}$
At $25 \mathrm{cps}, 500$ and 750 rpm
The speeds listed do not apply to all horsepower ratinge.

ELECTRICAL POWER PRACTICES
Table 5i-1. Fractional-horsepower Motor Characteristics

| Type of motor | $\underset{\text { range }}{\mathrm{Hp}}$ | Speed data |  | Speed control | Rated voltage | $\begin{gathered} \text { Torque } \\ \text { (\% of full load) } \end{gathered}$ |  | Reversible | Radio interference | Approx price comparison, \% | Application |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { Rated speed } \\ & \text { (for 60 cps } \\ & \text { a-c or d-c } \\ & \text { only) } \\ & \hline \end{aligned}$ | Speed characteristics |  |  | Starting | Max |  |  |  |  |
| A-C: |  |  |  |  |  |  |  |  |  |  |  |
| Single phase: Shaded pole | 0.001-23 | $\begin{gathered} 800,1,050, \\ 1,550,3,000 \end{gathered}$ | Almost constant | None | 115 | 30-50 | $\begin{gathered} \text { Less than } \\ 175 \end{gathered}$ | No | No | $\ldots$ | Used for low-starting-torque loads. Typical applications include desk fans, phonograph turntables, and |
| Split phase..... | $\frac{1}{20}-1$ | $\begin{gathered} 850,1,140 \\ 1,725,3,450 \end{gathered}$ | Almost constant | None | 115, 230 | 90-275 | 185-300 | Yes, change connections | No | 100 | toys <br> For applications with low- or medium-starting-torque loads, such as washing machines, light machine tools, oil burners, ironers, |
| Capacitor start. | 1-7 | $\begin{gathered} 850,1,140 \\ 1,725,3,450 \end{gathered}$ | Almost constant | None | 115, 230 | 250-425 | 225-500 | Yes, change connections | No | 125 | A high-starting-torque motor, used for refrigerators, air conditioning conveyors, compressors |
| Permanent-split capacitor | $\frac{3}{20}-\frac{3}{2}$ | $\begin{gathered} 825,1,075, \\ 1,625,3,250 \end{gathered}$ | Almost constant | None | 115, 230 | 50-100 | 150-225 | Yes, change connections | No | 140 | A medium-starting-torque motor Used for fans blowers, tool grinders |
| : Synchronous. | 0.001- $\frac{1}{3}$ | $\begin{aligned} & 900,1,200, \\ & 1,800,3,600 \\ & \text { and many } \\ & \text { speeds below } \\ & 900 \end{aligned}$ | Absolutely constant | None | 115 | 50-250 | 175-225 | Yes, change connections | No | 400 | For applications where a constant speed is needed, such as timing devices, indicating instruments, testing equipment for speedometers, teleprinters, facsimile printers |
| Polyphase, squirrel cage | 1-7 | $\begin{gathered} 850,1,140 \\ 1,725,3,450 \end{gathered}$ | Almost constant | None | $\begin{gathered} 110,208, \\ 220, \\ 440 \end{gathered}$ | 200-350 | 200-350 | Yes, change connections | No | 175 | For practically all applications where a polyphase supply is avail able. Characteristics are simila to those of the capacitor-star |
| D-C, shunt wound. $\cdot$ | ${ }_{2}^{12}-\frac{7}{2}$ | $\begin{gathered} 850,1,140, \\ 1,725,3,450 \end{gathered}$ | Almost constant <br> Varies with load | Field resistance Armature resist- | 115, 230 | $\begin{aligned} & \text { Above } \\ & 400 \% \end{aligned}$ |  | Yes, change connections | Yes | 200 | For practically all applications where a d-c supply is available. May be used where an adjustable speed is required |
| A-C or d-c, series universal | $x$ 名 | 1,500-12,000 | Varies with load | ance Resistance | 115, 230 | $\begin{gathered} \text { Above } \\ 400 \% \end{gathered}$ |  | Yes, change connec tions | Yes | 150 | Used where a high-speed motor is required, such as vacuum clean ers, electric typewriters, electric drills. Speed may be adjusted, making it useful for sewing machines and food mixers |

Table 5i-2. Integral-horsepower

| Type of motor | $\begin{gathered} \text { Hp } \\ \text { range } \end{gathered}$ | Rated speed | Speed characteristic | Full load speed, \% of synchronous speed | Speed control | Rated voltage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A-C: |  |  |  |  |  |  |
| Polyphase induction motors: NEMA design $A$ $\qquad$ | $\frac{1}{2}-200$ | $\begin{aligned} & 450,514,600 \text {, } \\ & 720,900, \\ & 1,200,1,800 \text {, } \\ & 3,600 \end{aligned}$ | Almost constant | 95-97 | None | $\begin{aligned} & 208,220 \\ & 440,550, \\ & 2,300 \end{aligned}$ |
| NEMA design $B$. | $\frac{1}{2}-200$ | $\begin{aligned} & 450,514,600, \\ & 720,900, \\ & 1,200,1,800, \\ & 3,600 \end{aligned}$ | Almost constant | 95-97 | None | $\begin{aligned} & 208,220 \\ & 440,550 \\ & 2,300 \end{aligned}$ |
| NEMA design C... | 3-150 | $\begin{aligned} & 600,720,900, \\ & 1,200,1,800, \\ & 3,600 \end{aligned}$ | Almost constant | 95-97 | None | $\begin{gathered} 208,220 \\ 440,550 \\ 2,300 \end{gathered}$ |
| NEMA design D..... | $\frac{1}{2}-125$ | $\begin{aligned} & 720,900, \\ & 1,200,1,800, \\ & 3,600 \end{aligned}$ | Almost constant | 87-95 | None | $\begin{array}{r} 208,220 \\ 440,550 \end{array}$ |
| Wound-rotor. . | $\frac{1}{2}-200$ | $\begin{aligned} & 450,514,600, \\ & 720,900, \\ & 1,200,1,800, \\ & 3,600 \end{aligned}$ | Adjustable | Adjustable | Rotor-cirçuit resistance | $\begin{aligned} & 208,220, \\ & 440,550, \\ & 2,300 \end{aligned}$ |
| Polyphase synchronous.... | 20-20,000 | 100-3,600 | Absolutely constant | 100 | None | $\begin{aligned} & 208,220 \\ & 440,550 \\ & 2,300 \end{aligned}$ |
| D-C: |  |  |  |  |  |  |
| Shunt-wound. | $\frac{1}{2}-200$ | 100-3,600 | Adjustable | ........... | Shunt-field resistance or armature voltage | $\begin{aligned} & 115,230, \\ & 550 \end{aligned}$ |
| Compound wound... | $\frac{1}{2}-200$ | 100-3,600 | Adjustable | ........... | Shunt-field resistance or armature voltage | $\begin{aligned} & 115,230, \\ & 550 \end{aligned}$ |
| Series-wound. | $\frac{1}{2}-200$ | 100-3,600 | Adjustable, varies with load | ............ | Armature voltage | $\begin{aligned} & 115,230, \\ & 550 \end{aligned}$ |

5i-5. Motor Control and Protection. Starting D-C Motors. Small d-c motors may be started by directly connecting them to the supply line. For motors rated 2 hp or above, resistance should be inserted in series with the armature winding to limit the current. As the motor accelerates, the armature-circuit starting resistance is shorted out in a series of steps. In order to prevent overspeeding of the motor, full line voltage should be applied to the shunt-field winding of shunt-wound and compound-wound motors during starting.

Starting A-C Motors. Fractional-horsepower motors, both single-phase and polyphase, are usually started by applying full line voltage to their terminals.

Polyphase Induction Motors. squirrel-cage: Many polyphase induction motors are started with full line voltage. For many other applications, however, the large

Motor Characteristics

| Torque, \% of full load |  | Starting current, \% of full load current | Reversible | Radio interference | Approx price comparison, \% | Application |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Starting | Max |  |  |  |  |  |
| 105-275 | 200-300 | 500-100 | Yes | No | 100 | Produces average starting torque and high max torque. The starting current is very high, however, so that this machine is becoming obsolete, being superseded by design $B$ motors |
| 105-275 | 200-300 | 500-550 | Yes | No | 100 | Developsaverage starting torque and high max torque at relatively low starting current. Applications include fans, pumps, compressors, conveyors, machine tools. This is the most-used integral-horsepower motor |
| 200-225 | 190-225 | 500-550 | Yes | No | 105 | Develops high starting torque at low starting current. Used for hard-to-start loads such as conveyors, compressors, escalators, reciprocating pumps, and crushers |
| 250-315 | Same as starting torque | 300-800 | Yes | No | 110 | Has a high starting torque. Max torque occurs at rotor standstill. Used for high-inertia loads such as hoists, elevators, punch presses, and centrifuges. |
| 100-300 | 200-300 | 150-1,000 depending on rotorcircuit resistance | Yes | Slight | 225 | Develops a high starting torque at low starting current when the external rotor resistance is properly adjusted. Speed can be adjusted by means of rotorcircuit resistance. Used for blowers, fans, pumps, conveyors, and crushers |
| 20-200 | 140-200 | 300-1,000 | Yes | Slight | 350 | Used on constant-speed applications and for powerfactor correction. Polyphase synchronous motors are seldom used in sizes below 50 hp |
| High, should be limited to 200 by starting resistance | Should be limited to 200 | Should be limited to 200 by starting resistance | Yes | Yes | 275 | Used for drives where the required starting torque is not high. A constant-speed or an adjustable-speed motor may be used. Applications include wood-and metalworking machines, elevators, blowers, centrifugal pumps, and conveyors |
| High, should be limited to 300 by starting resistance | Should be limited to 300 | Should be limited to 200 by starting resistance | Yes | Yes | 275 | Used for machines requiring a high starting torque and fairly constant speed. Pulsating loads such as shears, bending rolls, plunger pumps, conveyors, and crushers frequently have compound-wound d-c motors as drives |
| Very high, should be limited to 350 by starting resistance | Should be limited to 350 | Should be limited to 200 by starting resistance | Yes | Yes | 275 | Used as drives where very high starting torque is required and the load is always coupled to the motor. Applications include cranes, hoists, gates, bridges, railways, and streetcars |

starting current required for a full-voltage start is prohibitive, and a starting compensator must be employed. This compensator may be (1) resistance inserted in series with each stator phase or (2) an autotransformer connected between the supply lines and the motor. The resistance usually has a lower first cost but it reduces the starting torque and line current in the same ratio while with the autotransformer the per cent decrease in line current at motor standstill is greater than the per cent decrease in starting torque. The autotransformer losses are smaller than the losses in the starting resistance.
wound-rotor: Starting compensators are sometimes used in the stator circuits of wound-rotor induction motors. In addition, the resistance in the rotor circuit is usually increased during starting. This increase in rotor-circuit resistance decreases

Table 5i-3. Average Full-load Currents of Motors
(From 1953 National Electrical Code; values of full-load current are approximate and typical only for motors running at usual speeds; low-speed motors may have larger full-load currents)

| Motor rating, hp | Full-load current, amp |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{D}-\mathrm{C} \\ \text { motors } \end{gathered}$ |  | Single-phases motors |  | Three-phase induction motors, squirrel-cage and wound rotor |  |  |  |
|  | $\begin{gathered} 115 \\ \text { volts } \end{gathered}$ | 230 <br> volts | $\begin{gathered} 115 \\ \text { volts } \end{gathered}$ | $\begin{gathered} 230 \\ \text { volts } \end{gathered}$ | $\begin{gathered} 110 \\ \text { volta } \end{gathered}$ | $\begin{gathered} 220 \\ \text { volts } \end{gathered}$ | $\begin{gathered} 440 \\ \text { volts } \end{gathered}$ | $\begin{gathered} 550 \\ \text { volts } \end{gathered}$ |
| $\frac{1}{6}$ |  |  | 3.2 | 1.6 |  |  |  |  |
|  |  |  | 4.6 | 2.3 |  |  |  |  |
| $\frac{1}{2}$ | 4.6 | 2.3 | 7.4 | 3.7 | 4 | 2 | 1 | 0.8 |
| $\frac{3}{4}$ | 6.6 | 3.3 | 10.2 | 5.1 | 5.6 | 2.8 | 1.4 | 1.1 |
| 1 | 8.6 | 4.3 | 13 | 6.5 | 7 | 3.5 | 1.8 | 1.4 |
| $1 \frac{1}{2}$ | 12.6 | 6.3 | 18.4 | 9.2 | 10 | 5 | 2.5 | 2.0 |
| 2 | 16.4 | 8.2 | 24 | 12 | 13 | 6.5 | 3.3 | 2.6 |
| 3 | 24 | 12 | 34 | 17 | .... | 9 | 4.5 | 4 |
| 5 | 40 | 20 | 56 | 28 | $\ldots$ | 15 | 7.5 | 6 |
| $7 \frac{1}{2}$ | 58 | 29 | 80 | 40 |  | 22 | 11 | 9 |
| 10 | 76 | 38 | 100 | 50 | $\ldots$ | 27 | 14 | 11 |
| 15 | 112 | 56 | . ... . |  | $\ldots$ | 40 | 20 | 16 |
| 20 | 148 | 74 |  | $\ldots$ |  | 52 | 26 | 21 |
| 25 | 184 | 92 |  |  |  | 64 | 32 | 26 |

the starting current, and if not too much resistance is added, it also increases the starting torque (see Fig. 5i-3).

Polyphase Synchronous Motors. Since synchronous motors require both a-c and d-c supplies, the starting procedure is more complex than for the induction motor. Automatic controls that permit "push-button" starting are usually employed.

Motor Controllers. A motor controller is any device used to start and stop a motor. It may also incorporate overload protection, short-circuit protection, and a device to regulate the motor speed.

Manual Starters. The manual starter for small motors may be nothing more than a snap-action switch. Starters for large induction motors may contain a resistance or autotransformer compensator. Those designed for large d-c motors will have a resistance that is inserted into the armature circuit.

Magnetic Starters. Magnetic starters perform the same function as manual starters but have the advantage of operating automatically after the operator pushes the "start" or "stop" button which can be remotely located.

Combination Starters. Manual and magnetic starters usually include overload protection. A combination starter has short-circuit protection in addition to overload protection. It may be either a magnetic or manual starter.

Motor and Motor-circuit Overload Protection. The National Electrical Code sets minimum standards for the protection of motors and motor circuits against overloads. This protection is achieved by the use of thermal cutouts, circuit breakers, or fuses.

The thermal cutout may consist of a heating coil surrounding a bimetallic strip

Table 5i-4. Allowable Current-carrying Capacities of Insulated Conductors*
(In amperes; based on room temperature of $30^{\circ} \mathrm{C}, 86^{\circ} \mathrm{F}$ )

| Wire size, Awg | Type R, RW, RUW, T, TW |  | Type RH |  | $\begin{gathered} \text { Type TA, } \\ \text { V, AVB } \end{gathered}$ |  | Type AVA, AVL |  | $\begin{aligned} & \text { Type AI, } \\ & \because \text { AIA } \end{aligned}$ |  | $\begin{gathered} \text { Type A, } \\ \text { AA } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $a$ | $b$ | $a$ | $b$ | $a$ | $b$ | $a$ | $b$ | $a$ | $b$ | $a$ | $b$ |
| 14 | 15 | 20 | 15 | 20 | 25 | 30 | 30 | 40 | 30 | 40 | 30 | 45 |
| 12 | 20 | 25 | 20 | 25 | 30 | 40 | 35 | 50 | 40 | 50 | 40 | 55 |
| 10 | 30 | 40 | 30 | 40 | 40 | 55 | 45 | 65 | 50 | 70 | 55 | 75 |
| 8 | 40 | 55 | 45 | 65 | 50 | 70 | 60 | 85 | 65 | 90 | 70 | 100 |
| 6 | 55 | 80 | 65 | 95 | 70 | 100 | 80 | 120 | 85 | 125 | 95 | 100 |
| 4 | 70 | 105 | 85 | 125 | 90 | 135 | 105 | 160 | 115 | 170 | 120 | 130 |
| 3 | 80 | 120 | 100 | 145 | 105 | 155 | 120 | 180 | 130 | 195 | 145 | 150 |
| 2. | 95 | 140 | 115 | 170 | 120 | 180 | 135 | 210 | 145 | 225 | 165 | 175 |
| 1 | 110 | 165 | 130 | 195 | 140 | 210 | 160 | 245 | 170 | 265 | 190 | 205 |
| 0 | 125 | 195 | 150 | 230 | 155 | 245 | 190 | 285 | 200 | 305 | 225 | 325 |
| 00 | 145 | 225 | 175 | 265 | 185 | 285 | 215 | 330 | 230 | 355 | 250 | 370 |
| 000 | 165 | 260 | 200 | 310 | 210 | 330 | 245 | 385 | 265 | 410 | 285 | 430 |
| 0000 | 195 | 300 | 230 | 360 | 235 | 385 | 275 | 445 | 310 | 475 | 340 | 510 |

Special Provisions
General use.
Wet locations
Dry locations only (not general use)............... V, AVA, AVB, A, AA, AI, AIA
Switchboard wiring only.
Type Insulation

For aluminum conductors, the allowable current-carrying capacities shall be taken as 84 per cent of those given in the table for the respective sizes of copper conductors with the same kind of insulation. Columns $a$. Not more than three conductors in raceway or cable.
Columns $b$. Single conductor in free air.

* See Table 5 g - $\mathbf{4}$ for additional data and explanation of insulation-type letters.
which bends on heating. The heater coil carries the line current. If the current is too large, the heat from the heater coil causes the bimetallic to bend and open the circuit. Another type of thermal cutout utilizes a fusible link.

Circuit breakers of the thermal-trip or magnetic-trip type may be used both for protection and as a switch.

Renewable or nonrenewable cartridge fuses, plug- or S-type fuses are much used for motor and motor-circuit protection. The plug fuse has an Edison base. The S-type fuse can be used in an ordinary plug-fuse socket with an adapter added. The holders for cartridge-type and S-type fuses prevent the insertion of fuses of the wrong rating.
For a motor with a continuous rating of more than 1 hp , an overcurrent device set to not more than 125 per cent of the motor full-load current should be used for protection. The conductors supplying this motor should have a current-carrying capacity of not less than 125 per cent of full-load motor current. Tables 5i-3 and 5i-4 give the full-load current of motors and the current-carrying capacity of conductors. Refer to the National Electrical Code for the rating of protective devices to be used with fractional-horsepower motors and motors with short-time ratings.

5i-6. Principles of Generator Operation. Electrical energy is supplied to a motor and mechanical energy withdrawn. In a generator mechanical energy is supplied and electrical energy withdrawn. This is the essential difference between motor and generator operation.
$D-C$ Generator. The d-c generator is practically identical in construction to the d-c motor. The large majority of d-c generators are compound-wound (see Fig. 5i-13). Cumulative compounding, with the series field and shunt fields aiding, is usual. Shunt-wound generators are suitable for applications where the loading is constant and series-wound generators are used for booster sets and welding. There is less voltage drop with increased load with a separately excited, shunt-wound generator than with a self-excited, shunt-wound generator. The cumulative compound generator can be designed to have an almost constant terminal voltage for the normal range of load currents. The terminal voltage in all but the series generator can be controlled by varying the resistance in the shunt-field circuit.


Fig. 5i-13. D-C generator connections.
A-C Generator. The polyphase a-c generator and the synchronous motor are essentially the same in construction. A cylindrical or salient-pole rotor carries a winding that is d-c excited. This pole structure sets up an air-gap field that induces an a-c voltage in the stator windings as the poles rotate. In the single-phase a-c generator, the stator has a single-phase winding instead of the three space-displaced windings of the three-phase generator. The frequency of the voltage induced in the stator windings for both single-phase and polyphase machines is

$$
\nu=\frac{p n}{120}
$$

where $\nu=$ frequency, cps
$n=$ rotor speed, rpm
$p=$ number of poles
5i-7. Transformers. Principles of Operation. A transformer is an electrical device, without continuously moving parts, which by electromagnetic induction transforms a-c electric energy from one circuit to another circuit at the same frequency, usually with changed values of voltage and current. Transformers usually have two or more insulated windings wrapped about a laminated-iron core. In some cases, however, the iron core is not present, and the coils are linked magnetically through an air path.

The winding connected to the energy source is called the primary winding and the winding from which the energy is withdrawn is called the secondary winding. Highvoltage winding and low-voltage winding are terms used to designate the windings according to their voltage ratings.

Consider the operation of a two-winding transformer when an a-c voltage is applied to the primary winding and the secondary winding is open. Current in the primary winding causes a time-varying flux to be set up in the iron core of the transformer. This time-varying flux will induce a voltage in both the primary and secondary windings of the transformer. The magnitude of the voltage induced in the primary winding is approximately equal to the applied voltage, since the voltage drop due to the winding resistance is small. The induced primary voltage opposes the applied voltage and hence limits the current. The voltage induced in the secondary winding is the same per turn as that induced in the primary, so that the ratio of primary voltage to secondary voltage is the same as the ratio of the number of turns in the


Fig. 5i-14. D-C generator characteristics.
transformer windings. When a load is connected to the secondary winding, a current will flow. The secondary current causes a magnetomotive force that opposes the magnetomotive force of the primary current. In order to have the same net magnetomotive force to set up the same flux in the core of the transformer that was present at no load, it is necessary for the primary current to increase over its no-load value. Except for the small no-load component of current, the ratio of the primary to secondary current is the same as the ratio of the number of secondary turns to the number of primary turns.

Small transformers have an efficiency of perhaps 90 per cent. Large power transformers have efficiencies of over 99 per cent. The losses are due to the resistance of the windings, hysteresis, and eddy currents in the iron core.

Transformer Cooling. The volt-ampere rating of a transformer is determined largely by the allowable temperature rise. Transformers with a rating of 1 kva or less are usually of the dry type. Larger transformers may be oil-immersed with plain or corrugated tank, a tank with radiators, or a tank with water-cooling coils immersed in the oil.

Instrument Transformers. Instrument transformers are classified as (1) voltage or potential transformers and (2) current transformers. Where a-c currents of more
than 100 amp or a-c voltages of more than 500 volts are to be measured, instrument transformers and low-range instruments are usually employed.

Instrument transformers also serve to insulate a high-voltage primary winding from the low-voltage secondary, and thus protect personnel reading the instruments from the danger of high-voltage electric shock.

Two-winding Transformers. As the name implies, these transformers have only two windings. By suitable connection of three single-phase (two-winding) transformers, two three-phase circuits can be tied together.

Polyphase Transformers. A three-phase transformer usually has six insulated windings, three primaries and three secondaries all on the same core structure. It occupies less space and weighs less than three single-phase transformers that have the same total rating.

Autotransformers. A single-phase autotransformer has a single winding. The primary winding and the secondary winding are not electrically insulated but are both part of the same tapped winding. The advantage of the autotransformer is its small physical size, especially when the primary and secondary voltages are nearly the same.

Autotransformers with Continually Variable Tap. A sliding member is provided that makes contact with any turn of the winding, allowing a secondary voltage that is variable in small steps over a wide range of voltages. These devices carry trade names such as Variac and Power-stat.

5i-8. Alternating Current to Direct Current Energy Conversion. To reduce the cost of transmission, electrical energy is usually generated and transmitted as a-c energy rather than d-c energy. The high transmission voltages possible with alternating current allow the use of smaller conductors than could be used with lower transmission voltages. Near the load centers, the voltage is reduced to utilization levels by transformers.

Most electrical energy is utilized as a-c energy. For some applications, however, d-c energy is required. In these cases, it may be necessary to convert from a-c energy to d-c energy. This conversion from alternating to direct current can be made with rotating machines or rectifiers. The commonly used converters are:
A. Rotating machines

1. Motor generator
2. Rotary converter
B. Rectifiers
3. Electronic
a. Thermionic cathode, vacuum diode
b. Thermionic cathode, gas diode
c. Thermionic cathode, gas triode (thyratron)
d. Mercury-arc, with pool cathode (mercury-arc and ignitron)
e. Crystal diode
4. Metallic-plate
a. Selenium
b. Copper oxide
5. Mechanical

Rotating Machines. motor generator: A d-c generator driven by a single-phase or polyphase induction motor or a synchronous motor provides one means of converting a-c energy to d-c energy. One feature of motor-generator sets that is important in some applications is the electrical isulation it gives between the a-c system and the d-c system. Other advantages are the small amount of a-c ripple voltage generated, the ease with which the d-c voltage can be varied, and the small voltage variation with a change in load current. The motor-generator set is, however, relatively expensive in first cost and relatively low in efficiency. It weighs more and requires more floor space than other devices of the same power rating.

Table 5i-5. Transformer Connections
(This table illustrates only a few of many possible connections)

| Type | Connection diagram | Phasor diagram of voltages | Application |
| :---: | :---: | :---: | :---: |
| Single-phase, two-winding, threewire secondary |  | $\left.\right\|^{v_{c b}}$ | This single-phase transformer with center-tapped secondary is used in low-voltage distribution circuits. A secondary voltage of 120 volts to center tap is suitable for lighting circuits and 240 volts between outside lines for electric ranges, etc. |
| Autotransformer |  | $i^{v_{a b}} i^{v_{c d}}$ | Autotransformers may reduce transformer costs in applications where the primary-tosecondary turns ratio is near unity and electrical isulation of the primary and secondary is not required |
| Autotransformer with variable tap |  |  | For ratings of a few watts to several kilowatts, these conveniently provide a continuously variable a-c voltage |
| Delta-delta |  |  | This three-phase connection can be used for three single-phase transformers or a three-phase transformer. It is especially suitable for heavy currents at low voltages and will operate with one winding open |
| Wye-wye |  |  | Usually operated with one or both of the neutrals, $\circ$ o and $o^{\prime}$, grounded. The voltage between lines is $\sqrt{3}$ times the line-to-line voltage |
| Delta-wye |  |  | Commonly used with the neutral grounded at the generator ond of transmission lines and in secondary distribution systems where there are both lighting and three-phase machine loads |
| Scott or T |  |  | For conversion from two-phase to three-phase or vice versa. Turn ratio from ao to $a^{\prime} o^{\prime}$ $=1 / 2 \sqrt{3} \times$ turn ratio for $c b$ to $o^{\prime} b^{\prime}$. Other connections allow conversion from threephase to six- or twelve-phase |

## Table 5i-6. A-C to D-C Application Chart

| Device | $\begin{gathered} \text { Max } \\ \text { current* } \end{gathered}$ | $\begin{gathered} \text { Max } \\ \text { voltage** } \end{gathered}$ | Power range | Application |
| :---: | :---: | :---: | :---: | :---: |
| Rotating machines: Motor-generator set | ma to thousands of amp | A few volts to several thousand volts | A few watts to hundreds of $\mathbf{k w}$ | For most applications, other devices are more economical. Used where a-c and d-c systems must be completely isolated, where very little a-c ripple voltage can be tolerated or where good voltage regulation and control are needed |
| Rotary converter | ma to thousands of amp | A few volts to several thousand volts | A few watts to hundreds of kw | Most used in electric railways. In recent years it has been replaced in many applications by the mercury-arc rectifier. Has higher efficiency than motor generator |
| Rectifiers: Electronic |  |  |  |  |
| Thermionic cathode, vacuum diode | ma to over $5.5 \mathrm{amp} \dagger$ | $\begin{aligned} & \text { To over }, \\ & 200,000 \\ & \text { volts } \end{aligned}$ | Usually only a few watts. Up to several kw | For voltages above 400 volts at currents up to several hundred ma. Where very high voltages are needed, X-ray and electrostatic precipitation |
| Thermionic cathode, gas diode | ma to over $50 \mathrm{amp} \dagger$ | $\begin{gathered} \text { To over } \\ 20,000 \\ \text { volts } \end{gathered}$ | A few watts to several kw | Battery chargers, radio transmitters and receivers, dielectric and induction heaters, etc. For moderate current and voltage requirements |
| Thermionic cathode, gas triode (thyratron) | ma to over $15 \mathrm{amp} \dagger$ | ```To over 10,000 volts``` | A few watts to several kw | Used where a variable d-c voltage is required, such as an electronically controlled d-c motor |
| Mercury arc with pool cathode (mercury arc and ignitron) | Up to thousands of amp | To over 20,000 volts | About 50 kw to over $3,000 \mathrm{kw}$ | Electrochemical plants and electric railways. Not suitable for voltages below 200 volts. Voltage control is possible with ignitrons |
| Metallic plate Selenium Copper oxide | ma to above 10,000 amp | To over 75 kv | mw to 100 kw | Radio receivers, battery chargers, and small electronic devices. Not much used above 200 volts |
| Mechanical | Thousands of amp | To over 1,000 volts | Several hundred to several thousand kw | For applications requiring large amounts of d-c energy, such as electrochemical plants |

[^276]rotary converter: The rotary converter is an a-c motor and d-c generator with a single magnetic circuit. The machine has a d-c excited field winding on the stator and a distributed winding on the rotor. The rotor winding is connected to slip rings at one end of the rotor and to commutator bars at the other. Thus a-c voltage is applied to the same winding from which the d-c voltage is obtained. For this reason the ratio of the d-c voltage available to the a-c voltage applied is fixed. The rotary converter and its auxiliary equipment usually have a lower first cost and higher efficiency than a motor-generator set of similar rating.

Rectifiers. Both electronic and metallic-plate rectifiers have a nonlinear characteristic, allowing electron flow in one direction and blocking the flow of electrons in the opposite direction. The mechanical rectifier is a set of switches operated by a synchronous motor, opening and closing in such a manner that electrons can flow to a load circuit in one direction only.
thermionic cathode, vacuum diode: This tube has two elements, the cathode and the anode, enclosed in an evacuated shell. On heating, the cathode emits electrons which are attracted to the anode when the anode is at a higher potential than the cathode. Since the anode does not emit electrons in any quantity, the tube acts as a rectifier, allowing an electron flow in only one direction. Vacuum diodes have been designed that can withstand a negative anode voltage of over 200,000 volts. Tubes designed for high voltages have large spacing between the cathode and anode, which causes a high tube resistance and hence a large voltage drop across the tube at full load current. Tubes operating at lower voltages have smaller spacing and a correspondingly smaller tube resistance. Under normal operating conditions, the tube current is limited by a negative space charge caused by the electrons collecting around the cathode and producing a negative potential near the cathode that tends to drive emitted electrons back toward the cathode
thermionic cathode, gas diode: These tubes contain an inert gas or mercury which vaporizes when the cathode is heated. Upon application of a positive potential to the anode, the moving electrons will ionize the gas, leaving the heavy and slowmoving ions in the space between the tube electrodes. These positive ions neutralize the negative space charge that is present in vacuum diodes. With the space charge neutralized, the tube current is limited only by the emitting capacity of the cathode. The voltage drop between the tube electrodes is approximately the ionization potential of the gas. The gas diode has a higher efficiency than the vacuum diode and so is much used in low-voltage applications such as radio receivers. While gas diodes are available that will withstand voltages above 20,000 volts, most designs do not permit voltages above a few hundred volts. To prevent cathode disintegration in gas tubes, it is necessary to heat the cathode to normal operating temperature before applying anode voltage. The tube current should be limited to a safe value by placing resistance in the anode circuit.
thermionic cathode, gas triode (thyratron): The thyratron has a grid placed between the anode and the cathode. By applying a negative voltage, with respect to the cathode, to the grid, tube conduction may be prevented. If the negative grid voltage is reduced toward zero sufficiently when the plate is at a positive voltage, the tube will conduct. Once the tube conducts, the grid cannot stop conduction. Increasing the negative voltage on the grid causes more positive ions to collect around the negative grid, preventing the negative voltage from becoming an effective barrier between the cathode and the anode. The cathode-to-anode electron flow can be stopped only by reducing the anode voltage to less than the gas-ionization voltage. Since the anode voltage goes to a negative value during every cycle of the a-c voltage, the grid regains control every cycle. By using the grid to control the period during each cycle that the tube may conduct, $\mathrm{d}-\mathrm{c}$ output voltage control can be obtained in thyratron rectifiers.
mercury arc, with pool cathode (mercury arc and ignitron): Mercury-arc tubes have a pool of mercury for a cathode and source of electrons. Once the arc has been initiated, the supply of electrons is almost unlimited so that the current must be held to a safe value by the impedance in the tube circuit. Many of these tubes are water-cooled. Mercury-arc tubes may have several anodes and a single pool cathode. In this case it is necessary that the arc be maintained continuously after it has started. The arc is initiated by lifting a rod that completes an auxiliary circuit from the mercury pool. The ignitron has a single anode and an igniter rod that permits initiation

| Circuit |
| :---: |
| name |


| Single-phase, |
| :---: |
| half-wave |

ELECTRICAL POWER PRACTICES
Table 5i-7. Rectifier Circuits-(Continued)
Circuit
name

| Three phase, |
| :--- |
| full-wave, |
| bridge |

Six-phase,
half-wave,
of the are each cycle. The rod is permanently dipped into the mercury pool and a pulse of current through this circuit initiates the arc. In rectifiers utilizing ignitrons, the output voltage can be controlled by varying the time when the arc is initiated with respect to the anode voltage. Mercury-arc tubes of the multianode and ignitron types are used only when large amounts of d-c energy are required.
selenium: Each selenium rectifier cell consists of a metal disk to which a thin layer of selenium had been applied. The selenium is sprayed with an alloy coating. Current will flow freely through the cell from the metal disk to the alloy coating but with difficulty in the opposite direction. Selenium cells are stacked in series to obtain a rectifier with the desired voltage rating. Several stacks can be operated in parallel for increased current ratings. Large fins are sometimes attached to the disks to aid in cooling the stack, and forced-air cooling or oil-immersion cooling may be used. Selenium rectifiers are now used in ratings from a few milliwatts to many kilowatts.

COPPER oxide: The application of copper-oxide rectifiers is the same as that of selenium rectifiers. Copper-oxide cells are formed by coating cuprous oxide ( $\mathrm{Cu}_{2} \mathrm{O}$ ) on a copper disk at a high temperature. The cell will pass current freely from oxide to copper but presents a high resistance to current flow in the opposite direction.
mechanical rectifiers: Mechanical rectifiers are used only where very large amounts of d-c power are required. A synchronous motor drives a set of switches that connect the $d$-c load circuit to each of the several a-c phases in such a way that the current flows to the load circuit in only one direction. The absence of a voltage drop across the closed switch makes this rectifier more efficient than the mercury-arc rectifier. The mechanical rectifier is a European development and is now being introduced in the United States.

Rectifier Circuits. Table 5i-7 lists a few of many possible circuits that are used for electron-tube and metallic-plate rectifiers.
Single-phase rectifiers are most used for rectifiers with an output rating of less than 1 kw and must be used where a polyphase supply voltage is not available. Because of the large amount of a-c ripple voltage present in the load voltage, it is often necessary to filter out the a-c component by the use of inductors and capacitors. In some applications gas-filled tubes are used to maintain an output voltage that is free of ripple. Many commercial power supplies (a-c to d-c converters) utilize single-phase rectifiers, filters, and voltage-regulating devices. The a-c ripple voltage can be held to any desired level but the cost of the power supply increases with a reduction of the a-c content of the output voltage.

Where large amounts of a-c energy must be converted to direct current by rectification, polyphase rectifiers are preferred. When a three-phase supply voltage is available, transformers can be connected to convert to 6,12 , or more phases. An increase in the number of phases will decrease the a-c ripple in the output voltage, as can be seen by inspection of the waveforms of Table 5i-7. Increasing the number of phases above three increases the cost of the supply transformers. For many applications the small a-c ripple voltage of the polyphase rectifier is permissible. If it is not, it is less expensive to filter out the 360 cps (for 60 cps supply) ripple voltage of the three-phase bridge rectifier, for example, than it is to filter out the 60 cps ripple voltage of the single-phase half-wave rectifier.

## Bibliography

## Electrical Engineering Handbooks

1. Knowlton, Archer E., ed.: "Standard Handbook for Electrical Engineers," 8th ed., McGraw-Hill Book Company, Inc., New York, 1949.
2. Pender, Harold, and W. A. DelMar, ed.: "Electrical Engineers Handbook," vol. I, Electric Power, 4th ed., John Wiley \& Sons, Inc., New York, 1949.

## National Electrical Code

3. Abbott, Arthur Laurie, and Charles L. Smith: "National Electrical Code Handbook," 8th ed., McGraw-Hill Book Company, Inc., New York, 1954.
4. National Board of Fire Underwriters: "National Electrical Code," N.B.F.U., New York.
5. Segall, B. Z.: "Electrical Code Diagrams," vols. I, II, McGraw-Hill Book Company, Inc., New York, 1954.

## Motor and Generator Theory, Application, and Control

## Books

6. Bottle, E. K.: "Fractional Horse-power Electric Motors: Guide to Types and Application," Charles Griffin \& Co., Ltd., London, 1948.
7. Fitzgerald, A. E., and Charles Kingsley, Jr.: "Electric Machinery," McGraw-Hill Book Company, Inc., New York, 1952.
8. Harwood, Paisley Beach: "Control of Electric Motors," 3d ed., John Wiley \& Sons, Inc., New York, 1952.
9. Heumann, Gerhart W.: "Magnetic Control of Industrial Motors," 2d ed., John Wiley \& Sons, Inc., New York, 1954.
10. James, Henry Duvall, and Lewis Edwin Markle: "Controllers for Electric Motors," 2d ed., McGraw-Hill Book Company, Inc., New York, 1952.
11. Johnson, Theron Crawford, D. R. Shoults, and C. J. Rife: "Electric Motors in Industry," John Wiley \& Sons, Inc., New York, 1942.
12. Jones, Richard W.: "Electric Control Systems," 3d ed., John Wiley \& Sons, Inc., New York, 1953.
13. Liwschitz-Garik, Michael, and Clyde C. Whipple: "Electric Machinery," vols. I, II, D. Van Nostrand Company, Inc., Princeton, N. J., 1946.
14. Philpott, Stuart Fred: "Fractional Horse Power Motors," Chapman \& Hall, Ltd., London, 1951.
15. Puchstein, Albert Frederick, Thomas Cox Lloyd, and A. G. Conrad: "Alter-nating-current Machines," 3d ed., John Wiley \& Sons, Inc., New York, 1954.
16. Tarboux, Joseph Galluchat: "Alternating-current Machinery," International Textbook Company, Scranton, Pa., 1947.
17. Veinott, Cyril George: "Fractional Horsepower Electric Motors," 2d ed., McGraw-Hill Book Company, Inc., New York, 1948.

## Articles

18. Butler, F.: Motor Control Devices, Elec. Rev. 144 (3734), 1029-1031 (June 17, 1949).
19. Carville, T. E. M.: Application of Small Motors, Westinghouse Engr. 9, 52-57 (March, 1949).
20. Chandler, A. E.: Adjustable Speed D-C Motor Drives, Elec. News and Engineering 60 (8), 63-66 (Apr. 15, 1951).
21. Dyer, L. W.: New Controls for Industry, Westinghouse Engr. 9 (5), 159-160 (September, 1949).
22. Everett, R. R.: Special versus Standard Fractional Horsepower Motor, Product Eng. 21 (10), 111-114 (October, 1950).
23. Hough, W. R.: Standards as Applied to Motors, Elec. Eng. 67 (10), 69-71 (October, 1948).
24. Lebens, J. C.: Dual-element Fuses for Motor Protection, Elec. Mfg. 48 (3), 98-102 (September, 1951).
25. Lindsten, M. C.: Which Fractional-Horsepower Motor?, Machine Design 21 (6), 127-129 (June, 1949).
26. Matthias, L.: Thermal Overcurrent Relays for Motor Protection, Electrical Mfg. 48 (6), 114-118 (December, 1951).
27. Picking, J. W.: Development of Low-cost Electronic Drive in $\frac{3}{4}$ to 3 hp Ratings, Elec. Mfg. 48 (3), 124-127 (September, 1951).
28. Winston, J.: Choice of D-C Motors, Product Eng. 22 (7), 125-130 (July, 1951) .

## Rectifier Theory and Application

## Books

29. Henisch, H.: "Metal Rectifiers," Oxford University Press, New York, 1949.
30. MIT Department of Electrical Engineering: "Applied Electronics," John Wiley \& Sons, Inc., New York, 1943.
31. Terman, Frederick Emmons: "Radio Engineers' Handbook," McGraw-Hill Book Company, Inc., New York, 1943.
32. Westinghouse Electric Corp.: "Industrial Electronics Reference Book," John Wiley \& Sons, Inc., New York, 1948.

## Articles

33. Falls, W. H.: Selenium and Copper Oxide Rectifiers, Gen. Elec. Rev. 50 (2), 34-38 (February, 1947).
34. Jensen, O.: A Mechanical Rectifier, Trans. Electrochem. Soc. 90, 93-103 (1946).
35. Thwaites, J. T.: Electronic Rectification, Elec. News and Engineering 57 (18), 115-117 (Sept. 15, 1948).
36. Wilcox, R. H.: Mechanical Rectifier . . . Efficient Source of D-C Power, Mill \& Factory 49 (5), 86-88 (November, 1951).
37. Yarmack, J. E.: Selenium Rectifiers and Their Design, Trans. Am. Inst. Elec. Engrs. 61, 488-495 (1942).
Transformer Theory and Application Books
38. Blume, Louis Frederick: "Transformer Engineering," 2d ed., John Wiley \& Sons, Inc., New York, 1951.
39. Connelly, Frank Cecil: "Transformers," Pitman Publishing Corporation, New York, 1950.
40. Dunlap, Carl Harry, W. A. Diefert, and F. E. Austin: "Transformer Principles and Applications," American Technical Society, Chicago, 1947.
41. Gibbs, Jesse Berthold: "Transformer Principles and Practice," 2d ed., McGrawHill Book Company, Inc., New York, 1950.
42. MIT Department of Electrical Engineering: "Magnetic Circuits and Transformers," John Wiley \& Sons, Inc., New York, 1943.

## 5j. Electrochemical Information

T. F. YOUNG<br>University of Chicago

Editor's note. The symbols used in electrochemistry do not always conform with those given in Sec. 5 a which do follow the recommendations of the American Standards Association, ASA Z10.6-1948 and ASA Z10.5-1949. The user of electrochemical data may wish to refer to the electrochemical references. Therefore, some of the symbols used in this section are those most commonly found in the literature of this subject.

Conductance data and transference numbers were taken from Harned and Owen (1950), Kortum and Bockris (1951), and Robinson and Stokes (1955). Additional data may be found in these three books and in Conway (1952), Kohlrausch (1898), "International Critical Tablea," and Landolt-Börnstein.

Diffusion coefficients were taken from Harned (1953), Robinson and Stokes (1955), and from recent scientific papers. Some more data may be found in these sources. Additional information may be derived from tables of polarographic data compiled by Koltoff and Lingane (1952) and by von Stackelberg (1950).

Standard electromotive forces of half cells were taken from Latimer (1952). Many additional data are available in his tables. Note especially the table on page 345 for alkaline solutions. Other values of $E^{\circ}$ may be calculated from the free-energy data of Rossini et al. (1952).

Activity coefficients were selected from extensive tables in Harned and Owen (1950), Kortum and Bockris (1951), and Robinson and Stokes (1955). Additional data may be found in these sources and in Robinson and Stokes (1949) and in Conway (1952).

Dissociation constants are from Harned and Owen (1950) and Hood, Redlich, and Reilly (1954). Constants for many other equilibria may be found in Harned and Owen (1950), Redlich (1946), "International Critical Tables," Scudder (1914), and may be derived from thermodynamic data of Rossini et al. (1952) and of Latimer (1952).

The molal heat content (enthalpy) data were taken from Harned and Owen (1950).
Standard entropies of ions were taken from Latimer (1952) and from Powell and Latimer (1951). Additional values may be found in those sources and in Robinson and Stokes (1955) and in Kortum and Bockris (1951).

Electrochemical data of many other kinds have been tabulated by Robinson and Stokes (1955), Harned and Owen (1950), and Kortum and Bockris (1951). Information especially useful for the electrometric determination of pH has been assembled by Bates (1954). Polarographic data have been collected by Kolthoff and Lingane (1952) and by von Stackelberg (1950).

The large general tables of Landolt-Börnstein and the "International Critical Tables" also contain a wide variety of electrochemical information.

Notes on Abbreviations, Symbols, and Terminology Used in Table 5j-6 and in the Discussion Which Follows.

The letters (g), (1), (s), and (aq) denote gas, liquid, solid, and aqueous solution, respectively. These symbols are often omitted for substances which are in their most familiar states.

Pt. Many authors writing symbols for electrodes include the symbol "Pt" whenever no solid conducting element appears elsewhere in the formulation of the electrode. Its purpose is to remind the reader that some connection (not necessarily platinum) to the external portion of the circuit must be provided. The symbol is not essential and has been omitted in Table 5j-6.

Cathode and Anode. The words cathode and anode are not essential for a discussion of electrochemical cells. They are not used in the explanation which follows. Because some writers use the words frequently their meanings must be understood. At the cathode reduction occurs; at the anode oxidation occurs. In the external portion of the circuit electrons flow from anode to cathode, whereas the "positive current" is said to flow in the external conductor from cathode to anode. Within the cell the "positive current" flows from anode to cathode, thus completing the circuit. The current within the cell consists of both positive ions moving from anode to cathode and negative ions moving from cathode to anode. Note that in an electrochemical cell operating spontaneously the anode is the negative pole and the cathode is the positive pole. For a somewhat more detailed discussion of the words, see Daniels and Alberty (1955).
$E$ denotes the electromotive force (emf) of a cell or half cell.
$E^{o}$ denotes the standard emf defined below.
$\Delta F$ denotes the increase in Gibbs free energy for the reaction specified.
$\Delta F^{\circ}$ denotes the standard increase in free energy. It is related to $E^{\circ}$ by an equation similar to Eq. (5j-1).

Table 5j-1. Equivalent Conductances and Cation Transference Numbers of Electrolytes in Aqueous Solutions at $25^{\circ} \mathrm{C}$
( $\Lambda$ in $\mathrm{cm}^{2} \mathrm{ohm}^{-1}$ equivalent ${ }^{-1} ; N$ in equivalent liter ${ }^{-1}$ )

|  | $N$ | 0 | 0.001 | 0.01 | 0.02 | 0.05 | 0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HCl | $\overline{\bar{\Lambda}}$ | $\begin{gathered} 426.16 \\ 0.8209 \end{gathered}$ | 421.36 | $\begin{array}{r} \hline 412.00 \\ 0.8251 \end{array}$ | $\begin{array}{r} \hline 407.24 \\ 0.8266 \end{array}$ | $\begin{gathered} \hline 399.09 \\ 0.8292 \end{gathered}$ | $\begin{array}{r} 391.32 \\ 0.8314 \end{array}$ |
| LiCl | $\stackrel{\Lambda}{t_{+}}$ | $\begin{gathered} 115.03 \\ 0.3364 \end{gathered}$ | 112.40 | $\begin{array}{r} 107.32 \\ 0.3289 \end{array}$ | $\begin{array}{r} 104.65 \\ 0.3261 \end{array}$ | $\begin{array}{r} 100.11 \\ 0.3211 \end{array}$ | $\begin{gathered} 95.86 \\ 0.3168 \end{gathered}$ |
| NaCl | $\stackrel{\Lambda}{\boldsymbol{t}_{+}}$ | $\begin{gathered} 126.45 \\ 0.3963 \end{gathered}$ | 123.74 | $\begin{array}{r} 118.51 \\ 0.3918 \end{array}$ | $\begin{array}{r} 115.76 \\ 0.3902 \end{array}$ | $\begin{gathered} 111.06 \\ 0.3876 \end{gathered}$ | $\begin{gathered} 106.74 \\ 0.3854 \end{gathered}$ |
| KCl | $\begin{aligned} & \Lambda \\ & t_{+} \end{aligned}$ | $\begin{gathered} 149.86 \\ 0.4906 \end{gathered}$ | 146.95 | $\begin{array}{\|c\|} \hline 141.27 \\ 0.4902 \end{array}$ | $\begin{gathered} 138.34 \\ 0.4901 \end{gathered}$ | $\begin{array}{r} 133.37 \\ 0.4899 \end{array}$ | $\begin{array}{r} 128.96 \\ 0.4898 \end{array}$ |
| $\mathrm{NH}_{4} \mathrm{Cl}$ | $\begin{gathered} \boldsymbol{\Lambda} \\ \boldsymbol{t}_{+} \end{gathered}$ | $\begin{array}{r} 149.7 \\ 0.4909 \end{array}$ |  | $\begin{gathered} 141.28 \\ 0.4907 \end{gathered}$ | $\begin{array}{r} 138.33 \\ 0.4906 \end{array}$ | $\begin{gathered} 133.29 \\ 0.4905 \end{gathered}$ | $\begin{gathered} 128.75 \\ 0.4907 \end{gathered}$ |
| KBr | $\begin{aligned} & \Lambda \\ & t_{+} \end{aligned}$ | $\begin{array}{r} 151.9 \\ 0.4849 \end{array}$ |  | $\begin{array}{r} 143.43 \\ 0.4833 \end{array}$ | $\begin{gathered} 140.48 \\ 0.4832 \end{gathered}$ | $\begin{array}{r} 135.68 \\ 0.4831 \end{array}$ | $\begin{gathered} 131.39 \\ 0.4833 \end{gathered}$ |
| NaI | $\Lambda$ | 126.94 | 124.25 | 119.24 | 116.70 | 112.79 | 108.78 |
| KI | $\begin{aligned} & \Lambda \\ & t_{+} \end{aligned}$ | $\begin{array}{\|c\|} \hline 150.38 \\ 0.4892 \end{array}$ |  | $\begin{array}{r} 142.18 \\ 0.4884 \end{array}$ | $\begin{array}{r} 139.45 \\ 0.4883 \end{array}$ | $\begin{gathered} 134.97 \\ 0.4882 \end{gathered}$ | $\begin{array}{r} 131.11 \\ 0.4883 \end{array}$ |
| $\mathrm{KNO}_{3}$ | $\underset{t_{+}}{\Lambda}$ | $\begin{gathered} 144.96 \\ 0.5072 \end{gathered}$ | 141.84 | $\begin{gathered} 132.82 \\ 0.5084 \end{gathered}$ | $\begin{gathered} 132.41 \\ 0.5087 \end{gathered}$ | $\begin{gathered} 126.31 \\ 0.5093 \end{gathered}$ | $\begin{gathered} 120.40 \\ 0.5103 \end{gathered}$ |
| $\mathrm{KHCO}_{3}$ | $\Lambda$ | 118.00 | 115.34 | 110.08 | 107.22 |  |  |
| $\mathrm{NaO}_{2} \mathrm{C}_{2} \mathrm{H}_{3}$ | $\begin{aligned} & \Lambda \\ & t_{+} \end{aligned}$ | $\begin{gathered} 91.0 \\ 0.5507 \end{gathered}$ | 88.5 | $\begin{gathered} 83.76 \\ 0.5537 \end{gathered}$ | $\begin{gathered} 81.24 \\ 0.5550 \end{gathered}$ | $\begin{array}{r} 76.92 \\ 0.5573 \end{array}$ | $\begin{gathered} 72.80 \\ 0.5594 \end{gathered}$ |
| $\mathrm{NaO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{3}$ | $\Lambda$ | 82.70 | 80.31 | 75.76 | 73.39 | 69.32 | 65.27 |
| NaOH | $\Lambda$ | 247.8 | 244.7 | 238.0 |  |  |  |
| $\mathrm{AgNO}_{3}$ | $\stackrel{\Lambda}{t_{+}}$ | $\begin{array}{\|c\|} \hline 133.36 \\ 0.4643 \end{array}$ | 130.51 | $\begin{array}{r} 124.76 \\ 0.4648 \end{array}$ | $\begin{gathered} 121.41 \\ 0.4652 \end{gathered}$ | $\begin{array}{\|c} 115.24 \\ 0.4664 \end{array}$ | $\begin{gathered} 109.14 \\ 0.4682 \end{gathered}$ |
| $\frac{1}{2} \mathrm{MgCl}_{2}$ | $\Lambda$ | 129.40 | 124.11 | 114.55 | 110.04 | 103.08 | 97.10 |
| ${ }_{\frac{1}{2}} \mathrm{CaCl}_{2}$ | $\stackrel{\Lambda}{t_{+}}$ | $\begin{gathered} 135.84 \\ 0.4380 \end{gathered}$ | 130.36 | $\begin{array}{r} 120.36 \\ 0.4264 \end{array}$ | $\begin{array}{\|c\|} \hline 115.65 \\ 0.4220 \end{array}$ | $\begin{gathered} 108.47 \\ 0.4140 \end{gathered}$ | $\begin{gathered} 102.46 \\ 0.4060 \end{gathered}$ |
| $\frac{1}{2} \mathrm{SrCl}_{2}$ | $\Lambda$ | 135.80 | 130.33 | 120.29 | 115.54 | 108.25 | 102.19 |
| ${ }^{\frac{1}{2}} \mathrm{BaCl}_{2}$ | $\Lambda$ | 139.98 | 134.34 | 123.94 | 119.09 | 111.48 | 105.19 |
| ${ }_{2}^{1} \mathrm{Na}_{2} \mathrm{SO}_{4}$ | $\bar{\Lambda}$ | $\begin{gathered} 129.9 \\ 0.386 \end{gathered}$ | 124.15 | $\begin{array}{r} 112.44 \\ 0.3848 \end{array}$ | $\begin{array}{\|c\|} \hline 106.78 \\ 0.3836 \end{array}$ | $\begin{gathered} 97.75 \\ 0.3829 \end{gathered}$ | $\begin{gathered} 89.98 \\ 0.3828 \end{gathered}$ |
| ${ }_{\frac{1}{2} \mathrm{CuSO}_{4}}$ | $\Lambda$ | 133.6 | 115.26 | 83.12 | 72.20 | 59.05 | 50.58 |
| $\frac{1}{2} \mathrm{ZnSO}_{4}$ | $\Lambda$ | 132.8 | 115.53 | 84.91 | 74.24 | 61.20 | 52.64 |
| ${ }_{3}^{1} \mathrm{LaCl}_{3}$ | $\begin{aligned} & \Lambda \\ & t_{+} \end{aligned}$ | $\begin{gathered} 145.8 \\ 0.477 \end{gathered}$ | 137.0 | $\begin{array}{r} 121.8 \\ 0.4625 \end{array}$ | $\begin{gathered} 115.3 \\ 0.4576 \end{gathered}$ | $\begin{array}{r} 106.2 \\ 0.4482 \end{array}$ | $\begin{array}{r} 99.1 \\ 0.4375 \end{array}$ |
| ${ }_{\frac{1}{3}} \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ | $\Lambda$ | 174.5 | 163.1 |  |  |  |  |
| ${ }_{4}^{1} \mathrm{~K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ | $\Lambda$ | 184.5 | 167.24 | 134.83 | 122.82 | 107.70 | 97.87 |

Table 5j-2. Limiting Equivalent Conductances of Ions in Water in Infinitely Dilute Solution
( $\mathrm{cm}^{2}$ ohm $^{-1}$ equivalent ${ }^{-1}$ )

| Ion | ${ }^{\circ} \mathrm{C}$ | $\Lambda_{0}$ | Ion | ${ }^{\circ} \mathrm{C}$ | $\Lambda_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}^{+}$. | 15 | 300.6 | $\mathrm{OH}^{-}$. | 25 | 197.6 |
|  | 25 | 349.8 | $\mathrm{Cl}^{-}$. | 15 | 61.42 |
|  | 35 | 397.0 |  | 25 | 76.34 |
| $\mathrm{Li}^{+}$. | 25 | 38.69 |  | 35 | 92.21 |
| $\mathrm{Na}^{+}$. | 15 | 39.75 | $\mathrm{Br}^{-}$. | 15 | 63.3 |
|  | 25 | 50.11 |  | 25 | 78.3 |
|  | 35 | 61.53 |  | 35 | 94.2 |
| $\mathbf{K}^{+}$. | 15 | 59.66 | $\mathrm{I}^{-}$ | 25 | 76.8 |
|  | 25 | 73.50 | $\mathrm{NO}_{3}{ }^{-}$ | 25 | 71.4 |
|  | 35 | 88.21 | $\mathrm{ClO}_{4}{ }^{-}$ | 25 | 68.0 |
| $\mathrm{NH}_{4}{ }^{+}$. | 25 | 73.4 | $\mathrm{HCO}_{3}-$ | 25 | 44.5 |
| $\mathrm{Ag}^{+}$. | 25 | 61.92 | $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$. | 25 | 40.9 |
| $\mathrm{Tl}^{+}$. | 25 | 74.7 | $\mathrm{ClCH}_{2} \mathrm{CO}_{2}{ }^{-}$. | 25 | 39.8 |
| $\frac{1}{2} \mathrm{Mg}^{++}$. | 25 | 53.06 | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$. | 25 | 35.8 |
| $\frac{1}{2} \mathrm{Ca}^{++}$. | 25 | 59.50 | $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}_{2}{ }^{-}$ | 25 | 32.6 |
| $\frac{1}{2} \mathrm{Sr}^{++}$. | 25 | 59.46 | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}-\ldots \ldots$ | 25 | 32.3 |
| $\frac{1}{2} \mathrm{Ba}^{++}$. | 25 | 63.64 | $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$ | 25 | 40.2 |
| $\frac{1}{2} \mathrm{Cu}^{++}$. | 25 | 54 | $\frac{1}{2} \mathrm{C}_{2} \mathrm{O}_{4}=$ | 25 | 74.2 |
| $\frac{1}{2} \mathrm{Zn}^{++}$. | 25 | 53 | $\frac{1}{2} \mathrm{SO}_{4}=$. | 25 | 80 |
| ${ }^{\frac{1}{3}} \mathrm{La}^{3+}$. | 25 | 69.5 | ${ }^{\frac{1}{3}} \mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$. | 25 | 101 |
| $\frac{1}{3} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6^{3+}}$. | 25 | 102 | $\frac{1}{4} \mathrm{Fe}(\mathrm{CN}) 6^{4-}$. | 25 | 111 |

Table 5j-3. Limiting Equivalent Conductances of Ions in Methanol and Ethanol
(ohm ${ }^{-1} \mathrm{~cm}^{2}$ equivalent ${ }^{-1}$ )

|  | Methanol |  | Ethanol |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $25^{\circ} \mathrm{C}$ | $4^{\circ} \mathrm{C}$ | $25^{\circ} \mathrm{C}$ | $4^{\circ} \mathrm{C}$ |
| $\mathrm{H}^{+}$ | 141.8 | 113.2 | 57.40 | 37.24 |
| $\mathrm{Li}^{+}$ | $\ldots .$. | $\ldots \ldots$. | 15.00 | 9.62 |
| $\mathrm{~K}^{+}$ | 53.6 | 39.35 |  |  |
| $\mathrm{Cl}^{-}$ | 51.27 | 37.12 | 24.30 | 16.01 |
| $\mathrm{ClO}_{4}^{-}$ | 70.1 | 52.85 | 33.55 | 22.40 |
| $\mathrm{NO}_{3}^{-}$ | 60.5 | 45.2 |  |  |

$N$ denotes the number of Faradays ( $F$ ) of electricity. $N$ may have any positive value. For simplicity it is arbitrarily chosen as unity for all of Table 5j-6 and for each example of its use.

Significance of Table 5j-6 and Conventions. When current passes through a reversible electrolytic cell oxidation occurs at one electrode and reduction at the other. When the direction of the current is reversed the chemical reaction is reversed and oxidation and reduction exchange places. While no current is passing through the cell a reversible emf may be measured with a potentiometer. Electromotive

Table 5j-4. Limiting Values of Differential Diffusion Coefficients in $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ}$ in Infinitely Dilute Solution

|  | $D \times 10^{5}$ <br> $\mathrm{~cm}^{2} \mathrm{sec}^{-1}$ |  | $D \times 10^{5}$ <br> $\mathrm{~cm}^{2} \mathrm{sec}^{-1}$ |  | $D \times 10^{5}$ <br> $\mathrm{~cm}^{2} \mathrm{sec}^{-1}$ |
| :--- | :---: | :--- | :---: | :--- | :---: |
| LiCl | 1.368 | $\mathrm{AgNO}_{3}$ | 1.768 | $\mathrm{SrCl}_{2}$ | 1.336 |
| NaCl | 1.612 | $\mathrm{Li}_{2} \mathrm{SO}_{4}$ | 1.041 | $\mathrm{MgSO}_{4}$ | 0.849 |
| KCl | 1.996 | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | 1.230 | $\mathrm{ZnSO}_{4}$ | 0.849 |
| RbCl | 2.057 | $\mathrm{Cs}_{2} \mathrm{SO}_{4}$ | 1.569 | $\mathrm{LaCl}_{3}$ | 1.294 |
| $\mathrm{KNO}_{3}$ | 1.931 | $\mathrm{CaCl}_{2}$ | 1.336 | $\mathrm{~K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ | 1.473 |

Table 5j-5. Differential Diffusion Coefficients of Potassium Chloride at $4^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$

| $M$ <br> mole liter | $D \times 10^{5}$ <br> at $4^{\circ} \mathrm{C}$ <br> $\mathrm{cm}^{2} \mathrm{sec}^{-1}$ | $D \times 10^{5}$ <br> at $25^{\circ} \mathrm{C}$ <br> $\mathrm{cm}^{2} \mathrm{sec}^{-1}$ |
| :--- | :---: | :---: |
| 0.000 | $(1.135)$ | $(1.996)$ |
| 0.0004 | 1.125 | 1.974 |
| 0.0016 | 1.115 | 1.957 |
| 0.01 | 1.091 | 1.915 |
| 0.04 | 1.063 | 1.870 |
| 0.25 | 1.036 | 1.836 |
| 1.00 | $\cdots \cdots$ | 1.893 |
| 4.00 | $\cdots \cdots$ | 2.207 |

forces of cells are important thermodynamic data since

$$
\begin{equation*}
\Delta F=-N F E \tag{5j-1}
\end{equation*}
$$

It is conventional to associate $\Delta F$ with the reaction which occurs when $N$ Faradays, i.e., $c a . N 96,500$ coulombs, of positive electricity is passed through the cell from left to right. It is conventional to write $E$ as positive if this current flows spontaneously from left to right through the cell, i.e., if electrons are caused by the cell reaction to move in the external part of the circuit from left to right. According to this convention $E$ of the cell is positive if the right-hand electrode is positive with respect to the left-hand electrode. If the cell is rewritten in the reverse order the algebraic sign of its emf is changed. [The negative sign in Eq. (5j-1) is a consequence of these two conventions.] Examples:

$$
\begin{array}{ll}
\mathrm{H}_{2}, \mathrm{HCl}(\mathrm{aq}), \mathrm{Cl}_{2} & E^{o}=1.3595 \text { volt at } 25^{\circ} \mathrm{C} \\
\mathrm{Cl}_{2}, \mathrm{HCl}(\mathrm{aq}), \mathrm{H}_{2} & E^{o}=-1.3595 \text { volt at } 25^{\circ} \mathrm{C} \tag{5j-3}
\end{array}
$$

In these equations the symbol ${ }^{\circ}$ (read "standard") indicates that all the cell reactants and products are in their standard states, i.e., each is at unit activity. Actually there are no criteria for the decision that the activity of any single ion ( $a_{+}$of $\mathrm{H}^{+}$or $a_{-}$of $\mathrm{Cl}^{-}$, in this example) is unity. The emf of the cell is completely determined, however, by a product of ion activities; in this example by

$$
\begin{equation*}
a_{+} a_{-}=a_{2} \tag{5j-4}
\end{equation*}
$$

The activity $a_{2}$ of the solute, e.g., HCl , can be measured and is known for many electrolytes as functions of their concentration.

The emf of a cell may be regarded as the net result of two opposing half-cell reactions, one at each electrode. Each of these two half reactions may be thought of as having a tendency to liberate electrons or each may be considered to possess a tendency to consume electrons. The half reaction having the greater tendency to acquire electrons forces the other half reaction to surrender them, or according to the alternative point of view, the half reaction having the greater tendency to liberate electrons forces the other to accept them. These two points of view are designated below as plan $A$ and plan $B$, respectively. Either plan is quite correct and general. Example: Consider the cell of $\mathrm{Eq} .(5 \mathrm{j}-2), \mathrm{H}_{2}, \mathrm{HCl}$ (aq), $\mathrm{Cl}_{2}$. At the left-hand electrode the half reaction, for $N=1$, may be considered to be either (a) or (b); thus

\[

\]

(5j-5a, $5 b$ )
The opposing half-cell reaction (at the other electrode) is written

$$
\begin{equation*}
\mathrm{Cl}^{-} \rightarrow \frac{1}{2} \mathrm{Cl}_{2}+\Theta \quad \text { (c) } \quad \Theta+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-} \quad \text { (d) } \tag{5j-5c,5d}
\end{equation*}
$$

Since $E^{\circ}$ of cell (2) is positive it is obvious that half reaction (c) has less tendency to proceed than half reaction (a), and that (d) has more tendency to proceed than (b). The difference in each case is 1.3595 volts.

Similarly the cell

$$
\begin{equation*}
\mathrm{Tl}, \mathrm{TlCl}(\mathrm{aq}), \mathrm{Cl}_{2}(\mathrm{~g}) E^{o}=1.6958 \text { volts } \tag{5j-6}
\end{equation*}
$$

involves two opposing half reactions which are

$$
\begin{array}{ccc} 
& \operatorname{Plan} A & \operatorname{Plan} B \\
\mathrm{Tl} \rightarrow \mathrm{Tl}^{+}+\theta & (e) & \theta+\mathrm{T} l^{+} \rightarrow \mathrm{Tl} \tag{5j-6e,6f}
\end{array} \quad(f)
$$

and

$$
\begin{equation*}
\mathrm{Cl}^{-} \rightarrow \frac{1}{2} \mathrm{Cl}_{2}+\Theta \tag{d}
\end{equation*}
$$

$$
\text { (c) } \quad \theta+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{Cl}^{-}
$$

( $5 \mathrm{j}-5 c, 5 d$ )
Since $E^{o}$ of the cell is 1.6958 volts, the tendency of (e) is 1.6958 greater than that of (c) and the tendency of $(f)$ is 1.6958 volts less than that of (d). To simplify the tabulation of relative half-cell emfs it has long been the custom to compare all reactions to (a) in plan $A$ or to (b) in plan $B$. In the same sense that the altitude of sea level is arbitrarily set equal to zero the half-cell emfs of ( $a$ ) and (b) are called zero and the emfs of all other half cells are listed relatively to (a) or to (b) depending upon the "plan" used by an author. Since the tendency of (e) is 1.6958 volts greater than that of (c) which, in turn, is 1.3595 volts less than that of (a), the appropriate entries for the table are, respectively,

Plan $A$
$\mathrm{Tl} \rightarrow \mathrm{Tl}^{+}+\Theta \quad E^{o}=0.3363 \mathrm{volt}$

$$
\begin{gathered}
\text { Plan } B \\
\Theta+\mathrm{Tl}+\mathrm{Tl} \quad E^{o}=-0.3363 \text { volt } \quad(5 \mathrm{j}-6 e, 6 f)
\end{gathered}
$$

Both plan $A$ and plan $B$ emfs are listed here because each plan corresponds rather closely to a set of conventions followed more or less closely by a large fraction of the scientists of the world. The conventions have not always been adopted in full. Some authors who use column (1) may omit either (2) or (3) [since (2) implies (3) and (3) implies (2)]. Similarly other authors use (6) and omit either (4) or (5). There is no objection to such conciseness if the material is addressed to an adequately informed audience. Unfortunately, some authors have mixed plan $A$ and plan $B$. Some of them have done so consistently and logically, but confusion has nevertheless resulted when a reader of one book or table attempted to use another. To avoid confusion the Commission on Physioochemical Symbols and Terminology and the
Table 5j－6．Standard Electromotive Forces of Half Cells in Water at $25^{\circ} \mathrm{C}$

|  |  |  <br>  | 式無品 NホN $\qquad$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \bullet \\ & \stackrel{\sharp}{⿷ 匚} \\ & \text { a } \end{aligned}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $\begin{aligned} & \underset{y}{\mid} \\ & \text { I } \\ & \text { I } \end{aligned}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  | ำ |  <br>  | 等感 oicioi | 今 |  |  |

ELECTROCHEMICAL INFORMATION
5-275

Table 5j-6. Standard Electromotive Forces of Half Cells in Water at $25^{\circ} \mathrm{C}$ (Continued)

| Plan $A$ |  |  | Plan B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $E^{\circ}$ | Electrode | Half-cell reaction | Half-cell reaction | Electrode |  |
| (1) | (2) | (3) | (4) | (5) | (6) |
| -0.97 | $\mathrm{Pu}^{8+}, \mathrm{Pu}^{4+}$ | $\mathrm{Pu}^{3+} \rightarrow \mathrm{Pu}^{4+}+\theta$ | $\mathrm{O}+\mathrm{Pu}^{4+} \rightarrow \mathrm{Pu}^{3+}$ | $\mathrm{Pu}^{4+}, \mathrm{Pu}^{3+}$ | 0.97 |
| -0.987 | Pd; $\mathrm{Pd}^{++}$ | $\frac{1}{2} \mathrm{Pd} \rightarrow \frac{1}{2} \mathrm{Pd}^{++}+\theta$ | $\theta+\frac{1}{2} \mathrm{Pd}^{++} \rightarrow \frac{1}{2} \mathrm{Pd}$ | $\mathrm{Pd}^{++}, \mathrm{Pd}$ | 0.987 |
| -1.0652 | $\mathrm{Br}_{2}(\mathrm{l}), \mathrm{Br}^{-}$ | $\mathrm{Br}^{-} \rightarrow \frac{\tau_{2}}{2} \mathrm{Br}_{2}(\mathrm{l})+\boldsymbol{\theta}$ | $\theta+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}^{-}$ | $\mathrm{Br}^{-}, \mathrm{Br}_{2}(\mathrm{l})$ | 1.0652 |
| -1.15 | $\mathrm{NpO}_{2}{ }^{+}, \mathrm{NpO}_{2}{ }^{++}$ | $\mathrm{NpO}_{2}+{ }_{3}^{+} \mathrm{NpO}_{2}+++\Theta{ }^{\text {a }}$ | $\boldsymbol{\theta}+\mathrm{NpO}_{2}^{++} \rightarrow \mathrm{NpO}_{2}{ }^{+}$ | $\mathrm{NpO}_{2}{ }^{++}, \mathrm{NpO}_{2}{ }^{+}$ | 1.15 |
| -1.15 | $\mathrm{Pu}^{4+}, \mathrm{PuO}_{2}{ }^{+}, \mathrm{H}^{+}$ | $\mathrm{Pu}^{4+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{PuO}_{2}^{+}+4 \mathrm{H}^{+}+\mathrm{\theta}$ | $\mathrm{O}+4 \mathrm{H}^{+}+\mathrm{PuO}_{2}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Pu}^{4+}$ | $\mathrm{H}^{+}, \mathrm{PuO}_{2}{ }^{+}, \mathrm{Pu}^{4+}$ | 1.15 |
| -1.229 | $\mathrm{O}_{2}(\mathrm{~g}), \mathrm{H}^{+}$ | $\frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow{ }^{\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}^{+}+\mathrm{\theta}}$ | $\mathrm{O}+\mathrm{H}^{+}+\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ | $\mathrm{H}^{+}, \mathrm{O}_{2}(\mathrm{~g})$ | 1.229 |
| -1.3595 | $\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{Cl}^{-}$ | $\mathrm{Cl}^{-} \rightarrow \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\boldsymbol{\theta}$ | $\mathrm{O}+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}^{-}$ | $\mathrm{Cl}^{-}, \mathrm{Cl}_{2}-$ | 1.3595 |
| -1.50 | $\mathrm{Au}, \mathrm{Au}^{3+}$ | ${ }_{3}^{\frac{1}{3}} \mathrm{Au} \rightarrow \frac{1}{3} \mathrm{Au}^{3+}+\boldsymbol{\theta}$ | $\theta+\frac{1}{3} \mathrm{Au}^{3+} \rightarrow \frac{1}{3} \mathrm{Au}$ | $\mathrm{Au}^{3+}, \mathrm{Au}$ | 1.50. |
| -1.6 | $\mathrm{Bk}^{3+}, \mathrm{Bk}^{4+}$ | $\mathrm{Bk}^{3+} \rightarrow \mathrm{Bk}^{4+}+\boldsymbol{\theta}$ | $\boldsymbol{\theta}+\mathrm{Bk}^{4+} \rightarrow \mathrm{Bk}^{3+}$ | $\mathrm{Bk}^{4+}, \mathrm{Bk}^{3+}$ | 1.6 |
| -1.61 | $\mathrm{Ce}^{3+}, \mathrm{Ce}^{4+}$ | $\mathrm{Ce}^{3+} \rightarrow \mathrm{Ce}^{4+}+\boldsymbol{\theta}$ | $\boldsymbol{\theta}+\mathrm{Ce}^{4+} \rightarrow \mathrm{Ce}^{3+}$ | $\mathrm{Ce}^{4+}, \mathrm{Ce}^{3+}$ | 1.61 |
| -1.64 | $\mathrm{AmO}_{2}{ }^{+}, \mathrm{AmO}_{2}++$ | $\mathrm{AmO}_{2}{ }^{+} \rightarrow \mathrm{AmO}_{2}^{++}+\boldsymbol{\theta}$ | $\boldsymbol{\theta}+\mathrm{AmO}_{2}{ }^{++} \rightarrow \mathrm{AmO}_{2}{ }^{+}$ | $\mathrm{AmO}_{2}{ }^{++}, \mathrm{AmO}_{2}{ }^{+}$ | 1.64 |
| -1.68 | $\mathrm{Au}, \mathrm{Au}^{+}$ | $\mathrm{Au} \rightarrow \mathrm{Au}^{+}+\boldsymbol{\theta}$ | $\theta+\mathrm{Au}^{+} \rightarrow \mathrm{Au}$ | $\mathrm{Au}^{+}, \mathrm{Au}$ | 1.68 |
| -2.18 | $\mathrm{Am}^{3+}, \mathrm{Am}^{4+}$ | $\mathrm{Am}^{3+} \rightarrow \mathrm{Am}^{4+}+\mathrm{\theta}$ | $\mathrm{O}+\mathrm{Am}^{4+} \rightarrow \mathrm{Am}^{3+}$ | $\mathrm{Am}^{4+}, \mathrm{Am}^{3+}$ | 2.18 |
| -3.06 | $\mathrm{F}_{2}(\mathrm{~g}), \mathrm{HF}(\mathrm{aq}), \mathrm{H}^{+}$ | $\mathrm{HF}(\mathrm{aq}) \rightarrow \frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{H}^{+}+\mathrm{\theta}$ | $\mathrm{O}+\mathrm{H}^{+}+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{HF}(\mathrm{aq})$ | $\mathrm{H}^{+}, \mathrm{HF}(\mathrm{aq}), \mathrm{F}_{2}(\mathrm{~g})$ | 3.06 |

Commission on Electrochemistry of the International Union of Pure and Applied Chemistry, meeting in Stockholm in 1953, voted to recommend that column (1) be associated henceforth with column (2) and that (6) be associated with (5). The associations with columns (3) and (4), respectively, are implicit. The commission also recommended that values in column (6) but not those in column (1) be referred to as "electrode potentials."

Incorrect Notions. Erroneous attempts have been made to associate the half-cell emf with the "difference in potential", between an electrode and the solution in which it is immersed. For a discussion of the logical difficulties involved, see Guggenheim (1930) and (1949).

The Use of Table 5j-6. To calculate $E^{o}$ of any cell; e.g.,

$$
\begin{equation*}
\mathrm{Tl}, \mathrm{TlCl}(\mathrm{aq}), \mathrm{AgCl}(\mathrm{~s}), \mathrm{Ag} \tag{5j-7}
\end{equation*}
$$

according to plan $A$ write the equation for the half-cell reaction and $E^{o}$ of the lefthand electrode:

$$
\begin{equation*}
\mathrm{Tl} \rightarrow \mathrm{~T} l^{+}+\Theta \quad E^{o}=0.3363 \text { volt } \tag{5j-6e}
\end{equation*}
$$

$S u b t r a c t$ both the half-cell reaction and $E^{o}$ of the right-hand electrode:

$$
\begin{equation*}
-\left[\mathrm{Ag}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl}+\theta\right] \quad-E^{o}=-(-0.2223 \text { volt }) \tag{5j-7g}
\end{equation*}
$$

The conventional cell reaction, i.e., the reaction accompanying the passage of positive electricity from left to right through the cell (and for $N=1$ ), results. It may be represented by either of the two equivalent equations:

$$
\left.\begin{array}{l}
\mathrm{Tl}+\mathrm{AgCl} \rightarrow \mathrm{Ag}+\mathrm{Tl}^{+}+\mathrm{Cl}^{-}  \tag{5j-8}\\
\mathrm{Tl}+\mathrm{AgCl} \rightarrow \mathrm{Ag}+\mathrm{TlCl}(\mathrm{aq})
\end{array}\right\} E^{\circ}=+0.5586 \text { volt }
$$

Since $E^{o}$ is positive $\Delta F^{\circ}$ is negative for the reaction indicated in Eq. (5j-8). Eq. $(5 \mathrm{j}-8)$ is therefore the equation for the reaction actually taking place in the cell when all activities are unity. If the cell had been written $\mathrm{Ag}, \mathrm{AgCl}, \mathrm{TlCl}(\mathrm{aq}), \mathrm{Tl}$, the indicated reaction would have been

$$
\begin{equation*}
\mathrm{Ag}+\mathrm{TlCl}(\mathrm{aq}) \rightarrow \mathrm{Tl}+\mathrm{AgCl} \quad E^{o}=-0.5586 \text { volt } \tag{5j-9}
\end{equation*}
$$

The conclusions concerning the actual reaction and the absolute values of $\Delta F^{\circ}$ and $E^{o}$ would be unchanged.

The problem may be solved similarly by plan $B$. The essential notion of plan $B$ is the comparison of tendencies to take up electrons: $E^{\circ}$ of the cell is positive if the right-hand electrode has the greater tendency to acquire electrons. Using columns (4), (5), and (6) write the half-cell reaction and $E^{\circ}$ for the right-hand electrode:

$$
\boldsymbol{\theta}+\mathrm{AgCl} \rightarrow \mathrm{Ag}+\mathrm{Cl}^{-} \quad E^{\circ}=0.2223 \text { volt }
$$

Subtract both the half-cell reaction and $E^{\circ}$ of the left-hand electrode

$$
\left.\begin{array}{c}
-\left[\Theta+\mathrm{Tl}^{+} \rightarrow \mathrm{Tl}\right] \quad-E^{o}= \\
\mathrm{Tl}+\mathrm{AgCl} \rightarrow \mathrm{Ag}+\mathrm{TlCl}(\mathrm{aq}) \tag{5j-8}
\end{array} \quad-0.3363 \text { volt }\right)
$$

Again: $E^{o}$ is plus and $\Delta F^{o}$ is negative for the reaction accompanying the passage of ("positive") electricity from left to right through the cell. ${ }^{1}$

A third procedure for the calculation of the emf of a cell can be used whenever a dual table such as Table $5 \mathrm{j}-6$ is available. The cell emf may be regarded as the sum of

[^277]Table 5j－7．Selected Mean－ionic－activity Coefficients $\gamma_{ \pm}$of Electrolytes in Aqueous Solutions at $25^{\circ} \mathrm{C}$ （ $m$ in mole $\mathrm{kg}^{-1}$ ）

| $m$ | $\mathrm{HClO}_{4}$ | $4 \mathrm{HNO}_{3}$ | LiCl | NaCl | $\mathrm{NaClO}_{3}$ | $\mathrm{NaClO}_{4}$ | $\mathrm{NaBrO}_{3}$ |  | $\mathrm{NaNO}_{3}$ |  | KCl | $\mathrm{KNO}_{3}$ |  | RbCl | CsCl | $\mathrm{AgNO}_{3}$ | $\mathrm{TlClO}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.803 | 0.791 | 0.790 | 0.778 | 0.772 | 0.775 | 0.758 |  | 0.762 |  | 0.770 | 0.739 |  | 0.764 | 0.756 | 0.734 | 0.730 |
| 0.2 | 0.778 | 0.754 | 0.757 | 0.735 | 0.720 | 0.729 | 0.696 |  | 0.703 |  | 0.718 | 0.663 |  | 0.709 | 0.694 | 0.657 | 0.652 |
| 0.5 | 0.769 | 0.720 | 0.739 | 0.681 | 0.645 | 0.668 | 0.605 |  | 0.617 |  | 0.649 | 0.545 |  | 0.634 | 0.606 | 0.536 | 0.527 |
| 1.0 | 0.823 | 0.724 | 0.774 | 0.657 | 0.589 | 0.629 | 0.528 |  | 0.548 |  | 0.604 | 0.443 |  | 0.583 | 0.544 | 0.429 |  |
| 2.0 | 1.055 | 0.793 | 0.921 | 0.668 | 0.538 | 0.609 | 0.450 |  | $\begin{aligned} & 0.478 \\ & 0.408 \end{aligned}$ |  | 0.573 | 0.333 |  | 0．538 | 0.495 | 0.316 |  |
| 4.0 | 2.08 |  | 1.510 | 0.783 |  | 0.626 |  |  |  |  | 0.577 |  |  |  | 0.473 | 0.210 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $m$ | $\mathrm{MgCl}_{2}$ | $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ | $\mathrm{CaBr}_{2}$ | $\mathrm{CaCl}_{2}$ | $\mathrm{CaI}_{2}$ | $\mathrm{SrCl}_{2}$ | $\mathrm{BaI}_{2}$ |  | $\left.\mathrm{O}_{3}\right)_{2}$ | $\mathrm{ZnCl}_{2}$ | Zn （ | $\left.\mathrm{O}_{4}\right)_{2}$ |  | （ $\left.\mathrm{ClO}_{4}\right)_{2}$ | $\mathrm{H}_{2} \mathrm{SO}_{4}$ | $\mathrm{Na}_{2} \mathrm{SO}_{4}$ | $\mathrm{Cs}_{2} \mathrm{SO}_{4}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.1 | 0.529 | 0.590 | 0.532 | 0.518 | 0.560 | 0.511 | 0.542 |  |  | 0.515 |  | 581 |  | 0.626 | 0.2655 | 0.445 | 0.456 |
| 0.2 | 0.489 | 0.578 | 0.492 | 0.472 | 0.531 | 0.462 | 0.509 |  |  | 0.462 |  | 564 |  | 0.634 | 0.2090 | 0.365 | 0.382 |
| 0.5 | 0.481 | 0.647 | 0.491 | 0.448 | 0.561 | 0.430 | 0.523 |  |  | 0.394 |  |  |  | 0.790 | 0.1557 | 0.268 | 0.291 |
| 1.0 | 0.570 | 0.946 | 0.597 | 0.500 | 0.741 | 0.461 | 0.649 |  |  | 0.339 |  | 929 |  | 1.390 | 0.1316 | 0.204 | 0.235 |
| 2.0 | 1.053 | 2.65 | 1.121 | 0.792 | 1.640 | 0.670 | 1.221 |  |  | 0.289 |  |  |  | 5.91 | 0.1276 |  |  |
| 4.0 | 5.54 | 34.1 | 6.28 | 2.934 |  | 1.977 |  |  |  | 0.307 | 38 |  |  | 60.2 | 0.1700 |  |  |


|  | 오ㅅㅕㅜ웅 000000 |
| :---: | :---: |
| $\begin{aligned} & \stackrel{\infty}{00} \\ & \frac{0}{7} \\ & \frac{1}{4} \end{aligned}$ |  |
|  |  |
| $\begin{aligned} & \stackrel{\circ}{Z_{0}^{0}} \\ & \substack{0 \\ \text { sin }\\ } \end{aligned}$ |  |
| $\begin{aligned} & \text { O゙ } \\ & \text { n } \end{aligned}$ |  |
| ず |  00000 |
| 芘 |  |
| $\begin{aligned} & \text { O゙ } \\ & \text { Oi } \\ & 0 \end{aligned}$ | $00^{\circ} 00^{\circ}$ |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  $00^{0} 00^{\circ}$ |
| $\begin{aligned} & \text { Ö } \\ & \text { N } \end{aligned}$ |  $00^{\circ} 0$ |
| $\begin{aligned} & \text { O" } \\ & =0{ }_{20}^{0} \\ & \sum_{2} \end{aligned}$ |  |
| $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 ゙ \end{aligned}$ |  |
| § | Fancor |

Table 5j-8. Mean-activity Coefficients $\gamma_{ \pm}$of $\mathbf{H C l}$ in Aqueous Solution ( $m$ in mole $\mathrm{kg}^{-1}$ )

| $m$ | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ |  | $25^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0001 | 0.9890 | 0.9890 | 0.9892 | 0.9891 | 0.9885 | 0.9879 | 0.9879 |
| 0.0002 | 0.9848 | 0.9846 | 0.9844 | 0.9842 | 0.9833 | 0.9831 | 0.9831 |
| 0.0005 | 0.9756 | 0.9756 | 0.9759 | 0.9752 | 0.9741 | 0.9738 | 0.9734 |
| 0.001 | 0.9668 | 0.9666 | 0.9661 | 0.9656 | 0.9643 | 0.9639 | 0.9632 |
| 0.002 | 0.9541 | 0.9544 | 0.9527 | 0.9521 | 0.9505 | 0.9500 | 0.9491 |
| 0.005 | 0.9303 | 0.9300 | 0.9294 | 0.9285 | 0.9265 | 0.9250 | 0.9235 |
| 0.01 | 0.9065 | 0.9055 | 0.9052 | 0.9048 | 0.9016 | 0.9000 | 0.8987 |
| 0.02 | 0.8774 | 0.8773 | 0.8768 | 0.8755 | 0.8715 | 0.8690 | 0.8666 |
| 0.05 | 0.8346 | 0.8338 | 0.8317 | 0.8304 | 0.8246 | 0.8211 | 0.8168 |
| 0.1 | 0.8027 | 0.8016 | 0.7985 | 0.7964 | 0.7891 | 0.7850 | 0.7813 |
| 0.2 | 0.7756 | 0.7740 | 0.7694 | 0.7667 | 0.7569 | 0.7508 | 0.7437 |
| 0.5 | 0.7761 | 0.7694 | 0.7616 | 0.7571 | 0.7432 | 0.7344 | 0.7237 |
| 1.0 | 0.8419 | 0.8295 | 0.8162 | 0.8090 | 0.7865 | 0.7697 | 0.7541 |
| 2.0 | 1.078 | 1.053 | 1.024 | 1.009 | 0.9602 | 0.9327 | 0.9072 |
| 4.0 | 2.006 | 1.911 | 1.812 | 1.762 |  |  |  |

two tendencies supplementing each other instead of two opposing each other. The equation for the appropriate half reaction for the left-hand electrode is taken from plan $A$ [column (3)] and the equation for the other half reaction from plan $B$ [column 4]. The equation for the conventional cell reaction is the sum of these equations for the respective half reactions. The standard emf of the cell is the sum of the standard half-cell emfs [column (1) and column (6)]. This procedure can be instructive for beginning students but is not stressed here because the printing of lengthy tables in dual form is usually not feasible. Normally each author selects one plan or the other and uses that one exclusively.

General Discussion. Many electrochemists and many biologists prefer to use the "electrode potentials" of plan B. American physical chemists have usually preferred plan $A$. For his extensive treatise Prof. W. M. Latimer chose plan A. To use his tables those who prefer plan $B$ should observe that the standard half-cell emfs tabulated by him are the negatives of the respective "electrode potentials" and that his equations may be written in the reverse direction to fit plan $B$ rather than plan $A$. The user should also note that his equations are written for integral values of $N$ but not always for $N=1$.

It should be clearly understood that all of the standard emfs of Table $5 \mathrm{j}-6$ are equilibrium values and are valid strictly only when no current is passing or when the current passing is so small that resulting changes in the cell are negligible. The reversal of such a current would not affect the magnitude and, of course, could not alter the algebraic sign of the emf of a cell or half cell. The choice of plan $A$ or plan $B$ is an arbitrary one and has nothing to do with the direction in which current is actually passed through a given cell.
(Constants* are on the molality scale. Italics indicate maximum values)

| Material | ${ }^{\circ} \mathrm{C}$ | $0^{\circ}$ | $5^{\circ}$ | $10^{\circ}$ | $15^{\circ}$ | $20^{\circ}$ | $25^{\circ}$ | $30^{\circ}$ | $35^{\circ}$ | $40^{\circ}$ | $45^{\circ}$ | $50^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Water | $K \times 10^{14}$ | 0.1139 | 0.1846 | 0.2920 | 0.4505 | 0.6809 | 1.008 | 1.469 | 2.089 | 2.919 | 4.018 | 5.474 |
| Formic acid. | $K_{A} \times 10^{4}$ | 1.638 | 1.691 | 1.728 | 1.749 | 1.765 | 1.772 | 1.768 | 1.747 | 1.716 | 1.685 | 1.650 |
| Acetic acid | $K_{A} \times 10^{5}$ | 1.657 | 1.700 | 1.729 | 1.745 | 1.753 | 1.754 | 1.750 | 1.728 | 1.703 | 1.670 | 1.633 |
| Propionic acid. | $K_{A} \times 10^{5}$ | 1.274 | 1.305 | 1.326 | 1.336 | 1.338 | 1.336 | 1.326 | 1.310 | 1.280 | 1.257 | 1.229 |
| $n$-Butyric acid. | $K_{A} \times 10^{5}$ | 1:563 | 1.574 | 1.576 | 1.569 | 1.542 | 1.515 | 1.484 | 1.439 | 1.395 | 1.347 | 1.302 |
| Chloroacetic acid. | $K_{A} \times 10^{3}$ | 1.528 |  | 1.488 |  |  | 1.379 | . . . . |  | 1.230 |  |  |
| Lactic acid | $K_{A} \times 10^{4}$ | 1:287 |  |  |  |  | 1.374 |  |  |  |  | 1.270 |
| Glycolic acid | $K_{A} \times 10^{4}$ | 1.334 |  |  |  |  | 1.475 | . . . . |  |  |  | 1.415 |
| Sulfuric acid | $K_{2 A} \times 10^{2}$ |  | 1.80 |  | 1.36 |  | 1.01 |  | 0.75 |  | 0.56 |  |
| Carbonic acid | $K_{1 A} \times 10^{7}$ $K_{2 A} \times 10^{11}$ | $\begin{aligned} & 2.64 \\ & 2.36 \end{aligned}$ | 3.04 2.77 | $\begin{aligned} & 3.44 \\ & 3.24 \end{aligned}$ | $\begin{aligned} & 3.81 \\ & 3.71 \end{aligned}$ | 4.16 4.20 | $\begin{aligned} & 4.45 \\ & 4.69 \end{aligned}$ | $\begin{aligned} & 4.71 \\ & 5.13 \end{aligned}$ | $\begin{aligned} & 4.90 \\ & 5.62 \end{aligned}$ | $\begin{aligned} & 5.04 \\ & 6.03 \end{aligned}$ | $\begin{aligned} & 5.13 \\ & 6.38 \end{aligned}$ | $\begin{aligned} & 5.19 \\ & 6.73 \end{aligned}$ |
| Phosphoric acid | $K_{1 A} \times 10^{3}$ $K_{2 A} \times 10^{8}$ | $\begin{aligned} & 8.97 \\ & 4.85 \end{aligned}$ | 5.24 | 5.57 | 5.89 | 6.12 | $\begin{aligned} & 7.52 \\ & 6.34 \end{aligned}$ | 6.46 | 6.53 | 6.58 | 6.59 | $\begin{aligned} & 5.50 \\ & 6.55 \end{aligned}$ |
| Nitric acid | $K_{A}$ |  |  |  |  |  | 21 |  |  |  |  |  |
| Glycine. | $\begin{aligned} & K_{A} \times 10^{3} \\ & K_{B} \times 10^{5} \end{aligned}$ |  | $\cdots$ | $\begin{aligned} & 3.94 \\ & 4.68 \end{aligned}$ | 5.12 | $\begin{aligned} & 4.31 \\ & 5.57 \end{aligned}$ | $\begin{aligned} & 4.47 \\ & 6.04 \end{aligned}$ | $\begin{aligned} & 4.59 \\ & 6.52 \end{aligned}$ | 6.98 | $\begin{aligned} & 4.81 \\ & 7.43 \end{aligned}$ | 7.87 |  |
| Alanine | $\begin{aligned} & K_{A} \times 10^{3} \\ & K_{B} \times 10^{5} \end{aligned}$ | $\cdots$ |  | $\cdots$ | … . . ${ }^{\text {a }}$ | 4.47 6.90 | 4.57 7.47 | 4.66 8.08 | 4.71 8.61 | $\begin{aligned} & 4.74 \\ & 9.10 \end{aligned}$ | 4.76 9.60 |  |

* Letter subscripts on $K$ indicate dissociation as acid or base, respectively; number subscripts indicate first, second, or third dissociation.

Table 5j-10. Relative Apparent Molal Heat Content $\varphi$ L and Partial Molal Heat Content $\bar{L}_{2}$ of Solutes in Dilute Aqueous Solutions at $25^{\circ} \mathrm{C}$
(cal mole ${ }^{-1}$ )

| $m$ |  | 0.0001 | 0.0004 | 0.0016 | 0.0064 | 0.0100 | 0.0400 | 0.0900 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NaCl | $\begin{aligned} & \varphi L \\ & \bar{L}_{2} \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$ | $\begin{array}{r} 8.5 \\ 12.5 \end{array}$ | $\begin{aligned} & 17.0 \\ & 240 \end{aligned}$ | $\begin{aligned} & 33 \\ & 46 \end{aligned}$ | $\begin{aligned} & 40 \\ & 57 \end{aligned}$ | $\begin{aligned} & 67 \\ & 92 \end{aligned}$ | $\begin{array}{r} 83 \\ 104 \end{array}$ |
| $\mathrm{NaIO}_{3}$ | $\begin{aligned} & \varphi L \\ & \tilde{L}_{2} \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 5.8 \end{aligned}$ | $\begin{array}{r} 7.5 \\ 11.0 \end{array}$ | $\begin{aligned} & 14.0 \\ & 19.8 \end{aligned}$ | $\begin{aligned} & 21 \\ & 24 \end{aligned}$ | $\begin{aligned} & 21 \\ & 20 \end{aligned}$ |  |  |
| KCl | $\begin{aligned} & \varphi L \\ & \bar{L}_{2} \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$ | $\begin{array}{r} 8.5 \\ 12.5 \end{array}$ | $\begin{aligned} & 16.0 \\ & 24.0 \end{aligned}$ | $\begin{aligned} & 31 \\ & 46 \end{aligned}$ | $\begin{aligned} & 38 \\ & 55 \end{aligned}$ | $\begin{aligned} & 65 \\ & 82 \end{aligned}$ | $\begin{aligned} & 77 \\ & 91 \end{aligned}$ |
| $\mathrm{KClO}_{4}$ | $\begin{aligned} & \varphi L \\ & \tilde{L}_{2} \end{aligned}$ | $\begin{aligned} & 4.3 \\ & 6.2 \end{aligned}$ | $\begin{array}{r} 8.0 \\ 11.3 \end{array}$ | $\begin{aligned} & 13.0 \\ & 16.6 \end{aligned}$ | $\begin{aligned} & 16 \\ & 13 \end{aligned}$ | $\begin{array}{r} 14 \\ 4 \end{array}$ | $\begin{aligned} & -28 \\ & -86 \end{aligned}$ |  |
| $\mathrm{Li}_{2} \mathrm{SO}_{4}$ | $\begin{aligned} & \varphi L \\ & \tilde{L}_{2} \end{aligned}$ | $\begin{aligned} & 24 \\ & 35 \end{aligned}$ | $\begin{aligned} & 47 \\ & 69 \end{aligned}$ | $\begin{array}{r} 91 \\ 135 \end{array}$ | $\begin{aligned} & 177 \\ & 260 \end{aligned}$ | $\begin{aligned} & 218 \\ & 317 \end{aligned}$ | $\begin{aligned} & 377 \\ & 508 \end{aligned}$ | $\begin{aligned} & 488 \\ & 620 \end{aligned}$ |
| $\mathrm{Cs}_{2} \mathrm{SO}_{4}$ | $\begin{aligned} & \varphi L \\ & \tilde{L}_{2} \end{aligned}$ | $\begin{aligned} & 20 \\ & 29 \end{aligned}$ | $\begin{aligned} & 39 \\ & 57 \end{aligned}$ | $\begin{array}{r} 71 \\ 102 \end{array}$ | $\begin{aligned} & 121 \\ & 161 \end{aligned}$ | $\begin{aligned} & 139 \\ & 176 \end{aligned}$ | $\begin{aligned} & 161 \\ & 152 \end{aligned}$ | $\begin{array}{r} 137 \\ 87 \end{array}$ |
| $\mathrm{SrCl}_{2}$ | $\begin{aligned} & \varphi L \\ & \tilde{L}_{2} \end{aligned}$ | $\begin{aligned} & 23 \\ & 34 \end{aligned}$ | $\begin{aligned} & 46 \\ & 66 \end{aligned}$ | $\begin{array}{r} 86 \\ 125 \end{array}$ | $\begin{aligned} & 161 \\ & 232 \end{aligned}$ | $\begin{aligned} & 195 \\ & 277 \end{aligned}$ | $\begin{aligned} & 332 \\ & 443 \end{aligned}$ | $\begin{aligned} & 420 \\ & 528 \end{aligned}$ |
| $\mathrm{SrBr}_{2}$ | $\begin{aligned} & \varphi L \\ & { }^{\varphi}{ }_{2} \end{aligned}$ | $\begin{aligned} & 23 \\ & 33 \end{aligned}$ | $\begin{aligned} & 44 \\ & 64 \end{aligned}$ | $\begin{array}{r} 82 \\ 119 \end{array}$ | $\begin{aligned} & 152 \\ & 216 \end{aligned}$ | $\begin{aligned} & 182 \\ & 254 \end{aligned}$ | $\begin{aligned} & 293 \\ & 383 \end{aligned}$ | 366 452 |
| $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ | $\begin{aligned} & \varphi L \\ & \bar{L}_{2} \end{aligned}$ | $\begin{aligned} & 19 \\ & 27 \end{aligned}$ | $\begin{aligned} & 36 \\ & 51 \end{aligned}$ | $\begin{aligned} & 59 \\ & 75 \end{aligned}$ | $\begin{aligned} & 72 \\ & 68 \end{aligned}$ | $\begin{aligned} & 66 \\ & 37 \end{aligned}$ | $\begin{array}{r} -46 \\ -195 \end{array}$ | $\begin{aligned} & -223 \\ & -528 \end{aligned}$ |

Table 5j-11. Standard Entropies of Monatomic Ions in Aqueous Solutions at $25^{\circ} \mathrm{C}$
(Referred* to $\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \theta ; \Delta \mathrm{S}^{\circ}=\mathbf{0}$; cal mole ${ }^{-1} \operatorname{deg}^{-1}$ )

| Ion | $\bar{S}^{o}$ | Ion | $\bar{S}^{o}$ | Ion | $\bar{S}^{o}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cs}^{+}$ | 31.8 | $\mathrm{Ca}^{++}$ | -13.2 | $\mathrm{Cr}^{3+}$ | -73.5 |
| $\mathrm{Tl}^{+}$ | 30.4 | $\mathrm{Cd}^{++}$ | -14.6 | $\mathrm{Al}^{3+}$ | -74.9 |
| $\mathrm{Rb}^{+}$ | 29.7 | $\mathrm{Mn}^{++}$ | -20 | $\mathrm{Ga}^{3+}$ | -83 |
| $\mathrm{~K}^{+}$ | 24.5 | $\mathrm{Cu}^{++}$ | -23.6 | $\mathrm{U}^{4+}$ | -78 |
| $\mathrm{Ag}^{+}$ | 17.67 | $\mathrm{Zn}^{++}$ | -25.45 | $\mathrm{Pu}^{4+}$ | -87 |
| $\mathrm{Na}^{+}$ | 14.4 | $\mathrm{Fe}^{++}$ | -27.1 | $\mathrm{I}^{-}$ | 26.14 |
| $\mathrm{Li}^{+}$ | 3.4 | $\mathrm{Mg}^{++}$ | -28.2 | $\mathrm{Br}^{-}$ | 19.25 |
| $\mathrm{~Pb}^{++}$ | 5.1 | $\mathrm{U}^{3+}$ | -36 |  |  |
| $\mathrm{Ba}^{++}$ | 3.0 | $\mathrm{Pu}^{3+}$ | -39 | $\mathrm{Cl}^{-}$ | 13.17 |
| $\mathrm{Hg}^{++}$ | -5.4 | $\mathrm{Gd}^{3+}$ | -43 | $\mathrm{~F}^{-}$ | -2.3 |
| $\mathrm{Sn}^{++}$ | -5.9 | $\mathrm{In}^{3+}$ | -62 | $\mathbf{S}^{-}$ | -6.4 |
| $\mathrm{Sr}^{++}$ | -9.4 | $\mathrm{Fe}^{3+}$ | -70.1 |  |  |

[^278]Table 5j-12. Standard Entropies of Polyatomic Ions in Aqueous Solutions at $25^{\circ} \mathrm{C}$
(Referred ${ }^{*}$ to $\mathrm{H}_{2} \rightarrow \mathbf{2 H} \mathrm{H}^{+}+2 \theta ; \Delta \mathrm{S}^{o}=0$; cal mole ${ }^{-1} \mathrm{deg}^{-1}$ )

| Ion | $\overline{\text { So }}$ | Ion | $\bar{S}$ | Ion | $\bar{S}^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{OH}^{-}$ | -2.5 | $\mathrm{HSO}_{4}{ }^{-}$ | 30.3 | $\mathrm{PO}_{4}{ }^{3-}$ | -52 |
| $\mathrm{ClO}^{-}$ | 10.0 |  |  | $\mathrm{AsO}_{4}{ }^{3-}$ | -34.6 |
| $\mathrm{HCO}_{2}{ }^{-}$ | 21.9 | $\mathrm{H}_{2} \mathrm{ABO}_{4}{ }^{-}$ | 28 | $\mathrm{HF}_{2}{ }^{-}$ | 0.5 |
| $\mathrm{ClO}_{2}{ }^{-}$ | 24.1 | $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ | 21.3 | $\mathrm{BF}_{4}{ }^{-}$ | 40 |
| $\mathrm{NO}_{2}{ }^{-}$ | 29.9 | $\mathrm{HN}_{2} \mathrm{O}_{4}^{-}$ | 34 | $\mathrm{SiF}_{6}=$ | -12 |
| $\mathrm{NO}_{3}{ }^{-}$ | 35.0 | $\mathrm{BeO}_{2}{ }^{-}$ | -27 | $\mathrm{CuCl}_{2}{ }^{-}$ | 49.2 |
| $\mathrm{ClO}_{3}{ }^{-}$ | 39.0 | $\mathrm{CO}_{3}=$ | -12.7 | $\mathrm{AuCl}_{4}{ }^{-}$ | 61 |
| $\mathrm{BrO}_{3}{ }^{-}$ | 38.5 | $\mathrm{SO}_{3}=$ | -7 | $\mathrm{PdCl}_{4}{ }^{-}$ | 36 |
| $1 \mathrm{O}_{3}{ }^{-}$ | 28.0 | $\mathrm{SO}_{4}{ }^{-}$ | 4.1 | $\mathrm{PtCl}_{4}=$ | 42 |
| $\mathrm{ClO}_{4}{ }^{-}$ | 43.2 | $\mathrm{SeO}_{4}{ }^{-}$ | 5.7 | $\mathrm{PtCl}_{6}=$ | 52.6 |
| $\mathrm{MnO}_{4}{ }^{-}$ | 45.4 | $\mathrm{N}_{2} \mathrm{O}_{2}=$ | 6.6 | $\mathrm{I}_{3}{ }^{-}$ | 41.5 |
| $\mathrm{HCO}_{3}{ }^{-}$ | 22.7 | $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{-}$ | 10.6 | $\mathrm{Ag}(\mathrm{CN})_{2}{ }^{-}$ | 49 |
| $\mathrm{HSO}_{3}{ }^{-}$ | 26 | $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{-}$ | 51.1 | $\mathrm{Ni}(\mathrm{CN})_{4}=$ | 33 |
| $\mathrm{SH}^{-}$ | 14.9 | $\mathrm{HPO}_{4}{ }^{-}$ | -8.6 | $\mathrm{FeCl}^{++}$ | -22 |
|  |  | $\mathrm{HAsO}_{4}{ }^{-}$ | 0.9 |  |  |

* This is not equivalent to the setting of $\mathrm{S}^{\circ}$ of $\mathrm{H}^{+}$equal to zero; cf. Klotz (1950).


## References

1. Bates, R. G.: "Electrometric $p \mathrm{H}$ Determinations," John Wiley \& Sons, Inc., New York, 1954.
2. Conway, B. E.: "Electrochemical Data," Elsevier Publishing Company, Amsterdam, 1952.
3. Daniels, F., and R. A. Alberty: "Physical Chemistry," John Wiley \& Sons, Inc., New York, Chapman \& Hall, Ltd., London, 1955.
4. Guggenheim, E. A.: J. Phys. Chem. 33, 842 (1929).
5. Guggenheim, E. A.: "Thermodynamics," North Holland Publishing Co., Amsterdam, Interscience Publishers, Inc., New York, 1949.
6. Harned, H. S., in Electrochemical Constants, Natl. Bur. Standards (U.S.) Circ. 524, 1953.
7. Harned, H. S., and B. B. Owen: "The Physical Chemistry of Electrolytic Solutions," 2d ed., Reinhold Publishing Corporation, New York, 1950.
8. Hood, G. C., O. Redlich, and C. A. Reilly: J. Chem. Phys. 22, 2067 (1954).
9. "International Critical Tables of Numerical Data, Physics, Chemistry and Technology," McGraw-Hill Book Company, Inc., New York, 1926-1933.
10. International Union of Pure and Applied Chemistry (Paris), Comptes rendus de la dix-septième conférence, Stockholm, 1953.
11. Klotz, I. M.: "Chemical Thermodynamics," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1950.
12. Kohlrausch, F. W. G., and L. Holborn: "Das Leitvermögen der Elektrolyte," Teubnerverlagsgesellschaft, Leipzig, 1898.
13. Kolthoff, I. M., and J. J. Lingane: "Polarography," 2d ed., Interscience Publishers, Inc., New York, 1952.
14. Kortum, G., and J. O'M. Bockris: "Textbook of Electrochemistry," vol. II, Elsevier Publishing Company, Amsterdam, 1951.
15. Landolt-Börnstein: "Physikalisch-Chemische Tabellen," 5th ed., Springer-Verlag OHG, Berlin, 1927-1935.
16. Latimer, W. M.: "The Oxidation States of the Elements and Their Potentials in Aqueous Solutions," 2d ed., Prentice-Hall, Inc., Englewood Cliffs, N. J., 1952.
17. Powell, R. F., and W. M. Latimer: J. Chem. Phys. 19, 1139-1141 (1951).
18. Redlich, O.: Chem. Revs. 39, 333 (1946).
19. Robinson, R. A., and R. H. Stokes: Trans. Faraday Soc. 45, 612 (1949).
20. Robinson, R. A., and R. H. Stokes: "Electrolyte Solutions," Butterworths Publications, Ltd., London, 1955.
21. Rossini, F. D., D. D. Wagman, W. H. Evans, S. Levine, and I. Jaffe: Selected Values of Chemical Thermodynamic Properties, Natl. Bur. Standards (U.S.) Circ. 500, 1952.
22. Scudder, H.: "The Electrical Conductivity and Ionization Constants of Organic Compounds," D. Van Nostrand Company, Inc., New York, 1914.
23. von Stackelberg, M.: "Polarographische Arbeitsmethoden," Walter De Gruyter \& Co., Berlin, 1950.

# 5k. Electric and Magnetic Properties of the Earth and Stars 

B. B. PHILLIPS ${ }^{1}$<br>U.S. Weather Bureau<br>R. ${ }^{\text {G. VAN NOSTRAND }}{ }^{2}$<br>Magnolia Petroleum Company<br>DAVID G. KNAPP ${ }^{3}$<br>U.S. Coast and Geodetic Survey<br>L. M. BRANSCOMB ${ }^{4}$<br>The National Bureau of Standards

## ATMOSPHERIC ELECTRICITY

Ek-1. Atmospheric Ionization. Cosmic radiation is the chief source of ionization in the lower stratosphere and throughout the troposphere except for the lowest 1 to 2 km over land (Table $5 \mathrm{k}-1$ ). Within the air stratum adjacent to land surfaces, the predominant ionizer is radiation from radioactive matter in the earth and suspended in the atmosphere. The intense ionization of the ionosphere results from the ultraviolet and corpuscular radiation from the sun (Table 5k-2).

The mobility of small ions in pure dry air is given as 1.6 and $2.2 \mathrm{~cm} / \mathrm{sec} / \mathrm{volt} / \mathrm{cm}$ for the positive and negative ions, respectively, by Loeb. ${ }^{5}$ In the presence of air impurities, small ions are transformed into large ions whose mobilities are of the

[^279]Table 5k-1. Rate of Formation, Density, and Mean Life of Small Ions in the Lower Atmosphere

| Altitude, km | Rate of formation [Fleming (1949)], ion pairs $/ \mathrm{cm}^{3} / \mathrm{sec}$ |  | Density [Gish and Sherman, Explorer II (1936)], ion pairs $/ \mathrm{cm}^{3}$ | Mean life [Gish and Sherman, Explorer II (1936)], sec |
| :---: | :---: | :---: | :---: | :---: |
|  | Madras, India, lat $3^{\circ} \mathrm{N}$ (mag) | Omaha, Nebr., lat $51^{\circ} \mathrm{N}$ (mag) |  |  |
| Surface* |  |  |  |  |
| Ocean. |  | 2 | 600 | 300 |
| Country . | . . | 10 | 800 | 80 |
| City.. |  | 10 | 100 | 10 |
| 3 | 5 | 7 | 1,400 | 220 |
| 6 | 10 | 14 | 2,800 | 180 |
| 9 | 16 | 33 | 4,000 | 120 |
| 12 | 20 | 44 | 4,600 | 110 |
| 15 | 18 | 43. | 5,100 | 110 |
| 18 | 11 | 33 | 4,400 | 140 |
| 21 | 6 | 22 | 2,900 | 140 |
| 25 | 3 | 12 |  |  |

* Author estimated values for middle latitudes.

Table 5k-2. Characteristics of the Different Ionospheric Regions of the Upper Atmosphere*


[^280]order of $10^{-4} \mathrm{~cm} / \mathrm{sec} / \mathrm{volt} / \mathrm{cm}$, and to a lesser extent, intermediate ions of one-tenth to one-hundredth the mobility of the small ion. Small ions consist of not more than a few molecules, whereas large ions are molecular aggregates with a diameter of the order of $10^{-6} \mathrm{~cm}$. The density of the large ion at the surface of the earth varies from a few hundred per cubic centimeter over the oceans to tens of thousands per cubic centimeter in polluted city air.

Table 5k-3. Representative Surface Mean Values of Air Conductivity, Electric Field, and Air-earth Current Density at Various Locations over the Earth

| Place | Location | Total conductivity (esu) $\times$ $10^{4}$ | Positive/ negative conductivity | Electric field, volts/m | $\begin{gathered} \text { Air- } \\ \text { earth } \\ \text { current } \\ \text { density } \\ (\mathrm{esu}) \times \\ 10^{7} \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Potsdam. | $52.4{ }^{\circ} \mathrm{N}, 13.1^{\circ} \mathrm{E}$ | 0.95 | 1.16 | 245 | 7.1 | Swann (1947) |
| Davos. | $46.8^{\circ} \mathrm{N}, 9.8{ }^{\circ} \mathrm{E}$ | 2.68 | 1.13 | 64 | 5.2 | Swann (1947) |
| Petermann. | $65.2^{\circ} \mathrm{S}, 295.8^{\circ} \mathrm{E}$ | 4.16 | 1.62 | 176 | 22.6 | Swann (1947) |
| Seeham. | $48.0{ }^{\circ} \mathrm{N}, 346.9^{\circ} \mathrm{E}$ | 2.64 | 1.02 | 84 | 6.9 | Swann (1947) |
| College-Fairbanks. | $64.9{ }^{\circ} \mathrm{N}, 212.2^{\circ} \mathrm{E}$ | 3.10 | 1.29 | 104 |  | Sherman (1937) |
| Kew. | $51.5^{\circ} \mathrm{N}, 359.7^{\circ} \mathrm{E}$ | 0.35* | . . . | 363 | 3.1* | Scrase (1934) |
| Tucson. | $32.15^{\circ} \mathrm{N}, 110.5^{\circ} \mathrm{E}$ | 4.29 | 1.10 | 55 | 7.1 | Wait (1953) |
| Watheroo. | $30.3{ }^{\circ} \mathrm{S}, 115.9^{\circ} \mathrm{E}$ | 3.7 | 1.14 | 82 | 10. - | Wait and Torreson (1941) |
| Ocean: |  |  |  |  |  |  |
| Carnegie (1915-1921) |  | 3.0 | 1.14 | 124 | 10.3 | Mauchly (1926) |
| Carnegie (1928-1929) | -.............. | 2.1 | 1.19 | 132 | 10.4 | Torreson, Gish, Parkinson, and Wait (1946) |

* Positive component only.

5k-2. Electric Field, Conductivity, and Air-earth Current. A 10 to 40 per cent diurnal variation is observed about the mean surface values of electric field, conductivity, and air-earth current. The largest variations occur over land according to local time and are of complex origin (Table $5 \mathrm{k}-3$ ). Over the oceans the variation of electric field and conduction current depends upon universal time while the conductivity shows little daily variation. Surface oceanic observations and observations aloft (Tables $5 \mathrm{k}-4$ and $5 \mathrm{k}-5$ ) are considered to be representative of the average over the earth as a whole. In undisturbed weather the electric field is negative and the airearth conduction current is directed toward the earth; i.e., positive ions move toward and negative ions away from the earth. The conductivity of the atomosphere is due chiefly to the small ion. The intermediate and large ions contribute little because of, respectively, meager concentration and low mobility. The total fair-weather air-earth current is about $1,800 \mathrm{amp}$. This current must have a counterpart which returns a positive excess of electricity to the upper atmosphere. The surviving hypothesis is that this positive current passes upward through thunderstorm cells (Table $5 \mathrm{k}-6$ and see Fig. $5 \mathrm{k}-1$ and Sec. $5 \mathrm{k}-4$ ) to be distributed throughout the highly conductive upper atmosphere. The fair-weather air-earth current would neutralize 90 per cent of the bound charge on the earth's surface within 30 min in the absence of such a return current.

Table 5k-4. Variation of Positive Conductivity with Altitude in the Lower Atmosphere

| Altitude, km | Mean value of positive conductivity (esu) $\times 10^{4}$ |  |  |
| :---: | :---: | :---: | :---: |
|  | Gish and Sherman, Explorer II (1936) | Gish and Wait (1950) | Callahan, Coroniti, Parziale, and Patten (1951) |
| 1.5 | 1.9 | 2.2 | 2.4 |
| 3.0 | 3.1 | 2.8 | 4.0 |
| 6.0 | 10.5 | 8.8 | 9.7 |
| 9.0 | 18.9 | 17.8 | 18.8 |
| 12.0 | 35.2 | 29.2 |  |
| 15.0 | 53.5 |  |  |
| 18.0 | 75.5 |  |  |
| 21.0 | 70.0 |  |  |

Table 5k-5. Variation of Electric Field with Altitude in the Lower Atmosphere

| Altitude, km | Electric field, volts/m |  |  |
| :---: | :---: | :---: | :---: |
|  | Schweidler, Germany (1929) | $\begin{gathered} \text { Wigand, } \\ \text { Germany (1925) } \end{gathered}$ | Koenigsfeld,* <br> Belgian Congo (1953) |
| Surface | 130 | 136 | 20 |
| 0.5 | 50 | ..... | 36 |
| 1.5 | 30 |  | 64 |
| 2.5 |  | 27 | 58 |
| 3.0 | 20 |  | 27 |
| 4.4 | . . | 18 | 10 |
| 6.0 | 10 | ..... | 10 |
| 6.5 |  | 8.8 | 8 |
| 9.0 | 5 | ..... | 8 |
| 12.0 | . | ..... | 6 |
| 15.0 | . . |  | 6 |

* Altitudes based upon U.S. Standard Atmosphere pressure-height conversion.

Table 5k-6. Electric-field Intensity inside Natural Clouds (Gunn, 1948)
Average vertical field within stable nonprecipitating clouds.
Average vertical field within stable precipitating clouds... $<40$ volts $/ \mathrm{cm}$
Average max vertical field observed within nine different thunderclouds

1,300 volts/cm
Max field observed (just prior to lightning strike to the observing aircraft)

3,400 volts/cm


TIME-MINUTES
Fig. 5k-1. Characteristic surface electric field intensity variations observed near active thunderstorms. (a) Most common variation showing systematic induction of positive free charges on the earth's surface and their sudden destruction by lightning discharges; (b) less common type variation showing the induction of free charge of opposite polarity. (Gunn, 1954.)

## 5k-3. Precipitation Electricity

Table 5k-7. Average Free Electrical Charge on Individual Precipitation Particles
$\left[(\mathrm{esu}) \times 10^{3}\right]$

| Observer | Alti- <br> tude, ft | $\begin{array}{\|c} \text { Sign } \\ \text { of } \\ \text { charge } \end{array}$ | Quiet rain | Shower rain | Elec- <br> trical <br> storm <br> rain | Quiet snowfall | Squall snowfall |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gschwend (1920). | Surface | + | 0.24 | 1.75 | 8.11 | 0.09 | 5.64 |
|  |  | - | 0.53 | 5.43 | 5.88 | 0.06 | 4.78 |
| Banerji and Lele (1932) | Surface | $+$ |  | 6.4 | 6.9 |  |  |
|  |  | - |  | 6.7 | 7.3 |  |  |
| Chalmers and Pasquill (1938) | Surface | + | 2.2 | 1.3 | 3.7* | . . . | 10.5 |
|  |  | - | 3.0 | 2.3 | 9.2* |  | 5.7 |
| Gunn and Devin (1953) | Surface | + | . . . |  | 22 |  |  |
|  |  | - |  |  | 31 |  |  |
| Gunn (1947, 1950) . . . | 5,000 | $+$ | . . . |  | 81 |  |  |
|  |  | - | $\ldots$ | 30 | 63 |  |  |
|  | 10,000 | $+$ | . . . |  | 148 |  |  |
|  |  | - | $\cdots$ | 34 | 112 |  |  |
|  | 15,000 | $+$ | . . . | 17 | 123 |  |  |
|  |  | - | $\ldots$ | 36 | 76 |  |  |
|  | 20,000 | $+$ |  | 63 | 52 |  |  |
|  |  | - |  |  | 62 |  |  |

[^281]5k-4. Lightning Discharge and Thunderstorm Characteristics. The lightning discharge represents the occurrence of electrical breakdown and the passage of a spark discharge between two charge centers (Table $5 \mathrm{k}-9$ ). In each thundercloud a concentration of negative charge is found in the lower portion of the cloud at an average height of 3 to 4 km above the surface with a concentration of positive charge at a higher altitude. A small positively charged region is often observed in the lowest limit of the cloud. Lightning discharges to ground occur between charged portions of the cloud and the induced charge on the earth. The average charge neutralized per strike is of the order of 20 coulombs while the median electric moment destroyed is about 110 coulomb-km (Wormell, 1952). Approximately 85 per cent of strokes to ground transfer negative charge to earth. Each strike is composed of one or more current peaks.

Table $5 \mathrm{k}-8$ gives, in all cases, data from the minimum and maximum curves obtained from the published data on lightning discharges. Each quantity listed represents that value which was excelled by 90,50 , and 10 per cent of the strokes. The maximum observed value is given in the right-hand column.

Table 5k-8. Characteristics of Lightning Strokes*

| Item |  | \% of strokes with values in excess of those shown below |  |  | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 90\% | 50\% | 10\% |  |
| 1. Current peaks measured in | Min | 2.2 | 6.0 | 20.0 |  |
| stroke path, kiloamp | Max | 5.0 | 8.6 | 27.5 | 160 |
| 2. Current amplitudes in steel | Min | 1.0 | 8.8 | 28.4 |  |
| towers, kiloamp | Max | 5.3 | 12.2 | 35.8 | 130 |
| 3. Stroke currents computed | Min | 2.4 | 13.3 | 50.0 |  |
| from item 2, kiloamp | Max | 10.3 | 40.0 | 101.0 | 220 |
| 4. Charges in current peaks, coulombs | Min Max | 0.04 | 0.23 | 1.03 | 5.6 |
| 5. Total stroke charges, cou- | Min | 2.3 | 10.4 | 86.0 |  |
| lombs | Max | 4.2 | 22.2 | 100.0 | 165 |
| 6. Total stroke duration, sec- | Min |  | 0.0006 | 0.2 |  |
| onds | Max | 0.1 | 0.37 | 0.68 | 1.6 |
|  | Min | 1.0 | 1.8 | 4.0 |  |
| stroke | Max | 1.3 | 3.0 | 11.0 | 42 |

* J. H. Hagenguth, "Comp. of Meteorology," Malone, ed., American Meteorological Society, Boston, 1951.


## Table 5k-9. Electrical Characteristics of Thunderstorms

Potential existing between centers of thunderstorm charge distributions prior to discharge.................................. $5 \times 10^{7}$ to $10^{9}$ volts
Energy released per average lightning discharge.............. $10^{9}$ to $10^{10}$ joules
Rate of energy dissipation from the average thunderstorm..... Approx $10^{6} \mathrm{kw}$

## References

1. Banerji, S. K., and S. R. Lele: Nature 130, 998-999 (1932).
2. Callahan, R. C., S. C. Coroniti, A. J. Parziale, and R. Patten: J. Geophys. Research 56, 545-551 (1951).
3. Chalmers, J. A., and F. Pasquill: Proc. Phys. Soc. (London) 50, 1-15 (1938).
4. Fleming, J. A.: "Terrestrial Magnetism and Electricity," Dover Publications, New York, 1949.
5. Gish, O. H., and K. L. Sherman, Natl. Geog. Soc., Contrib. Tech. Papers, Stratosphere Ser., no. 2, 94-116 (1936).
6. Gish, O. H., and G. R. Wait: J. Geophys. Research 55 (4), 473 (1950).
7. Gschwend, P.: Jahrb. Radioakt. u. Elektronik 17, 62-79 (1920).
8. Gunn, R.: Phys. Rev. 71, 181-186 (1947).
9. Gunn, R.: J. Appl. Phys. 19, 481-484 (1948).
10. Gunn, R.: J. Geophys. Research 55, 171-178 (1950).
11. Gunn, R.: J. Meteorol. 11 (2), 130-138 (1954).
12. Gunn, R., and C. Devin, Jr.: J. Meteorol. 10 (4), 279-284 (1953).
13. Koenigsfeld, L.: "Thunderstorm Electricity," Byers, ed., University of Chicago
14. Mauchly, S. J.: Research Dept. Terr. Mag. Carnegie Inst. Wash. 5, Publ. 175 (1926).
15. Schweidler, E.: "Einführung in die Geophysik," vol. 2, pp. 291-375, SpringerVerlag OHG, Berlin, 1929
16. Scrase, F. J.: London Meteorol. Off. Geophys. Mem. 60 (1934).
17. Sherman, K. L.: Terr. Mag. and Atmos. Elec. 42, 371-390 (1937).
18. Swann, W. F. G.: Encyclopaedia Britannica, 1947.
19. Torreson, O. W., O. H. Gish, W. C. Parkinson, and G. R. Wait: Carnegie Inst. Wash. Publ. 568 (1946).
20. Wait, G. R., and W. D. Parkinson: Final Report AF Contract No. AF 19(604)-251 (1953).
21. Wait, G. R., and O. W. Torreson: Terrestrial Magnetism and Atm. Elec. 46 (3), 319-342 (1941).
22. Wigand, A.: Phys. Z. 26, 81 (1925).
23. Wormell, T. W.: Rev. Modern Meteorol. 8 (1952).

## TERRESTRIAL ELECTRICITY

5k-5. Earth Currents. Electric currents in the earth consist of telluric currents, natural local currents, and currents derived from industrial sources. They are detected by observation of the potential difference between two electrodes embedded in the earth.
Telluric currents flow in fairly uniform sheets over large areas; their exact cause is still in doubt. Telluric currents change continually in magnitude and direction with component periods varying from less than a second to many days. Qualitatively, these variations are related to the corresponding variations in the geomagnetic field. The principal variation is daily and has a maximum amplitude of a few tens of millivolts per kilometer. Disturbances, such as those due to magnetic storms, display amplitudes as much as 30 times the normal in middle latitudes and 150 times normal in high latitudes. Extremely large earth currents flow during thunderstorms but are more random and more localized than normal telluric currents.

Steady local currents, of much larger magnitude than telluric currents, are produced by strong chemical reactions in the earth. For example, oxidation of that part of a sulfide deposit lying above the water table, in contrast to the inactive part lying below the water table, causes current to flow along the surface of the earth toward the zone of oxidation. Potential differences above 500 mv in 100 ft have been observed. The same type of differential chemical reaction in the corrosion of buried pipes causes the flow of currents which may be used to detect the centers of corrosion.

Artificial direct currents of large but variable magnitude are caused by the ground returns of electric railroads, etc. Alternating currents of comparatively low and unpredictable magnitude are associated with power lines; frequencies of 60 ops , and its odd harmonics, predominate.

For extensive discussions concerning the details of earth currents, and how they may be measured, the reader should consult the literature. ${ }^{1}$
$5 \mathrm{k}-6$. Resistivity of the Earth. The generalized representation of the resistivity of earth materials (Fig. 5k-2) can be useful only if one considers the many factors which cause so much variation in the resistivity reported for a given rock type. The principal mechanism of conduction in rocks is electrolytic and, therefore, the resistivity of a given rock is dependent upon the amount of water which the rock contains as well as the resistivity of that water. The amount of water contained in the rock is


Fig. 5k-2. Resistivities of earth materials.
dependent upon two factors; the porosity of the rock, which is why the dense igneous rocks are usually more resistant than the sediments: and the availability of water to fill the pores, which explains why the near surface resistivities follow the meteorological conditions closely, rising in times of prolonged dry weather and decreasing after a soaking rain. The resistivity of the included water depends on the quantity of dissolved salts which have been gained either because the water has long been in contact with a rock normally thought to be insoluble or because the original rock minerals have been weathered into more soluble minerals. In drill holes, where the temperature increases with depth, it is important to note that the resistivity of a given rock decreases as the temperature increases. A further temperature effect lies in actual

[^282]
## MAGNETIC PROPERTIES OF THE EARTH AND STARS 5-291

freezing of the enclosed water which causes the rock resistivity to increase almost infinitely. Earth materials are usually electrically anisotropic; the resistivity in a direction perpendicular to the bedding planes is appreciably greater than that in a direction parallel to the bedding planes.
In Fig. 5k-2, the values indicated with an asterisk are based on electrical resistivity logs made in drill holes. ${ }^{1}$ Other data are largely based on laboratory and in situ measurements at the surface. ${ }^{2}$ For a more detailed breakdown of rock types, etc., these references should be consulted. Either of the two textbooks gives an adequate description of how earth resistivities are measured in the field.

## TERRESTRIAL MAGNETISM

5k-7. Scope and Nomenclature. Terrestrial magnetism, or geomagnetism, is concerned with the patterns and changes of the earth's magnetic field and with the physical entities that govern them.

The geomagnetic field vector $F$ at any site is made up of the orthogonal components $\mathbf{X}$ (true north), $\mathbf{Y}$ (east), and $\mathbf{Z}$ (downward). The horizontal component of $\mathbf{F}$ (the resultant of $\mathbf{X}$ and $\mathbf{Y}$ ) is $\mathbf{H}$. The attitude of $\mathbf{F}$ is specified by its angle of dip or inclination $I$ and by the magnetic declination $D$-the angle between $H$ and true north. The angles $I$ and $D$ are given signs to conform, respectively, with $Z$ and $\mathbf{Y}$. These seven magnetic elements are connected by simple formulas, as are their small changes.

For evaluating the magnitudes $F, H, X, Y$, and $Z$, usage favors the gamma ( $\gamma$ ), regarded interchangeably as a unit of induction or of magnetic intensity. ${ }^{3}$ The methods of observation of the magnetic elements at different times and places are treated at length in the older literature. A few selected references are given. ${ }^{4}$
$\mathbf{5 k}-\mathbf{8}$. Characteristics of the Main Field. For a general view of the geomagnetic field, Gauss devised the method of potential analysis in terms of spherical harmonics. The chief accuracy limitation arises from the scantiness of data for the polar and oceanic areas. The latest analysis ${ }^{5}$ is one of the best available in this regard, but further strengthening may be expected as air-borne surveys encroach on the large remaining gaps.

All the analyses affirm that the field is in large part that of a centered dipole, a field pattern described by well-known functions and corresponding to the first-order terms of the harmonic expansion. The dipole axis (the earth's magnetic axis) is inclined about 11.5 deg to the axis of rotation; it reaches from a point in Smith Sound (longitude $69^{\circ} \mathrm{W}$ ) to the antipodal point in the Antarctic. These points are called the geomagnetic poles. Geomagnetic latitude and the geomagnetic equator bear to them the same relation that the geographic latitude and equator bear to the geo-
${ }^{1}$ Hubert Guyod, "Electrical Well Logging Fundamentals," Well Instrument Development Company, Houston, Tex.
${ }^{2}$ J. J. Jakosky, "Exploration Geophysics," pp. 437-442, Trija Publishing Company, 1950; C. A. Heiland, "Geophysical Exploration," pp. 656-667, Prentice-Hall, Inc., New York, 1940; and "Handbook of Physical Constants," pp. 304-319, Geological Society of America, Special Paper 36, Jan. 31, 1942.
${ }^{3}$ As induction, 1 gauss $=10^{5} \gamma$, and 1 mks unit $=10^{9} \gamma$. As magnetic intensity, 1 oersted $=10^{5} \gamma$ and 1 mks unit $=100 \gamma$ (unrationalized) or $4 \pi \times 100 \gamma$ (rationalized).
${ }^{4}$ G. Angenheister, Instrumente und Messmethoden, chap. 1 of Das Magnetfeld der Erde, in Wien-Harms, "Handbuch der Experimentalphysik," vol. 25, pt. 1, pp. 527-585, Leipzig, 1928; D. L. Hazard, Directions for Magnetic Measurements, U.S. Coast and Geodetic Survey Serial 166, 135 pp., Washington, D.C., 1930; E. Mascart, "Traité de magnétisme terrestre," 441 pp., Paris, 1900; H. E. McComb, Magnetic Observatory Manual, U.S. Coast and Geodetic Survey Special Publ. 283, 240 pp., Washington, 1952; E. O. Schonstedt and H. R. Irons, NOL Vector Airborne Magnetometer Type 2A, Trans. Am. Geophys. Union 36, 25-41 (1955).
${ }^{5}$ H. Spencer Jones and P. J. Melotte, The Harmonic Analysis of the Earth's Magnetic Field for Epoch 1942, Monthly Notices Roy. Astron. Soc., Geophys. Suppl. 6; 409-430 (1953).
graphic poles. The earth's magnetic moment is at present $8.1 \times 10^{25}$ cgs electromagnetic units, and $F$ ranges from about $30,000_{\gamma}$ in the tropics to about $60,000 \gamma$ in high latitudes.

However, when the actual field is compared with the centered-dipole field, there remain undoubted and serious disparities, which fall into two categories-regional and local. The regional departures, reflected in the higher-order terms of the analyses, are largely if not entirely capable of being described in terms of a distribution of additional dipoles embedded in a spherical boundary lying midway between the earth's center and its surface, all these dipoles being radially directed. ${ }^{1}$ The local anomalies are on so small a scale geographically as to defy the practicable "resolving power" of the Gaussian treatment. They are ascribed to magnetic variegation of the relatively cool earth's crust, especially the deep-lying basement rocks. While their presence seriously impedes the determination of the regional patterns, the development of their fine structure constitutes an important phase of geophysical exploration for mineral wealth. The overlying sedimentary formations, being virtually nonmagnetic, serve to keep the observer at a distance from the chief sources of anomaly, and the intensity and scale of the surface magnetic patterns may reveal those localities where the basement rocks approach most closely to the surface.

Though the dipole approximation has its value, as in calculating the field at a distance from the earth, it is grossly inadequate for most purposes, owing to the disparities mentioned. To show the actual field, maps are overprinted with isopleths for the several magnetic elements, namely, isogonic lines for $D$, isoclinic lines for $I$, and isodynamic lines for the intensity elements. The isomagnetic patterns are governed to some extent by requirements arising from potential theory ${ }^{2}$ but must be derived primarily from observed data. As commonly used to show the general patterns over large regions, the lines invariably have much or all of the local detail suppressed in their construction. Though placing some dependence on the proficiency of the cartographer, such treatment is a practical necessity, since widespread magnetic surveys cannot be conducted in the degree of detail that would be needed for full local development. Current world magnetic charts and the larger-scale series for the United States are listed in the references.

Table 5k-10. Positions of the Magnetic Dip Poles and of the $F$ Foci

|  | Northern |  | Southern |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Lat | Long | Lat | Long |
| Dip pole........................ <br> Primary focus of $F \ldots \ldots \ldots$ | $74^{\circ} \mathrm{N}$ | $101^{\circ} \mathrm{W}$ | $68^{\circ} \mathrm{S}$ | $144^{\circ} \mathrm{E}$ |

When such charts are studied as to the effects of the regional anomalies, it is found that: (1) the magnetic equator, or line of zero dip, does not coincide with the geomagnetic equator mentioned above but has segments lying both to the north and to the south of it; (2) the compass does not, in general, point to any pole-i.e., if azimuth lines are constructed from various localities in accordance with the values of $D$, such lines do not converge at a point; (3) the two magnetic dip poles, where $H$ vanishes, do not coincide with the geomagnetic poles and are not directly opposite

[^283]one another; and (4) the foci of maximum $F$ are even farther removed from the geomagnetic poles. When reference is made to the magnetic poles of the earth, this nearly always means the dip poles. The positions of the magnetic dip poles and of the $F$ foci, as shown on current charts, are given in Table $5 \mathrm{k}-10$.
$5 \mathrm{k}-9$. Secular Change. The magnetic elements are subject to gradual change from year to year. The changes for a stated interval such as a year may be depicted on a chart by means of isoporic lines. The patterns so formed depend on the element chosen, but in general their predominant aspect is one of regional foci of most rapid change of both signs, dispersed irregularly over the globe, and sometimes representing rates of change as great as $100 \gamma$ per year at their centers. These foci have a life expectancy measured in decades, and during their lifetime they show a distinct but slow westward drift. ${ }^{1}$

Several investigators have sought to develop some worldwide systematic component of secular change. Thus Macht ${ }^{2}$ fitted to the earth's field a combination of a paraxial and a transverse dipole, finding that the transverse one is displaced considerably from the axis and that it undergoes a translatory westward drift.
$\mathbf{5 k} \mathbf{- 1 0}$. Origin of the Field. The distribution of $I$ suggests that the field is mainly of internal origin. A dipole field pattern might arise, for example, from a uniform distribution of magnetization lying parallel to a diameter, and completely filling the globe or any centrally enclosed sphere; or from a suitably disposed flow of internal electric current. The old notion that the earth was simply magnetized like a mass of magnetite failed to explain how the polarization could alter so as to account for the secular change, or how it might have arisen in the first place. And there is now ample evidence that the earth's interior is far too hot to have any permanent magnetization.

A suggestion that drew much attention in recent years held the development of magnetic moment to be a fundamental attribute of all massive rotating bodies, the magnitude being so small as to elude detection on a laboratory scale. This hypothesis says nothing of the substantial transverse component of the earth's magnetic moment, or of the secular change, and it has failed to meet certain tests involving measurements in deep mines.

The concepts now given most credence ascribe the observed field, with its regional anomalies and its secular change as well, to magnetohydrodynamic action assigned to a metallic, fluid sphere comprising the earth's core. Objections thought for a time to rule out self-exciting dynamo action in such a sphere have been met, and some progress has been made in exploring possible sources of the needed energy of maintenance, but no complete theory has as yet been formulated. ${ }^{3}$

5k-11. Transient Phenomena. Another segment of geomagnetism deals with small, rapid changes and has advanced chiefly through the operation of magnetic observatories, of which there are now about 90 .

The action known as the geomagnetic tide, a complex system of motions in the ionosphere, involves changes in temperature and ionization in response to the variable access of solar energy, along with gravitational forces imposed by the sun and moon. The movement of conducting material across $Z$ generates (probably in the $E$ layer) electric currents that produce daily variations of all the elements, of the order of $10 \gamma$ to $40 \gamma$ in most latitudes. These fluctuations vary markedly from day to day in

[^284]their amplitude and in their detailed configuration; but for ordinary ("quiet") days they present in long-term averages a clear-cut pattern depending on season and on the phase of the solar cycle. The study of such curves for various localities discloses the main features of the governing worldwide current system.

Several kinds of irregularities mark the traces recorded at magnetic observatories. A well-defined, rounded excursion of $50 \gamma$ or so from an otherwise smooth course, completed in perhaps an hour, is termed a magnetic bay. With magnified scales it is found that fine-scale background activity of the order of $1 \gamma$ is common, with characteristic frequencies predominating (depending on time of day). Near-sinusoidal trains of waves with a period of 20 to 30 sec may occur, suggesting some sort of resonance phenomenon. ${ }^{1}$ Perturbations having a broad frequency spectrum are more often seen at the ordinary scale of recording. The incidence of these latter, as well as their severity, is loosely related to that of solar activity as reflected in the sunspot numbers. When a particularly severe solar disturbance is acting, the result may be what is termed a magnetic storm, lasting from several hours to a few days, with departures of possibly $500 \gamma$ or more. Such disturbances are worldwide, and they may have a sudden commencement (SC), with a characteristic abrupt rise in $H$ usually accompanied by an increase in activity, and followed by a progressive decrease in $H$ in the first hour or so to abnormally low values.

Another recognized category of disturbance is the crochet, a sort of abbreviated magnetic bay, often associated with a solar flare (chromospheric eruption) and then called a solar-flare effect (SFE). ${ }^{2}$

Magnetic activity is reported in terms of the $K$ index, a gauge of the deviations registered in successive 3 -hr intervals from an assumed "normal" curve. Some progress has been made in working out techniques of forecasting magnetic activity. An important element is the 27-day recurrence tendency, a sort of quasi-periodicity that is probably connected with the longevity of the solar-disturbance centers in terms of solar rotation.

## References

Chapman, S., and J. Bartels: "Geomagnetism," Oxford University Press, London, 1940. A two-volume comprehensive treatise.

Fleming, J. A., ed.: "Terrestrial Magnetism and Electricity," vol. 8 of "Physics of the Earth," McGraw-Hill Book Company, Inc., New York, 1939. A valuable compendium of monographs on various aspects of geomagnetism and related topics.
Ludy, A. K., and H. H. Howe: "Magnetism of the Earth," Serial 663 of U.S. Coast and Geodetic Survey, Government Printing Office, Washington, D.C., 1945. A nontechnical descriptive booklet that answers many questions on the topic.
U.S. Coast and Geodetic Survey: Isogonic Chart of the United States, 1955.0-Lines of Equal Magnetic Declination and Equal Annual Change, Chart 3077, scale $1: 5,000,000$, Washington, D.C., 1955. One of a series of magnetic charts for the various elements.
U.S. Navy Hydrographic Office: The Variation of the Compass for the Year 1955, Chart 1706, equatorial scale $1: 39,000,000$, Washington, D.C., 1955. One of a series of world magnetic charts for the various elements, including separate charts of the polar regions (prepared by the Coast and Geodetic Survey and published by the Hydrographic Office).
Vestine, E. H., L. Laporte, I. Lange, C. Cooper, and W. C. Hendrix: Description of the Earth's Main Magnetic Field and Its Secular Change 1905-1945, Carnegie Institution of Washington Publ. 578, Washington, 1947. Voluminous tables and charts covering many phases of the subject.
Vestine, E. H., I. Lange, L. Laporte, and W. E. Scott: The Geomagnetic Field, Its

[^285]Description and Analysis, Carnegie Institution of Washington Publ. 580, Washington, D.C., 1947. Details of the investigations governing the preceding item.
Vestine, E. H., and D. G. Knapp: Geomagnetism, in W. E. Forsythe, ed., "Smithsonian Physical Tables," 9th rev. ed., Smithsonian Institution Publ. 4169, Washington, D.C., 1954. A collection of 18 tables and 5 charts, giving summarized geomagnetic data for the United States and for the world. The longest table gives dated values of the seven magnetic elements for the observatories of the world.

## STELLAR AND GALACTIC MAGNETISM

$\mathbf{5 k}$-12. Galactic Magnetism. Light from distant stars in our galaxy is appreciably polarized, ${ }^{1}$ which has been interpreted as due to scattering from needle-shaped ferromagnetic dust particles oriented by a general magnetic field pervading the galaxy. ${ }^{2}$ The lines of force are thought to follow, approximately, the spiral arms of the galaxy, and to deviate from mutual parallelism in the vicinity of the earth by about 10 deg due to the turbulence of the interstellar material. The fluctuations of these magnetic lines of force have been shown by Fermi, Chandrasekhar, and others to be a possible mechanism for the production of cosmic radiation. ${ }^{3}$ The field intensity is estimated to be about $6 \times 10^{-6}$ gauss. ${ }^{4}$

Table 5k-11. The General Magnetic Field of the Sun

| Investigator | Field intensity at north pole ${ }^{a}$ | Year of measurements | Remarks |
| :---: | :---: | :---: | :---: |
| Hale, Langer ${ }^{\text {b }}$ | -4 gauss | 1912-1932 | Reanalysis in 1935 of early data |
| Nicholson, Ellerman, and Hickox ${ }^{c}$ | $+3.6 \pm 1.7$ | 1933-1934 | $\pm 45^{\circ}$ |
|  | $-2.0 \pm 2.8$ | 1948-1949 | Visual |
| von Kluber ${ }^{\text {d }}$. | <1-2 | 1949-1950 | $\pm 45^{\circ}$, photographic |
| Thiessen ${ }^{e}$. | $+1.5 \pm 3.5$ | 1947-1948 | $\pm 45^{\circ}$ photoelectric |
|  | +1.5 $\pm 0.75$ | 1949 |  |
|  | $+2.4 \pm 0.5$ | 1951 |  |
| Kiepenheuer ${ }^{\text {f }}$. | <1 gauss | 1951 | Full disk, photoelectric |
| H. D. and H. W Babcock ${ }^{g}$ | +2-4 gauss at $\pm 70^{\circ}$ | 1952 | Photoelectric, recording full disk |

a Polarity definition: magnetic vector toward observer is + . Note Thiessen used contrary definition.
${ }^{b}$ G. E. Hale, Nature 136, 703 (1935).
c Ann. Rept. Mt. Wilson Obs., C. I. W. Yearbook, 1934, p. 138; 1949, p. 12.
${ }^{d}$ H. von Kluber, Monthly Notices Roy. Astron. Soc. 111, 2 (1951); 114, 242 (1954).
${ }^{e}$ G. Thiessen, Z. Astrophys. 26, 16 (1949); 30, 185 (1952); Nature 169, 147 (1952); Ann. astrophys. 9, 101 (1946).
${ }^{f}$ K. O. Kiepenheuer, Astrophys. J. 117, 447 (1953).
${ }^{\circ}$ H. W. Babcock, Astrophys. J. 118, 387 (1953); 119, 687 (1954) ; H. W. Babcock and H. D. Babcock, Publ. Astron. Soc. Pacific 64, 282 (1952).
$\mathbf{5 k} \mathbf{- 1 3}$. General Magnetic Field of the Sun. The Zeeman effect affords the only direct means for measuring the intensities of astronomical magnetic fields. It has been used to study the magnetic fields of variable stars and sunspots, and to search for a general dipole field of the sun. The techniques and results of the general solar field have been reviewed by H. W. Babcock and T. G. Cowling. ${ }^{5}$ Table 5k-11 sum-

[^286]Table 5k-12. Polar Magnetic Field Strengths $H_{p}$ of 35 Stars*

| Star | Mag. | Type | No. plates meas. | $H_{p}$, gauss, extremes | Probable error | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HD 2453 | 6.7 | Aop | 1 | $-1,520$ | $\pm 300$ |  |
| HD 4174. | 7.5 | M2ep | 4 | +3,500, -3,900 | $\pm 600$ | $H \beta$ varies |
| HD 8441 | 6.6 | Aop | 1 | +1,300, -.. | $\pm 500$ |  |
| HD 10783 | 6.6 | A3p | 7 | $+5,000,-2,500$ |  |  |
| HR 710 | 5.8 | A2p | 11 | -1,070, -2,970 | $\pm 250$ |  |
| HR 1105 | 5.3 | S | 1 | +1,470 | $\pm 210$ |  |
| 36 Eri | 4.7 | Aop | 1 | +1,360 | $\pm 700$ |  |
| $\mu$ Lep | 3.3 | Aop | 2 | $+620$ | $\pm 250$ |  |
| WY Gem | 7 | M3ep | 1 | +1,800 | $\pm 500$ |  |
| HD 42616. | 6.9 | Aop | 3 | +2,250, -2,770 | $\pm 600$ |  |
| HD 49976. | 6.2 | Aop | 1 | +3,400 | $\pm 800$ |  |
| HD 60414, 5 | 5.1 | M3ep | 1 | $-2,200$ |  |  |
| HD 71866. | 6.7 | Aop | 1 | $-4,000$ | $\pm 400$ |  |
| 3 Hya | 5.6 | A2p | 7 | +2,440, $-1,600$ | $\pm 350$ |  |
| 49 Cnc | 5.6 | A4p | 5 | +4,000,-600 | $\pm 400$ | Sp. var. |
| 45 Leo | 5.9 | Ao | 3 | +1,000, -250 |  | Sp. var. |
| 17 Com A. | 5.4 | Aop | 3 | -1,600, -3,800 |  | Sp. var. |
| $\alpha^{2} \mathrm{C}$ Vn | 2.9 | Aop | 21 | $+5,000,-4,000$ |  | Sp. var. |
| 78 Vir. | 4.9 | A2p | 13 | $-500,-3,350$ | $\pm 200$ | Sp. var. |
| HD 125248 | 5.7 | Aop | 29 | +7,000, -6,000 |  | Sp. var. |
| $\mu \mathrm{Lib} \mathrm{A}$ | 5.4 | A4p | 2 | $-1,600,-3,900$ | $\pm 400$ |  |
| HD 133029 | 6.2 | Aop | 45 | +4,300, $+10,500$ |  | $\sim 1.5{ }^{\text {d }}$ |
| $\beta \mathrm{Cr} \mathrm{B}$ | 3.7 | Fop | 12 | +2,670, -900 | $\pm 150$ |  |
| 52 Her | 4.9 | A2p | 1 | +2,780 | $\pm 300$ |  |
| HD 153882 | 6.2 | Aop | 20 | +4,500, -4,000 |  | $P=6^{d} .005$ |
| HD 173650 | 6.4 | Aop | 2 | +1,600, $-1,300$ | $\pm 350$ |  |
| 10 Aq1. | 5.9 | A3p | 2 | $+900,+460$ | $\pm 120$ |  |
| 21 Aq1. | 5.1 | B8 | 4 | $+500,-1,900$ | $\pm 500$ |  |
| HD 188041 | 5.6 | Fop | 41 | +1,240, $+4,750$ | $\pm 150$ | $P=226^{d}$ |
| HD 192913 | 6.7 | Aop | 1 | $-1,730$ |  |  |
| 73 Dra | 5.2 | A2p | 5 | $-1,200,-2,300$ |  | Sp. var. |
| $\gamma$ Equ | 4.8 | Fop | 9 | +760, +2,750 | $\pm 110$ |  |
| AG Peg | 7.6 | Bep | 5 | $-1,400,-4,000$ |  |  |
| VV Cep. | 5 v | M2e | 2 | +2,000, -1,200 | $\pm 300$ |  |
| HD 224801 | 6.2 | Aop | 1 | +7,500 | $\pm 1,400$ |  |

[^287] 357 (1953).
marizes the principal results. H. W. and H. D. Babcock now make daily records of the details of the solar field mapped over the whole disk, measured to a stated precision of 1 gauss. The longitudinal Zeeman effect due to a pure dipole field would be a maximum at $\pm 45^{\circ}$ solar latitude. The measurements of Thiessen and of von Kluber (see Table 5k-11) were made at this latitude. Thus the distorted general field of 2 to 4 gauss at latitudes $> \pm 65^{\circ}$ found by the Babcocks would presumably not have been detected by Thiessen or von Kluber. Kiepenheuer examined the full disk with negative results. The polarity of the field found by the Babcocks is opposite to the polarity of the earth and of the sunspots in cycle (No. 18) approaching a
minimum in 1955. It is also opposite to the field found by Hale. It is possible that the solar field is not constant and that the sun may be thought of as a weak magnetic variable star.

5k-14. Sunspot Fields. Sunspots ${ }^{1}$ vary greatly in both size and magnetic-field strength, although size and field are closely related. Sunspot areas are measured in units of one-millionth of a solar hemisphere and have been observed as large as 5,400 millionths (Feb. 6, 1946) and as small as one-millionth (specks). The corresponding magnetic-field strengths vary from about 3,700 to about 100 gauss. An individual spot has a dark central region (umbra) and a brighter filamentary region (penumbra) surrounding it. The field strength of the spot is found to vary radially according to the empirical formula of Broxon: ${ }^{2} H=H_{m}\left(1-r^{2} / b^{2}\right)$, where $H_{m}$ is the maximum field strength, and $b$ is the outer radius of the penumbra. Sunspots are normally found in groups extended in the direction of solar rotation in two lowlatitude zones on either side of the solar equator. Each group contains leader and follower spots of opposite magnetic polarity. The abundance of spots follows the 11 -year sunspot cycle. Slightly in advance of sunspot minimum the new spots of the coming cycle appear near $30^{\circ}$ latitude, gradually decreasing to about $8^{\circ}$ during the cycle. In the present cycle (No. 18, beginning in 1944) the leading spots in the northern solar hemisphere are south poles, the following spots north. The polarity of the spots in the southern hemisphere is reversed. In the next sunspot cycle, all these polarities will be reversed: i.e., the leading northern hemisphere spots will be north poles, etc. Thus the "magnetic sunspot cycle" has a 22 -year period. ${ }^{3}$
5k-15. Stellar Magnetic Fields. Many stars have strong magnetic fields easily detected with the Zeeman technique. Since only the integrated light from one hemisphere of the star can be measured, only those stars with general nonmultipolar fields which are oriented with the magnetic axis inclined toward the line of observation will show a strong Zeeman shift. To date observations are restricted to stars brighter than magnitude 7.6. Variable magnetic fields of 650 to 10,500 gauss maximum intensity have been measured in stars of a wide variety of spectral types. Among the most interesting are the spectrum variables, in which the magnetic oscillations are of greatest amplitude and are in fixed phase relationship with the spectral variations. The data of Table $5 \mathrm{k}-12$ are taken from Babcock and Cowling's review, General Magnetic Fields in the Sun and Stars. ${ }^{4}$ Theories of stellar magnetism are reviewed in Part II of their review.

[^288]
## Section 6

## OPTICS ${ }^{1}$

BRUCE H. BILLINGS, Editor<br>Baird-Atomic, Inc., and Harvard College Observatory

## CONTENTS

6a. Fundamental Definitions, Standards, and Photometric Units. ..... 6-2
6b. Index of Refraction ..... 6-11
6c. Absorption and Transmission ..... 6-36
6d. Reflection ..... 6-41
6e. Glass, Polarizing and Interference Filters ..... 6-43
6f. Colorimetry ..... 6-50
6g. Radiometry ..... 6-64
6h. Wavelengths for Spectrographic Calibration ..... 6-83
6i. Magneto- and Electro-optics ..... 6-91
6j. Specific Rotation ..... 6-98
6 k . Optical Constants of Metals. ..... 6-102
61. Fluorescence and Phosphorescence ..... 6-111
6 m . Radiation Detection ..... 6-114
6n. Velocity of Light ..... 6-119
6o. Radio Astronomy ..... 6-120
${ }^{1}$ Subsections for which specific authors are not listed were compiled by the section editor. Source credits are indicated in the text.

# 6a. Fundamental Definitions, Standards, and Photometric Units ${ }^{1}$ 

## 6a-1. Fundamental Definitions

Absorption Factor. The ratio of the intensity loss by absorption to the total original intensity of radiation. If $I_{o}$ represents the original intensity, $I_{r}$ the intensity of reflected radiation, $I_{i}$ the intensity of the transmitted radiation, the absorption factor is given by the expression

$$
\frac{I_{o}-\left(I_{r}+I_{t}\right)}{I_{o}}
$$

Also called coefficient of absorption.
Absorption, Lambert's Law. If $I_{o}$ is the original intensity, $I$ the intensity after passing through a thickness $x$ of a material whose absorption coefficient is $\alpha$,

$$
I=I_{o} e^{-\alpha x}
$$

The extinction coefficient $\kappa$ is given by the relation $\kappa=(4 \pi \kappa n) / \lambda$ where $n$ is the index of refraction and $\lambda$ the wavelength in vacuo. The mass absorption is given by $k / d$ when $d$ is the density. The transmission factor is given by $I / I_{o}$.

Absorption Spectrum. The spectrum obtained by the examination of light from a source, itself giving a continuous spectrum, after this light has passed through an absorbing medium in the gaseous state. The absorption spectrum will consist of dark lines or bands, being the reverse of the emission spectrum of the absorbing substance.

When the absorbing medium is in the solid or liquid state the spectrum of the transmitted light shows broad dark regions which are not resolvable into lines and have no sharp or distinct edges.

Absorptive Power or Absorptivity. For any body, this is measured by the fraction of the radiant energy falling upon the body which is absorbed or transformed into heat. This ratio varies with the character of the surface and the wavelength of the incident energy. It is the ratio of the radiation absorbed by any substance to that absorbed under the same conditions by a black body.

Achromatic. A term applied to lenses signifying their more or less complete correction for chromatic aberration.

Angular Aperture. The largest angular extent of wave surface which an objective can transmit.

Apochromat. A term applied to photographic and microscope objectives indicating the highest degree of color correction.

Astigmatism. An error of spherical lenses peculiar to the formation of images by oblique pencils. The image of a point when astigmatism is present will consist of two focal lines at right angles to each other and separated by a measurable distance

[^289]along the axis of the pencil. The error is not eliminated by reduction of aperture as is spherical aberration.

Balmer Series of Spectral Lines. The wavelengths of a series of lines in the spectrum of hydrogen are given in Angstroms by the equation

$$
\lambda=3,646 \frac{N^{2}}{N^{2}-4}
$$

where $N$ is an integer having values greater than 2.
Beer's Law (1852). If two solutions of the same salt are made in the same solvent, one of which is, say, twice the concentration of the other, the absorption due to a given thickness of the first solution should be equal to that of twice the thickness of the second.

Black Body. If, for all values of the wavelength of the incident radiant energy, all the energy is absorbed the body is called a black body.

Brewster's Law. The tangent of the polarizing angle for a substance is equal to the index of refraction. The polarizing angle is that angle of incidence for which the reflected polarized ray is at right angles to the refracted ray. If $n$ is the index of refraction and $\theta$ the polarizing angle, $n=\tan \theta$.

Brightness. Measured by the flux emitted per unit emissive area as projected on a plane normal to the line of sight. The unit of brightness is that of a perfectly diffusing surface giving out one lumen per square centimeter of projected surface and is called the Lambert. The milli-Lambert ( 0.001 Lambert) is a more convenient unit. Candle per square centimeter is the brightness of a surface which has, in the direction considered, a luminous intensity of one candle per $\mathrm{cm}^{2}$. The international candle is a unit of luminous intensity, based on a group of $\mathbf{4 5}$ carbon-filament lamps preserved at the National Bureau of Standards. The new candle is $\frac{1}{60}$ the intensity of one square centimeter of a black-body radiator at the solidification temperature of platinum $\left(2042^{\circ} \mathrm{K}\right)$.

Chemiluminescence. Emission of light during a chemical reaction.
Christiansen Effect. When finely powdered substances, such as glass or quartz, are immersed in a liquid of the same index of refraction complete transparency can be obtained only for monochromatic light. If white light is employed, the transmitted color corresponds to the particular wavelength for which the two substances, solid and liquid, have exactly the same index of refraction. Because of differences in dispersion the indices of refraction will match for only a narrow band of the spectrum.

Chromatic Aberration. Because of the difference in the index of refraction for different wavelengths, light of various wavelengths from the same source cannot be focused at a point by a simple lens. This is called chromatic aberration.
Coma. An aberration of spherical lenses, occurring in the case of oblique incidence, when the bundle of rays forming the image is unsymmetrical. The image of a point is comet-shaped, hence the name.

Conjugate Foci. Under proper conditions light divergent from a point on or near the axis of a lens or spherical mirror is focused at another point. The point of convergence and the position of the source are interchangeable and are called conjugate foci.

Diffraction. If the light source were a point, the shadow of any object would have its maximum sharpness; a certain amount of illumination, however, would be found within the geometrical shadow because of the diffraction of the light at the edge of the object.
Diffraction Grating. If $s$ is the distance between the rulings, $d$ the angle of diffraction, then the wavelength where the angle of incidence is 90 deg is (for the $n$th order spectrum),

$$
\lambda=\frac{s \sin d}{n}
$$

Dispersion. The difference between the index of refraction of any substance for any two wavelengths is a measure of the dispersion for these wavelengths, called the coefficient of dispersion.

Dispersive Power. If $n_{1}$ and $n_{2}$ are the indices of refraction for wavelengths $\lambda_{1}$ and $\lambda_{2}$ and $n$ the mean index or that for sodium light, the dispersive power for the specified wavelength is

$$
\omega=\frac{n_{2}-n_{1}}{n-1}
$$

Doppler Effect (Light). The apparent change in the wavelength of light produced by the motion in the line of sight of either the observer or the source of light.

If $i$ is the angle of incidence, $d$ the angle of diffraction, $s$ the distance between the rulings, $n$ the order of the spectrum, the wavelength is

$$
\lambda=\frac{s}{n}(\sin i+\sin d)
$$

Emissive Power, or Emissivity. This is measured by the energy radiated from unit area of a surface in unit time for unit difference of temperature between the surface in question and surrounding bodies. For the cgs system the emissive power is given in ergs per second per square centimeter with the radiating surface at $1^{\circ} \mathrm{K}$ and the surroundings at absolute zero. See Radiation Formula.

Faraday Effect. The rotation of the plane of polarization produced when planepolarized light is passed through a substance in a magnetic field, the light traveling in a direction parallel to the lines of force. For a given substance, the rotation is proportional to the thickness traversed by the light and to the magnetic-field strength.

Fermat's Principle of Least Time. The path chosen by a ray joining two points is that which can be traveled over in the least possible time.
Fraunhofer's Lines. When sunlight is examined through a spectroscope it is found that the spectrum is traversed by an enormous number of dark lines parallel to the length of the slit. These dark lines are known as Fraunhofer's lines. Kirchhoff conceived the idea that the sun is surrounded by layers of vapors which act as filters of the white light arising from incandescent solids within and which abstract those rays which correspond in their periods of vibration to those of the components of the vapors. Thus reversed or dark lines are obtained because of the absorption by the vapor envelope, in place of the bright lines found in the emission spectrum.

Huygens' Theory of Light. This theory states that light is a disturbance traveling through some medium, such as the ether. Thus light is due to wave motion in ether.

Every vibrating point on the wavefront is regarded as the center of a new disturbance. These secondary disturbances, traveling with equal velocity, are enveloped by a surface identical in its properties with the surface from which the secondary disturbances start and this surface forms the new wavefront.

Illumination. On any surfäce, illumination is measured by the luminous flux incident on unit area. The units in use are: the lux, one lumen per square meter; the phot, one lumen per square centimeter and the lumen per square foot. Since at unit distance from a point source of unit intensity the illumination is unity, unit illumination may be defined as that produced by a unit source at unit distance, hence the meter-candle or candle-meter which is equal to the lux and the foot-candle equivalent to one lumen per square foot.

Index of Refraction. For any substance this is the ratio of the velocity of light in a vacuum to its velocity in the substance. It is also the ratio of the sine of the angle of incidence to the sine of the angle of refraction. In general, the index of refraction for any substance varies with the wavelength of the refracted light.

## FUNDAMENTAL DEFINITIONS, STANDARDS, PHOTOMETRIC UNITS

Intensity of Illumination. In candle-meters of a screen illuminated by a source of illuminating power $P$ candles at a distance $r$ meters, for normal incidence, intensity of illumination is

$$
I=\frac{P}{r^{2}}
$$

If two sources of illuminating power $P_{1}$ and $P_{2}$ produce equal illumination on a screen when at distances $r_{1}$ and $r_{2}$, respectively,

$$
\frac{P_{1}}{r_{1}{ }^{2}}=\frac{P_{2}}{r_{2}{ }^{2}} \quad \text { or } \quad \frac{P_{1}}{P_{2}}=\frac{r_{1}{ }^{2}}{r_{2}{ }^{2}}
$$

If $I_{o}$ is the intensity of illumination when the screen is normal to the incident light and $I$ the intensity when an angle $\theta$

$$
I=I_{o} \cos \theta
$$

Intensity of Radiation. The radiant energy emitted in a specified direction per unit time, per unit area of surface, per unit solid angle.

Kirchhoff's Laws of Radiation. The relation between the powers of emission and the powers of absorption for rays of the same wavelength is constant for all bodies at the same temperature. First, a substance when excited by some means or other possesses a certain power of emission; it tends to emit definite rays, whose wavelengths depend upon the nature of the substance and upon the temperature. Second, the substance exerts a definite absorptive power, which is a maximum for the rays it tends to emit. Third, at a given temperature the ratio between the emissive and the absorptive power for a given wavelength is the same for all bodies and is equal to the emissive power of a perfectly black body.

Lambert's Law of Absorption. Each layer of equal thickness absorbs an equal fraction of the light which traverses it.

Lambert's Law of Illumination. The illumination of a surface on which the light falls normally from a point source is inversely proportional to the square of the distance of the surface from the source. If the normal to the surface makes an angle with the direction of the rays, the illumination is proportional to the cosine of that angle.

Lenses. For a single thin lens whose surfaces have radii of curvature $r_{1}$ and $r_{2}$ whose principal focus is $F$, the index of refraction $n$, and conjugate focal distances $f_{1}$ and $f_{2}$,

$$
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=(n-1)\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)
$$

For a thick lens, of thickness $t$,

$$
F=\frac{n r_{1} r_{2}}{(n-1)\left[n\left(r_{1}+r_{2}\right)-t(n-1)\right]}
$$

combinations of lenses. If $f_{1}$ and $f_{2}$ are the focal lengths of two thin lenses separated by a distance $d$ the focal length of the system,

$$
\boldsymbol{F}=\frac{f_{1} f_{2}}{f_{1}+f_{2}-d}
$$

Luminous Flux. The total visible energy emitted by a source per unit time is called the total luminous flux from the source. The unit of flux, the lumen, is the flux emitted in unit solid angle (steradian) by a point source of one candle luminous intensity. A uniform point source of one candle intensity thus emits $4 \pi$ lumens.

Luminous Intensity, or Candlepower. This is the property of a source of emitting luminous flux and may be measured by the luminous flux emitted per unit solid angle. The accepted unit of luminous intensity is the international candle. The Hefner unit, which is equivalent to 0.9 international candle, is the intensity of a lamp of specified design burning amyl acetate, called the Hefner lamp.
The mean horizontal candlepower is the average intensity measured in a horizontal plane passing through the source. The mean spherical candlepower is the average candlepower measured in all directions and is equal to the total luminous flux in lumens divided by $4 \pi$.
Magnifying Power. In an optical instrument this is the ratio of the angle subtended by the image of the object seen through the instrument to the angle subtended by the object when seen by the unaided eye. In the case of the microscope or simple magnifier the object as viewed by the unaided eye is supposed to be a distance of 25 cm (10 in.).

Minimum Deviation. The deviation or change of direction of light passing through a prism is a minimum when the angle of incidence is equal to the angle of emergence. If $D$ is the angle of minimum deviation and $A$ the angle of the prism, the index of refraction of the prism for the wavelength used is

$$
n=\frac{\sin \frac{1}{2}(A+D)}{\sin \frac{1}{2} A}
$$

Molecular Refraction. The molecular refraction of a substance may be computed by the following relation:

$$
N=\frac{M\left(n^{2}-1\right)}{d\left(n^{2}+2\right)}
$$

where $N$ is the molecular refraction for a specified wavelength and temperature, $M$ the molecular weight, $d$ the density, and $n$ the refractive index for the specified conditions.

Nodal Points. Two points on the axis of a lens such that a ray entering the lens in the direction of one, leaves as if from the other and parallel to the original direction.
Photographic Density. The density $D$ of silver deposit on a photographic plate or film is defined by the relation

$$
D=\log O
$$

where $O$ is the opacity. If $I_{o}$ and $I$ are the incident and transmitted intensities, respectively, the opacity is given by $I_{o} / I$. The transparency is the reciprocal of the opacity, or $I / I_{o}$.
Polarized Light. Light which exhibits different properties in different directions at right angles to the line of propagation is said to be polarized. Specific rotation is the power of liquids to rotate the plane of polarization. It is stated in terms of specific rotation or the rotation in degrees per decimeter per unit density.
Principal Focus. For a lens or spherical mirror this is the point of convergence of light coming from a source at an infinite distance.

Radiation. If $I_{o}$ is the intensity of normal radiation and $I$ the intensity at an angle $\boldsymbol{\theta}$

$$
I=I_{0} \cos \theta
$$

This is called Lambert's law. It does not apply in all cases.
Radiation Formula, Planck's. The emissive power of a black body at wavelength $\lambda$ may be written

$$
E_{\lambda}=\frac{c_{1} \lambda^{-5}}{e^{c_{2} / \lambda T}-1}
$$

where $c_{1}$ and $c_{2}$ are constants with numerical values $3.7403 \times 10^{8}$ microwatts per $\mathrm{cm}^{2}$ per $0.01 \mu$ zone of spectrum and $14,384 \mu \mathrm{deg}$, respectively, and $T$ the absolute temperature.

Radius of Curvature from Spherometer Readings. If $l$ is the mean length of the sides of the triangle formed by the points of the three legs, $d$ the spherometer readings, the radius of curvature of the surface is

$$
F=\frac{l^{2}}{6 d}+\frac{d}{2}
$$

Reflection Coefficient, or Reflectivity. This is the ratio of the light reflected from a surface to the total incident light. The coefficient may refer to diffuse or to specular reflection. In general it varies with the angle of incidence and with the wavelength of the light.

Reflection of Light by a Transparent Medium in Air (Fresnel's Formulas). If $i$ is the angle of incidence, $r$ the angle of refraction, $n_{1}$ the index of refraction for air (nearly equal to unity), $n_{2}$ the index of refraction for a medium, then the ratio of the reflected light to the incident light is

$$
R=\frac{1}{2}\left(\frac{\sin ^{2}(i-r)}{\sin ^{2}(i+r)}+\frac{\tan ^{2}(i-r)}{\tan ^{2}(i+r)}\right)
$$

If $i=0$ (normal incidence), and $n_{1}=l$ (approximate for air),

$$
R=\left(\frac{n_{2}-1}{n_{2}+1}\right)^{2}
$$

Refraction at a Spherical Surface. If $u$ is the distance of a point source, $v$ the distance of the point image or the intersection of the refracted ray with the axis, $n_{1}$ and $n_{2}$ the indices of refraction of the first and second medium, and $r$ the radius of curvature of the separating surface,

$$
\frac{n_{2}}{v}+\frac{n_{1}}{u}=\frac{n_{2}-n_{1}}{r}
$$

If the first medium is air the equation becomes

$$
\frac{n}{v}+\frac{1}{u}=\frac{n-1}{r}
$$

Refractivity is given by $(n-1)$ when $n$ is the index of refraction; the specific refractivity is given by $(n-1) / d$ where $d$ is the density. Molecular refractivity is the product of specific refractivity by the molecular weight.

Resolving Power. For a telescope or microscope this is indicated by the minimum separation of two objects for which they appear distinct and separate when viewed through the instrument.

The molecular or atomic rotatory power is the product of the specific rotatory power by the molecular or atomic weight. Magnetic rotatory power is given by

$$
\frac{\theta}{e} H \cos \alpha
$$

where $H$ is the intensity of the magnetic field, and $\alpha$ is the angle between the field and the direction of the light.

Snell's Law of Refraction. If $i$ is the angle of incidence, $r$ the angle of refraction, $v$ the velocity of light in the first medium, $v^{\prime}$ the velocity in the second medium, the index of refraction $n$,

$$
n=\frac{\sin i}{\sin r}=\frac{v}{v^{\prime}}
$$

## 6-8

## OPTICS

Specific Rotation. If there are $n$ grams of active substance in $v$ cubic centimeters of solution and the light passes through $l$ centimeters, $r$ being the observed rotation in degrees, the specific rotation (for 1 cm ),

$$
[\alpha]=\frac{r v}{n l}
$$

Spectral Series. These are spectral lines or groups of lines which occur in an orderly sequence.
Spherical Aberration. When large surfaces of spherical mirrors or lenses are used the light divergent from a point source is not exactly focused at a point. The phenomenon is known as spherical aberration. For axial pencils the error is known as axial spherical aberration; for oblique pencils, coma.

Spherical Mirrors. If $R$ is the radius of curvature, $F$ the principal focus, and $f_{1}$ and $f_{2}$ any two conjugate focal distances,

$$
\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{F}=\frac{2}{R}
$$

If the linear dimensions of the object and image be $O$ and $I$, respectively, and $u$ and $v$ their distances from the mirror,

$$
\frac{O}{I}=\frac{u}{v}
$$

Total Reflection. When light passes from any medium to one in which the velocity is greater, refraction ceases and total reflection begins at a certain critical angle of incidence $\theta$ such that

$$
\sin \theta=\frac{1}{n}
$$

where $n$ is the index of the first medium with respect to the second. If the second medium is air $n$ has the ordinary value for the first medium. For any other second medium,

$$
n=\frac{n_{1}}{n_{2}}
$$

where $n_{1}$ and $n_{2}$ are the ordinary indices of refraction for the first and second medium, respectively.

Visibility. This is measured by the ratio of the luminous flux in lumens to the total radiant energy in ergs per second or in watts.

Watt of Maximum Visibility Radiation. 680 lumens.
Wien's Displacement Law. When the temperature of a radiating black body increases, the wavelength corresponding to maximum energy decreases in such a way that the product of the absolute temperature and wavelength is constant.

$$
\lambda_{\max } T=w
$$

Zeeman Effect. The splitting of a spectrum line into several symmetrically disposed components, which occurs when the source of light is placed in a strong magnetic field. The components are polarized, the directions of polarization and the appearance of the effect depending on the direction from which the source is viewed relative to the lines of force.

6a-2. Fundamental Standards. The international candle is a unit of luminous intensity. It is a specified fraction of the average horizontal candlepower of a group of 45 carbon-filament lamps preserved at the National Bureau of Standards. The
new candle is $\frac{1}{60}$ of the intensity of one square centimeter of a black-body radiator at the solidification temperature of platinum $\left(2042^{\circ} \mathrm{K}\right)$. The primary standard wavelength which defines the Angstrom unit is the red cadmium line in air, 760 mm pressure, $15^{\circ} \mathrm{C}$, at $6,438.4696 \mathrm{~A}$.

| Flame Standards |  |
| :---: | :---: |
| (Value of various former standards in international candles) |  |
|  | Candles |
| Standard pentane lamp, burning pentane. | 0.0 |
| Standard Hefner lamp, burning amyl acetate | 0.9 |
| Standard Carcel lamp, burning colza oil | 9.6 |

The Carcel unit is the horizontal intensity of the carcel lamp, burning 42 g of colza oil per hr. For a consumption between 38 and $46 \mathrm{~g} / \mathrm{hr}$ the intensity may be considered proportional to the consumption.

The Hefner unit is the horizontal intensity of the Hefner lamp burning amyl acetate, with a flame 4 cm high. If the flame is $l \mathrm{~mm}$ high, the intensity $I=1+0.027(l-40)$.

## 6a-3. Photometric Quantities, Units, and Standards.

Candle (or International Candle). The candle is the unit of luminous intensity. It is a specified fraction of the average horizontal candlepower of a group of 45 carbonfilament lamps preserved at the Bureau of Standards.

Candle (new unit). $\frac{1}{60}$ of the intensity of one square centimeter of a black-body radiator at the temperature of solidification of platinum $\left(2042^{\circ} \mathrm{K}\right)$.

Lumen. The lumen is the unit of luminous flux. It is equal to the flux through a unit solid angle (steradian) from a uniform point source of one candle, or to the flux on a unit surface all points of which are at unit distance from a uniform point source of one candle.

Illumination. Illumination is the density of the luminous flux on a surface. It is the quotient of the flux by the area of the surface when the latter is uniformly illuminated.
Least Mechanical Equivalent of Light. One lumen at the wavelength of maximum visibility $(0.556 \mu)$ equals 0.00161 watt ( $=0.000385 \mathrm{~g}$-cal/sec); one watt at the same wavelength equals 680 lumens.

Relative Visibility. The relative-visibility factor for a particular wavelength is the ratio of the visibility factor for that wavelength to the maximum visibility factor.
Values of the relative visibility are given as a part of the specification of the standard observer under Colorimetry.
Efficiency of a Source of Light. The efficiency of a source is the ratio of the total luminous flux to the total power consumed. In the case of an electric lamp it is expressed in lumens per watt.
Spherical Candlepower. The spherical candlepower of a lamp is the average candlepower of the lamp in all directions in space. It is equal to the total luminous flux of the lamp in lumens divided by $4 \pi$.

Lambert. The unit of brightness equal to $1 / \pi$ candle per square centimeter.
Foot-Lambert. The unit of photometric brightness (luminance) equal to $1 / \pi$ candle per square foot.

## 6a-4. Photometric Units

Bougie Decimale (intensity of source). 1.0 international candle (approximately). Candle (International) (intensity of source). 0.104 Carcel unit (approximately);
1.0000 international lumen per steradian; 1 pentane candle (approximately); 1 English sperm candle (approximately); 1.11 Hefner unit (approximately).

Candle per square centimeter (surface brightness). 3.1416 Lamberts; 3141.6 milliLamberts.

Candle per square inch (surface brightness). 0.48695 Lambert; 486.95 milliLamberts.

Carcel unit (intensity of source). 9.6 international candle (approximately).
English sperm candle (intensity of source). 1.0 international candle (approximately).

Foot-candle (illumination of a surface). 1 lumen incident per square foot; 1.0764 milliphots; 10.764 lumens per square meter; 10.764 lux.

Hefner unit (intensity of source). 0.90 international candle (approximately).
Lambert (surface brightness). 0.3183 candle per square centimeter; 2.054 candles per square inch; 1 lumen emitted per square centimeter of a perfectly diffusing surface.

Lumen (flux of luminous energy). Is emitted by 0.07958 spherical candlepower. A source of one spherical candlepower emits $4 \pi$ or 12.566 lumens.

Lumen per square centimeter per steradian (surface brightness). 3.1416 Lamberts.
Lumen per square foot (illumination of a surface). 1 foot-candle; 10.764 lumens per square meter.

Lumen per square foot per steradian (surface brightness). 3.3816 milli-Lamberts.
Lumen per square meter (surface illumination). $1 \times 10^{-4}$ phot; 0.092902 footcandle or lumen per square foot.

Lux (illumination of a surface). $1 \times 10^{-4}$ phot; 0.1 milliphot; 0.092902 footcandle; 1.000 lumen per square meter.

Meter-candle (illumination of a surface). 1.000 lumen per square meter.
Milli-Lambert (surface brightness). 0.929 lumen emitted per square foot (perfect diffusion).

Milliphot (illumination of a surface). 0.001 phot; 0.929 foot-candle.
Pentane candle (intensity of source). 1.0 international candle (approximately).
Phot (illumination of a surface). 1 lumen incident per square centimeter; 1,000 milliphots; $1.000 \times 10^{4}$ lumens per square meter; $1 \times 10^{4}$ lux.

Stilb (surface brightness). 1 candle per square centimeter.

# 6b. Index of Refraction 

S. S. BALLARD<br>Scripps Institution of Oceanography<br>K. A. McCARTHY<br>Tufts University<br>W. BROUWER<br>Baird-Atomic, Inc.

The index of refraction, usually denoted by $n$, is defined as the ratio of the velocity of light in a vacuum to the velocity of light in the given material. Indices not otherwise indicated are for sodium light, $\lambda=589.3 \mathrm{~m} \mu$. Other wavelengths are indicated by the value in millimicrons or symbol in parentheses which follows the index. Wavelengths are indicated as follows: $\mathrm{He}, \lambda=587.6 \mathrm{~m} \mu ; \mathrm{Li}, \lambda=670.8 \mathrm{~m} \mu ; \mathrm{Hg}, \lambda=579.1$ $\mathrm{m} \mu ; \mathrm{A}, \lambda=759.4 \mathrm{~m} \mu ; \mathrm{C}, \lambda=656.3 \mathrm{~m} \mu ; \mathrm{D}, \lambda=589.3 \mathrm{~m} \mu ; \mathrm{F}, \lambda=486.1 \mathrm{~m} \mu$.

Temperatures are understood to be $20^{\circ} \mathrm{C}$ for liquids, or ordinary room temperatures in the case of solids. Other temperatures appear as superior figures with the index.

Table 6b-1. Index of Refraction of Selected Uniaxial Minerals*

| Mineral | Formula | Index of refraction |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Ordinary <br> ray | Extraordinary <br> ray |  |

Uniaxial Positive Minerals

| Ice | $\mathrm{H}_{2} \mathrm{O}$ | 1.309 | 1.313 |
| :---: | :---: | :---: | :---: |
| Sellaite. | $\mathrm{MgF}_{2}$ | 1.378 | 1.390 |
| Chrysocolla | $\mathrm{CuO} \cdot \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | $1.460 \pm$ | $1.570 \pm$ |
| Laubanite. . | $2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SiO}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 1.475 | 1.486 |
| Chabazite. | $\left(\mathrm{Ca}, \mathrm{Na}_{2}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | $1.480 \pm$ | $1.482 \pm$ |
| Douglasite | $2 \mathrm{KCl} \cdot \mathrm{FeCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 1.488 | 1.500 |
| Hydronephelite | $2 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 1.490 | 1.502 |
| Apophyllite.... | $\mathrm{K}_{2} \mathrm{O} \cdot 8 \mathrm{CaO} \cdot 16 \mathrm{SiO}_{2} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ | $1.535 \pm$ | $1.537 \pm$ |
| Quartz..... | $\mathrm{SiO}_{2}$ | 1.544 | 1.553 |
| Coquimbite | $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SO}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ | 1.550 | 1.556 |
| Brucite..... | $\mathrm{MgO} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.559 | 1.580 |
| Alunite | $\mathrm{K}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 1.572 | 1.592 |
| Penninite | $5(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.576 | 1.579 |
| Cacoxenite. | $2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 1.582 | 1.645 |
| Eudialite. | $\mathbf{6 N a}_{2} \mathrm{O} \cdot 6(\mathrm{Ca}, \mathrm{Fe}) \mathrm{O} \cdot 20(\mathrm{Si}, \mathrm{Zr}) \mathrm{O}_{2} \cdot \mathrm{NaCl}$ | 1.606 | 1.611 |
| Dioptase. | $\mathrm{CuO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.654 | 1.707 |
| Phenacite. | $2 \mathrm{BeO} \cdot \mathrm{SiO}_{2}$ | 1.654 | 1.670 |
| Parisite. | $2 \mathrm{CeOF} \cdot \mathrm{CaO} \cdot 3 \mathrm{CO}_{2}$ | $1.676 \pm$ | 1.757 |
| Willemite. | $2 \mathrm{ZnO} \cdot \mathrm{SiO}_{2}$ | 1.691 | 1.719 |
| Vesuvianite. | $\begin{aligned} & 2(\mathrm{Ca}, \mathrm{Mn}, \mathrm{Fe}) \mathrm{O} \cdot(\mathrm{Al}, \mathrm{Fe}) \\ & (\mathrm{OH}, \mathrm{~F}) \mathrm{O} \cdot 2 \mathrm{SiO}_{2} \end{aligned}$ | $1.716 \pm$ | 1.721 |
| Xenotime | $\mathrm{Y}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ | 1.721 | 1.816 |
| Connellite. | $20 \mathrm{CuO} \cdot \mathrm{SO}_{3} \cdot 2 \mathrm{CuCl}_{2} \cdot 20 \mathrm{H}_{2} \mathrm{O}$ | 1.724 | 1.746 |
| Benitoite. | $\mathrm{BaO} \cdot \mathrm{TiO}_{2} \cdot 3 \mathrm{SiO}_{2}$ | 1.757 | 1.804 |
| Ganomalite. | $6 \mathrm{PbO} \cdot 4(\mathrm{Ca}, \mathrm{Mn}) \mathrm{O} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.910 | 1.945 |
| Scheelite... | $\mathrm{CaO} \cdot \mathrm{WO}_{3}$ | 1.918 | 1.934 |
| Zircon... | $\mathrm{ZrO}_{2} \cdot \mathrm{SiO}_{2}$ | $1.923 \pm$ | $1.968 \pm$ |
| Powellite. | $\mathrm{CaO} \cdot \mathrm{MoO}_{3}$ | 1.974 | 1.978 |
| Calomel | $\mathrm{HgCl}^{\text {a }}$ | 1.973 | 2.650 |
| Cassiterite. | $\mathrm{SnO}_{2}$ | 1.997 | 2.093 |
| Zincite. | ZnO | 2.013 | 2.029 |
| Phosgenite. | $\mathrm{PbO} \cdot \mathrm{PbCl}_{2} \cdot \mathrm{CO}_{2}$ | 2.114 | 2.140 |
| Penfieldite. | $\mathrm{PbO} \cdot \mathrm{PbCl}_{2}$ | 2.130 | 2.210 |
| Iodyrite. | AgI | 2.210 | 2.220 |
| Tapiolite. | $\mathrm{FeO} \cdot(\mathrm{Ta}, \mathrm{Nb})_{2} \mathrm{O}_{5}$ | 2.270 | 2.420 (Li line) |
| Wurtzite. | ZnS | 2.356 | 2.378 (Liline) |
| Derbylite. | $6 \mathrm{FeO} \cdot \mathrm{Sb}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{TiO}_{2}$ | 2.450 | 2.510 (Li line) |
| Greenockite. | CdS | 2.506 | 2.529 |
| Rutile.. | $\mathrm{TiO}_{2}$ | 2.616 | 2.903 |
| Moissanite. | $\mathrm{CSi}^{2}$ | 2.654 | 2.697 |
| Cinnabar. | HgS | 2.854 | 3.201 |

## Table 6b-1. Index of Refraction of Selected Uniaxial <br> Minerals* (Continued)

| Mineral | Formula | Index of refraction <br> Ordinary <br> ray |
| :---: | :---: | :---: |
| Extraordinary <br> ray |  |  |

Uniaxial Negative Minerals

| Chiolite. | $2 \mathrm{NaF} \cdot \mathrm{AlF}_{3}$ | 1.349 | 1.342 |
| :---: | :---: | :---: | :---: |
| Hanksite. | $11 \mathrm{Na}_{2} \mathrm{O} \cdot 9 \mathrm{SO}_{3} \cdot 2 \mathrm{CO}_{2} \cdot \mathrm{KCl}$ | 1.481 | 1.461 |
| Thaumasite. | $3 \mathrm{CaO} \cdot \mathrm{CO}_{2} \cdot \mathrm{SiO}_{2} \cdot \mathrm{SO}_{3} \cdot 15 \mathrm{H}_{2} \mathrm{O}$ | 1.507 | 1.468 |
| Hydrotalcite. | $6 \mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{CO}_{2} \cdot 15 \mathrm{H}_{2} \mathrm{O}$ | 1.512 | 1.498 |
| Cancrinite | $4 \mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 4 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{CO}_{2} \cdot 9 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.524 | 1.496 |
| Milarite | $\mathrm{K} 2 \mathrm{O} \cdot 4 \mathrm{CaO} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 24 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.532 | 1.529 |
| Kaliophilite. | $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$ | 1.537 | 1.533 |
| Mellite | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{C}_{12} \mathrm{O}_{9} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ | 1.539 | 1.511 |
| Marialite. | "Ma" $=3 \mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 18 \mathrm{SiO}_{2} \cdot 2 \mathrm{NaCl}$ | 1.539 | 1.537 |
| Nephelite | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$ | 1.542 | 1.538 |
| Wernerite | $\mathrm{Me}_{1} \mathrm{Ma}_{1} \pm$ | 1.578 | 1.551 |
| Beryl. | $3 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$ | $1.581 \pm$ | $1.575 \pm$ |
| Torbernite | $\mathrm{CuO} \cdot 2 \mathrm{UO}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ | 1.592 | 1.582 |
| Meionite | $" \mathrm{Me} "=4 \mathrm{CaO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$ | 1.597 | 1.560 |
| Melilite | Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{CaO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, etc. | 1.634 | 1.629 |
| Apatite. | $9 \mathrm{CaO} \cdot 3 \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{Ca}(\mathrm{F}, \mathrm{Cl})_{2}$ | 1.634 | 1.631 |
| Calcite | $\mathrm{CaO} \cdot \mathrm{CO}_{2}$ | 1.658 | 1.486 |
| Gehlenite. | $2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$ | 1.669 | 1.658 |
| Tourmaline. | $\begin{aligned} & \text { Contains } \mathrm{Na}_{2} \mathrm{O}, \mathrm{FeO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}, \\ & \mathrm{SiO}_{2} \text {, etc. } \end{aligned}$ | $1.669 \pm$ | $1.638 \pm$ |
| Dolomite. | $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{CO}_{2}$ | 1.681 | 1.500 |
| Magnesite. | $\mathrm{MgO} \cdot \mathrm{CO}_{2}$ | 1.700 | 1.509 |
| Pyrochroite. | $\mathrm{MnO} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.723 | 1.681 |
| Corundum. | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 1.768 | 1.760 |
| Smithsonite | $\mathrm{ZnO} \cdot \mathrm{CO}_{2}$ | 1.818 | 1.618 |
| Rhodochrosite | $\mathrm{MnO} \cdot \mathrm{CO}_{2}$ | 1.818 | 1.595 |
| Jarosite. | $\mathrm{K}_{2} \mathrm{O} \cdot 3 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 1.820 | 1.715 |
| Siderite. | $\mathrm{FeO} \cdot \mathrm{CO}_{2}$ | 1.875 | 1.635 |
| Pyromorphite | $9 \mathrm{PbO} \cdot 3 \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{PbCl}_{2}$ | 2.050 | 2.042 |
| Barysilite. | $3 \mathrm{PbO} \cdot 2 \mathrm{SiO}_{2}$ | 2.070 | 2.050 |
| Mimetite. | $9 \mathrm{PbO} \cdot 3 \mathrm{As}_{2} \mathrm{O}_{6} \cdot \mathrm{PbCl}_{2}$ | 2.135 | 2.118 |
| Matlockite | $\mathrm{PbO} \cdot \mathrm{PbCl}_{2}$ | 2.150 | 2.040 |
| Stolzite. | $\mathrm{PbO} \cdot \mathrm{WO}_{3}$ | 2.269 | 2.182 |
| Geikielite. | $(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{TiO}_{2}$ | 2.310 | 1.950 |
| Vanadinite. | $9 \mathrm{PbO} \cdot 3 \mathrm{~V}_{2} \mathrm{O}_{5} \cdot \mathrm{PbCl}_{2}$ | 2.354 | 2.299 |
| Wulfenite | $\mathrm{PbO} \cdot \mathrm{MoO}_{3}$ | 2.402 | 2.304 (Li line) |
| Octahedrite | $\mathrm{TiO}_{2}$ | 2.554 | 2.493 |
| Massicotite | PbO | 2.665 | 2.535 (Li line) |
| Proustite | $3 \mathrm{Ag}_{2} \mathrm{~S} \cdot \mathrm{As}_{2} \mathrm{~S}_{3}$ | 2.979 | 2.711 (Li line) |
| Pryargyrite | $3 \mathrm{Ag}_{2} \mathrm{~S} \cdot \mathrm{Sb}_{2} \mathrm{~S}_{3}$ | 3.084 | 2.881 (Li line) |
| Hematite. | $\mathrm{Fe}_{2} \mathrm{O}_{3}$ | 3.220 - | 2.940 (Li line) |

[^290]Table 6b-2. Index of Refraction of Selected Biaxial Minerals*

| Mineral | Formula | Index of refraction |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $n_{\beta}$ | $n_{\gamma}$ |  |

Biaxial Positive Minerals

| Stercorite. | $\mathrm{NaO} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ | 1.439 | 1.441 | 1.469 |
| :---: | :---: | :---: | :---: | :---: |
| Aluminite. | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SO}_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ | 1.459 | 1.464 | 1.470 |
| Tridymite. | $\mathrm{SiO}_{2}$ | 1.469 | 1.470 | 1.473 |
| Thenardite. | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$ | 1.464 | 1.474 | 1.485 |
| Carnallite. | $\mathrm{KCl} \cdot \mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ | 1.466 | 1.475 | 1.494 |
| Alunogen | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SO}_{3} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ | 1.474 | 1.476 | 1.483 |
| Melanterite | $\mathrm{FeO} \cdot \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 1.471 | 1.478 | 1.486 |
| Natrolite | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 1.480 | 1.482 | 1.493 |
| Arcanite. | $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$ | 1.494 | 1.495 | 1.497 |
| Struvite. | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot 2 \mathrm{MgO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ | 1.495 | 1.496 | 1.500 |
| Heulandite | $\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.498 | 1.499 | 1.505 |
| Thomsonite | $\left(\mathrm{Na}_{2}, \mathrm{Ca}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.497 | 1.503 | 1.525 |
| Harmotome | $\left(\mathrm{K}_{2}, \mathrm{Ba}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SiO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1.503 | 1.505 | 1.508 |
| Petalite. | $\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 8 \mathrm{SiO}_{2}$ | 1.504 | 1.510 | 1.516 |
| Monetite. | $2 \mathrm{CaO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.515 | 1.518 | 1.525 |
| Newberyite | $2 \mathrm{MgO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 1.514 | 1.519 | 1.533 |
| Gypsum. . | $\mathrm{CaO} \cdot \mathrm{SO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 1.520 | 1.523 | 1.530 |
| Mascagnite. | $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O} \cdot \mathrm{SO}_{3}$ | 1.521 | 1.523 | 1.533 |
| Albite...... | " Ab " $=\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{2} \cdot 6 \mathrm{SiO}_{2}$ | 1.525 | 1.529 | 1.536 |
| Hydromagnesite. | $4 \mathrm{MgO} \cdot 3 \mathrm{CO}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.527 | 1.530 | 1.540 |
| Wavellite | $3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{5} \cdot 12\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{HF}\right)$ | 1.525 | 1.534 | 1.552 |
| Kieserite | $\mathrm{MgO} \cdot \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.523 | 1.535 | 1.586 |
| Copiapite. | $2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{SO}_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}$ | 1.530 | 1.550 | 1.592 |
| Whewellite. | $\mathrm{CaO} \cdot \mathrm{C}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.491 | 1.555 | 1.650 |
| Variscite | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.551 | 1.558 | 1.582 |
| Labradorite. | $\mathrm{Ab}_{2} \mathrm{An}_{3}$ | 1.559 | 1.563 | 1.568 |
| Gibbsite | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.566 | 1.566 | 1.587 |
| Wagnerite | $3 \mathrm{MgO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{MgF}_{2}$ | 1. 569 | 1.570 | 1.582 |
| Anhydrite. | $\mathrm{CaO} \cdot \mathrm{SO}_{3}$ | 1.571 | 1.576 | 1.614 |
| Colemanite. | $2 \mathrm{CaO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1.586 | 1.592 | 1.614 |
| Fremontite. | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{6} \cdot\left(\mathrm{H}_{2} \mathrm{O}, 2 \mathrm{HF}\right)$ | 1.594 | 1.603 | 1.615 |
| Vivianite. | $3 \mathrm{FeO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ | 1.579 | 1.603 | 1.633 |
| Pectolite. | $\mathrm{Na}_{2} \mathrm{O} \cdot 4 \mathrm{CaO} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.595 | 1.604 | 1.633 |
| Calamine. | $2 \mathrm{ZnO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.614 | 1.617 | 1.636 |
| Chondrodite. | $4 \mathrm{MgO} \cdot \mathrm{SiO}_{2} \cdot \mathrm{Mg}(\mathrm{F}, \mathrm{OH})_{2}$ | 1.604 | 1.617 | 1.636 |
| Turquoise. | $\mathrm{CuO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{P}_{2} \mathrm{O}_{6} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ | 1.610 | 1.620 | 1.650 |
| Topaz..... | 2AlOF- $\mathrm{SiO}_{2}$ | 1.619 | 1.620 | 1.627 |
| Celestite. | $\mathrm{SrO} \cdot \mathrm{SO}_{3}$ | 1.622 | 1.624 1.626 | $\begin{aligned} & 1.631 \\ & 1.649 \end{aligned}$ |
| Prehnite. | $2 \mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{8} \cdot 3 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.616 1.636 | 1.626 | $\begin{aligned} & 1.649 \\ & 1.648 \end{aligned}$ |
| Barite........ | $\mathrm{BaO} \cdot \mathrm{SO}_{3}$ | 1.636 1.633 | 1.637 | 1.648 |
| Anthophyllite. Sillimanite... | $\mathrm{MgO} \cdot \mathrm{SiO}_{2}$ | 1.633 | 1.642 | 1.657 |
| Sillimanite... Forsterite. . . | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$ $2 \mathrm{MgO} \cdot \mathrm{SiO}_{2}$ | 1.638 | 1.642 1.651 | 1.653 1.669 |

Table 6b-2. Index of Refraction of Selected Biaxial Minerals* (Continued)

| Mineral | Formula | Index of refraction |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $n_{\alpha}$ | $n_{\beta}$ | $n_{\gamma}$ |

Biaxial Positive Minerals

| Enstatite. | $\mathrm{MgO} \cdot \mathrm{SiO}_{2}$ | 1.650 | 1.653 | 1.658 |
| :---: | :---: | :---: | :---: | :---: |
| Euclase. | $2 \mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.653 | 1.656 | 1.673 |
| Triplite. | $3 \mathrm{MnO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{MnF}_{2}$ | 1.650 | '1.660 | 1.672 |
| Spodumene. | $\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2}$ | 1.660 | 1.666 | 1.676 |
| Diopside. | $\mathrm{CaO} \cdot \mathrm{MgO} \cdot 2 \mathrm{SiO}_{2}$ | 1.664 | 1.671 | 1.694 |
| Olivine. | $2(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot \mathrm{SiO}_{2}$ | 1.662 | 1.680 | 1.699 |
| Triphylite. | $\mathrm{Li}_{2} \mathrm{O} \cdot 2(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ | 1.688 | 1.688 | 1.692 |
| Zoisite. | $4 \mathrm{CaO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.700 | 1.702 | 1.706 |
| Strengite. | $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.708 | 1.708 | 1.745 |
| Diaspore. | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.702 | 1.722 | 1.750 |
| Staurolite. | $2 \mathrm{FeO} \cdot 5 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.736 | 1.741 | 1.746 |
| Chrysoberyl. | $\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$ | 1.747 | 1.748 | 1.757 |
| Azurite. | $3 \mathrm{CuO} \cdot 2 \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.730 | 1.758 | 1.838 |
| Scorodite. | $\mathrm{Fe}_{2} \mathrm{O}_{8} \cdot \mathrm{As}_{2} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.765 | 1.774 | 1.797 |
| Olivenite. | $4 \mathrm{CuO} \cdot \mathrm{As}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.772 | 1.810 | 1.863 |
| Anglesite. | $\mathrm{PbO} \cdot \mathrm{SO}_{3}$ | 1.877 | 1.882 | 1.894 |
| Titanite... | $\mathrm{CaO} \cdot \mathrm{TiO}_{2} \cdot \mathrm{SiO}_{2}$ | 1.900 | 1.907 | 2.034 |
| Claudetite. | $\mathrm{As}_{2} \mathrm{O}_{3}$ | 1.871 | 1.920 | 2.010 |
| Sulfur. | S | 1.950 | 2.043 | 2.240 |
| Cotunnite. | $\mathrm{PbCl}_{2}$ | 2.200 | 2.217 | 2.260 |
| Huebnerite | $\mathrm{MnO} \cdot \mathrm{WO}_{3}$ | 2.170 | 2.220 | 2.320 |
| Manganite | $\mathrm{Mn}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 2.240 | 2.240 | 2.530 (Li) |
| Raspite... | $\mathrm{PbO}^{\mathrm{WO}_{3}}$ | 2.270 | 2.270 | 2.300 |
| Mendipite. | $2 \mathrm{PbO} \cdot \mathrm{PbCl}_{2}$ | 2.240 | 2.270 | 2.310 |
| Tantalite. | $(\mathrm{Fe}, \mathrm{Mn}) \mathrm{O} \cdot \mathrm{Ta}_{2} \mathrm{O}_{5}$ | 2.260 | 2.320 | 2.430 (Li) |
| Wolframite | ( $\mathrm{Fe}, \mathrm{Mn}$ ) $\mathrm{O} \cdot \mathrm{WO}_{3}$ | 2.310 | 2.360 | 2.460 (Li) |
| Crocoite. | $\mathrm{PbO}^{\mathrm{CrO}_{3}}$ | 2.310 | 2.370 | 2.660 (Li) |
| Pseudobrookite. | $2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{TiO}_{2}$ | 2.380 | 2.390 | 2.420 (Li) |
| Stibiotantalite. | $\mathrm{Sb}_{2} \mathrm{O}_{3} \cdot \mathrm{Ta}_{2} \mathrm{O}_{5}$ | 2.374 | 2.404 | 2.457 |
| Montroydite. | HgO | 2.370 | 2.500 | 2.650 (Li) |
| Brookite. | $\mathrm{TiO}_{2}$ | 2.583 | 2.586 | 2.741 |
| Massicot. | PbO | 2.510 | 2.610 | 2.710 |

Biaxial Negative Minerals

| Mirabilite | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{SO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ | 1.394 | 1.396 | 1.398 |
| :---: | :---: | :---: | :---: | :---: |
| Thomsenolite | $\mathrm{NaF} \cdot \mathrm{CaF}_{2} \cdot \mathrm{AlF}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.407 | 1.414 | 1.415 |
| Natron. | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CO}_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ | 1.405 | 1.425 | 1.440 |
| Kalinite. | $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ | 1.430 | 1.452 | 1.458 |
| Epsomite. | $\mathrm{MgO} \cdot \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 1.433 | 1.455 | 1.461 |
| Sassolite. | $\mathrm{B}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.340 | 1.456 | 1.459 |
| Borax | $\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ | 1.447 | 1.470 | 1.472 |

Table 6b-2. Index of Refraction of Selected Biaxial Minerals* (Continued)

| Mineral | Formula | Index of refraction |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $n_{\alpha}$ | $n_{\beta}$ | $n_{\gamma}$ |

Biaxial Negative Minerals

| Goslarite | $\mathrm{ZnO} \cdot \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ | 1.457 | 1.480 | 1.484 |
| :---: | :---: | :---: | :---: | :---: |
| Pickeringite. | $\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SO}_{3} \cdot 22 \mathrm{H}_{2} \mathrm{O}$ | 1.476 | 1.480 | 1.483 |
| Bloedite. | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{MgO} \cdot 2 \mathrm{SO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.483 | 1.487 | 1.486 |
| Trona. | $3 \mathrm{Na}_{2} \mathrm{O} \cdot 4 \mathrm{CO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1.410 | 1.492 | 1.542 |
| Thermonatrite | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.420 | 1.495 | 1.518 |
| Stilbite | $\left(\mathrm{Ca}, \mathrm{Na}_{2}\right) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1.494 | 1.498 | 1.500 |
| Niter | $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{N}_{2} \mathrm{O}_{5}$ | 1.334 | 1.505 | 1.506 |
| Kainite | $\mathrm{MgO} \cdot \mathrm{SO}_{3} \cdot \mathrm{KCl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.494 | 1.505 | 1.516 |
| Gaylussite. | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 2 \mathrm{CO}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1.444 | 1.516 | 1.523 |
| Scolecite. | $\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.512 | 1.519 | 1.519 |
| Laumontite | $\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.513 | 1.524 | 1.525 |
| Orthoclase | $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$ | 1.518 | 1.524 | 1.526 |
| Microcline | Same as preceding | 1.522 | 1.526 | 1.530 |
| Anorthoclase | $(\mathrm{Na}, \mathrm{K})_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$ | 1.523 | 1.529 | 1.531 |
| Glauberite. | $\mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{CaO} \cdot 2 \mathrm{SO}_{3}$ | 1.515 | 1.532 | 1.536 |
| Cordierite. | $4(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot 4 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 10 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.534 | 1.538 | 1.540 |
| Chalcanthite | $\mathrm{CuO} \cdot \mathrm{SO}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ | 1.516 | 1.539 | 1.546 |
| Oligoclase. | $\mathrm{Ab}_{4} \mathrm{An}$ | 1.539 | 1.543 | 1.547 |
| Beryllonite. | $\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{BeO} \cdot \mathrm{P}_{2} \mathrm{O}_{5}$ | 1.552 | 1.558 | 1.561 |
| Kaolinite. | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 1.561 | 1.563 | 1.565 |
| Biotite. | $\mathrm{K}_{2} \mathrm{O} \cdot \mathbf{4}(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.541 | 1.574 | 1.574 |
| Autunite | $\mathrm{CaO} \cdot 2 \mathrm{UO}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ | 1.553 | 1.575 | 1.577 |
| Anorthite. | " An " $=\mathrm{CaO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$ | 1.576 | 1.584 | 1.588 |
| Lanthanite | $\mathrm{La}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{CO}_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}$ | 1.520 | 1.587 | 1.613 |
| Pyrophyllite | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.552 | 1.588 | 1.600 |
| Talc....... | $3 \mathrm{MgO} \cdot 4 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.539 | 1.589 | 1.589 |
| Hopeite | $3 \mathrm{ZnO} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ | 1.572 | 1.590 | 1.590 |
| Muscovite | $\mathrm{K}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 1.561 | 1.590 | 1.594 |
| Amblygonite | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{LiF}$ | 1.579 | 1.593 | 1.597 |
| Lepidolite. . | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2} \cdot 2(\mathrm{~K}, \mathrm{Li}) \mathrm{F}$ | 1.560 | 1.598 | 1.605 |
| Phlogopite | $\mathrm{K}_{2} \mathrm{O} \cdot 6 \mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ | 1.562 | 1.606 | 1.606 |
| Tremolite. | $\mathrm{CaO} \cdot 3 \mathrm{MgO} \cdot 4 \mathrm{SiO}_{2}$ | 1.600 | 1.616 | 1.627 |
| Actinolite. | $\mathrm{CaO} \cdot 3(\mathrm{Mg}, \mathrm{Fe}) \mathrm{O} \cdot 4 \mathrm{SiO}_{2}$ | 1.614 | 1.630 | 1.641 |
| Wollastonite | $\mathrm{CaO} \cdot \mathrm{SiO}_{2}$ | 1.620 | 1.632 | 1.634 |
| Lazulite. | $(\mathrm{Fe}, \mathrm{Mg}) \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{P}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.612 | 1.634 | 1.643 |
| Danburite. | $\mathrm{CaO} \cdot \mathrm{B}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{SiO}_{2}$ | 1.632 | 1.634 | 1.636 |
| Glaucophane . | $\mathrm{Na} 2_{2} \mathrm{O} \cdot 2 \mathrm{FeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2}$ | 1.621 | 1.638 | 1.638 |
| Andalusite. | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$ | 1.632 | 1.638 | 1.643 |
| Hornblende. | Contains $\mathrm{Na}_{2} \mathrm{O}, \mathrm{MgO}, \mathrm{FeO}, \mathrm{SiO}_{2}$, etc. | 1.634 | 1.647 | 1.652 |
| Datolite. | $2 \mathrm{CaO} \cdot 2 \mathrm{SiO}_{2} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.625 | 1.653 | 1.669 |
| Erythrite. | $3 \mathrm{CoO} \cdot \mathrm{As}_{2} \mathrm{O}_{5} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ | 1.626 | 1.661 | 1.699 |
| Monticellite | $\mathrm{CaO} \cdot \mathrm{MgO} \cdot \mathrm{SiO}_{2}$ | 1.651 | 1.662 | 1.668 |

## Table 6b-2. Index of Refraction of Selected Biaxial <br> Minerals* (Continued)

| Mineral | Formula | Index of refraction |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $n_{\alpha}$ | $n_{\beta}$ | $n_{\gamma}$ |


| Biaxial negative minerals |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Strontianite | $\mathrm{SrO} \cdot \mathrm{CO}_{2}$ | 1.520 | 1.667 | 1.667 |
| Witherite. | $\mathrm{BaO} \cdot \mathrm{CO}_{2}$ | 1.529 | 1.676 | 1.677 |
| Aragonite | $\mathrm{CaO} \cdot \mathrm{CO}_{2}$ | 1.531 | 1.682 | 1.686 |
| Axinite. | $6(\mathrm{Ca} \mathrm{Mn}) ,\mathrm{O} \cdot 2 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 8 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.678 | 1.685 | 1.688 |
| Dumortierite. | $8 \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.678 | 1.686 | 1.689 |
| Cyanite | $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}$ | 1.712 | 1.720 | 1.728 |
| Epidote. | $4 \mathrm{CaO} \cdot 3(\mathrm{Al}, \mathrm{Fe})_{2} \mathrm{O}_{3} \cdot 6 \mathrm{SiO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.729 | 1.763 | 1.780 |
| Atacamite. | $3 \mathrm{CuO} \cdot \mathrm{CuCl}_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | 1.831 | 1.861 | 1.880 |
| Fayalite. | $2 \mathrm{FeO} \cdot \mathrm{SiO}_{2}$ | 1.824 | 1.864 | 1.874 |
| Caledonite | 2(Pb, Cu) $\mathrm{O} \cdot \mathrm{SO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.818 | 1.866 | 1.909 |
| Malachite. | $2 \mathrm{CuO} \cdot \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.655 | 1.875 | 1.909 |
| Lanarkite. | $2 \mathrm{PbO} \cdot \mathrm{SO}_{3}$ | 1.930 | 1.990 | 2.020 |
| Leadhillite. | $4 \mathrm{PbO} \cdot \mathrm{SO}_{3} \cdot 2 \mathrm{CO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.870 | 2.000 | 2.010 |
| Cerusite. | $\mathrm{PbO} \cdot \mathrm{CO}_{2}$ | 1.804 | 2.076 | 2.078 |
| Laurionite. | $\mathrm{PbCl}_{2} \cdot \mathrm{PbO} \cdot \mathrm{H}_{2} \mathrm{O}$ | 2.077 | 2.116 | 2.158 |
| Matlockite. | $\mathrm{PbO} \cdot \mathrm{PbCl}_{2}$ | 2.040 | 2.150 | 2.150 |
| Baddeleyite | $\mathrm{ZrO}_{2}$ | 2.130 | 2.190 | 2.200 |
| Lepidocrocite. | $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 1.930 | 2.210 | 2.510 |
| Limonite. | $2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in part | 2.170 | 2.290 | 2.310 |
| Goethite | $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ | 2.210 | 2.350 | 2.350 (Li) |
| Valentinite. | $\mathrm{Sb}_{2} \mathrm{O}_{3}$ | 2.180 | 2.350 | 2.350 |
| Turgite | $2 \mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in part | 2.450 | 2.550 | 2.550 (Li) |
| Realgar. | AsS | 2.460 | 2.590 | 2.610 (Li) |
| Terlinguaite. | $\mathrm{Hg}_{2} \mathrm{OCl}$ | 2.350 | 2.640 | 2.660 (Li) |
| Hutchinsonite | $(\mathrm{Tl}, \mathrm{Ag})_{2} \mathrm{~S} \cdot \mathrm{PbS} \cdot 2 \mathrm{As}_{2} \mathrm{~S}_{3}$ | 3.078 | 3.176 | 3.188 |
| Stibnite | $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ | 3.194 | 4.303 | 4.460 |

[^291]Table 6b-3. Index of Refraction of Some Liquids Relative to Air*

| Substance | Density | Temp., ${ }^{\circ} \mathrm{C}$ | Indices of refraction |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} 0.397 \mu \\ H \end{gathered}$ | $\underset{G^{\prime}}{0.434 \mu}$ | $\underset{F}{0.486 \mu}$ | $\begin{gathered} 0.589 \mu \\ D \end{gathered}$ | $\underset{C}{0.656 \mu}$ |
| Acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$ | 0.780 | 20 |  | 1.3394 | 1.3359 | 1.3316 | 1.3298 |
| Acetone, $\mathrm{CH}_{3} \mathrm{COCH}_{3}$. | 0.791 | 20 |  | 1.3678 | 1.3639 | 1.3593 | 1.3573 |
| Aniline, $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{NH}_{2}$. | 1.022 | 20 |  | 1.6204 | 1.6041 | 1.5863 | 1.5793 |
| Alcohol, methyl, $\mathrm{CH}_{8} \cdot \mathrm{OH}$ | 0.794 | 20 | 1.3399 | 1.3362 | 1.3331 | 1.3290 | 1.3277 |
| Alcohol, ethyl, $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{OH}$ | 0.808 | 0 |  | 1.3773 | 1.3739 | 1.3695 | 1.3677 |
| Alcohol, ethyl. | 0.800 | 20 |  | 1.3700 | 1.3666 | 1.3618 | 1.3605 |
| Alcohol, ethyl, $d n / d t$. |  | 20 |  | -0.0004 | -0.0004 | -0.0004 | -0.0004 |
| Alcohol, $n$-propyl, $\mathrm{C}_{3} \mathrm{H}_{7} \cdot \mathrm{OH}$ | 0.804 | 20 |  | 1.3938 | 1.3901 | 1.3854 | 1.3834 |
| Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. | 0.880 | 20 |  | 1.5236 | 1.5132 | 1.5012 | 1.4965 |
| Benzene, $\mathrm{C}_{6} \mathrm{H}_{6} d \boldsymbol{d r} / d t$. |  | 20 |  | -0.0007 | -0.0006 | -0.0006 | -0.0006 |
| Bromnaphthalene, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}$ | 1.487 | 20 | 1.7289 | 1.7041 | 1.6819 | 1.6582 | 1.6495 |
| Carbon disulfide, $\mathrm{CS}_{2}$ | 1.293 | 0 | 1.7175 | 1.6920 | 1.6688 | 1.6433 | 1.6336 |
| Carbon disulfide | 1.263 | 20 | 1.6994 | 1.6748 | 1.6523 | 1.6276 | 1.6182 |
| Carbon tetrachloride, CCls | 1.591 | 20 |  | 1.4729 | 1.4676 | 1.4607 | 1.4579 |
| Chinolin, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$. | 1.090 | 20 |  | 1.6679 | 1.6470 | 1.6245 | 1.6161 |
| Chloral, $\mathrm{CCl}_{8} \mathrm{CH} \mathrm{CH}$ | 1.512 | 20 |  | 1.4679 | 1.4624 | 1.4557 | 1.4530 |
| Chloroform, $\mathrm{CHCl}_{3}$. | 1.489 | 20 | 1.463 | 1.458 | 1.4530 | 1.4467 | 1.4443 |
| Decane, $\mathrm{C}_{10} \mathrm{H}_{22}$. | 0.728 | 14.9 |  | 1.4200 | 1.4160 | 1.4108 | 1.4088 |
| Ether, ethyl, $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}_{5}$ | 0.715 | 20 |  | 1.3607 | 1.3576 | 1.3538 | 1.3515 |
| Ether, ethyl, dn $/ d t$. |  | 20 |  | -0.0006 | -0.0006 | -0.0006 | -0.0006 |
| Ethyl nitrate, $\mathrm{C}_{2} \mathrm{H}_{5} \cdot \mathrm{O} \cdot \mathrm{NO}_{3}$ | 1.109 | 20 |  | 1.395 | 1.392 | 1.3853 | 1.3830 |
| Formic acid, $\mathrm{H} \cdot \mathrm{CO}_{2} \mathrm{H}$ | 1.219 | 20 |  | 1.3804 | 1.3764 | 1.3714 | 1.3693 |
| Glycerine, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$. | 1.260 | 20 |  | 1.4828 | 1.4784 | 1.4730 | 1.4706 |
| Hexane, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$. | 0.660 | 20 |  | 1.3836 | 1.3799 | 1.3754 | 1.3734 |
| Hexylene, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH} \cdot \mathrm{CH}_{2}$ | 0.679 | 23.3 |  | 1.4059 | 1.4007 | 1.3945 | 1.3920 |
| Methylene iodide, $\mathrm{CH}_{2} \mathrm{I}_{2}$ | 3.318 | 20 | 1.8027 |  | 1.7692 | 1.7417 | 1.7320 |
| Methylene iodide $d n / d t$. |  | 20 |  |  | -0.0007 | -0.0007 | -0.0006 |
| Naphthalene, $\mathrm{C}_{10} \mathrm{H}_{8}$. | 0.962 | 98.4 |  |  | 1.6031 | 1.5823 | 1.5746 |
| Nicotine, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$. | 1.012 | 22.4 |  | 1.5439 |  | 1.5239 | 1.5198 |
| Octane, $\mathrm{CH}_{8}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{8}$ | 0.707 | 15.1 |  | 1.4097 | 1.4046 | 1.4007 | 1.3987 |
| Oil: |  |  |  |  |  |  |  |
| Almond. | 0.92 | 0 |  |  | 1.4847 | 1.4782 | 1.4755 |
| Anise seed | 0.99 | 15.1 | 1.6084 |  | 1.5743 | 1.5572 | 1.5508 |
| Anise. | 0.99 | 21.4 |  |  | 1.5647 | 1.5475 | 1.5410 |
| Bitter almond | 1.06 | 20 |  | 1.5775 | 1.5623 |  | 1.5391 |
| Cassia. |  | 10 | 1.7039 |  | 1.6389 | 1.6104 | 1.6007 |
| Cassia. |  | 22.5 | 1.6985 |  | 1.6314 | 1.6026 | 1.5930 |
| Cinnamon. | 1.05 | 23.5 |  |  | 1.6508 | 1.6188 | 1.6077 |
| Olive. | 0.92 | 0 |  |  | 1.4825 | 1.4763 | 1.4738 |
| Rock. |  | 0 |  |  | 1.4644 | 1.4573 | 1.4545 |
| Turpentine. | 0.87 | 10.6 | 1.4939 |  | 1.4817 | 1.4744 | 1.4715 |
| Turpentine. | 0.87 | 20.7 | 1.4913 |  | 1.4793 | 1.4721 | 1.4692 |
| Pentane, $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$ | 0.625 | 15.7 |  | 1.3645 | 1.3610 | 1.3581 | 1.3570 |
| Phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$. | 1.060 | 40.6 |  | 1.5684 | 1.5558 | 1.5425 | 1.5369 |
| Phenol. | 1.021 | 82.7 |  |  | 1.5356 |  | 1.5174 |
| Styrene, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH} \cdot \mathrm{CH}_{2}$. | 0.910 | 16.6 |  | 1.5816 | 1.5659 | 1.5485 | 1.5419 |
| Thymol, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}$. | 0.982 |  |  |  | 1.5386 |  | 1.5228 |
| Toluene, $\mathrm{CH}_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5}$. | 0.86 | 20 |  | 1.5170 | 1.5070 | 1.4955 | 1.4911 |
| Water, $\mathrm{H}_{2} \mathrm{O}$ |  | 20 | 1.3435 | 1.3404 | 1.3372 | 1.3330 | 1.3312 |
| Water. |  | 0 | 1.3444 | 1.3413 | 1.3380 | 1.3338 | 1.3319 |
| Water. |  | 40 | 1.3411 | 1.3380 | 1.3349 | 1.3307 | 1.3290 |
| Water. |  | 80 | 1.3332 | 1.3302 | 1.3270 | 1.3230 | 1.3313 |

[^292]
## Table 6b-4. Index of Refraction of Plastics* Optical Plastics

| Name of monomer | Optical properties of polymer |  | Name of monomer | Optical properties of polymer |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Refrac- } \\ & \text { tive } \\ & \text { index } \\ & \left(N^{20}\right) \end{aligned}$ | Recip rocal disper sive power |  | Refractive index ( $\mathrm{N}^{20}$ ) | Recip rocal dispersive power |
| $p$-Methoxy styrene | 1.5967 | 28 | Illyl methacrylate | 1.5196 | 49.0 |
| $\beta$-Amino-ethyl methacrylate. | 1.537 | 52.5 | Benzhydryl methacrylate. | 1.5933 | 31.0 |
| Methyl $\alpha$-bromoacrylate. | 1.5672 | 46.5 | Benzyl methacrylate. | 1.5680 | 36.5 |
| Vinyl benzoate. | 1.5775 | 30.7 | $n$-Butyl methacrylate | 1.483 | 49 |
| Phenyl vinyl ketone | 1.586 | 26.0 | Tert-butyl methacrylate | 1.4638 | 51 |
| Vinyl carbazole. | 1.683 | 18.8 | o-Chlorobenzhydryl methacrylate | 1.6040 | 30 |
| Lead methacrylate. | 1.645 | 28 | $\alpha$-(o-Chlorophenyl)ethyl methacrylate. | 1.5624 | 37.5 |
| 2-Chlorocyclohexyl methacrylate | 1.5179 | 56 | Cyclohexyl-cyclohexyl methacrylate. | 1.5250 | 53 |
| 1-Phenyl-cyclohexyl methacrylate | 1.5645 | 40 | Cyclohexyl methacrylate. | 1.5064 | 56.9 |
| Triethoxy-silicol methacrylate. | 1.436 | 53 | p-Cyclohexyl-phenyl methacrylate. | 1.5575 | 39.0 |
| $p$-Bromophenyl methacrylate. | 1.5964 | 33 | $\alpha-\beta$-Diphenyl-ethyl methacrylate. | 1.5816 | 30.5 |
| 2-3 Dibromopropyl methacrylate | 1.5739 | 44 | Menthyl methacrylate. | 1.4890 | 54.5 |
| Diethyl-amino-thyl methacrylate. | 1.5174 | 54 | Ethylene dimethacrylate. | 1.5063 | 53.4 |
| 1-Methyl-cyclohexyl methacrylate | 1.5111 | 54 | Hexamethylene glycol dimethacrylate. | 1.5066 | 56 |
| $n$-Hexyl methacrylate. | 1.4813 | 57 | Methacrylic anhydride. | 1.5228 | 48.5 |
| 2-6-Dichlorostyrene. | 1.6248 | 31.3 | Methyl methacrylate. | 1.4913 | 57.8 |
| $\beta$-Bromo-ethyl methacrylate | 1.5426 | 40 | $m$-Nitro-benzyl methacrylate | 1.5845 | 27.4 |
| $\mu$-Polychloroprene. | 1.5540 | 36 | 2-Nitro-2-methyl-propyl methacrylate | 1.4868 | 48 |
| Methyl $\alpha$-chloracrylate | 1.5172 | 57 | $\alpha$-Phenyl-allyl methacrylate. | 1.5573 | 34.8 |
| $\beta$-Naphthyl methacrylate | 1.6298 | 24 | $\alpha$-Phenyl-n-amyl methacrylate. | 1.5396 | 40 |
| Vinyl phenyl sulfide | 1.6568 | 27.5 | $\alpha$-Phenyl-ethyl methacrylate. | 1.5487 | 37.5 |
| Methacryl methyl salicylate | 1.5707 | 34 | $\beta$-Phenyl-ethyl methacrylate. | 1.5592 | 36.5 |
| Methyl isopropenyl ketone. | 1.5200 | 54.5 | Tetrahydrofurfuryl methacrylate | 1.5096 | 54 |
| Ethylene glycol mono-methacrylate | 1.5119 | 56 | Vinyl methacrylate. | 1.5129 | 46 |
| $N$-Benzyl methacrylamide. | 1.5965 | 34.5 | Styrene. | 1.5907 | 30.8 |
| $\beta$-Phenyl-sulfone ethyl methacrylate | 1.5682 | 39 | Vinyl formate. | 1.4757 | 55 |
| $N$-Methyl methacrylamide. | 1.5398 | 47.5 | Phenyl cellosolve methacrylate. | 1.5624 | 36.2 |
| $N$-Allyl methacrylamide. | 1.5476 | 47 | $p$-Methoxy-benzyl methacrylate | 1.552 | 32.5 |
| Methaeryl-phenyl salicylate | 1.6006 | 36 | Ethylene chlorohydrin methacrylate | 1.517 | 54 |
| $N-\beta$-Methoxyethyl methacrylamide | 1.5246 | 53 | $o$-Chlorostyrene. | 1.6098 | 31 |
| $N$ - $\beta$-Phenylethyl methacrylamide. | 1.5857 | 37 | Pentachlorophenyl methacrylate | 1.608 | 22.5 |
| Cyclohexyl $\alpha$-thoxyacrylate. | 1.4969 | 58 | Phenyl methacrylate. | 1.5706 | 35.0 |
| 1-3-Dichloropropyl-2-methacrylate | 1.5270 | 56 | Vinyl naphthalene. | 1.6818 | 20.9 |
| 2-Methyl-cyclohexyl methacrylate. | 1.5028 | 53 | Vinyl thiophene... | 1.6376 | 29 |
| 3-Methyl-cyclohexyl methacrylate. | 1.4947 | 55 | Eugenol methacrylate | 1.5714 | 33 |
| 3-3-5-Trimethyl-cyclohexyl methacrylate | 1.485 | 54 | $m$-Cresyl methacrylate. | 1.5683 | 36.8 |
| $N$-Vinyl phthalimide. | 1.6200 | 24.1 | o-Methyl-p-methoxy styrene | 1.5868 | 30.3 |
| Fluorenyl methacrylate | 1.6319 | 23.1 | o-Methoxy styrene | 1.5932 | 29.7 |
| $\alpha$-Naphthyl-carbinyl methacrylate | 1.63 | 25 | $o$-Methyl styrene. | 1.5874 | 32 |
| $p$-p ${ }^{3}$-Xylylenyl dimethacrylate. | 1.5559 | 37 | Ethyl sulfide dimethacrylate | 1.547 | 44 |
| Cyclohexanediol-1-4 dimethacrylate | 1.5067 | 54.3 | Allyl cinnamate. | 1.57 | 30 |
| Ethylidene dimethacrylate. | 1.4831 | 52.9 | Diacetin methacrylate | 1.4855 | 50 |
| $p$-Divinyl benzene | 1.6150 | 28.1 | Ethylene glycol benzoate methacrylate. | 1.555 | 36.8 |
| Decamethylene glycol dimethacrylate | 1.4990 | 56.3 | Ethyl glycolate methacrylate. | 1.4903 | 55 |
| Vinyl cyclohexene dioxide. | 1.5303 | 56.4 | $p$-Isopropyl styrene. | 1.554 | 35 |
| Methyl $\alpha$-methylene butyrolactone | 1.5118 | 53.9 | Bornyl methacrylate | 1.5059 | 54.6 |
| $\alpha$-Methylene butyrolactone. | 1.5412 | 56.4 | Triethyl carbinyl methacrylate. | 1.4889 | 57 |
| 4-Dioxolylmethyl methacrylate | 1.5084 | 59.7 | Butyl mercaptyl methacrylate. | 1.5390 | 41.8 |
| Methylene- $\alpha$-valerolactone. | 1.5431 | 47.8 | o-Chlorobenzyl methacrylate. | 1.5823 | 37 |
| 0-Methoxy-phenyl methacrylate | 1.5705 | 33.4 | $\alpha$-Methallyl methacrylate. | 1.4917 | 49 |
| Isopropyl methacrylate. | 1.4728 | 57.9 | $\boldsymbol{\beta}$-Methallyl methacrylate. | 1.5110 | 47 |
| Trifluoroisopropyl methacrylate | 1.4177 | 65.3 | $\alpha$-Naphthyl methacrylate. | 1.6411 | 20.5 |
| $\beta$-Ethoxy-ethyl methacrylate. | 1.4833 | 32.0 | Ethyl acrylate. | 1.4685 | 58 |
| Name of polymer |  |  | Cinnamyl methacrylate. | 1.5951 | 26.5 |
| Condensation resin from di- ( $p$-aminocyclohexyl) methane and sebacic acid | 1.5199 | 52.0 | Methyl acrylate....... | 1.4793 |  |
| Columbia resin 39. | 1.5001 | 58.8 | Furfuryl methacrylate. | 1.5381 | 50 39.2 |

[^293]Table 6b-4. Index of Refraction of Plastics* (Continued)

| Polystyrene |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Spectral line | Wavelength, A |  | Refractive index at |  |  |
|  |  |  | $15^{\circ} \mathrm{C}$ | $35^{\circ} \mathrm{C}$ | $55^{\circ} \mathrm{C}$ |
| A | 7,679 |  | $1.581{ }^{2}$ | $2{ }^{2} 1.578^{5}$ | $1.575^{8}$ |
| $C$ | 6,563 |  | $1.587^{\circ}$ | $0 \quad 1.584^{3}$ | $1.581^{6}$ |
| $D_{1}$ | 5,896 |  | $1.592^{3}$ | ${ }^{3} \quad 1.589^{7}$ | $1.586^{9}$ |
| F | 4,861 |  | $1.606^{2}$ | $2{ }^{2} \quad 1.603^{4}$ | $1.600^{6}$ |
| $g$ | 4,358 |  | $1.617^{6}$ | ${ }^{6} \quad 1.614^{8}$ | $1.612^{0}$ |
| Polycyclohexyl Methacrylate |  |  |  |  |  |
| Spectral line | Wavelength, A |  | Refractive index at |  |  |
|  |  |  | $15^{\circ} \mathrm{C}$ | $35^{\circ} \mathrm{C}$ | $55^{\circ} \mathrm{C}$ |
| A | 7,679 |  | $1.501{ }^{6}$ | ${ }^{6} \quad 1.499^{2}$ | $1.496{ }^{4}$ |
| C | 6,563 |  | $1.504^{4}$ | $4{ }^{4} \quad 1.502^{1}$ | $1.499{ }^{2}$ |
| $D_{1}$ | 5,896 |  | $1.507^{1}$ | $1{ }^{1} \quad 1.504^{6}$ | $1.501^{8}$ |
| F | 4,861 |  | $1.513^{4}$ | 4 $1.501^{0}$ | $1.508^{1}$ |
| $g$ | 4,358 |  | $1.518^{4}$ | 4 $1.516^{0}$ | $1.513^{1}$ |
| Polymethyl Methacrylate |  |  |  |  |  |
| Spectral line |  | Wavelength, A |  | Refractive index at $20^{\circ} \mathrm{C}$ |  |
| C |  | 6,563 |  | $1.489^{\circ}$ |  |
| D |  | 5,896 |  | $1.491^{3}$ |  |
| $e$ |  | 5,461 |  | $1.493{ }^{2}$ |  |
| $F$ |  | 4,861 |  | $1.497{ }^{5}$ |  |
| $g$ |  | 4,358 |  | $1.501^{9}$ |  |

Table 6b-5. Index of Refraction of Gases and Vapors*

| Wavelength $\mu$ | $(n-1) 10^{3}$ |  |  |  | Wavelength | $(n-1) 10^{3}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Air | 0 | N | H |  | Air | 0 | N | H |
| 0.4861 | 0.2951 | 0.2734 | 0.3012 | 0.1406 | 0.4360 | 0.2971 | 0.2743 | $\mathrm{CO}_{2}$ | 0.1418 |
| 0.5461 | 0.2936 | 0.2717 | 0.2998 | 0.1397 | 0.5462 | 0.2937 | 0.2704 | 0.4506 | 0.1397 |
| 0.5790 | 0.2930 | 0.2710 |  | 0.1393 | 0.6709 | 0.2918 | 0.2683 | 0.4471 | 0.1385 |
| 0.6563 | 0.2919 | 0.2698 | 0.2982 | 0.1387 | 6.709 | 0.2881 | 0.2643 | 0.4804 | 0.1361 |
|  |  |  |  |  | 8.678 | 0.2888 | 0.2650 | 0.4579 | 0.1361 |

The values are for $0^{\circ} \mathrm{C}$ and 760 mm Hg .

| Substance | Kind of light | Indices of refraction | Substance | Kind of light | Indices of refraction |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Acetone. | D | 1.001079-1.001100 | Hydrogen. | White | 1.000138-1.000143 |
| Ammonia. | White | 1.000381-1.000385 | Hydrogen. | D | 1.000132 |
| Ammonia. | D | 1.000373-1.000379 | Hydrogen sulfide | D | 1.000644 |
| Argon. | D | 1.000281 |  | D | 1.000623 |
| Benzene. | D | 1.001700-1.001823 | Methane | White | 1.000443 |
| Bromine. | D | 1.001132 | Methane | D | 1.000444 |
| Carbon dioxide. | White | 1.000449-1.000450 | Methyl alcohol. | D | 1.000549-1.000623 |
| Carbon dioxide. | D | 1.000448-1.000454 | Methyl ether. | D | 1.000891 |
| Carbon disulfide. | White | 1.001500 | Nitric oxide. | White | 1.000303 |
|  | D | 1.001478-1.001485 | Nitric oxide | D | 1.000297 |
| Carbon monoxide. | White | 1.000340 | Nitrogen. | White | 1.000295-1.000300 |
|  | White | 1.000335 | Nitrogen. | D | 1.000296-1.000298 |
| Chlorine. | White | 1.000772 | Nitrous oxide | White | 1.000503-1.000507 |
| Chlorine. | D | 1.000773 | Nitrous oxide | D | 1.000516 |
| Chloroform | D | 1.001436-1.001464 | Oxygen. | White | 1.000272-1.000280 |
| Cyanogen. | White | 1.000834 | Oxygen. | D | 1.000271-1.000272 |
| Cyanogen. | D | 1.000784-1.000825 | Pentane | D | 1.001711 |
| Ethyl alcohol: | D | 1.000871-1.000885 | Sulfur dioxide. | White ${ }^{\text {E }}$ | 1.000665 |
| Ethyl ether. | D | 1.001521-1.001544 | Sulfur dioxide. | D | 1.000686 |
| Helium. | D | 1.000036 | Water | White | 1.000261 |
| Hydrochloric acid. | White <br> D | $\begin{aligned} & 1.000449 \\ & 1.000447 \end{aligned}$ | Water. | D | 1.000249-1.000259 |

[^294]Table 6b-6. Index of Refraction for Solutions of Salts and Acids Relative to Air*

| Substance |
| :--- |

Solutions in Ethyl Alcohol

| Ethyl alcohol. | 0.789 | 25.5 | 1.35971 | 1.35971 | 1.36395 |  | 1.37094 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ethyl alcohol. | 0.932 | 27.6 | 0.35372 | 0.35556 | 0.35986 |  | 0.36662 |
| Fuchsin (nearly saturated) |  | 16.0 | 0.3918 | 0.398 | 0.361 |  | 0.3759 |
| Cyanin (saturated)....... |  | 16.0 | 0.3831 |  | 0.3705 |  | 0.3821 |

Note: Cyanin in chloroform also acts anomalously; for example, Sieben gives for a $4.5 \%$ solution $\mu_{A}=1.4593, \mu_{B}=1.4695, \mu_{F}$ (green) $=1.4514, \mu_{G}$ (blue) $=1.4554$. For a $9.9 \%$ solution he gives $\mu_{A}=1.4902, \mu_{F}($ green $)=1.4497, \mu_{G}$ (blue) $=1.4597$.

| Solutions of Potassium Permanganate in Water |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wavelength, $\mu$ | Spectrum line | Index for $1 \%$ sol | Index for $2 \%$ sol | Index for $3 \%$ sol | Index for $4 \%$ sol | Wavelength, $\mu$ | Spectrum line | Index <br> for $1 \%$ sol | Index <br> for $2 \%$ sol | Index for $3 \%$ sol | Index <br> for $4 \%$ <br> sol |
| 0.687 | $B$ | 1.3328 | 1.3342 |  | 1.3382 | 0.516 | ... | 1.3368 | 1.3385 |  |  |
| 0.656 | C | 0.3335 | 0.3348 | 1.3365 | 0.3391 | 0.500 |  | 0.3374 | 0.3383 | 1.3386 | 1.3404 |
| 0.617 |  | 0.3343 | 0.3365 | 0.3381 | 0.3410 | 0.486 | $F$ | 0.3377 |  |  | 0.3408 |
| 0.594 |  | 0.3354 | 0.3373 | 0.3393 | 0.3426 | 0.480 |  | 0.3381 | 0.3395 | 0.3398 | 0.3413 |
| 0.589 | D | 0.3353 | 0.3372 |  | 0.3426 | 0.464 |  | 0.3397 | 0.3402 | 0.3414 | 0.3423 |
| 0.568 | . | 0.3362 | 0.3387 | 0.3412 | 0.3445 | 0.447 |  | 0.3407 | 0.3421 | 0.3426 | 0.3439 |
| 0.553 |  | 0.3366 | 0.3395 | 0.3417 | 0.3438 | 0.434 |  | 0.3417 |  |  | 0.3452 |
| 0.527 | E | 0.3363 |  |  |  | 0.423 |  | 0.3431 | 0.3442 | 0.3457 | 0.3468 |
| 0.522 |  | 0.3362 | 0.3377 | 0.3388 |  |  |  |  |  |  |  |

[^295]Table 6b-7. Index of Refraction of Special Optical Materials*

| Wavelength | Sodium chloride | Sylvine, KCl | Calcium flouride | Calcite |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Ordinary } \\ \text { ray } \end{gathered}$ | Extraordinary ray |
| 0.185 | 1.893 | 1.837 |  |  |  |
| 0.198 |  |  | 1.496 |  | 1.578 |
| 0.340 |  |  |  | 1.701 | 1.506 |
| 0.589 | 1.544 | 1.490 | 1.434 | 1.658 | 1.486 |
| 0.760 |  | ..... | 1.431 | 1.650 | 1.483 |
| 0.884 | 1.534 | 1.481 | 1.430 |  |  |
| 1.179 | 1.530 | 1.478 | 1.428 |  |  |
| 1.229 | ..... | ..... | ..... | 1.639 | $1.479$ |
| 2.324 | ..... |  |  | $\cdots$ | $1.474$ |
| 2.357 | 1.526 | 1.475 | 1.421 |  |  |
| 3.536 | 1.523 | 1.473 | 1.414 |  |  |
| 5.893 | 1.516 | 1.469 | 1.387 |  |  |
| 8.840 | 1.502 | 1.461 | 1.331 |  |  |


| $\lambda, \mu$ | Lithium fluoride | Magnesium oxide | Crystalline quartz |  | Rutile |  | Sapphire |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ordinary | Ex-traordinary | Ordinary | Ex-traordinary | Ordinary | Ex-traordinary |
| 0.185 | ....... | $\ldots$ | 1.65751 | 1.68988 |  |  |  |  |
| 0.193 | 1.4450 |  |  |  |  |  |  |  |
| 0.198 |  |  | 1.65087 | 1.66394 |  |  |  |  |
| 0.203 | 1.4390 |  |  |  |  |  |  |  |
| 0.214 | 1.4319 |  |  |  |  |  |  |  |
| 0.231 | 1.4244 |  | 1.61395 | 1.62555 |  |  |  |  |
| 0.254 | 1.41792 | 1.8450 |  |  |  |  |  |  |
| 0.265 |  | 1.8315 |  |  |  |  |  |  |
| 0.280 | 1.41188 | 1.8171 |  |  |  |  |  |  |
| 0.297 |  | 1.8046 |  |  |  |  |  |  |
| 0.302 | 1.40818 |  |  |  |  |  |  |  |
| 0.313 | ....... | 1.7945 |  |  |  |  |  |  |
| 0.340 |  |  | 1.56747 | 1.57737 |  |  |  |  |
| 0.3650 |  | 1.77186 |  |  |  |  |  |  |
| 0.3654 |  |  |  |  |  |  |  |  |
| 0.366 | 1.40121 |  |  |  |  |  |  |  |
| 0.391 | 1.39937 |  |  |  |  |  |  |  |
| 0.394 |  |  | 1.55846 | 1.56805 |  |  |  |  |
| 0.405 | ....... | 1.76132 |  |  |  |  |  |  |
| 0.434 |  | ....... | 1.55396 | 1.56339 |  |  |  |  |
| 0.4358 |  |  |  |  | 2.853 | 3.216 |  |  |

[^296]Table 6b-7. Index of Refraction of Special Optical Materials (Continued)

| $\lambda, \mu$ | Lithium fluoride | Magnesium oxide | Crystalline quartz |  | Rutile |  | Sapphire |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ordi- <br> nary | Ex-traordinary | Ordinary | Ex-traordinary | Ordi- <br> nary | Ex-traordinary |
| 0.436 | . . . . . | 1.75508 |  |  |  |  |  |  |
| 0.447 |  | 1.75325 |  |  |  |  |  |  |
| 0.471 |  | 1.74955 |  |  |  |  |  |  |
| 0.4861 | 1.39480 |  |  |  |  |  |  |  |
| 0.4916 |  |  |  |  | 2.723 | 3.047 |  |  |
| 0.492 |  | 1.74678 |  |  |  |  |  |  |
| 0.4960 |  |  |  |  | 2.715 | 3.040 |  |  |
| 0.50 | 1.39430 |  |  |  |  |  |  |  |
| 0.508 | . . . . . . |  | 1.54822 | 1.55746 |  |  |  |  |
| 0.535 |  |  |  |  |  |  | 1.7717 | 1.7634 |
| 0.5461 |  | 1.74119 |  |  | 2.652 | 2.958 |  |  |
| 0.5770 |  |  |  |  | 2.623 | 2.922 |  |  |
| 0.5791 |  |  |  |  | 2.621 | 2.919 |  |  |
| 0.588 |  | 1.73787 |  |  |  |  |  |  |
| 0.5893 |  | 1.73790 | 1.54424 | 1.55335 |  |  | 1.7681 | 1.7599 |
| 0.656 |  | 1.73364 |  |  |  |  |  |  |
| 0.671 |  | 1.73304 |  |  |  |  | 1.7643 | 1.7563 |
| 0.6907 |  |  |  |  | 2.555 | 2.836 |  |  |
| 0.707 |  | 1.73127 |  |  |  |  |  |  |
| 0.7082 |  |  |  |  | 2.548 | 2.827 |  |  |
| 0.768 |  |  | 1.53903 | 1.54794 |  |  |  |  |
| 0.80 | 1.38896 |  |  |  |  |  |  |  |
| 0.8325 |  |  | 1.53773 | 1.54661 |  |  |  |  |
| 0.9914 |  |  | 1.53514 | 1.54392 |  |  |  |  |
| 1.00 | 1.38711 |  |  |  |  |  |  |  |
| 1.0140 |  | 1.72259 |  |  | 2.483 | 2.746 |  |  |
| 1.12866 |  | 1.72059 |  |  |  |  |  |  |
| 1.1592 | . . . . . . |  | 1.53283 | 1.54152 |  |  |  |  |
| 1.3070 |  |  | 1.53090 | 1.53951 |  |  |  |  |
| 1.36728 | . . . . . ${ }^{\text {a }}$ | 1.71715 |  |  |  |  |  |  |
| 1.3958 | . . . . . . | . . . . . . | 1.52977 | 1.53832 |  |  |  |  |
| 1.4792 |  |  | 1.52865 | 1.53716 |  |  |  |  |
| 1.50 | 1.38320 |  |  |  |  |  |  |  |
| 1.5296 | . . . . . . | 1.71496 | . . . . . | … | 2.451 | 2.709 |  |  |
| 1.5414 |  | . . . . . . | 1.52781 | 1.53630 |  |  |  |  |
| 1.6815 |  |  | 1.52583 | 1.53422 |  |  |  |  |
| 1.6932 | . . . . . ${ }^{\text {a }}$ | 1.71281 |  |  |  |  |  |  |
| 1.7092 | . . . . . . | 1.71258 |  |  |  |  |  |  |
| 1.7614 |  |  | 1.52468 | 1.53301 |  |  |  |  |
| 1.81307 |  | 1.71108 |  |  |  |  |  |  |
| 1.9457 |  |  | 1.52184 | 1.53004 |  |  |  |  |
| 1.97009 |  | 1.70885 |  |  |  |  |  |  |
| 2.00 | 1.37875 |  |  |  |  |  |  |  |

Table 6b-7. Index of Refraction of Special Optical Materials (Continued)

| $\lambda, \mu$ | Lithium fluoride | Magnesium oxide | Crystalline quartz |  | Rutile |  | Sapphire |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ordinary |  | Ordinary | Ex-traordinary | Ordinary | Ex- <br> traordi nary |
| 2.0531 | ....... |  | 1.52005 | 1.52823 |  |  |  |  |
| 2.24929 |  | 1.70470 |  |  |  |  |  |  |
| 2.30 |  |  | 1.51561 |  |  |  |  |  |
| 2.32542 |  | 1.70350 |  |  |  |  |  |  |
| 2.50 | 1.37327 |  |  |  |  |  |  |  |
| 2.60 | ... |  | 1.50986 |  |  |  |  |  |
| 3.00 | 1.36660 |  | 1.49953 |  |  |  |  |  |
| 3.3033 |  | 1.68526 |  |  |  |  |  |  |
| 3.50 | 1.35868 |  | 1.48451 |  |  |  |  |  |
| 3.5078 |  | 1.68055 |  |  |  |  |  |  |
| 4.00 | 1.34942 |  | 1.46617 |  |  |  |  |  |
| 4.20 |  |  | 1.4569 |  |  |  |  |  |
| 4.258 |  | 1.66039 |  |  |  |  |  |  |
| 4.50 | 1.33875 |  |  |  |  |  |  |  |
| 5.00 | 1.32661 |  | 1.417 |  |  |  |  |  |
| 5.138 | . . . . . . | 1.63138 |  |  |  |  |  |  |
| 5.35 |  | 1.62404 |  |  |  |  |  |  |
| 5.50 | 1.31287 |  |  |  |  |  |  |  |
| 6.00 | 1.29745 |  |  |  |  |  |  |  |
| 6.45 |  |  | 1.274 |  |  |  |  |  |
| 6.91 | 1.260 |  |  |  |  |  |  |  |
| 7.0 |  |  | 1.167 |  |  |  |  |  |
| 7.53 | 1.239 |  |  |  |  |  |  |  |
| 8.05 | 1.215 |  |  |  |  |  |  |  |
| 8.60 | 1.190 |  |  |  |  |  |  |  |
| 9.18 | 1.155 |  |  |  |  |  |  |  |
| 9.79 | 1.109 |  |  |  |  |  |  |  |

6-26
OPTICS
Table 6b-7. Index of Refraction of Special Optical Materials (Continued)

| $\lambda, \mu$ | Sphalerite, ZnS | Spinel | Strontium titanate |
| :---: | :---: | :---: | :---: |
| 0.3650 | 2.679 |  |  |
| 0.3654 | 2.676 |  |  |
| 0.3663 | 2.673 |  |  |
| 0.3906 | 2.583 |  |  |
| 0.4047 | 2.549 |  | 2.649 |
| 0.4077 | 2.540 |  |  |
| 0.4358 | 2.490 | . . . . | 2.569 |
| 0.4861 |  | 1.736 | 2.488 |
| 0.4916 | 2.426 |  |  |
| 0.5461 | 2.390 |  | 2.435 |
| 0.5780 | 2.375 |  |  |
| 0.5893 |  | 1.727 | 2.409 |
| 0.6563 |  | 1.724 | 2.380 |
| 1.5296 | 2.284 |  |  |


| $\lambda, \mu$ | Arsenic trisulfide glass | Calcium fluoride | Germanium | Pyrite | Amorphous selenium | Silicon |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.19 | ....... | 1.50500 |  |  |  |  |
| 0.20 | ....... | 1.49531 |  |  |  |  |
| 0.26 | ....... | 1.46397 |  |  |  |  |
| 0.30 | ....... | 1.45400 |  |  |  |  |
| 0.40 |  | 1.44186 |  |  |  |  |
| 0.50 |  | 1.43649 |  |  |  |  |
| 0.579066 | 2.65822 |  |  |  |  |  |
| 0.643847 | 2.59413 |  |  |  |  |  |
| 0.819 |  | 1.43179 | $\ldots$ | $\ldots$ | 2.589 |  |
| 1.00 |  | 1.42892 |  |  |  |  |
| 1.01398 | 2.47230 |  |  |  | 2.520 |  |
| 1.014 | . |  | $\ldots$ | $\ldots$ | 2.520 |  |
| 1.12866 | 2.45897 |  |  |  |  |  |
| 1.35703 | 2.44244 |  |  |  |  |  |
| 1.39506 | 2.44050 |  |  |  |  |  |
| 1.40 |  | 1.42677 |  |  |  |  |
| 1.52952 | 2.43474 |  |  |  |  |  |
| 1.6932 | 2.42965 |  |  |  |  |  |
| 1.80 |  | 1.42489 |  |  |  |  |
| 1.97009 | 2.42341 |  |  |  |  |  |
| 2.00 |  | 1.42390 |  |  | 2.45 |  |
| 2.32542 | 2.41848 |  |  |  |  |  |
| 3.00 |  | 1.41793 |  |  |  |  |
| 3.3033 | 2.41134 |  |  |  |  |  |
| 3.4188 | 2.41068 |  |  |  |  |  |
| 4.00 | ....... | 1.40971 | 2.2 | 2.80 | $\ldots$ | 1.5 |
| 4.17 |  |  |  |  |  |  |

Table 6b-7. Index of Refraction of Special Optical Materials (Continued)

| $\lambda, \mu$ | Arsenic trisuliide glass | Calcium fluoride | Germanium | Pyrite | Amorphous selenium | Silicon |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.55 |  |  | 2.75 |  | $\ldots$ | 1.5 |
| 5.00 |  | 1.39901 | .... | 2.80 |  |  |
| 5.344 | 2.39900 |  |  |  |  |  |
| 6.238 | 2.39718 |  |  |  |  |  |
| 6.25 | ...... |  | 3.0 | 3.0 |  | 1.75 |
| 7.00 |  | 1.36932 |  |  |  |  |
| 7.14 | ....... | ....... | 3.4 |  |  |  |
| 7.30 | ....... |  |  |  |  | 2.05 |
| 7.69 |  |  |  | 2.80 |  |  |
| 8.00 |  | 1.34988 |  |  |  |  |
| 8.33 |  |  | 3.65 |  |  | 2.60 |
| 8.662 | 2.38734 |  |  |  |  |  |
| 9.00 |  | 1.32685 |  |  |  |  |
| 9.724 | 2.38029 |  |  |  |  |  |
| 10.00 |  |  | 4 | 2.70 | $\ldots$ | 2.9 |
| 11.035 | 2.37055 |  |  |  |  |  |
| 12.5 |  |  | 4 |  |  |  |
| 14.5 |  |  | . ... |  | $\ldots$ | 3.1 |
| 15.4 |  |  |  | 1.90 |  |  |


| $\lambda, \mu$ | Cesium bromide | Cesium iodide | Potassium bromide | Silver chloride | Sodium chloride | Thallium bromideiodide |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.19 | ....... | ...... |  |  | 1.85343 |  |
| 0.20 | . . . . . . | ...... |  |  | 1.79073 |  |
| 0.206 | . . . . . |  | 1.9860 |  |  |  |
| 0.210 | ....... | ...... | 1.9374 |  |  |  |
| 0.214 | ....... |  | 1.9003 |  |  |  |
| 0.22 | ....... |  |  |  | 1.71591 |  |
| 0.225 | . . . . . ${ }^{\text {a }}$ |  | 1.8223 |  |  |  |
| 0.24 | ....... |  | 1.7576 |  | 1.67197 |  |
| 0.249 | ....... |  | 1.7330 |  |  |  |
| 0.254 | ....... | $\ldots .$. | 1.7198 |  |  |  |
| 0.26 | ....... |  |  |  | 1.64294 |  |
| 0.265 |  |  | 1.6950 |  |  |  |
| 0.28 | ....... | . . . . . | 1.67125 |  | 1.62239 |  |
| 0.289 |  |  | 1.65976 |  | 1.60714 |  |
| 0.302 |  |  | 1.64603 |  |  |  |
| 0.334 | ....... |  | 1.62093 |  |  |  |
| 0.35 |  |  |  |  | 1.58232 |  |
| 0.3610 |  | 1.8823 |  |  |  |  |
| 0.365 |  | 1.8785 |  |  |  |  |
| 0.366 |  |  | 1.60391 |  |  |  |

6-28
OPTICS
Table 6b-7. Index of Refraction of Special Optical Materials (Continued)

| $\lambda, \mu$ | Cesium bromide | Cesium iodide | Potassium bromide | Silver chloride | Sodium chloride | Thallium bromideiodide |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.391 |  |  | 1.59444 |  |  |  |
| 0.40 | 1.73519 |  |  |  | 1.56759 |  |
| 0.4047 |  | 1.8475 | 1.58975 |  |  |  |
| 0.4358 |  | 1.8303 | 1.58147 |  |  |  |
| 0.4861 |  |  | 1.57179 |  |  |  |
| 0.50 | 1.70896 |  |  | 2.09648 | 1.55175 |  |
| 0.5086 |  |  | 1.56848 |  |  |  |
| 0.5461 |  | 1.7951 | 1.56393 |  |  |  |
| 0.5791 |  | 1.7888 |  |  |  |  |
| 0.60 | 1.69583 |  |  | 2.06385 |  | 2.60591 |
| 0.6438 |  | 1.7793 | 1.55585 |  |  |  |
| 0.70 | 1.68825 |  | 1.55276 | 2.04590 | 1.53881 | 2.53262 |
| 0.8521 |  | 1.7630 |  |  |  |  |
| 1.0 | 1.67793 |  |  | 2.02239 | 1.53216 | 2.44789 |
| 1.0140 |  | 1.7569 | 1.54410 |  |  |  |
| 1.6932 |  | 1.7470 |  |  |  |  |
| 1.7012 |  |  | 1.53901 |  |  |  |
| 2.0 | 1.67061 |  |  | 2.00615 | 1.52670 | 2.39673 |
| 3.0 | 1.66901 | ...... |  | 2.00239 | 1.52434 | 2.38760 |
| 3.418 | . ...... | 1.7436 |  |  |  |  |
| 3.419 |  | . ..... | 1.53612 |  |  |  |
| 5.0 | 1.66737 |  |  | 1.99745 | 1.51899 | 2.38173 |
| 9.724 |  | 1.7395 | 1.52689 |  |  |  |
| 10.0 | 1.66251 |  |  | 1.98034 | 1.49482 | 2.37274 |
| 14.98 | ....... |  | 1.5128 |  |  |  |
| 15.0 | 1.65468 |  | ....... | 1.95113 | 1.45145 | 2.36030 |
| 15.48 |  | 1.7341 |  |  |  |  |
| 16.0 | 1.65272 | . ..... |  | 1.94358 | 1.44001 | 2.35724 |
| 17.0 | 1.65062 | .... | ....... | 1.93542 | 1.42753 | 2.35398 |
| 18.0 | 1.64838 |  |  | 1.92660 | 1.41393 | 2.35051 |
| 19.0 | 1.64600 | . . . . . |  | 1.91710 | 1.39914 | 2.34683 |
| 19.01 |  |  | 1.4970 |  |  |  |
| 20.0 | 1.64348 |  | . . . . . | 1.90688 | 1.38307 | 2.34294 |
| 20.5 |  |  |  | 1.90149 |  |  |
| 20.57 |  | 1.7268 |  |  |  |  |
| 21.18 |  |  | 1.4866 |  |  |  |
| 21.3 | 1.63997 |  |  | ....... | 1.352 |  |
| 21.83 |  |  | 1.4830 |  | 1.318 |  |
| 22.8 | 1.63561 |  |  |  | 1.299 |  |
| 23.6 | 1.63313 |  |  |  |  |  |
| 23.86 |  |  | 1.4713 |  |  |  |
| 23.87 |  | 1.7212 |  |  |  |  |
| 24.2 | 1.63121 |  | ..... |  | 1.278 |  |
| 25.0 | 1.62856 | ...... |  |  | 1.254 | 2.32017 |
| 25.14 |  |  | 1.4631 |  |  |  |

Table 6b-7. Index of Refraction of Special Optical Materials (Continued)

| $\lambda, \mu$ | Cesium bromide | Cesium iodide | Potassium bromide | Silver chloride | Sodium chloride | Thallium bromideiodide |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25.8 | 1.62580 |  |  |  | 1.229 |  |
| 26.6 | 1.62293 |  |  |  | 1.203 |  |
| 26.63 | . . . . . . | 1.7157 |  |  |  |  |
| 27.3 | 1.62033 |  | . . . . . | ....... | 1.175 |  |
| 29.82 |  | 1.7085 |  |  |  |  |
| 30.0 | 1.60947 |  |  |  |  | 2.29154 |
| 33.0 | 1.59576 | 1.7004 |  |  |  | 2.27131 |
| 35.0 | 1.58558 |  |  |  |  | 2.25647 |
| 35.84 |  | 1.6921 |  |  |  |  |
| 36.0 | 1.58016 |  |  |  |  | 2.24862 |
| 37.0 | 1.57450 |  |  |  |  | 2.24068 |
| 38.0 | 1.56860 |  |  |  |  | 2.23205 |
| 38.5 | 1.56556 |  |  |  |  | 2.22772 |
| 39.0 | 1.56245 |  |  |  |  | 2.22331 |
| 39.2 | 1.56119 |  |  |  |  |  |
| 39.22 |  | 1.6810 |  |  |  | 2.21882 |
| 39.5 |  |  |  |  |  | 2.21882 |
| 44.05 |  | 1.6635 |  |  |  |  |
| 45.04 |  | 1.6597 |  |  |  |  |
| 47.06 |  | 1.6508 |  |  |  |  |
| 48.08 |  | 1.6456 |  |  |  |  |
| 49.16 |  | 1.6411 |  |  |  |  |

## References for Table 6b-7

1. Lithium Fluoride. Data at temperature of $20^{\circ} \mathrm{C}$ for wavelengths 0.193 to $0.231 \mu$ taken from Z. Gyulai, Z. Physik 46, 84 (1927); at $20^{\circ} \mathrm{C}$ for 0.254 to $0.486 \mu$ taken from H. Harting, Sitzber. deut. Akad. Wiss. Berlin IV, 1948; at $23.6^{\circ} \mathrm{C}$ for 0.50 to $6.0 \mu$ from L. W. Tilton and E. K. Plyler, J. Research Natl. Bur. Standards 47, 25 (1951); at $18^{\circ} \mathrm{C}$ for 6.91 to $9.79 \mu$ taken from H. W. Hohls, Ann. Physik 29, 433 (1937).
2. Magnesium Oxide. Data at temperature of $23^{\circ} \mathrm{C}$ for wavelengths 0.25 to $0.707 \mu$ (except for datum at $0.3650 \mu$ ) taken from J. Strong and R. T. Brice, J. Opt. Soc. Am. 25, 207 (1935); at $23.3^{\circ} \mathrm{C}$ for 1.0140 to $5.35 \mu$ (plus datum at $0.3650 \mu$ ) taken from R. E. Stephens and I. H. Malitson, J. Research Natl. Bur. Standards 49, 252 (1952).
3. Crystalline Quartz. Data at temperature of $18^{\circ} \mathrm{C}$ for wavelengths 0.185 to $0.768 \mu$ taken from F. A. Martens, Ann. Physik 6, 603 (1901) [similar data given by J. W. Gifford, Proc. Phys. Soc. (London) 70, 329 (1902), and by H. Trommsdorff, Physik. Z. 2, 576 (1901)]. See R. B. Sosman, "The Properties of Silica," Chemical Catalog Company, Inc., New York, 1927, for a collation of the above data. At $20^{\circ} \mathrm{C}$ for 0.8325 to $2.30 \mu$ taken from A. Carvallo, Compt. rend. 126, 728 (1898). At $18^{\circ} \mathrm{C}$ for 2.60 to $7.0 \mu$ taken from H. Rubens, Wied. Ann. 54, 488 (1895).
4. Rutile. Data for wavelengths 0.435 to $1.5296 \mu$ taken from J. R. DeVore, J. Opt. Soc. Am. 41, 418 (1951). (No temperature given.)
5. Sapphire. Data for natural corundum at room temperature for wavelengths $0.535,0.589$, and $0.671 \mu$ taken from R. Brouns, Centrabe Mineral 673 (1909); data for wavelengths 0.4861 and $0.6563 \mu$ taken from "Synthetic Sapphire, Ruby, and Spinel," p. 23, The Linde Air Products Company, New York, 1946.
6. Fused Silica. Data at temperature of $18^{\circ} \mathrm{C}$ for wavelengths 0.185 to $0.5893 \mu$ taken from H. Trommsdorf, Physik. Z. 2, 576 (1901) (except for datum at $0.23 \mu$ ); at $18^{\circ} \mathrm{C}$ at wavelengths 0.231 and $0.768 \mu$ taken from J. W. Gifford, Proc. Phys. Soc. (London) 70, 329 (1902); at $18^{\circ} \mathrm{C}$ for 0.886 to $2.595 \mu$ taken from A. Carvallo, Compt. rend. 126, 728 (1898) (except for datum at $1.028 \mu$ ) ; at $18^{\circ} \mathrm{C}$ for $1.028 \mu$ taken from C. Muller and A. Wetthauer, Z. Physik 85, 559 (1938); at $24^{\circ} \mathrm{C}$ for $3.5078 \mu$ taken from W. S. Rodney and R. J. Spindler, J. Opt. Soc. Am. 44, 678 (1954).
7. Sphalerite. Data for wavelengths 0.3650 to $1.5296 \mu$ taken from J. R. DeVore, J. Opt. Soc. Am. 41, 417 (1951). (No temperature given.)
8. Spinel. Data taken from "Synthetic Sapphire, Ruby, and Spinel," p. 23, The Linde Air Products Company, New York, 1946.
9. Strontium Titanate. Data taken from private communication with W. B. Anderson, Titanium Pigment Corporation, July 9, 1954.
10. Arsenic Trisulfide Glass. Data at a temperature of $24^{\circ} \mathrm{C}$ for wavelengths 0.579066 to $11.035 \mu$ measured by the National Bureau of Standards and taken from literature from the American Optical Company and the Servo Corporation of America.
11. Calcium Fluoride. Data at a temperature of $20^{\circ} \mathrm{C}$ for wavelengths 0.19 to $9.00 \mu$ taken from F. Kohlrausch, "Praktische Physik," 18th ed., vol. 2, pp. 528-529, Mary S. Rosenberg, New York, 1947.
12. Germanium. Data for wavelengths 4.17 to $12.5 \mu$ taken from private communication from I. Simon, J. Opt. Soc. Am. 41, 730 (1951).
13. Pyrite. Data from same source as data for germanium (see above).
14. Amorphous Selenium. Data for wavelengths 0.819 to $2.00 \mu$ taken from H. A. Gebbie and E. W. Saker, Proc. Phys. Soc. (London) 864, 360 (1951).
15. Silicon. Data from same source as data for germanium (see above).
16. Cesium Bromide. Data at temperature of $27^{\circ} \mathrm{C}$ for wavelengths 0.40 to $39.2 \mu$ taken from W. S. Rodney and R. J. Spindler, J. Research Natl. Bur. Standards 51, 126 (1953).
17. Cesium Iodide. Data at temperature of $24^{\circ} \mathrm{C}$ for wavelengths 0.3610 to $49.16 \mu$ taken from private communication from W. S. Rodney, National Bureau of Standards, August, 1954.
18. Potassium Bromide. Data at temperature of $48^{\circ} \mathrm{C}$ at wavelengths 0.206 and $0.210 \mu$ taken from Z. Gyulai, Z. Physik 46, $80(1927)$; at $20^{\circ} \mathrm{C}$ for wavelengths 0.214 to $0.391 \mu$ from H. Harting, Sitzber. deut. Akad. Wiss. Berlin no. IV, 1948; at $22^{\circ} \mathrm{C}$ for 0.40 to $0.70 \mu$ from R. J. Spindler and W. S. Rodney, J. Research Natl. Bur. Standards 49, 258-260 (1952); at $22^{\circ} \mathrm{C}$ for 1.0140 to $25.14 \mu$ from private communication from Stephens, Plyler, Rodney, and Spindler, National Bureau of Standards, March, 1952.
19. Silver Chloride. Data at temperature of $23.9^{\circ} \mathrm{C}$ at wavelengths 0.50 to $20.5 \mu$ taken from L. W. Tilton, E. K. Plyler, and R. E. Stephens, J. Opt. Soc. Am. 40, 543 (1950).
20. Sodium Chloride. Data at temperature of $20^{\circ} \mathrm{C}$ for wavelengths 0.19 to $21.0 \mu$ taken from F. Kohlrausch, "Praktische Physik," 18th edition, vol. 2, pp. 528-529, Mary S. Rosenberg, New York, 1947 ; at $18^{\circ} \mathrm{C}$ for 21.3 to $27.3 \mu$ from H. W. Hohls, Ann. Physik 29, 433 (1937).
21. Thallium Bromide-iodide. Data at temperature of $27^{\circ} \mathrm{C}$ for wavelengths 0.60 to $39.5 \mu$ taken from L. W. Tilton, E. K. Plyler, and R. E. Stephens, J. Research Natl. Bur. Standards 43, 86 (1949). These data are less (by approximately 5 per cent) than those reported by G. Hettner and G. Leisegang, Optik 3, 305 (1948), but the percentage of thallium iodide differed in the samples studied by the two respective groups. The difficulties with the consistent preparation of this material have been analyzed by A. Smakula, J. Kalnajs, and V. Sils, J. Opt. Soc. Am. 43, 698-701 (1953).

Table 6b-8. Index of Refraction of Fused Quartz Glass*

| $\lambda, \mu$ | Index | $\lambda, \mu$ | Index | $\lambda, \mu$ | Index |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 0.185 | 1.57464 | 0.56 | 1.459561 | 1.50 | 1.444687 |
| 0.214 | 1.53386 | 0.57 | 1.459168 | 1.60 | 1.443492 |
| 0.275 | 1.49634 | 0.58 | 1.458794 | 1.70 | 1.442250 |
| 0.34 | 1.47877 | 0.59 | 1.458437 | 1.80 | 1.440954 |
| 0.35 | 1.47701 | 0.60 | 1.458096 | 1.90 | 1.439597 |
| 0.36 | 1.47540 | 0.61 | 1.457769 | 2.00 | 1.438174 |
| 0.37 | 1.47393 | 0.62 | 1.457456 | 2.10 | 1.436680 |
| 0.38 | 1.47258 | 0.63 | 1.457156 | 2.20 | 1.435111 |
| 0.39 | 1.47135 | 0.64 | 1.456868 | 2.30 | 1.433462 |
| 0.40 | 1.470208 | 0.65 | 1.456591 | 2.40 | 1.431730 |
| 0.41 | 1.469155 | 0.66 | 1.456324 | 2.50 | 1.429911 |
| 0.42 | 1.468179 | 0.67 | 1.456066 | 2.60 | 1.428001 |
| 0.43 | 1.467273 | 0.68 | 1.455818 | 2.70 | 1.425995 |
| 0.44 | 1.466429 | 0.69 | 1.455579 | 2.80 | 1.423891 |
| 0.45 | 1.465642 | 0.70 | 1.455347 | 2.90 | 1.421684 |
| 0.46 | 1.464908 | 0.80 | 1.453371 | 3.00 | 1.41937 |
| 0.47 | 1.464220 | 0.90 | 1.451808 | 3.10 | 1.41694 |
| 0.48 | 1.463573 | 1.00 | 1.450473 | 3.20 | 1.31440 |
| 0.49 | 1.462965 | 1.10 | 1.449261 | 3.30 | 1.41173 |
| 0.50 | 1.462394 | 1.20 | 1.448110 | 3.40 | 1.40893 |
| 0.51 | 1.461856 | 1.30 | 1.446980 | 3.50 | 1.40601 |
| 0.52 | 1.461346 | 1.40 | 1.445845 |  |  |
| 0.53 | 1.460863 |  |  |  |  |
| 0.54 | 1.460406 |  |  |  |  |
| 0.55 | 1.459973 |  |  |  |  |

Note. Biggest deviation from above values was $40 \times 10^{-5}$ on a General Electric sample; other samples measured were from Heraeus and Corning.

* Most of the data in this table came from W. S. Rodney and R. J. Spindler, Index of Refraction of Fused Quartz Glass, J. Research Natl. Bur. Standards 53, 185 (September, 1954).

Table 6b-9. Refractive Indices of Optical Glasses Made at National Bureau of Standards*

| Name | $\begin{gathered} \text { Nominal } \\ n_{D} \end{gathered}$ | $V$ | A typical glass |  |  |  |  | Density |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\boldsymbol{n}_{\boldsymbol{D}}$ | $n_{G^{\prime}}$ | $n_{F}$ | $n c$ | $V$ |  |
| BSC 511 | 1.5110 | 63.5 | 1.51100 | 1.52118 | 1.51666 | 1.50861 | 63.5 | 2.48 |
| BSC 517 | 1.5170 | 64.5 | 1.51700 | 1.52709 | 1.52263 | 1.51461 | 64.5 | 2.51 |
| BSC 536 | 1.5359 | 64.4 | 1.53598 | 1.54645 | 1.54182 | 1.53349 | 64.3 | 2.56 |
| LC 513 | 1.5125 | 60.5 | 1.51250 | 1.52312 | 1.51845 | 1.50999 | 60.6 | 2.55 |
| LC 523 | 1.5230 | 58.6 | 1.52300 | 1.53433 | 1.52928 | 1.52037 | 58.7 | 2.52 |
| LC 529 | 1.5288 | 58.3 | 1.52882 | 1.54035 | 1.53520 | 1.52613 | 58.3 |  |
| BaC 541 | 1.5411 | 59.9 | 1.54110 | 1.55259 | 1.54746 | 1.53843 | 59.9 | 2.85 |
| BaC 573 | 1.5725 | 57.4 | 1.57250 | 1.58518 | 1.57951 | 1.56958 | 57.6 | 3.21 |
| BaC 574 | 1.5744 | 57.7 | 1.57440 | 1.58710 | 1.58143 | 1.57149 | 57.8 | 3.21 |
| BaC 611 | 1.6109 | 57.2 | 1.61090 | 1.62451 | 1.61843 | 1.60777 | 57.3 | 3.48 |
| BaC 611 | 1.6110 | 58.8 | 1.61100 | 1.62421 | 1.61832 | 1.60793 | 58.8 | 3.58 |
| BaC 617 | 1.6170 | 55.0 | 1.61700 | 1.63135 | 1.62492 | 1.61372 | 55.1 | 3.66 |
| BaC 620 | 1.6191 | 59.5 | 1.61919 | 1.63242 | 1.62652 | 1.61611 | 59.5 | 3.60 |
| CF 529 | 1.5286 | 51.6 | 1.52860 | 1.54181 | 1.53587 | 1.52561 | 51.5 | 2.73 |
| F 573 | 1.5725 | 42.5 | 1.57250 | 1.59056 | 1.58212 | 1.56862 | 42.4 | 3.28 |
| F 580 | 1.5795 | 41.0 | 1.57950 | 1.59816 | 1.58966 | 1.57548 | 40.9 | 3.24 |
| F 605 | 1.6050 | 38.0 | 1.60500 | 1.62604 | 1.61639 | 1.60046 | 38.0 | 3.49 |
| F 617 | 1.6170 | 36.6 | 1.61700 | 1.63931 | 1.62906 | 1.61220 | 36.6 | 3.60 |
| F 621 | 1.6210 | 36.2 | 1.62100 | 1.64369 | 1.63326 | 1.61612 | 36.2 | 3.64 |
| F 649 | 1.6490 | 33.8 | 1.64900 | 1.67462 | 1.66278 | 1.64354 | 33.7 | 3.90 |
| F 666 | 1.6660 | 32.4 | 1.66600 | 1.69335 | 1.68069 | 1.66021 | 32.5 | 4.03 |
| F 673 | 1.6725 | 32.2 | 1.67250 | 1.70046 | 1.68752 | 1.66660 | 32.1 | 4.08 |
| F 689 | 1.6890 | 30.9 | 1.68900 | 1.71867 | 1.70491 | 1.68275 | 31.1 | 4.24 |
| F 720 | 1.7200 | 29.3 | 1.72000 | 1.75309 | 1.73769 | 1.71309 | 29.3 | 4.51 |
| F 754 | 1.7543 | 27.7 | 1.75437 | 1.79132 | 1.77406 | 1.74671 | 27.6 | 4.79 |
| BF 584 | 1.5838 | 46.0 | 1.58380 | 1.60024 | 1.59279 | 1.58015 | 46.2 | 3.21 |
| BF 588 | 1.5880 | 53.4 | 1.58800 | 1.60210 | 1.59577 | 1.58479 | 53.5 | 3.33 |
| BF 605 | 1.6053 | 43.6 | 1.60530 | 1.62350 | 1.61520 | 1.60130 | 43.5 | 3.47 |
|  |  |  | Rare-earth glasses |  |  |  |  |  |
| 714/531 | 1.714 | 53.1 | 1.7143 | 1.7315 | 1.7238 | 1.7103 | 53.1 |  |
| 705/540 | 1.705 | 54.0 | 1.7049 | 1.7216 | 1.7142 | 1.7011 | 54.0 |  |
| 682/553 | 1.682 | 55.3 | 1.6819 | 1.6976 | 1.6906 | 1.6782 | 55.3 |  |
| 673/562 | 1.673 | 56.2 | 1.6733 | 1.6885 | 1.6817 | 1.6697 | 56.2 |  |
| 656/582 | 1.656 | 58.2 | 1.6555 | 1.6698 | 1.6634 | 1.6522 | 58.2 |  |
| 639/597 | 1.639 | 59.7 | 1.6395 | 1.6531 | 1.6470 | 1.6363 | 59.7 |  |
| 610/620 | 1.610 | 62.0 | 1.6096 | 1.6220 | 1.6165 | 1.6067 | 62.0 |  |

[^297]Table 6b-10. Index of Refraction for Some New Glasses*

| Origin | Type | $\mu$ | Indices of refraction |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $A^{\prime}$ | C | D | $F$ | $G^{\prime}$ |
| NBS | 610/620 | 62.0 |  | 1.6067 | 1.6096 | 1.6165 | 1.6220 |
| NBS | 639/597 | 59.7 |  | 1.6363 | 1.6395 | 1.6470 | 1.6531 |
| NBS. | 656/582 | 58.2 |  | 1.6522 | 1.6555 | 1.6634 | 1.6698 |
| EK. | EK-110 | 56.2 | 1.68877 | 1.69313 | 1.69680 | 1.70554 | 1.71255 |
| NBS | 673/562 | 56.2 |  | 1.6697 | 1.6733 | 1. 6817 | 1.6885 |
| Hay | 651/558 | 55.8 |  | 1.64757 | 1.65100 | 1.65924 | 1.66590 |
| NBS | 682/553 | 55.3 |  | 1.6782 | 1.6819 | 1.6906 | 1.6976 |
| NBS | 705/540 | 54.0 |  | 1.7011 | 1.7049 | 1.7142 | 1.7216 |
| NBS | 714/531 | 53.1 |  | 1.7103 | 1.7143 | 1.7238 | 1.7315 |
| Hay | 671/520 | 52.0 |  | 1.66724 | 1.67100 | 1.68018 | 1.68772 |
| EK. | EK-210 | 51.2 | 1.72482 | 1.72979 | 1.73400 | 1.74413 | 1.75235 |
| Corn'g | 8313 | 47.8 |  | 1.69639 | 1.70065 | 1.71104 |  |
| EK. | EK-330 | 47.2 | 1.74499 | 1.75043 | 1.75510 | 1.76643 | 1.77571 |
| EK. | EK-310 | 46.4 | 1.73491 | 1.74033 | 1.74500 | 1.75638 | 1.76577 |
| EK. | EK-320 | 45.8 | 1.73432 | 1.73978 | 1.74450 | 1.75603 | 1.76557 |
| EK. | EK-450 | 41.8 | 1.79180 | 1.79814 | 1.80370 | 1.81738 | 1.82880 |
| EK. | EK-448 | 41.1 | 1.86714 | 1.87420 | 1.88040 | 1.89564 | 1.90827 |

Corn'g, Corning Glass Works.
EK, Eastman Kodak Company.
Hay, Hayward Scientific Glass Corp.
NBS, National Bureau of Standards.

* I. C. Gardner, New Types of Optical Glasses Available in the United States, Proc. London Conf. Opt. Instruments, p. 241, 1950.


Fig. 6b-1. Relationship of $N_{D}$ (index of refraction of the Fraunhofer $D$ line) to $\mu$ (dispersion) for optical glasses.

## OPTICS

Table 6b-11. Refractive Indices of Quartz at Various Temperatures [Measured by Rinne and Kolb (1910) and Recalculated as Absolute Indices]*

| Solar line | length, m $\mu$ | $-140^{\circ} \mathrm{C}$ | $-45^{\circ} \mathrm{C}$ | $23^{\circ} \mathrm{C}$ | $115^{\circ} \mathrm{C}$ | $212^{\circ} \mathrm{C}$ | $305^{\circ} \mathrm{C}$ | $410^{\circ} \mathrm{C}$ | $550^{\circ} \mathrm{C}$ | $580^{\circ} \mathrm{C}$ | $650^{\circ} \mathrm{C}$ | $765^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Extraordinary Index $\boldsymbol{r}_{\text {e }}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $G^{\prime}(H \gamma)$ | 434.047 |  | 1.5633 | 1.5634 | 1.5629 | 1.5623 | 1.5615 | 1.5598 | 1.5551 | 1.5503 | 1.5521 | 1.5532 |
| (d) | 466.8 |  | 1.5609 | 1.5608 | 1.5603 | 1.5597 | 1.5588 | 1.5572 | 1.5526 | 1.5478 | 1.5492 | 1.5506 |
| $F$ | 486.133 | 1.5594 | 1.5594 | 1.5593 | 1.5589 | 1.5581 | 1.5573 | 1.5558 | 1.5512 | 1.5464 | 1.5475 | 1.5490 |
| (c) | 495.75 |  | 1.5587 | 1.5587 | 1.5582 | 1.5576 | 1.5567 | 1.5552 | 1.5503 | 1.5456 | 1.5468 | 1.5481 |
| $b_{2}$ | 517.27 |  | 1.5574 | 1.5574 | 1.5568 | 1.5562 | 1.5553 | 1.55381 | 1.5488 | 1.5442 | 1.5454 | 1.5469 |
| $D_{2}$ | 588.997 | 1.5541 | 1.5539 | 1.5537 | 1.5532 | 1.5526 | 1.5515 | 1.5499 | 1.5451 | 1.5408 | 1.5417 | 1.5431 |
| $\boldsymbol{\alpha}$ | 627.8 | 1.5526 | 1.5525 | 1.5522 | 1.5517 | 1.5510 | 1.5500 | 1.5486 | 1.5437 | 1.5889 | 1.5403 | 1.5416 |
| C | 656.278 |  | 1.5516 | 1.5513 | 1.5508 | 1.5502 | 1.5491 | 1.5475 | 1.5427 | 1.5380 | 1.5393 | 1.5406 |
| B | 687.2 | 1.5506 | 1.5506 | 1.5504 | 1.5499 | 1.5492 | 1.5481 | 1.5466 | 1.5419 | 1.5369 | 1.5383 | 1.5397 |
| $a$ | 718.9 |  | 1.5499 | 1.5495 | 1.5490 | 1.5483 | 1.5472 | 1.5458 | 1.5408 | 1.5362 | 1.5375 | 1.5388 |
| Ordinary Index $n_{\omega}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $G^{\prime}\left(H_{\gamma}\right)$ |  |  | 1.5539 | 1.5540 |  | 1.5531 | 1.5523 | 1.5510 | 1.5469 | 1.5425 | 1.5439 | 1.5454 |
| (d) | 466.8 |  | 1.5515 | 1.5514 | 1.5511 | 1.5506 | 1.5498 | 1.54831 | 1.5442 | 1.5400 | 1.5414 | 1.5429 |
| $F$ | 486.133 | 1.5504 | 1.5501 | 1.5500 | 1.5497 | 1.5491 | 1.5483 | 1.54691 | 1.5426 | 1.5385 | 1.5399 | 1.5414 |
| (c) | 495.75 |  | 1.5494 | 1.5494 | 1.5491 | 1.5485 | 1.5477 | 1.5465 | 1.5421 | 1.5379 | 1.5393 | 1.5408 |
| $b_{2}$ | 517.27 |  | 1.5481 | 1.5481 | 1.5476 | 1.5472 | 1.5463 | 1.5452 | 1.5407 | 1.5363 | 1.5377 | 1.5392 |
| $D_{2}$ | 588.997 | 1.5449 | 1.5448 | 1.5446 | 1.5441 | 1.5437 | 1.5428 | 1.5414 | 1.5370 | 1.5329 | 1.5341 | 1.5356 |
|  | 627.8 | 1.5434 | 1.5434 | 1.5431 | 1.5427 | 1.5422 | 1.5413 | 1.54011 | 1.5357 | 1.5314 | 1.5328 | 1.5340 |
| C | 656.278 |  | 1.5425 | 1.5423 | 1.5418 | 1.5414 | 1.5405 | 1.5390 | 1.5349 | 1.5304 | 1.5319 | 1.5331 |
| $B$ | 687.2 | 1.5417 | 1.5416 | 1.5414 | 1.5410 | 1.5405 | 1.5395 | 1.5382 | 1.5337 | 1.5296 | 1.5309 | 1.5321 |
| $a$ | 718.9 |  | 1.5408 | 1.5405 | 1.5401 | 1.5396 | 1.5386 | 1.5374 | 1.5327 | 1.5288 | 1.5301 | 1.5313 |

* R. B. Sosman, "The Properties of Silica," Chemical Catalog Company, Inc., New York.


## INDEX OF REFRACTION

## Table 6b-12. Liquids Used for Determining Refractive Index by Transmission Method*

Liquid $\quad N_{D}, 24^{\circ} \mathrm{C}$
Trimethylene chloride. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.446
Cineole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.456
Hexahydrophenol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.466
Decahydronaphthalene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.477
Isoamylphthalate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.486
Tetrachloroethane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.492
Pentachloroethane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.501
Trimethylene bromide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.513
Chlorobenzene.................................................. . . . . 1.523
Ethylene bromide + chlorobenzene........................ . . 1.533
o-Nitrotoluene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.544
Xylidine............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.557
o-Toluidine........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.570
Aniline................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.584
Bromoform........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.595
Iodobenzene + bromobenzene. ............................ . . . . . 1.603
Iodobenzene + bromobenzene............................. . . . . 1.613
Quinoline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.622
$\alpha$-Chloronaphthalene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.633
$\alpha$-Bromonaphthalene $+\alpha$-chloronaphthalene............ 1.640-1.650
$\alpha$-Bromonaphthalene $+\alpha$-iodonaphthalene............... 1.660-1.690
Methylene iodide + iodobenzene.......................... . . 1.700-1.730
Methylene iodide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.738
Methylene iodide saturated with sulfur.................. 1.78
Yellow phosphorus, sulfur, and methylene iodide $\dagger$ (8:1:1 by weight)
2.06

* "Handbook of Chemistry and Physics," 36th ed., p. 2669, Chemical Rubber Publishing Company, 1954-1955.
$\dagger$ Can be diluted with methylene iodide to cover"range 1.74-2.06. For precautions in use, cf. West, Am. Mineral 21, 245-249 (1936).


# 6c. Absorption and Transmission 

K. A. McCARTHY<br>Tufts University<br>S. S. BALLARD<br>Scripps Institution of Oceanography

6c-1. Definitions and Tables. Two important optical properties of a material are its refractive index $n$ and its absorption coefficient $\alpha$; both vary with wavelength. The absorption coefficient represents the fraction of radiant intensity lost by absorption per unit thickness of material, for very small thicknesses. Its value depends strongly on the purity of the sample and may vary widely for materials from different sources or prepared by different methods. Representative values are given in Table 6c-1 for several crystalline materials and for fused silica.

The internal transmittance $T_{i}$ of a material is related to the absorption coefficient by

$$
T_{i}=\frac{I}{I_{0}}=e^{-\alpha t}
$$

where $I_{0}$ is the intensity of the radiation transmitted by the first surface of a plate of material of thickness $t$, and $I$ is the intensity of the flux incident on the second surface. Values of $I_{0}$ and $I$ measured in air outside the sample must be corrected for surface reflection loss before being used in computing absorption coefficient. It can be seen from the equation that the units of absorption coefficients are reciprocal length, and that the reciprocal of $\alpha$ is the absorption distance through which the intensity of radiation is reduced to $1 / e$, or 36.8 per cent, of its original value.

Other optical constants commonly used include the extinction coefficient $\kappa$ and the absorption constant $k$; these are related to absorption coefficient by

$$
\kappa=\frac{k}{n}=\frac{\alpha \lambda}{4 \pi n}
$$

where $\lambda$ is the wavelength of light.

Table 6c-1. Absorption Coefficients of Various Substances ( $\mathrm{cm}^{-1}$ )

| $\lambda, \mu$ | Calcium fluoride | Lithium fluoride | Magnesium oxide | Potassium bromide | Crystalline ordinary | Quartz extraordinary | Silica fused | Sodium chloride |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2.4 | ... |  | .... |  | 0.009 | 0.02 | 0.016 |  |
| 2.5 |  |  | $\ldots$ |  | 0.027 | 0.05 | 0.02 |  |
| 3.0 | $\ldots$ |  | ... |  | 0.50 | 0.17 | 0.15 |  |
| 3.5 | $\ldots$ |  | ... |  | 0.90 | 0.90 | 0.31 |  |
| 4.0 | . . . . |  |  | ...... | 1.8 | 1.8 | 2.0 |  |
| 4.5 | $\ldots$ |  |  |  | 7.2 | 7.2 | 7.1 |  |
| 5.0 |  |  |  |  | 65 | 65 | 28 |  |
| 5.5 | $\ldots$ | 0.15 |  |  |  |  |  |  |
| 6.0 |  | 0.50 |  |  |  |  |  |  |
| 6.5 |  | 1.3 |  |  |  |  |  |  |
| 7.0 | 0.04 | 2.4 | 2.0 |  |  |  |  |  |
| 7.5 | 0.09 | 4.1 |  |  |  |  |  |  |
| 8.0 | 0.19 | 7.0 | 6.0 |  |  |  |  |  |
| 8.5 | 0.36 |  |  |  |  |  |  |  |
| 9.0 | 0.62 | 13 | 15 |  |  |  |  |  |
| 9.5 | 1.02 |  |  |  |  |  |  |  |
| 10.0 | 1.7 | 31 | 50 |  |  |  |  |  |
| 11.0 | 4.6 | 60 |  |  |  |  |  | 0.006 |
| 12.0 | 11.0 | 160 | 16 | . . . . . |  |  |  | 0.013 |
| 14.0 |  | 500 | 42 |  |  |  |  | 0.10 |
| 15.0 |  | 2,000 | . . . |  | $\ldots$ |  |  | 0.20 |
| 16.0 | $\ldots$ | ....... | $\ldots$ | 0.01 | . | $\ldots$ |  | 0.32 |
| 20.0 | ..... | ....... |  | 0.072 | . . . . . |  |  | 3.3 |
| 24.0 26.0 | $\cdots$ | ...... | $\ldots$ | 0.25 | . . . . . | . . |  | 14 |
| 26.0 28.0 | ..... |  |  |  |  |  |  | 21 |
| 28.0 30.0 | .... | ....... | .... | 0.79 |  |  |  | 50 |
| 30.0 32.0 | . . . . | . . . . . | $\ldots$ |  |  |  |  | 100 |
| 32.0 38.0 | $\ldots$ |  |  | 2 |  |  |  |  |
| 40.0 | $\cdots$ |  | $\cdots$ | 7 12 |  |  |  |  |
| 45.0 |  |  |  | 36 |  |  |  |  |

## References for Table 6c-1

1. Calcium Fluoride. Taken from graph computed from transmittance curve in S. S. Ballard, ed., "The Optical and Other Physical Properties of Infrared Optical Materials," p. 61, final report for ERDL Contract W-44-009 eng-473, 1949.
2. Lithium Fluoride. H. W. Hobbs, Ann. Physik 29, 433 (1937).
3. Magnesium Oxide. E. Burstein, J. J. Oberly, and E. K. Plyler, Proc. Ind. Acad. Sci. 38, 388 (1948).
4. Potassium Bromide. Z. Mentzel, Z. Physik 88, 178 (1934).
5. Crystalline Quartz. See ref. 1 for ordinary ray; for extraordinary ray,
D. G. Drummond, Proc. Roy. Soc. (London), ser. A, 153, 328 (1935).
6. Fused Silica. See ref. 1.
7. Sodium Chloride. See ref. 1.
$\left(\mathrm{cm}^{-1}\right)$

| $\lambda, \mu$ | Germanium | Silicon | Pyrite |
| :---: | :---: | :---: | :---: |
| 4.17 | 1.9 | 1.35 | 0 |
| 4.55 | 1.9 | 1.35 | 0 |
| 6.25 | 1.5 | 1.30 | 0 |
| 7.14 | 1.2 | 1.13 |  |
| 7.69 | $\ldots .$. | $\ldots$. | 0.42 |
| 8.33 | 0.73 | 0.52 |  |
| 10.0 | 0 | 0.14 | 0.55 |
| 12.5 | 0 | 0.15 |  |
| 15.4 | $\ldots$ | $\cdots$ | 0.67 |

* Private communication from I. Simon. For graphical presentation, see I. Simon, J, Opt. Soc. Am. 41, 730 (1951).
6c-2. Notes on Absorption and Transmission of Optical Materials. Approximate spectral absorption characteristics of several optical materials are given on pages 116-124 of Office of Technical Services (U. S. Department of Commerce) publication No. 111053 of October, 1952: "Physical Properties of Optical Crystals with Special Reference to Infrared," by Alexander Smakula. He gives data for a so-called extinction coefficient, $K_{10}$, which is the common-logarithm analog of absorption coefficient: the reciprocal of $K_{10}$ is the absorption distance through which the intensity of radiation is reduced to 110 , or 10 per cent, of its original value. Absorption coefficients, $\alpha$, can be obtained by multiplying values of $K_{10}$ by 2.303 .
There are many materials of importance for which absorption coefficients are not available in the literature; however, the references listed below present transmittance data from which approximate values of absorption coefficients can be computed.

1. Amorphous Selenium. Transmission curves, for five thicknesses from 0.06 to 0.62 cm , to $25 \mu$ given. See H. A. Gebbie and C. E. Cannon, J. Opt. Soc. Am. 42, 277L (1952).
2. Arsenic Trisulfide Glass. Transmission curves up to $13 \mu$ given. See R. Frerichs, J. Opt. Soc. Am. 43, 1153 (1953).
3. Barium Fluoride, Cadmium Fluoride, Lead Fluoride, and Strontium Fluoride. See D. A. Jones, R. V. Jones, and R. W. H. Stevenson, Proc. Phys. Soc. (London), ser. B, 85, 906 (1952). For cadmium fluoride, see also H. M. Haendler, C. M. Wheeler, and W. J. Bernard, J. Opt. Soc. Am. 43, 215 (1953).
4. Cesium Bromide. A transmittance curve from 0.32 to $38 \mu$ is given for a $7-\mathrm{mm}-$ thickness sample by E. K. Plyler and F. P. Phelps, J. Opt. Soc. Am. 41, 209L (1951).
5. Cesium Iodide. A transmittance curve from 0.22 to $38 \mu$ is given for a $3-\mathrm{mm}-$ thickness sample by E. K. Plyler and F. P. Phelps, J. Opt. Soc. Am. 42, 432L (1952). This material probably transmits to a wavelength of $52 \mu$.
6. Rutile. The transmission for a sample of thickness 1.86 mm from 2 to $8 \mu$ is given in S. S. Ballard, ed., "The Optical and Other Physical Properties of Infrared Optical Materials," p. 61, final report for ERDL Contract W-44-009 end-473, 1949.
7. Sapphire. The transmission for a sample of thickness 0.5 cm from 2 to $6 \mu$ is given in the same source as referred to for rutile.
8. Silver Chloride. The transmission for a sample of thickness 0.6 cm from 2 to $26 \mu$ is given in the same source as referred to for rutile.
9. Spinel. See G: Calingert, S. K. Heron, and R. Stair, Trans. Soc. Automotive Engrs. 31, 448 (1936).

10．Strontium Titanate．Transmittance curves for the visible region for 1．0－and $1.1-\mathrm{mm}$ samples are given in private communication with W．B．Anderson， Titanium Pigment Corporation，July 9， 1954.
11．Thallium Bromide－iodide．The transmission for a sample of thickness 0.4 cm to a wavelength of $38 \mu$ in the same source as referred to for rutile．

Table 6c－3
CONVERSION TABLE
OPTICAL DENSITY VS PERCENT TRANSMISSION

|  |  | 各 㤩 |  |  |  |  |  |  |  |  |  | 产 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00100 .00 | 0.50 | 1.00 | 10.00 | 1.50 |  |  |  |  |  |  |  |  |  |
| 0.0197 .72 | $\begin{array}{ll}0.51 & 31.82 \\ 0.51 & 30.90\end{array}$ | 1.01 | 10.00 | 1.51 | 3.162 3.090 | 2.00 | 1.000 0.9772 | 2.50 | 0.3162 0.3090 | 3.00 3.01 | 0.1000 | 3.50 | 0.0316 |
| 0.0295 .50 | 0.5230 .20 | 1.02 | 9.550 | 1.52 | 3.020 | 2．02 | 0.9772 0.9550 | 2.51 | 0.31090 0.3020 | 3.01 3.02 | 0.0977 0.0955 | 3.51 3.51 | 0.0309 |
| 0.0393 | $\begin{array}{ll}0.53 & 29.51\end{array}$ | 1.03 | 9.333 | 1.53 | 2.951 | 2.03 | 0．9333 | 2.53 | 0．2951 | 3.02 3.03 | 0.0955 0.0933 | 3.52 3.53 | 0.0302 |
| 0.0491 .20 | 0.5428 .84 | 1.04 | 9.120 | 1.54 | 2.884 | 2.04 | 0.933 0.9120 | 2.53 2.54 | 0．2884． | 3.03 3.04 | 0.0933 0.0912 | 3.53 3.54 | 0.0295 <br> 0.0288 <br> 0.0288 |
| 0.05889 .13 | 0.5528 .18 | 1.05 | 8.913 | 1.55 | 2.818 | 2.05 | 0.8913 | 2.55 | 0.2818 | 3.04 3.05 | 0.0912 0.0891 | 3.54 3.55 | $\begin{aligned} & 0.0288 \\ & 0.0289 \end{aligned}$ |
| 0.0687 .10 | 0.56 | 1.06 | 8.710 | 1.56 | 2.754 | 2.06 | 0.8710 |  |  |  |  |  |  |
| $\begin{array}{ll}0.07 & 85.11 \\ 0.08 & 83.18\end{array}$ | $\begin{array}{ll}0.57 & 26.92 \\ 0.58 & 26.30\end{array}$ | 1.07 | 8.511 | 1.57 | 2.754 2.692 | 2.07 | 0.8710 0.8511 | 2.56 | 0.2754 0.2692 | 3.06 3.07 | 0.0871 0.0851 | 3.56 | 0.0275 |
| $\begin{array}{ll}0.08 & 83.18 \\ 0.09 & 81.28\end{array}$ | $\begin{array}{ll}0.58 & 26.30 \\ 0.59 & 25.70\end{array}$ | 1.08 | 8.318 8.128 | 1.58 1.58 1.59 | 2.682 2.630 2.570 | 2.08 | 0．8318 | 2.58 | 0．2630 | 3.07 3.08 | 0.0851 0.0832 | 3.57 3.58 | 0.0269 0.0263 |
| $\begin{array}{ll}0.09 & 79.28 \\ 0.10\end{array}$ | $\begin{array}{ll}0.59 & 25.70 \\ 0.60 & 25.12\end{array}$ | 1.09 1.10 | 8.128 7.943 | 1.59 1.60 | 2.570 2.512 | 2.09 2.10 | 0.8128 0.7943 | 2.59 2.60 | ＇0．2570 | 3.08 3.10 | 0.0813 0.0794 | 3.59 | 0.0257 |
| 0.1177 .62 | $0.61 \quad 24.55$ | 1.11 | 7.762 | 1.61 | 2.455 | 2.11 | 0.7762 | 2.61 |  |  |  |  |  |
| $\begin{array}{ll}0.12 & 75.86 \\ 0.13 & 74.13\end{array}$ | $0.62 \quad 23.99$ | 1.12 | 7.586 | 1.62 | 2.399 | 2.11 | 0.7762 0.7586 | 2.62 | 0.2455 0.2399 | 3.11 3.12 | 0.0776 0.0759 | 3.61 3.62 | 0.0245 |
| $\begin{array}{ll}0.13 & 74.13 \\ 0.14 & 72.44\end{array}$ | $\begin{array}{ll}0.63 & 23.44 \\ 0.64 & 22.91\end{array}$ | 1.13 | 7.413 | 1.63 | 2.344 | 2.13 | 0.7413 | 2.63 | 0．2344 | 3.12 3.13 | 0.0741 | 3.62 3.63 | 0.0239 0.0234 |
| 0.1570 .79 | $\begin{array}{ll}0.64 & 22.91 \\ 0.65 & 22.39\end{array}$ | 1.14 1.15 | 7.244 7.079 | 1.64 | 2.291 2.239 | 2.14 | 0.7244 | 2.64 | 0.2291 0.2239 | 3.14 3.15 | 0.0724 | 3.64 | 0.0229 |
| 0.1669 .18 | $0.66 \quad 21.88$ |  |  |  |  |  |  |  | 0.2239 | 15 | 8 | 3.65 | 0.0223 |
| 0.176761 | 0．67 21.38 | 1.17 | 6.918 6.761 | 1.66 | 2.188 | 2.1 | 0.6918 | 2.66 | 0.2188 | 3.16 | 0.0692 | 3.66 | 0.0218 |
| 0.1866 .07 | 0.6820 .89 | 1.18 | 6.761 6.607 | 1.68 | 2.138 2.089 | 2.17 2.18 | 0.6761 0.6607 | 2.67 | 0.2138 | 3.17 | 0.0676 | 3.67 | 0.0214 |
| 0.1964 .57 | 0.6920 .42 | 1.19 | 6.457 | 1.69 | 2.042 | 2.19 | 0.66457 0.645 | 2.68 2.69 | 0.2089 0.2042 | 3.18 3.19 | 0.0661 0.0646 | 3.68 3.69 | 0.0218 0.0204 |
| 0.2063 .10 | 0.7010 .95 | 1.20 | 6.310 | 1.70 | 1.995 | 2.20 | 0.6310 | 2.70 | 0.2042 0.1995 | 3.19 3.20 | 0.0646 0.06310 | 3.69 $\mathbf{3 . 7 0}$ | 0.0204 0.0199 |
| $\begin{array}{ll}0.21 & 61.66\end{array}$ | 0.71 | 1.21 | 6.166 | 1.71 | 1.950 | 2.21 | 0.6166 |  |  |  |  |  |  |
| $0.22 \quad 60.26$ | 0.7219 .05 | 1.22 | 6.026 | 1.72 | 1.9505 | 2.22 | 0.6166 0.6026 | 2.71 2.72 | 0.1950 0.1905 | 3.21 | 0.0617 0.0603 | 3.71 | 0.0195 |
| 0.2358 .88 | $\begin{array}{ll}0.73 & 18.62\end{array}$ | 1.23 | 5.888 | 1.73 | 1.862 | 2.23 | 0.6026 0.5888 | 2.73 | 0．1862 | 3.22 3.23 | 0.0603 | 3.71 3.73 | 0.0190 0.0186 |
| 0.2457 .54 | $\begin{array}{ll}0.74 & 18.20 \\ 0.75 & 17.78\end{array}$ | 1.24 | 5.754 | 1.74 | 1.820 | 2.24 | 0.5754 | 2.74 | 0.1820 | 3.23 3.24 | 0.0588 0.0575 | 3.73 3.74 | 0.0186 0.0182 |
| $0.25 \quad 56.23$ | 0.7517 .78 | 1.25 | 5.623 | 1.75 | 1.778 | 2.25 | 0.5623 | 2.74 2.75 | 0.1820 0.1778 | 3.24 3.25 | 0.0575 0.0562 | 3.74 3.75 | 0.0182 0.0178 |
| 0.2654 .95 | 0.7617 .38 | 1.26 | 5.495 | 1.76 | 1.738 | 2.26 | 0.5495 | 2.76 |  | 3.26 |  |  |  |
| 0.2753 .70 | 0.7716 .98 | 1.27 | 5.370 | 1.77 | 1.698 | 2.27 | 0.5370 | 2.77 | 0.1738 0.1698 | 3.26 3.27 | 0.0550 0.0537 | 3.76 3.77 | 0.0174 0.0169 |
| 0.2852 .48 | 0.7816 .60 | 1.28 | 5.248 | 1.78 | 1.660 | 2.28 | 0.5248 | 2.78 | 0.1660 | 3.28 | 0．0532 | 3.77 3.78 | 0.0169 0.0166 |
| $\begin{array}{ll}0.29 & 51.29 \\ 0.30 & 50.12\end{array}$ | $\begin{array}{ll}0.79 & 16.22 \\ 0.80 & 15.85\end{array}$ | 1.29 1.30 | 5.129 5.012 | 1.79 | 1.622 | 2.29 | 0.5129 | 2.79 | 0.1622 | 3.29 | 0.0513 | 3.78 3.79 | 0.0166 0.0162 |
| $0.30 \quad 50.12$ | 0.8015 .85 | 1.30 | 5.012 | 1.80 | 1.585 | 2.30 | 0.5012 | 280 | 0.1585 | 3.30 | 0.0501 | 3.80 | 0.0158 |
| $\begin{array}{ll}0.31 & 48.98 \\ 0.32 & 47.86\end{array}$ | 0.8115 .49 | 1.31 | 4.898 | 1.81 | 1.549 | 2.31 | 0.4898 | 2.81 |  |  |  |  |  |
| 0.3247 .86 | $0.82 \quad 15.14$ | 1.32 | 4.786 | 1.82 | 1.514 | 2.32 | 0.4898 0.4786 | 2.82 | 0.1549 0.1514 | 3.31 3.32 | 0.0489 0.0478 | 3.81 3.82 | 0.0155 0.0152 |
| $\begin{array}{ll}0.33 & 46.77 \\ 0.34 & 45.71\end{array}$ | 0.6314 .79 | 1.33 | 4.677 | 1.83 | 1.479 | 2.33 | 0.4677 | 2.83 | 0.1479 | 3.33 | 0.0478 0.0468 | 3.81 3.83 | 0.0152 0.0148 |
| $\begin{array}{ll}0.34 & 45.71 \\ 0.35 & 44.67\end{array}$ | $\begin{array}{ll}0.84 & 14.45 \\ 0.85 & 14.13\end{array}$ | 1.34 | 4.571 | 1.84 | 1.445 | 2.34 | 0.4571 | 2.84 | 0.1445 | 3.34 | 0.0457 | 3.84 | 0.0145 |
| 0.3544 .67 | 0.8514 .13 | 1.35 | 4.467 | 1.85 | 1.413 | 2.35 | 0.4467 | 2.85 | 0.1413 | 3.35 | 0.0446 | 3.85 | 0.0141 |
| 0.3643 .65 | 0.8613 .80 | 1.36 | 4.365 | 1.86 | 1.380 | 2.36 | 0.4365 | 2.86 | 0.1380 | 3.36 |  |  |  |
| 0.3742 .66 | 0.8713 .49 | 1.37 | 4.266 | 1.87 | 1.349 | 2.37. | 0.4266 | 2.87 | 0．1349 | 3.37 3.37 | 0.0436 0.04266 | 3.86 3.87 | 0.0138 0.0135 |
| $\begin{array}{ll}0.38 & 41.69 \\ 0.39 & 40.74\end{array}$ | $\begin{array}{ll}0.38 & 13.18 \\ 0.89 & 12.88\end{array}$ | 1.38 | 4.169 | 1.88 | 1.318 | $2.38{ }^{\circ}$ | 0.4169 | 2.88 | 0.1318 | 3.38 | 0.0417 | 3.88 | 0.0132 |
| $\begin{array}{ll}0.39 & 40.74 \\ 0.40 & 39.81\end{array}$ | $\begin{array}{ll}0.89 & 12.88 \\ 0.90 & 12.59\end{array}$ | 1.39 | 4.074 | 1.89 | 1.288 | 2.39 | 0.4074 | 2.89 | 0.1288 | 3.39 | 0.0407 | 3.89 | 0.0129 |
| 0.4039 .81 | 0.9012 .59 | 1.40 | 3.981 | 1.90 | 1.259 | 2.40 | 0.3981 | 2.90 | 0.1259 | 3.40 | 0.0398 | 3.90 | 0.0126 |
| $\begin{array}{ll}0.41 & 38.90\end{array}$ | 0.9112 .30 | 1.41 | 3.890 | 1.91 | 1.230 | 2.41 | 0.3890 | 2.91 | 0.1230 | 3.41 | 0.0389 |  |  |
| 0.4238 .02 | $\begin{array}{lll}0.92 & 12.02\end{array}$ | 1.42 | 3.802 | 1.92 | 1.202 | 2.42 | 0，3802 | 2.92 | 0.1202 | 3.41 3.42 | 0.0389 0.0380 | 3.91 3.92 | 0.0123 0.0120 |
| 0.43 37．15 | 0.9311 .75 | 1.43 | 3.715 | 1.93 | 1.175 | 2.43 | 0.3715 | 2.93 | 0.1175 | 3.43 | 0.0371 | 3.92 3.93 | 0.0120 0.0117 |
| $\begin{array}{ll}0.44 & 36.31 \\ 0.45 & 35.48\end{array}$ | $\begin{array}{ll}0.94 & 11.48 \\ 0.95 & 11.22\end{array}$ | 1.44 | 3.631 | 1.94 | 1.148 | 2.44 | 0.3631 | 2.94 | 0.1148 | 3.44 | 0.0363 | 3.94 | 0.0114 |
| 0.45 35．48 | 0.9511 .22 | 1.45 | 3.548 | 1.95 | 1.122 | 2.45 | 0.3548 | 2.95 | 0.1122 | 3.45 | 0.0355 | 3.95 | 0.0112 |
| 0.46 | 0.9610 .96 | 1.46 | 3.467 | 1.96 | 1.096 | 2.46 | 0.3467 | 2.96 | 0.1096 | 3.46 | 0.0347 |  |  |
| $\begin{array}{ll}0.47 & 33.88 \\ 0.48 & 33.11\end{array}$ | $\begin{array}{ll}0.97 & 10.72 \\ 0.98 & 10.47\end{array}$ | 1.47 | 3.348 | 1.97 | 1.072 | 2.47 | 0.3388 | 2.97 | 0.1072 | 3.47 | 0．0339 | 3.96 | 0.0109 0.0107 |
| $\begin{array}{ll}0.48 & 33.11 \\ 0.49 & 32.36\end{array}$ | $\begin{array}{ll}0.98 & 10.47 \\ 0.93 & 10.23\end{array}$ | 1.48 | 3.311 | 1.98 | 1.047 | 2.48 | 0.3311 | 2.98 | 0.1047 | 3.48 | 0.0331 | 3.98 | 0.0105 |
| $\begin{array}{ll}0.49 & 32.36 \\ 0.50 & 31.62\end{array}$ | $\begin{array}{ll}0.93 & 10.23 \\ 1.00 & 10.00\end{array}$ | 1.49 1.50 | 3.236 3.162 | 1.99 | 1.023 | 2.49 | 0.3236 | 2.39 | 0.1023 | 3.49 | 0.0324 | 3.99 | 0.0102 |
| 0.5031 .62 | 1.0010 .00 | 1.50 | 3.162 | 2.00 | 1.000 | 2.50 | 0.3162 | 3.00 | 0.1000 | 3.50 | 0.0316 | 4.00 | 0.0100 |

## 6c－3．Additional Information on the Properties of Certain Optical Materials

1．Lithium Fluoride．Particularly useful as a prism material for the vacuum ultra－ violet region transmitting to a minimum wavelength of almost $0.10 \mu$ ，and in the infrared region to $5 \mu$ ；however，since only selected pieces of the vacuum－grown material give such a low transmission in the ultraviolet，caution must be taken in choosing the particular sample．For an evaluation of lithium fluoride as a priam
material, see R. C. Gore, R. S. MacDonald, V. Z. Williams, and J. U. White, J. Opt. Soc. Am. 37, 23 (1947). For an evaluation of the physical properties of lithium fluoride, see S. S. Ballard, L. S. Combes, and K. A. McCarthy, J. Opt. Soc. Am. 41, 772 (1951).
2. Magnesium Oxide. Useful as a window material in equipment where both strength fand high-temperature endurance are required. (The Young's modulus for magnesium oxide is approximately six times that of sodium chloride; its melting point is 2500 to $2800^{\circ} \mathrm{C}$.) Specific information is contained in the literature of the Norton Company, Niagara Falls, Canada.
3. Quartz. Used both as a prism material and for other optical elements in spectrometers, particularly for measurements in the ultraviolet region; it is also an excellent window material. Its mechanical properties are quite remarkable, particularly when considered as a material for field use; quartz is very strong and extremely hard. A thorough summary of the mechanical, thermal, and optical properties is given by R. B. Sosman, "The Properties of Silica," Chemical Catalog Company, Inc., New York, 1927.
4. Fused Silica. Has uses similar to those of crystalline quartz. Information on its mechanical, thermal, and optical properties is given in Sosman (see quartz reference above); in Catalog Q-3, Fused Quartz Catalog, General Electric Company, Cleveland, Ohio, 1952; and in the literature of the Hanovia Chemical and Manufacturing Company, Newark, N.J. For a comparison of the refractive indices of samples of fused silica as produced by different manufacturers, see W. S. Rodney and R. J. Spindler, J. Opt. Soc. Am. 44, 677-679 (1954).
5. Rutile, Sapphire, and Spinel. Of importance as window materials because of their unusual hardness and advantageous high-temperature mechanical properties. Most of the information on these three materials is contained in the literature of the Linde Air Products Company.
6. Calcium Fluoride. Used as a prism material in the vacuum ultraviolet region down to $120 \mu$. For an evaluation of calcium fluoride as a prism material, see Gore et al. in lithium fluoride reference. For a comparison of its physical properties with those of barium fluoride, see S. S. Ballard, L. S. Combes, and K. A. McCarthy, J. Opt. Soc. Am. 42, 684 (1952).
7. Cesium Bromide, Cesium Iodide, and Thallium Bromide-iodide. Cesium iodide transmits in the infrared to at least $50 \mu$; cesium bromide and thallium bromideiodide both transmit to about $40 \mu$. A comparison of the physical properties of these three materials is given by S. S. Ballard, L. S. Combes, and K. A. McCarthy, J. Opt. Soc. Am. 42, 65 (1952); 43, 975 (1953). Certain properties to be noted are the toxicity of thallium bromide-iodide, which necessitates care in machining processes of this material; the high total reflection loss of thallium bromide-iodide; the solubility and corrosive effects on metals of cesium bromide; the extremely temperature-dependent solubility of cesium iodide.
8. Potassium Bromide, Silver Chloride, and Sodium Chloride. A comparison of the optical properties of potassium bromide and sodium chloride as prism materials is given by Gore et al. All three materials are quite soft; potassium chloride and sodium chloride are extremely water soluble. Silver chloride is particularly useful as a window material. However, it reacts with metals, and tools used on silver chloride should be carefully cleaned. Silver chloride windows must be coated to prevent darkening due to its sensitivity to ultraviolet light.

## 6d. Reflection ${ }^{1}$



Table 6d-2. Reflection Coefficients for Visible Monochromatic Radiation*

| Material | Wavelengths, $\mu$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 0:400 | 0.500 | 0.600 | 0.700 |
| Carbon black in oil | 0.003 | 0.003 | 0.003 | 0.003 |
| Clay: |  |  |  |  |
| Kaolin (treated). | 0.82 | 0.81 | 0.82 | 0.82 |
| Kaolin (untreated) | 0.75 | 0.79 | 0.85 | 0.86 |
| White Georgia.. | 0.94 | 0.92 | 0.93 | 0.94 |
| $\mathrm{MgCO}_{3}$. |  | 0.98 | 0.99 |  |
| Magnesium oxide. | 0.97 | 0.98 | 0.99 | 0.98 |
| Paint: $0^{\text {P }}$ |  |  |  |  |
| Lithopone. | 0.95 | 0.98 | 0.98 | 0.98 |
| $\mathrm{MgCO}_{3}$-vynal acetate lacquer | 0.90 | 0.88 | $\bigcirc 0.88$ | 0.88 |
| ZnO-milk................... | 0.74 | 0.84 | 0.85 | 0.86 |
| Paper: 00.78 |  |  |  |  |
| Blotting. | 0.64 | 0.72 | 0.79 0.73 | 0.79 0.76 |
| Calendered. | 0.64 | 0.69 | 0.73 | 0.76 |
| Crepe, green | 0.23 | 0.49 | 0.19 | 0.48 |
| Crepe, red.: | 0.03 | 0.02 | 0.21 | 0.69 |
| Crepe, yellow. | 0.17 | 0.44 | 0.75 | 0.79 |
| Newsprint stock | 0.38 | 0.61 | 0.63 | 0.78 |
|  |  |  |  |  |
| Green. |  | 0.17 0.10 | 0.41 | 0.42 |
| Ripe. | 0.10 | 0.10 | 0.41 |  |
| Pear: |  |  |  |  |
| Green. | 0.04 0.08 | 0.12 0.19 | 0.46 | 0.53 |
| Ripe. | 0.08 | 0.19 | 0.46 | 0.53 |
| Pigment: |  |  |  |  |
| Chrome yellow | 0.05 0.06 | 0.14 | 0.50 | 0.56 |
| French ochre... Porcelain enamel: | 0.06 | 0.14 |  |  |
| Porcelain enamel: |  |  |  |  |
| Blue.... Orange. | 0.44 0.09 | 0.09 | 0.59 | 0.69 |
| Orange. | 0.05 | 0.03 | 0.08 | 0.62 |
| White. | 0.77 | 0.73 | 0.72 | 0.70 |
| Yellow. | 0.11 | 0.46 | 0.62 | 0.62 |
| Talcum, Italian | 0.94 | 0.89 | 0.88 | 0.88 |
| Wheat flour. | 0.75 | 0.87 | 0.94 | 0.97 |

[^298]Table 6d-3. Reflection Coefficients for Incandescent Light*

| Material | Nature of surface | Coefficient | Authority |
| :---: | :---: | :---: | :---: |
| Aluminum, "Alzak". | Diffusing | 0.77-0.81 | 3 |
| "Alzak" | Specular | 0.79-0.83 | 3 |
| On glass. | First surface | 0.82-0.86 | 4 |
| Polished. | Specular | 0.820 .86 0.69 | 3 |
| Black paper. | Diffusing | 0.05-0.06 | 4 |
| Chromium. | Specular | 0.62 | 4 |
| Copper... | Specular | 0.63 | 4 |
| Gold.. | Specular | 0.75 | 1 |
| Magnesium oxide | Diffusing | 0.98 | 5 |
| Nickel...... | Specular | 0.62-0.64 | 1, 3 |
| Platinum....... | Specular | 0.62 | 1 |
| Porcelain enamel | Glossy | 0.76-0.79 | 3 |
| Porcelain enamel. | Ground | 0.81 | 3 |
| Porcelain enamel | Matt | 0.72-0.76 | 3 |
| Silver...... . | Polished | 0.93 | 1 |
| Silvered glass. | Second surface | 0.88-0.93 | 3 |
|  | Diffusing | 0.93 | 2 |
| Steel.... Stellite. | Specular | 0.55 | , |
|  | Specular | 0.58-0.65 | 4 |

[^299]
# 6e. Glass, Polarizing and Interference Filters 

W. A. SHURCLIFF ${ }^{1}$<br>Polaroid Corporation<br>BRUCE H. BILLINGS ${ }^{2}$<br>Baird-Atomic, Inc.

6e-1. Colored Glasses. The transmission values of colored glasses are listed as functions of wavelength in the catalogues of various manufacturers. In the United States wide ranges of colored glass are available from the American Optical Company, Bausch and Lomb Company, Chicago Eye Shield Company, Corning Glass Works,

[^300]and the Eastman Kodak Company. The German Jena glasses also extend over a wide range of transmission values.

6e-2. Sheet Polarizers. Sheet polarizers have several advantages over the nicol prism and other early types of linear polarizers. They accept a wide cone of light (half angle of 30 to 45 deg , for example). They are thin, light, and rugged, and are easily cut to any desired shape. Pieces many feet in length can be made. The cost is almost negligible compared with that of a nicol prism.

If a sheet polarizer is mounted perpendicular to a beam of 100 per cent linearly polarized radiation, and if the polarizer is slowly turned in its own plane, the transmittance $k$ varies between a maximum value $k_{1}$ and a minimum value $k_{2}$ according to the following law:

$$
\begin{equation*}
k=\left(k_{1}-k_{2}\right)\left(\cos ^{2} \theta\right)+k_{2} \tag{6e-1}
\end{equation*}
$$

When such a polarizer is placed in a beam of unpolarized radiation, the transmittance is $\frac{1}{2}\left(k_{1}+k_{2}\right)$. When two identical polarizers are mounted in the beam with their axes crossed, the transmittance is $k_{1} k_{2}$.

The principal transmittance values $k_{1}$ and $k_{2}$ vary with wavelength, the variation being different for different types of polarizers. Table $6 \mathrm{e}-1$ presents data for several well-known types, produced by Polaroid Corporation, Cambridge, Massachusetts. H sheet, perhaps the most widely used sheet polarizer, is effective throughout the visual range; it is produced in three modifications having total luminous transmittance (for C.I.E. Illuminant C light) of 22 per cent (Type HN-22), 32 per cent (Type HN-32), and 38 per cent (HN-38). Type HN-22 provides the best extinction, Type HN-38 provides the highest transmittance, and Type HN-32 represents a compromise that is preferred in many applications. K sheet, also useful throughout the visual range, is particularly intended for applications involving very high temperature. Its transmittance is 35 to 40 per cent. HR sheet is effective in the infrared range from 0.7 to $2.2 \mu$.

Table 6e-1. Spectral Principal Transmittance of Sheet Polarizers*

| Wavelength, $\mu$ | HN-22 sheet |  | HN-32 sheet |  | HN-38 sheet |  | KN-36 sheet |  | HR sheet |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $k_{1}$ | $k_{2}$ | $k_{1}$ | $k_{2}$ | $k_{1}$ | $k_{2}$ | $k_{1}$ | $k_{2}$ | $k_{1}$ | $k_{2}$ |
| 0.375 | . 11 | .000,005 | . 33 | . 001 | . 54 | . 02 | . 42 | . 002 | . 00 | . 00 |
| 0.40 | . 21 | . 000,01 | . 47 | . 003 | . 67 | . 04 | . 51 | . 001 | . 00 | . 00 |
| 0.45 | . 45 | .000,003 | . 68 | .000,5 | . 81 | . 02 | . 65 | .000,3 | . 00 | . 00 |
| 0.50 | . 55 | .000,002 | . 75 | .000,05 | . 86 | . 005 | . 71 | .000,05 | . 00 | . 00 |
| 0.55 | . 48 | .000,002 | . 70 | .000,02 | . 82 | .000,7 | . 74 | .000,04 | . 00 | 00 |
| 0.60 | . 43 | .000,002 | . 67 | .000,02 | 79 | .000,3 | . 79 | . 000,03 | . 01 | . 00 |
| 0.65 | . 47 | .000,002 | . 70 | .000,02 | . 82 | . 000,3 | . 83 | . 000,08 | . 05 | . 00 |
| 0.7 | . 59 | .000,003 | . 77 | .000,03 | . 86 | .000,7 | . 88 | . 02 | . 10 | . 00 |
| 1.0 |  |  |  |  |  |  |  |  | . 55 | . 05 |
| 1.5 |  |  |  |  |  |  |  |  | . 65 | . 00 |
| 2.0 |  |  |  |  |  |  |  |  | . 70 | . 00 |
| 2.5 |  |  |  |  |  |  |  |  | . 10 | . 02 |

[^301]6e-3. Narrow-band Interference Filters. ${ }^{1}$ The three types of narrow-band filters which are available commercially are:

1. The solid Fabry-Perot filter with a passband of 150 A and a peak transmission of 35 per cent.
2. The multilayer Fabry-Perot filter with bandwidth of 50 A and a peak transmission of 75 per cent.
3. The polarization interference filter with a passband of $\frac{1}{2} \mathrm{~A}$ or wider and a peak transmission of 2 to 7 per cent.

The construction of these filters is described and the principle of their operation is explained.

Fabry-Perot Filter. The solid Fabry-Perot filter was invented by Geffken and has recently been described by Struve. ${ }^{2}$ The active elements in this filter are an evaporated layer of silver which is covered by a layer of dielectric and in turn followed by another evaporated layer of semitransparent silver.

At all wavelengths at which the dielectric layer has an optical thickness of an integral number of half waves the filter will have a passband. The number of half waves corresponding to a given passband is called the order of the passband. The transmission of the filter can be represented by the equation

$$
\begin{equation*}
T=\frac{t^{2}}{(1-r)^{2}+4 r \sin ^{2} \delta / 2} \tag{6e-2}
\end{equation*}
$$

where $r$ is the reflectivity of the silver film, $t$ the transmission of the film, and $\delta=(4 \pi d / \lambda) n^{2}-\sin ^{2} \theta+2 y$ where $d$ is the thickness of the dielectric layer, $n$ its index, $\lambda$ the wavelength, $y$ the phase shift experienced by the light at the metal dielectric boundary, and $\theta$ the angle of incidence.

By inspection of the equation it is apparent that maxima occur when $\delta / 2=m \pi$ where $m$ is an integer.

There are five quantities which are of interest to the user of these filters.

1. The peak transmission
2. The transmission between peaks
3. The bandwidth
4. The separation between passbands
5. The angular field of view

Each of these quantities can be determined theoretically from Eq. (6e-2). The peak transmission is

$$
\begin{equation*}
T_{\max }=\frac{t^{2}}{(1-r)^{2}} \tag{6e-3}
\end{equation*}
$$

The minimum transmission is

$$
\begin{equation*}
T_{\min }=\frac{t^{2}}{(1+r)^{2}} \tag{6e-4}
\end{equation*}
$$

The bandwidth of this filter is defined as the distance between the two points at which the transmission is 50 per cent of peak transmission. The formula for the bandwidth can be written

$$
\begin{equation*}
W=\frac{2 \lambda_{\max }}{m \pi-y_{0}} \cdot \sin ^{-1}\left(\frac{1-r}{2 \sqrt{r}}\right) \tag{6e-5}
\end{equation*}
$$

where $\lambda_{\text {max }}$ is the wavelength of peak transmission, $m$ is the order of the peak, and $W$ is the band within the unit of $\lambda$.

[^302]
## OPTICS

The equation for the bandwidth can be considerably simplified if the phase shift $y_{0}$ is neglected and the bandwidth is expressed in frequency units rather than in wavelength units. The formula then becomes

$$
\begin{equation*}
d \nu=\frac{K}{\pi n d} \sin ^{-1} \frac{1-r}{2 \sqrt{r}} \tag{6e-6}
\end{equation*}
$$

where $d \nu$ is the bandwidth in $\mathrm{cm}^{-1} . \quad K=10^{8}$ if $n d$ is expressed in Angstroms.
The separation between passbands is given by the expression

$$
\begin{equation*}
\Delta \nu=\frac{K}{2 n d}=\frac{K \Delta \lambda}{\lambda_{\max }{ }^{2}} \tag{6e-7}
\end{equation*}
$$

Although this separation is constant in frequency units, Eq. (6e-7) shows that in wavelength units successive passbands in a given filter are closer together in higher orders.

Another quantity which is of interest in discussing these filters is the ratio of peak transmission to minimum transmission. This is given by the expression

$$
\begin{equation*}
\frac{T_{\max }}{T_{\min }}=\frac{(1+r)^{2}}{(1-r)^{2}} \tag{6e-8}
\end{equation*}
$$

The angular field is defined as the angle through which the filter must be tilted to shift the wavelength of peak transmission a distance equal to the bandwidth. It can be calculated from the equation

$$
\begin{equation*}
\sin (\Delta \varphi)=n \frac{2 W}{\lambda_{\max }} \tag{6e-9}
\end{equation*}
$$

Most users of filters wish the bandwidth to be as narrow as possible, the peak transmission as high as possible, the ratio of peak transmission to minimum transmission as high as possible, and the separation between passbands to be as large as possible. There is a certain amount of incompatibility between these different desires. From Eq. (6e-6), to make the bandwidth narrow, two things can be done; one is to increase the reflectivity and the other is to increase the thickness of the dielectric layer. From Eq. (6e-8), however, it is apparent that the increase of thickness of the dielectric layer results in the passbands becoming much closer together. This particular technique is also rather difficult because thick dielectric layers cannot be made easily. After the thickness gets over four or five waves the layer usually begins to crack. An increase of reflectivity, on the other hand, not only gives the desired reduction in bandwidth but also improves the ratio of the peak transmission to the minimum transmission. Although it is possible to increase the reflectivity of the silver layer used in a standard Fabry-Perot filter, the increase is accompanied by an increase in absorption. This results in a reduction of the peak transmission as seen from Eq. (6e-3).

The solid Fabry-Perot filters made today are an attempt to meet an effective compromise in the different requirements. A typical filter has the following characteristics:

$$
\begin{gathered}
T_{\max }=35 \% \quad \lambda_{\max }=5,461 \mathrm{~A} \\
T_{\min }=0.2 \% \quad W 5,461=150 \mathrm{~A} \quad \Delta \phi=20^{\circ}
\end{gathered}
$$

These numbers represent just about the best that can be done with the simple metal dielectric filter.

Multilayer Filters. There are a series of techniques by which high reflectivities can be achieved which are lossless, i.e., which have no absorption. One of these techniques has yielded a filter which is already available commercially. This is the
so-called multilayer Fabry-Perot filter. ${ }^{1}$ Some of the first research on these filters was done by Dr. Aldus Fogelsanger of Evaporated Metal Films Corp., in Ithaca, N.Y. There is very little published material on these filters. In this device the metal layers are replaced by a series of dielectric layers. The boundary between two dielectric layers is reflecting with a reflecting power of perhaps 4 per cent in the case


Fig. 6e-1. Schematic diagram of seven-layer solid Fabry-Perot filter.


Fig. 6e-2. Transmission as a function of wavelength. (Off-peak transmission in this filter is approximately 0.03 per cent.)
of glass and air, or less for two dielectrics whose indices are close together. The value of the reflectivity is given by the standard Fresnel reflection law

$$
\begin{equation*}
r=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2} \tag{6e-10}
\end{equation*}
$$

By making several layers of alternate high- and low-index dielectric it is possible to reinforce the reflectivity of a single boundary and build it up by multiple reflection to any desired value. It is necessary only that the layers be of such thickness that the reflections from successive boundaries are in phase. When each layer is optically one-fourth of a wavelength in thickness, this reinforcement takes place. A complete filter is sketched in Fig. 6e-1. It might consist of seven alternate layers of high- and low-index dielectric of a thickness of a quarter wave apiece, followed by the dielectric spacer which is an integral number of half waves and which is followed by seven more quarter wavelength layers. The characteristics of such a filter are shown in Fig. 6e-2. For a seven-layer reflection filter the reflectivity can be built up to 95 per cent. From Eqs. (6e-3) to ( $6 \mathrm{e}-8$ ) one would expect improvement over the metal filter and, in fact, the peak transmission of such a filter is as high as 80 per cent and the bandwidth as low as 30 A . The minimum transmission for a filter of this type

[^303]
## OPTICS

is only 0.03 per cent. Thus, in the first three categories listed above, this filter is considerably superior to the standard silver-dielectric filter. It differs from the standard filter in another important respect. The region in which the transmission is extremely low is very much smaller than in the case of the standard metal filter. The reason for the narrow range of usefulness lies in the construction of the filter itself. The multiple-dielectric layer will give constructive interference only in the region where the layers are close to an odd number of quarter waves thick. Where the layers are one-half wave thick, they will not interfere constructively and the transmission of the filter will be high. For a typical filter the region of low transmission is perhaps 1,000 A wide. Considering that the passband of the filter is only 30 A in width, this is a sizable reduction in filter requirements. Since the transmission is more than twice as high as the conventional filter, this device is considerably more useful for examining line sources against a continuous background.


Fig. 6e-3. Spectrographic plate of the channel spectrum of a plate of ammonium dihydrogenphosphate between crossed polarizers.

When the emission or absorption bands which are to be examined are less than 1 A or 2 deg in width, the advantage of the multilayer filter is decidedly noticeable.

Polarization Filters. Another useful filter is the polarization filter of Lyot ${ }^{1}$ and Oehman. ${ }^{2}$ Although the basic characteristics of this filter have changed very little since it was first invented, there has been a noticeable improvement in the manufacturing technique. Early units were made by individuals ${ }^{3}$ as solutions to particular problems.

The basic filter consists of a series of birefringent plates which are separated by polarizers. A simple filter might have x-cut plates of quartz as the birefringent elements and these plates of quartz might be separated by parallel polarizing sheets. When a single birefringent plate is placed between parallel polarizers the transmission is given by the expression

$$
\begin{equation*}
I=\cos ^{2}\left[\frac{\pi d\left(n_{e}-n_{o}\right)}{\lambda}\right] \tag{6e-11}
\end{equation*}
$$

where $n_{e}$ is the extraordinary index and $n_{o}$ the ordinary index of the material and $d$ is the plate thickness. When light is shone through such a combination into a spectrograph the spectrum is seen to be crossed with a series of dark bands. Figure 6e-3 is

[^304]a spectrographic plate showing the transmission of a slab of quartz 4 cm thick. In the polarization filter this first plate is placed in series with another plate whose thickness is half as great. This other plate will have black bands which are spaced at twice the distance of the bands from the first plate. The black bands from the second plate can thus be made to fall on every other passband of the first plate. The resultant of the combination will be a series of transmission bands which are separated by twice their width. This process can be repeated by adding more plates until the final transmission is a series of bands whose separation is so many times their width that all the bands but one can be removed with a supplementary filter such as a dye filter or a Fabry-Perot interference filter.


Fig. 6e-4. Transmission curves of filter plates of assembled filter.
In Fig. $6 \mathrm{e}-4$ is the transmission curve of the individual members of such a filter and also the transmission curve of a complete assembly of plates. The bandwidth of such a filter will be determined by the thickest plate.

In the case of a 1 A passband filter at H alpha, the actual thicknesses involved can become quite large. For quartz and a simple filter the thickest plate will be 23.84 cm . This follows immediately from the formula

$$
\begin{equation*}
W=\frac{0.5 \lambda_{\max ^{2}}}{d\left(n_{e}-n_{o}\right)} \tag{6e-12}
\end{equation*}
$$

Here $W$ is the passband of the filter in Angstroms and $\lambda$ is the position of the passband. This formula gives the interval between points where the relative transmission is 50 per cent. Most of the possible applications for narrow-band filters of this type require linear apertures of the order of 2 in . There are a few pieces of optical quartz in this country which are large enough to be used for making these thick plates.

Another possible material for a birefringent filter is calcite. Here the difference between the ordinary and extraordinary index of refraction is considerably larger than in the case of quartz and as a result a piece thick enough for a 1 A passband filter is very much thinner. From Eq. (6e-12) the actual thickness for a filter at $H$ alpha can be calculated to be 0.9388 cm . However, even in calcite a 2 -in.-diameter x-cut slab of this thickness, which will be of sufficient optical quality to make the
last plate of a birefringent filter, is essentially unobtainable. Furthermore, the price of such material is quite high.

During the last few years a whole family of new crystals has been appearing. These crystals are being grown synthetically for the use of the electronic industry. One such crystal is ammonium dihydrogen phosphate (ADP), which is used in large Langevin plates for underwater signaling at supersonic frequencies.

ADP has been grown in sizes so that 2 -in. disks of high optical quality can be obtained. It is also quite inexpensive. The material does, however, have several fairly serious disadvantages. It is water-soluble, slightly hygroscopic, soft, and brittle. For a birefringent filter it is necessary that the crystal plate be made plane parallel to $\frac{1}{20}$ of a retardation wave. In quartz with birefringence of 0.009 this is fairly stringent. In ADP with a birefringence of 0.005 this tolerance is positively drastic. It is particularly difficult to maintain because of the physical limitations of the material. In spite of these difficulties, methods have been devised for taming ADP and filters are now available with a bandwidth of only 1 A at H alpha. The length of these filters is slightly smaller than the length of a filter of equivalent bandwidth made in quartz. It is also necessary to hold the temperature more constant than in the equivalent quartz filter.

These filters have an additional feature that the passband can be shifted over a range of about three bandwidths on either side of the peak. This is done by rotating polarizers at opposite ends of the filter. A modification of the filter has been proposed which will enable the passband to be adjusted over a large wavelength interval. ${ }^{1}$

The narrow bandwidth makes it possible to observe solar prominences without the use of an occulting disk. It is also possible to observe fine detail on the surface of the sun. The tunable feature makes possible the measurement of radial velocities. Much of the structure on the solar disk as well as the prominences seems to have considerable radial velocity.

The exploitation of each of these filters in science and industry has not yet really begun. It is hoped that photographic engineers will find application for these filters as such activity will stimulate further development and improvements in these devices.

## 6f. Colorimetry

D. L. MacADAM<br>Eastman Kodak Company

6f-1. Luminosity. Photopic Luminosity. relative photopic luminosity ( $\bar{y}$ ): Adopted in 1931 by International Commission on Illumination (C.I.E.) (intended to represent normal eyes, for fields subtending about 2 deg, having about 1 foot-Lambert luminance).
absolute photopic luminosity ( $K_{\lambda}$ lumens per watt): 680 times photopic luminosities given in Table 6f-1.

[^305]Table 6f-1. Photopic and Scotopic Luminosity Data*

| Wavelength, $\mathrm{m} \mu$ | Photopic $\bar{y}$ | Scotopic $V^{\prime}$ | $\underset{\text { Wavelength, }}{\text { m } \mu}$ | Photopic $\bar{y}$ | Scotopic $V^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 380 | 0.0000 | 0.00059 | 580 | 0.8700 | 0.1212 |
| 385 | 0.0001 | 0.00111 | 585 | 0.8163 | 0.0899 |
| 390 | 0.0001 | 0.00221 | 590 | 0.7570 | 0.0655 |
| 395 | 0.0002 | 0.00453 | 595 | 0.6949 | 0.0469 |
| 400 | 0.0004 | 0.00929 | 600 | 0.6310 | 0.03325 |
| 405 | 0.0006 | 0.01850 | 605 | 0.5668 | 0.02312 |
| 410 | 0.0012 | 0.03484 | 610 | 0.5030 | 0.01593 |
| 415 | 0.0022 | 0.0604 | 615 | 0.4412 | 0.01088 |
| 420 | 0.0040 | 0.0966 | 620 | 0.3810 | 0.00737 |
| 425 | 0.0073 | 0.1436 | 625 | 0.3210 | 0.00497 |
| 430 | 0.0116 | 0.1998 | 630 | 0.2650 | 0.003335 |
| 435 | 0.0168 | 0.2625 | 635 | 0.2170 | 0.002235 |
| 440 | 0.0230 | 0.3281 | 640 | 0.1750 | 0.001497 |
| 445 | 0.0298 | 0.3931 | 645 | 0.1382 | 0.001005 |
| 450 | 0.0380 | 0.4550 | 650 | 0.1070 | 0.000677 |
| 455 | 0.0480 | 0.5129 | 655 | 0.0816 | 0.000459 |
| 460 | 0.0600 | 0.5672 | 660 | 0.0610 | 0.0003129 |
| 465 | 0.0739 | 0.6205 | 665 | 0.0446 | 0.0002146 |
| 470 | 0.0910 | 0.6756 | 670 | 0.0320 | 0.0001480 |
| 475 | 0.1126 | 0.7337 | 675 | 0.0232 | 0.0001026 |
| 480 | 0.1390 | 0.7930 | 680 | 0.0170 | 0.0000716 |
| 485 | 0.1693 | 0.8509 | 685 | 0.0119 | 0.0000502 |
| 490 | 0.2080 | 0.9043 | 690 | 0.0082 | 0.00003533 |
| 495 | 0.2586 | 0.9491 | 695 | 0.0057 | 0.00002502 |
| 500 | 0.3230 | 0.9817 | 700 | 0.0041 | 0.00001780 |
| 505 | 0.4073 | 0.9984 | 705 | 0.0029 | 0.00001273 |
| 510 | 0.5030 | 0.9966 | 710 | 0.0021 | 0.00000914 |
| 515 | 0.6082 | 0.9750 | 715 | 0.0015 | 0.00000660 |
| 520 | 0.7100 | 0.9352 | 720 | 0.0010 | 0.00000478 |
| 525 | 0.7932 | 0.8796 | 725 | 0.0007 | 0.000003482 |
| 530 | 0.8620 | 0.8110 | 730 | 0.0005 | 0.000002546 |
| 535 | 0.9149 | 0.7332 | 735 | 0.0004 | 0.000001870 |
| 540 | 0.9540 | 0.6497 | 740 | 0.0003 | 0.000001379 |
| 545 | 0.9803 | 0.5644 | 745 | 0.0002 | 0.000001022 |
| 550 | 0.9950 | 0.4808 | 750 | 0.0001 | 0.000000760 |
| 555 | 1.0002 | 0.4015 | 755 | 0.0001 | 0.000000567 |
| 560 | 0.9950 | 0.3288 | 760 | 0.0001 | 0.000000425 |
| 565 | 0.9786 | 0.2639 | 765 | 0.0000 | 0.000000320 |
| 570 | 0.9520 | 0.2076 | 770 | 0.0000 | 0.000000241 |
| 575 | 0.9154 | 0.1602 | 775 | 0.0000 | 0.000000183 |
|  |  |  | 780 | ...... | 0.000000139 |

[^306] York, 1953.
luminous flux (lumens):
$$
F=\sum_{\lambda=380}^{770} P_{\lambda} K_{\lambda}
$$
for spectral distribution of radiant energy, $P_{\lambda}$ (watts per 5 -m $\mu$-wavelength band). luminous transmittance:
or
$$
t=\frac{\sum_{\lambda=380}^{\lambda=770} \tau_{\lambda} P_{\lambda} K_{\lambda}}{\sum_{\substack{\lambda=380 \\ \lambda=770}} P_{\lambda} K_{\lambda}} \sum_{\lambda=370}^{\sum_{\lambda} P_{\lambda} \bar{y}} \sum_{\lambda=380}^{\lambda=770} P_{\lambda} \bar{y}
$$
for material with spectral transmittance $\tau_{\lambda}$ irradiated with spectral distribution $P_{\lambda}$.
luminous reflectance $r$ : Substitute spectral reflectance $\rho_{\lambda}$ for $\tau_{\lambda}$ in either of above.
selected ordinates $P_{i}$ : At wavelengths given in Table $6 \mathrm{f}-2$, these are such that
\[

$$
\begin{aligned}
F & =\frac{680}{30} \sum_{i=1}^{30} P_{i} \\
t & =\frac{1}{30} \sum_{i=1}^{30}(\tau P)_{i} \\
r & =\frac{1}{30} \sum_{i=1}^{30}(\rho P)_{i}
\end{aligned}
$$
\]

Revisions of photopic relative luminosity data, recommended in 1951 by the United States Technical Committee on Colorimetry of C.I.E.:

| $370 \mathrm{~m} \mu$ | 380 | 390 | 400 | 410 | 420 | 430 | 440 | 450 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.0001 | 0.0004 | 0.0015 | 0.0045 | 0.0093 | 0.0175 | 0.0273 | 0.0379 | 0.0468 |

These revisions have not been adopted by C.I.E.
Scotopic Luminosity. relative values $V^{\prime}$ (Table 6f-1): Adopted in 1951 by C.I.E. (intended to represent normal eyes of young subjects, age $\leq 30$, when observing at angles of not less than 5 deg from foveal center, under conditions of complete dark adaptation).
international photometric standard: Black body at temperature $\left(2042^{\circ} \mathrm{K}\right)$ of solidification of platinum, has intensity of 60 candles per square centimeter for both scotopic and photopic conditions.

COLORIMETRY
Table 6f-2. Wavelengths for Selected Ordinates*

| Ordinate <br> No. $i$ | Photopic <br> luminosity | Scotopic <br> luminosity | Ordinate <br> No. $i$ | Photopic <br> luminosity | Scotopic <br> luminosity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 469.7 | 426.0 | 16 | 561.0 | 504.7 |
| 2 | 493.1 | 439.7 | 17 | 564.6 | 507.9 |
| 3 | 504.6 | 448.2 | 18 | 568.3 | 511.1 |
| 4 | 512.1 | 455.0 | 19 | 572.0 | 514.4 |
| 5 | 518.0 | 461.0 | 20 | 575.9 | 517.8 |
|  |  |  |  |  |  |
| 6 | 522.9 | 466.3 | 21 | 579.9 | 521.2 |
| 7 | 527.4 | 471.2 | 22 | 584.1 | 524.8 |
| 8 | 531.6 | 475.7 | 23 | 588.5 | 528.6 |
| 9 | 535.5 | 479.9 | 24 | 593.3 | 532.6 |
| 10 | 539.3 | 483.9 | 25 | 598.5 | 537.0 |
|  |  |  |  |  |  |
| 11 | 543.1 | 487.7 | 26 | 604.3 | 541.9 |
| 12 | 546.7 | 491.3 | 27 | 611.0 | 547.6 |
| 13 | 550.3 | 494.7 | 28 | 619.1 | 554.6 |
| 14 | 553.9 | 498.1 | 29 | 629.9 | 564.1 |
| 15 | 557.4 | 501.4 | 30 | 649.7 | 581.8 |

* "The Science of Color," pp. 273, 312.

ABSOLUTE SCOTOPIC LUMINOSITY $K_{\lambda}^{\prime}: 1,746$ times scotopic luminosities given in Table 6f-1.

SCOTOPIC LUMENS, SCOTOPIC LUMINOUS TRANSMITTANCE, AND SCOTOPIC LUMINOUS reflectance: Substitute $K_{\lambda}^{\prime}, V^{\prime}$, or wavelengths for selected ordinates for scotopic luminosity (Table 6f-2) in formulas for corresponding photopic quantities.

## 6f-2. Colorimetry

Standard Color-mixture Data. C.I.E. standard observer for color measurement is determined by the specifications for the equal-energy spectrum, as given in Table 6f-3. The chromaticity coordinates (also known as trichromatic coefficients, or trilinear coordinates) listed are ratios such that $x+y+z=1$. The tristimulus values are the amounts of three colors necessary to match equal energies of the indicated wavelengths. The value of $\bar{y}$ given in the table is the standard luminosity function or relative luminosity.

TRISTIMULUS VALUES:

$$
\begin{aligned}
& X=680 \sum_{\substack{\lambda=380 \\
\lambda=770}}^{\substack{\lambda=770}} P^{\substack{x \\
\lambda=770}} P_{\lambda} \bar{y}=F \text { (lumens) } \\
& Z=680 \sum_{\lambda=380}^{\lambda=370} P_{\lambda} \bar{z}
\end{aligned}
$$

for spectral distribution of radiant energy $P_{\lambda}$ (watts per $5 \mathrm{~m} \mu$ wavelength band).

Table 6f-3. The Standard Observer

| Wavelength, m $\mu$ | Chromaticity coordinates of the spectrum |  |  | Tristimulus values of the spectrum |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ |  | $\bar{x}$ | $\bar{y}$ (rel. lum.) | $\bar{z}$ |
| 380 | 0.1741 | 0.0050 | 0.8209 | 0.0014 | 0.0000 | 0.0065 |
| 385 | 0.1740 | 0.0050 | 0.8210 | 0.0022 | 0.0001 | 0.0105 |
| 390 | 0.1738 | 0.0049 | 0.8213 | 0.0042 | 0.0001 | 0.0201 |
| 395 | 0.1736 | 0.0049 | 0.8215 | 0.0076 | 0.0002 | 0.0362 |
| 400 | 0.1733 | 0.0048 | 0.8219 | 0.0143 | 0.0004 | 0.0679 |
| 405 | 0.1730 | 0.0048 | 0.8222 | 0.0232 | 0.0006 | 0.1102 |
| 410 | 0.1726 | 0.0048 | 0.8226 | 0.0435 | 0.0012 | 0.2074 |
| 415 | 0.1721 | 0.0048 | 0.8231 | 0.0776 | 0.0022 | 0.3713 |
| 420 | 0.1714 | 0.0051 | 0.8235 | 0.1344 | 0.0040 | 0.6456 |
| 425 | 0.1703 | 0.0058 | 0.8239 | 0.2148 | 0.0073 | 1.0391 |
| 430 | 0.1689 | 0.0069 | 0.8242 | 0.2839 | 0.0116 | 1.3856 |
| 435 | 0.1669 | 0.0086 | 0.8245 | 0.3285 | 0.0168 | 1.6230 |
| 440 | 0.1644 | 0.0109 | 0.8247 | 0.3483 | 0.0230 | 1.7471 |
| 445 | 0.1611 | 0.0138 | 0.8251 | 0.3481 | 0.0298 | 1.7826 |
| 450 | 0.1566 | 0.0177 | 0.8257 | 0.3362 | 0.0380 | 1.7721 |
| 455 | 0.1510 | 0.0227 | 0.8263 | 0.3187 | 0.0480 | 1.7441 |
| 460 | 0.1440 | 0.0297 | 0.8263 | 0.2908 | 0.0600 | 1.6692 |
| 465 | 0.1355 | 0.0399 | 0.8246 | 0.2511 | 0.0739 | 1.5281 |
| 470 | 0.1241 | 0.0578 | 0.8181 | 0.1954 | 0.0910 | 1.2876 |
| 475 | 0.1096 | 0.0868 | 0.8036 | 0.1421 | 0.1126 | 1.0419 |
| 480 | 0.0913 | 0.1327 | 0.7760 | 0.0956 | 0.1390 | 0.8130 |
| 485 | 0.0687 | 0.2007 | 0.7306 | 0.0580 | 0.1693 | 0.6162 |
| 490 | 0.0454 | 0.2950 | 0.6596 | 0.0320 | 0.2080 | 0.4652 |
| 495 | 0.0235 | 0.4127 | 0.5638 | 0.0147 | 0.2586 | 0.3533 |
| 500 | 0.0082 | 0.5384 | 0.4534 | 0.0049 | 0.3230 | 0.2720 |
| 505 | 0.0039 | 0.6548 | 0.3413 | 0.0024 | 0.4073 | 0.2123 |
| 510 | 0.0139 | 0.7502 | 0.2359 | 0.0093 | 0.5030 | 0.1582 |
| 515 | 0.0389 | 0.8120 | 0.1491 | 0.0291 | 0.6082 | 0.1117 |
| 520 | 0.0743 | 0.8338 | 0.0919 | 0.0633 | 0.7100 | 0.0782 |
| 525 | 0.1142 | 0.8262 | 0.0596 | 0.1096 | 0.7932 | 0.0573 |
| 530 | 0.1547 | 0.8059 | 0.0394 | 0.1655 | 0.8620 | 0.0422 |
| 535 | 0.1929 | 0.7816 | 0.0255 | 0.2257 | 0.9149 | 0.0298 |
| 540 | 0.2296 | 0.7543 | 0.0161 | 0.2904 | 0.9540 | 0.0203 |
| 545 | 0.2658 | 0.7243 | 0.0099 | 0.3597 | 0.9803 | 0.0134 |
| 550 | 0.3016 | 0.6923 | 0.0061 | 0.4334 | 0.9950 | 0.0087 |
| 555 | 0.3373 | 0.6589 | 0.0038 | 0.5121 | 1.0002 | 0.0057 |
| 560 | 0.3731 | 0.6245 | 0.0024 | 0.5945 | 0.9950 | 0.0039 |
| 565 | 0.4087 | 0.5896 | 0.0017 | 0.6784 | 0.9786 | 0.0027 |
| 570 | 0.4441 | 0.5547 | 0.0012 | 0.7621 | 0.9520 | 0.0021 |
| 575 | 0.4788 | 0.5202 | 0.0010 | 0.8425 | 0.9154 | 0.0018 |
| 580 | 0.5125 | 0.4866 | 0.0009 | 0.9163 | 0.8700 | 0.0017 |
| 585 | 0.5448 | 0.4544 | 0.0008 | 0.9786 | 0.8163 | 0.0014 |
| 590 | 0.5752 | 0.4242 | 0.0006 | 1.0263 | 0.7570 | 0.0011 |
| 595 | 0.6029 | 0.3965 | 0.0006 | 1.0567 | 0.6949 | 0.0010 |

[^307]Table 6f-3. The Standard Observer* (Continued)

| Wavelength, $\mathrm{m} \mu$ | Chromaticity coordinates of the spectrum |  |  | Tristimulus values of the spectrum |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $x$ | $y$ | $z$ | $\bar{x}$ | $\bar{y}$ (rel. lum.) | $\bar{z}$ |
| 600 | 0.6270 | 0.3725 | 0.0005 | 1.0622 |  |  |
| 605 | 0.6482 | 0.3514 | 0.0004 | 1.0622 | 0.6310 0.5668 | 0.0008 0.0006 |
| 610 | 0.6658 | 0.3340 | 0.0002 | 1.0026 | 0.5668 0.5030 | 0.0006 0.0003 |
| 615 | 0.6801 | 0.3197 | 0.0002 | 0.9384 | 0.4412 | $\begin{aligned} & 0.0003 \\ & 0.0002 \end{aligned}$ |
| 620 | 0.6915 | 0.3083 | 0.0002 | 0.8544 | 0.3810 | $\begin{aligned} & 0.0002 \\ & 0.0002 \end{aligned}$ |
| 625 | 0.7006 | 0.2993 | 0.0001 | 0.7514 |  |  |
| 630 | 0.7079 | 0.2920 | 0.0001 | 0.7514 0.6424 | 0.3210 0.2650 | $\begin{aligned} & 0.0001 \\ & 0.0000 \end{aligned}$ |
| 635 | 0.7140 | 0.2859 | 0.0001 | 0.6424 0.5419 | 0.2650 0.2170 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 640 | 0.7190 | 0.2809 | 0.0001 | 0.4479 | 0.2170 0.1750 | 0.0000 0.0000 |
| 645 | 0.7230 | 0.2770 | 0.0000 | 0.3608 | 0.1382 | 0.0000 0.0000 |
| 650 | 0.7260 | 0.2740 | 0.0000 | 0.2835 |  |  |
| 655 | 0.7283 | 0.2717 | 0.0000 | 0.2835 0.2187 | 0.1070 0.0816 | 0.0000 0.0000 |
| 660 | 0.7300 | 0.2700 | 0.0000 | 0.1649 | 0.0610 | 0.0000 0.0000 |
| 665 | 0.7311 | 0.2689 | 0.0000 | 0.1212 | 0.0610 0.0446 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 670 | 0.7320 | 0.2680 | 0.0000 | 0.0874 | 0.0446 0.0320 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 675 | 0.7327 | 0.2673 | 0.0000 | 0.0636 | 0.0232 |  |
| 680 | 0.7334 | 0.2666 | 0.0000 | 0.0468 | 0.0170 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 685 | 0.7340 | 0.2660 | 0.0000 | 0.0329 | 0.0119 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 690 | 0.7344 | 0.2656 | 0.0000 | 0.0227 | 0.0082 | $0.0000$ |
| 695 | 0.7346 | 0.2654 | 0.0000 | 0.0158 | 0.0057 | 0.0000 |
| 700 | 0.7347 | 0.2653 | 0.0000 | 0.0114 | 0.0041 |  |
| 705 | 0.7347 | 0.2653 | 0.0000 | 0.0081 | 0.0041 0.0029 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 710 | 0.7347 | 0.2653 | 0.0000 | 0.0058 | 0.0029 0.0021 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 715 | 0.7347 | 0.2653 | 0.0000 | 0.0041 | 0.0021 0.0015 | $0.0000$ |
| 720 | 0.7347 | 0.2653 | 0.0000 | 0.0029 | 0.0010 | $0.0000$ |
| 725 | 0.7347 | 0.2653 | 0.0000 | 0.0020 | 0.0007 |  |
| 730 | 0.7347 | 0.2653 | 0.0000 | 0.0020 0.0014 | 0.0007 0.0005 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 735 | 0.7347 | 0.2653 | 0.0000 | 0.0010 | 0.0005 0.0004 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 740 745 | 0.7347 | 0.2653 | 0.0000 | 0.0007 | 0.0003 | $0.0000$ |
| 745 | 0.7347 | 0.2653 | 0.0000 | 0.0005 | 0.0003 0.0002 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 750 | 0.7347 | 0.2653 | 0.0000 | 0.0003 | 0.0001 | 0.0000 |
| 755 | 0.7347 | 0.2653 | 0.0000 | 0.0002 | 0.0001 | 0.0000 0.0000 |
| 760 | 0.7347 | 0.2653 | 0.0000 | 0.0002 | 0.0001 0.0001 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 765 770 | 0.7347 | 0.2653 | 0.0000 | 0.0001 | 0.0001 0.0000 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 770 | 0.7347 | 0.2653 | 0.0000 | 0.0001 | 0.0000 | $\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$ |
| 775 | 0.7347 | 0.2653 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 780 | 0.7347 | 0.2653 | 0.0000 | 0.0000 | 0.0000 | 0.0000 0.0000 |
|  |  |  | Totals | 21.3713 | 21.3714 | 21.3715 |

## Table 6f-4. Standard Illuminants*

A. Gas-filled tungsten incandescent lamp of color temp. $2845^{\circ} \mathrm{K}$.
$B$. Lamp as above in combination with a filter composed of a layer 1 cm thick of each of two separate solutions $B_{1}$ and $B_{2}$, contained in a double cell of colorless optical glass.

Solution $B_{1}$ :

| Copper sul | 2.452 g |
| :---: | :---: |
| Mannite $\left(\mathrm{C}_{6} \mathrm{H}_{8}(\mathrm{OH})_{6}\right.$ ) | 2.452 g |
| Pyridine ( $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ ) | 30.0 |
| Distilled water to make | 1,000 |
| Solution $B_{2}$ : |  |
| Cobalt ammonium sulfate ( $\left.\mathrm{CoSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right)$ | 21.71 g |
| Copper sulfate ( $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ) | 16.11 |
| Sulfuric acid (density 1.835) | 10.0 |
| Distilled water to make | 000 |

$C$. Lamp as in $A$ in combination with a filter composed of a layer 1 cm thick of each of two separate solutions $C_{1}$ and $C_{2}$, contained in a double cell made of colorless optical glass.

```
Solution \(C_{1}\) :
```





```
 Distilled water to make . 1,000 cc
 Solution \(C_{2}\) :
 Cobalt ammonium sulfate \(\left(\mathrm{CoSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right) \ldots . \quad 30.580 \mathrm{~g}\)
 Copper sulfate (\(\mathrm{CuSO}_{4} \cdot \mathbf{5 H} \mathrm{H}_{2} \mathrm{O}\)) . \(\quad 22.520\) g
 Sulfuric acid (density 1.835) . 10.0 cc
 Distilled water to make . 1,000 cc
 * Recommendation of the International Commission on Illumination, 1931, as revised 1951.
```

For material with spectral transmittance $\tau \lambda$ :

$$
\begin{aligned}
& X=\frac{\sum_{\lambda=380}^{\lambda=770} \tau_{\lambda} P_{\lambda} \bar{x}}{\sum_{\substack{\lambda=380 \\
\lambda=770}}^{\sum_{\lambda} \bar{y}}} \begin{array}{l}
\sum_{\lambda=380}^{\lambda} \tau_{\lambda} P_{\lambda} \bar{y} \\
\sum_{\lambda=380}^{\lambda=770} P_{\lambda} \bar{y}
\end{array} t^{\substack{\lambda=770}} \sum_{\lambda=380}^{\lambda=770} P_{\lambda} \bar{z} \\
& \sum_{\lambda=380} P_{\lambda} \bar{y}
\end{aligned}
$$

Relative values of $P_{\lambda}$ are sufficient for determining tristimulus values $X, Y, Z$ of material. For reflecting materials, substitute $\rho_{\lambda}$ for $\tau_{\lambda}$ in above formulas.
tristimulus computation data for standard sources: $A$ (tungsten lamp at $2854^{\circ}$ color temperature); $B$ (artificial sunlight, about $4880^{\circ}$ color temperature, Table $6 \mathrm{f}-4$ ); and $C$ (artificial daylight, about $6740^{\circ}$ color temperature). For any standard source and any material with spectral transmittance $\tau_{\lambda}$ or spectral reflectance $\rho_{\lambda}$ tristimulus values based on data in Table 6f-5 are:

$$
\begin{array}{llll}
X & =10^{-5} \sum^{\lambda=770} \tau_{\lambda}(\bar{x} P) & \text { or } & 10^{-5} \sum_{\substack{\lambda=380}}^{\lambda=770} \rho_{\lambda}(\bar{x} P)_{\lambda} \\
Y & =10^{-5} \sum_{\lambda=380}^{\lambda=760} \sum_{\lambda} \tau_{\lambda}(\bar{y} P)_{\lambda} & \text { or } & 10^{-5} \sum_{\lambda=400}^{\lambda=760} \rho_{\lambda}(\bar{y} P)_{\lambda} \\
Z=10^{-5} \sum_{\lambda=380}^{\lambda=620} \tau_{\lambda}(\bar{z} P)_{\lambda} & \text { or } & 10^{-5} \sum_{\lambda=380}^{\lambda=620} \rho_{\lambda}(\bar{z} P)_{\lambda}
\end{array}
$$

Luminous transmittance $t=Y$. Luminous reflectance $r=Y$.
truncated tristimulus computation data: For use when $\tau_{\lambda}$ (or $\rho_{\lambda}$ ) are measured only in region 400 to $700 \mathrm{~m} \mu$. In place of the corresponding values shown in Table $6 f-5$, use the following values, and sum only from 400 to $700 \mathrm{~m} \mu$.

| $\lambda, \mathrm{m} \mu$ | Source $A$ |  |  | Source B |  |  | Source $C$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{x} P$ | $\bar{y} P$ | $\bar{z} P$ | $\bar{x} P$ | $\bar{y} P$ | $\bar{z} P$ | $\bar{x} P$ | $\bar{y} P$ | $\bar{z} P$ |
| 400 | 40 | 1 | 198 | 113 | 2 | 532 | 166 | 2 | 791 |
| 410 | 48 | 2 | 223 | 154 | 6 | 741 | 240 | 9 | 1143 |
| 420 | 270 | 8 | 1297 | 834 | 24 | 4001 | 1269 | 37 | 6098 |
| 680 | 804 | 292 | .... | 478 | 175 | .... | 384 | 138 |  |
| 690 | 0 | 0 |  | 0 | 0 | $\ldots$. | 0 | 0 |  |
| 700 | 834 | 300 |  | 417 | 149 |  | 312 | 114 |  |

Tristimulus computation data for black-body sources at $1000^{\circ} \mathrm{K}, 1500^{\circ} \mathrm{K}, 1900^{\circ} \mathrm{K}$, $2360^{\circ} \mathrm{K}, 3000^{\circ} \mathrm{K}, 3500^{\circ} \mathrm{K}, 4800^{\circ} \mathrm{K}, 6000^{\circ} \mathrm{K}, 6500^{\circ} \mathrm{K}, 7000^{\circ} \mathrm{K}, 8000^{\circ} \mathrm{K}, 10,000^{\circ} \mathrm{K}$, $24,000^{\circ} \mathrm{K}$, and infinite temperature, for five phases of natural daylight and for three commercial sources of artificial daylight, are tabulated in "The Science of Color." ${ }^{1}$
selected ordinates: $\tau_{X i}, \tau_{Y i}, \tau_{Z i}$ at wavelengths given in Table $6 f-6$, and factors $F_{X}, F_{Y}, F_{Z}$ are such that

$$
\begin{aligned}
& X=F_{X} \sum_{i=1}^{i=30} \tau_{X i} \\
& Y=F_{Y} \sum_{i=1}^{i=30} \tau_{Y i} \\
& Z=F_{Z} \sum_{i=1}^{i=30} \tau_{Z i}
\end{aligned}
$$

For reflecting sample, substitute $\rho_{X i}, \rho_{Y i}, \rho_{Z i}$ for $\tau_{X i}, \tau_{Y i}, \tau_{Z i}$.

[^308]Table 6f-5. Tristimulus Computation Data for Standard Sources*

| Wavelength, $\mathrm{m} \mu$ | C.I.E. standard source $A$ (Planck 2854 ${ }^{\circ}, c_{2}=1.438$ ) |  |  | C.I.E. standard source $B$ |  |  | C.I.E. standard source $C$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{x} P$ | $\bar{y} P$ | $\bar{z} P$ | $\bar{x} P$ | $\bar{y} P$ | $\bar{z} P$ | $\bar{x} P$ | $\bar{y} P$ | $\bar{z} P$ |
| 380 | 1 |  | 6 | 3 |  | 14 | 4 |  | 20 |
| 390 | 5 |  | 23 | 13 |  | 60 | 19 |  | 89 |
| 400 | 19 | 1 | 93 | 56 | 2 | 268 | 85 | 2 | 404 |
| 410 | 71 | 2 | 340 | 217 | 6 | 1,033 | 329 | 9 | 1,570 |
| 420 | 262 | 8 | 1,256 | 812 | 24 | 3,899 | 1,238 | 37 | 5,949 |
| 430 | 649 | 27 | 3,167 | 1,983 | 81 | 9,678 | 2,997 | 122 | 14,628 |
| 440 | 926 | 61 | 4,647 | 2,689 | 178 | 13,489 | 3,975 | 262 | 19,938 |
| 450 | 1,031 | 117 | 5,435 | 2,744 | 310 | 14,462 | 3,915 | 443 | 20,638 |
| 460 | 1,019 | 210 | 5,851 | 2,454 | 506 | 14,085 | 3,362 | 694 | 19,299 |
| 470 | 776 | 362 | 5,116 | 1,718 | 800 | 11,319 | 2,272 | 1,058 | 14,972 |
| 480 | 428 | 622 | 3,636 | 870 | 1,265 | 7,396 | 1,112 | 1,618 | 9,461 |
| 490 | 160 | 1,039 | 2,324 | 295 | 1,918 | 4,290 | 363 | 2,358 | 5,274 |
| 500 | 27 | 1,792 | 1,509 | 44 | 2,908 | 2,449 | 52 | 3,401 | 2,864 |
| 510 | 57 | 3,080 | - 969 | 81 | 4,360 | 1,371 | 89 | 4,833 | 1,520 |
| 520 | 425 | 4,771 | 525 | 541 | 6,072 | 669 | 576 | 6,462 | 712 |
| 530 | 1,214 | 6,322 | 309 | 1,458 | 7,594 | 372 | 1,523 | 7,934 | 388 |
| 540 | 2,313 | 7,600 | 162 | 2,689 | 8,834 | 188 | 2,785 | 9,149 | 195 |
| 550 | 3,732 | 8,568 | 75 | 4,183 | 9,603 | 84 | 4,282 | 9,832 | 86 |
| 560 | 5,510 | 9,222 | 36 | 5,840 | 9,774 | 38 | 5,880 | 9,841 | 39 |
| 570 | 7,571 | 9,457 | 21 | 7,472 | 9,334 | 21 | 7,322 | 9,147 | 20 |
| 580 | 9,719 | 9,228 | 18 | 8,843 | 8,396 | 16 | 8,417 | 7,992 | 16 |
| 590 | 11,579 | 8,540 | 12 | 9,728 | 7,176 | 10 | 8,984 | 6,627 | 10 |
| 600 | 12,704 | 7,547 | 10 | 9,948 | 5,909 | 7 | 8,949 | 5,316 | 7 |
| 610 | 12,669 | 6,356 | 4 | 9,436 | 4,734 | 3 | 8,325 | 4,176 | 2 |
| 620 | 11,373 | 5,071 | 3 | 8,140 | 3,630 | 2 | 7,070 | 3,153 | 2 |
| 630 | 8,980 | 3,704 |  | 6,200 | 2,558 |  | 5,309 | 2,190 |  |
| 640 | 6,558 | 2,562 |  | 4,374 | 1,709 |  | 3,693 | 1,443 |  |
| 650 | 4,336 | 1,637 |  | 2,815 | 1,062 |  | 2,349 | 886 |  |
| 660 | 2,628 | 972 |  | 1,655 | 612 | . . . | 1,361 | 504 |  |
| 670 | 1,448 | 530 |  | 876 | 321 | . . . . . | 708 | 259 |  |
| 680 | 804 | 292 |  | 465 | 169 | $\ldots$ | 369 | 134 |  |
| 690 | 404 | 146 |  | 220 | 80 | $\ldots$. | 171 | 62 |  |
| 700 | 209 | 75 |  | 108 | 39 |  | 82 | 29 |  |
| 710 | 110 | 40 |  | 53 | 19 | . . . . . | 39 | 14 |  |
| 720 | 57 | 19 |  | 26 | 9 |  | 19 | 6 |  |
| 730 | 28 | 10 |  | 12 | 4 |  | 8 | 3 |  |
| 740 | 14 | 6 |  | 6 | 2 | . . . | 4 | 2 |  |
| 750 | 6 | 2 |  | 2 | 1 |  | 2 | 1 |  |
| 760 | 4 | 2 |  | 2 | 1 |  | 1 | 1 |  |
| 770 | 2 |  | $\cdots$ | 1 |  |  | 1 |  |  |

* D. B. Judd, J. Opt. Soc. Am. 28, 359 (1933).

Table 6f-6. Selected Ordinates for Standard Sources*

| Ordinate No. $i$ | Source A |  |  | Source B |  |  | Source C |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\lambda_{1}{ }_{i}$ | $\lambda_{r_{i}}$ | $\lambda z_{i}$ | $\lambda^{1}{ }_{i}$ | $\lambda y_{i}$ | $\lambda z_{i}$ | $\lambda x_{i}$ | $\lambda_{Y_{i}}$ | $\lambda z_{i}$ |
| 1 | 444.0 | 487.8 | 416.4 | 428.1 | 472.3 | 414.8 | 424.4 | 465.9 | 414.1 |
| $2 \dagger$ | 516.9 | 507.7 | 424.9 | 442.1 | 494.5 | 422.9 | 435.5 | 489.4 | 422.2 |
| 3 | 544.0 | 517.3 | 429.4 | 454.1 | 505.7 | 427.1 | 443.9 | 500.4 | 426.3 |
| 4 | 554.2 | 524.1 | 432.9 | 468.1 | 513.5 | 430.3 | 452.1 | 508.7 | 429.4 |
| $5 \dagger$ | 561.4 | 529.8 | 436.0 | 527.8 | 519.6 | 433.0 | 461.2 | 515.1 | 432.0 |
| 6 | 567.1 | 534.8 | 438.7 | 543.3 | 524.8 | 435.4 | 474.0 | 520.6 | 434.3 |
| 7 | 572.0 | 539.4 | 441.3 | 551.9 | 529.4 | 437.7 | 531.2 | 525.4 | 436.5 |
| 8 $\dagger$ | 576.3 | 543.7 | 443.7 | 558.5 | 533.7 | 439.9 | 544.3 | 529.8 | 438.6 |
| 9 | 580.2 | 547.8 | 446.0 | 564.0 | 537.7 | 442.0 | 552.4 | 533.9 | 440.6 |
| 10 | 583.9 | 551.7 | 448.3 | 568.8 | 541.5 | 444.0 | 558.7 | 537.7 | 442.5 |
| $11 \dagger$ | 587 : 2 | 555.4 | 450.5 | 573.1 | 545.1 | 446.0 | 564.1 | 541.4 | 444.4 |
| 12 | 590.5 | 559.1 | 452.6 | 577.1 | 548.7 | 448.0 | 568.9 | 544.9 | 446.3 |
| 13 | 593.5 | 562.7 | 454.7 | 580.9 | 552.1 | 450.0 | 573.2 | 548.4 | 448.2 |
| $14 \dagger$ | 596.5 | 566.3 | 456.8 | 584.5 | 555.5 | 451.9 | 577.3 | 551.8 | 450.1 |
| 15 | 599.4 | 569.8 | 458.8 | 588.0 | 559.0 | 453.9 | 581.3 | 555.1 | 452.1 |
| 16 | 602.3 | 573.3 | 460.8 | 591.4 | 562.4 | 455.8 | 585.0 | 558.5 | 454.0 |
| $17 \dagger$ | 605.2 | 576.9 | 462.9 | 594.7 | 565.8 | 457.8 | 588.7 | 561.9 | 455.9 |
| 18 | 608.0 | 580.5 | 464.9 | 598.1 | 569.3 | 459.8 | 592.4 | 565.3 | 457.9 |
| 19 | 610.9 | 584.1 | 467.0 | 601.4 | 572.9 | 461.8 | 596.0 | 568.9 | 459.9 |
| $20 \dagger$ | 613.8 | 587.9 | 469.2 | 604.7 | 576.7 | 463.9 | 599.6 | 572.5 | 462.0 |
| 21 | 616.9 | 591.8 | 471.6 | 608.1 | 580.6 | 466.1 | 603.3 | 576.4 | 464.1 |
| 22 | 620.0 | 595.9 | 474.1 | 611.6 | 584.7 | 468.4 | 607.0 | 580.5 | 466.3 |
| 23† | 623.3 | 600.1 | 476.8 | 615.3 | 589.1 | 470.8 | 610.9 | 584.8 | 468.7 |
| 24 | 626.9 | 604.7 | 479.9 | 619.1 | 593.9 | 473.6 | 615.0 | 589.6 | 471.4 |
| 25 | 630.8 | 609.7 | 483.4 | 623.3 | 599.1 | 476.6 | 619.4 | 594.8 | 474.3 |
| $26 \dagger$ | 635.3 | 615.2 | 487.5 | 628.0 | 605.0 | 480.2 | 624.2 | 600.8 | 477.7 |
| 27 | 640.5 | 621.5 | 492.7 | 633.4 | 611.8 | 484.5 | 629.8 | 607.7 | 481.8 |
| 28 | 646.9 | 629.2 | 499.3 | 640.1 | 619.9 | 490.2 | 636.6 | 616.1 | 487.2 |
| $29 \dagger$ | 655.9 | 639.7 | 508.4 | 649.2 | 630.9 | 498.6 | 645.9 | 627.3 | 495.2 |
| 30 | 673.5 | 659.0 | 526.7 | 666.3 | 650.7 | 515.2 | 663.0 | 647.4 | 511.2 |
| $\begin{gathered} \text { Factors: } F_{X}, \\ F_{Y}, F_{Z} \end{gathered}$ | 0.03661 | 0.03333 | 0.01185 | 0.03303 | 0.03333 | 0.02842 | 0.03268 | 0.03333 | 0.03938 |

[^309]
## OPTICS

Table 6f-7. Standard Coordinate System
The tristimulus system of color specification is based on four chosen stimuli consisting of homogeneous radiant energy of wavelengths $700.0,546.1$, and $435.8 \mathrm{~m} \mu$ and of standard illuminant $B$ (see Table 6f-4).

To establish the system of specification, coordinates are assigned as follows:

| Stimulus | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| $700.0 \mathrm{~m} \mu \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 0.73467 | 0.26533 | 0.00000 |
| $546.1 \mathrm{~m} \mu \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 0.27376 | 0.71741 | 0.00883 |
| $435.8 \mathrm{~m} \mu \ldots \ldots \ldots \ldots \ldots \ldots$ | 0.16658 | 0.00886 | 0.82456 |
| Standard source $B \ldots \ldots \ldots \ldots$ | 0.34842 | 0.35161 | 0.29997 |

Wavelengths for selected ordinates for black-body sources at intervals of $100^{\circ}$ from 2000 to $4000^{\circ} \mathrm{K}$ and at $5000^{\circ} \mathrm{K}, 6000^{\circ} \mathrm{K}, 7000^{\circ} \mathrm{K}, 8000^{\circ} \mathrm{K}, 10,000^{\circ} \mathrm{K}$, and infinite temperature, and for five phases of natural daylight and three commercial sources of artificial daylight, are given in "The Science of Color."

Chromaticity Coordinates. Horizontal coordinate $x=X /(X+Y+Z)$. Vertical coordinate $y=Y /(X+Y+Z) . \quad$ (Ref. Table 6f-7)

|  | $x$ | $y$ |
| :---: | :---: | :---: |
| C.I.E. standard source $A$ | 0.4476 | 0.4075 |
| C.I.E. standard source $B$ | 0.3485 | 0.3516 |
| C.I.E. standard source $C$. | 0.3101 | 0.3163 |
| Mean noon sunlight at Washington, D.C | 0.3442 | 0.3534 |
| Overcast sky (typical). | 0.3134 | 0.3275 |
| Clear sky (typical zenith). | 0.2631 | 0.2779 |

dominant wavelength: Wavelength corresponding to intersection of spectrum locus with straight line drawn from point representing light source through point representing light reflected from (or transmitted by) sample.
complementary wavelength: Wavelength corresponding to intersection of spectrum locus with straight line drawn from point representing light from sample, through point representing light source (used when dominant wavelength is not determinate).

PURITY: Ratio of distance from source point to sample point, compared with distance from source point to point on spectrum locus representing dominant wavelength (or, in case that dominant wavelength is not determinate, ratio of distance from source point to sample point compared with distance from source point to collinear point on line joining extremities of spectrum locus).
Color difference between two samples $\left(x_{1}, y_{1}, r_{1}\right)$ and ( $x_{2}, y_{2}, r_{2}$ ): (Table 6f-9)

$$
\Delta S=\left[g_{11} \Delta x^{2}+2 g_{12} \Delta x \Delta y+g_{22} \Delta y^{2}+g_{33}\left(\frac{\Delta r}{\bar{r}}\right)^{2}\right]^{\frac{1}{2}}
$$

where $\Delta x=100\left(x_{2}-x_{1}\right), \quad \Delta y=100\left(y_{2}-y_{1}\right), \quad \Delta r=100\left(r_{2}-r_{1}\right), \quad \bar{r}=\left(r_{1}+r_{2}\right) / 2$. For sharp dividing line and samples subtending about $2 \mathrm{deg}, g_{33} \cong 1$. For less

[^310]Table 6f-8. Chromaticity Coordinates of Black Bodies ( $C_{2}=1.438 \mathrm{~cm}{ }^{\circ} \mathrm{K}$ )

| $T,{ }^{\circ} \mathrm{K}$ | $x$ | $y$ | $T,{ }^{\circ} \mathrm{K}$ | $x$ | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 0.6526 | 0.3446 | 3400 | 0.4109 | 0.3935 |
| 1500 | 0.5856 | 0.3932 | 3500 | 0.4053 | 0.3906 |
| 1600 | 0.5731 | 0.3993 | 3600 | 0.3997 | 0.3879 |
| 1700 | 0.5609 | 0.4043 | 3700 | 0.3945 | 0.3849 |
| 1800 | 0.5491 | 0.4083 | 3800 | 0.3896 | 0.3823 |
| 1900 | 0.5377 | 0.4112 | 3900 | 0.3847 | 0.3794 |
| 2000 | 0.5266 | 0.4133 | 4000 | 0.3804 | 0.3767 |
| 2100 | 0.5158 | 0.4146 | 4500 | 0.3607 | 0.3635 |
| 2200 | 0.5055 | 0.4152 | 5000 | 0.3450 | 0.3516 |
| 2300 | 0.4956 | 0.4152 | 5500 | 0.3324 | 0.3410 |
| 2400 | 0.4860 | 0.4147 | 6000 | 0.3220 | 0.3317 |
| 2500 | 0.4769 | 0.4137 | 6500 | 0.3135 | 0.3236 |
| 2600 | 0.4681 | 0.4123 | 7000 | 0.3063 | 0.3165 |
| 2700 | 0.4597 | 0.4106 | 7500 | 0.3003 | 0.3103 |
| 2800 | 0.4517 | 0.4086 | 8000 | 0.2952 | 0.3048 |
| 2900 | 0.4441 | 0.4064 | 8500 | 0.2907 | 0.2999 |
| 3000 | 0.4368 | 0.4041 | 9000 | 0.2869 | 0.2956 |
| 3100 | 0.4298 | 0.4015 | 9500 | 0.2836 | 0.2918 |
| 3200 | 0.4232 | 0.3989 | 10000 | 0.2806 | 0.2883 |
| 3300 | 0.4170 | 0.3962 | 20000 | 0.2565 | 0.2577 |
|  |  |  | $\infty$ | 0.2399 | 0.2342 |

well-defined dividing line, $g_{33}$ may be considerably less; e.g., for 5 -deg separation between large samples $g_{33} \cong 0.005$. For extremely small samples, contrasted with color of their background, $g_{33} \cong 0.5$ and $g_{11}, 2 g_{12}, g_{22}$ are about 1 per cent of the values given in Table 6f-9.
locally uniform portion of chromaticity diagram (in neighborhood of $x, y$ : Plot $x$ values with length of scale unit: $U\left(g_{11}\right)^{\frac{3}{2}} ; y$ values with length of scale unit: $U\left(g_{22}\right)^{\frac{1}{2}}$; with angle $\cos ^{-1} g_{12} /\left(g_{11} g_{22}\right)^{\frac{1}{2}}$ between scales; where $g_{11}, g_{12}, g_{22}$ are values at $x, y$, and $U$ is arbitrary constant.
nearest chromaticity $C$ (selected from continuous series represented by smooth locus $L$ ) most nearly matching chromaticity $C_{1}$, near but not on $L$, is at intersection of $L$ and straight line through $C_{1}$ with slope: $m^{\prime}=-\left(g_{11}+g_{12} m\right) /\left(g_{12}+g_{22} m\right)$ where $m$ is slope of $L$ in neighborhood of $C_{1}$ and $g_{11}, g_{12}, g_{22}$ are values at $C_{1}$.

Color-mixture Data. Amounts of $R, G, B$ of any red, green, and blue primaries (at $x_{r}, y_{r} ; x_{g}, y_{g} ; x_{b}, y_{b}$ ) necessary to match color specified by tristimulus values $X, Y, Z$ :

$$
\begin{aligned}
& R=C_{1}\left[\left(1-A_{b g}\right) X-\left(A_{b g}+M_{b g}\right) Y-A_{b g} Z\right] \\
& G=C_{2}\left[\left(a_{r b}+m_{r b}\right) X+\left(a_{r b}-1\right) Y+a_{r b} Z\right] \\
& B=C_{3}\left[\left(a_{r g}+m_{r g}\right) X+\left(a_{r g}-1\right) Y+a_{r g} Z\right]
\end{aligned}
$$

where $x=M_{b o} y+A_{b o}$ is line through ( $x_{b}, y_{b}$ ) and ( $x_{g}, y_{g}$ )
$y=m_{r b} x+a_{r b}$ is line through $\left(x_{b}, y_{b}\right)$ and ( $x_{r}, y_{r}$ )
$y=m_{r o} x+a_{r g}$ is line through ( $x_{r}, y_{r}$ ) and ( $x_{g}, y_{g}$ )
and $C_{1}, C_{2}, C_{3}$ are constants, evaluated by determining values of $R, G, B ; X, Y, Z$ for one color.

Table 6f-9. Coefficients for Evaluation of Color Difference

| $y$ | $x=0.1$ | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $g_{11}$ |  |  |  |  |  |  |  |
| 0.7 | 22 | 17 | 28* |  |  |  |  |
| 0.6 | 23 | 18 | 30 | 69* |  |  |  |
| 0.5 | 24 | 21 | 33 | 63 | 71* |  |  |
| 0.4 | 26 | 27 | 40 | 39 | 37 | 33* |  |
| 0.3 | 30 | 57 | 128 | 47 | 28 | 18 | 14* |
| 0.2 | 73 | 160 | 182 | 62 | 38 | 24* | 15* |
| 0.15 | 112 | 270 | 170 | 67 | 42* | $30^{*}$ |  |
| 0.1 | 210* | 380 | 158 | 70* | 46* | $35^{*}$ |  |
| 0.05 | 420* | 385 | 150* |  |  |  |  |
| $2 g_{12}$ |  |  |  |  |  |  |  |
| 0.7 | 15 | 5 | -8* |  |  |  |  |
| 0.6 | 18 | 7 | -9 | -23* |  |  |  |
| 0.5 | 21 | 8 | -11 | -28 | -33* |  |  |
| 0.4 | 28 | 8 | -24 | -38 | -40 | -40* |  |
| 0.3 | 44 | 5 | -135 | -65 | -53 | $-49$ | $-47^{*}$ |
| 0.2 | 65 | -65 | -260 | -91 | -67 | -58* | -55* |
| 0.15 | 71 | $-130$ | -260 | -99 | -74* | -63* |  |
| 0.1 | 60* | -235 | -260 | -120 * | -80* | -68* |  |
| 0.05 | $0^{*}$. | -360 | -260* |  |  |  |  |
| $g_{22}$ |  |  |  |  |  |  |  |
| 0.7 | 5 | 2 | 1* |  |  |  |  |
| 0.6 | 7 | 3 | 2 | 9* |  |  |  |
| 0.5 | 11 | 5 | 5 | 13 | $22^{*}$ |  |  |
| 0.4 | 20 | 7 | 10 | 23 | 37 | 46* |  |
| 0.3 | 32 | 13 | 61 | 47 | 64 | 72 | 72* |
| 0.2 | 55 | 28 | 102 | 68 | 82 | 90* | $90^{*}$ |
| 0.15 | 90 | 36 | 118 | 80 | 91* | 95* |  |
| 0.1 | 250* | 63 | 140 | 100* | 100* | 100* |  |
| 0.05 | 450* | 150 | 160* |  |  |  |  |

[^311]Table 6f-10. Maximum Possible Luminous Efficiency ( $\mathrm{K}_{\mathrm{m}}$ ) (In lumens per watt of sources having indicated chromaticities)

| $y$ | $x=0.1$ | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.7 | 475 | 590 | $677^{*}$ | $(680$ |  | at $x=0.337, y=0.659)$ |  |
| 0.6 | 425 | 548 | 620 | $670^{*}$ |  |  |  |
| 0.5 | 375 | 500 | 553 | 590 | $610^{*}$ |  |  |
| 0.4 | 310 | 430 | 480 | 505 | 500 | $480^{*}$ |  |
| 0.3 | 245 | 350 | 380 | 385 | 370 | 320 | $226^{*}$ |
| 0.2 | 155 | 250 | 270 | 255 | 185 |  |  |
| 0.1 | $80^{*}$ | 138 | 130 |  |  |  |  |

* See footnote following Table 6f-9. A contour diagram permitting more accurate interpolation than Table $6 \mathrm{f}-10$ was published in "The Science of Color,". p. 308, Thomas Y. Crowell Company, New York, 1953.

Table 6f-11. Maximum Possible Luminous Reflectance
[For samples having indicated chromaticities when illuminated by standard source $C$ (top) and $A$ (bottom)]

| $y$ | $x=0.1$ | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r_{C}$ (or $t_{C}$ ), \% |  |  |  |  |  |  |  |
| 0.7 | 31 | 51 |  |  |  |  |  |
| 0.6 | 34 | 60 | 76 | $0^{*}$ |  |  |  |
| 0.5 | 34 | 63 | 84 | 96 | $77^{*}$ |  |  |
| 0.4 | 32 | 68 | 92 | 87 | 60 | $42^{*}$ |  |
| 0.3 | 27 | 70 | 90 | 65 | 40 | 24 | $12^{*}$ |
| 0.2 | 17 | 39 | 48 | 35 | 14 |  |  |
| 0.1 | $0^{*}$ | 17 | 15 |  |  |  |  |
| $r_{A}$ (or $t_{A}$ ), \% |  |  |  |  |  |  |  |
| 0.7 | 21 | 38 |  |  |  |  |  |
| 0.6 | 22 | 42 | 61 | $0^{*}$ |  |  |  |
| 0.5 | 20 | 45 | 67 | 83 | $77^{*}$ |  |  |
| 0.4 | 18 | 36 | 48 | 71 | 86 | $64^{*}$ |  |
| 0.3 | 14 | 22 | 27 | 36 | 52 | 38 | $21^{*}$ |
| 0.2 | 7 | 12 | 15 | 17 | 19 |  |  |
| 0.1 | $0^{*}$ | 5 | 4 |  |  |  |  |

[^312]
# 6g. Radiometry 

M. M. REYNOLDS

Linde Air Products Co.
R. J. CORRUCCINI, M. M. FULK

NBS-AEC Cryogenic Engineering Laboratory

## R. M. BURLEY

Baird -Atomic, Inc.

6g-1. Black-body Radiation. These tables contain various radiation functions derived from the Planck function

$$
W(\lambda, T)=\frac{c_{1}}{\lambda^{5}\left(e^{c_{2} / \lambda T}-1\right)}
$$

where $W(\lambda, T)$ is defined as the power radiated per unit wavelength interval at wavelength $\lambda$ by unit area of a black body at temperature $T^{\circ} \mathrm{K} . \quad c_{2}$ was taken to be $1.438 \mathrm{~cm}{ }^{\circ} \mathrm{K}$. The constant $c_{1}$ does not enter into the functions here tabulated. The maximum value of $W(\lambda, T)$ is given by

$$
W_{\max }(T)=1.290 \times 10^{-15} T^{5} \quad \text { watt } \mathrm{cm}^{-2} \mu^{-1}
$$

while the Stefan-Boltzmann function is given by

$$
\int_{0}^{\infty} W d \lambda=5.679 \times 10^{-12} T^{4} \quad \text { watt cm }{ }^{-2}
$$

6g-2. Optical Pyrometry (Narrow-band Radiation). When an optical pyrometer which has been calibrated to read the true temperature of a black-body source is sighted on a nonblack source, it reads values of "brightness temperature" $T_{b_{r}}(\lambda, T)$ lower than the true temperature $T^{\circ} \mathrm{K}$. Brightness temperature is related to true temperature through the following formula, which is derived from Planck's formula:

$$
\ln \epsilon(\lambda, T)=\frac{c_{2}}{\lambda}\left(\frac{1}{T}-\frac{1}{T_{b r}}\right)
$$

where $c_{2}=1.438 \mathrm{~cm}{ }^{\circ} \mathrm{K}$ (international temperature scale of 1948) $\epsilon(\lambda, T)=$ emissivity of the source at wavelength $\lambda$ and temperature $T$
Commercial radiation pyrometers, although broad-band, do not utilize the complete spectrum of radiant energy. Hence there is no simple formula for precise calculation of the effect on temperature readings of varying emittance of the source. Table $6 \mathrm{~g}-10$ was calculated using the relation

$$
T\left({ }^{\circ} \mathrm{K}\right)=\frac{T_{\text {apparent }}\left({ }^{\circ} \mathrm{K}\right)}{\epsilon_{t}{ }^{2}}
$$

where $\epsilon_{t}$ is the total emissivity. It may be used to estimate approximate corrections in radiation pyrometry.

Table 6g-1. Black-body Radiation Functions

| $\begin{gathered} \lambda T, \\ \mathrm{~cm}-\mathrm{deg} \end{gathered}$ | $\frac{W(\lambda, T)}{W_{\max }(T)}$ | $\frac{\int_{0}^{\lambda} W d \lambda}{\int_{0}^{\infty} W d \lambda}$ | $\begin{gathered} \lambda T, \\ \mathrm{~cm}-\mathrm{deg} \end{gathered}$ | $\frac{W(\lambda, T)}{W_{\max }(T)}$ | $\frac{\int_{0}^{\lambda} W d \lambda}{\int_{0}^{\infty} W d \lambda}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.050 | $2.999 \times 10^{-7}$ | $1.316 \times 10^{-9}$ | 0.155 | $3.032 \times 10^{-1}$ | $1.610 \times 10^{-2}$ |
| 0.051 | $4.775 \times 10^{-7}$ | $2.184 \times 10^{-9}$ | 0.160 | $3.457 \times 10^{-1}$ | $1.979 \times 10^{-2}$ |
| 0.052 | $7.452 \times 10^{-7}$ | $3.552 \times 10^{-9}$ | 0.165 | $3.892 \times 10^{-1}$ | $2.396 \times 10^{-2}$ |
| 0.053 | $1.142 \times 10^{-6}$ $1.718 \times 10^{-6}$ | $5.665 \times 10^{-9}$ $8.871 \times 10^{-9}$ | 0.170 | $4.332 \times 10^{-1}$ | $2.862 \times 10^{-2}$ |
| 0.054 | $1.718 \times 10^{-6}$ $2.545 \times 10^{-6}$ | $8.871 \times 10^{-9}$ | 0.175 | $4.772 \times 10^{-1}$ | $3.379 \times 10^{-2}$ |
| 0.055 0.056 | $2.545 \times 10^{-6}$ $3.709 \times 10^{-6}$ | $1.366 \times 10^{-8}$ | 0.180 | $5.208 \times 10^{-1}$ | $3.946 \times 10^{-2}$ |
| 0.056 0.057 | $3.709 \times 10^{-6}$ $5.326 \times 10^{-6}$ | $2.068 \times 10^{-8}$ | 0.185 | $5.636 \times 10^{-1}$ | $4.561 \times 10^{-2}$ |
| 0.058 | $5.326 \times 10^{-6}$ $7.544 \times 10^{-6}$ | $3.084 \times 10^{-8}$ | 0.190 | $6.053 \times 10^{-1}$ | $5.225 \times 10^{-2}$ |
| 0.059 | $1.054 \times 10^{-5}$ | $6.568 \times 10^{-8}$ | 0.195 | $6.455 \times 10^{-1}$ $6.840 \times 10^{-1}$ | $5.935 \times 10^{-2}$ |
| 0.060 | $1.455 \times 10^{-5}$ | $9.395 \times 10^{-8}$ | 0.22 | $8.169 \times 10^{-1}$ | $1.011 \times 10^{-1}$ |
| 0.061 | $1.985 \times 10^{-5}$ | $1.327 \times 10^{-7}$ | 0.24 | $9.126 \times 10^{-1}$ | $1.405 \times 10^{-1}$ |
| 0.062 | $2.676 \times 10^{-5}$ | $1.853 \times 10^{-7}$ | 0.26 | $9.712 \times 10^{-1}$ | $1.834 \times 10^{-1}$ |
| 0.063 | $3.570 \times 10^{-5}$ | $2.558 \times 10^{-7}$ | 0.28 | $9.972 \times 10^{-1}$ | $2.282 \times 10^{-1}$ |
| 0.064 | $4.713 \times 10^{-5}$ | $3.493 \times 10^{-7}$ | 0.30 | $9.971 \times 10^{-1}$ | $2.736 \times 10^{-1}$ |
| 0.065 | $6.613 \times 10^{-5}$ | $4.721 \times 10^{-7}$ | 0.32 | $9.771 \times 10^{-1}$ | $3.185 \times 10^{-1}$ |
| 0.066 | $7.984 \times 10^{-5}$ | $6.319 \times 10^{-7}$ | 0.34 | $9.432 \times 10^{-1}$ | $3.621 \times 10^{-1}$ |
| 0.067 | $1.025 \times 10^{-4}$ | $8.380 \times 10^{-7}$ | 0.36 | $8.999 \times 10^{-1}$ | $4.040 \times 10^{-1}$ |
| 0.068 | $1.305 \times 10^{-4}$ | $1.101 \times 10^{-6}$ | 0.38 | $8.512 \times 10^{-1}$ | $4.438 \times 10^{-1}$ |
| 0.069 | $1.649 \times 10^{-4}$ | $1.435 \times 10^{-6}$ | 0.40 | $7.997 \times 10^{-1}$ | $4.813 \times 10^{-1}$ |
| 0.070 | $2.066 \times 10^{-4}$ | $1.856 \times 10^{-6}$ | 0.42 | $7.475 \times 10^{-1}$ | $5.164 \times 10^{-1}$ |
| 0.071 | $2.571 \times 10^{-4}$ | $2.380 \times 10^{-6}$ | 0.44 | $6.961 \times 10^{-1}$ | $5.492 \times 10^{-1}$ |
| 0.072 | $3.176 \times 10^{-4}$ | $3.030 \times 10^{-6}$ | 0.46 | $6.464 \times 10^{-1}$ | $5.796 \times 10^{-1}$ |
| 0.073 | $3.897 \times 10^{-4}$ | $3.831 \times 10^{-6}$ | 0.48 | $5.990 \times 10^{-1}$ | $6.079 \times 10^{-1}$ |
| 0.074 | $4.751 \times 10^{-4}$ | $4.810 \times 10^{-6}$ | 0.50 | $5.543 \times 10^{-1}$ | $6.341 \times 10^{-1}$ |
| 0.075 | $5.757 \times 10^{-4}$ | $5.999 \times 10^{-6}$ | 0.52 | $5.125 \times 10^{-1}$ | $6.583 \times 10^{-1}$ |
| 0.076 | $6.934 \times 10^{-4}$ | $7.436 \times 10^{-6}$ | 0.54 | $4.735 \times 10^{-1}$ | $6.807 \times 10^{-1}$ |
| 0.077 | $8.304 \times 10^{-4}$ | $9.162 \times 10^{-6}$ | 0.56 | $4.375 \times 10^{-1}$ | $7.013 \times 10^{-1}$ |
| 0.078 | $9.891 \times 10^{-4}$ | $1.122 \times 10^{-5}$ | 0.58 | $4.042 \times 10^{-1}$ | $7.204 \times 10^{-1}$ |
| 0.079 | $1.172 \times 10^{-3}$ | $1.367 \times 10^{-5}$ | 0.60 | $3.735 \times 10^{-1}$ | $7.381 \times 10^{-1}$ |
| 0.080 | $1.382 \times 10^{-3}$ | $1.657 \times 10^{-5}$ | 0.62 | $3.453 \times 10^{-1}$ | $7.544 \times 10^{-1}$ |
| 0.081 | $1.621 \times 10^{-3}$ | $1.997 \times 10^{-5}$ | 0.64 | $3.193 \times 10^{-1}$ | $7.694 \times 10^{-1}$ |
| 0.082 | $1.893 \times 10^{-3}$ | $2.395 \times 10^{-5}$ | 0.66 | $2.956 \times 10^{-1}$ | $7.834 \times 10^{-1}$ |
| 0.083 | $2.201 \times 10^{-3}$ | $2.859 \times 10^{-5}$ | 0.68 | $2.737 \times 10^{-1}$ | $7.963 \times 10^{-1}$ |
| 0.084 | $2.548 \times 10^{-3}$ | $3.398 \times 10^{-5}$ | 0.70 | $2.537 \times 10^{-1}$ | $8.083 \times 10^{-1}$ |
| 0.085 | $2.938 \times 10^{-3}$ | $4.020 \times 10^{-5}$ | 0.72 | $2.354 \times 10^{-1}$ | $8.194 \times 10^{-1}$ |
| 0.086 | $3.373 \times 10^{-3}$ | $4.735 \times 10^{-5}$ | 0.74 | $2.185 \times 10^{-1}$ | $8.297 \times 10^{-1}$ |
| 0.087 | $3.859 \times 10^{-3}$ | $5.555 \times 10^{-5}$ | 0.76 | $2.030 \times 10^{-1}$ | $8.392 \times 10^{-1}$ |
| 0.088 | $4.397 \times 10^{-3}$ | $6.491 \times 10^{-5}$ | 0.78 | $1.888 \times 10^{-1}$ | $8.481 \times 10^{-1}$ |
| 0.089 | $4.993 \times 10^{-3}$ | $7.556 \times 10^{-5}$ | 0.80 | $1.758 \times 10^{-1}$ | $8.564 \times 10^{-1}$ |
| 0.090 | $5.651 \times 10^{-3}$ | $8.763 \times 10^{-5}$ | 0.82 | $1.638 \times 10^{-1}$ | $8.641 \times 10^{-1}$ |
| 0.091 | $6.373 \times 10^{-3}$ | $1.013 \times 10^{-4}$ | 0.84 | $1.528 \times 10^{-1}$ | $8.713 \times 10^{-1}$ |
| 0.092 | $7.165 \times 10^{-3}$ | $1.166 \times 10^{-4}$ | 0.86 | $1.426 \times 10^{-1}$ | $8.780 \times 10^{-1}$ |
| 0.093 | $8.030 \times 10^{-3}$ | $1.339 \times 10^{-4}$ | 0.88 | $1.332 \times 10^{-1}$ | $8.843 \times 10^{-1}$ |
| 0.094 | $8.973 \times 10^{-3}$ | $1.532 \times 10^{-4}$ | 0.90 | $1.246 \times 10^{-1}$ | $8.901 \times 10^{-1}$ |
| 0.095 | $9.998 \times 10^{-3}$ | $1.747 \times 10^{-4}$ | 0.92 | $1.166 \times 10^{-1}$ | $8.956 \times 10^{-1}$ |
| 0.096 | $1.111 \times 10^{-2}$ | $1.986 \times 10^{-4}$ | 0.94 | $1.093 \times 10^{-1}$ | $9.007 \times 10^{-1}$ |
| 0.097 | $1.231 \times 10^{-2}$ | $2.252 \times 10^{-4}$ | 0.96 | $1.024 \times 10^{-1}$ | $9.055 \times 10^{-1}$ |
| 0.098 | $1.360 \times 10^{-2}$ | $2.546 \times 10^{-4}$ | 0.98 | $9.613 \times 10^{-2}$ | $9.100 \times 10^{-1}$ |
| 0.099 | $1.500 \times 10^{-2}$ | $2.870 \times 10^{-4}$ | 1.0 | $9.029 \times 10^{-2}$ | $9.143 \times 10^{-1}$ |
| 0.100 | $1.649 \times 10^{-2}$ | $3.228 \times 10^{-4}$ | 1.1 | $6.679 \times 10^{-2}$ | $9.319 \times 10^{-1}$ |
| 0.105 | $2.563 \times 10^{-2}$ | $5.591 \times 10^{-4}$ | 1.2 | $5.035 \times 10^{-2}$ | $9.451 \times 10^{-1}$ |
| 0.110 | $3.785 \times 10^{-2}$ | $9.162 \times 10^{-4}$ | 1.3 | $3.862 \times 10^{-2}$ | $9.551 \times 10^{-1}$ |
| 0.115 | $5.350 \times 10^{-2}$ | $1.431 \times 10^{-3}$ | 1.4 | $3.007 \times 10^{-2}$ | $9.629 \times 10^{-1}$ |
| 0.120 | $7.281 \times 10^{-2}$ | $2.145 \times 10^{-3}$ | 1.5 | $2.375 \times 10^{-2}$ | $9.690 \times 10^{-1}$ |
| 0.125 | $9.588 \times 10^{-2}$ | $3.099 \times 10^{-3}$ | 1.6 | $1.899 \times 10^{-2}$ | $9.738 \times 10^{-1}$ |
| 0.130 | $1.227 \times 10^{-1}$ | $4.336 \times 10^{-3}$ | 1.7 | $1.536 \times 10^{-2}$ | $9.777 \times 10^{-1}$ |
| 0.135 | $1.530 \times 10^{-1}$ | $5.897 \times 10^{-3}$ | 1.8 | $1.255 \times 10^{-2}$ | $9.808 \times 10^{-1}$ |
| 0.140 | $1.866 \times 10^{-1}$ | $7.822 \times 10^{-3}$ | 1.9 | $1.035 \times 10^{-2}$ | $9.834 \times 10^{-1}$ |
| 0.145 | $2.232 \times 10^{-1}$ | $1.015 \times 10^{-2}$ | 2.0 | $8.612 \times 10^{-3}$ | $9.856 \times 10^{-1}$ |
| 0.150 | $2.622 \times 10^{-1}$ | $1.290 \times 10^{-2}$ |  |  | $9.856 \times 10^{-1}$ |

Table 6g-2. Total Black-body Radiation

| $T,{ }^{\circ} \mathrm{K}$ | $\int_{0}^{\infty} W d \lambda,$ | $\begin{gathered} W_{\max }(T), \\ \text { watt } \mathrm{cm}^{-2} \mu^{-1} \end{gathered}$ | $T,{ }^{\circ} \mathrm{K}$ | $\underset{\text { watt cm }}{\int_{0}^{\infty} W d \lambda,}$ | $\begin{gathered} W_{\max }(T), \\ \text { watt } \mathrm{cm}^{-2} \mu^{-1} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $5.679 \times 10^{-12}$ | $1.290 \times 10^{-15}$ | 430 | $1.942 \times 10^{-1}$ | $1.896 \times 10^{-2}$ |
| 5 | $3.549 \times 10^{-9}$ | $4.030 \times 10^{-12}$ | 440 | $2.128 \times 10^{-1}$ | $2.127 \times 10^{-2}$ |
| 10 | $5.679 \times 10^{-8}$ | $1.290 \times 10^{-10}$ | 450 | $2.328 \times 10^{-1}$ | $2.380 \times 10^{-2}$ |
| 15 | $2.875 \times 10^{-7}$ | $9.794 \times 10^{-90}$ | 460 | $2.542 \times 10^{-1}$ | $2.656 \times 10^{-2}$ |
| 20 | $9.086 \times 10^{-7}$ | $4.127 \times 10^{-9}$ | 470 | $2.771 \times 10^{-1}$ | $2.958 \times 10^{-2}$ |
| 30 | $4.600 \times 10^{-6}$ | $3.134 \times 10^{-8}$ | 480 | $3.015 \times 10^{-1}$ | $3.286 \times 10^{-2}$ |
| 40 | $1.454 \times 10^{-5}$ | $1.321 \times 10^{-7}$ | 490 | $3.274 \times 10^{-1}$ | $3.643 \times 10^{-2}$ |
| 50 | $3.549 \times 10^{-5}$ | $4.030 \times 10^{-7}$ | 500 | $3.549 \times 10^{-1}$ | $4.030 \times 10^{-2}$ |
| 60 | $7.360 \times 10^{-5}$ | $1.003 \times 10^{-6}$ | 520 | $4.152 \times 10^{-1}$ | $4.904 \times 10^{-2}$ |
| 70 | $1.364 \times 10^{-4}$ | $2.168 \times 10^{-6}$ | 540 | $4.829 \times 10^{-1}$ | $5.922 \times 10^{-2}$ |
| 80 | $2.326 \times 10^{-4}$ | $4.226 \times 10^{-6}$ | 560 | $5.585 \times 10^{-1}$ | $7.103 \times 10^{-2}$ |
| 90 | $3.726 \times 10^{-4}$ | $7.616 \times 10^{-6}$ | 580 | $6.426 \times 10^{-1}$ | $8.465 \times 10^{-2}$ |
| 100 | $5.679 \times 10^{-4}$ | $1.290 \times 10^{-5}$ | 600 | $7.360 \times 10^{-1}$ | $1.003 \times 10^{-1}$ |
| 110 | $8.315 \times 10^{-4}$ | $2.077 \times 10^{-5}$ | 620 | $8.392 \times 10^{-1}$ | $1.182 \times 10^{-1}$ |
| 120 | $1.178 \times 10^{-3}$ | $3.209 \times 10^{-5}$ | 640 | $9.527 \times 10^{-1}$ | $1.385 \times 10^{-1}$ |
| 130 | $1.622 \times 10^{-3}$ | $4.789 \times 10^{-5}$ | 660 | 1.078 | $1.615 \times 10^{-1}$ |
| 140 | $2.181 \times 10^{-3}$ | $6.936 \times 10^{-5}$ | 680 | 1.215 | $1.875 \times 10^{-1}$ |
| 150 | $2.875 \times 10^{-3}$ | $9.794 \times 10^{-5}$ | 700 | 1.364 | $2.168 \times 10^{-1}$ |
| 160 | $3.722 \times 10^{-3}$ | $1.352 \times 10^{-4}$ | 720 | 1.527 | $2.496 \times 10^{-1}$ |
| 170 | $4.743 \times 10^{-3}$ | $1.831 \times 10^{-4}$ | 740 | 1.703 | $2.862 \times 10^{-1}$ |
| 180 | $5.961 \times 10^{-3}$ | $2.437 \times 10^{-4}$ | 760 | 1.895 | $3.270 \times 10^{-1}$ |
| 190 | $7.401 \times 10^{-3}$ | $3.194 \times 10^{-4}$ | 780 | 2.102 | $3.724 \times 10^{-1}$ |
| 200 | $9.086 \times 10^{-3}$ | $4.127 \times 10^{-4}$ | 800 | 2.326 | $4.226 \times 10^{-1}$ |
| 210 | $1.105 \times 10^{-2}$ | $5.267 \times 10^{-4}$ | 820 | 2.567 | $4.782 \times 10^{-1}$ |
| 220 | $1.331 \times 10^{-2}$ | $6.647 \times 10^{-4}$ | 840 | 2.827 | $5.394 \times 10^{-1}$ |
| 230 | $1.590 \times 10^{-2}$ | $8.301 \times 10^{-4}$ | 860 | 3.106 | $6.067 \times 10^{-1}$ |
| 240 | $1.885 \times 10^{-2}$ | $1.027 \times 10^{-3}$ | 880 | 3.406 | $6.806 \times 10^{-1}$ |
| 250 | $2.218 \times 10^{-2}$ | $1.260 \times 10^{-3}$ | 900 | 3.726 | $7.616 \times 10^{-1}$ |
| 260 | $2.595 \times 10^{-2}$ | $1.532 \times 10^{-3}$ | 920 | 4.069 | $8.500 \times 10^{-1}$ |
| 270 | $3.018 \times 10^{-2}$ | $1.851 \times 10^{-3}$ | 940 | 4.434 | $9.465 \times 10^{-1}$ |
| 280 | $3.491 \times 10^{-2}$ | $2.220 \times 10^{-3}$ | 960 | 4.824 | 1.052 |
| 290 | $4.017 \times 10^{-2}$ | $2.645 \times 10^{-3}$ | 980 | 5.239 | 1.166 |
| 300 | $4.600 \times 10^{-2}$ | $3.134 \times 10^{-3}$ | 1000 | 5.679 | 1.290 |
| 310 | $5.245 \times 10^{-2}$ | $3.692 \times 10^{-3}$ | 1020 | 6.147 | 1.424 |
| 320 | $5.955 \times 10^{-2}$ | $4.328 \times 10^{-3}$ | 1040 | 6.644 | 1.569 |
| 330 | $6.735 \times 10^{-2}$ | $5.047 \times 10^{-3}$ | 1060 | 7.170 | 1.726 |
| 340 | $7.589 \times 10^{-2}$ | $5.860 \times 10^{-3}$ | 1080 | 7.726 | 1.895 |
| 350 | $8.522 \times 10^{-2}$ | $6.774 \times 10^{-3}$ | 1100 | 8.315 | 2.077 |
| 360 | $9.538 \times 10^{-2}$ | $7.799 \times 10^{-3}$ | 1120 | 8.937 | 2.273 |
| 370 | $1.065 \times 10^{-1}$ | $8.944 \times 10^{-3}$ | 1140 | 9.591 | 2.483 |
| 380 | $1.184 \times 10^{-1}$ | $1.022 \times 10^{-2}$ | 1160 | 10.29 | 2.709 |
| 390 | $1.314 \times 10^{-1}$ | $1.164 \times 10^{-2}$ | 1180 | 11.01 | 2.951 |
| 400 | $1.454 \times 10^{-1}$ | $1.321 \times 10^{-2}$ | 1200 | 11.78 | 3.209 |
| 410 | $1.605 \times 10^{-1}$ | $1.494 \times 10^{-2}$ | 1220 | 12.58 | 3.486 |
| 420 | $1.768 \times 10^{-1}$ | $1.686 \times 10^{-2}$ | 1240 | 13.43 | 3.781 |

Table 6g-2. Total Black-body Radiation (Continued)

| $T,{ }^{\circ} \mathrm{K}$ | $\int_{0}^{\infty} W d \lambda$ | $\begin{gathered} W_{\max }(T) \\ \text { watt } \mathrm{cm}^{-2} \mu^{-1} \end{gathered}$ | $T,{ }^{\circ} \mathrm{K}$ | $\underset{\text { watt } \mathrm{cm}^{-2}}{\int_{0}^{\infty} W d \lambda,}$ | $\begin{gathered} W_{\max }(T) \\ \text { watt } \mathrm{cm}^{-2} \mu^{-1} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1260 | 14.32 | 4.096 | 1960 | 83.81 | 37.31 |
| 1280 | 15.25 | 4.431 | 1980 | 87.29 | 39.25 |
| 1300 | 16.22 | 4.789 | 2000 | 90.86 | 41.27 |
| 1320 | 17.25 | 5.169 | 2100 | 110.5 | 52.67 |
| 1340 | 18.32 | 5.572 | 2200 | 133.1 | 66.47 |
| 1360 | 19.43 | 6.001 | 2300 | 159.0 | 83.01 |
| 1380 | 20.59 | 6.455 | 2400 | 188.5 | 102.7 |
| 1400 | 21.81 | 6.936 | 2500 | 221.8 | 126.0 |
| 1420 | 23.09 | 7.446 | 2600 | 259.5 | 153.2 |
| 1440 | 24.42 | 7.986 | 2700 | 301.8 | 185.1 |
| 1460 | 25.80 | 8.556 | 2800 | 349.1 | 222.0 |
| 1480 | 27.24 | 9.158 | 2900 | 401.7 | 264.5 |
| 1500 | 28.75 | 9.794 | 3000 | 460.0 | 313.4 |
| 1520 | 30.31 | 10.46 | 3100 | 524.5 | 369.2 |
| 1540 | 31.94 | 11.17 | 3200 | 595.5 | 432.8 |
| 1560 | 33.63 | 11.92 | 3300 | 673.5 | 504.7 |
| 1580 | 35.39 | 12.70 | 3400 | 758.9 | 586.0 |
| 1600 | 37.22 | 13.52 | 3500 | 852.2 | 677.4 |
| 1620 | 39.12 | 14.39 | 3600 | 953.8 | 779.9 |
| 1640 | 41.08 | 15.30 | 3700 | 1065 | 894.4 |
| 1660 | 43.12 | 16.26 | 3800 | 1184 | 1022 |
| 1680 | 45.24 | 17.26 | 3900 | 1314 | 1164 |
| 1700 | 47.43 | 18.31 | 4000 | 1454 | 1321 |
| 1720 | 49.71 | 19.42 | 4500 | 2328 | 2380 |
| 1740 | 52.06 | 20.57 | 5000 | 3549 | 4030 |
| 1760 | 54.50 | 21.78 | 5500 | 5197 | 6491 |
| 1780 | 57.01 | 23.05 | 6000 | 7360 | 10030 |
| 1800 | 59.61 | 24.37 | 6500 | 10140 | 14960 |
| 1820 | 62.31 | 25.75 | 7000 | 13640 | 21680 |
| 1840 | 65.09 | 27.20 | 7500 | 17970 | 30610 |
| 1860 | 67.97 | 28.71 | 8000 | 23260 | 42260 |
| 1880 | 70.94 | 30.29 | 8500 | 29640 | 57230 |
| 1900 | 74.01 | 31.94 | 9000 | 37260 | 76160 |
| 1920 | 77.18 | 33.65 | 9500 | 46260 | 99800 |
| 1940 | 80.44 | 35.44 | 10000 | 56790 | 129000 |

Table 6g-3. Total Normal Emissivity

| Material | $\underset{{ }^{\circ} \mathrm{K} .}{\text { Temp., }}$ | Emissivity (total normal) <br> $\epsilon_{n}$ |
| :---: | :---: | :---: |
| Aluminum, annealed (electropolished). | $1000 \dagger$ | 0.07 |
|  | 500 | 0.04 |
|  | 300 | 0.03 |
|  | 300 | $0.018\left(76^{\circ} \mathrm{K}\right)^{*}$ |
|  | 300 | $0.011\left(4^{\circ} \mathrm{K}\right)$ |
| Aluminum oxide layer: |  |  |
| $0.25 \mu$ thick. | 311 | 0.06 |
| $0.50 \mu$ thick | 311 | 0.11 |
| $1.0 \mu$ thick | 311 | 0.30 |
| $2.0 \mu$ thick. | 311 | 0.65 |
| $3.0 \mu$ thick. | 311 | 0.70 |
| $4.0 \mu$ thick. | 311 | 0.70 |
| $7.0 \mu$ thick | 311 | 0.75 |
| Aluminum lacquer layer: |  |  |
| $0.5 \mu$ thick........... . | 311 | 0.05 |
| $1.0 \mu$ thick. | 311 | 0.08 |
| $1.5 \mu$ thick. | 311 | 0.15 |
| $2.0 \mu$ thick. | 311 | 0.30 |
| $3.0 \mu$ thick. | 311 | 0.38 |
| $4.0 \mu$ thick. | 311 | 0.41 |
| $5.0 \mu$ thick. | 311 | 0.45 |
| $8.0 \mu$ thick | 311 | 0.57 |
| Aluminum: |  |  |
| Commercial plate. | 373 | 0.09 |
| Commercial plate, polished. | 373 | 0.05 |
| Commercial plate dipped in $\mathrm{HNO}_{3}$. | 373 | 0.05 |
| Commercial plate dipped in hot hydroxide. | 373 | 0.04 |
| Al vaporized on $0.0005-\mathrm{in}$. Mylar plastic (both sides) | 300 | 0.04 ( $76{ }^{\circ} \mathrm{K}$ )* |
| Antimony. | 295 | 0.28 |
| Bismuth. | $1000 \dagger$ | 0.3 |
|  | 373 | 0.06-0.19 |
| Brass: |  |  |
| Polished. | 373 | 0.03 |
| Rolled plate. | 300 | 0.06 |
| Shim stock 65/35 | 295 | $0.029\left(76{ }^{\circ} \mathrm{K}\right)^{*}$ |
|  | 295 | $0.018\left(4^{\circ} \mathrm{K}\right)$ |
| Oxidized. | 500 | 0.60 |
|  | 373 | 0.60 |
| Cadmium. | 300 | 0.02 |
| Electroplate (mossy). | 295 | 0.03 ( $\left.76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Chromium............ | 300-1000 | 0.08-0.26 $\ddagger$ |
| Plated on copper. | 300 | $0.08\left(76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Plated on iron. | 370 | 0.08 |
| Cobalt. | 295 | 0.03 |

Table 6g-3. Total Normal Emissivity (Continued)

| Material | $\begin{aligned} & \text { Temp., } \\ & { }^{\circ} \mathrm{K} \end{aligned}$ | Emissivity (total normal) $\epsilon_{n}$ |
| :---: | :---: | :---: |
| Copper: |  |  |
| Black oxidized | 300 | 0.78 |
| Scraped. | 300 | 0.07 |
| Commercial polish. | 300 | 0.03 |
| Electrolytic, careful polish. | 353 | 0.018 |
| Electrolytic, careful polish. | 295 | 0.015 (76 $\left.{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Chromic acid dip. | 295 | 0.017 ( $\left.76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Polished. | 295 | $0.019\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Liquid honed | 295 | $0.088\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Electrolytic polish | 295 | $0.006\left(4^{\circ} \mathrm{K}\right)$ |
| Mechanical polish. | 295 | 0.015 ( $4^{\circ} \mathrm{K}$ ) |
| Carefully prepared surface of pure Cu | 295 | $0.008\left(90^{\circ} \mathrm{K}\right)$ |
| Gold. | 300-1400 $\dagger$ | 0.02-0.03 $\ddagger$ |
| $0.0015-\mathrm{in}$. foil (on glass or Lucite plastic) | 295 | $0.01\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| $0.0005-\mathrm{in}$. foil (on glass or Lucite plastic) | 295 | $0.016\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| $0.000040-\mathrm{in}$. foil (on glass or Lucite plastic). | 295 | $0.023\left(76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| $0.000010-\mathrm{in}$. leaf (on glass or Lucite plastic). | 295 | $0.063\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Au vaporized onto 2 sides of $0.0005-i n$. Mylar plastic | 295 | $0.02\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Au plate 0.0002 in . on stainless steel ( $1 \% \mathrm{Ag}$ in Au ).. | 295 | $0.025\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Au plate 0.0001 in . on stainless steel ( $1 \% \mathrm{Ag}$ in Au ) | 295 | $0.027\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Au plate 0.00005 in . on stainless steel ( $1 \% \mathrm{Ag}$ in Au ) | 295 | 0.027 ( $\left.76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Au plate 0.0002 in . on copper ( $1 \% \mathrm{Ag}$ in Au ) | 295 | $0.025\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Iridium. | 295 | 0.04 |
| Iron: 0 |  |  |
| Electrolytic | 450-500 | 0.05-0.065 $\ddagger$ |
|  | 533 | 0.07 |
|  | 373 | 0.05 |
|  | 295 | 0.05 |
| Oxidized | 300 | 0.017 ( $90^{\circ} \mathrm{K}$ ) |
| Oxidized | 1500 | 0.89 |
|  | 373 | 0.74 |
| Cast iron, polished | 311 | 0.21 |
| Cast iron, oxidized | 311 | 0.63 |
| Cast iron, oxidized | 533 | 0.66 |
| Cast iron, oxidized | 811 | 0.76 |
| Iron sheet, rusted red | 295 | 0.69 |
| Galvanized iron. | 365 | 0.07 |
| Steels: |  |  |
| Stainless, polished | 373 | 0.08 |
| Stainless, type 302. | 300 | 0.048 ( $\left.76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Stainless, oxidized | 300-1000 | $0.79 \ddagger$ |
| Lead: |  |  |
| Unoxidized, polished | 400-500 | 0.057-0.075 $\ddagger$ |
| Unoxidized, polished. | 373 | 0.05 |
| 0.004-in. foil. | 295 | $0.036\left(76{ }^{\circ} \mathrm{K}\right)^{*}$ |
|  | 295 | 0.011 ( $4^{\circ} \mathrm{K}$ ) |

# Table 6g-3. Total Normal Emissivity (Continued) 



Table 6g-3. Total Normal Emissivity (Continued)

| Material | Temp., ${ }^{\circ} \mathrm{K}$ | Emissiyity (total normal) $\epsilon_{n}$ |
| :---: | :---: | :---: |
| Tellurium. | 295 | 0.22 |
| Tin. | 373 | 0.05 |
| 0.001-in. foil. | 295 | 0.013 ( $76{ }^{\circ} \mathrm{K}$ )* |
|  | 295 | $0.012\left(4^{\circ} \mathrm{K}\right)$ |
| 1\% indium. | 295 | $0.012\left(4^{\circ} \mathrm{K}\right)$ |
| 5\% indium....... | 295 | $0.017\left(4^{\circ} \mathrm{K}\right)$ |
| Tungsten, filament. | 297 | 0.064 |
|  |  |  |
|  |  |  |
|  |  | 0.15 |
|  | 800 | 0.088 |
|  | 500 | 0.053 |
|  | 300 | 0.032 |
|  | 300 | $0.019\left(85^{\circ} \mathrm{K}\right)$ |
| Zinc. | 295 | 0.05 |
|  | 295 | $0.026\left(76^{\circ} \mathrm{K}\right)^{*}$ |
| Solder, 50-50 solder on Cu. | 295 | $0.032\left(76{ }^{\circ} \mathrm{K}\right)^{*}$ |
| Monel metal: | 293 | 0.11 |
| Polished. | 811 | $0.10\left(295{ }^{\circ} \mathrm{K}\right)$ |
|  | 1367 | 0.16 (295 $\left.{ }^{\circ} \mathrm{K}\right)$ |
| Smooth, not polished. | 366 | 0.16 |
| Everdur, dull. | 366 | 0.11 |
| Copper-nickel. | 373 | 0.059 |
| Water. | 273-373 | 0.92-0.96 $\ddagger$ |
| Ice: |  |  |
| Smooth, $\mathrm{H}_{2} \mathrm{O}$. | 273 | 0.96 |
| Rough crystals. | 273 | 0.985 |
| Glass. . | 293 | 0.94 |
| Lacquer: |  |  |
| White. | 373 | 0.925 |
| Black matte | 373 | 0.97 |
| Oil paints, all colors. | 273-373 | 0.92-0.96 $\ddagger$ |
| Enamel... | 295 | 0.90-0.95 |
| Candlesoot | 273-373 | 0.952 |
| Plaster. | 273-373 | 0.91 |
| Paper.. | 373 | 0.92 |
| Rubber, hard, glossy plate. | 297 | 0.945 |
| Quartz (fused). | 295 | 0.932 |
| * $\epsilon_{h}$ determinations. <br> $\dagger$ Liquid phase. <br> $\ddagger$ Linear interpolation fairly accurate. |  |  |

Table 6g-4. Normal Spectral Emissivities at $295^{\circ}$ K
(Wavelength in microns)

| Material | 0.50 | 0.60 | 0.80 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 7.0 | 9.0 | 10 | 12 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alu |  |  |  | $\overline{0.26}$ | 0.18 | 0.12 | 0.080 | 0.07 | 0.04 0 | 0.030 | 0.02 | $\overline{0.02}$ |  |
| Ant |  | 0.47 | 0.46 | 0.45 | 0.40 | 0.35 | 0.320 | 0.310 | 0.290 | 0.280 | 0.28 |  | 0.28 |
| Bismuth |  |  |  |  | 0.320 | 0.28 |  | 0.23 |  | 0.19 |  |  | 0.17 |
| Cadmiu |  |  |  | 0.30 | 0.130 | 0.07 | 0.040 | 0.04 | 0.020 | 0.020 | 0.02 | 0.01 | 0.01 |
| Chro | 0.45 | 0.44 |  | 0.43 |  | 0.30 |  | 0.19 |  | 0.08 |  |  |  |
| Coba |  |  |  | 0.32 | 0.28 | 0.23 | 0.190 | 0.15 | 0.070 | 0.04 | 0.03 | 0.03 | 0.03 |
| Copper | 0.56 | 0.28 |  | 0.10 |  | 0.03 |  | 0.02 |  | 0.02 |  |  |  |
| Copper, electrolytically deposited | 0.47 | 0.17 |  |  |  |  |  |  |  |  |  |  |  |
| Copper, commercially pure...... | 0.56 | 0.28 |  | 0.10 | 0.05 | 0.03 |  | 0.02 | 0.02 |  | 0.02 |  | 02 |
| Gold. . . . . . . . . . . . |  |  |  | 0.62 |  | 0.03 |  | 0.02 |  | 0.02 |  |  | 0.02 |
| Gold, electrolytically deposite | 0.53 | 0.16 |  | 0.04 | 0.03 | 0.03 | 0.030 | 0.03 | 0.02 | 0.02 | 0.02 |  | 0.02 |
| Graphite. . . . . . . . . . . . . . . . | 0.78 | 0.76 | 0.75 | 0.73 | 0.65 | 0.57 | 0.52 | 0.49 | 0.46 | 0.42 | 0.41 |  | 0.37 |
| Iridium |  |  |  | 0.22 | 0.13 | 0.09 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.04 |  |
| Ir | 0.45 | 0.43 |  | 0.35 | 0.22 | 0.16 | 0.12 | 0.09 | 0.07 | 0.06 |  |  | 0.05 |
| Lea |  |  |  |  |  |  |  | 0.08 |  | 0.06 |  |  | 0.04 |
| Magnesium | 0.28 | 0.27 | 0.26 | 0.26 | 0.22 | 0.20 | 0.16 | 0.14 | 0.09 | 0.07 |  |  |  |
| Molybden | 0.55 | 0.52 | 0.48 | 0.42 | 0.18 | 0.12 | 0.10 | 0.08 | 0.07 | 0.06 | 0.06 | 0.05 |  |
| Nickel.... |  |  |  | 0.27 |  | 0.12 |  | 0.06 |  | 0.04 |  |  |  |
| Nickel, electrolytically deposited | 0.39 | 0.35 |  | 0.28 | 0.17 | 0.12 | 0.09 | 0.06 | 0.06 | 0.05 |  |  | 0.03 |
| Palladium. . . . . . . . . . . . . . . . . . . |  |  |  | 0.26 | 0.19 | 0.12 | 0.12 | 0.10 | 0.06 | 0.03 | 0.03 | 0.03 | 0.03 |
| Platinum |  | 0.45 |  | 0.27 | 0.19 | 0.11 | 0.08 | 0.06 | 0.05 |  | 0.04 | 0.04 | 0.04 |
| Platinum, electrolytically deposited | 0.42 | 0.36 |  | 0.27 | 0.20 | 0.11 | 0.09 | 0.06 | 0.05 | $5$ |  |  | 0.04 |
| Rhodium. . . . . . . . . . . . . . . . . . | 0.24 | 0.23 | 0.19 | 0.16 | 0.09 | 0.08 | 0.08 | 0.07 | 0.06 | 0.05 | 0.05 |  |  |
| Silicon. | 0.66 | 0.68 | 0.71 | 10.72 | 0.72 |  | 0.72 | $2$ | 0.72 | $2$ | 0.72 |  |  |
| Silver. | 0.10 | 0.07 |  | 0.04 |  | 0.03 |  | 0.03 | $3$ | 0.01 |  | 0.01 | 0.01 |
| Silver, chemically depos | 0.09 |  |  | 0.03 | 0.02 | 0.02 |  |  |  |  | 0.014 |  | . 01 |
| Tantalum. . . . . . . . . . . | 0.62 | 0.55 | 0.36 | 0.22 | 0.10 | 0.08 | 0.07 | 0.07 | 0.06 | 0.06 |  | 0.05 |  |
| Telluriu |  | 0.51 | 0.52 | 0.50 | 0.48 | 0.47 | 0.43 | 0.43 | 0.32 | $2\|0.22\|$ |  |  |  |
| Tin..... |  |  |  | 0.46 | 0.39 | 0.32 | 0.28 | 0.24 | 0.19 | 0.16 | 0.16 | 0.15 |  |
| Tungsten | 0.50 | 0.48 |  | 0.38 | 0.10 | 0.06 |  | 0.05 |  |  | 0.04 | 0.04 |  |
| Vanadium | 0.43 | 0.41 |  | 0.39 | 0.31 | 0.26 | 0.21 | 0.18 | 0.12 | 0.08 |  |  |  |
| Zinc..... . |  |  |  | 0.20 | 0.08 | 0.04 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
| Mach's magnalium $(69 \mathrm{Al}+31 \mathrm{Mg})$ | 0.17 | 0.17 |  | 0.16 |  | 0.13 |  | 0.11 |  | 0.10 |  |  | 0.08 |
| Steel untempered... | 0.45 | 0.45 |  | 0.37 | 0.23 | 0.17 |  | 0.11 | 10.07 | 70.07 |  |  | 0.04 |
| Stellite. . . . . . . . . | 0.36 |  |  | 0.31 | 0.25 | 0.21 | 0.18 | 0.15 |  | 0.1 |  | 0.11 |  |
| Brass, Trobridge. |  |  |  |  | 0.09 |  |  | . 0.04 | $4\|0.03\|$ | $30.02 \mid$ |  |  |  |

## Basic References;

1. Hottel's table from McAdams, "Heat Transmission," 3d ed., McGraw-Hill Book Company, Inc., New York, 1954.
2. Smithells, "Metals Handbook," Interscience Publishers, Inc., New York, 1949.
3. T. S. Holden and J. J. Greenland, Report R. 6, "The Coefficient of Solar Absorptivity and Low Temperature Emissivity of Various Materials," A Review of Literature to 1951. Commonwealth Scientific and Industrial Research Organization, Division of Building Research, Victoria, Australia.
4. E. Schmidt and L. Furthmann, Mitt. Kaiser-Wilhelm, Inst. Eisenforsch. Düsseldorf 109, 225 (1928). (Contains comprehensive bibliography.)
5. G. B. Wilkes, "Heat Insulation," John Wiley \& Sons, Inc., New York, 1950.
6. R. B. Dingle, Physica 19, 311-347 (pt. I, 1953); 348-364 (pt. II, 1953); 729-736 (pt. III, 1953); 1187-1199 (pt. IV, 1953).
7. M. M. Reynolds and M. M. Fulk, unpublished data, NBS, AEC, CEL.
8. "International Critical Tables."
9. M. Jakob, "Heat Transfer," vol. 1, John Wiley \& Sons, Inc., New York, 1949.
10. G. Ribaud, Traité de pyrométrie optique, Rev. opt., 1931.
11. Landolt-Börnstein tables.
12. "Temperature-Its Measurement and Control in Science and Industry," Reinhold Publishing Corporation, New York, 1941.

Table 6g-5. Spectral Emissivity of Materials, Surface Unoxidized, for $\lambda=0.65 \mu^{*}$

| Element | Solid | Liquid | Element | Solid | Liquid |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Beryllium. | 0.61 | 0.61 | Thorium. | 0.36 | 0.40 |
| Carbon. | 0.80-0.93 |  | Titanium | 0.63 | 0.65 |
| Chromium | 0.34 | 0.39 | Tungsten. | 0.43 |  |
| Cobalt. | 0.36 | 0.37 | Uranium. | 0.54 | 0.34 |
| Columbium. | 0.37 | 0.40 | Vanadium. | 0.35 | 0.32 |
| Copper. | 0.10 | 0.15 | Yttrium. | 0.35 | 0.35 |
| Erbium | 0.55 | 0.38 | Zirconium | 0.32 | 0.30 |
| Gold. | 0.14 | 0.22 | Steel. | 0.35 | 0.37 |
| Iridium | 0.30 |  | Cast iron | 0.37 | 0.40 |
| Iron. | 0.35 | 0.37 | Constantan. | 0.35 |  |
| Manganese . | 0.59 | 0.59 | Monel. | 0.37 |  |
| Molybdenum | 0.37 | 0.40 | Chromel P (90 Ni, 10 Cr ) | 0.35 |  |
| Nickel. | 0.36 | 0.37 | $80 \mathrm{Ni}, 20 \mathrm{Cr}$. | 0.35 |  |
| Palladium | 0.33 | 0.37 | $60 \mathrm{Ni}, 24 \mathrm{Fe}, 16 \mathrm{Cr}$. | 0.36 |  |
| Platinum. | 0.30 | 0.38 | Alumel ( 95 Ni ; bal. Al, |  |  |
| Rhodium | 0.24 | 0.30 | Mn, Si ) | 0.37 |  |
| Silver. | 0.07 | 0.07 | $90 \mathrm{Pt}, 10 \mathrm{Rh}$. | 0.27 |  |
| Tantalum. | 0.49 |  |  |  |  |

* American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," p. 1313, Reinhold Publishing Corporation, New York, 1941.


## 6g-3. Emissivity of Solids

$\epsilon_{n}=$ total normal emissivity (emission of radiant energy of all wavelengths normal to the specified surface divided by the corresponding emission from a black body)
$\epsilon_{h}=$ total hemispherical emissivity (emissivity for radiation into a hemisphere centered on the normal to the emitting surface)
$a=$ total absorptivity (fraction of energy incident on a surface which is absorbed: quantities $a_{n}$ and $a_{h}$ analogous to $\epsilon_{n}$ and $\epsilon_{h}$ may be distinguished)
$r=$ reflectivity (fraction of incident energy which is reflected)
$T=$ temperature
For metals: $\quad \frac{\epsilon_{h}}{\epsilon_{n}}=(1.05-1.33) \quad$ (most metals $\left.\cong 1.2\right)$
For nonmetals: $\quad \frac{\epsilon_{h}}{\epsilon_{n}}=(0.95-1.05) \quad($ most nonmetals $\cong 0.98)$
Emissivities increase with surface roughness and, for metals, increase with workhardening, addition of impurities, or formation of contaminating surface films such as oxides. An emissivity value followed by a temperature means absorptivity at that temperature for the black-body radiation of temperature in the ${ }^{\circ} \mathrm{K}$ column. Other values, not separately identified, were calculated from reflectivity data. At equilibrium (emitter and absorber at the same temperature) we have

$$
(\epsilon=a=1-r)_{T}
$$

The above relation would not strictly apply if the absorbing surface and the source of radiation were at different temperatures, because the distribution of energy with wavelength changes with the temperature of the radiating source, and the emissivities of materials vary with the wavelength of the radiation.

Table 6g-6. Spectral Emissivity of Oxides for $\lambda=0.65 \mu^{*}$

| Material | Range of observed values | Probable value for the oxide formed on smooth metal |
| :---: | :---: | :---: |
| Aluminum oxide. | 0.22-0.40 | 0.30 |
| Beryllium oxide. | 0.07-0.37 | 0.35 |
| Cerium oxide... | 0.58-0.80 |  |
| Chromium oxide | 0.60-0.80 | 0.70 |
| Cobalt oxide. |  | 0.75 |
| Columbium oxide | 0.55-0.71 | 0.70 |
| Copper oxide. | 0.60-0.80 | 0.70 |
| Iron oxide.... | 0.63-0.98 | 0.70 |
| Magnesium oxide | 0.10-0.43 | 0.20 |
| Nickel oxide..... | 0.85-0.96 | 0.90 |
| Thorium oxide. | 0.20-0.57 | 0.50 |
| Tin oxide. | 0.32-0.60 |  |
| Titanium oxide. |  | 0.50 |
| Uranium oxide. |  | 0.30 |
| Vanadium oxide |  | 0.70 |
| Yttrium oxide. |  | 0.60 |
| Zirconium oxide | 0.18-0.43 | 0.40 |
| Alumel (oxidized). |  | 0.87 |
| Cast iron (oxidized) |  | 0.70 |
| Chromel P (90 Ni, 10 Cr ) (oxidized). |  | 0.87 |
| $80 \mathrm{Ni}, 20 \mathrm{Cr}$ (oxidized)............. | ......... | 0.90 |
| $60 \mathrm{Ni}, 24 \mathrm{Fe}, 16 \mathrm{Cr}$ (oxidized). |  | 0.83 |
| $55 \mathrm{Fe}, 37.5 \mathrm{Cr}, 7.5 \mathrm{Al}$ (oxidized) | ......... | 0.78 |
| $70 \mathrm{Fe}, 23 \mathrm{Cr}, 5 \mathrm{Al}, 2 \mathrm{Co}$ (oxidized). |  | 0.75 |
| Constantan ( $55 \mathrm{Cu}, 45 \mathrm{Ni}$ ) (oxidized) |  | 0.84 |
| Carbon steel (oxidized). |  | 0.80 |
| Stainless steel (18-8) (oxidized) |  | 0.85 |
| Porcelain...... | 0.25-0.50 |  |

[^313]RADIOMETRY
Table 6g-7. Total Emissivity of Metals, Surface Unoxidized*

| Material | $25^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ | $500^{\circ} \mathrm{C}$ | $1000^{\circ} \mathrm{C}$ | $1500^{\circ} \mathrm{C}$ | $2000^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum. | 0.022 | 0.028 | 0.060 |  |  |  |
| Bismuth. | 0.048 | 0.061 |  |  |  |  |
| Carbon. | 0.081 | 0.081 | 0.079 |  |  |  |
| Chromium | . . . . | 0.08 |  |  |  |  |
| Cobalt. | $\ldots$ | ..... | 0.13 | 0.23 |  |  |
| Columbium |  |  |  | (Liquid 0.15) | 0.19 | 0.24 |
| Copper |  | 0.02 |  |  |  |  |
| Gold. |  | 0.02 | 0.03 |  |  |  |
| Iron. |  | 0.05 |  |  |  |  |
| Lead. |  | 0.05 |  |  |  |  |
| Mercury . | 0.10 | 0.12 |  |  |  |  |
| Molybdenum |  |  |  | 0.13 | 0.19 | 0.24 |
| Nickel. | 0.045 | 0.06 | 0.12 | 0.19 |  |  |
| Platinum. | 0.037 | 0.047 | 0.096 | 0.152 | 0.191 |  |
| Silver. | ..... | 0.02 | 0.035 |  |  |  |
| Tantalum. |  | . |  |  | 0.21 | 0.26 |
| Tin. | 0.043 | 0.05 |  |  |  |  |
| Tungsten. | 0.024 | 0.032 | 0.071 | 0.15 | 0.23 | 0.28 |
| Zinc. | (0.05 at $300^{\circ} \mathrm{C}$ ) |  |  |  |  |  |
| Brass. | 0.035 | 0.035 |  |  |  |  |
| Cast iron. | ..... | 0.21 |  | (Liquid 0.29) |  |  |
| Steel. |  | 0.08 |  | (Liquid 0.28) |  |  |

* American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," p. 1314, Reinhold Publishing Corporation, New York, 1941.

Table 6g-8. Relation between Brightness Temperature and True Temperature for Various Values of Spectral

Emissivity at $\lambda=0.65 \mu^{*}$

| Brightness temp., ${ }^{\circ} \mathrm{C} \ldots .$. | 800 | 1000 | 1200 | 1400 | 1600 | 1800 | 2000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Emissivity $\epsilon(0.65 \mu)$ | True temp., ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| 0.05 | 982 | 1265 | 1567 | 1846 | 2236 | 2609 | 3011 |
| 0.10 | 934 | 1194 | 1467 | 1752 | 2054 | 2370 | 2704 |
| 0.15 | 909 | 1156 | 1413 | 1681 | 1958 | 2248 | 2549 |
| 0.20 | 891 | 1130 | 1377 | 1632 | 1895 | 2168 | 2451 |
| 0.30 | 867 | 1095 | 1329 | 1567 | 1813 | 2064 | 2320 |
| 0.40 | 850 | 1071 | 1296 | 1525 | 1757 | 1995 | 2236 |
| 0.50 | 837 | 1053 | 1272 | 1493 | 1717 | 1944 | 2174 |
| 0.60 | 827 | 1039 | 1252 | 1467 | 1685 | 1905 | 2125 |
| 0.70 | 819 | 1027 | 1236 | 1447 | 1659 | 1872 | 2087 |
| 0.80 | 812 | 1017 | 1222 | 1429 | 1636 | 1844 | 2054 |
| 0.90 | 805 | 1008 | 1210 | 1413 | 1617 | 1821 | 2025 |

[^314]Table 6g-9. Relation between Apparent and True Temperature for Various Values of the Total Emissivity*

| Apparent temp., ${ }^{\circ} \mathrm{C}$ | 100 | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600 | 1800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total emissivity $\epsilon_{t}$ | True temp., ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |  |  |  |
| 0.05 | 422 | 686 | 1137 | 1567 | 1993 | 2317 | 2841 | 3264 | 3687 | 4110 |
| 0.10 | 316 | 536 | 913 | 1275 | 1632 | 1989 | 2345 | 2701 | 3057 | 3413 |
| 0.15 | 264 | 460 | 799 | 1126 | 1449 | 1771 | 2093 | 2415 | 2736 | 3058 |
| 0.20 | 231 | 410 | 725 | 1029 | 1330 | 1629 | 1929 | 2228 | 2527 | 2827 |
| 0.30 | 189 | 347 | 630 | 904 | 1175 | 1446 | 1717 | 1987 | 2258 | 2528 |
| 0.40 | 164 | 307 | 568 | 823 | 1075 | 1327 | 1579 | 1830 | 2082 | 2333 |
| 0.50 | 146 | 278 | 523 | 763 | 1002 | 1240 | 1478 | 1716 | 1954 | 2192 |
| 0.60 | 132 | 255 | 489 | 718 | 945 | 1173 | 1400 | 1628 | 1855 | 2082 |
| 0.70 | 121 | 238 | 461 | 680 | 900 | 1119 | 1337 | 1556 | 1775 | 1993 |
| 0.80 | 113 | 223 | 437 | 649 | 861 | 1073 | 1284 | 1496 | 1707 | 1919 |
| 0.90 | 106 | 211 | 417 | 623 | 828 | 1034 | 1239 | 1445 | 1650 | 1855 |

* American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," Reinhold Publishing Corporation, New York, 1941.

Table 6g-10. Efficiencies of Illuminants*

| Lamp | Rating, or specification | Eff. | Ab. eff. |
| :---: | :---: | :---: | :---: |
| Acetylene. | 1.0 liters/hr | 0.67 | 0.0010 |
| Arc, electric: |  |  |  |
| Carbon, enclosed d-c. | 6.6 amp opal globe and reflector | 5.9 | 0.0087 |
| Carbon, open d-c. | 9.6 amp clear globe | 11.8 | 0.0173 |
| High intensity | 150 amp bare arc | 18.5 | 0.0272 |
| Magnetite d-c. | 6.6 amp | 21.6 | 0.0318 |
| Gas burner, open flame. | Bray high pressure | 0.22 | 0.00032 |
| Gas mantle, incandescent: <br> High pressure. <br> 0.578 lumens/Btu/hr |  |  |  |
|  | 0.578 lumens/Btu/hr | 2.0 | 0.0030 |
| Low pressure | 0.350 lumens/Btu/hr | 1.2 | 0.0018 |
| Incandescent electric carbon filament: |  |  |  |
| First commercial. |  | 1.6 | 0.0023 |
| Squirted cellulose. |  | 3.3 | 0.0048 |
| Metalized. |  | 4.0 | 0.0059 |
| Tungsten filaments: $\quad$ l |  |  |  |
| Vacuum | 25 watt 120 volt ( $1,000 \mathrm{hr}$ life) | 10.6 | 0.0156 |
| Gas-filled | 40 watt 120 volt ( $1,000 \mathrm{hr}$ life) | 11.6 | 0.0171 |
| Gas-filled | 60 watt 120 volt ( $1,000 \mathrm{hr}$ life) | 13.9 | 0.0204 |
| Gas-filled | 100 watt 120 volt ( 750 hr life) | 16.3 | 0.0239 |
| Gas-filled. | 1,000 watt 120 volt ( $1,000 \mathrm{hr}$ life) | 21.6 | 0.0318 |
| Gas-filled | 5,000 watt 120 volt ( 75 hr life) | 32.8 | 0.0482 |
|  |  |  |  |
| General line. | 20 watt standard warm white (T12) | 50.0 | 0.0735 |
| General line. | 40 watt standard warm white (T12) | 64.0 | 0.0940 |
| General line | 90 watt standard warm white (T17) | 58.0 | 0.0850 |
| Slimline | $96 T 8$ ( 120 ma ) standard warm white | 76.0 | 0.1115 |
| Slimline . | 96 T 12 (425 ma) standard warm white | 69.0 | 0.1015 |
| General line | 40 W daylight (T12). | 54.0 | 0.0795 |
| General line | 40 W green (T12) | 84.0 | 0.1235 |
| General line | 40 W blue (T12) | 33.0 | 0.0485 |
| General line. | 40 W red (T12) | 3.6 | 0.0053 |
| Mercury lamps. | 400 W (E1) | 50.0 | 0.0735 |
|  | 1,000 W (A6) | 65.0 | 0.0955 |
| Sodium. | 10,000 lumen | 55.0 | 0.0808 |

[^315]
## OPTICS

Table 6g-11. Approximate Brightness of Various Light Sources*

| Source |  | Lamberts $\dagger$ |
| :---: | :---: | :---: |
| Natural sources: |  |  |
| Clear sky. | Average brightness | 2.5 |
| Sun (as observed from earth's surface). | At meridian | 519,000 |
| Sun (as observed from earth's surface)... | Near horizon | 1,885 |
| Moon (as observed from earth's surface). | Bright spot | 0.8 |
| Combustion sources: |  |  |
| Candle flame (sperm) | Bright spot | 3.1 |
| Kerosene flame (flat wick) | Bright spot | 3.8 |
| Illuminating-gas flame. | Fishtail burner | 1.3 |
| Welsbach mantle....... | Bright spot | 20.0 |
| Acetylene flame. | Mees burner | 34.0 |
| Incandescent electric lamps: Carbon filament. |  | 165 |
| Metalized carbon filament (Gem). |  | 300 |
| Tungsten filament. | Vacuum lamp, 10 lumens per watt | 650 |
| Tungsten filament | Gas-filled lamp, 20 lumens per watt | 3,800 |
| Tungsten filament. | 750-watt projector lamp, 26 lumens per watt | 7,500 |
| Fluorescent lamps: |  |  |
| 20 watt T12 standard warm white. |  | 1.67 |
| 40 watt T12 standard warm white. |  | 2.10 |
| 96 T 12 standard warm white.. |  | 2.052 |
| Electric-are lamps: |  |  |
| Plain carbon arc. | Positive crater 7 mm nonrotating | 55,000 |
| High-intensity carbon arc. | Positive crater 8 mm nonrotating | 125,000 |
| High-intensity carbon arc. | Positive crater 13.6 mm nonrotating | 220,000 |
| High-intensity carbon arc. | Positive crater | 314,000 |
| Mercury lamps: |  |  |
| Low-pressure mercury are 400 W (H1) | 50-in. a-c rectified tube | 6.6 440 |
| 1,000 W (A6) | Water-cooled | 94,000 |
| Sodium lamps. | 10,000 lumens | 18 |

[^316]RADIOMETRY
Table 6g-12. Properties of Tungsten*

| $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | Normal brightness new candles $/ \mathrm{cm}^{2}$ | Spectral emissivity |  | Color emissivity | Total emissivity | Brightness temp. $0.65 \mu$ | Color temp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $0.65 \mu$ | 0.467 $\mu$ |  |  |  |  |
| 300 |  | 0.472 | 0.505 | ... | 0.032 |  |  |
| 400 |  |  |  |  | 0.042 |  |  |
| 500 |  |  |  |  | 0.053 |  |  |
| 600 |  |  |  |  | 0.064 |  |  |
| 700 |  |  |  |  | 0.076 |  |  |
| 800 |  |  |  |  | 0.088 |  |  |
| 900 |  |  |  |  | 0.101 |  |  |
| 1000 | 0.0001 | 0.458 | 0.486 | 0.395 | 0.114 | 966 | 1007 |
| 1100 | 0.001 | 0.456 | 0.484 | 0.392 | 0.128 | 1059 | 1108 |
| 1200 | 0.006 | 0.454 | 0.482 | 0.390 | 0.143 | 1151 | 1210 |
| 1300 | 0.029 | 0.452 | 0.480 | 0.387 | 0.158 | 1242 | 1312 |
| 1400 | 0.11 | 0.450 | 0.478 | 0.385 | 0.175 | 1332 | 1414 |
| 1500 | 0.33 | 0.448 | 0.476 | 0.382 | 0.192 | 1422 | 1516 |
| 1600 | 0.92 | 0.446 | 0.475 | 0.380 | 0.207 | 1511 | 1619 |
| 1700 | 2.3 | 0.444 | 0.473 | 0.377 | 0.222 | 1599 | 1722 |
| 1800 | 5.1 | 0.442 | 0.472 | 0.374 | 0.236 | 1687 | 1825 |
| 1900 | 10.4 | 0.440 | 0.470 | 0.371 | 0.249 | 1774 | 1928 |
| 2000 | 20.0 | 0.438 | 0.469 | 0.368 | 0.260 | 1861 | 2032 |
| 2100 | 36 | 0.436 | 0.467 | 0.365 | 0.270 | 1946 | 2136 |
| 2200 | 61 | 0.434 | 0.466 | 0.362 | 0.279 | 2031 | 2241 |
| 2300 | 101 | 0.432 | 0.464 | 0.359 | 0.288 | 2115 | 2345 |
| 2400 | 157 | 0.430 | 0.463 | 0.356 | 0.296 | 2198 | 2451 |
| 2500 | 240 | 0.428 | 0.462 | 0.353 | 0.303 | 2280 | 2556 |
| 2600 | 350 | 0.426 | 0.460 | 0.349 | 0.311 | 2362 | 2662 |
| 2700 | 500 | 0.424 | 0.459 | 0.346 | 0.318 | 2443 | 2769 |
| 2800 | 690 | 0.422 | 0.458 | 0.343 | 0.323 | 2523 | 2876 |
| 2900 | 950 | 0.420 | 0.456 | 0.340 | 0.329 | 2602 | 2984 |
| 3000 | 1260 | 0.418 | 0.455 | 0.336 | 0.334 | 2681 | 3092 |
| 3100 | 1650 | 0.416 | 0.454 | 0.333 | 0.337 | 2759 | 3200 |
| 3200 | 2100 | 0.414 | 0.452 | 0.330 | 0.341 | 2837 | 3310 |
| 3300 | 2700 | 0.412 | 0.451 | 0.326 | 0.344 | 2913 | 3420 |
| 3400 | 3400 | 0.410 | 0.450 | 0.323 | 0.348 | 2989 | 3530 |
| 3500 | 4200 | 0.408 | 0.449 | 0.320 | 0.351 | 3063 | 3642 |
| 3600 | 5200 | 0.406 | 0.447 | 0.317 | 0.354 | 3137 | 3642 3754 |

[^317]6g-4. Stellar Radiation. Brightness of stars as seen by any photoreceiver may be expressed as a stellar magnitude, related to the effective irradiance $I$ in watts $/ \mathrm{cm}^{2}$ received from the star:

$$
\text { Stellar magnitude } m=-2.5 \log _{10} \frac{I}{I_{0}}
$$

The effective irradiance $I$ from the star as seen by a photoreceiver is

$$
I=\int_{0}^{\infty} J(\lambda) \sigma(\lambda) d \lambda
$$

where $J \lambda=$ spectral distribution of radiation received from the star, in watts $/ \mathrm{cm}^{2}$ per wavelength increment $d \lambda . J(\lambda)$ for stars approximates black-body distribution for the assumed surface temperatures.
$\sigma(\lambda)=$ photoreceiver's spectral-response function normalized at the response peak. Spectral response of a number of photosensitive surfaces is shown in Figs. 6g-1 and 6g-2.
For visual magnitude

$$
I_{0}=\frac{1}{685} \times 10^{-(24.18 / 2.5)}=3.1 \times 10^{-13} \mathrm{watts} / \mathrm{cm}^{2}
$$

(cf. definition of lumen, page 6-9; definition of stellar magnitude, "Smithsonian Tables," 8th ed., Table 798).

Star brightness as seen by photoreceivers other than the eye is also expressed as a stellar magnitude (e.g., bolometric magnitude, photographic magnitude). The magnitude scales are generally adjusted by setting $I_{0}$ so that a class A0 star (surface temperature $11,000^{\circ} \mathrm{K}$ ) appears of the same magnitude to each photoreceiver. For stars at other temperatures the effective-irradiance integral can be evaluated to obtain an index, which when added to visual magnitude gives the star's magnitude as seen by other receivers. Early stellar photometry used the non-color-sensitized (blue-sensitive) photographic plate; the difference between photographic and visual magnitude was called color index. Difference between bolometric and visual magnitude was called heat index. Indices for the principal spectral classes of stars and for several photoreceivers are given in Table 6g-13.

Table 6g-13. Color Indices of Various Stellar Spectral Classes

| Spectral class | Approx eff. surface temp., ${ }^{\circ} \mathrm{K}$ | Index |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Photographic, visual | Bolometric, visual | S4 photosurface, visual | PbS , visual |
| B0. | 20,000 | $-0.30$ | -1.4 | -0.15 | +0.2 |
| A0. | 11,000 | 0 | 0 | 0 | 0 |
| F0. | 7,500 | +0.33 | +0.6 | $+0.30$ | -0.4 |
| gG0 | 5,000 | +0.70 | +0.4 | +0.7 | -1.0 |
| gK0. | 4,200 | +1.12 | +0.1 | +1.0 | -1.5 |
| gM0. | 3,400 | +1.70 | -0.8 | +1.1 | -2.6 |

Effective temperature: Kuiper, Astrophys. J. 88, 464 (1938).
S4 index: computed from manufacturers' data on 1P21 photomultiplier.
Bolometric index: Kuiper, Astrophys. J. 88, 452 (1938).
Photographic index: "Smithsonian Tables," 8th ed.
PbS index: computed from manufacturers' data.


Fig. 6g-1. Characteristics of globar and glower sources.


Table 6g-14. Brightness of Stars as Seen by Various Photoreceivers

| Star | Spectral type | Visual magnitude | S4 photosurface magnitude | Lead sulfide magnitude |
| :---: | :---: | :---: | :---: | :---: |
| Sirius. | A0 | -1.58 | -1.6 | -1.6 |
| Canopus. | F0 | -0.86 | -0.6 | -1.3 |
| $\alpha$ Centauri. | G0 | 0.06 | 0.8 | -0.9 |
| Vega. | A0 | 0.14 | 0.1 | 0.1 |
| Capella. | G0 | 0.21 | 0.9 | -0.8 |
| Arcturus. | K0 | 0.24 | 1.3 | -1.3 |
| Rigel. | B8p | 0.34 | 0.3 | 0.3 |
| Procyon. | F5 | 0.48 | 1.0 | -0.2 |
| Achernar. | B5 | 0.60 | 0.5 | 0.7 |
| Betelgeuse (var.) | M0 | $0.7 \pm 0.5$ | $1.8 \pm 0.5$ | $-1.9 \pm 0.5$ |
| $\beta$ Centauri. | B1 | 0.86 | 0.7 | 1.1 |
| Altair. | A5 | 0.89 | 1.0 | 0.7 |
| $\alpha$ Crucis. | B1 | 1.05 | 0.9 | 1.3 |
| Aldebaran. | K5 | 1.06 | 2.1 | -0.8 |
| Pollux. | K0 | 1.21 | 2.2 | -0.3 |
| Spica. | B2 | 1.21 | 1.1 | 1.4 |
| Antares. | M0 | 1.22 | 2.3 | -1.4 |
| Fomalhaut. | A3 | 1.29 | 1.4 | 1.2 |
| Deneb. | A2p | 1.33 | 1.4 | 1.2 |
| Regulus. | B8 | 1.34 | 1.3 | 1.4 |
| $\beta$ Crucis. | B1 | 1.50 | 1.4 | 1.7 |
| Castor. | A0 | 1.58 | 1.6 | 1.6 |
| $\gamma$ Crucis. | M3 | 1.61 | 2.7 | -1.4 |
| $\epsilon$ Canis Majoris. . | B1 | 1.63 | 1.5 | 1.8 |
| $\epsilon$ Ursa Majoris. | A0p | 1.68 | 1.7 | 1.7 |
| $\gamma$ Orionis. | B2 | 1.70 | 1.6 | 1.9 |
| $\lambda$ Scorpii. | B2 | 1.71 | 1.6 | 1.9 |
| $\epsilon$ Carniae. | K0 | 1.74 | 2.7 | 0.2 |
| $\epsilon$ Orionis. | B0 | 1.75 | 1.6 | 2.0 |
| $\beta$ Tauri. | B8 | 1.78 | 1.7 | 1.8 |
| $\beta$ Carniae. | A0 | 1.80 | 1.8 | 1.8 |
| $\alpha$ Triang. Aust. | K2 | 1.88 | 2.9 | 0.2 |
| $\alpha$ Persei. | F5 | 1.90 | 2.4 | 1.2 |
| $\eta$ Ursa Majoris | B3 | 1.91 | 1.8 | 2.1 |
| $\gamma$ Geminorum. | A0 | 1.93 | 1.9 | 1.9 |
| $\alpha$ Ursa Majoris. | K0 | 1.95 | 3.0 | 0.5 |
| $\epsilon$ Sagitarii. | A0 | 1.95 | 2.0 | 2.0 |
| $\delta$ Canis Majoris. | F8p | 1.98 | 2.6 | 1.1 |
| $\beta$ Canis Majoris. | B1 | 1.99 | 1.9 | 2.2 |

## 6h. Wavelengths for Spectrographic Calibration ${ }^{1}$

Table 6h-1. Wavelength Standards for the Vacuum Ultraviolet*

| Wavelength, A | Intensity | Spectrum | Estimated relative error ( $\pm m A$ ) | Wavelength, A | Intensity | Spectrum | Estimated relative error ( $\pm m A$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,942.273 | 20 | Hg II | 2 | 1,730.874 | 2 | N I | 3 |
| 1,930.902 | 10 | $\mathrm{C}_{1}$ | 2 | 1,727.332 ${ }^{\text {a }}$ | 4 | Si 1 | 3 |
| 1,900.284 | 5 | Hg II | 2 | 1,721.081 | 20 | C II | 3 |
| 1,880.969 | 5 | Si 1 | 2 | 1,720.158 | 18 | C In | 4 |
| 1,870.547 | 20 | Hg II | 4 | 1,707.397 | 4 | Hg II | 4 |
| 1,869.548 | 8 | Hg II | 2 | 1,704.558 ${ }^{\text {a }}$ | 4 | Si I | 4 |
| 1,867.590 | 1 | N II | 3 | 1,702.805 ${ }^{\text {a }}$ | 8 | Si I | 4 |
| 1,864.742 | 5 | N II | 2 | 1,702.733 | 8 | Hg II | 4 |
| 1,862.806 | 2 | N II | 5 | 1,700.522 | 3 | Si I | 4 |
| 1,861.750 ${ }^{\text {a }}$ | 1 | Si 1 | 2 | 1,693.756 | 15 | Si I | 4 |
| 1,859.406 | 3 | Ni ${ }_{\text {I }}$ | 4 | 1,676.913 | 5 | Si I | 4 |
| 1,857.956. | 8 | Ni I | 4 | 1,672.405 | 2 | Hg II | 3 |
| 1,853.260 | 3 | Si 1 | 4 | 1,658.117 ${ }^{\text {c }}$ | 20 | C I | 1 |
| 1,850.665 | 5 | Si I | 5 | 1,657.899 ${ }^{\text {c }}$ | 15 | CI | 4 |
| 1,849.497 | $50 R^{b}$ | Hg I | 4 | 1,657.541 | 1 | C I | 5 |
| 1,849.380 | 5 | Ni 1 | 4 | 1,657.374 ${ }^{\text {c }}$ | 10 | C I | 1 |
| 1,848.237 | 5 | Si I | 4 | 1,657.243 | 1 | C I | 5 |
| 1,846.014 | 8 | N II | 4 | 1,657.001 ${ }^{\text {c }}$ | 30 | C I | 1 |
| 1,844.304 | 10 | N II | 4 | 1,656.923 ${ }^{\text {c }}$ | 15 | C I | 1 |
| 1,842.066 | 1 | N II | 5 | 1,656.454 | 4 | C I | 4 |
| 1,839.995 | 4 | Si I | 4 | 1,656.259 | 15 | C I | 1 |
| 1,833.264 | 1 | C | 5 | 1,654.055 | 5 | C I | 3 |
| 1,831.973 | 5 | N II | 4 | 1,653.644 | 2 | Hg II | 3 |
| 1,830.458 | 4 | N II | 4 | 1,649.932 | 10 | Hg II | 4 |
| 1,820.336 | 20 | Hg in | 4 | 1,640.474 | $80^{\text {d }}$ | He II | 4 |
| 1,816.921 | 8 | Si II | 2 | 1,640.342 | $100^{d}$ | He II | 2 |
| 1,808.003 | 5 | Si II | 4 | 1,630.180 | 2 | Si 1 | 3 |
| 1,807.303 | 30 | N II | 5 | 1,629.931 | 4 | Si I | 4 |
| 1,803.888 | 2 | Hg II | 2 | 1,629.830 | 4 | N II | 4 |
| 1,796.897 | 15 | Hg II | 4 | 1,629.366 | 4 | Si 1 | 4 |
| 1,787.805 ${ }^{\text {a }}$ | 10 | Si I | 2 | 1,613.251 | 4 | He II | 4 |
| 1,782.817 | 15 | Na III | 4 | 1,605.321 | 1 | He II | 3 |
| 1,775.677 | 1 | Hg I | 4 | 1,602.598 | 15 | C I | 3 |

[^318]Table 6h-1. Wavelength Standards for the Vacuum Ultraviolet* (Continued)

| Wavelength, A | Intensity | Spectrum | Estimated relative error $( \pm m A)$ | Wavelength, A | Intensity | Spectrum | Estimated relative error $( \pm m A)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,774.941 ${ }^{\text {a }}$ | 20 | Si ${ }^{\text {I }}$ | 4 | 1,592.245 | 4 | Si ${ }_{\text {I }}$ | 3 |
| 1,769.658 ${ }^{\text {a }}$ | 1 | Si i | 4 | 1,589.607 | 2 | Si I | 3 |
| 1,753.113 ${ }^{\text {a }}$ | 2 | Si 1 | 3 | 1,574.035 | 1 | N iI | 3 |
| 1,749.771 ${ }^{\text {a }}$ | 1 | Si I | 5 | 1,561.433 | 20 | C I | 2 |
| 1,745.246 | 30 | N I | 3 | 1,561.339 | 5 | C I | 4 |
| 1,743. 322 | 10 | N if | 4 | 1,560.687 ${ }^{\text {d }}$ | 15 | C I | 12 |
| 1,742.724 | 60 | N I | 3 | 1,560.301 | 2 | C I | 5 |
| 1,740.327 | 15 | N if | 3 | 1,504.474 | 5 | Hg III | 4 |
| 1,736.582 | 8 | Si 1 | 4 | 1,494.673 | 60 | N I | 4 |
| 1,732.142 | 15 | Hg II | 4 | 1,492.824 | 30 | N I | 4 |
| 1,492.624 | 80 | Ni | 5 | 1,280.403 ${ }^{\text {e }}$ | 5 | C i | 4 |
| 1,485.600 | 8 | Si in | 2 | 1,280.340 ${ }^{\text {e }}$ | 15 | C I | 1 |
| 1,481.760 | 30 | C i | 3 | 1,280.140 ${ }^{\text {c }}$ | 8 | C I | 1 |
| 1,470.082 | 5 | C I | 3 | 1,279.897e | 10 | C I | 1 |
| 1,469.844 | 15 | C i | 4 | 1,279.230 | 8 | C i | 3 |
| 1,467.405 | 20 | C i | 3 | 1,277.727 | 20 | C I | 1 |
| 1,466.723 | 5 | N i | 4 | 1,277.551 | 50 | C I | 4 |
| 1,463.838 | 40 | C | 3 | 1,277. 282 | 40 | C I | 1 |
| 1,463.346 | 40 | C i | 2 | 1,276.754 | 3 | N in | 1 |
| 1,459.034 | 20 | C i | 4 | 1,265.001 | 1 | Si in | 1 |
| 1,439.094 | 10 | Si in | 2 | 1,261.559 ${ }^{\text {f }}$ | 15 | C i | 1 |
| 1,411.948 | 30 | N I | 3 | 1,261.430 | 8 | C i | 4 |
| 1,393.322 | 1 | Hg III | 2 | 1,261.128 ${ }^{\text {f }}$ | 8 | C I | 1 |
| 1,364.165 | 8 | C I | 4 | 1,261.000 ${ }^{\prime}$ | 8 | C i | 1 |
| 1,361.267 | 8 | Hg II | 4 | 1,260.930 | 8 | C I | 2 |
| 1,357.140 | 5 | $\mathrm{C}_{\text {I }}$ | 2 | 1,260.738 ${ }^{\text {f }}$ | 8 | C I | 1 |
| 1,355.598 | 2 | O I | 3 | 1,259.523 | 10 | C I | 3 |
| 1,354.292 | 8 | C I | 3 | 1,253.816 | 5 | C i | 1 |
| 1,350.074 | 4 | Hg II | 2 | 1,251.164 | 8 | Si II | 4 |
| 1,335.692 | 80 | $\mathrm{C}_{\text {II }}$ | 5 | 1,250.586 | 4 | Hg I | 4 |
| 1,335.184 | 8 | Hg | 3 | 1,248.426 | 5 | Si II | 4 |
| 1,334.520 | 60 | $\mathrm{C}_{\text {II }}$ | 5 | 1,246.738 | 1 | Si in | 3 |
| 1,331.737 | 20 | Hg II | 4 | 1,243.309 | 15 | N I | 4 |
| 1,329.590 | 40 | C I | 1 | 1,243.179 | 20 | Ni | 1 |
| 1,329.108 | 40 | C i | 2 | 1,229.172 | 1 | Ni | 1 |
| 1,328.836 ${ }^{\text {d }}$ | 15 | C i | 10 | 1,228.790 | 10 | N I | 4 |
| 1,327.927 | 10 | N i | 2 | 1,228.410 | 5 | Ni | 4 |
| 1,326.572 | 15 | N I | 4 | 1,225.372 | 10 | Ni | 1 |
| 1,321.712 | 20 | Hg II | 3 | 1,225.028 | 15 | N i | 4 |
| 1,319.684 | 30 | $\mathrm{N}_{\text {I }}$ | 4 | 1,215.662 | $100 R^{\text {b }}$ | H | 5 |
| 1,319.003 | 20 | Ni | 2 | 1,215.167 | 5 | He II | 5 |
| 1,316.287 | 1 | N i | 1 | 1,215.086 | 5 | He II | 4 |
| 1,311.365 | 20 | C i | 3 | 1,200.708 ${ }^{\text {a }}$ | 30 | N I | 2 |

Table 6h-1. Wavelength Standards for the Vacuum Ultraviolet* (Continued)

| Wavelength, A | Intensity | Spectrum | Esti- <br> mated <br> relative <br> error $( \pm m A)$ | Wavelength, A | Intensity | Spectrum | Estimated relative error ( $\pm m A$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,310.952 | 25 | N I | 1 | 1,200.226 ${ }^{\text {a }}$ | 40 | N I | 1 |
| 1,310.548 | 25 | N I | 3 | 1,199.718 ${ }^{\text {g }}$ | 2 | N I | 4 |
| 1,309.278 | 3 | Si II | 5 | 1,199.5510 | 50 | N i, C i | 5 |
| 1,307.928 | 10 | $\mathbf{H g}$ II | 3 | 1,194.496 | 5 | Si ${ }^{\text {I }}$ | 1 |
| 1,306.036 | 25 | $\mathrm{O}_{\text {I }}$ | 3 | 1,194.060 | 3 | $\mathrm{C}_{1}$ | 3 |
| 1,304.872 | 30 | $\mathrm{O}_{1}$ | 5 | 1,193.674 | 3 | $\mathrm{C}_{1}$ | 3 |
| 1,302. 173 | 30 | $\mathrm{O}_{1}$ | 1 | 1,193.388 ${ }^{\text {d }}$ | 3 | C I | 8 |
| 1,288. 430 | 5 | $\mathrm{C}_{1}$ | 3 | 1,193.243 | 15 | C I | 2 |
| 1,280.852 ${ }^{\text {e }}$ | 10 | C I | 1 | 1,193.013 | 15 | C I | 4 |
| 1,280.604 ${ }^{\text {e }}$ | 8 | C I | 3 | 1,189.628 | 5 | $\mathrm{N}_{\text {I }}$ | 4 |
| 1,189. 244 | 3 | $\mathrm{N}_{1}$ | 3 | 1,069.984 | 30 | N I | 1 |
| 1,188.972 | 5 | N 1 | 1 | 1,068.476 | 35 | $\mathrm{N}_{1}$ | 4 |
| 1,177.694 | 15 | N I | 3 | 1,067.607 | 35 | $\mathrm{N}_{\text {I }}$ | 4 |
| 1,176.626 | 3 | N | 5 | 1,041.688 | 1 | $\mathrm{O}_{1}$ | 4 |
| 1,176.508 | 15 | $\mathrm{N}_{1}$ | 1 | 1,040.941 | 15 | $\mathrm{O}_{1}$ | 4 |
| 1,170.276 | 1 | N I | 3 | 1,039.233 | 20 | $\mathrm{O}_{1}$ | 4 |
| 1,169.692 | 1 | N 1 | 1 | 1,037.627 | 0 | 0 | 3 |
| 1,168.537 | 20 | N I | 4 | 1,037.020 | 0 | C II | 1 |
| 1,168.334 | 8 | N 1 | 4 | 1,028.162 | 8 | O I | 3 |
| 1,167.450 | 25 | N 1 | 4 | 1,027.433 | 20 | $\mathrm{O}_{1}$ | 3 |
| 1,164.322 | 8 | N I | 3 | 1,025.728 | 60 | H | 3 |
| 1,163.884 | 12 | $\mathrm{N}_{1}$ | 4 | 1,025. 298 | $2^{i}$ | He II | 5 |
| 1,158.138 | 1 | $\mathrm{C}_{1}$ | 5 | 990.805 ${ }^{\text {h }}$ | 2 | O I | 4 |
| 1,158.030 | 8 | $\mathrm{CI}_{1}$ | 4 | 990, $210^{h}$ | 8 | $\mathrm{O}_{1}$ | 4 |
| 1,152.149 | 2 | O I | 5 | 990, $132^{h}$ | 1 | $\mathrm{O}_{1}$ | 4 |
| 1,134.988 | 25 | $\mathrm{N}_{1}$ | 4 | 988, $776{ }^{h}$ | 15 | O I | 4 |
| 1,134.426 | 25 | N I | 4 | 988, $661^{\text {h,d }}$ | 2 | O I | 4 |
| 1,134.176 | 20 | N 1 | 4 | 977,967 | 1 | $\mathrm{O}_{\text {I }}$ | 4 |
| 1,101.293 | 40 | N 1 | 5 | 964.626 | 1 | $\mathrm{N}_{\text {I }}$ | 4 |
| 1,100.362 | 30 | N I | 4 | 963.991 | 5 | $\mathrm{N}_{\text {I }}$ | 4 |
| 1,099.259 | 40 | Hg II | 3 | 953.658 | 15 | N I | 4 |
| 1,099.153 | 25 | N I | 5 | 953.415 | 15 | N I | 3 |
| 1,098.264 | 40 | $\mathrm{N}_{\text {I }}$ | 5 | 952.522 | 4 | $\mathrm{N}_{\text {I }}$ | 4 |
| 1,098. 103 | 40 | N I | 5 | 952.414 | 8 | O I | 4 |
| 1,097.990 | 25 | N I | 4 | 952.304 | 8 | $\mathrm{N}_{\text {I }}$ | 4 |
| 1,097.245 | 50 | $\mathrm{N}_{\mathrm{I}}$ | 4 | 950.114 | 0 | $\mathrm{O}_{\text {I }}$ | 4 |
| 1,096.749 | 35 | $\mathrm{Ni}_{1}$ | 4 | 949.742 | 25 | H | 4 |
| 1,096.322 | 35 | $\mathrm{N}_{1}$ | 2 | 910.279 | 0 | $\mathrm{N}_{\text {I }}$ | 5 |
| 1,095.940 | 35 | $\mathrm{N}_{1}$ | 3 | 909.692 | 0 | N I | 5 |
| 1,085.707 | 50 | N II | 3 | 906.722 | 1 | N I | 2 |
| 1,085.546 | 3 | N II | 5 | 906.426 | 15 | N I | 4 |
| 1,085.442 | 3 | N II | 3 | 906.202 | 10 | N I | 3 |
| 1,084.970 | 2 | He ir | 4 | 905.829 | 5 | N I | 4 |

Table 6h-1. Wavelength Standards for the Vacuum Ultraviolet* (Continued)

| Wavelength, A | Intensity | Spec- <br> trum | Estimated relative error ( $\pm m A$ ) | Wavelength, A | Intensity | Spec- <br> trum | Estimated relative error $( \pm m A)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,084.910 | 2 | He II | 5 | 893.079 | 0 | Hg II | 2 |
| 1,084.579 | 30 | N II | 3 | 888.363 | 0 | N I | 2 |
| 1,083.990 | 20 | N II | 4 | 888.019 | 0 | N I | 4 |
| 1,070.821 | 0 | N I | 5 | 875.092 | 5 | N I | 5 |

* J. Opt. Soc. Am. 45, 10 (1955).
${ }^{\text {a }}$ Identification: A. Fowler, Proc. Roy. Soc. (London), ser. A, 123, 422 (1929); J. C. Boyce and H. A. Robinson, J. Opt. Soc. Am. 26, 133 (1936).
$b$ Self-reversed resonance line.
c Resolved $2 p^{2}{ }^{3} P-38^{3} P^{0}$ multiplet.
${ }^{d}$ Blended line.
- Completely resolved $2 p^{2}{ }^{3} P-4 s s^{3} P^{0}$ multiplet.
$f$ Completely resolved $2 p^{2}{ }^{3} P-3 d^{3} P^{0}$ multiplet.
- Resolved $2 p^{3}{ }^{4} S^{0}-3 s{ }^{4} P$ multiplet.
${ }^{h} 2 p^{4} 3 P-3 s^{\prime}{ }^{3} D^{0}$ multiplet.
$i$ Diffuse line.

WAVELENGTHS FOR SPECTROGRAPHIC CALIBRATION

## Table 6h-2. Proposed International Wavelength Standards

 in the Vacuum Ultraviolet| Wavelength, A, this research | Spectrum | Wavelength, A, More and Rieke ${ }^{a}$ | Wavelength, A, Boyce and Rieke ${ }^{b}$ | Wavelength, A, Weber and Watson ${ }^{c}$ | Wavelength, A, other observers | Wavelength, A, mean value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,930.902 | C i |  | 0.900 | 0.889 |  | 1,930.897 |
| 1,745.246 | Ni |  | 0.246 | 0.255 |  | 1,745.249 |
| 1,742.724 | $\mathrm{N}_{1}$ |  | 0.734 | 0.733 |  | 1,742.730 |
| 1,740.327 | N iI |  |  | 0.320 | $0.315^{\text {d }}$ | 1,740.321 |
| 1,658.117 | CI |  | 0.126 | 0.127 |  | 1,658.123 |
| 1,657.899 | $\mathrm{Cl}_{1}$ | 0.909 |  |  | $0.891{ }^{\text {e }}$ | 1,657.900 |
| 1,657.374 | $\mathrm{Cl}_{1}$ |  | 0.380 | 0.381 |  | 1,657.378 |
| 1,657.001 | C |  | 0.005 |  | $6.998^{\circ}$ | 1,657.001 |
| 1,656.259 | $\mathrm{Cl}_{1}$ | 0.266 |  |  | $0.255^{\text {e }}$ | 1,656.260 |
| 1,560.301 | C | 0.308 | 0.316 |  |  | 1,560.308 |
| 1,494.673 | Ni | 0.672 | 0.669 | 0.668 |  | 1,494.670 |
| 1,492.624 | Ni |  | 0.630 | 0.634 |  | 1,492.630 |
| 1,481.760 | $\mathrm{C}_{1}$ | 0.771 |  |  | $0.750^{\prime}$ | 1,481.760 |
| 1,335.692 | $\mathrm{C}_{\text {II }}$ | 0.700 |  |  | $0.684{ }^{\circ}$ | 1,335.692 |
| 1,329.590 | $\mathrm{Cl}_{1}$ | 0.587 |  |  | $0.583^{h}$ | 1,329.587 |
| 1,329.108 | C 1 | 0.102 | 0.101 |  |  | 1,329.104 |
| 1,277.282 | C 1 |  | 0.274 |  | $0.280^{h}$ | 1,277.279 |
| 1,261.559 | $\mathrm{CI}_{1}$ |  | 0.560 |  | $0.565^{h}$ | 1,261.561 |
| 1,200.708 | Ni | 0.719 | 0.706 | 0.693 |  | 1,200.708 |
| 1,200.226 | Ni | 0.217 | 0.220 | 0.215 |  | 1,200.219 |
| 1,199.551 | Ni | 0.552 | 0.547 | 0.557 |  | 1,199.552 |
| 1,177.694 | $\mathrm{N}_{\mathrm{I}}$ | 0.701 |  | 0.677 |  | 1,177.691 |
| 1,176.508 | Ni | 0.506 | $\ldots$ | 0.498 |  | 1,176.504 |
| 1,167.450 | Ni | 0.442 |  | 0.454 |  | 1,167.449 |
| 1,134.988 | Ni | 0.977 | 0.980 | 0.980 |  | 1,134.981 |
| 1,134.426 | Ni | ..... | 0.419 | 0.416 |  | 1,134.420 |
| 1,134.176 | Ni |  | 0.171 | 0.169 |  | 1,134.172 |
| 1,085.546 | $\mathrm{N}_{\mathrm{II}}$ |  | 0.546 | 0.546 |  | 1,085.546 |
| 1,084.579 | $\mathrm{N}_{\mathrm{N}}$ | 0.584 | 0.579 | 0.582 |  | 1,084.580 |
| 1,083.990 | N ir |  | 0.991 | 0.990 |  | 1,083.990 |
| 990.805 | C ${ }_{\text {I }}$ | 0.790 | 0.797 |  |  | 1,083.797 |
| 990.210 | C 1 | 0.198 | 0.213 |  |  | 990.207 |

[^319]Table 6h-3. Infrared Standard Wavelengths

| Wavelength, $\mu$ | State | Description | Substance | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| 0.54607 | Emission | AH-4 lamp | Mercury | 9 |
| 0.57696 | Emission | AH-4 lamp | Mercury | 9 |
| 0.57907 | Emission | AH-4 lamp | Mercury | 9 |
| 1.01398 | Emission | AH-4 lamp | Mercury | 9 |
| 1.12866 | Emission | AH-4 lamp | Mercury | 9 |
| 1.140 | Liquid |  | Benzene | 6 |
| 1.35703 | Emission | AH-4 lamp | Mercury | 9 |
| 1.36728 | Emission | AH-4 lamp | Mercury | 9 |
| 1.39506 | Emission | AH-4 lamp | Mercury | 9 |
| 1.52452 | Emission | AH-4 lamp | Mercury | 9 |
| 1.6606 | Liquid | $0.5-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 9 |
| 1.671 | Liquid |  | Benzene | 6 |
| 1.69202 | Emission | AH-4 lamp | Mercury | 9 |
| 1.69419 | Emission | AH-4 lamp | Mercury | 9 |
| 1.70727 | Emission | AH-4 lamp | Mercury | 9 |
| 1.71090 | Emission | AH-4 lamp | Mercury | 9 |
| 1.81307 | Emission | AH-4 lamp | Mercury | 9 |
| 1.97009 | Emission | AH-4 lamp | Mercury | 9 |
| 2.008 | Gas |  | Carbon dioxide |  |
| 2.150 | Liquid |  | Benzene |  |
| 2.1526 | Liquid | $0.5-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene Carbon disulfide |  |
| 2.22 | Liquid |  | Carbon disulfide <br> Mercury | $\begin{aligned} & 9 \\ & 9 \end{aligned}$ |
| 2.24929 2.3126 | Emission | AH-4 lamp 0.5-mm cell | Mercury <br> 1,2,4-Trichlorobenzene |  |
| 2.3126 2.32542 | Liquid Emission | 0.5-mm cell AH-4 lamp | Mercury | 9 |
| 2.37 | Solid | $25-\mu$ film | Polystyrene | Wright |
| 2.4030 | Liquid | $0.5-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 0 |
| 2.4374 | Liquid | $0.5-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 9 |
| 2.439 | Gas |  | Carbon oxysulfide central min | 8 |
| 2.464 | Liquid |  | Benzene | 5 |
| 2.4944 | Liquid | $0.5-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 9 |
| 2.5434 | Liquid | $0.5-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene |  |
| 2.688 | Gas | $5.0-\mathrm{cm}$ cell | Carbon dioxide Methanol | Barker and Wu <br> 9 |
| 2.7144 2.765 | Vapor Gas | 5.0-cm cell | Methanol | Barker and Wu |
| 2.79 | Solid |  | Lithium fluoride | 9 |
| 2.996 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia-zero branch | 2 |
| 3.2204 | Solid | 25- $\mu$ film | Polystyrene | 9 |
| 3.230 | Gas |  | Carbon oxysulfide central min | 8 |
| 3.2432 | Solid | 25- $\mu$ film | Polystyrene | 9 |
| 3.2666 | Solid | 25- $\mu$ film | Polystyrene | 9 |
| 3.3033 | Solid | $25-\mu$ film | Polystyrene | 9 |
| 3.3101 | Solid | $25-\mu$ film | Polystyrene | 9 |

WAVELENGTHS FOR SPECTROGRAPHIC CALIBRATION
Table 6h-3. Infrared Standard Wavelengths (Continued)

| Wavelength, $\mu$ | State | Description | Substance | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| 3.320 | Gas |  | Methane-zero branch | 7 |
| 3.3293 | Gas | 5.0-cm cell | Methane | 9 |
| 3.4188 | Solid | 25- $\mu$ film | Polystyrene | 9 |
| 3.426 | Gas |  | Carbon oxysulfide central min | 8 |
| 3.465 | Gas |  | Hydrogen chloride central min |  |
| 3.5078 | Solid | $25-\mu$ film | Polystyrene | 9 |
| 4.258 | Gas | Atmospheric | Carbon dioxide | 9 |
| 4.613 | Vapor |  | Carbon disulfide central min | 5 |
| 4.866 | Vapor | 5.0-cm cell | Methanol | 9 |
| 4.875 | Gas |  | $\begin{aligned} & \text { Carbon oxysulfide } \\ & \text { central min } \end{aligned}$ | 8 |
| 5.138 | Solid | 50- $\mu$ film | Polystyrene | 9 |
| 5.284 | Gas |  | Carbon oxysulfide central min | 8 |
| 5.292 | Gas |  | Ethylene central min | 5 |
| 5.549 | Solid | 50- $\mu$ film | Polystyrene | 9 |
| 5.847 | Gas |  | Carbon oxysulfide central min | 8 |
| 6.154 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia-zero branch | 2 |
| 6.238 | Solid | $50-\mu$ film | Polystyrene |  |
| 6.692 | Solid | $50-\mu$ film | Polystyrene | 9 |
| 6.753 | Liquid |  | Benzene | S. Silverman |
| 6.925 | Gas |  | Ethylene-zero branch | 5 |
| 7.268 | Liquid | $0.05-\mathrm{mm}$ cell | Methylcyclohexane | 5 |
| 7.681 | Gas |  | Methane-zero branch | 3 |
| 8.241 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 8.362 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 8.490 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 8.623 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 8.762 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 9.057 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 9.216 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 9.295 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 9.378 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 9.548 | Gas |  | Carbon oxysulfide central min | 8 |
| 9.608 | Vapor |  | Methyl chloride | 4 |
| 9.672 | Vapor | 5-cm cell | Methanol | 9 |
| 9.673 | Gas |  | Ammonia | Wright |
| 9.724 | Solid | 50- $\mu$ film | Polystyrene | 9 |
| 9.807 | Vapor |  | Methyl chloride | 4 |
| 9.85 | Gas |  | Ammonia | Wright |

Table 6h-3. Infrared Standard Wavelengths (Continued)

| Wavelength, $\mu$ | State | Description | Substance | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| 10.073 | Gas | $200-\mathrm{mm} \mathrm{5.0-cm} \mathrm{cell}$ | Ammonia | 2 |
| 10.53 | Gas |  | Ethylene-zero branch | 5 |
| 11.008 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 11.035 | Solid | $50-\mu$ film | Polystyrene | 9 |
| 11.26 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | J. Opt. Soc. Am. |
| 11.475 | Liquid | $0.05-\mathrm{mm}$ cell | Methylcyclohexane | 9 |
| 11.793 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 11.862 | Liquid | $0.05-\mathrm{mm}$ cell | Methylcyclohexane | 9 |
| 12.075 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 12.381 | Gas | $200-\mathrm{mm} 5.0-\mathrm{cm}$ cell | Ammonia | 2 |
| 12.732 | Gas |  | Acetylene | 1 |
| 12.809 | Gas |  | Acetylene | 1 |
| 12.885 | Gas |  | Acetylene | 1 |
| 12.961 | Gas |  | Acetylene | 1 |
| 12.99 | Gas |  | Ammonia | Wright |
| 13.69 | Gas |  | Acetylene | 1 |
| 13.883 | Gas | Atmospheric | Carbon dioxide | 9 |
| 14.29* | Solid | $50-\mu$ film | Polystyrene | 9 |
| 14.42 | Liquid |  | Toluene $1 \%$ in carbon disulfide | 9 |
| 14.98 | Gas | Atmospheric | Carbon dioxide | 9 |
| 15.48 | Liquid | $0.05 \mathrm{~mm}\left(1: 4 \mathrm{CS}_{2}\right.$ ) | Unknown in technical grade of $1,2,4-$ trichlorobenzene | 9 |
| 17.40* | Liquid | $0.025-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 9 |
| 18.16 | Liquid | $0.025-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 9 |
| 20.56 | Liquid | $0.05-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene (sat. sol. in $\mathrm{CS}_{2}$ ) | 9 |
| 21.52 | Liquid | $0.05-\mathrm{mm}$ cell | Toluene | 9 |
| 21.80 | Liquid | $0.025-\mathrm{mm}$ cell | 1,2,4-Trichlorobenzene | 9 |
| $22.76^{*}$ | Liquid | $0.025-\mathrm{mm} \text { cell }$ | 1,2,4-Trichlorobenzene | 9 |
| 23.85 | Vapor | Atmospheric | Water | 9 |

* Broad bands.


## References

1. Levin and Meyer: J. Opt. Soc. Am. 16, 137 (1928); Meyer and Levin: Phys. Rev. 29(2), 293 (1927).
2. Oetjen, Kao, and Randall: Rev. Sci. Instr. 13, 515 (1942).
3. Cooley: Astrophys. J. 62, 73 (1925).
4. Bennett and Meyer: Phys. Rev. 32, 888 (1927).
5. McKinney, Leberknight, and Warner: J. Am. Chem. Soc. 59, 481 (1937).
6. Liddel and Kaspar: J. Research Natl. Bur. Standards 11, 599 (1933).
7. Nielsen and Nielsen: Phys. Rev. 48, 864 (1935).
8. Bartunek and Baker: Phys. Rev. 48, 516 (1935).
9. Plyler: J. Research Natl. Bur. Standards 45, 463.

# 6i. Magneto- and Electro-optics 

C. B. WEST<br>Polaroid Corporation<br>ROBERT O'B. CARPENTER<br>Baird-Atomic, Inc.

Table 6i-1. Verdet Constants*
Gases and Vapors, $V_{0}$ for $\lambda 578$ as Reduced to $0^{\circ} \mathrm{C}$ and 760 mm Hg

| Gas | $10^{6} V_{0}$ | Gas | $10^{6} V_{0}$ |
| :---: | :---: | :---: | :---: |
| He. | +0.40 | CO . | 11.0 |
| Ne . | 1.0(4) | $\mathrm{CO}_{2}$. | 9.39 |
| A. | 9.3(6) | NO. | -58 |
|  |  | $\mathrm{N}_{2} \mathrm{O}$. | 7.7 (5) |
| H2. <br> $\mathrm{N}_{2}$. | 6.2(9) | $\mathrm{SO}_{2}$. | 30.5 |
| $\mathrm{N}_{2}$. | 6.4(6) |  |  |
| Air. | 6.27 | (CN) $\mathrm{m}_{2} \ldots$ | 22.5 |
| $\mathrm{O}_{2}$. | 5.69 |  |  |
| $\mathrm{Cl}_{2}$. | 31.9 | $\mathrm{CH}_{4}$. | 17.4 |
|  |  | $\mathrm{C}_{2} \mathrm{H}_{2}$. | 33.0 |
| $\mathrm{HCl}^{\text {c }}$ | 21.5 | $\mathrm{C}_{2} \mathrm{H}_{4}$. | 34.5 |
| HBr . | (32.0) | $\mathrm{C}_{2} \mathrm{H}_{6}$. | 23.5 |
| $\mathrm{H}_{2} \mathrm{~S}$. | 41.5 | $\mathrm{C}_{3} \mathrm{H}_{8}$. | 34.0 |
| $\mathrm{H}_{2} \mathrm{Se}$. | 61.0 | $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$. |  |
| $\mathrm{NH}_{3}$. | 19.0 |  |  |
| $\mathrm{PH}_{3}$ | (56.0) |  |  |
| $\mathrm{AsH}_{3}$ | 68.0 |  |  |

* Selected except as noted from R. de Malleman, "Tables de Constantes Selectionnées, Pouvoir Rotatoire Magnetique (Effet Faraday)," Paris, Hermann \& Cie, 1951.

6i-1. Magnetic Rotation (Faraday Effect). When a linear-polarized light ray of wavelength $\lambda$ in vacuum traverses an inactive medium at temperature $t$ of length $l$ in the direction of an external magnetic fleld of strength $H$, the rotation $\alpha$, associated with circular birefringence, which the ray very generally exhibits as a result of the field is expressed by

$$
\alpha=V H l
$$

where $V$ is the Verdet constant of the medium. A possible natural rotatory power of the medium, $\alpha_{0}$, may be provided for by the modified expression

$$
\begin{aligned}
\alpha= & \left(\alpha_{0}+V H\right) l \\
& 6-91
\end{aligned}
$$

# Table 6i-1. Verdet Constants* (Continued) <br> Inorganic and Metal-organic Liquids 

| Liquid | $\lambda$ | $t$ | $10^{2} \mathrm{~V}$ |
| :---: | :---: | :---: | :---: |
| Phosphorus. | 589 | 33 | +13.3 |
| Sulfur. | 589 | 114 | 8.1 |
| Bromine. | 700 | 0 | 5.3 |
| $\mathrm{H}_{2} \mathrm{O}$ | 589 | 20 | 1.309 |
| $\mathrm{D}_{2} \mathrm{O}$ | 589 | 19.7 | 1.257 |
| $\mathrm{H}_{2} \mathrm{O}_{2}$. | 578 | 10 | 1.14 (8) |
| $\mathrm{H}_{3} \mathrm{PO}_{3}$. | 578 | 76 | 1.63 (5) |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$. | 578 | 97.4 | $1.35(4)$ |
| $\mathrm{CS}_{2}$. | 589 | 20 | 4.255 |
| $\mathrm{S}_{2} \mathrm{Cl}_{2}$. | 578 | 18 | 7.45 |
| $\mathrm{PCl}_{3}$. | 578 | 26 | 3.02 |
| $\mathrm{AsCl}_{3}$ | 589 |  | 4.25 |
| $\mathrm{CCl}_{4}$. | 589-78 | 25.1 | 1.60 |
| $\mathrm{SiCl}_{4}$. | 578 | 20 | 2.04 |
| $\mathrm{TiCl}_{4}$. | 578 | 17 | -1.65 |
| $\mathrm{SnCl}_{4}$ | 578 | 28 | 4.46 |
| $\mathrm{SbCl}_{5}$. | 578 | 18 | 7.45 |
| $\mathrm{PBr}_{3}$. | 578 | 20 | 6.05 |
| TiBr ${ }_{4}{ }^{\text {a }}$. | 578 | 46 | -5.3 |
| $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$. | 578 | 20 | 3.01 |
| $\mathrm{Ni}(\mathrm{CO}){ }_{4}{ }^{\text {a }}$. | 578 | 17 | 7.35 |

a P. Fritsch, Compt. rend. 217, 447 (1943)
${ }^{\text {b }}$ J. Verhaeghe, Bull. Sci. acad. roy. Belg. 18, 532 (1932)
For para- and ferromagnetic media, especially as one proceeds to high field strengths and low temperatures, the foregoing relations may have only a limited range of validity; rather the rotation $\alpha$ may tend toward, or actually attain, a saturation value $\alpha_{\infty}$ as the external field is increased.

When the same light ray traverses an inactive absorbing medium in the magnetic field it may emerge elliptic-polarized with the major axis of the ellipse rotated through the analogous angle $\alpha$ and with ellipticity measured by the angle $\beta$ of the same order of magnitude. Such ellipticity is associated with circular dichroism. The formal expressions for magnetic ellipticity are analogous to those for magnetic rotation; thus

$$
\begin{aligned}
& \beta=R H l \\
& \beta=\left(\beta_{0}+R H\right) l
\end{aligned}
$$

for media without or with measurable natural "ellipticity power" $\beta_{0}$, that is to say, natural circular dichroism. The material constants $\beta_{0}$ and $R$ apparently were never given names.

The quantities $\alpha, \alpha_{0}, V$, and $H$ are signed quantities whose signs are determined solely by conventions. The signs of $\alpha$ and $V$ are conventionally positive when the rotation, as for water, takes place in the direction of the electric current which creates

Table 6i-1. Verdet Constants* (Continued)
Aqueous Solutions

| Solute | Wt. \% | $\lambda$ | $d$ | $n$ | $10^{2} \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| At $25^{\circ}, \lambda 546$ (Ref. 1) |  |  |  |  |  |
| HOH. | 100 |  | $\ldots$ | ....... | +1.547 |
| NaOH | 14.3 | $\cdots$ | 1.1157 |  | 1.743 |
| $\mathrm{HNO}_{3}$. | 62 | $\ldots$ | 1.3676 | 1.40269 | 1.161 |
| $\mathrm{NaNO}_{3}$. | 32.32 |  | 1.2407 | 1.37068 | 1.495 |
| $\mathrm{NH}_{4} \mathrm{NO}_{3}$. | 34.85 | $\cdots$ | 1.1476 | 1.37913 | 1.483 |
| $\mathrm{HClO}_{4}$. | 60 | $\ldots$ | 1.5261 | 1.39828 | 1.253 |
| $\mathrm{NH}_{4} \mathrm{ClO}_{4}$. | 15.22 | $\cdots$ | 1.0725 | 1.34506 | 1.508 |
| $\mathrm{H}_{2} \mathrm{SO}_{4}$. | 92 |  | 1.8121 | 1.43163 | 1.250 |
| $\mathrm{Na}_{2} \mathrm{SO}_{4}$. | 24.39 | $\ldots$ | 1.2349 | 1.36892 | 1.611 |
| $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. | 33.58 | $\cdots$ | 1.1909 | 1.38559 | 1.634 |
| $\mathrm{H}_{3} \mathrm{PO}_{4}$. | 100 |  | 1.866 | 1.45805 | 1.571 |
| $\mathrm{Na}_{3} \mathrm{PO}_{4}$. | 17.92 | $\ldots$ | 1.0823 | 1.34997 | 1.588 |
| $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$. | 14.62 | $\ldots$ | 1.0921 | 1.36148 | 1.649 |
| HCl . | 35.5 | $\ldots$ | 1.1735 | 1.42111 | 2.685 |
| $\mathrm{NH}_{4} \mathrm{Cl}$. | 19.01 | $\cdots$ | 1.0519 | 1.36971 | 1.997 |
| HBr . | 44.27 |  | 1.4294 | 1.43063 | 3.317 |
| $\mathrm{NH}_{4} \mathrm{Br}$ | 46.21 | $\ldots$ | 1.2985 | 1.41186 | 2.843 |
| Hi.. | 54.5 |  | 1.6553 | 1.48406 | 5.314 |
| $\mathrm{NH}_{4} \mathrm{I}$ | 53.92 |  | 1.4838 | 1.45386 | 4.284 |
| At $23^{\circ}$ (Ref. 2) |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{O}$. | 100 | 600 | 0.997 | 1.3324 | 1.26 |
| $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$. | 31.4 | 600 | 1.187 | 1.3878 | -2.33 |
| $\mathrm{FeCl}_{3}$. | 47.8 | 800 | 1.523 | 1.4941 | -3.99 |
| KI, $\mathrm{HgI}_{2}$. | ...... | 600 | 2.445 | (1.59) | 8.41 |
| Same. |  | 589 |  |  | 12.8 (Ref. 4) |
| Same. |  | 546 |  |  | 22 (Ref. 3) |

## References

1. Sivaramakrishnan, V.: (a) Proc. Indian Acad. Sc. 39, 31 (1954); (b) J. Indian Inst. Sc. 36, 193 (1954).
2. Ingersoll, L.: J. Opt. Soc. Am. 6, 663 (1922).
3. Bubb, F.: Proc. Eastern Photoelasticity Conf. 13, 17 (1941), U.S. Patent 2,341,422 (1944).
4. Cornu and Potier: Compt. rend. 102, 385 (1886).

Table 6i-1. Verdet Constants* (Continued) Organic Liquids for Refractive Index Determinations ${ }^{1}$

| Liquid | $\lambda$ | $t$ | $n^{20}{ }_{D}$ | $10^{2} \mathrm{~V}$ |
| :---: | :---: | :---: | :---: | :---: |
| Methanol. | 589 | 18.7 | 1.3289 | +0.958 |
| Acetone. | 589-78 | 20.0 | 1.3585 | 1.116 |
| Ethyl acetate. | 589-78 | 20.0 | 1.3727 | 1.08 |
| $n$-Heptane. | 589-78 | 15 | 1.3875 | 1.23 |
| $n$-Butanol. | 589 | 20.0 | 1.3993 | 1.23 |
| Ethylene glycol | 589 | 15.1 | 1.4313 | 1.25 |
| 1,2-Dichloroethane. | 589 | 14.4 | 1.4448 | 1.65 |
| Cyclohexanone. | 578 | 23.0 | 1.4500 | 1.33 |
| Cyclohexanol | 578 | 20.0 | 1.4663 | 1.43 |
| $p$-Cymene. | 589 | 15.0 | 1.4900 | 2.30 |
| Toluene. | 589-78 | 15.0 | 1.4950 | 2.71 |
| Benzene. | 589-78 | 15.0 | 1.5005 | 3.00 |
| Iodoethane | 589-78 | 18.1 | 1.5130 | 2.95 |
| Anisole. | 589 | 21.1 | 1.5170 | 3.02 |
| 1,3-Dibromopropane. | 589 | 19.6 | 1.5230 | 2.38 |
| Chlorobenzene. | 589 | 15 | 1.5246 | 2.92 |
| Iodomethane. | 589-78 | 19.5 | 1.5305 | 3.35 |
| 1,2-Dibromoethane. | 589 | 15.2 | 1.5380 | 2.66 |
| $o$-Nitrotoluene | 589 | 18 | 1.5465 | 2.16 |
| Nitrobenzene | 589 | 15 | 1.5523 | 2.17 |
| Bromobenzene | 589 | 15 | 1.5598 | 3.26 |
| $o$-Toluidine | 589 | 17.3 | 1.5720 | 3.79 |
| Aniline. | 589 | 15 | 1.5859 | 4.18 |
| Bromoform | 589 | 17.9 | 1.5960 | 3.13 |
| Iodobenzene | 589 | 15 | 1.6095 | 4.06 |
| Quinoline. | 589 | 16 | 1.6235 | 4.18 |
| 1, 1, 2, 2-Tetrabromoe | 578 | 18.0 | 1.6377 | 3.34 |
| 1-Bromonaphthalene. | 578 | 20 | 1.6578 | 5.19 |
| Diiodomethane ${ }^{2}$. | 600 | 23 | 1.7400 | 4.76 |

[^320]the field $H$. Other material constants of interest in connection with magnetic rotation are density $d$ and refractive index $n$ (for isotropic) or $\omega$ (for uniaxial media). The magneto-optic anomaly $\gamma$ is a dimensionless ratio of theoretical interest.

Verdet constants $V$ are listed here in angular minutes $\mathrm{cm}^{-1}$ gauss $^{-1}$, the wavelengths in millimicrons or Angstrom units. Uncertain or approximate numerical values are enclosed in parentheses.
6i-2. The Pockels Effect. The alteration of the refractive properties of an optical medium by the application of a strong electric field is called the "electro-optic effect." In a liquid medium the effect is designated the "Kerr effect," in a piezoelectric crystalline medium, the "Pockels effect." The principal practical interest lies in the possibility of using this effect to produce a light-intensity modulator or "valve" by using an electroded liquid cell or crystal plate between polarizers in such a way as to produce electrically variable phase changes between two polarized interfering light beams.

In a crystal of low symmetry the optical dielectric property (the square of the

Table 6i-1. Verdet Constants* (Continued)
Solids at Room Temperature Except as Noted

| Solid | $n 5,461$ | V5,461 | $\boldsymbol{\gamma} \mathbf{5 , 4 6 1}$ | $n 5,893$ | V5,893 | r5,893 | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oxide glasses: |  |  |  |  |  |  |  |
| $\mathrm{SiO}_{2}$. | 1.4601 | 0.01664 | 0.781 | 1.4585 | 0.01421 | 0.781 | $3 b$ |
| Dense flint 18. | 1.8999 | 0.1180 | 0.78 | 1.8900 | 0.0969 | 0.78 | $3 b$ |
| Dense flint 22. |  |  |  | 1.920 | 0.1060 | 0.812 | 4 |
| Oxide crystals: |  |  |  |  |  |  |  |
| $\mathrm{NH}_{4} \mathrm{Al}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ |  | 0.0151 | 0.552 | 1.4594 | 0.0128 | 0.543 | 3 c |
| $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$. |  | 0.0144 | 0.551 | 1.4564 | 0.0124 | 0.533 | 3 c |
| $\begin{gathered} \mathrm{NH}_{4} \mathrm{Fe}\left(\mathrm{SO}_{4}\right) \cdot 2 \cdot 12 \\ \mathrm{H}_{2} \mathrm{O} \text { at } 26^{\circ} \mathrm{C} . \end{gathered}$ |  | -0.00145 |  |  |  |  |  |
| Same at $-111^{\circ} \mathrm{C} \ldots$. |  | -0.00145 | $\cdots$ | 1.4848 | -0.00058 -0.0111 |  | 1 |
| $\mathrm{NiSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ at $24^{\circ} \mathrm{C}$ |  | 0.0256 |  | $\omega=1.5109$ | 0.0221 | $\cdots$ | 5 |
| Same at $1.36{ }^{\circ} \mathrm{K} . .$. |  | 0.419 | $\ldots$ | .......... | . ........ | $\ldots$ | 2 |
| $\mathrm{MgAl}_{2} \mathrm{O}_{4}$ (spinel)... |  | .......... |  | 1.1718 | 0.021 |  | 7 |
| $\mathrm{CaCO}_{3}$ (calcite).... |  |  |  | $\omega=1.6585$ | 0.019 |  | 8 |
| $\mathrm{NaClO}_{3}$. |  | 0.0105 | 0.315 | 1.5151 | 0.0081 | 0.310 | 3 c |
| $\mathrm{SiO}_{2}$ (quartz)...... | $\omega=1.5462$ | 0.01952 | 0.785 | 1.5443 | 0.01664 | 0.789 | $3 b$ |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ (corundum).. | $\omega=1.7712$ | 0.0240 | 0.656 | 1.7685 | 0.0210 | 0.640 | $3{ }^{\text {d }}$ |
|  |  |  |  |  |  |  |  |
| NaCl . |  | 0.0410 | 0.901 | 1.5443 | 0.0345 | 0.890 | 3 c |
| NaBr . |  | 0.0621 | 0.86 | 1.6412 |  |  | 3 c |
| KCl. |  | 0.0328 | 0.822 | 1.4904 | 0.0275 | 0.821 | 3 c |
| KBr. | 1.5641 | 0.0500 | 0.795 | 1.5600 | 0.0425 | 0.785 | 3 c |
| KI. | 1.6731 | 0.083 | 0.789 | 1.6664 | 0.070 | 0.782 | 3 c |
| $\mathrm{NH}_{4} \mathrm{Cl}$. |  | 0.0430 | 0.727 | 1.6426 | 0.0362 | 0.719 | 3 c |
| $\mathrm{NH}_{4} \mathrm{Br}$. |  | 0.0601 | 0.698 | 1.7108 | 0.0504 | 0.690 | 3 c |
| $\mathrm{CaF}_{2}$. |  |  |  | 1.4338 | 0.00883 | 0.66 | 3 a |
| Tetrahedral cubic <br> crystals:     0.00883 0.66 |  |  |  |  |  |  |  |
| C-C diamond. |  | 0.0278 | 0.28 | 2.4172 | 0.0233 | 0.28 |  |
| CuCl . |  | $0.20 \pm .03$ | 0.5 | 1.793 |  |  | 6 |
| ZnS. |  | 0.287 | 0.92 | 2.3683 | 0.226 | 0.91 | 3a |

## References

1. Kaufmann, H.: Ann. Physik 18, 251 (1933). (Paramagnetic rotation.)
2. Levy and van den Handel: Physica 15, 717 (1951). (Paramagnetic rotation.)
3. Ramaseshan, S.: Proc. Indian Acad. Sci. (a) 24, 104 (1946); (b) 24, 426 (1946); (c) 28, 360 (1948); (d) 34, 97 (1951); (e) Current Science 20, 150 (1951).
4. Cole, H.: J. Soc. Glass Technol. 34, 220 (1950).
5. O'Connor, Beck, and Underwood: Phys. Rev. 60, 443 (1941).
6. Gassmann, G.: Ann. Physik 35, 638 (1939). A volume of $23.9 \mathrm{~cm}^{3} / \mathrm{mole}$ is assumed to derive this value of $V$.
7. DuBois: Ann. Physik 51, 537 (1894).
8. Chauvin: J. phys. 9, 5 (1890).
table 6i-2. Magnetic Rotatory Power of Films of Ferromagnetic
Metals Magnetized to Saturation*

| Metal | $\lambda$ | $\alpha_{\infty} / l, \mathrm{deg}^{\text {cm }}{ }^{-1}$ |
| :---: | :---: | :---: |
| Ni | red | $+89,000^{\circ} \pm 10 \%$ |
| Co | red | 198,000 10\% |
| Fe | red | 209,000 10\% |
| $\mathrm{Fe}^{\text {a }}$ | 578 | $382,500 \pm 2 \%$ |

* From W. Schutz, Wien-Harms Handbuch d. Experimental-physik 16, Part 1 (1936) 198, except as noted.
${ }^{a}$ H. König, Naturwiss. 33, 71 (1946); Optik 3, 101 (1948).
index of refraction) varies with the direction of vibration of the light wave and must be described by a symmetric second-rank tensor with six independent components. These six components can change with an applied electric field. There are a number of equivalent ways of introducing the electro-optic constants, but the most commonly accepted custom is to define the third-rank electro-optic tensor $r_{i j}$ which relates the change in the reciprocal dielectric tensor to the applied field (a vector).

$$
\Delta\left(\frac{1}{n^{2}}\right)_{i}=\left(\frac{1}{n^{2}}\right)_{i}-\left(\frac{1}{n_{0}^{2}}\right)_{i}=\sum_{j=1}^{3} r_{i j} E_{j}
$$

where $i=1,2,3,4,5,6$
$j=1,2,3$
$0=$ without field
This formulation is convenient because the index ellipsoid

$$
\left(\frac{1}{n^{2}}\right)_{1} x^{2}+\left(\frac{1}{n^{2}}\right)_{2} y^{2}+\left(\frac{1}{n^{2}}\right)_{3} z^{2}+\left(\frac{1}{n^{2}}\right)_{4} y z+\left(\frac{1}{n^{2}}\right)_{5} z x+\left(\frac{1}{n^{2}}\right)_{6} x y=1
$$

is commonly used in classical crystal optics to depict the optical behavior of a crystal.
The above formulation is only the linear term in an expansion in powers of the electric field. In the general case there are 18 linear electro-optic constants, but in a crystal of high symmetry many of these are not independent or may vanish. In a medium possessing a center of symmetry (thus many crystals and all liquids) all the linear terms and electro-optic constants must vanish. Twenty-one of the 32 crystal symmetry classes do not contain centers of symmetry, and of these, 20 may exhibit the linear Pockels effect. These are the same 20 classes which exhibit linear piezoelectricity, for the electro-optic tensor is of the same type as the piezoelectric tensor.

Some measured values of crystalline electro-optic constants are listed in the following table. The values given are for the crystal at constant stress. Because of the interaction of the piezoelectric and photoelastic effects, a different result is obtained if the crystal is clamped in a condition of constant strain.

The last column lists the potential difference in kilovolts required to develop a half wave of birefringent retardation in $\lambda 5,461$ light.

Table 6i-3. Pockels Effect Measured electro-optic constants units of $10^{-8} \times(\text { statvolts } / \mathrm{cm})^{-1}$

$$
\Delta\left(\frac{1}{n^{2}}\right)_{i}=\sum_{j=1}^{3} r_{i j} E_{j}
$$

| Crystal | Symmetry class | Electro-optic coefficients | Half-wave voltage, kv at 5,461 |
| :---: | :---: | :---: | :---: |
| Quartza, ${ }^{\text {a b }}$. | $D_{3}$ | $r_{41}=1.4 ; r_{11}=0.59$ |  |
| Rochelle salt ${ }^{\text {a }}$. | $D_{2}$ | $r_{41}=-6.0 ; r_{52}=-5.1 ; r_{63}=+0.95$ |  |
| Tourmaline ${ }^{a}$. | $C_{3 v}$ | $r_{22}=0.9$ |  |
| Sodium chlorate ${ }^{\text {a }}$. | $T$ | $r_{41}=1.19$ | 200 |
| Zinc sulfide ${ }^{\text {c,d }}$. | $T_{d}$ | $r_{41}=5.0$ | 12.4 |
| Zinc sulfide ${ }^{\text {a }}$. | $T_{d}$ | $r_{41}=6.4$ | 9.3 |
| Cuprous chloride ${ }^{\text {d }}$. | $T_{\text {d }}$ | $r_{41}=18.4$ | 6.2 |
| $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{\text {e }}$. | $V_{d}$ | $r_{63}=-25 ; r_{41}=62$ | 9.6 |
| $\mathrm{KH}_{2} \mathrm{PO}_{4}{ }^{\text {f }}$. | $V_{d}$ | $r_{63}=-32 ; r_{41}=26$ | 7.5 |
| $\mathrm{KD}_{2} \mathrm{PO}_{4}{ }^{\prime}$. | $V_{d}$ | $r_{63}=-70$ | 3.4 |
| $\mathrm{KH}_{2} \mathrm{AsO}_{4}$. | $V_{d}$ | $r_{63}=-39$ | 6.2 |
| $\mathrm{RbH}_{2} \mathrm{PO}_{4}{ }^{f}$... | $V_{d}$ | $r_{63}=-33$ | 7.3 |
| $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{AsO}_{4}{ }^{\text {f }}$. | $V_{d}$ | $r_{63}=-19$ | 13 |

[^321]
## 6j. Specific Rotation

| Table 6j-1. Specific Rotation* Solids |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Substance | Wavelength, $\mu$ | Rotation, $\mathrm{deg} / \mathrm{min}$ | Substance | Wavelength, $\mu$ | Rotation, deg/min |
| Cinnabar (HgS). | D | +32.5 | Quartz | 0.3726 | +58.894 |
| Lead hyposulfate | D | 5.5 |  | 0.3609 | 63.628 |
| Potassium hyposulfate. | D | 8.4 |  | 0.3582 | 64.459 |
| Quartz............... | 3.676 | 0.34 |  | 0.3466 | 69.454 |
|  | 1.342 | 3.89 |  | 0.3441 | 70.587 |
|  | 0.7604 | 12.668 |  | 0.3402 | 72.448 |
|  | 0.7184 | 14.304 |  | 0.3360 | 74.571 |
|  | 0.6867 | 15.746 |  | 0.3286 | 78.579 |
|  | 0.6562 | 17.318 |  | 0.3247 | 80.459 |
|  | 0.5895932 | 21.7010 |  | 0.3180 | 84.972 |
|  | 0.5895 | 21.684 |  | 0.2747 | 121.052 |
|  | 0.5892617 | 21.729 |  | 0.2571 | 143.266 |
|  | 0.5889965 | 21.7492 |  | 0.2313 | 190.426 |
|  | 0.5889 | 21.727 |  | 0.2265 | 201.824 |
|  | 0.5460741 | 25.538 |  | 0.2194 | 220.731 |
|  | 0.5269 | 27.543 |  | 0.21740 | 229.96 |
|  | 0. 4861 | 32.773 |  | 0.2143 | 235.972 |
|  | 0.4307 | 42.604 |  | 0.1750 | 453.5 |
|  | 0.4101 | 47.481 |  | 0.1525 | 776.0 |
|  | 0.3968 | 51.193 | Sodium bromate. | D | 2.8 |
|  | 0.3933 | 52.155 | Sodium chlorate. | D | 3.13 |
|  | 0.3820 | 55.625 |  |  |  |

Specific rotation or rotatory power is given in degrees per decimeter for liquids and solutions and in degrees per millimeter for solids; + signifies right-handed rotation, - left. Specific rotation varies with the wavelength of light used, with temperature and, in the case of solutions, with the concentration. When sodium light is used, indicated by $D$ in the wavelength column, a value of $\lambda=0.5893$ may be assumed.

Optical rotatory power for a large number of organic compounds will be found in the "International Critical Tables," vol. VII; for sugars, vol. II.
*Most of the data taken from "Handbook of Chemistry and Physics." 36th ed., pp. 2752, 2753, 2754, Cnemical Rubber Publishing Company, 1954-1955.

Table 6j-1. Specific Rotation (Continued)
Liquid

| Liquid | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \text {, } \end{gathered}$ | Wavelength, $\mu$ | Specific rotation, deg/dm |
| :---: | :---: | :---: | :---: |
| Amyl alcohol. |  | D | - 5.7 |
| Camphor. | 204 | D | + 70.33 |
| Cedar oil. | 15 | D | - 30 to -40 |
| Citron oil. | 15 | D | + 62 |
| Ethyl malate ( $\left.\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}$ | 11 | D | -10.3 to -12.4 |
| Menthol. | 35.2 | D | -49.7 |
| Nicotine $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$. | 10-30 | D | -162 |
|  | 20 | 0.6563 | -126 |
|  | 20 | 0.5351 | -207.5 |
|  | 20 | 0.4861 | -253.5 |
| Turpentine $\mathrm{C}_{10} \mathrm{H}_{6}$ | 20 | D | - 37 |
|  | 20 | 0.6563 | - 29.5 |
|  | 20 | 0.5351 | - 45 |
|  | 20 | 0.4861 | - 54.5 |

Specific rotation or rotatory power is given in degrees per decimeter for liquids and solutions and in degrees per millimeter for solids; + signifies right-handed rotation, - left. Specific rotation varies with the wavelength of light used, with temperature and, in the case of solutions, with the concentration. When sodium light is used, indicated by $D$ in the wavelength column, a value of $\lambda=0.5893$ may be assumed.

Optical rotatory power for a large number of organic compounds will be found in the "International Critical Tables," vol. VII; for sugars, vol. II.

* Most of the data taken from "Handbook of Chemistry and Physics," 36th ed., pp. 2752, 2753, 2754, Chemical Rubber Publishing Company, 1954-1955.

OPTICS
Table 6j-1. Specific Rotation (Continued)
Solutions $\dagger$

| Substance | Solvent | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{C} \mathrm{C} \end{gathered}$ | Wavelength, $\mu$ | Specific rotation, deg/dm | Correction for concentration or temp. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Albumen. | Water |  | D | - 25 to -38 |  |
| Arabinose | Water | 20 | D | - 105.0 |  |
| Camphor. | Alcohol | 20 | D | $\begin{array}{r} +\quad 54.4-0.135 d \text { for } \\ d=45-91 \end{array}$ |  |
|  | Benzene | 20 | D | $\begin{array}{r} +\quad 56-0.166 d \text { for } \\ d=47-90 \end{array}$ |  |
|  | Ether |  | D | $+57$ |  |
| $\begin{aligned} & \text { Dextrose } d \text {-glucose } \\ & \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \end{aligned}$ | Water | 20 | D | $\begin{array}{r} +\quad 52.5+0.025 d \text { for } \\ d=1-18 \end{array}$ |  |
|  |  |  | 0.5461 | $\begin{array}{r} +\quad 62.03+0.04257 c \text { for } \\ c=6-32 \end{array}$ |  |
| Galactose | Water |  | D | $\begin{array}{r} +\begin{array}{c} 83.9+0.078 d- \\ 0.21 t \text { for } d=4-36 \text { and } \\ t \end{array}=10-30^{\circ} \mathrm{C} \end{array}$ |  |
| $l$-Glucose ( $\beta$ ) | Water | 20 | D | - 51.4 |  |
| Invert sugar $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. | Water | 20 | D | $\begin{array}{r} c=9-35 \\ \alpha_{t}=\alpha_{20}+0.304(t-20) \\ +0.00165 \\ (t-20)^{2} \text { for } t=3-30^{\circ} \mathrm{C} \end{array}$ |  |
|  |  | 25 | 0.5461 | - 21.5 |  |
| Lactose. | Water | 20 | D | $\begin{aligned} +\quad & 52.4+0.072 \\ & \left(20^{\circ}-t\right) \text { for } c=5 \end{aligned}$ |  |
|  |  |  | 0.5461 | $+61.9+$ | $\begin{aligned} & 0.085 \\ & -t) \text { for } c=5 \end{aligned}$ |
| Levulose fruit sugar.. | Water | 25 | D | $\begin{array}{r} -\quad 88.5-0.145 d \text { for } \\ d=2.6-18.6 \end{array}$ |  |
|  |  | 25 | 0.5461 | - 105.30 |  |
| Maltose | Water | 20 | D | $\begin{array}{r} +138.48-0.01837 d \text { for } \\ d=5-35 \end{array}$ |  |
|  |  | 25 | 0.5461 | + 153.75 |  |
| Mannose | Water | 20 | D | + 14.1 | $c=10.2$ |
| Nicotine. | Water | 20 | D | - 77 for $d=1-16$ |  |
|  | Benzene | 20 | D | - 164 for $d=8-100$ |  |
| Potassium tartrate.. | Water | 20 | D | $+\quad \begin{aligned} & 27.14+0.0992 c- \\ & \quad 0.00094 c^{2} \text { for } c=8-50 \end{aligned}$ |  |
| Quinine sulfate. | Water | 17 | D | - 214 |  |
| Santonin | Alcohol | 20 | D | - $161.0 \quad c=1.78$ |  |
|  |  | 20 | D | + $693 \quad c=4.05$ |  |
|  | Chloroform | 20 | D | $\begin{array}{r} -202.7+0.309 d \text { for } \\ d=75-96.5 \end{array}$ |  |
|  | Alcohol | 20 | 0.6867 | + 442 | $c=4.05$ |
|  |  |  | $\begin{aligned} & 0.5269 \\ & 0.4861 \end{aligned}$ | + 991 | $c=4.05$ |

$\dagger$ Corrections for values of the specific rotation for concentration are given in the last column. $c$ indicates concentration in grams per 100 ml of solution; $d$ indicates the concentration in grams per 100 g of solution.

Table 6j-1. Specific Rotation (Continued)
Solutions $\dagger$

| Substance | Solvent | Temp., <br> ${ }^{\circ} \mathrm{C}$ | Wave- <br> length, <br> $\mu$ | Specific <br> rotation, <br> deg/dm | Correction <br> for concen- <br> tration or <br> temp. |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Sodium potassium tar- <br> trate (rochelle salt) |  |  |  |  |  |
| Sucrose (cane sugar) <br> $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ | Water | 20 | $D$ | $+29.75-0.0078 c$ |  |

Table 6j-1. Specific Rotation (Continued) Solutions $\dagger$
Sucrose dissolved in water, $20^{\circ} \mathrm{C}$

| $\mu$ | Spec. rot. | $\mu$ | Spec. rot. | $\mu$ | Spec. rot. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 670.8 (Li) | +50.51 | 510.6 (Cu) | +90.46 | 435.3 (Fe) | +128.5 |
| 643.8 (Cd) | 55.04 | 508.6 (Cd) | 91.16 | 433.7 (Fe) | 129.8 |
| 636.2 (Zn) | 56.51 | 481.1 (Zn) | 103.07 | 431.5 (Fe) | 130.7 |
| 589.3 (Na) | 66.45 | 480.0 (Cd) | 103.62 | 428.2 (Fe) | 133.6 |
| $578.2(\mathrm{Cu})$ | 69.10 | 472.2 (Zn) | 107.38 | 427.2 (Fe) | 134.2 |
| 578.0 (Hg) | 69.22 | 468.0 (Zn) | 109.49 | 426.1 (Fe) | 134.9 |
| 570.0 (Cu) | 71.24 | 467.8 (Cd) | 109.69 | 419.1 (Fe) | 140.0 |
| 546.1 (Hg) | 78.16 | 438.4 (Fe) | 126.5 | 414.4 (Fe) | 144.2 |
| 521.8 (Cu) | 86.21 | 437.6 (Fe) | 127.2 | 388.9 (Fe) | 166.7 |
| 515.3 (Cu) | 88.68 | $435.8(\mathrm{Hg})$ | 128.49 | 383.3 (Fe) | 171.8 |
|  |  |  |  | 382.6 (Fe) | 173.1 |

Solutions $\dagger$

| Substance | Solvent | ${ }^{\circ} \mathrm{C}$ | $\mu$ | Spec. rot. | Correction |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Tartaric acid (ord.). | Water | 20 | D | +15.06-0.131c |  |
|  |  | 20 | 0.6563 | 7.75 |  |
|  |  | 20 | D | 8.86 for $d=41$ |  |
|  |  | 20 | 0.5351 | 9.65 for $d=41$ |  |
|  |  | 20 | 0.4861 | 9.37 |  |
| Turpentine. | Alcohol | 20 | D | $-37-0.00482 d-0.00013 d^{2}$ |  |
|  |  |  |  | $-37-0.0265 d$ for $d=0-91$ |  |
| Xylose . | Benzene Water | 20 20 | D $D$ |  |  |
|  |  |  |  | $+19.13 \quad d=2.7$ |  |

[^322]
# 6k. Optical Constants of Metals 

GEORGE HASS<br>Engineer Research and Development Laboratories

Several constants have been used to describe the optical behavior of metals. In principle, at any wavelength, two such constants should be sufficient to give the complete behavior of the metal. One constant has to do with the velocity of light in the metal and the other with the absorption of light by the metal.

To determine these constants, it is necessary, in general, to make experimental measurements of the metal properties at the frequency required. The measurements cannot be made at direct current and extrapolated to light frequencies of the order of $10^{14} \mathrm{cps}$.

The constants tabulated in Tables $6 \mathrm{k}-1$ to $6 \mathrm{k}-3$ are the ones most commonly used. These are $n=$ refractive index and $k=$ absorption constant. The refractive index is defined as the ratio of the velocity of light in a vacuum to the velocity in the metal. This is the phase velocity, which in metals is frequently greater than $c$, the velocity of light in a vacuum. This is not a violation of the Einstein relativity law.

The absorption constant is defined by the equation

$$
E=E_{0} e^{-\frac{2 \pi k t}{\lambda_{0}}}
$$

where $E_{0}=$ amplitude of an electric wave measured at a point in an absorbing medium
$E=$ amplitude measured at a distance $t$ in the direction of propagation away from the first point
Both $n$ and $k$ can also be defined as the real and imaginary part of a complex index of refraction

$$
N=n-i k
$$

A variety of other constants have been used in treating metals and absorbing materials. First is the extinction coefficient $\kappa$ which is equal to the absorption constant divided by the index of refraction. Second is the absorption coefficient $\alpha$ which is defined by the equation

$$
I=I_{0} e^{-\alpha t}
$$

where $I$ is the intensity of an electromagnetic disturbance and $t$ is the distance traveled in the material.

When light is reflected from a metal surface, it experiences a phase-shift change which is a function of the angle of incidence of the light and its state of polarization.

In connection with this phase shift, two other constants are commonly used to
describe the optical behavior of a metal. These are the angle of principal incidence $\bar{\phi}$ and the principal azimuth $\psi$.

At the angle of principal incidence there is a phase change of 90 deg between the components of polarized light vibrating in the plane of incidence and at right angles to the plane of incidence. Light vibrating in the principal azimuth reflected at the angle of principal incidence becomes circularly polarized.

These last two constants are tabulated particularly because these are the numbers which are measured directly in most of the techniques for determining the optical behavior of metals. Also, these numbers are used in some of the techniques for determining the thickness of dielectric films deposited on metal surfaces.

The index of refraction and the absorption constant are related to $\bar{\psi}$ and $\bar{\phi}$ by the equation

$$
\begin{aligned}
n & =\frac{\sin \bar{\phi} \tan \bar{\phi}}{\left(1+\frac{k}{n}\right)^{2}}\left(1+\frac{1}{2} \cot ^{2} \bar{\phi}\right) \\
\frac{k}{n} & =\tan 2 \psi\left(1-\cot ^{2} \bar{\phi}\right)
\end{aligned}
$$

Since reflection methods are used in determining the constants, they are strongly dependent on the characteristics on the metallic surface. These characteristics vary considerably with the chemical and mechanical treatment. Accordingly, there has always been a certain degree of controversy on the subject of the optical constants of metals. Since the oldest measurements were made, there has been considerable development in the preparation of metallic surfaces by evaporation in a vacuum. They are frequently quite different from surfaces of bulk metals prepared by polishing. By no means all the metallic constants have been determined on such freshly prepared surfaces.

A great deal of work remains to be done in this area. The following tables include both old and new data. In a few places there is conflict. Rather than replace the old figures, it seemed appropriate to include all of them. It is recommended in conflicting cases that the new data be used.

Table 6k-1. Optical Constants of the Most Important Evaporated Mirror Coatings

| Metal | $\lambda, \mu$ | $n$ | $k$ | $R \%$ computed | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum. | 400 | 0.40 | 3.92 |  | 1 |
|  | 435 | 0.40 | 4.16 | 91.6 | 2 |
|  | 491 | 0.57 | 5.19 | 92.3 | 2 |
|  | 546 | 0.76 | 5.49 | 90.8 | 2 |
|  | 578 | 0.89 | 5.68 | 90.0 | 2 |
|  | 644 | 1.12 | 6.26 | 89.6 | 2 |
|  | 700 | 1.55 | 7.00 | .... | 1 |
|  | 750 | 1.80 | 7.12 | .... | 1 |
|  | 800 | 1.99 | 7.05 | .... | 1 |
|  | 850 | 2.08 | 7.15 | .... | 1 |
|  | 900 | 1.96 | 7.70 |  | 1 |
|  | 950 | 1.75 | 8.50 |  | 1 |
| Copper | 450 | 0.87 | 2.20 |  | 1 |
|  | 500 | 0.88 | 2.42 |  |  |
|  | 550 | 0.756 | 2.462 | 66.7 | 3 |
|  | 600 | 0.186 | 2.980 | 92.7 | 3 |
|  | 650 | 0.142 | 3.570 | 95.9 | 3 |
|  | 700 | 0.150 | 4.049 | 96.6 | 3 |
|  | 750 | 0.157 | 4.463 | 96.9 | 3 |
|  | 800 | 0.170 | 4.840 | 97.2 | 3 |
|  | 850 | 0.182 | 5.222 | 97.3 | 3 |
|  | 900 | 0.190 | 5.569 | 97.7 | 3 |
|  | 950 | 0.197 | 5.900 | 97.8 | 3 |
|  | 1,000 | 0.197 | 6.272 | 98.0 | 3 |
| Gold. | + 450 | 1.40 | 1.88 | .... | 1 |
|  | 500 | 0.84 | 1.84 |  | 1 |
|  | 550 | 0.331 | 2.324 | 81.6 | 3 |
|  | 600 | 0.200 | 2.897 | 91.9 | 3 |
|  | 650 | 0.142 | 3.374 | 95.5 | 3 |
|  | 700 | 0.131 | 3.842 | 96.7 | 3 |
|  | 750 | 0.140 | 4.266 | 97.1 | 3 |
|  | 800 | 0.149 | 4.654 | 97.4 | 3 |
|  | 850 | 0.157 | 4.993 | 97.6 | 3 |
|  | 900 | 0.166 | 5.335 | 97.8 | 3 |
|  | 950 | 0.174 | 5.691 | 97.9 | 3 |
|  | 1,000 | 0.179 | 6.044 | 98.1 | 3 |
| Rhodium. | 546 | 1.62 | 4.63 | 77.2 | 2 |
| Silver. | 400 | 0.075 | 1.93 | .... | 1 |
|  | 450 | 0.055 | 2.42 |  | 1 |
|  | 500 | 0.071 | 3.020 | 97.3 | 3 |
|  | 550 | 0.069 | 3.429 | 97.9 | 3 |
|  | 600 | 0.072 | 3.348 | 98.2 | 3 |
|  | 650 | 0.080 | 4.257 | 98.4 | 3 |
|  | 700 | 0.093 | 4.645 | 98.4 | 3 |
|  | 750 | 0.103 | 5.005 | 98.4 | 3 |
|  | 800 | 0.110 | 5.409 | 98.6 | 3 |
|  | 850 | 0.121 | 5.757 | 98.6 | 3 |
|  | 900 | 0.128 | 6.089 | 98.7 | 3 |
|  | 950 1,000 | 0.130 0.129 | 6.476 6.829 | 98.8 98.9 | 3 <br> 3 |

The true optical constants of metals can be determined only with compact evaporated films produced by fast evaporation under good vacuum conditions.

## References

1. Schulz, L. G.: J. Opt. Soc. Am. 44, 357 (1954). Schulz, L. G., and F. R. Tangherlini: J. Opt. Soc. Am. 44, 362 (1954).
2. Hass, G.: Optik 1, 2 (1946).
R. Weiss, K.: Z. Naturforsch. 3a, 143 (1948).

Table 6k-2. Optical Constants of Metals

| Metals | $\lambda, \mu$ | $\Phi$ |  | $\pm$ |  | Computed |  |  |  | Authority |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { de- } \\ \text { grees } \end{gathered}$ | min- <br> utes | $\left\lvert\, \begin{gathered} \text { de- } \\ \text { grees } \end{gathered}\right.$ | $\underset{\text { utes }}{\min -}$ | $n$ | $k / n$ | $k$ | $\boldsymbol{R}$ |  |
| Aluminum Antimony Bismuth (prism) Bronze. | 0.589 | $\ldots$ | $\cdots$ | $\ldots$ |  | 1.44 |  | 5.32 |  |  |
|  | 0.589 | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | 3.04 |  | 5.32 4.94 | 70 | Druce |
|  | White | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 3.04 2.26 |  |  |  | Krude ${ }^{\text {Kundt, }} 1889$ |
|  | 0.527 | $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ | 1.18 |  |  |  | Jamin 1889 |
| Cadmium. Chromium. Cobalt. | 0.589 | $\ldots$ | $\ldots$ |  | $\ldots$ | 1.12 |  |  |  | Jamin |
|  | 0.589 0.579 |  | $\cdots$ | $\cdots$ | $\cdots$ | 1.13 |  | 5.01 | 85 | Drude |
|  | 0.579 0.231 | 64 | 31 | 29 |  | 2.97 |  | 4.85 | 70 | Wartenburg, 1910 |
| Columbium. Copper..... | 0.275 | 70 | 22 | 29 | 39 59 | 1.10 | 1.30 1.52 | 1.43 | 32 | Minor |
|  | 0.500 | 77 | 5 | 31 | 53 | 1.93 | 1.93 | 2.14 3.72 | 46 | Minor Minor |
|  | 0.650 | 79 | 0 | 31 | 25 | 2.35 | 1.87 | 4.40 | 69 | Minor |
|  | 1.00 | 81 | 45 | 29 | 6 | 3.63 | 1.58 | 5.73 | 73 | Ingersoll |
|  | 1.50 | 83 | 21 | 26 | 18 | 5.22 | 1.29 | 6.73 | 75 | Ingersoll |
|  | 2.25 | 83 | 48 | 26 | 5 | 5.65 | 1.27 | 7.18 | 76 | Ingersoll |
|  | 0.579 0.231 |  |  |  |  | 1.80 |  | 2.11 | 41 | Wartenburg, 1910 |
|  | 0.347 | 65 | 57 | 26 | 14 | 1.39 | 1.05 | 1.45 | 29 | Minor |
| Gold. . Electrolytic. | 0.500 | 70 | 6 | 28 | 16 | 1.19 | 1.23 | 1.47 | 32 | Minor |
|  | 0.650 | 74 | 16 | 41 | 30 | 0.44 | 7.4 | 2.34 3.26 | 86 | Minor |
|  | 0.870 | 78 | 40 | 42 | 30 | 0.35 | 11.0 | 3.85 | 91 | Ingersoll |
|  | 1.75 | 84 | 4 | 42 | 30 | 0.83 | 11.4 | 9.46 | 96 | Ingersoll |
|  | 2.25 | 85 | 13 | 42 | 30 | 1.03 | 11.4 | 11.7 | 97 | Ingersoll |
|  | 4.00 | 87 | 20 | 42 | 30 | 1.87 | 11.4 | 21.3 |  | Forst-Freed |
|  | 5.50 | 88 | 00 | 41 | 50 | 3.16 | 9.0 | 28.4 |  | Forst-Freed |
|  | 0.257 | $\cdots$ | $\cdots$ | ... | . . | 0.92 |  | 1.14 | 28 | Meier, 1903 |
|  | 0.441 | $\ldots$ | $\ldots$ | $\ldots$ | $\cdots$ | 1.18 |  | 1.85 | 42 | Meier, 1903 |
|  | 0.589 | 81 | 45 |  |  | 0.47 |  | 2.83 | 82 | Meier, 1903 |
|  | 1.00 | 81 | 45 | 44 | 00 | 0.24 | 28.0 | 6.7 |  | Forst-Freed |
|  | 2.00 | 85 | 30 | 43 | 56 | 0.47 | 26.7 | 12.5 |  | Forst-Freed |
|  | 3.00 | 87 | 05 | 43 | 50 | 0.80 | 24.5 | 19.6 |  | Forst-Freed |
| Iodine. Iridium | 5.00 0.589 | 88 | 15 | 43 | 25 | 1.81 | 18.1 | 33 |  | Forst-Freed |
|  | 0.589 0.579 | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | 3.34 |  | 0.57 | 30 | Meier, 1903 |
|  | 1.00 | $\ddot{82}$ | 10 | 29 | 15 | 3.85 | 1.60 | 4.87 6.2 | 75 | Wartenburg, 1916 <br> Forst-Freed |
|  | 2.00 | 83 | 10 | 29 | 40 | 4.30 | 1.66 | 7.1 |  | Forst-Freed |
|  | 3.00 | 81 | 40 | 30 | 40 | 3.33 | 1.79 | 6.0 |  | Forst-Freed |
| Iron. | 5.00 | 79 | 00 | 32 | 20 | 2.27 | 2.03 | 4.6 |  | Forst-Freed |
|  | 0.257 | ... | . . | ... | ... | 1.01 | 0.88 |  | 16 | Meier, 1903 |
|  | 0.441 | $\ldots$ | $\ldots$ | $\cdots$ | ... | 1.28 | 1.37 |  | 28 | Meier, 1903 |
|  | 0.589 | $\cdots$ | $\ldots$ | $\cdots$ | ... | 1.51 | 1.63 |  | 33 | Meier, 1903 |
| Magnesium | 0.589 0.589 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 2.01 |  | 3.48 | 62 | Drude |
| Mannesium | 0.589 0.579 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 0.37 |  | 4.42 | 93 | Drude |
| Mercury (liq.).... | 0.589 0.326 | $\cdots$ | $\cdots$ | $\ldots$ | $\cdots$ | 2.49 0.68 |  | 3.89 2.26 | 64 | Wartenburg, 1910 |
|  | 0.441 | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | 1.01 |  | 3.42 | 74 | Meier, 1903 <br> $M e i e r, ~$ |
|  | 0.589 | . |  |  |  | 1.62 |  | 4.417 | 75 | Meier, 1903 |
|  | 0.668 |  |  |  |  | 1.72 |  | 4.70 | 77 | Meier, 1903 |
| Nickel. | 0.420 | 72 | 20 | 31 | 42 | 1.41 | 1.79 | 2.53 | 54 | Tool ${ }^{\text {Meier, }}$ |
|  | 0.589 | 76 | 1 | 31 | 41 | 1.79 | 1.86 | 3.336 | 62 | Drude |
|  | 0.750 | 78 | 45 | 32 | 6 | 2.19 | 1.99 | 4.36 | 70 | Ingersoll |
|  | 1.00 | 80 | 33 | 32 |  | 2.63 | 2.00 | 5.267 | 7 | Ingersoll |
|  | ${ }_{0}^{2.25}$ | 84 | 21 | 33 | 30 | 3.95 | 2.33 | 9.20 | 85 | Ingersoll |
|  | 0.275 |  | ... | . | - | 1.09 | 1.16 |  | 24 | Meier, 1903 |
|  | 0.441 0.589 |  | $\cdots$ |  |  | 1.16 | 1.23 |  | 25 | Meier, 1903 |
|  | 0.589 1.00 |  |  |  |  | 1.30 1.14 | 1.97 |  | 43 | Meier, 1903 |
| Platinum. | 1.00 2.00 | 75 74 | 30 30 | 37 39 | 00 50 | 1.14 0.70 | 3.25 5.06 | 3.7 3.5 |  | Forst-Freed |
|  | 3.00 | 73 | 50 | 41 | 00 | 0.70 0.52 | 5.52 | 3.5 |  | Forst-Freed |
|  | 5.00 | 72 | 00 | 42 | 10 | 0.34 | 9.01 | 3.1 |  | Forst-Freed |
| Electrolytic. | 0.257 | $\ldots$ | ... | ... | $\cdots$ | 1.17 | 1.65 |  | 37 | Meier, 1903 |
|  | 0.441 | ... | . . | $\ldots$ | ... | 1.84 |  | 3.16 | 8 | Meier, 1903 |
|  | 0.589 | $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ | 2.63 |  | 3.545 | 5 | Meier, 1903 |
|  | 0.668 | $\cdots$ | $\cdots$ | $\ldots$ | ... 2 | 2.91 |  | 3.665 | 9 | Meier, 1903 |

Table 6k-2. Optical Constants of Metals (Continued)

| Metals | $\lambda, \mu$ | Ф |  | $\pm$ |  | Computed |  |  |  | Authority |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | degrees | $\begin{aligned} & \min - \\ & \text { utes } \end{aligned}$ | $\left\lvert\, \begin{gathered} \text { de- } \\ \text { grees } \end{gathered}\right.$ | $\min _{\text {utes }}$ | $n$ | $k / n$ | $k$ | $\boldsymbol{R}$ |  |
| Potassium. | 0.665 | 65 | 27 | 43 | 56 | 0.066 | 26.8 |  | 93.8 | Duncan, 1913 |
|  | 0.589 | 62 | 58 | 43 | 42 | 0.068 | 22.1 |  |  | Duncan, 1913 |
|  | 0.472 | 57 | 9 | 43 | 0 | 0.070 | 14.3 |  | 86.9 | Duncan, 1913 |
|  | 0.546 | , |  | ... | ... | 1.09 | 1.16 |  | 24 | Morgan, 1922 |
| Rhodium. | 0.579 | $\cdots$ | $\ldots$ | ... | . | 1.54 |  | $4.67{ }^{7}$ | 78 | Wartenburg, 1910 |
| Selenium. | 0.400 |  | $\cdots$ |  |  | 2.94 | 2.31 |  | 44 | Wood |
|  | 0.490 |  |  | $\ldots$ | ... | 3.12 | 1.49 |  | 35 | Wood |
|  | 0.589 | . | $\ldots$ | $\ldots$ | . . | 2.93 | 0.45 | . ${ }^{2}$ | 25 | Wood |
|  | 0.760 |  |  | . . . | . . | 2.60 | 0.06 |  | 20 | Wood |
| Silicon, $95 \%$. . . . . | Pure | 75 | 38 | $\ldots$ |  | 3.87 | 0.116 |  | 35.7 | Wartenburg, 1910 |
|  | 0.589 | . | 38 | $\ldots$ | $\ldots$ | 4.18 | 0.09 |  | 38 | Ingersoll |
|  | 1.25 | ... | ... | $\ldots$ | ... | 3.67 | 0.08 |  | 33 | Ingersoll |
|  | 2.25 |  |  | $\ldots$ | $\ldots$ | 3.53 | 0.08 |  | 31 | Ingersoll |
| $\mathbf{9 9 . 7 5}$ \% pure. | 0.589 | 76 | 45 |  |  | 4.24 | 0.118 . |  | 37.8 | Littleton, 1912 |
| Silver......... | 0.226 | 62 | 41 | 22 | 16 | 1.41 | 0.75 | 1.11 | 18 | Minor |
|  | 0.293 | 63 | 14 | 18 | 56 | 1.57 | 0.62 | 0.971 | 17 | Minor |
|  | 0.316 | 52 | 28 | 15 | 38 | 1.13 | 0.38 | 0.43 | 4 | Minor |
|  | 0.332 | 52 | 1 | 37 | 2 | 0.41 | 1.61 | 0.65 | 32 | Minor |
|  | 0.395 | 66 | 36 | 43 | 5 | 0.16 | 12.32 | 1.91 | ${ }_{83}^{87}$ | Minor |
|  | 0.500 | 72 | 31 | 43 | 29 | 0.17 | 17.1 | 2.94 | 93 95 | Minor |
|  | 0.589 | 75 | 35 | 43 | 47 | 0.18 | 20.6 30.7 | 3.64 <br> 5.16 | 97 | Minor |
|  | 0.750 1.00 | 79 82 8 | 26 0 | 44 44 | 6 | 0.17 | 30.7 29.0 | 5.16 6.96 | 97 98 | Ingersoll |
|  | 1.50 | 84 | 42 | 43 | 48 | 0.45 | 23.7 | 10.7 | 98 | Ingersoll |
|  | 2.25 | 86 | 18 | 43 | 34 | 0.77 | 19.9 | 15.4 | 99 | Ingersoll |
|  | 3.00 | 87 | 10 | 42 | 40 | 1.65 | 12.2 | 20.1 |  | Forst-Freed |
|  | 4.50 | 88 | 20 | 41 | 10 | 4.49 | 7.42 | 33.3 |  | Forst-Freed |
| Sodium. | 0.665 | 72 | 11 | 44 | 29 | 0.051 | 55.0 |  | ${ }_{97}^{97.7}$ | Duncan, 1913 Duncan, 1913 |
|  | 0.589 | 68 | 51 | 44 | 29 | 0.044 | 55.0 42.6 |  | 97.1 ${ }_{96.5}^{97}$ | Duncan, 1913 |
|  | 0.546 | 68 | 48 | 44 | 20 9 | 0.052 0.057 | 42.6 33.3 |  | 96.5 95.2 | Duncan, 193 |
|  | 0.472 0.435 | 66 | 29 0 | 44 <br> 44 | 9 | 0.058 | 33.3 31.7 |  | 94.8 | Duncan, 1913 |
| (liq.) | 0.589 | 66 | . . | , | ... | 0.004 |  | 2.61 | 99 | Drude |
| (solid) | 0.546 | $\ldots$ | $\cdots$ | $\ldots$ | ... | 0.047 | 47.3 |  | 96.9 | Morgan, 1922 |
| Sodium-potassium: 0.0 - 1922 |  |  |  |  |  |  |  |  |  |  |
| 17.3\% K. | 0.546 | $\cdots$ | $\cdots$ | $\cdots$ | $\ldots$ | 1.08 | 16.8 | .... | 90.4 | Morgan, 1922 |
| $\mathbf{6 6 . 0 \%}$ K. | 0.546 | $\cdots$ | $\ldots$ | . . | $\ldots$ | 0.137 | 12.5 | ... | 87.0 | Morgan, 1922 |
| 74.2 \% K. | 0.546 | $\ldots$ |  |  |  | 0.124 | 12.8 | ... | 86.9 | Morgan, 1922 |
| 84.3\% K. | 0.546 |  |  | . . | . . | 0.088 | 17.6 | . . . | 90.2 | Morgan, 1922 |
|  |  |  |  |  |  |  |  |  |  |  |
| 1.28\% C | 0.589 0.589 | 77 | 22 |  | $\cdots$ | 2.66 | 1.28 | ... | 57.5 | Littleton, 1912 |
| 3.5\% C. | 0.589 | 77 | 35 |  |  | 2.77 | 1.23 |  | 57.0 | Littleton, 1912 |
|  | 0.226 | 66 | 51 | 28 | 17 | 1.30 | 1.26 | 1.64 | 35 | Minor |
|  | 0.257 | 68 | 35 | 28 | 45 | 1.38 | 1.35 | 1.86 | 40 | Minor |
|  | 0.325 | 69 | 57 | 30 | 9 | 1.37 | 1.53 | 2.09 | 45 | Minor |
|  | 0.500 | 75 | 47 | 29 | 2 | 2.09 | 1.50 | 3.14 | 57 | Minor |
|  | 0.650 | 77 | 48 | 27 | 1 | 2.70 | 1.33 | 3.59 | 57 | Ingersoll |
|  | 1.50 | 81 | 48 | 28 | 51 | 3.71 | 1.55 | 5.75 | 73 | Ingersoll Ingersoll |
|  | 2.25 | 83 | 22 | 30 | 36 | 4.14 | 1.79 | 7.41 2.31 | 180 | Ingersoll ${ }^{\text {Wartenburg }}$ |
| Tantalum. | 0.579 | ... | $\cdots$ | $\cdots$ | $\cdots$ | 2.05 |  | 2.31 | 44 | Wartenburg |
| Tellurium: axis horizontal. |  |  |  |  |  |  |  |  |  |  |
| axis vertical.. | 0.590 |  |  |  |  | 2.68 | 0.632 |  | 30 | Van Dyke, 1922 |
| Tin. | 0.589 |  |  |  | $\cdots$ | 1.48 |  | 5.25 |  | Drude |
| Tungsten. | 0.579 | 76 | 0 |  |  | 2.76 3.46 | 0.98 0.94 |  | $\|48.6\|$ | Wartenburg <br> Littleton, 1912 |
|  | 0.589 0.579 | 78 | 31 | $\ldots$ |  | 3.46 3.03 | 0.94 | 3.51 | ${ }_{58}^{54.5}$ | Littleton, 1912 |
| Zinc. | 0.257 |  |  |  |  | 0.55 |  | 0.61 | 120 | Meier, 1903 |
|  | 0.441 |  |  |  |  | 0.93 |  | 3.19 | 73 | Meier, 1903 |
|  | 0.589 |  |  |  |  | 1.93 |  | 4.66 | 873 | Meier, 1903 Meier, 1903 |
|  | 0.668 |  |  |  |  | 2.62 |  | 5.08 | 73 | Meier, 1903 |

Table 6k-3. Optical Constants of Certain Other Metals Determined in a Vacuum*

| Metal | $\lambda$ | $\bar{\phi}$ | $2 \psi$ | $n$ | $k / n$ | $k$ | $R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beryllium. | 5,780 | 74.5 | 42.2 | 2.64 | 0.86 | 2.27 | 43 |
|  | 5,461 | 74.5 | 42.4 | 2.66 | 0.89 | 2.36 | 44 |
|  | 4,916 | 74.4 | 43.1 | 2.64 | 0.85 | 2.25 | 42 |
|  | 4,358 | 74.1 | 43.4 | 2.56 | 0.87 | 2.23 | 42 |
|  | 4,046 | 73.8 | 44.1 | 2.48 | 0.89 | 2.20 | 42 |
| Magnesium | 5,780 | 75.9 | 83.1 | 0.48 | 7.74 | 3.71 | 88 |
|  | 5,461 | 75.3 | 81.6 | 0.57 | 6.14 | 3.47 | 85 |
|  | 4,916 | 73.0 | 80.5 | 0.53 | 5.41 | 2.92 | 81 |
|  | 4,358 | 71.6 | 80.1 | 0.52 | 5.09 | 2.65 | 76 |
|  | 4,046 | 71.2 | 79.8 | 0.52 | 4.94 | 2.05 | 68 |
| Calcium . | 5,780 | 69.4 | 83.7 | 0.29 | 7.94 | 2.31 | 83 |
|  | 5,461 | 68.5 | 84.0 | 0.27 | 8.08 | 2.16 | 83 |
|  | 4,916 | 66.9 | 83.1 | 0.29 | 6.64 | 1.92 | 78 |
|  | 4,358 | 64.3 | 82.0 | 0.29 | 5.60 | 1.64 | 73 |
|  | 4,046 | 63.6 | 80.6 | 0.34 | 4.53 | 1.56 | 68 |
| Strontium.... | 5,780 | 68.6 | 76.3 | 0.61 | 3.50 | 2.13 | 66 |
|  | 5,461 | 67.7 | 75.2 | 0.63 | 3.15 | 1.99 | 60 |
|  | 4,916 | 64.5 | 74.4 | 0.58 | 2.78 | 1.61 | 55 |
|  | 4,358 | 63.5 | 73.9 | 0.57 | 2.61 | 1.50 | 51 |
|  | 4,046 | 61.1 | 73.0 | 0.55 | 2.32 | 1.28 | 46 |
| Barium . | 5,780 | 64.5 | - 65.7 | 0.88 | 1.73 | 1.52 | 40 |
|  | 5,461 | 64.4 | 65.4 | 0.89 | 1.71 | 1.51 | 40 |
|  | 4,916 | 61.9 | 63.7 | 0.86 | 1.48 | 1.26 | 32 |
|  | 4,358 | 59.7 | 64.2 | 0.78 | 1.42 | 1.10 | 28 |
|  | 4,046 | 59.1 | 63.4 | 0.82 | 1.23 | 1.07 | 26 |
| Germanium . | 5,780 | 75.5 | 21.6 | 3.42 | 0.39 | 1.35 | 36 |
|  | 5,461 | 75.2 | 23.4 | 3.47 | 0.40 | 1.40 | 37 |
|  | 4,916 | 74.1 | 26.0 | 3.16 | 0.45 | 1.42 | 34 |
|  | 4,358 | 73.8 | 31.8 | 2.93 | 0.57 | 1.67 | 34 |
|  | 4,046 | 73.3 | 34.4 | 2.85 | 0.58 | 1.67 | 35 |
| Lanthanum. | 5,780 | 75.6 | 61.1 | 1.74 | 1.99 | 3.47 | 64 |
|  | 5,461 | 75.7 | 60.8 | 1.79 | 1.91 | 3.43 | 63 |
|  | 4,358 | 72.0 | 64.1 | 1.35 | 1.83 | 2.49 | 54 |
|  | 4,046 | 71.5 | 64.4 | 1.34 | 1.74 | 2.33 | 51 |
| Cerium . | 5,780 | 73.6 | 55.8 | 1.91 | 1.35 | 2.58 | 50 |
|  | 5,461 | 72.4 | 56.7 | 1.74 | 1.38 | 2.39 | 47 |
|  | 4,358 | 69.4 | 58.3 | 1.41 | 1.40 | 1.97 | 42 |
| Manganese. | 5,780 | 76.4 | 51.3 | 2.59 | 1.18 | 3.04 | 53 |
|  | 5,461 | 76.2 | 52.9 | 2.46 | 1.25 | 3.07 | 54 |
|  | 4,358 | 74.1 | 53.8 | 2.08 | 1.26 | 2.62 | 50 |

[^323]Table 6k-4. Reflectance of Freshly Evaporated Films of Aluminum, Silver, Gold, Copper, and Rhodium*
(From 0.22 to $10 \mu$ )

| $\lambda, \mu$ | Al | Ag | Au | Cu | Rh |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.220 | 91.5 | 28.0 | 27.5 | 40.4 | 58.5 |
| 0.240 | 91.9 | 29.5 | 31.6 | 39.0 | 61.3 |
| 0.250 | 92.1 | 30.4 | 33.2 | 37.0 | 63.0 |
| 0.260 | 92.2 | 29.2 | 35.6 | 35.5 | 65.0 |
| 0.280 | 92.3 | 25.2 | 37.8 | 33.0 | 68.5 |
| 0.300 | 92.3 | 17.6 | 37.7 | 33.6 | 71.2 |
| 0.315 | 92.4 | 5.5 | 37.3 | 35.5 | 73.0 |
| 0.320 | 92.4 | 8.9 | 37.1 | 36.3 | 73.6 |
| 0.340 | 92.5 | 72.9 | 36.1 | 38.5 | 75.5 |
| 0.360 | 92.5 | 88.2 | 36.3 | 41.5 | 77.0 |
| 0.380 | 92.5 | 92.8 | 37.8 | 44.5 | 77.4 |
| 0.400 | 92.4 | 94.8 | 38.7 | 47.5 | 77.6 |
| 0.450 | 92.2 | 96.6 | 38.7 | 55.2 | 77.2 |
| 0.500 | 91.8 | 97.7 | 47.7 | 60.0 | 77.4 |
| 0.550 | 91.6 | 97.9 | 81.7 | 66.9 | 78.0 |
| 0.600 | 91.1 | 98.1 | 91.9 | 93.3 | 79.1 |
| 0.650 | 90.3 | 98.3 | 95.5 | 96.6 | 79.9 |
| 0.700 | 89.9 | 98.5 | 97.0 | 97.5 | 80.4 |
| 0.750 | 88.0 | 98.6 | 97.4 | 97.9 | 81.2 |
| 0.800 | 86.3 | 98.6 | $\cdot 97.7$ | 98.1 | 82.0 |
| 0.850 | 85.8 | 98.7 | 97.8 | 98.3 | 82.8 |
| 0.900 | 88.9 | 98.7 | 98.0 | 98.4 | 83.5 |
| 0.950 | 91.8 | 98.8 | 98.1 | 98.4 | 84.2 |
| 1.0 | 93.9 | 98.9 | 98.2 | 98.5 | 85.0 |
| 1.5 | 96.8 | 98.9 | 98.2 | 98.5 | 88.2 |
| 2.0 | 97.2 | 98.9 | 98.3 | 98.6 | 90.5 |
| 3.0 | 97.5 | 98.9 | 98.3 | 98.6 | 92.5 |
| 4.0 | 97.6 | 98.9 | 98.3 | 98.7 | 94.0 |
| 5.0 | 97.7 | 98.9 | 98.3 | 98.7 | 94.5 |
| 6.0 | 97.7 | 98.9 | 98.3 | 98.7 | 94.8 |
| 7.0 | 97.8 | 98.9 | 98.4 | 98.7 | 95.2 |
| 8.0 | 97.9 | 98.9 | 98.4 | 98.7 | 95.5 |
| 9.0 | 97.9 | 98.9 | 98.4 | 98.8 | 95.8 |
| 10.0 | 98.0 | 98.9 | 98.4 | 98.8 | 96.0 |

The reflectance of a good evaporated coating is always higher than that of a polished or electrolytically produced surface of the same material. One of the main conditions for preparing a highquality reflection coating by evaporation in high vacuum is a high rate of deposition or fast evaporation of the metal.

* G. Hass, Engineer Research and Development Laboratories, Fort Belvoir.

Table 6k-5. Reflection of Light by Metals*

| Wavelength | Antimony | Bronze <br> (68 Cu, <br> $32 \mathrm{Sn})$ | Copper, commercial | Gold, electrolytic | Iron | Magnalium, Mach's | Magnesium | Mercury, backed glass |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.251 |  | 0.30 | 25.9 | 38.8 | . . . | 67.0 |  |  |
| 0.288 |  |  | 24.3 | 34.0 | . . . | 70.6 |  |  |
| 0.305 |  |  | 25.3 | 31.8 |  | 72.2 |  |  |
| 0.326 |  |  | 24.9 | 28.6 |  | 75.5 |  |  |
| 0.357 | $\ldots$ |  | 27.3 | 27.9 |  | 81.2 |  |  |
| 0.385 |  | 0.53 | 28.6 | 27.1 |  | 83.9 |  |  |
| 0.420 |  |  | 32.7 | 29.3 |  | 83.3 |  |  |
| 0.450 |  |  | 37.0 | 33.1 |  | 83.4 |  | 72.8 |
| 0.500 |  | 0.63 | 43.7 | 47.0 | 0.55 | 83.3 | 0.72 | 70.9 |
| 0.550 |  |  | 47.7 | 74.0 |  | 82.7 |  | 71.2 |
| 0.600 | 0.53 | 0.64 | 71.8 | 84.4 | 0.57 | 83.0 | 0.73 | 69.9 |
| 0.650 |  |  | 80.0 | 88.9 |  | 82.7 |  | 71.5 |
| 0.700 |  |  | 83.1 | 92.3 | 0.59 | 83.3 |  | 72.8 |
| 0.800 |  |  | 88.6 | 94.9 |  | 84.3 |  |  |
| 1.00 | 0.55 | 0.70 | 90.1 |  | 0.65 | 84.1 | 0.74 |  |
| 2.0 | 0.60 | 0.80 | 95.5 | 96.8 | 0.78 | 86.7 | 0.77 |  |
| 3.0 | 0.65 | 0.86 | 97.1 |  | 0.84 | 87.4 | 0.80 |  |
| 4.0 | 0.68 | 0.88 | 97.3 | 96.9 | 0.89 | 88.7 | 0.83 |  |
| 9.0 | 0.72 | 0.93 | 98.4 | 98.0 | 0.94 | 90.6 | 0.93 |  |


| Wavelength | Nickel, electrolytic | Platinum, electrolytic | Silver, chemically deposited | Silverbacked glass | Speculum metal | Steel | Tungsten |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.251 | 37.8 | 33.8 | 34.1 |  | 29.9 | 32.9 |  |
| 0.288 | 42.7 | 38.8 | 21.2 |  | 37.7 | 35.0 |  |
| 0.305 | 44.2 | 39.8 | 9.1 | ... | 41.7 | 37.2 |  |
| 0.326 | 45.2 | 41.4 | 14.6 |  |  | 40.3 |  |
| 0.357 | 48.8 | 43.4 | 74.5 |  | 51.0 | 45.0 |  |
| 0.385 | 49.6 | 45.4 | 81.4 |  | 53.1 | 47.8 |  |
| 0.420 | 56.6 | 51.8 | 86.6 |  | 56.4 | 51.9 |  |
| 0.450 | 59.4 | 54.7 | 90.5 | 85.7 | 60.0 | 54.4 |  |
| 0.500 | 60.8 | 58.4 | 91.3 | 86.6 | 63.2 | 54.8 | 0.49 |
| 0.550 | 62.6 | 61.1 | 92.7 | 88.2 | 64.0 | 54.9 |  |
| 0.600 | 64.9 | 64.2 | 92.6 | 88.1 | 64.3 | 55.4 | 0.51 |
| 0.650 | 66.6 | 66.5 | 94.7 | 89.1 | 65.4 | 56.4 |  |
| 0.700 | 68.8 | 69.0 | 95.4 | 89.6 | 66.8 | 57.6 | 0.54 |
| 0.800 | 69.6 | 70.3 | 96.8 |  |  | 58.0 |  |
| 1.00 | 72.0 | 72.9 | 97.0 |  | 70.5 | 63.1 | 0.62 |
| 2.0 | 83.5 | 80.6 | 97.8 |  | 80.4 | 76.7 | 0.85 |
| 3.0 | 88.7 | 88.8 | 98.1 |  | 86.2 | 83.0 | 0.90 |
| 4.0 | 91.1 | 91.5 | 98.5 |  | 88.5 | 87.8 | 0.93 |
| 9.0 | 95.6 | 95.4 | 98.7 |  | 92.2 | 92.9 | 0.95 |

The table gives the per cent of normally incident light which is reflected by the polished surface of various metals.

Table 6k-5. Reflection of Light by Metals* (Continued)

| Wavelength | $\begin{aligned} & \text { Alumi- } \\ & \text { num } \dagger \end{aligned}$ | Cad- mium $\dagger$ | $\begin{gathered} \text { Co- } \\ \text { balt } \dagger \end{gathered}$ | $\begin{gathered} \text { Graph- } \\ \text { ite } \dagger \end{gathered}$ | $\begin{aligned} & \text { Irid- } \\ & \text { ium } \dagger \end{aligned}$ | $\begin{aligned} & \text { Molyb- } \\ & \text { denum t } \end{aligned}$ | Palladium $\dagger$ | $\begin{aligned} & \text { Rho- } \\ & \text { dium } \dagger \end{aligned}$ | $\begin{aligned} & \text { Sili- } \\ & \text { con } \dagger \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | ... |  |  | 22 |  | 46 |  | 76 | 34 |
| 0.6 | . . | $\cdots$ | . . | 24 | . . . | 48 | $\cdots$ | 77 | 32 |
| 0.8 |  |  |  | 25 |  | 52 |  | 81 | 29 |
| 1.0 | 71 | 72 | 67 | 27 | 78 | 58 | 72 | 84 | 28 |
| 2.0 | 82 | 87 | 72 | 35 | 87 | 82 | 81 | 91 | 28 |
| 4.0 | 92 | 96 | 81 | 48 | 94 | 90 | 88 | 92 | 28 |
| 7.0 | 96 | 98 | 93 | 54 | 95 | 93 | 94 | 94 | 28 |
| 10.0 | 98 | 98 | 97 | 59 | 96 | 94 | 97 | 95 | 28 |
| 12.0 | 98 | 99 | 97 | 5 | 96 | 95 | 97 | 95 | 28 |


| Wavelength | $\begin{aligned} & \text { Tanta- } \\ & \text { lum } \end{aligned}$ | $\begin{gathered} \text { Tel- } \\ \text { lurium } \end{gathered}$ | Tin | Vana- dium | Zinc | Wavelength | $\begin{aligned} & \text { Tung- } \\ & \text { sten } \end{aligned}$ | Stellite $\ddagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | 38 |  |  | 57 |  | 0.15 |  | 0.32 |
| 0.6 | 45 | 49 | $\cdots$ | 58 |  | 0.20 |  | 0.42 |
| 0.8 | 64 | 48 |  | 60 |  | 0.30 |  | 0.50 |
| 1.0 2.0 | 78 90 | 50 52 | 54 | 61 | 80 | 0.50 | 0.50 | 0.64 |
| 2.0 | 90 | 52 | 61 | 69 | 92 | 0.75 | 0.52 | 0.67 |
| 4.0 | 93 | 57 | 72 | 79 | 97 | 1.00 | 0.576 | 0.689 |
| 7.0 | 94 | 68 | 81 | 88 | 98 | 2.00 | 0.900 | 0.747 |
| 10.0 |  |  | 84 |  | 98 | 3.00 | 0.943 | 0.792 |
| 12.0 | 95 | $\cdots$ | 85 |  | 99 | 4.00 | 0.948 | 0.825 |
|  |  |  |  |  |  | 5.00 | 0.953 | 0.848 |
|  |  |  |  |  |  | 9.00 |  | 0.880 |


| $\begin{gathered} \hline \text { Wavelength, } \mu, \\ 0.001 \mathrm{~mm} \end{gathered}$ | Silver 9 | Monel metal 1 | Stellite \\| | Zinc ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.45 | 88.0 | 56.5 | 63.5 | 54.0 |
| 0.50 | 90.0 | 57.8 | 65.8 | 55.0 |
| 0.55 | 91.5 | 59.0 | 68.3 | 56.0 |
| 0.60 | 92.7 | 60.2 | 70.1 | 57.5 |
| 0.65 | 93.5 | 61.8 | 71.0 | 60.0 |
| 0.70 | 94.1 | 63.7 | 71.8 | 61.0 |
| 0.75 | 94.7 | 65.6 | 72.4 | 61.5 |
| 0.80 | 95.1 | 67.2 | 73.0 | 61.5 |
| 0.90 | 96.0 | 70.0 | 73.5 | 55.5 |
| 0.95 | 96.3 | 71.1 |  | 51.0 |
| 1.00 | 96.5 | 72.3 | 74.0 | 49.0 |
| 1.05 | 96.7 | 73.0 |  | 53.5 |
| 1.10 | 96.9 | 73.6 |  | 62.5 |
| 1.20 | 97.2 | 74.8 | 74.5 | 74.7 |
| 1.40 | 97.4 | 77.0 | 75.0 | 85.8 |
| 1.50 | 97.6 | 78.2 | 75.3 | 88.4 |
| 1.75 | 97.8 | 81.2 | 76.0 | 92.0 |
| 2.00 | 97.9 | 83.8 | 76.8 | 94.0 |
| 2.50 | 98.0 | 87.0 | 78.6 | 95.3 |
| 3.00 | 98.0 | 88.7 | 80.0 | 95.5 |
| 3.50 | 98.0 | 89.5 | 81.4 | 95.8 |
| 4.00 | 98.0 | 91.0 | 82.8 | 96.2 |

[^324]
## 61. Fluorescence and Phosphorescence

Table 6l-1. Some Characteristics of Fluorescent Chemicals*

| Phosphor | Lamp color | Exciting range, $\dagger$ A | Sensitivity peak, A | Emitted range, A | Emitted peak, A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Calcium tungstate. | Blue | 2,200-3,000 | 2,720 | 3,100-7,000 | 4,400 |
| Magnesium tungstate. | Blue-white | 2,200-3,200 | 2,850 | 3,600-7, 200 | 4,800 |
| Zinc silicate. | Green | 2,200-2,960 | 2,537 | 4,600-6,400 | 5,250 |
| Calcium halophosphates. | White | 2,000-2,600 | 2,500 | 3,500-6,800 | 4,800, 5,800 |
| Cadmium silicate........... | Yellow-pink | 2, 200-3, 200 | 2,400 | 4,800-7,400 | 5,950 |
| Cadmium borate. | Pink | 2,200-3,600 | 2,500 | 5,200-7,500 | 6,150 |
| BL phosphor $\mathrm{BaSi}_{2} \mathrm{O}_{5}$ with Pb . | Blue ultra | 2,200-2,700 | 2,500 | 3,100-4,100 | 3,500 |
| Calcium phosphate with Ce and Mn | Red | 2,200-3,400 | 3,130 | $\begin{aligned} & 5,600-8,100 \\ & \text { plus uv } \end{aligned}$ | 6,500 |

* "Smithsonian Physical Tables," 1954, Table 96. Data furnished by H. C. Froelich, of Nela Park. $\dagger 2,200 \mathrm{~A}$ was lower limit of measurements.

Table 6l-2. Fluorescence of Organic Substances in Solution* (Excitation by white light)

| Substance | Solvent | Wavelength, $\mu$ | Observer |
| :---: | :---: | :---: | :---: |
| Anthracene. | Alcohol | $\left\{\begin{array}{l}0.400 \\ 0.430 \\ 0.436\end{array}\right.$ | Stark and Meyer, 1907 |
| Eosine. | Alcohol or water | 0.589 | Nichols and Merritt, 1907 |
| Esculine. | Alcohol | 0.460 | Nichols and Merritt, 1907 |
| Fluorescein | Water (alkaline) | 0.542 | Nichols and Merritt, 1907 |
| Naphthalin, red | Alcohol | 0.632 | Nichols and Merritt, 1907 |
| Quinine sulfate. | Water | 0.437 | Nichols and Merritt, 1907 |
| Resorcin blue. | Water | 0.65 | Nichols and Merritt, 1907 |
| Rhodamin. | Water | 0.554 | Nichols and Merritt, 1907 |

[^325]Table 61-3. Fluorescence of Gases and Vapors*

| Gas or vapor | Condition | Excitation | Color or wavelength of emitted light | Observer |
| :---: | :---: | :---: | :---: | :---: |
| Iodine. | Vapor at ordinary temp. | Mercury arc $\lambda=0.546 \mu$ | Strongest bands $\begin{aligned} & \lambda=0.5460 \mu, 0.5774 \mu \\ & 0.5730,0.5796 \end{aligned}$ | Wood, 1911 |
| Mercury . . | Vapor at ordinary temp. | Spark between aluminum electrodes | Broad band $\lambda=0.5900-0.3000$ | Wood, 1909 |
| Oxygen. |  | Mercury arc in quartz tube | $\begin{aligned} & \text { Strongest lines } \\ & \lambda=0.1849,0.1851 \\ & \text { (ultraviolet) } \end{aligned}$ | Streubing, 1910 |
| Potassium. | Vapor, $300-400^{\circ} \mathrm{C}$ | White light | Many strong lines from 0.6416-0.6768, strongest 0.6544 and 0.6584 | Wood and Carter, 1908 |
| Rubidium. | Vapor at $270^{\circ} \mathrm{C}$ | White light (elec. arc) | Strong red band $\lambda=0.6900-0.6620$ | Dunoyer, 1912 |
| Sodium... | Vapor at $350^{\circ} \mathrm{C}$ | White light (elec. arc) | $\begin{aligned} & D, \lambda=0.5893 \\ & \text { (mean) } \end{aligned}$ | Dunoyer, 1912 |

[^326]FLUORESCENCE AND PHOSPHORESCENCE
Table 6l-4. Characteristics of Cathode-ray-tube Phosphors*
A summary of useful CRT screens, most of which have been coded by the Radio Manufacturer's Association


* From H. W. Leverenz, "Luminescense of Solids," pp. 428-429, John Wiley \& Sons, Inc., New York, 1950.


## 6m. Radiation Detection

Radiation detectors can be classed as either thermal detectors or quantum detectors. In the former the radiation is absorbed and transformed into heat in the detector, producing a temperature rise in the device. Some characteristic of the detector changes as a function of temperature, and this characteristic can be measured to determine the quantity of radiation striking the detector. In this type of receiver, then, the quantity actually measured is the temperature change. In the quantum detector, on the other hand, the incident photons change the detector characteristic directly.

There can be as many thermal detectors as there are material characteristics which change with temperature. Table $6 \mathrm{~m}-1$ lists some of the eommercially available types.

Table 6m-1. Thermal Detectors
Measured Characteristic
Bolometer. Change of electrical resistance with temperature
Thermocouple............ Peltier effect or change of contact potential at a junction as a function of temperature
Pneumatic detector........ Change of gas pressure in an enclosed chamber as a function of temperature

Various kinds of quantum detectors are mentioned and described briefly in Table 6m-2.

| D | um Detectors Measured Characteristic |
| :---: | :---: |
| Photoelectric cell | The emission of an electron from a surface when struck by sufficiently energetic photons |
| Photoconductor | The resistance of the cell changes directly as a result of photon absorption |
| Photovoltaic | A voltage is generated directly as a result of the absorption of a photon |

Photographic plate....... A silver halide is reduced to silver by photon absorption
The important characteristics of radiation detectors are:
Spectral Response. This is a relative signal obtained from a detector at different wavelengths. In the case of thermal detectors, the response is generally independent of wavelength over a range from the ultraviolet to wavelengths which approach the dimensions of the detector. The responsivity of the detector is its output in volts or amperes as a function of light intensity or radiation intensity.

Noise. This is the random signal generated by a detector, independent of the signal from the radiation being measured. In the case of a thermal detector, this noise will include the basic statistical mechanical temperature fluctuation of whatever characteristic is being used to measure temperature. In the case of a bolometer this noise will be the Johnson or electronic thermal noise associated with the resistance. There can also be noise associated with the fluctuations in the radiation received by the detector from its environment and emitted by the detector to its environment. This photon fluctuation noise is usually smaller than other types of noises in detectors.


Frg. 6m-1. Characteristics of commercially available quantum detectors.
Quantum detectors that produce electrical signals also develop the same types of noises associated with thermal detectors. In addition, some of these detectors can develop "shot" noise which is associated with the random fluctuations in the emission of the electrons from a cathode surface. These noises are of the following kinds:

ELECTRONIC THERMAL AGITATION NOISE:

$$
\text { rms voltage }=\sqrt{4 k T R\left(f_{2}-f_{1}\right)}
$$

where $k=$ Boltzmann constant $=1.374 \times 10^{-23}$ joule $/{ }^{\circ} \mathrm{K}$
$T=$ absolute temperature, ${ }^{\circ} \mathrm{K}$
$R=$ electrical resistance, ohms
$f_{1}, f_{2}=$ frequency limits
SHOT NOISE:

$$
\text { rms current }=\sqrt{2 e I\left(f_{2}-f_{1}\right)} \quad \text { amp }
$$

where $e=$ electronic charge, coulombs $=1.59 \times 10^{-19}$
$I=$ direct current, amp
current noise: Noise arising from changes in state of the conducting holes and electrons in a semiconductor. Current noise voltage generally follows the relationship

$$
\text { rms voltage }=\sqrt{C I^{2} \log \frac{f_{2}}{f_{1}}}
$$

where $C=$ a constant for the geometry and semiconductor material.


Fig. 6m-2. Spectral sensitivities of commercially available phototubes.


Fig. 6m-2. (Continued)
Table 6m-3. Characteristics of Commercially Available Thermal Detectors

| Detectors | Material | Time const, sec | Area | Frequency of measurement, cps | Resistance, ohms | $V / W$ | Equivalent noise input for 1 cps bandwidth |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bolometer* | Platinum | 0.016 | $6.5 \times 0.25 \mathrm{~mm}$ | 10 | 40 | $\begin{aligned} & 10 \mathrm{rms} \text { volt/avg } \\ & \text { watt } \end{aligned}$ | $1.7 \times 10^{-10} \mathrm{avg}$ watt equal rms noise |
| Bolometer $\dagger$. | Mixture manganese, nickel, and cobalt oxide | $\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$ | $2.5 \times 0.2 \mathrm{~mm}$ | 15 | $3 \times 10^{6}$ | $\begin{aligned} & 1,210 \mathrm{rms} \text { volt/ } \\ & \text { avg watt } \end{aligned}$ | $1.8 \times 10^{-10} \mathrm{avg}$ watt equal rms noise |
| Golay pneumatic cell $\ddagger$. | Gas-filled cavity | 0.015 | 3-mm circle | 10 |  |  | $6 \times 10^{-11}$ avg watt equal rms noise |

[^327]Time Constant. The time required for the signal to complete all but $1 / e$ of its steady-state change, following a step-function change in radiation, is called the time constant.

The Equivalent Noise Input (E.N.I.) or Noise Equivalent Power (N.E.P.). The E.N.I. or N.E.P. is the average watts required to give a signal equal to the rms noise from the detector. Table $6 \mathrm{~m}-3$ gives the characteristics of various commercially available thermal detectors. The chart and data presented in Fig. 6m-1 provide similar information for some of the quantum detectors. Figure $6 \mathrm{~m}-2$ provides spectral sensitivity characteristics of some commercially available phototubes.

## 6n. Velocity of Light

Table 6n-1*

| No. | Date | Experimenter | Method |  | Velocity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1876 | Cornu | Toothed wheel | $L / T$ | 299,990 $\pm 200$ |
| 2 | 1880 | Michelson | Rotating mirror | $L / T$ | $299,910 \pm 50$ |
| 3 | 1883 | Newcomb | Rotating mirror | $L / T$ | $299,860 \pm 30$ |
| 4 | 1883 | Michelson | Rotating mirror | $L / T$ | $299,853 \pm 60$ |
| 5 | 1902 | Perrotin | Toothed wheel | $L / T$ | $299,901 \pm 84$ |
| 6 | 1906 | Rosa and Dorsey | Maxwell's bridge | esu/emu | $299,781 \pm 10$ |
| 7 | 1923 | Mercier | Waves on wires | $\lambda \nu$ | $299,782 \pm 15$ |
| 8 | 1926 | Michelson | Rotating mirror | $L / T$ | $299,796 \pm 4$ |
| 9 | 1928 | Karolus and Mittelstaedt | Kerr cell | $L / T$ | $299,778 \pm 10$ |
| 10 | 1932 | Michelson, Pease, and Pearson | Rotating mirror | $L / T$ | 299,774 $\pm 11$ |
| 11 | 1940 | Huettel | Kerr cell | $L / T$ | $299,768 \pm 10$ |
| 12 | 1941 | Anderson | Kerr cell | $L / T$ | $299,776 \pm 14$ |
| 13 | 1950 | Bergstrand | Electronic chopper | $L / T$ | 299,792.7 $\pm 0.25$ |
| 14 | 1950 | Essen | Microwave cavity | $\lambda \nu$ | $299,792.5 \pm 3$ |
| 15 | 1950 | Houstoun | Vibrating crystal | $L / T$ | 299,775 $\pm 9$ |
| 16 | 1950 | Bol and Hansen | Microwave cavity | $\lambda \nu$ | 299,789.3 $\pm 0.4$ |
| 17 | 1951 | Aslakson | Shoran radar | $L / T$ | $299,794.2 \pm 1.9$ |
| 18 | 1952 | Rank, Ruth, and Vander Sluis | Molecular spectra | $\lambda \nu$ | $299,776 \pm 7$ |
| 19 | 1952 | Froome | Microwave interferometer | $\lambda \nu$ | 299,792.6 $\pm 0.7$ |
| 20 | 1954 | Florman | Radio interferometer | $\lambda \nu$ | $299,795 \pm 3.1$ |
| 21 | 1954 | Plyler | Molecular spectra | $\lambda \nu$ | $299,792 \pm 6$ |

[^328]Principal attempts to measure the speed of light are summarized in the chart and Table 6n-1. Vertical lines on the chart represent the range of error in each measurement, with the most probable value indicated by the short cross mark. The column to the left of the list of velocities on Fig. 6n-1 refers to the theory underlying each method. $L / T$ means that the experimenter essentially measured a distance and a


Frg. 6n-1. Determinations of the velocity of light. (Scientific American.)
time and found the velocity by dividing the two. esu/emu refers to the ratio of electrostatic to electromagnetic units. The expression $\lambda \nu$ indicates that the wavelength $\lambda$ and the frequency $\nu$ of some electromagnetic radiation were each measured experimentally and that these values were multiplied together to give the waves' velocity.

# 6o. Radio Astronomy ${ }^{1}$ 

L. M. BRANSCOMB<br>National Bureau of Standards

60-1. Radio-astronomical Measurements. Radio astronomy is an extension of photographic astronomy into the spectral range 15 to $30,000 \mathrm{Mc} / \mathrm{sec}$ to detect the radio noise which is part of the continuous spectrum of the radiation source. Large radio telescopes may have a beam width of the order of 1 deg , but modern radio interferometers can locate the positions of discrete sources of radio noise within angles smaller than 1 minute. To date, the only discrete spectral line observed is the hyperfine transition in the ground state of the hydrogen atom at a wavelength of 21 cm . In contrast with visual astronomy absolute intensities of the radiofrequency continuum are measured with relative ease. As a result the intensities $P_{\nu}$

[^329]of radio noise signals from discrete sources are reported in either absolute units [watts $\left./ \mathrm{m}^{2} / \mathrm{sec}\right)^{-1}$ ] or in terms of the equivalent photographic magnitude or equivalent thermodynamic temperature of the source, if the angular size of discrete objects is known. The definition of radio magnitude given by Brown and Hazard ${ }^{1}$ is
$$
m_{R}=-53.4-2.5 \log P_{\nu}
$$
where $P_{\nu}$ is the intensity in the units given above.
For a radio source of finite extent (spherical with angular diameter $d$ minutes of arc), the radio luminosity ${ }^{2}$ is
$$
L_{\nu}=1.2 \times 10^{41} P_{\nu} r^{2} \quad \operatorname{ergs~sec}{ }^{-1}(\mathrm{c} / \mathrm{sec})^{-1}
$$
where the distance to the source $r$ is given in parsecs. ${ }^{3}$ The total volume emissivity is
$$
J_{\nu}=\frac{3.2 \times 10^{-4} P_{\nu}}{d^{3} r} \quad \mathrm{ergs} \mathrm{~cm}^{-3} \mathrm{sec}^{-1}(\mathrm{c} / \mathrm{sec})^{-1}
$$

In these units the source emissivities vary from $1.4 \times 10^{-30}$ for the galaxy ${ }^{4}$ to at least $10^{-23}$ for the extragalactic sources of Taurus and Cassiopeia. ${ }^{5}$


FREQUENCY (MC/S)
Fig. 6o-1. The spectra of the three components of solar radio-frequency radiation. That of $T_{B}$ is constant (at least for several years) in form and level. That of $T_{S}$ varies in level and the curve shown corresponds to a sunspot area of 5,000 millionths. That of $T_{X}$ is highly variable in both form and level; the curve shown represents approximate, average, relative values for the various frequencies and for moderately disturbed conditions. [Piddington and Minnett, Aust. J. Sci. Res. A4, 131 (1951).]

60-2. Solar Noise. Although solar noise power is often expressed in terms of the effective temperature of the source, the spectrum is not of black-body character. Figure $60-1$ shows the effective temperature of the sun as a function of the measured

[^330]frequency. ${ }^{1}$ Three components of the solar noise are distinguished by Piddington and Minnett: a basic steady component $B$ from chromosphere and corona, a slowly varying component $S$ associated with sunspot number, and rapid fluctuations of various kinds collectively termed $X$. The $X$ component at low frequencies is closely related to violent solar activity and the correlated terrestrial atmospheric storms. About 80 per cent of solar flares are accompanied by radio noise at $200 \mathrm{Mc} / \mathrm{sec} .{ }^{2}$

60-3. Galactic Radio Noise. Galactic radiation is observed both in the continuous r-f spectrum and in the $21.10614-\mathrm{cm}$ line of hydrogen. The frequency of this transition has recently been remeasured in the laboratory and is given in Table 60-1. The

Table 6o-1. Hyperfine Splitting of Atomic Hydrogen Ground State ( $\lambda=21.10614 \mathrm{~cm}$ )

| $\nu_{0}, \mathrm{Mc} / \mathrm{sec}$ | Technique | Investigator |
| :---: | :--- | :--- |
| $1,420.40580 \pm 0.00005$ | Microwave absorption <br> $1,420.40573 \pm 0.00005$ | Wittke and Dicke* <br> Kusch $\dagger$ |

[^331]isophotes of the continuous radio emission from the galaxy have been mapped at $100 \mathrm{Mc} / \mathrm{sec}$ by Bolton and Westfold ${ }^{3}$ and others. The radiation is concentrated in the galactic plane, and the nongaseous component is closely correlated in distribution with the general stellar distribution. ${ }^{4}$ This distribution in galactic latitude is similar to the distribution of cluster-type variables, ${ }^{5}$ consistent with the conclusion that the galactic radiation originates in population II objects, as well as in hot (ionized) interstellar regions. Equivalent galactic temperatures from 9.5 to $3,000 \mathrm{Mc} / \mathrm{sec}$, as well as isophotes, are given by Piddington. ${ }^{6}$

The relative motion of distant parts of the galaxy can be traced by the Doppler shifts in the galactic radiation in the hydrogen hyperfine-structure line. The results show that the galaxy has a spiral structure, rotating with the arms of the spiral trailing, and with the arms not confined to a single plane. ${ }^{7}$ The center of the galaxy is placed at about 8.2 kiloparsecs from the sun, the region near the sun having a linear velocity of about $216 \mathrm{~km} / \mathrm{sec} .^{8}$ The temperature of the gas in the HI regions is deduced from the $21-\mathrm{cm}$ line intensity and is about $100^{\circ} \mathrm{K}$. Hydrogen radiation has also been detected from the Magellanic clouds. ${ }^{9}$

60-4. Discrete Radio Sources. The general galactic radiation at 21 cm is observed in emission. However, a source of strong hydrogen absorption ( 0.5 deg diameter) has been reported in a bright star cluster in Sagittarius. ${ }^{10}$

Discrete radio sources have been described by Baade and Minkowski ${ }^{5}$ in four categories: remnants of supernovae; galactic nebulosities of a new type; peculiar

[^332]extragalactic nebulae; and normal extragalactic nebulae. The radio and photographic positions of the identified sources are given by Baade and Minkowski. ${ }^{1}$ Among the peculiar extragalactic nebulae, one of the most interesting is the source in Cygnus A, where there is photographic evidence that the source is the remnant of two colliding galaxies. ${ }^{2}$

For detailed information on radio astronomy and related topics see:
Ryle, M.: Repts. Progr. in Phys. 13, 214 (1950).
Lovell, A. C. B., and J. A. Clegg: "Radio Astronomy," Chapman \& Hall, Ltd., London, 1952.
Van de Hulst, H. C.: "A Course in Radio Astronomy," Leiden Observatory, Leiden, 1951.

Aller, L.: "Astrophysics," The Ronald Press Company, New York, 1954.
Lovell, A. C. B., and colleagues: Occasional Notes, Roy. Astron. Soc. 16, 29 (1954).
Kuiper, G. P.: "The Solar System," I. The Sun, University of Chicago Press, Chicago, 1953.
Bolton, J. G., F. G. Smith, R. Hanbury Brown, and B. Y. Mills: Discrete Source of Extra-terrestrial Radio Noise, Special Report 3, International Scientific Radio Union (URSI), Brussels, 1954.
${ }_{2}^{1}$ W. Baade and R. Minkowski, Astrophys. J. 119, 206,230 (1954).
${ }^{2}$ Ibid., p. 206.

## Section 7

## ATOMIG AND MOLEGULAR PHYSICS*

G. H. DIEKE, Editor<br>The Johns Hopkins University

## CONTENTS

7a. Atomic Constants ..... 7-2
7b. The Periodic System ..... 7-5
7c. The Electronic Structure of Atoms
7-13
7-13
7d. Structure of Atomic Spectra
7-16
7-16
7e. Energy-level Diagrams of Atoms ..... 7-26
7f. Persistent Lines of the Elements ..... 7-39
7 g . Important Atomic Spectra
7-42
7-42
7h. Data on Characteristic X-ray Spectra
7-123
7-123
7i. Constants and Energy Levels of Diatomic Molecules ..... 7-136
7j. Constants of Polyatomic Molecules ..... 7-145
7k. Wave Mechanics
7-162
7-162
71. Zeeman Effect
7-168
7-168
7 m . Motions of Electrons and Ions in Gases
7-174
7-174
7 m -1 Collision Probabilities
7-174
7-174
1.1 Elastic Collisions by Electrons ..... 7-175
1.2 Inelastic Collisions by Electrons ..... 7-177
1.3 Electron Attachment
7-182
7-182
1.4 Elastic Collisions by Ions
1.4 Elastic Collisions by Ions
7-186
7-186
1.5 Charge Transfer
1.5 Charge Transfer ..... 7-189
7m-2 Surface Phenomena
7-192
7-192
2.1 Secondary Emission
7-192
7-192
2.2 Effective Secondary Emission
7-199
7-199
2.3 Ion Conversions
2.3 Ion Conversions
7-201
7-201
2.4 Secondary Emission by Electrons ..... 7-203
7m-3 Average Motion of Electrons and Ions ..... 7-203
3.1 Drift Velocity of Electrons .....
7-205 .....
7-205
3.2 Mean Energies of Electrons
3.2 Mean Energies of Electrons
7-210
7-210
3.3 Drift Velocities of Ions ..... 7-212

[^333]
## 7a. Atomic Constants

Table 7a-1 gives the best values of the atomic constants with probable errors as of October, 1954, evaluated by J. A. Bearden, M. D. Earle, J. M. Minkowski, and J. S Thomsen of The Johns Hopkins University. While the least-squares method was used, the result is substantially equivalent to a direct solution based on the following experiments: the microwave measurement of the fine-structure constant $\alpha$ by Triebwasser, Dayhoff, and Lamb; the determination of the magnetic moment of the proton in nuclear magnetons by Sommer, Thomas, and Hipple; ${ }^{2}$ the measurement of the gyromagnetic ratio of the proton by Thomas, Driscoll, and Hipple; ${ }^{3}$ a weighted mean of several recent velocity-of-light experiments; and the determination of the ratio of the proton magnetic moment to the anomalous moment of the electron by Koenig, Prodell, and Kusch. ${ }^{4}$ Atomic masses were obtained from weighted means of recent values given in a review by Duckworth, Hogg, and Pennington. ${ }^{5}$

These values are in good agreement with most other recent experiments of high precision except for the X-ray determinations of $h / e$, where it seems possible there may be some unsuspected source of systematic error. For this reason, no X-ray data of any kind were used in the evaluation.

Wherever atomic weights are involved, the physical scale is used.
${ }^{1}$ Triebwasser, Dayhoff, and Lamb, Phys. Rev. 89, 98 (1953).
${ }^{2}$ Sommer, Thomas, and Hipple, Phys. Rev. 82, 697 (1951).
${ }_{3}$ Thomas, Driscoll, and Hipple, J. Research Natl. Bur. Standards 44, 569 (1950).
${ }^{4}$ Koenig, Prodell, and Kusch, Phys. Rev. 88, 191 (1952).
${ }^{5}$ Duckworth, Hogg, and Pennington, Revs. Modern Phys. 26, 463 (1954).

|  | ATOMIC CO Table 7a-1. General | NSTANTS <br> Atomic Constants |
| :---: | :---: | :---: |
| $e$ | Electronic charge | $(4.8029 \pm 0.0001) \times 10^{-10} \mathrm{esu}$ |
| $e / m$ | Specific charge of electron | $\begin{aligned} & (4.8029 \pm 0.0001) \times 10^{-10} \mathrm{esu} \\ & (5.2731 \pm 0.0002) \times 10^{17} \mathrm{esu} \mathrm{~g}^{-1} \end{aligned}$ |
| $\boldsymbol{N}$ | A vogadro's number (molecules per mole) | $(6.0248 \pm 0.0003) \times 10^{23}(\mathrm{~g} \text {-mole) })^{-1}$ |
| no | Loschmidt's number (molecules per $\mathrm{cm}^{3}$ ) | $(2.6871 \pm 0.0002) \times 10^{19} \mathrm{~cm}^{-3}$ |
| $F$ | Velocity of light in vacuum | $(2.997923 \pm 0.000008) \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}$ |
| $F$ | Faraday $F=N e / c$ | $(9652.2 \pm 0.2)$ emu (g-equivalent) ${ }^{-1}$ |
| $\boldsymbol{h}$ | Planck's constant | $(6.6253 \pm 0.0003) \times 10^{-27} \mathrm{erg} \text { sec }$ |
| h $h / e$ | $h=h / 2 \pi$ | $(1.05445 \pm 0.00005) \times 10^{-27} \mathrm{erg} \text { sec }$ |
| $h / e$ $h / m$ |  | $(1.37943 \pm 0.00003) \times 10^{-17} \text { erg sec }(\text { esu })^{-1}$ |
| $\mu_{0}$ | Bohr | $(7.27383 \pm 0.00005) \mathrm{cm}^{2} \mathrm{sec}^{-1}$ |
| $\mu_{0} / \mathrm{hc}$ | Zeeman displacement per gauss | $(0.92734 \pm 0.00003) \times 10^{-20}$ erg gauss ${ }^{-1}$ |
| $\mu e$ | Magnetic moment of electron | $(4.6689 \pm 0.0001) 10^{-5} \mathrm{~cm}^{-1}$ gauss $^{-1}$ |
| $\mu_{n}$ | Nuclear magneton | $(0.92840 \pm 0.00003) \times 10^{-20} \mathrm{erg}$ gauss $^{-1}$ <br> $(5.0505 \pm 0.0002) \times 10^{-24} \mathrm{erg}^{2} \mathrm{gauss}-1$ |
| $\mu_{p}$ | Magnetic moment of proton | $(1.41049 \pm 0.00004) \times 10^{-23} \mathrm{erg} \text { gauss }^{-1}$ |
| $\boldsymbol{R}_{\boldsymbol{H}}$ | Rydberg constant for hydrogen | $(109677.58 \pm 0.01) \mathrm{cm}^{-1}$ |
| $\boldsymbol{R}_{\infty}$ | Rydberg constant for infinite mass | $(109737.31 \pm 0.01) \mathrm{cm}^{-1}$ |
| $\alpha^{-1}$ | Fine-structure constant $2 \pi e^{2} / \mathrm{hc}$ | $(7.29732 \pm 0.00003) \times 10^{-8}$ |
| $\alpha^{-1}$ |  | $137.0366 \pm 0.0005$ |
| $a_{0}$ | First Bohr radius $h^{\mathbf{2}} / \mathbf{4} \boldsymbol{\pi}^{\mathbf{2}} \boldsymbol{m} \boldsymbol{e}^{\mathbf{2}}$ | $(5.29175 \pm 0.00002) \times 10^{-9} \mathrm{~cm}$ |
| $B I$ | Band-spectrum constant $B I=h / 8 \pi^{2} c$ | $(2.7990 \pm 0.0002) \times 10^{-39} \mathrm{~g} \mathrm{~cm}$ |
| $c_{1}$ | First radiation constant (8)hc) | $(4.9919 \pm 0.0002) \times 10^{-15} \mathrm{erg} \mathrm{cm}$ |
| $c_{2}$ | Second radiation constant $h c / k$ | $(1.43886 \pm 0.00005) \mathrm{cm} \mathrm{deg}$ |
| $k$ | Stefan-Boltzmann constant $2 \pi^{5} k^{4} / 15 c^{2} h^{3}$ | (5.6685 $\pm 0.0007) \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{deg}^{-4} \mathrm{sec}^{-1}$ |
| $k$ | Boltzmann constant | $(1.38041 \pm 0.00007) \times 10^{-16} \mathrm{erg} \mathrm{deg}^{-1}$ |
| $\lambda_{\text {max }} T$ |  | ( $0.69500 \pm 0.00002$ ) $\mathrm{cm}^{-1} \mathrm{deg}^{-1}$ |
| ${ }^{\lambda_{\text {max }}} \mathrm{T}$ | Wien-di | $(0.289794 \pm 0.000009) \mathrm{cm} \mathrm{deg}$ |
| $V_{0}$ | Molar volume | $\begin{aligned} & (8.3167 \pm 0.0003) \times 10^{7} \mathrm{erg} \mathrm{~mole}^{-1} \mathrm{deg}^{-1} \\ & (2.24208 \pm 0.00003) \times 10^{4} \mathrm{~cm}^{3} \mathrm{~mole}^{-1} \end{aligned}$ |
| Masses |  |  |
| $m$ | Mass of electron | $(9.1084 \pm 0.0004) \times 10^{-28} \mathrm{~g}$ |
| $\mu$ | Reduced mass of electron in hydrogen atom | $(9.1034 \pm 0.0004) \times 10^{-28} \mathrm{~g}$ |
| $M_{0}$ | Mass of particle with atomic weight one $M_{0}$ $=N_{0}-1$ | $(1.65981 \pm 0.00007) \times 10^{-24} \mathrm{~g}$ |
| $M / m N$ | Ratio proton to electron mass | $1,836.13 \pm 0.01$ |
|  | Ratio of physical to chemical scale of atomic weights | $1.000275$ |
| Atomic Masses |  |  |
| M | H atom | $1.008144 \pm 0.000002$ |
|  | D atom | $2.014739 \pm 0.000004$ |
|  | T atom | 3.01704 |
|  | Proton | $1.007595 \pm 0.000002$ |
|  | Deuteron | $2.014190 \pm 0.000004$ |
|  | Triton | 3.01650 - |
| $N m$ | Neutron | 1.008982 |
|  | Electron | $(5.48760 \pm 0.00004) \times 10^{-4}$ |
|  | Oxygen 16 | $16.00000 \times 10$ |

7-4

[^334]Table 7a-2. Conversion Factors of Atomic Units

| Electron volts | Energy, ergs | Frequency, sec $^{-1}$ | $\underset{\mathrm{cm}^{-1}}{\text { Wave number, }}$ | Wavelength, $A=10^{-8} \mathrm{~cm}$ | $\begin{gathered} \text { Temp., } \\ { }^{\circ} \mathrm{K} \end{gathered}$ | $\begin{gathered} \text { Mass, } \\ \mathbf{g} \end{gathered}$ | Atomic mass |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E=e V c^{-1} 10^{8}$ | $E$ | $E=h \nu$ | $E=h c \sigma$ | $E=\frac{h c}{\lambda}$ | $E=k T$ | $E=M c^{2}$ | $E=\frac{M_{\mathrm{o}} \mathrm{c}^{2}}{N}$ |
| 1 volt | $\left\|\begin{array}{c} e c^{-1} \times 10^{8} \\ 1.60208 \times 10^{-12} \end{array}\right\|$ | $\begin{aligned} e(c h)^{-1} & \times 10^{8} \\ 2.41813 & \times 10^{14} \end{aligned}$ | $\begin{gathered} e h^{-1} c^{-2} \times 10^{8} \\ 8,066.0 \end{gathered}$ | $\begin{gathered} h c^{2} e^{-1} \\ 12,397.7 \end{gathered}$ | $\begin{gathered} e(c k)^{-1} \times 10^{8} \\ 11,605.8 \end{gathered}$ | $\begin{gathered} e c^{-3} \times 10^{8} \\ 1.78256 \times 10^{-33} \end{gathered}$ | $\begin{aligned} e N c^{-3} & \times 10^{8} \\ 1.07395 & \times 10^{-9} \end{aligned}$ |
| $\begin{array}{r} c e^{-1} \times 10^{-8} \\ 6.24189 \times 10^{11} \end{array}$ | 1 erg | $\begin{gathered} h^{-1} \\ 1.50937 \times 10^{26} \end{gathered}$ | $\begin{gathered} (h c)^{-1} \\ 5.0347 \times 10^{15} \end{gathered}$ | $\begin{aligned} h c & \times 10^{8} \\ 1.98621 & \times 10^{-8} \end{aligned}$ | $\stackrel{k^{-1}}{7.2442} \times 10^{15}$ | $\begin{gathered} c^{-2} \\ 1.11265 \times 10^{-21} \end{gathered}$ | $\begin{gathered} N c^{-2} \\ 6.7035 \times 10^{2} \end{gathered}$ |
| $\begin{gathered} h c e^{-1} 10^{-8} \\ 4.13543 \times 10^{-15} \end{gathered}$ | $\stackrel{h}{\stackrel{h}{\times} \times 10^{-27}}$ | $1 \mathrm{sec}^{-1}$ | $\begin{gathered} c^{-1} \\ 3.335643 \times 10^{-11} \end{gathered}$ | $\begin{array}{r} c \times 10^{8} \\ 2.997923 \times 10^{18} \end{array}$ | $\begin{gathered} h k^{-1} \\ 4.7995 \times 10^{-11} \end{gathered}$ | $\begin{gathered} h c^{-2} \\ 7.3716 \times 10^{-48} \end{gathered}$ | $\begin{gathered} N h c^{-2} \\ 4.44125 \times 10^{-24} \end{gathered}$ |
| $\begin{array}{r} h c^{2} e^{-1} \times 10^{-8} \\ 1.23977 \times 10^{-4} \end{array}$ | $\begin{gathered} h c \\ 1.98621 \times 10^{-16} \end{gathered}$ | $\begin{gathered} c \\ 2.997923 \times 10^{10} \end{gathered}$ | $1 \mathrm{~cm}^{-1}$ | $\begin{aligned} & 10^{8} \\ & 10^{8} \end{aligned}$ | $\begin{gathered} h c k^{-1} \\ 1.43886 \end{gathered}$ | $\begin{gathered} h c^{-1} \\ 2.2099 \times 10^{-37} \end{gathered}$ | $\begin{gathered} N h c^{-1} \\ 1.33145 \times 10^{-13} \end{gathered}$ |
| $\begin{gathered} h c^{2} e^{-1} \\ 12,397.7 \end{gathered}$ | $\begin{gathered} h c \times 10^{8} \\ 1.98621 \times 10^{-8} \end{gathered}$ | $\begin{array}{r} c \times 10^{8} \\ 2.997923 \times 10^{18} \end{array}$ | $\begin{aligned} & 10^{8} \\ & 10^{8} \end{aligned}$ | 1 A | $\begin{array}{r} h c k^{-1} \times 10^{8} \\ 1.43886 \times 10^{8} \end{array}$ | $\begin{gathered} h c^{-1} \times 10^{8} \\ 2.20996 \times 10^{-29} \end{gathered}$ | $\begin{gathered} N h c^{-1} \times 10^{8} \\ 1.33145 \times 10^{-5} \end{gathered}$ |
| $\begin{array}{r} c k e^{-1} \times 10^{-8} \\ 8.6164 \times 10^{-5} \end{array}$ | $\left\lvert\, \begin{gathered} k \\ 1.38041 \times 10^{-16} \end{gathered}\right.$ | $\begin{gathered} k h^{-1} \\ 2.08355 \times 10^{10} \end{gathered}$ | $\begin{aligned} & k(h c)^{-1} \\ & 0.69500 \end{aligned}$ | $\begin{array}{r} h c k^{-1} \times 10^{8} \\ 1.43886 \times 10^{8} \end{array}$ | $1^{\circ} \mathrm{K}$ | $\begin{gathered} k c^{-2} \\ 1.53592 \times 10^{-37} \end{gathered}$ | $\begin{gathered} N k c^{-2} \\ 9.2535 \times 10^{-14} \end{gathered}$ |
| $\begin{array}{r} e^{-1} c^{3} \times 10^{-8} \\ 5.6099 \times 10^{32} \end{array}$ | $\begin{gathered} c^{2} \\ 8.98754 \times 10^{20} \end{gathered}$ | $\begin{gathered} c^{2} h^{-1} \\ 1.35655 \times 10^{47} \end{gathered}$ | $\begin{gathered} c h^{-1} \\ 4.5250 \times 10^{36} \end{gathered}$ | $\begin{gathered} c^{-1} h \times 10^{8} \\ 2.20996 \times 10^{-29} \end{gathered}$ | $\begin{gathered} c^{2} k^{-1} \\ 6.5108 \times 10^{36} \end{gathered}$ | 1 g | $\frac{N}{6.0248 \times 10^{23}}$ |
| $\begin{array}{r} e^{-1} c^{3} N^{-1} \times 10^{-8} \\ 9.3114 \times 10^{8} \end{array}$ | $\begin{gathered} c^{2} N^{-1} \\ 1.49176 \times 10^{-3} \end{gathered}$ | $\begin{gathered} c^{2}(h N)^{-1} \\ 2.25162 \times 10^{23} \end{gathered}$ | $\begin{gathered} c(h N)^{-1} \\ 7.51060 \times 10^{12} \end{gathered}$ | $\begin{gathered} c^{-1} h N \times 10^{8} \\ 1.33145 \times 10^{-5} \end{gathered}$ | $\begin{gathered} c^{2}(k N)^{-1} \\ 1.08067 \times 10^{13} \end{gathered}$ | $\begin{gathered} N^{-1} \\ 1.65980 \times 10^{-24} \end{gathered}$ | 1 amu |

## 7b. The Periodic System

## Table 7b-1. Alphabetical List of the Elements

In later tables the elements are arranged according to increasing order number $Z$. This table gives in alphabetical order the names of the elements in English, French, and German, together with the chemical symbol, year of discovery, and order number of each. (A dash means that the name of the element in French or German is the same as in English.)

| English | Name in Freneh | Name in German | Year of discovery | Symbol | Z |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Actinium. | - | - | 1899 | Ac | 89 |
| Alabamine*. |  |  |  | (Ab) | (85) |
| Alumin(i)um. | Aluminium | Aluminium | 1827 | Al | 13 |
| Americium . | Américium | - | 1945 | Am | 95 |
| Antimony | Antimoine | Antimon | Old | Sb | 51 |
| Argentum* |  |  |  | Ag | 47 |
| Argon. | - | - | 1894 | A | 18 |
| Arsenic. | - | Arsen | Old | As | 33 |
| Astatine. | - | - | 1940 | At | 85 |
| Barium . | - | Baryum | 1808 | Ba | 56 |
| Berkelium | - | - | 1950 | Bk | 97 |
| Beryllium | Béryllium | - | 1798 | Be | 4 |
| Bismuth. | - | Wismut | 1753 | Bi | 83 |
| Boron | Bore | Bor | 1808 | B | 5 |
| Bromine. | Brome | Brom | 1826 | Br | 35 |
| Cadmium | - | - | 1817 | Cd | 48 |
| Calcium. | - | - | 1808 | Ca | 20 |
| Californium | - | - | 1950 | Cf | 98 |
| Carbon. | Carbone | Kohlenstoff | Old | C | 6 |
| Cassiopeium*. |  |  | . . . | Lu | 71 |
| Celtium* |  |  |  | (Ct) | (72) |
| Cerium. | Cérium | Cer | 1803 | Ce | 58 |
| Cesium. | Césium | Caesium | 1860 | Cs | 55 |
| Chlorine. . | Chlore | Chlor | 1774 | Cl | 17 |
| Chromium | Chrome | Chrom | 1797 | Cr | 24 |
| Cobalt.... | - | - | 1735 | Co | 27 |
| Columbium*. |  |  |  | (Cb) | 41 |
| Copper. | Cuivre | Kupfer | Old | Cu | 29 |
| Curium . | - | Kupf | 1944 | Cm | 96 |
| Deuterium | - | - | 1930 | D | 1 |
| Dysprosium. | - | - | 1886 | Dy | 66 |
| Einsteinium | - | - | 1955 | E | 99 |
| Emmanation*. |  |  |  | $\mathrm{Rn}$ | 86 |
| Erbium | - | - | 1843 | Er | 68 |

Table 7b-1. Alphabetical List of the Elements (Continued)

| English | Name in French | Name in German | Year of discovery | Symbol | $Z$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Europium | - | - | 1896 | Eu | 63 |
| Fermium. | - | - | 1955 | Fm | 100 |
| Ferrum*. |  |  |  | Fe | 26 |
| Fluorine. | Fluor | Fluor | 1771 | F | 9 |
| Francium | - | - | 1939 | Fr | 87 |
| Gadolinium | - | - | 1880 | Gd | 64 |
| Gallium. | - | - | 1875 | Ga | 31 |
| Germanium | - | - | 1886 | Ge | 32 |
| Gold. | Or | - | Old | Au | 79 |
| Hafnium | - | - | 1923 | Hf | 72 |
| Helium. | Hélium | - | 1895 | He | 2 |
| Holmium | - | - | 1879 | Ho | 67 |
| Hydrogen | Hydrogène | Wasserstoff | 1766 | H | 1 |
| Illinium*. |  |  |  | (II) | (61) |
| Indium. | - | - | 1863 | In | 49 |
| Iodine. | Iode | Jod | 1811 | I | 53 |
| Iridium. | - | - | 1803 | Ir | 77 |
| Iron. | Fer | Eisen | Old | Fe | 26 |
| Kalium*. |  |  | .... | K | 19 |
| Krypton. | - | - | 1898 | Kr | 36 |
| Lanthanum. | Lanthane | Lanthan | 1839 | La | 57 |
| Lead... | Plomb | Blei | Old | Pb | 82 |
| Lithium. | - | - | 1817 | Li | 3 |
| Lutetium | Lutétium | - | 1907 | Lu | 71 |
| Magnesium | Magnésium | - | 1755 | Mg | 12 |
| Manganese . | Manganèse | Mangan | 1774 |  |  |
| Masurium*. |  |  |  | (Ma) | (43) |
| Mendelevium. | - | - | 1955 | Mv | 101 |
| Mercury . | Mercure | Quecksilber | Old | Hg | 80 |
| Molybdenum . | Molybdène | Molybdän | 1778 | Mo | 42 |
| Natrium*.... |  |  | .... | Na | 11 |
| Nebulium*. |  |  |  |  |  |
| Neodymium. | Néodyme | Neodym | 1885 | Nd | 60 |
| Neon........ | Néon | - | 1898 | Ne | 10 |
| Neptunium. | - | - | 1940 | Np | 93 |
| Nickel. . . . | - | - | 1751 | Ni | 28 |
| Niobium. | - | - | 1801 | Nb | 41 |
| Niton.. |  |  |  | Rn | 86 |
| Nitrogen. | Nitrogène | Stickstoff | 1772 | N | 7 |
| Osmium. |  | - | 1803 | Os | 76 |
| Oxygen. | Oxygène | Sauerstoff | 1774 | 0 | 8 |
| Palladium. | - | - | 1803 | Pd | 46 |
| Phosphorus. | Phosphore | Phosphor | 1669 | P | 15 |
| Platinum. . . | Platine | Platin | 1735 | Pt | 78 |
| Plumbum*. |  |  |  | Pb | 82 |
| Plutonium. | - | - | 1940 | Pu | 94 |
| Polonium. | - | - | 1898 | Po | 84 |
| Potassium. . | - | Kalium | 1807 | K | 19 |

Table 7b-1. Alphabetical List of the Elements (Continued)

| English | Name in French | Name in German | Year of discovery | Symbol | $Z$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Praseodymium. | Praséodyme | Praseodym | 1879 | Pr | 59 |
| Prometheum. | Prométheum | - | 1947 | Pm | 61 |
| Protactinium. | - | - | 1917 | Pa | 91 |
| Radium. | - | - | 1898 | Ra | 88 |
| Radon. | - | - | 1900 | Rn | 86 |
| Rhenium. | - | - | 1925 | Re | 75 |
| Rhodium. |  |  | 1803 | Rh | 45 |
| Rubidium . | - | - | 1861 | Rb | 37 |
| Ruthenium | Ruthenium | - | 1844 | Ru | 44 |
| Samarium. | - | - | 1879 | Sm | 62 |
| Scandium | - | - | 1879 | Sc | 21 |
| Selenium. | Sélénium | Selen | 1817 | Se | 34 |
| Silicon. | Silicium | Silicium | 1823 | Si | 14 |
| Silver. | Argent | Silber | Old | Ag | 47 |
| Sodium.. |  | Natrium | 1807 | Na | 11 |
| Stannum*. |  |  |  | Sn | 50 |
| Stibium*. |  |  |  | Sb | 51 |
| Strontium | - | - | 1790 | Sr | 38 |
| Sulfur. | Soufre | Schwefel | Old | S | 16 |
| Tantalum . | Tantale | Tantal | 1802 | Ta | 73 |
| Technetium | - | - | 1937 | Tc | 43 |
| Tellurium. | Tellure | Tellur | 1782 | Te | 52 |
| Terbium. | - | - | 1843 | Tb | 65 |
| Thallium. | - | - | 1861 | Tl | 81 |
| Thorium. | - | - | 1828 | Th | 90 |
| Thulium. | - | - | 1879 | Tm | 69 |
| Tin. | Etain | Zinn | Old | Sn | 50 |
| Titanium. | Titane | Titan | 1791 | Ti | 22 |
| Tritium. | - | - |  | T | 1 |
| Tungsten. | Tungstène | Wolfram | 1781 | W | 74 |
| Uranium. | - | Uran | 1789 | U | 92 |
| Vanadium. | - | - | 1830 | V | 23 |
| Virginium*. |  |  | .... | (Vi) | (87) |
| Wolfram*. |  |  |  | W | 74 |
| Xenon. | Xénon | - | 1898 | Xe | 54 |
| Ytterbium. | - | - | 1878 | Yb | 70 |
| Yttrium. | - | - | 1794 | Y | 39 |
| Zinc. | - | Zink | 1746 | Zn | 30 |
| Zirconium | - | Zircon | 1789 | Zr | 40 |

[^335]Table 7b-2. Periodic System of the Elements

The numbers under the elements indicate the observed multiplicity in the first spectrum. The value for the ground state is underlined.

Table 7b-3. Properties of Elements*


Table 7b-3. Properties of Elements* (Continued)

| $Z$ (1) | Symbol <br> (2) | Element <br> (3) | Atomic wt. $\dagger$ <br> (4) | Valency <br> (5) | Atomic diam <br> (6) | Mass No. and (abundance) <br> (7) | Terrestrial abundance, 7 g/ton (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | Kr | Krypton | 83.80 | 0 | 4.0 | $\begin{aligned} & \text { 84(56.90), 86(17.37), } \\ & 82(11.56), 83(11.55), \\ & 80(2.27), 78(0.354) \end{aligned}$ | $9.8 \cdot 10^{-6}$ |
| 37 | Rb | Rubidium | 85.48 | 1 | 5.02 | 85(72.15), 87(27.85) | 310 |
| 38 | Sr | Strontium | 87.63 | 2 | 4.29 | $\begin{gathered} 88(82.56), 86(9.86), \\ 87(7.02), 84(0.56) \end{gathered}$ | 300 |
| 39 | Y | Yttrium | 88.92 | 3 | 3.62 | 89 (100) | 28.1 |
| 40 | $\mathbf{Z r}$ | Zirconium | 91.22 | 4 | 3.19 | $\begin{aligned} & 90(51.46), 94(17.40), \\ & 92(17.11), 91(11.23), \\ & 96(2.80) \end{aligned}$ | 220 |
| 41 | Nb | Niobium | 92.91 | 5, 3 | 2.94 | 93(100) | 24 |
| 42 | Mo | Molybdenum | 95.95 | 6, 3, 5 | 2.80 | $\begin{aligned} & 98(23.75), 96(16.5), \\ & 92(15.86), 95(15.7), \\ & 100(9.62), 97(9.45), \\ & 94(9.12) \end{aligned}$ | 15 |
| 43 | To | Technetium | (99) |  |  |  |  |
| 44 | Ru | Ruthenium | 101.1 | 3, 4, 6, 8 | 2.67 | $\begin{aligned} & \text { 102(31.34), 104(18.27), } \\ & \text { 101(16.98), 99(12.81), } \\ & \text { 100(12.70), } 96(5.7), \\ & 98(2.22) \end{aligned}$ | . 0 |
| 45 | Rh | Rhodium | 102.91 | 3, 4 | 2.7 | 103(100) | 0.001 |
| 46 | Pd | Palladium | 106.7 | 2, 4 | 2.745 | $\begin{gathered} 106(27.2), 109(26.8), \\ 105(22.6), 110(13.5), \\ 104(9.3), 102(0.8) \end{gathered}$ | 0.010 |
| 47 | Ag | Silver | 107.880 | 1 | 2.883 | 107(51.35), 109(48.65) | 0.10 |
| 48 | ${ }_{\text {Cd }}$ | Cadmium | 112.41 | 2 | 3.042 | $\begin{gathered} 114(28.86), 112(24.07), \\ 111(12.75), 110(12.39), \\ 113(12.26), 116(7.58), \\ 106(1.215), 108(0.875) \end{gathered}$ | 0.15 |
|  | In | Indium | 114.76 | 3 | 3.14 | 115(95.77), 113(4.23) | 0.1 |
| 50 | Sn | Tin | 118.70 | 4, 2 | 3.164 | $\begin{gathered} 120(33.03), 118(23.98), \\ 116(14.07), 119(8.62), \\ 117(7.54), 124(6.11), \\ 122(4.78), 112(0.90), \\ 114(0.61), 115(0.35) \end{gathered}$ | 40 |
| 51 | Sb | Antimony | 121.76 | 3, 5 | 3. 228 | 121(57.25), 123(42.75) |  |
| 52 | Te | Tellurium | 127.61 | 4, 6, -2 | 2.9 | $\begin{gathered} 130(34.46), 128(31.72), \\ 126(18.72), 125(7.01), \\ 124(4.63), 122(2.49), \\ 123(0.89), 120(0.091) \end{gathered}$ | 0.002 |
|  | I | Iodine | 126.91 | -1, 5, 7 | 2.7 | 127 (100) | 0.3 |
| 54 | Xe | Xenon | 131.3 | 0 | 4.4 | $\begin{aligned} & 132(26.96), 129(26.44), \\ & 131(21.17), 134(10.44), \\ & 136(8.95), 130(4.07), \\ & 128(1.90), 124(0.094), \\ & 126(0.088) \end{aligned}$ | $1.2 \cdot 10^{-6}$ |
| 55 | Cs | Cesium | 132.91 | 1 | 5.40 | 133(100) | 7 |
| 56 | Ba | Barium | 137.36 | 2 | 4.48 | $\begin{aligned} & \text { 138(71.66), 137(11.32), } \\ & 136(7.81), 135(6.59), \\ & 134(2.42), 130(0.101), \\ & 132(0.097) \end{aligned}$ | 250 |
| 57 | La | Lanthanum | 138.92 | 3 | 3.741 | $\begin{aligned} & 139(99.91) \\ & 138(0.089) \end{aligned}$ | 18.3 |
| 58 | Ce | Cerium | 140.13 | 3, 4 | 3.64 | $\begin{gathered} 140(88.48), 142(11.07), \\ 138(0.250), 136(0.193) \end{gathered}$ | 46.1 |



Table 7b-3. Properties of Elements* (Continued)

| $Z$ (1) | Symbol (2) | Element (3) | Atomic wt. $\dagger$ <br> (4) | Valency <br> (5) | Atomic diam <br> (6) | Mass No. and (abundance) <br> (7) | Terrestrial abundance, ${ }^{\\|}$ g/ton $\qquad$ (8) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83 | Bi | Bismuth | 209.00 | 3, 5 | 3.64 | 209(100) | 0.2 |
| 84 | Po | Polonium | (210) | 2, 4 |  | $210 \ddagger$ | $3 \times 10^{-10}$ |
| 85 | At | Astatine | (210) |  |  | 206£, 215 $\ddagger$ |  |
| 86 | Rn | Radon | (222) | 0 |  | $222 \ddagger$ |  |
| 87 | Fr | Francium | (223) | 1 |  | $223 \ddagger$ |  |
| 88 | Ra | Radium | 226.05 | 2 |  | 226, $\ddagger 228 \ddagger, 224 \ddagger, 223 \ddagger$ | $13 \times 10-6$ |
| 89 | Ac | Actinium | (227) | 3 |  | 227, $\ddagger 228 \ddagger$ | $3 \times 10^{-10}$ |
| 90 | Th | Thorium | 232.05 | 4 | 3.6 | $232 \ddagger(100)$ | 11.5 $\times 10^{-7}$ |
| 91 | Pa | Protactinium | (231) | 5 |  | $231 \ddagger$ | $8 \times 10^{-7}$ |
| 92 | U | Uranium | 238.07 | 6, 5, 4, 3 | 3.0 | $\begin{aligned} & 238 \ddagger(99.28) 235 \ddagger(0.715) \\ & 234 \ddagger(0.0058) \end{aligned}$ | 4 |
| 93 | Np | Neptunium | (237) | 6, 5, 4, 3 |  | 237, $\ddagger 239 \ddagger$ |  |
| 94 | Pu | Plutonium | (242) | $6,5,4,3$ | $\ldots$ | 238, $\ddagger 239 \ddagger$ |  |
| 95 | Am | Americium | (243) | 3 |  | $241 \ddagger$ |  |
| 96 | Cm | Curium | (243) | 3 |  | $242 \ddagger$ |  |
| 97 | Bk | Berkelium | (245) | 4, 3 |  | $243 \ddagger$ |  |
| 98 | Cf | Californium | (246) | 3 |  | $244 \ddagger$ |  |
| 99 | E | Einsteinium |  |  |  | $253 \ddagger$ |  |
| 100 | Fm | Fermium |  |  | $\ldots$ | $256 \ddagger$ |  |
| 101 | Mv | Mendelevium |  |  |  |  |  |

[^336]
## 7c. The Electronic Structure of Atoms

Explanation of Table 7c-1. Column (3): Electronic structure of the ground state. Rare-gas shells and similar closed shells are indicated by appropriate symbols and only the electrons outside them given explicitly. All structures are based on spectroscopic evidence except in a few cases (e.g., Fr, At) where there is no reasonable doubt about predictions.

The electron printed in boldface when removed produces the ground state of the ion. Where the other electrons are rearranged in the ion this is indicated in a footnote. column (4): Ground state of atom.
column (5): First ionization potential of atom (in electron volts). ${ }^{1}$
column (6): Ground state of ion. For electron configuration of ion, see column (3).
column (7): Second ionization potential (ionization potential of singly ionized atom) in electron volts.
column (8): Resonance potentials (see below).
column (9): Resonance lines (see below).
resonance potentials and resonance lines: The resonance potential is the energy (in electron volts) required to raise an atom from the ground state to the lowest excited state. The resonance line is the spectrum line absorbed or emitted in this or the reverse transition. There is a clear and unambiguous situation with regard to resonance lines and potentials for atoms with simple structure such as the alkalies. For more complicated atoms the matter needs further amplification.

A line is not considered a resonance line if the excited state has the same parity as the ground state and thus the transition is forbidden as a dipole transition. If the line is allowed as a dipole transition but very weak, i.e., if it violates an approximate dipole-selection rule (usually the spin-selection rule $\Delta S=0$ ), it is called subresonance line $r$. The resonance line $R$ proper is the first line allowed by all the selection rules. Both $R$ and $r$ then are given in such cases. For the heavy elements $r$ may be very strong.
The resonance potentials are in general those corresponding to the lines, with one exception. If there is a lower state than that of the first resonance line for which transitions to the ground state are forbidden by the $J$-selection rule (but allowed by the parity rule) this state is metastable. It may, however, often be excited by direct electron collisions, and the excitation potential for this state is given as first resonance potential followed by a letter $m$. There is no observed resonance line corresponding to this transition. An asterisk on the second resonance potential indicates that the corresponding line is that also marked with an asterisk.

A $C$ preceding column (8) means that there are states of the same parity as the ground state between it and the first resonance state. These often belong to the electron configuration of the ground state. A $C$ is not listed if these states are merely additional levels of the ground-state multiplet.

[^337]Table 7c-1. Electronic Structure of Atoms ${ }^{a}$


Table 7c-1. Electronic Structure of Atoms ${ }^{\text {a }}$ (Continued)


[^338]
## 7d. Structure of Atomic Spectra

7d-1. General Structure of Spectra. There are three types of atomic spectra with many intergradations. The simplest type is the so-called series spectrum, in its simplest form due to one valence electron (example Na , but the spectra of $\mathrm{He}, \mathrm{Ca}, \mathrm{Cu}$, etc., belong here in large part). These spectra are characterized by simple Rydberg series, each often containing many members, but the spectrum on the whole is not rich in lines. The structure is apparent and can easily be analyzed. The levels are single, double, or triple but very rarely of higher multiplicity.

The second type of spectrum is typified by the so-called multiplet structure which is based on the $L, S$ coupling scheme. The most prominent lines usually can readily be recognized as transitions between two multiple levels, with multiplicities up to 11 actually being found. Recognition of this type of structure first became possible in the early 1920s with the advance of the quantum theory of atomic structure. Zeeman effects follow a simple pattern (see Sec. 7 m ) and are very helpful for the analysis. Typical examples are Fe and other elements of the iron group. The spectra of these are much richer in lines than the spectra of the first type. The analysis, while considerably more laborious than that of the series spectra, can usually be accomplished with a reasonable effort. Some regularities usually can be immediately recognized.
The third type, of which the spectra of the rare earths and of the actinides furnish typical examples, has no immediately discernible regularities. The spectra are extremely rich in lines, with no particular groups standing out. If one still can speak of multiplets, they have no regular structure and the Zeeman effects follow no simple rule; although very useful. They are much more difficult to interpret than the previous types. Only a very small fraction of this kind of spectrum has so far yielded to analysis.

Analysis of a spectrum means determining the energy levels which are responsible for the spectrum lines. Besides the magnitude of the energy level [now usually expressed in wave numbers $\left(\mathrm{cm}^{-1}\right)$ above the ground level of the atom] it is important to know the identity of the level, i.e., the set of quantum numbers that characterize it.
Each electron has in the first place a principal quantum number $n$ and an azimuthal quantum number $l$. The latter is identical with the orbital angular momentum expressed in units $\hbar$. The value of the principal quantum number is expressed by an integer and that of the azimuthal quantum number by a letter symbol according to the following key:

| $l($ or $L)$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | $s$ | $p$ | $d$ | $f$ | $g$ | $h$ | $i$ | $k$ | $l$ |
| or | $S$ | $P$ | $D$ | $F$ | $G$ | $H$ | $I$ | $K$ | $L$ |

etc., in alphabetical sequence. Lower-case letters are used if the symbol refers to a single electron, capital letters when it refers to a configuration (resultant of several electrons). For the description of the optical spectra only the electrons outside a closed shell need to be specified. These are often, although somewhat loosely, called valence electrons.

Each electron, besides the quantum numbers $n$ and $l$, has a spin which always has the value $s=\frac{1}{2}$ (again in units $\hbar$ ). Quantum numbers $s$ and $l$ form a resultant $j$ (total angular momentum) which can have the two values $l+\frac{1}{2}$ and $l-\frac{1}{2}$ (except for $l=0$; then $j=\frac{1}{2}$ ). Finally the orientation of the plane of the orbit may be specified by the projection $m$ of $j$ on a fixed axis. Usually the $z$ axis, considered vertical, is taken as this fixed axis. The number $m$ can have all values from $-j$ to $+j$ in integer steps. The four quantum numbers $n, l, j, m$, or an equivalent set, are sufficient for the characterization of the energy levels of a single electron. In this case, in the absence of external fields, the three angular momenta specified by $l, j$, and $m$ are constants of the motion (in more precise quantum-mechanical terminology, they commute with each other and the Hamiltonian) and, therefore, have definite values.
If there are several valence electrons it might be thought appropriate to specify the values of $n, l, j, m$ for each electron. This, however, is not particularly useful; because of the interaction between the electrons, the angular momenta of the individual electrons no longer are constants of the motion and, therefore, have no definite values. On the other hand, the total angular momentum $J$ of a free atom is always a constant of the motion and has a definite value regardless of the internal forces in the atom. The same is true of $M$, the projection of $J$ on a fixed axis (the $z$ axis), which is constant even if the atom is in a constant electric or magnetic field parallel to the $z$ axis. $J$ and $M$, therefore, are appropriate quantum numbers for any state of the atom, but by themselves not enough to characterize it.

The other quantum numbers necessary for defining a level are usually arrived at by leaving out certain interactions between the various electrons. They have then a definite physical meaning and in most cases give the magnitude of certain angular momenta. If the omitted interactions are reinstated the quantum numbers lose their physical significance but still may be used to label the particular level. If the interaction is relatively small the quantum numbers still have approximately their original physical significance. The interactions within an atom are often called couplings, and in the treatment of atomic levels and states certain types of couplings can often be neglected with respect to others. This leads to different types of coupling schemes which differ by the particular interactions that are neglected in first approximation.

7d-2. Russell-Saunders Coupling. The most important coupling scheme and the only one suitable for an elementary discussion is the so-called Russell-Saunders coupling scheme, also called $L, S$ coupling. The fundamental interactions within an atom are the electrostatic repulsion between the individual electrons, the magnetic interaction between spin and orbit, and the magnetic interaction between the individual spins. Interactions with the nuclear spin are ordinarily of much smaller magnitude and usually can be disregarded.
In the $L, S$ coupling the magnetic spin-orbit interaction is disregarded in first approximation. Then the total orbital angular momentum $L$ and the total spin $S$ are completely independent of each other and both are constants of the motion. This is often expressed by saying that $L$ and $S$ are "good" quantum numbers. The characterization of the individual electrons by their values of $n_{i}$ and $l_{i}$ is retained. For two electrons the possible values of $L$ and $S$ are

$$
\begin{gather*}
\left|l_{1}-l_{2}\right| \leq L \leq l_{1}+l_{2}  \tag{7d-1}\\
s_{1}-s_{2}=0 \leq S \leq s_{1}+s_{2}=1 \quad \text { as always, } s_{i}=\frac{1}{2} \tag{7d-2}
\end{gather*}
$$

The case for more than two electrons can easily be derived by applying the above rules for quantum-vector addition repeatedly. By the same rule the total angular momentum $J$ which is the vector resultant of $L$ and $S$ has the possible values

$$
\begin{equation*}
|L-S| \leq J \leq L+S \quad \text { in integer steps } \tag{7d-3}
\end{equation*}
$$

If $L \geq S$ this gives $2 S+1$ different $J$ values for a given value of $L$ and $S$ (if $L<S$ this number is $2 L+1$ ). $2 S+1$ is called the multiplicity of the levels (even if $L<S$ ). It is an odd number if $S$ is an integer and this is the case for an even number of electrons and the multiplicity is an even number for half integer values of $S$ (odd number of electrons). As long as the spin-orbit interaction is disregarded all $2 S+1$ (or $2 L+1$, respectively) levels belonging to a fixed $L$ and $S$ have the same energy. If this interaction is not exactly zero the $2 S+1$ coinciding levels will split and we have a multiplet. In specific cases they are called singlets ( $2 S+1=1$ ), doublets (2), triplets (3), quartets (4), quintets (5), sextets (6), etc.
Note that, for instance, a septet level is only sevenfold if $L \geq S$ or as $S=3$ only for ${ }^{7} F$ or higher levels. The $S, P, D$ levels have one, three, and five components, respectively.
7d-3. $L, S$ Notation. A particular level is now designated by the $n$ and $l$ values of the individual valence electrons, the resultant $L$ of the whole configuration, the value of the multiplicity $2 S+1$ as an anterior superscript, and the value of $J$ as a subseript.

One very important property of atomic-energy levels is called parity. A level is called even when the sum of the $l$ values of all electrons outside a closed shell is even, odd if this sum is odd. It is obvious that, to determine this, it is only necessary to count the electrons with odd values of $l-$ i.e., $p$ and $f$ electrons-as $h(l=5)$ or higher electrons virtually never occur. States can be called strictly even or odd only as long as there is a center of symmetry.

In many tabulations the odd levels are distinguished by a superscript ${ }^{0}$, e.g., ${ }^{3} \mathrm{~F}^{0}{ }_{2}$. Often the odd energy levels are printed in italics to distinguish them from the even ones.

An example is $3 s 3 p 3 d 4 d{ }^{5} F_{4}$ meaning $L=3, S=2, J=4$. Equivalent electrons are electrons having the same $n$ and $l$. Their number is indicated by an exponent instead of the repetition of the symbol, thus $3 d^{4}$ instead of $3 d 3 d 3 d 3 d$.

Limit of the Quantum Numbers. Once the number and type of valence electrons are specified the possible values of $L, S$, and $J$ can easily be found.

The maximum value of $L$ is for $n$ electrons

$$
L_{\max }=l_{1}+l_{2}+\cdots+l_{n}
$$

the minimum value is the smallest number that can be obtained by combining the $l_{i}$ as vectors. The same is true for the values of $S$ and the resulting multiplicities. Table 7d'-1 lists the possible multiplicities for up to 10 valence electrons.

Table 7d-1. Possible Multiplicity with $n$ Electrons outside a Closed Shell

| 1 |  |  | 2 |  |  |  |  |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 |  | 1 |  | 3 |  |  |  |  |  |  |  |  |
| 3 |  | 2 |  | 4 |  |  |  |  |  |  |  |  |
| 4 |  | 1 |  | 3 |  | 5 |  |  |  |  |  |  |
| 5 |  |  | 2 |  | 4 |  | 6 |  |  |  |  |  |
| 6 |  | 1 |  | 3 |  | 5 |  | 7 |  |  |  |  |
| 7 |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| 8 |  | 1 |  | 3 |  | 5 |  | 7 |  | 9 |  |  |
| 9 |  | 2 |  | 4 |  | 6 |  | 8 |  | 10 |  |  |
| 10 | 1 |  | 3 |  | 5 |  | 7 |  | 9 |  | 11 |  |

If the electrons are equivalent, use Table 7d-3, and add one for each nonequivalent electron added.
With $L$ and $S$ given, the possible $J$ values are indicated by (7d-3). Table 7d-2 lists the $J$ values for all multiplets likely to occur in all but the most complicated spectra.

Each multiplet state is $2 J+1$ fold degenerate. This degeneracy can be partly or

Table 7d-2. J Values for Multiplets

| Term | $S=$ | 0 | 1 | 2 | 3 | 4 | 5 | $\frac{1}{2}$ | 112 | $2 \frac{1}{2}$ | $3 \frac{1}{2}$ | $4 \frac{1}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $L$ | Multiplicity ( $2 S+1$ ) |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 3 | 5 | 7 | 9 | 11 | 2 | 4 | 6 | 8 | 10 |
| $S$ | 0 | 0 | 1 | 2 | 3 | 4 | 5 | $\frac{1}{2}$ | $1 \frac{1}{2}$ | $2 \frac{1}{2}$ | $3 \frac{1}{2}$ | $4 \frac{1}{2}$ |
| $P$ | 1 | 1 | 0 1 2 | 1 2 3 | 2 3 4 | 3 4 5 | 4 5 6 | 1 $\frac{1}{2}$ | $\frac{1}{2}$ 1 1 2 2 | $1 \frac{1}{2}$ <br> $2 \frac{1}{2}$ <br> $3 \frac{1}{2}$ | $2 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ | $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ |
| D | 2 | $\cdots$ | $\ldots$ 1 2 3 $\ldots$ | 0 1 2 3 4 | 1 2 3 4 5 | 2 3 4 4 5 6 | 3 4 5 6 7 |  | $\frac{1}{2}$ 11 2 $2 \frac{1}{2}$ 3 $3 \frac{1}{2}$ | $\frac{1}{2}$ 1 $1 \frac{1}{2}$ $2 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ | $1 \frac{1}{2}$ $22 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ | $2 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ $6 \frac{1}{2}$ |
| F | 3 | $\cdots$ $\cdots$ | $\ldots$ $\cdots$ $\cdots$ 3 4 | $\cdots$ 1 2 3 4 5 | 0 1 2 3 4 4 5 6 | 1 2 3 4 5 6 7 | 2 3 4 4 5 6 7 8 | $\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & \frac{1}{2} \\ & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \\ & 5 \frac{1}{2} \end{aligned}$ | $\frac{1}{2}$ $1 \frac{1}{2}$ $2 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ $6 \frac{1}{2}$ | $1 \frac{1}{2}$ $2 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ $60 \frac{1}{2}$ 7 |
| $\boldsymbol{G}$ | 4 | $\cdots$ 4 | $\ldots$ $\cdots$ 4 5 $\cdots$ | $\begin{array}{r} \cdots \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$ | $\cdots$ 1 2 3 4 5 6 7 | 0 1 2 3 4 5 6 7 8 | 1 2 3 4 5 6 7 8 9 | $\begin{aligned} & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \\ & 5 \frac{1}{1} \end{aligned}$ | $\begin{aligned} & 1 \frac{1}{2} \\ & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \\ & 5 \frac{1}{2} \\ & 6 \frac{1}{2} \end{aligned}$ |  | $\frac{1}{2}$ $1 \frac{1}{2}$ $22 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ $6 \frac{1}{2}$ $7 \frac{1}{2}$ $8 \frac{1}{2}$ |
| H | 5 | $\ldots$ <br>  <br> $\ldots$ | $\cdots$ $\cdots$ 4 5 6 $\cdots$ | $\cdots$ $\cdots$ 3 4 5 6 7 $\cdots$ | $\cdots$ 2 3 4 5 6 7 8 | $\cdots$ 1 2 3 4 5 6 7 8 9 | $\begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 9 \\ 10 \end{array}$ | $\begin{aligned} & 4 \frac{1}{2} \\ & 5 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & \because 3 \frac{1}{2} \\ & 44 \frac{1}{2} \\ & 5 \frac{1}{2} \\ & 6 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 2 \frac{1}{2} \\ & 3 \frac{1}{2} \\ & 4 \frac{1}{2} \\ & 5 \frac{1}{2} \\ & 6 \frac{1}{2} \\ & 7 \frac{1}{2} \end{aligned}$ | $1 \frac{1}{2}$ $20 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ $6 \frac{1}{2}$ $7 \frac{1}{2}$ $8 \frac{1}{2}$ | $\frac{1}{2}$ $1 \frac{1}{2}$ $2 \frac{1}{2}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ $5 \frac{1}{2}$ $6 \frac{1}{2}$ $7 \frac{1}{2}$ $80 \frac{1}{2}$ $9 \frac{1}{2}$ |

Table 7d-2. J Values for Multiplets (Continued)

completely removed by an external field, which thus makes each level split into a maximum of $2 J+1$ components (see Zeeman effect in Sec. 71).

7d-4. Equivalent Electrons. When equivalent electrons are involved the Pauli exclusion principle limits the number of possible states. Table 7d-3 gives a list of possible states for any number of equivalent electrons.

7d-5. Selection Rules. Not all transitions between levels are possible. Rules, derived from quantum mechanics and amply confirmed by experience, state which transitions are allowed and which are forbidden, these are called selection rules. In

Table 7d-3. Atomic Levels of $n$ Equivalent Electrons


A number under a term symbol indicates the number of different levels of this type. The lowest level is normally that with the highest $L$ of the highest multiplicity (Hund's rule). It is indicated in bold type.
applying selection rules one must realize that almost all of them are valid only as long as the assumptions necessary for their derivation remain valid. Therefore, some selection rules are much stricter than others. The principal selection rules for atoms are as follows:

Electric-dipole radiation. These are the most important and are based on the assumption that the radiation field around an atom can be considered with good approximation as the field of a vibrating electric dipole. In the optical region radiation that is not electric-dipole radiation is ordinarily at least $10^{6}$ times weaker.

The chief selection rules for dipole radiation for $L, S$ coupling are:
parity rule: Only odd $\rightarrow$ even or even $\rightarrow$ odd transitions are allowed. This rule is based on the presence of a center of symmetry and is strictly valid as long as there are no external electric fields. For quadrupole radiation just the opposite rule applies.

To be allowed, a transition must satisfy the following conditions.
$J$ rule:

$$
\Delta J=0 \pm 1 \quad(0 \rightarrow 0 \text { is forbidden })
$$

This rule is valid as long as $J$ is a constant of motion, that is, in the absence of external fields. If there is a nuclear spin, the total quantum number $F$ which includes the nuclear spin is strictly a constant of the motion and the $J$ rule applies to $F$ instead of $J$. The lines due to violations of the $J$ rule because of nuclear spin are very weak, however. Strong external electric or magnetic fields, on the other hand, can produce prominent violations of the $J$ rule.


| 界 |  |
| :---: | :---: |
| －男 |  |
| 界 1 |  |
| 界 1 |  |
| 界 1 |  |
| 1 |  |
| 界 |  |
| 1 |  |
| 界 |  |
| 田界界分 |  |
| 田界召 |  |
|  |  |
| ค界 |  |
| ¢ |  |
| 只早界 |  |
| ¢ ¢ ¢ ¢ |  |
| ¢界 品召 呈 |  |
|  |  |
|  |  |
|  |  |
|  | 91 |
|  | O¢m』 |
|  | Qư保 |
|  <br>  |  |

```
7-24 ATOMIC AND MOLECULAR PHYSICS
```



[^339]$S$ rule:
$$
\Delta S=0
$$

This rule applies only as long as $S$ is a constant of the motion, i.e., as long as extreme $L, S$ coupling applies. Spin-orbit interaction will cause deviations from the rule. These same interactions also cause the splitting of the multiplet components. Very narrow multiplets mean, therefore, that the $S$ rule is good, wide multiplets that it is poor. The former happens chiefly for the light elements, the latter for the heavy elements. A magnetic field also can cause violations of the rule.
$L$ rule:

$$
\Delta L=0 \pm 1 \quad(0 \rightarrow 0 \text { excluded })
$$

The validity of this rule is also dependent on how well $L, S$ coupling is realized. For moderate multiplet widths, lines with larger changes in $L$ than $\pm 1$ are found but are progressively weaker as the change in $L$ becomes larger. Strong electric fields can cause violations.

The $L$ rule combined with the parity rule excludes $\Delta L=0$ for one electron spectra. $M$ rule:

$$
\Delta M=0 \pm 1
$$

is valid to the same extent as the $J$ rule but is also valid in a homogenous external electric or magnetic field. This rule is of importance only in the presence of external fields. For details, see Zeeman effect.

7d-6. Interval and Intensity Rules. The interval rule states that the separation between neighboring multiplet components in the same multiplet is proportional to the larger of the two $J$ values.

Examples. ${ }^{3} P$; the $J$ values are $0,1,2$. The intervals $(0,1)$ and $(1,2)$ are in the ratio 1:2.
${ }^{8} D, J$ values (Table 7d-2) $\frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2}, \frac{11}{2}$ ratio of the separations as $5: 7: 9: 11$.
In general we can say that the separation between multiplet components $J$ and $J+1$ is

$$
E=a(J+1)
$$

where $a$ is a constant for the same multiplet but varies from multiplet to multiplet. To calculate the value of $a$ details of the orbits must be known. For a one-electron spectrum (doublets) the constant $a$ is

$$
a=\frac{2}{3} \alpha^{2} R \frac{Z^{4}}{n^{3} l(l+1)}
$$

where $\alpha$ is the fine-structure constant, $R$ the Rydberg constant, and $Z$ the nuclear charge. We see that the doublet separation diminishes with $n$ as $1 / n^{3}$ and with $l$ as $1 / l(l+1)$. The expression is valid, however, only when the deviations from a Coulomb force field are small.

For elements on the left side of the periodic system, the constant $a$ is positive, which means that the levels with the lower $J$ values have the lower energy. Such multiplets are called regular multiplets. On the right side of the periodic system the situation is the opposite and we have inverted multiplets. In the middle the situation is often confused.

The interval rule holds only as long as $L, S$ coupling is valid and is very sensitive for even small deviations from $L, S$ coupling.

Multiplet Intensities. The relative intensities in a multiplet (or rather the line strengths) can easily be computed for $L, S$ coupling. They are valid to the extent that $L, S$ coupling is a good approximation

$$
\left.\begin{array}{lll} 
& \text { Transition } & \text { Line Strength } \\
L \rightarrow L-1 & J-1 \rightarrow J & A \frac{(J+S-L)(J+S-L+1)(L+S-J)(L+S-J+1)}{4 J} \\
& J \rightarrow J-1 & A \frac{(J+L-S-1)(J+L-S)(J+L+S+1)(J+L+S)}{4 J} \\
& J \rightarrow J & A \frac{(2 J+1)(J+L+S+1)(J+L-S)(J+S-L+1)(L+S-J)}{4 J(J+1)} \\
L \rightarrow L & J \rightarrow J-1 \\
& J-1 \rightarrow J
\end{array}\right\} \quad B \frac{(J+L+S+1)(J+L-S)(J+S-L)(L+S+1-J)}{4 J}, ~ B \frac{(2 J+1)[J(J+1)+L(L+1)-S(S+1)]^{2}}{4 J(J+1)} .
$$

The arrows in the transitions may be reversed without affecting the line strength.
The constants $A$ and $B$ are constant in one multiplet but differ from multiplet to multiplet. Tables of the numerical values of the multiplet strength are found in Condon and Shortley (1935), pp. 241-243. ${ }^{1}$ Similar formulas for quadrupole transitions are in Condon and Shortley (1935), p. 253.

Present status of analysis of atomic spectra. This is shown in Table 7d-4. This table shows the present status and the progress made since 1932. It should be kept in mind that even in most spectra marked A the analysis is not anywhere near complete.

## 7e. Energy-level Diagrams of Atoms

A number of energy-level diagrams are represented in Figs. 7e-1 through 7e-14. An attempt has been made to select typical cases which show characteristic features derived from optical spectra. The following comments may be helpful:
In almost all cases the energy levels have been arranged according to the RussellSaunders scheme, also called $L, S$ coupling (see Sec. 7d). This means that each level is characterized by the total orbital angular momentum $L$ and the resultant spin $S$ or rather the multiplicity $2 S+1$ [1 for singlets $(S=0), 2$ for doublets ( $S=\frac{1}{2}$ ), 3 for triplets $(S=1)$, etc.]. Each level characterized by $L$ and $S$ is broken up into $2 S+1$ or $2 L+1$ multiplet components, whichever is the smaller number, each component being characterized by its total angular momentum quantum number $J$. The possible values of $J$ are shown in Table 7d-2.

The scale of the figures usually does not permit showing the individual multiplet components. However, the total width is indicated unless it is no greater than the thickness of the line.

Even levels are shown by entire lines or blocks, odd levels by broken ones. When an entire column has the same parity, as in the simple spectra, the odd parity is indicated by the term symbol at the bottom of the column in the usual way, e.g., ${ }^{3} F^{0}$.

[^340]The horizontal line across the whole width of the diagram is at the first ionization potential. This is indicated by the term symbol for the ground state of the ion. In some cases higher ionization potentials are also indicated.

The electron configuration is given by symbols explained with each individual diagram.

Transitions which correspond to spectrum lines are left out in order to avoid confusion except for the important lowest transitions which often give rise to the strongest lines. The resonance line $R$ is the lowest transition to the ground state allowed by the selection rules of $L, S$ coupling, which are change of parity, no change in multiplicity ( $\Delta S=0$ ), and $\Delta J=0 \pm 1$. The subresonance line $r$ is a line from a lower level than that responsible for the resonance line; it obeys the same selection rules except $\Delta S=0$. It is usually very weak for the lighter atoms but may be quite strong for the heavier elements (e.g., 2,537 of Hg ).

There may be lines from even lower levels than the resonance line $R$ or the subresonance line $r$ but these would be forbidden lines violating either the parity rule or the $\Delta J$ rule. Such lines are ordinarily much weaker (often of the order of $10^{6}$ times) than the allowed lines and are found only under special conditions of observation. The spectra represented in the figures are given in Table 7e-1.

| $Z$ | Element | Figure |
| :---: | :---: | :---: |
| 2 | He I | 7e-1 |
| 6 | C I | 7e-2 |
| 7 | N I | $7 \mathrm{e}-3$ |
| 8 | 0 I | 7e-4 |
| 11 | Na I | 7e-5 |
| 13 | Al I | 7e-6 |
| 17 | Cl I | 7e-7 |
| 18 | A I | 7e-8 |
| 20 | Ca I | 7e-9 |
| 25 | Mn I | 7e-10 |
| 26 | Fe II | 7e-11 |
|  | Fe I | 7e-12 |
| 29 | Cu I | 7e-13 |
| 80 | Hg I | 7e-14 |

Further diagrams of simple spectra are found in Grotrian (1928).


Fig. 7e-1. Energy-level diagram of He I-simplest atom with two valence electrons. The wavelengths of the principal lines are indicated.


Fig. 7e-2. Energy-level diagram of C I-four valence electrons, lowest state $2 s^{\mathbf{2}} 2 p^{\mathbf{2}}$. Most excited states are $2 s^{2} 2 p \cdot n x$. The orbit $n x$ of the last electron only is indicated in the figure except where one of the $2 s$ electrons is excited, as, for instance, $2 s 2 p^{3}$. The important forbidden lines are indicated.


Fig. 7e-3. Energy-level diagram of N I-five valence electrons, normal state $2 s^{2} 2 p^{3}$. Excited states are $2 s^{2} 2 p^{2} \cdot n x, n x$ being indicated in the figure. When the $2 s$ electron is excited the full configuration is given, e.g., $2 s^{2} 2 p^{4}$. The important forbidden lines are indicated.


Fig. 7e-4. Energy-level diagram of $\mathrm{O} I$-six valence electrons. Normal state is $2 s^{2} 2 p^{4}$ excited states are $2 s^{2} 2 p^{3} \cdot n x, n x$ being indicated in the figure. The important forbidden lines are indicated.


Fig. 7e-5. Energy-level diagram of Na I. Simple diagram typical for elements with one valence electron. The other alkalis have essentially the same scheme.


Fig. 7e-6. Energy-level diagram of Al I-three valence electrons. Normal state is $3 s^{2} 3 p$, excited states $3 s^{2} \cdot n x$ ( $n x$ is indicated) or $3 s 3 p n x^{\prime}$ ( $n x^{\prime}$ is indicated with primed letters). The primed levels converge to a higher ionization limit.

7-32
ATOMIC AND MOLECULAR PHYSICS


Fig. 7e-7. Energy-level diagram of Cl I -seven valence electrons. Ground state is $3 s^{2} \mathbf{3} \boldsymbol{p}^{\mathbf{5}}$, excited states $3 s^{2} 3 p^{4} n x$, $n x$ being indicated in the figure.


Fig. 7e-8. Energy-level diagram of A I-typical for the rare gases except helium. Levels $3 s^{2} 3 p^{5} \cdot n x$ with $n x$ indicated. $L, S$ coupling is not appropriate here and therefore symbols like ${ }^{3} P$, etc., have no meaning. The primed levels converge to the higher ionization potential. See also Table 7g-3.


Fig. 7e-9. Energy-level diagram of Ca I. Characteristic for the elements in the second column of the periodic system. Ground state $4 s^{2}$ and regular excited states $4 s n x$ are indicated only by the value of $n$ in the appropriate column. Levels with both electrons excited are given at the right.


Frg. 7e-10. Energy-level diagram of Mn I. A typical element of the transition group. Seven valence electrons. Ground state $3 d^{5} 4 s^{2}$. This produces 16 multiplet levels of which only four ( ${ }^{6} S,{ }^{4} P,{ }^{4} D,{ }^{4} G$ ) are known. They are marked by an $x$. The other low states are $3 d^{6} 4 s(s), 3 d^{6} 4 p(p), 3 d^{5} 4 s 4 p(s p), 3 d^{5} 4 p^{2}\left(p^{2}\right), 3 d^{7}\left(d^{6}\right)$. The symbol between parentheses indicates how the level is marked in the figure. If higher than $3 d, 4 s, 4 p$ electrons are involved, the value of $n$ is marked, e.g., $3 d^{5} 4 s 5 p$ ( $s 5 p$ ) or $3 d^{5} 4 s 4 d$ (s $4 d$ ). In general, the number of $3 d$ electrons is left out in the figure (except for $3 d^{7}$ ). Compare Mn I with Fe II, which has the same number of electrons (Fig. 7e-11).


Fig. 7e-11. Energy-level diagram of Fe II. Fe II has the same number of electrons as Mn I and therefore the same type of levels. The relative position of the levels is, however, greatly changed by the increase in the nuclear charge. In general there is a tendency for levels containing $3 d$ electrons to be lower than those with $4 s$ or $4 p$ electrons. The ground state is $3 d^{6} 4 \mathrm{~s}$. There are 24 multiplet levels of this configuration, of which 23 are known (marked with $x$ ). The excited levels are marked as for Mn I.


Fig. 7e-12. Energy-level diagram of FeI. The spectrum of FeI is one of the best studied and of particular importance because of the use of iron lines for wavelength standards and other applications (see Table $7 \mathrm{~g}-6$ ). Eight valence electrons, ground-state configuration $3 d^{6} 4 s^{2}$, which gives 16 multiplet levels, of which 9 are known (marked $x$ in the figure). Other configurations leading to low-lying levels are $3 d^{7} 4 s(s), 3 d^{6} 4 s 4 p(s p), 3 d^{8}\left(d^{8}\right), 3 d^{7} 4 p$ $(p), 3 d^{5} 4 s^{2} 4 p\left(s^{2} p\right)$. If $n$ values higher than for $3 d, 4 s, 4 p$ are involved, they are indicated as, e.g., $3 d^{6} 4 s 5 s(s 5 s)$.


Fig. 7e-13. Energy-level diagram of Cu I. The arrangement of the outer electrons is $3 d^{10} 4 s^{2} S$ in the ground state. If the $4 s$ electron is excited the levels are very similar to those of an alkali as shown, e.g., in Fig. 7e-5. These regular levels are indicated at the left. If one of the $3 d$ electrons is excited, levels of more complicated structure arise as indicated at the right.


Fig. 7e-14. Energy-level diagram of Hg I. This is the diagram of a typical two-electron spectrum with singlets and triplets. Because of the wide use of the mercury spectrum in many applications the wavelengths of many transitions are indicated. Singlet triplet transitions are ralatively strong. See also Tahle $7 \mathrm{~g}-7$ and Fig. $7 \mathrm{~g}-6$.

## 7f. Persistent Lines of the Elements

Table 7f-1 gives the strongest lines of each element and is useful for the spectroscopic identification of small traces of elements and spectrochemical analysis in general, when the elements in question occur in rather small concentrations. For the procedure of routine quantitative analysis with larger concentrations, see the special literature.

A selection of strong lines is given both from the spectrum of the neutral atom and from the spectrum of the singly ionized atom. The former are most prominent with mild excitation (d-c arc at atmospheric pressure, glow discharge in a gas at moderate pressure, microwave discharge). The lines of the ionized atoms appear with stronger excitation (condensed spark, discharge in a gas at very low pressure, etc.). The relative intensities even in the same spectrum may depend very pronouncedly on the discharge conditions so that what is indicated as the strongest line may be relatively weak at a particular condition. The two columns Strongest Line are taken from Meggers, "Smithsonian Physical Tables," 9th ed. (1954). Often they are identical with the resonance line given in Table 7c-1. In many cases the strongest line lies below $2,000 \mathrm{~A}$, which region is less convenient because a vacuum spectrograph is needed. For the selection of other strong lines only those lying in the photographically accessible region from 2,000 to $10,000 \mathrm{~A}$ have been considered and preference given to the most convenient region from 3,000 to $8,000 \mathrm{~A}$.

In general, wavelengths in Table 7f-1 and other tables of this section are wavelengths in standard air for $\lambda>2,000 \mathrm{~A}$ and in vacuum for $\lambda<2,000 \mathrm{~A}$.

Table 7f-1. Persistent Lines of the Elements

| Z | Symbol | Neutral atoms |  |  |  | Singly ionized |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Strongest line | Other strong lines |  |  | Strongest line | Other strong lines |  |  |
| 1 | H | 1,215.66 | 6,562.85 | 4,861.33 |  |  |  |  |  |
| 2 | He | 584.33 | 5,875.62 | 3,888.65 |  | 303.78 |  |  |  |
| 3 | Li | 6,707.85 | 6,103.64 |  |  | 199.26 |  |  |  |
| 4 | Be | 2,348.61 | 3,321.34 |  |  | 3,130.42 | 3,131.07 |  |  |
| 5 | B | 2,497.73 | 2,496.78 |  |  | 1,362.46 | 3,451.41 |  |  |
| 6 | C | 1,657.01 | 2,478.57 |  |  | 1,335.71 | 4,267. 27 | 2,836.71 |  |
| 7 | N | 1,134.98 | 4,109.98 | 4,099.94 |  | 1,085.74 | 5,679.56 | 5,666.64 |  |
| 8 | 0 | 1,302.19 | 7,771.93 | 7,774.14 | 7,775.43 | 834.47 |  |  |  |
| 9 | F | 954.80 | 6,856.02 | 6,902.46 |  | 606.81 |  |  |  |
| 10 | Ne | 735.89 | 5,852.49 | 6,402.25 | 5,400.56 | 460.73 |  |  |  |
| 11 | Na | 5,889.95 | 3,302.32 | 5,895.92 |  | 372.07 |  |  |  |
| 12 | Mg | 2,852.13 | 3,838.26 | 3,832.31 | 3,829.35 | 2,795.53 | 2,802.70 |  |  |
| 13 | Al | 3,961.53 | 3,944.03 | 3,092.71 | 3,082.16 | 1,670.81 | 2,669.17 | 2,816.18 |  |
| 14 | Si | 2,516.12 | 2,881.58 | 2,528.52 | 2,506.90 | 1,817.0 |  |  |  |
| 15 | P | 1,774.94 | 2,535.65 | 2,553.28 | $\ldots . .$. . | 1,542.32 |  |  |  |
| 16 | S | 1,807.31 | 9,212.91 | 9,228.11 | 4,694.13 | 1,259.53 |  |  |  |
| 17 | Cl | 1,347.2 |  |  | ........ | 1,071.05 | 4,794.54 | 4,810.06 | 4,819.46 |
| 18 | A | 1,048.22 | 8,115.31 | 7,067.22 | 6,965.43 | 919.78 |  |  |  |
| 19 | K | 7,664.91 | 7,664.91 | 4,044.14 | 4,047.20 | 600.77 |  |  |  |
| 20 | Ca | 4,226.73 | 4,454.78 | 4,434.96 | 4,425.44 | 3,933.67 | 3,968.47 | 3,179.33 | 3,158.87 |
| 21 | Sc | 5,671.80 | 3,911.81 | 3,907.48 | 4,023.69 | 3,613.84 | 3,630.74 | 3,642.78 |  |
| 22 | Ti | 4,981.73 | 3,653.50 |  |  | 3,349.41 | 3,361. 21 | 3,372.80 |  |
| 23 | V | 4,379.24 | 3,185.40 | $\ldots$ |  | 3,093.11 | 3,102.30 | 3,110.71 | 3,118.38 |
| 24 | Cr | 4,254.35 | 4,274.80 | 5,208.44 | 5,206.04 | 2,835.63 | 2,843.25 | 2,849.84 | 2,855.68 |
| 25 | Mn | 4,030.76 | 4,033.07 | 4,034.49 |  | 2,576.10 | 2,593.73 | 2,605.69 |  |
| 26 | Fe | 3,581.20 | 3,719.94 | 3,737.13 |  | 2,382.04 | 2,395.62 | 2,404.88 |  |
| 27 | Co | 3,453.50 | 3,465.80 | 3,529.81 | 3,405.12 | 2,286.14 | 2,363 79 |  |  |
| 28 | Ni | 3,414.76 | 3,492.96 | 3,524.54 |  | 2,216.47 | 2,287.08 | 2,270.21 | 2,264.46 |
| 29 | Cu | 3,247.54 | 3,273.96 | 5,218.20 | 5,153.24 | 2,135.98 | 2,192.26 | 2,247.00 |  |
| 30 | Zn | 2,138.56 | 3,345.02 | 4,810.53 | 6,362.35 | 2,025.51 | 2,061.91 |  |  |
| 31 | Ga | 4,172.06 | 4,032.98 | 2,943.64 | 2,874.24 | 1,414.44 |  |  |  |
| 32 | Ge | 2,651.18 | 3,039.06 | 3,269.49 | 4,226.57 | 1,649.26 |  |  |  |
| 33 | As | 1,890.43 | 2,288.12 | 2,349.84 | 9,626.70 | 1,266.36 |  |  |  |
| 34 | Se | 1,960.91 | 2,039.85 | 4,730.78 | 4,739.03 | 1,192.29 |  |  |  |
| 35 | Br | 1,488.4 |  |  | ........ | 1,015.42 | 4,704.86 | 4,785.50 | 4,816.71 |
| 36 | Kr | 1,235.82 | 5,870.92 | 5,570.29 |  | 917.43 |  |  |  |
| 37 | Rb | 7,800.23 | 7,947.60 | 4,201.85 | 4,215.56 | 741.4 |  |  |  |
| 38 | Sr | 4,607.33 | 4,832.08 | 4,872.49 | 4,962.26 | 4,077.71 | 4,215.52 |  |  |
| 39 | Y | 5,466.47 | 4,674.85 | 4,643.70 | ........ | 3,710.29 | 3,600.73(?) | 4,374.94 |  |
| 40 | Zr | 4,687.80 | 3,601.19 | 3,547.68 | 3,519.61 | 3,391.98 | 3,438.23 | 3,496.21 |  |
| 41 | Nb | 4,058.94 | 4,079.73 | 4,100.92 | 4,123.81 | 3,094.18 | 3,225.48 |  |  |
| 42 | Mo | 3,798.25 | 3,864.11 | 3,902.96 |  | 2,816.15 | 2,848.23 | 2,871.51 | 2,890.99 |
| 43 | Tc | 3,636.10 | 4,297.06 | 4,262.26 |  | 2,543.24 | 2,610.00 | 3,237.02(?) | $\ddagger$ |
| 44 | Ru | 3,498.94 | 3,436.74 | 3,596.18 | ......... | 2,402.72 | 2,945.67 |  |  |
| 45 | Rh | 3,434.89 | 3,396.85 | 3,323.09 |  | 2,334.77 |  |  |  |
| 46 | Pd | 3,404.58 | 3,421.24 | 3,634.70 |  | 2,296.53 |  |  |  |
| 47 | Ag | 3,280.68 | 3,382.89 | 5,209.07 | 5,465.49 | 2,246.41 | 2,437.79 |  |  |
| 48 | Cd | 2,288.02 | 6,438.47 | 3,610.51 |  | 2,144.38 | 2,265.02 | 2,437.79 | 2,246 |
| 49 | In | 4,511.32 | 4,101.77 | 3,256. 09 | 3,039.36 | 1,586.4 |  |  |  |
| 50 | Sn | 3,175.04 | 4,525.74 | 2,839.99 | 3,262.33 | 2,152.22 |  |  |  |
| 51 | Sb | 2,068.38 | 2,175.89 | 2,528.54 | 3,232.50 | 1,606.98 |  |  |  |
| 52 | Te | 2,142.75 | 2,385.76 | 2,383.25 |  | 1,161.52 |  |  |  |
| 53 | 1 | 1,830.4 |  |  |  | 1,233.97 | 2,062.38 | 5,464.61 |  |
| 54 | Xe | 1,469.62 | 4,671.23 | 4,624.28 |  | 1,100.42 |  |  |  |

PERSISTENT LINES OF THE ELEMENTS
7-41
Table 7f-1. Persistent Lines of the Elements (Continued)

| $Z$ | Symbol | Neutral atoms |  |  |  | Singly ionized |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Strongest line | Other strong lines |  |  | Strongest line | Other strong lines |  |  |
| 55 | Cs | 8,521.10 | 8,943.50 | 4,555.36 | 4,593.18 | 926.75 |  |  |  |
| 56 | Ba | 5,535.55 | 5,777.67 | 5,519.12 | 3,071.59 | 4,554.04 | 4,934.09 |  |  |
| 57 | La | 6,249.93 | 5,930.65 | 5,455.15 | ........ | 3,949.10 | 4,077.34 | 4,123.23 |  |
| 58 | Ce | 5,699.23 |  | .......... |  | 4,186.60 | 4,040 76 | 4,012.39 |  |
| 59 | Pr | 4,951.36 | .......... |  |  | 4,179.42 | 4,062.82 | 4,408.84 |  |
| 60 | Nd | 4,924.53 | ......... | .......... | ........ | 4,303.57 | 4,177.32 | 4,446.39 |  |
| 61 | Pm | …… |  | .......... |  | 3,892.16 | 3,910.26 | 3,998.96 $\dagger$ |  |
| 62 | Sm | 4,296.75 |  | .......... |  | 3,568.27 | 4,424.34 | 4,434.32 | 4,433.88 |
| 63 | Eu | 4,594.02 | 4,627.12 | $\ldots . . . . .$. | ........ | 4,205.05 | 4,129.74(?) | 4,434.32 | 4,433.88 |
| 64 | Gd | 4,225.85 |  |  |  | 3,422.47 | 3,646.20 | 4,262.10 |  |
| 65 | Tb |  |  | $\ldots$ |  |  | 3,874.18(?) | 3,561.74(?) | 3,509.17 |
| 66 | Dy | $\ldots . .$. | 4,211.72(?) | 4,045.98(?) | ........ |  | 4,000.45(?) | 4,077.97(?) | 3,500.17 |
| 67 | Ho | ........ | 3,891.02(?) | 4,06. | ........ |  | 2,936.77 | 4,017.07(.) |  |
| 68 | Er |  | , | $\ldots . . . .$. |  |  | 3,906.32(?) | 3,692.65(?) |  |
| 69 | Tm | 5,675.83 | ......... | .......... | ........ | 3,848.02 | 3,761.33(?) | 3,462.21(?) |  |
| 70 | Yb | 3,987.99 | $\ldots . .$. |  | ........ | 3,694 20 | 3,289.37 |  |  |
| 71 | Lu | 4,518.57 |  | .......... |  | 2,615.43 | 2,911.39 | 2,894.84 |  |
| 72 | Hf | 3,682. 24 | 3,072.88 |  | $\ldots . .$. | 2,641.41 | 3,134.72 | 2,516.88 |  |
| 73 | Ta | 2,647.47 | 3,311.16 | 3,318.84 |  | 2,685.17 |  |  |  |
| 74 | W | 4,008.75 | 4,302.11 | 4,294.61 |  | 2,204.49 | 3,613.79 |  |  |
| 75 | Re | 3,460.47 | 3,464.73 | 4,889.17 | 5,270.95 |  | 2,608.50 | 3,580.15 | 2,733.04 |
| 76 | Os | 2,909.06 | 3,058.66 | 4,420.47 |  |  |  |  | 2,733.04 |
| 77 | Ir | 2,543.97 | 3,220.78 | 3,513.64 |  |  |  |  |  |
| 78 | Pt | 2,659.44 | 3,064.71 | 2,830.30 | 2,997.97 | 1,777. 09 |  |  |  |
| 79 | Au | 2,427.95 | 2,675.95 |  |  | 1,740.47 | 2,802.19 |  |  |
| 80 | Hg | 1,849.68 | 2,536.52 | 4,358.35 | 5,460.74 | 1,649.96 |  |  |  |
| 81 | Tl | 5,350.46 | 3,775.72 | 3,519.24 | 3,229.75 | 1,908.64 |  |  |  |
| 82 | Pb | 4,057.82 | 3,683.47 | 2,833.07 |  | 1,726.75 | 2,203.51 | 5,608.8 |  |
| 83 | ${ }^{\text {Bi }}$ | 3,067.72 | 2,897.98 | 4,722.55 |  | 1,902.41 |  |  |  |
| 84 | Po | 2,449.99 |  |  |  |  |  |  |  |
| 85 | At |  |  |  |  |  |  |  |  |
| 86 | Rn | 1,786.07 | 7,450.00 | 7,055.42 |  |  |  |  |  |
| 87 | Fr |  |  |  |  |  |  |  |  |
| 88 | Ra | 4,825.91 | $\ldots$ | .......... | ......... | 3,814.42 | 4,682. 28 |  |  |
| 89 | Ac |  |  |  |  |  |  |  |  |
| 90 | Th |  |  | .......... | ........ | 4,019.14 | 3,538.75(?) | 4,281.42 |  |
| 91 | $\stackrel{\mathrm{Pa}}{ }$ |  | 2,743 |  |  |  | 2,743.9 | 3,054.6 | 3,957.891 |
| 92 | U | 5,915.40 |  |  |  | 3,719.29 | 4,241.67 | 3,932.0 |  |
| 93 | Np | ........ | .......... | $\ldots$ |  |  | 2,956.6 | 3,829.2 | 4,290.99] |
| 94 95 | Pu Am |  |  | $\ldots . . . . .$. | ........ |  | 2,835.5 | 3,907.1 | 3,989.74 |
| 95 | Am Cm |  |  |  |  | $\ldots . .$. | 2,832.3 | 3,926.2 | 4,188.24 |
| 97 | Bk |  |  |  |  |  |  |  |  |
| 98 | Cf |  |  |  |  |  |  |  |  |
| 99 | E |  |  |  |  |  |  |  |  |
| 100 | Fm |  |  |  |  |  |  |  |  |

[^341]
# 7g. Important Atomic Spectra 

H. M. CROSSWHITE AND G. H. DIEKE

Physics Department<br>The Johns Hopkins University

7g-1. General. The tables and figures of this section furnish data on spectra which are often used for reference. These are chiefly the spectra of the rare gases which can easily be obtained with simple discharge tubes (a neon advertising sign, for instance, is a good source for the neon spectrum); the iron spectrum which is the best source of standard lines for a spectrograph of moderate to high dispersion; and the mercury spectrum which, like that of helium, is particularly useful for spectrographs of low dispersion.

Data on other spectra of varying degrees of accuracy and completeness can be found in the MIT tables; ${ }^{1}$ Kayser, "Handbuch der Spectroscopie," vols. 5-8; Paschen und Götze (1922); Fowler (1922); C. E. Moore, "Multiplet Tables" (1945); and Brode, "Chemical Spectroscopy" (1943).

An atlas of spectra is Gatterer and Junkes (1937 and 1945). For the solar spectrum, Minnaert, Mulders, and Houtgast (1940) is recommended.

The various tables of spectra and figures presented in this section are as follows:

| Spectrum | Table | Figure |
| :---: | :---: | :---: |
| Helium . | 7g-1 |  |
| Neon Ne I. | $7 \mathrm{~g}-2$ | $7 \mathrm{~g}-1$ |
| Argon A I. | $7 \mathrm{~g}-3$ | $7 \mathrm{~g}-2$ |
| Krypton Kr I | $7 \mathrm{~g}-4$ | $7 \mathrm{~g}-3$ |
| Xenon Xe I | 7g-5 | $7 \mathrm{~g}-4$ |
| Iron Fe I. | 7g-6 | $7 \mathrm{~g}-5$ |
| Mercury Hg I | 7g-7 | 7g-6, 7 |

The wavelengths and intensities are listed as completely as space permits. Special attention has been paid to lines which can be used as standards for wavelength measurements of high accuracy.

The figures, which are direct photoelectric traces obtained at The Johns Hopkins University, will help to orient the reader in the particular spectra. The traces were made with a logarithmic amplifier and calibrated to compensate for variations in sensitivity of spectrograph and measuring devices. Furthermore, the intensity scale is the same for all spectra so that the values indicate relative brightnesses of the light sources. Intensities as read from the charts, however, are not meant for high accuracy.

In a number of spectra numerical intensity values are given on a logarithmic scale. Also the conditions under which the spectra were produced are shown in each case.

[^342]Without the knowledge of such conditions intensity tables have little meaning because the intensities vary greatly with the discharge conditions.
In both figures and tables (except for helium) the intensities are standardized to give the energy flux from $100 \mathrm{~cm}^{2}$ of the light source per unit solid angle in ergs per second.

In Figs. $7 \mathrm{~g}-1$ through $7 \mathrm{~g}-5$, only whole numbers are given in the wavelength designations. Values accurate to several decimal places appear for many of these lines in Tables $7 \mathrm{~g}-2$ through $7 \mathrm{~g}-7$.

7g-2. Standard Wavelengths. Since 1927, the internationally accepted primary standard of wavelength has been the wavelength of the red cadmium line 6,438.4696 A when measured in air at standard conditions. ${ }^{1}$ One Angstrom unit (A) is very closely equal to $10^{-10} \mathrm{~m}$.

At the present time attempts are being made to replace the red cadmium line by a more suitable standard which combines higher accuracy and stability with better availability. It is very likely that this wavelength standard will also be the standard of length and thus replace the standard meter. Lines of the isotope 198 of mercury have been proposed ${ }^{2}$ for this, but international adoption must wait until tests on the variability of the wavelengths with discharge conditions have been completed. It apparently is necessary to have the frequency of the exciting field fairly high ( $>100$ $\mathrm{Mc} / \mathrm{sec}$ ). Lines of $\mathrm{Kr}^{84}$ are probably even better.

Accurate wavelength measurements are most conveniently made with the FabryPérot interferometer or a similar device which permits direct comparison with the primary standard. For all practical purposes a number of secondary standards may be used instead of the primary standard without significant loss of accuracy. The advantages of doing so are that more easily handled light sources may be used and frequently the standard is more nearly equal in wavelength to the lines to be measured than the primary standard.
Secondary standards accepted by the International Astronomical Union are the wavelengths of suitable lines which have been measured with concordant results in at least three independent laboratories. The mean of such determinations is designated as a secondary international standard of wavelength and indicated by a letter $S$ in subsequent wavelength tables. Whichever light sources are used to obtain wavelength standards it is very important that the conditions (pressure, discharge current, dimensions of light source, type of spectrograph used, etc.) be identical with those under which the standard wavelengths were determined.
Among the secondary standards, the wavelengths of some $\mathbf{H g}^{198}$ lines are probably now as reliable as those of the primary standard. Neon and krypton wavelengths are almost as good, while the secondary iron standards are somewhat less reliable at the present time. A replacement of the iron arc by a more suitable light source will probably make many iron wavelengths available with greatly increased accuracy. More details will be found under the particular spectra.

If extreme wavelength accuracy is not required, as with grating measurements, many additional lines may be used as standards.

Helium I. The He I spectrum (Table $7 \mathrm{~g}-1$ ) consists of singlets and triplets. The latter appear as double lines except under the most favorable conditions. This is because the $2^{3} P_{2}$ and $2^{3} P_{1}$ levels almost coincide, whereas the $2^{3} P_{0}$ level is about 1 $\mathrm{cm}^{-1}$ removed. The wavelengths are taken from the literature; some need revising. The intensities $I_{1}$ and $I_{2}$ are quantitative measurements at the following conditions: $I_{1}$, discharge with external electrodes; frequency $15 \mathrm{Mc} / \mathrm{sec}$; pressure $7.5 \mathrm{~mm} ; I_{2}$, same, pressure 0.25 mm ; $I_{0}$, estimates from the literature.

[^343]7-44 atomic and molecular physics
Table 7g-1. The Spectrum of Helium I and II

| $\lambda$ | Classification |  |  |  | He II | $I_{0}$ | $I_{1}$ | $I_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Singlets |  | Triplets |  |  |  |  |  |
| 243.027 | $\ldots$ |  | $\ldots$ | $\ldots$ | $4 \rightarrow 1$ |  |  |  |
| 256.317 | ... | $\ldots$ | . . |  | $3 \rightarrow 1$ |  |  |  |
| 303.781 |  | $\cdots$ | ... |  | $2 \rightarrow 1$ |  |  |  |
| 522.208 | $1 S$ | $4 P$ |  |  |  |  |  |  |
| 537.024 | 1 S | $3 P$ |  |  |  |  |  |  |
| 534.331 | $1 S$ | $2 P$ |  |  |  |  |  |  |
| 591.420 | 1 S | $\ldots$ |  | $2 p$ |  |  |  |  |
| 1,084.975 | ... | $\ldots$ |  |  | $5 \rightarrow 2$ |  |  |  |
| 1,215.171 | . . | ... | $\ldots$ | $\cdots$ | $4 \rightarrow 2$ |  |  |  |
| 1,640.474 |  | $\cdots$ | $\cdots$ |  | $3 \rightarrow 2$ |  |  |  |
| 2,696.130 | $\ldots$ | $\cdots$ | 28 | $9 p$ |  | 1 |  |  |
| 2,723.175 | ... | ... | 2 s | $8 p$ | $\ldots$ | 1 |  |  |
| 2,763.800 | $\ldots$ |  | 2 s | $7 p$ | $\ldots$ | 2 |  |  |
| 2,829.063 | . . | $\cdots$ | 2 s | $6 p$ | $\ldots$ | 4 |  |  |
| 2,945.110 | . . | $\ldots$ | $2 s$ | $5 p$ |  | 6 |  |  |
| 3,187.744 |  | $\ldots$ | $2 s$ | $4 p$ |  | 8 |  |  |
| 3,203.14 |  |  | .. | $\ldots$ | $5 \rightarrow 3$ |  |  |  |
| 3,354.550 | $2 S$ | $7 P$ | $\cdots$ | $\ldots$ | .... | 2 |  |  |
| 3,447.594 | $2 S$ | $6 P$ |  |  |  | 2 |  |  |
| 3,587.252 | . . | ... | $2 p$ | $9 d$ | $\ldots$ | 2 |  |  |
| 3,587.396 | $\ldots$ | $\ldots$ | $2 p$ | $9 d$ | $\ldots$ | 1 |  |  |
| 3,599.304 | . . | $\ldots$ | $2 p$ | $9 s$ | $\ldots$ | 1 |  |  |
| 3,599.442 |  |  | $2 p$ | 98 | $\cdots$ | 1 |  |  |
| 3,613.641 | $2 S$ | $5 P$ | $\ldots$ |  | $\ldots$ | 3 | 19 | 260 |
| 3,634.235 | . . | $\ldots$ | $2 p$ | $8 d$ | $\ldots$ | 2 |  |  |
| 3,634.373 |  |  | $2 p$ | $8 d$ |  | 1 |  |  |
| 3,651.971 | . . | $\ldots$ | $2 p$ | $8 s$ |  | 1 |  |  |
| 3,652.119 | $\ldots$ | $\ldots$ | $2 p$ | $8 s$ | $\ldots$ | 1 |  |  |
| 3,705.003 | . . | $\ldots$ | $2 p$ | $7 d$ | $\ldots$ | 3 | 28 | 260 |
| 3,705.140 | $\ldots$ | $\ldots$ | $2 p$ | $7 d$ | $\ldots$ | 1 |  |  |
| 3,732.861 | . . | $\cdots$ | $2 p$ | 7 s | $\ldots$ | 1 |  |  |
| 3,732.993 | . . | $\ldots$ | $2 p$ | 7 s | $\ldots$ | 1 |  |  |
| 3,819.606 |  | ... | $2 p$ | $6 d$ | .... | 4 | 84 | 680 |
| 3,819.761 | $\ldots$ | $\cdots$ | $2 p$ $2 p$ | $6{ }^{6}$ | $\ldots$ | 1 |  |  |
| 3,867.477 | $\ldots$ | $\cdots$ | $2 p$ | $6 s$ | $\ldots$ | 2 | 23 | 160 |
| 3,867.631 |  |  | $2 p$ | $6 s$ | $\ldots$ | 1 |  |  |
| 3,888.649 |  |  | $2 s$ | $3 p$ | $\ldots$ | 10 | 10,000 | 10,000 2,100 |
| 3,964.727 | $2 S$ | $4 P$ | . . | ... | $\ldots$ | 4 | 140 | 2,100 |
| 4,009.270 | $2 P$ | $7 D$ |  | $\ldots$ | $\ldots$ | 1 | 5 | 89 |
| 4,023.973 | $2 P$ | 7 S | $\cdots$ | $\cdots$ | $\ldots$ | 1 |  |  |
| 4,026.189 |  | $\ldots$ | $2 p$ | $5 d$ | $\ldots$ | 5 | 370 | 1,450 |
| 4,026.362 | $\ldots$ | ... | $2 p$ | $5 d$ | $\ldots$ | 1 |  |  |
| 4,120.812 |  | $\ldots$ | $2 p$ | $5 s$ | $\ldots$ | 3 | 90 | 480 |
| 4,120.993 |  | $\ldots$ | $2 p$ | $5 s$ |  | 1 |  |  |

Table 7g-1. The Spectrum of Helium I and II (Continued)

| $\boldsymbol{\lambda}$ | Classification |  |  |  | He II | $I_{0}$ | $I_{1}$ | $I_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Singlets |  | Triplets |  |  |  |  |  |
| 4,143.759 | $2 P$ | 6 D | $\ldots$ |  |  | 2 | 19 | 210 |
| 4,168.965 | $2 P$ | $6 S$ |  |  |  | 1 | - | 36 |
| 4,387.928 | $2 P$ | $5 D$ |  |  |  | 3 | 83 | 590 |
| 4,437.549 | $2 P$ | $5 S$ |  |  |  | 1 | 17 | 290 |
| 4,471.477 | . . |  | $2 p$ | $4 d$ |  | 6 | 2,300 | 2,220 |
| 4,471.688 |  |  | $2 p$ | $4 d$ |  | 1 |  |  |
| 4,685.75 |  |  |  |  | $4 \rightarrow 3$ |  |  |  |
| 4,713.143 |  |  | $2 p$ | $4 s$ |  | 3 | 350 | 370 |
| 4,713.373 |  |  | $2 p$ | $4 s$ |  | 1 | 350 | 370 |
| 4,921.930 | $2 P$ | $4 D$ | P | . . |  | 4 | 57 | 1,800 |
| 5,015.675 | $2 S$ | $3 P$ | . . |  |  | 6 | 710 | 3,106 |
| 5,047.736 | $2 P$ | $4 S$ | . . |  |  | 2 | 120 | 360 |
| 5,411.551 |  |  |  |  | $7 \rightarrow 4$ |  | 120 | 860 |
| 5,875.662 |  | $\ldots$ | $2 p$ | $3 d$ |  | 10 | 18,200 | 7,100 |
| 5,875.867 | . | $\ldots$ | $2 p$ | $3 d$ |  | 1 |  |  |
| 6,559.71 |  |  |  |  | $6 \rightarrow 4$ |  |  |  |
| 6,678.150 | $2 P$ | $3 D$ |  |  |  | 6 | 2,400 | 1,850 |
| 7,065. 188 | $\ldots$ | . . . | $2 p$ | $3 s$ |  | 5 | 7,100 | 1,450 |
| 7,065.719 |  |  | $2 p$ | $3 s$ |  | 1 |  |  |
| 7,281.349 | $2 P$ | $3 S$ | . . |  |  | 3* | 1,450 |  |
| 10,123.77 | . . |  |  |  | $5 \rightarrow 4$ |  |  |  |
| 10,829.081 | $\ldots$ |  | $2 s$ | $2 p_{0}$ | . . . | 500 | 105,000 | 6,950 |
| 10,830.250 | . . | $\ldots$ | $2 s$ | $2 p_{1}$ |  | 1,500 |  | 6,050 |
| 10,830.341 | . . | $\ldots$ | $2 s$ | $2 p_{2}$ |  | 2,500 |  |  |
| 12,784.79† |  | $\cdots$ | $3 d$ | $5 f$ |  | $10 \dagger$ |  |  |
| 12,790.27 | $3 D$ | $5 F$ | $\ldots$ | $\ldots$ |  | 1 |  |  |
| 17,003.11 | . . . | . . . | $3 p$ | $4 d$ |  | 20 |  |  |
| 18,685.12 | $\cdots$ | $\cdots$ | $3 d$ | $4 f$ |  | 70 |  |  |
| 18,697.00 | $3 D$ | $4 F$ | . . . |  |  | 10 |  |  |
| 20,580.9 | $2 S$ | $2 P$ |  |  |  | 5,000 |  |  |

* Change in the $I_{0}$ scale. From here on National Bureau of Standards values.
$\dagger$ Wavelengths and intensities from here on from Humphreys and Kostkowski, J. Research Natl. Bur. Standards 49, 73 (1952).

The classification is indicated by capital letters for singlets, lower-case letters for triplets. A few of the He II lines are also listed. They have elaborate fine structures.
Neon I. The neon spectrum is moderately rich in lines and may serve, like the other rare-gas spectra, as an easily obtained comparison spectrum. Any neon-sign manufacturer can produce a satisfactory tube. The wavelengths of the strong lines have been measured with great accuracy and have been adopted as international secondary standards, ${ }^{1}$ often replacing the primary standard for interferometric measurements.

Table $7 \mathrm{~g}-2$ lists the principal neon lines. The wavelengths are interferometric wavelengths when followed by a capital letter.
B, Burns, Adams, Longwell, J. Opt. Soc. Am. 40, 339 (1950)
H, Humphreys, J. Research Natl. Bur. Standards 20, 17 (1938)

[^344]Table 7g-2. The Spectrum of Neon I

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 2,647.42 | $3 s_{12}$ | $8 p_{1}$ | $1 s_{5}$ | $7 p_{6,7}$ | 8 |  |  |  |
| 2,675.24 | $3 s_{11}$ | $7 p_{12}^{\prime}$ | $1 s_{4}$ | $6 p_{4}$ | 8 |  |  |  |
| 2,675.64 | $3 s_{11}$ | $7 p_{11}^{\prime \prime}$ | $1 s_{4}$ | $6 p_{5}$ | 8 |  |  |  |
| 2,872.663 | $3 s_{00}^{\prime}$ | $6 p_{00}^{\prime}$ | $1 s_{2}$ | $5 p_{1}$ | 8 | .... |  | $2.73$ |
| 2,913.168 | $3 s_{12}$ | $5 p_{01}^{\prime}$ | $1 s_{5}$ | $4 p_{2}$ | 8 | $\ldots$ |  |  |
| 2,932.721 | $3 s_{01}^{\prime}$ | $6 p_{00}$ | $1 s_{2}$ | $5 p_{3}$ | 7 | $\ldots$ |  | 3.30 |
| 2,947.297 | $3 s_{11}$ | $5 p_{12}$ | $1 s_{4}$ | $4 p_{4}$ | 8 |  |  | 3.2 ? |
| 2,974.714 | $3 s_{12}$ | $5 p_{12}$ | $1 s_{5}$ | $4 p_{6}$ | 9 |  |  | 3.6 ? |
| 2,980.642 | $3 s_{00}^{\prime}$ | $5 p_{01}^{\prime}$ | $1 s_{3}$ | $4 p_{2}$ | 5.5 |  |  | 2.7 |
| 2,980.922 | 3s ${ }_{00}^{\prime}$ | $5 p_{11}^{\prime}$ | $1 s_{3}$ | $4 p_{5}$ | 6 | $\ldots$ | $\ldots$ | 2.80 |
| 2,982.663 | $3 s_{12}$ | $5 p_{23}$ | $1 s_{5}$ | $4 p_{9}$ | 9 |  |  | 3.52 |
| 2,992.420 | $3 s_{11}$ | $5 p_{00}$ | $1 s_{4}$ | $4 p_{3}$ | 8 8 |  |  | 3.32 |
| 2,992.438 | $3 s_{12}$ | $5 p_{01}$ | $1 s_{5}$ | $4 p_{10}$ | 8 |  |  | 2.93 |
| 3,012.129 | $3 s_{11}$ | $5 p_{12}$ | $1 s_{4}$ | $4 p_{6}$ | 6 |  |  | 2.93 2.98 |
| 3,012.955 | $3 s_{11}$ | $5 p_{11}$ | $1 s_{4}$ | $4 p_{7}$ | 6 | $\ldots$ |  | 2.98 |
| 3,017.348 | $3 s_{11}$ | $5 p_{22}$ | $1 s_{4}$ | $4 p_{8}$ | 6 |  |  | 3.12 |
| 3,057.388 | $3 s_{01}^{\prime}$ | $5 p_{00}^{\prime}$ | $1 s_{2}$ | $4 p_{1}$ | 9 |  |  |  |
| 3,076.971 | $3 s_{01}^{\prime}$ | $5 p_{12}^{\prime}$ | $1 s_{2}$ | $4 p_{4}$ | 8 |  |  | 2.80 |
| 3,126.1986 B | $3 s_{01}^{\prime}$ | $5 p_{00}$ | $1 s_{2}$ | $4 p_{3}$ | 8 |  |  | 3.61 |
| 3,148.6107 B | $3 s_{01}^{\prime}$ | $5 p_{11}$ | $1 s_{2}$ | $4 p_{7}$ | 7 |  |  | 2.44 |
| 3,153.4107 B | $3 s_{01}^{\prime}$ | $5 p_{22}$ | $1 s_{2}$ | $4 p_{8}$ | 6 |  |  | 2.4? |
| 3,167.5762 B | $3 s_{01}^{\prime}$ | $5 p_{01}$ | $1 s_{2}$ | $4 p_{10}$ | 6 |  |  | 2.21 |
| 3,369.8076 B | $3 s_{12}$ | $4 p_{12}^{\prime}$ | $1 s_{5}$ | $3 p_{4}$ | 10 |  |  | 3.90 |
| 3,369.9069 B | $3 s_{12}$ | $4 p_{01}^{\prime}$ | $1 s_{5}$ | $3 p_{2}$ | 15 |  |  | 4.36 |
| 3,375.6489 B | $3 s_{12}$ | $4 p_{11}^{\prime}$ | $1 s_{5}$ | $3 p_{5}$ | 6 |  |  | 2.98 |
| 3,417.9031 B | $3 s_{11}$ | $4 p_{12}^{\prime}$ | $1 s_{4}$ | $3 p_{4}$ | 10 |  |  | 4.62 |
| 3,418.0066 H | $3 s_{11}$ $3 s_{11}$ | $4 p_{01}^{\prime}$ | $1 s_{4}$ | $3 p_{2}$ | 6 | $\ldots$ |  | 4.14 3.57 |
| 3,423.9120 B | $3 s_{11}$ | $4 p_{11}^{\prime}$ | $1 s_{4}$ | $3 p_{5}$ | 8 |  |  | 3.57 4.91 |
| 3,447.7022 B | $3 s_{12}$ | $4 p_{12}$ | $1 s_{5}$ | $3 p_{6}$ | 8 |  |  | 4.91 4.18 |
| 3,450.7641 B | $3 s_{12}$ | $4 p_{11}$ | $1 s_{5}$ | $3 p_{7}$ | 6 |  |  | 4.18 |
| 3,454.1942 B | $3 s_{11}$ | $4 p_{00}$ | $1 s_{4}$ | $3 p_{3}$ | 7 |  |  | 4.72 |
| 3,460.5235 B | $3 s_{00}^{\prime}$ | $4 p_{01}^{\prime}$ | $1 s_{3}$ | $3 p_{2}$ | 7 |  |  | 4.37 |
| 3,464.3385 B | $3 s_{12}$ | $4 p_{22}$ | $1 s_{5}$ | $3 p_{8}$ | 7 | $\ldots$ | $\ldots$ | 4.27 |
| 3,466.5781 $B$ | $3 s_{00}^{\prime}$ | $4 p_{11}^{\prime}$ | $1 s_{3}$ | $3 p_{5}$ | 8 |  |  | 4.64 |
| 3,472.5706 B | $3 s_{12}$ | $4 p_{23}$ | $1 s_{5}$ | $3 p_{9}$ | 10 |  |  | 4.90 |
| 3,498.0632 B | $3 s_{11}$ | $4 p_{12}$ | $1 s_{4}$ | $3 p_{6}$ | 7 |  |  | 4.45 |
| 3,501.2154 B | $3 s_{11}$ | $4 p_{11}$ | $1 s_{4}$ | $3 p_{7}$ | 8 |  |  | 4.53 |
| 3,510.7207 B | $3 s_{12}$ | $4 p_{01}$ | 185 | $3 p_{10}$ | 6 |  |  | 3.85 |
| 3,515.1900 B | $3 s_{11}$ | $4 p_{22}$ | $1 s_{4}$ | $3 p_{8}$ | 8 |  |  |  |
| 3,520.4714 B | $3 s_{01}^{\prime}$ | $4 p_{00}^{\prime}$ | 182 | $3 p_{1}$ | 20 |  |  | 5.32 |

Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 3,562.9551 $B$ | $3 s_{11}$ | $4 p_{01}$ | $1 s_{4}$ | $3 p_{10}$ | 3 |  |  |  |
| 3,593.5263 B | $3 s_{01}^{\prime}$ | $4 p_{12}^{\prime}$ | $1 s_{2}$ | $3 p_{4}$ | 10 |  |  | 4.70 |
| 3,593.639 B | $3 s_{01}^{\prime}$ | $4 p_{01}^{\prime}$ | $1 s_{2}$ | $3 p_{2}$ | 9 |  |  | 4.50 |
| 3,600.1694 $B$ | $3 s_{01}^{\prime}$ | $4 p_{11}^{\prime}$ | $1 s_{2}$ | $3 p_{5}$ | 7 |  |  | 4.17 |
| 3,609.1787 B | $3 s_{00}^{\prime}$ | $4 p_{01}$ | $1 s_{3}$ | $3 p_{10}$ | 6 |  |  | 3.26 |
| 3,633.6643 $B$ | $3 s_{01}^{\prime}$ | $4 p_{00}$ | $1 s_{2}$ | $3 p_{3}$ | 7 |  |  | 4:28 |
| 3,682.2421 $B$ | $3 s_{01}^{\prime}$ | $4 p_{12}$ | $1 s_{2}$ | $3 p_{6}$ | 7 |  |  | 4.28 4.21 |
| 3,685.7351 $B$ | $3 s_{01}^{\prime}$ | $4 p_{11}$ | $1 s_{2}$ | $3 p_{7}$ | 7 |  |  | 4.08 |
| 3,701.2247 $B$ | $3 s_{01}^{\prime}$ | $4 p_{22}$ | $1 s_{2}$ | $3 p_{8}$ | 7 |  |  | 4.06 |
| 3,754.2148B | $3 s_{01}^{\prime}$ | $4 p_{01}$ | $1 s_{2}$ | $3 p_{10}$ | 6 |  |  | 3.06 |
| 4,270.2674 B | $3 p_{01}$ | $7 d_{00}$ | $2 p_{10}$ | $7{ }^{7}{ }_{6}$ | 4 | 2.460 |  |  |
| 4,275.5598 B | $3 p_{01}$ | $6 d_{22}^{\prime}$ | $2 p_{10}$ | $6 s_{1}^{\prime \prime \prime}$ | 5 | 2.70 | 2.61 |  |
| 4,306.2625 B | $3 p_{01}$ | $8 s_{12}$ | $2 p_{10}$ | $6 s_{5}$ | 5 |  | 2.61 |  |
| 4,334.1267 B | $3 p_{01}$ | $7 s_{01}^{\prime}$ | $2 p_{10}$ | $5 s_{2}$ | 5 |  |  |  |
| 4,363.524 $M$ | $3 p_{23}$ | $9 d_{34}$ | $2 p_{9}$ | $9 d_{4}^{\prime}$ | 5 |  |  |  |
| 4,381.220 M | $3 p_{23}$ | $10 s_{12}$ | $2 p_{9}$ | $8 s_{5}$ | 3 |  |  |  |
| 4,395.556 M | $3 p_{22}$ | $9 d_{33}$ | $2 p_{8}$ | $9 d_{4}$ | 4 |  |  |  |
| 4,422.5205 $B$ | $3 p_{01}$ | $6 d_{12}$ | $2 p_{10}$ | $6 d_{3}$ | 8 | 2.97 | 2.90 |  |
| 4,424.8096 B | $3 p_{01}$ | $6 d_{01}$ | $2 p_{10}$ | $6 d_{5}$ | 8 | 2.89 | 2.81 |  |
| 4,425.400 M | $3 p_{01}$ | $6 d_{00}$ | $2 p_{10}$ | $6 d_{6}$ | 7 |  |  |  |
| 4,433.7239 B | $3 p_{23}$ | $8 d_{34}$ | $2 p_{9}$ | $8 d_{4}^{\prime}$ | 5 | 2.34 | 2.19 |  |
| 4,460.175 M | $3 p_{23}$ | $9 s_{12}$ | $2 p_{9}$ | $7 s_{5}$ | 6 |  |  |  |
| 4,466.8120 B | $3 p_{22}$ | $8 d_{33}$ | $2 p_{8}$ | $8 d_{4}$ | 5 | 2.02 | 1.81 |  |
| 4,475.656 $M$ | $3 p_{11}$ | $7 d_{12}^{\prime}$ | $2 p_{7}$ | $7 s_{1}^{\prime \prime}$ | 6 |  |  |  |
| 4,483.199 B | $3 p_{01}$ | $7 s_{11}$ | $2 p_{10}$ | $5 s_{4}$ | 7 | 2.098 |  |  |
| 4.488 .0926 B | $3 p_{01}$ | $7 s_{12}$ | $2 p_{10}$ | $5 s_{5}$ | 8 | 2.811 | 2.673 |  |
| $4,500.182$ $4,517.736$ | $3 p_{11}^{\prime \prime}$ | 8d ${ }_{12}^{\prime}$ | $2 p_{5}$ | $8 s_{1}^{\prime \prime}$ | 4 |  |  |  |
| $4,517.736$ $4,525.764$ | $3 p_{12}^{\prime}$ | $8 d_{23}^{\prime}$ | $2 p_{4}$ | $8 s_{1}^{\prime \prime \prime}$ | 6 |  |  |  |
| $4,525.764$ $4,536.312$ | $3 p_{11}$ | $8 d_{22}$ | $2 p_{7}$ | $8 d_{1}^{\prime \prime}$ | 5 |  |  |  |
| 4,536.312 | $3 p_{01}$ | $5 d_{11}^{\prime}$ | $2 p_{10}$ | $5 s_{1}^{\prime}$ | 7 | 2.694 | 2.699 |  |
| 4,537.7545 $B$ | $3 p_{01}$ | $5 d^{\prime}{ }^{\prime}$ | $2 p_{10}$ | $5 s_{1}^{\prime \prime \prime}$ | 10 | 3.3 | 3.4 |  |
| $4,538.2927 B$ $4,540.3801 B$ | $3 p_{23}$ $3 p_{23}$ | $7 d_{23}$ $7 d_{34}$ | $2 p_{9}$ | $7 d_{1}^{\prime}$ $7 d^{\prime}$ | 8 |  |  |  |
| $4,540.3801$ $4,552.598$ | $3 p_{23}$ $3 p_{11}$ | $7 d_{34}$ $9 s_{11}$ | 2p9 | $7 d_{4}^{\prime}$ | 10 | 2.964 | 2.854 |  |
| 4,552.598 $M$ | $3 p_{11}$ | $9 s_{11}$ | $2 p_{7}$ | $7 s_{4}$ | 3 |  |  |  |
| 4,565.888 M | $3 p_{12}$ | $8 d_{23}$ | $2 p_{6}$ | $8 d_{1}^{\prime}$ | 4.5 |  |  |  |
| 4,575.0620 B | $3 p_{22}$ | $7 d_{33}$ | $2 p_{8}$ |  | 8 | 2.714 | 2.569 |  |
| 4,582.035 $M$ | $3 p_{22}$ | $6 d_{23}^{\prime}$ | $2 p_{8}$ | $6 s_{1}^{\prime \prime \prime}$ | 7 | 2.4 | 2.3 |  |
| 4,582.4521 B | $3 p_{23}$ | $8 s_{12}$ | $2 p_{9}$ | $6 s_{5}$ | 7 | 2.4 | 2.3 |  |
| $4,609.910 \quad M$ | $3 p_{11}^{\prime}$ | $7 d_{12}^{\prime}$ | $2 p_{5}$ | $7 s_{1}^{\prime \prime}$ | 7 | 2.19 |  |  |
| 4,614.391 $M$ | $3 p_{22}$ | $8 s_{11}$ | $2 p_{8}$ | $6 s_{4}$ | 6 | 2.204 |  |  |

Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 4,617.837 M | $3 p_{22}$ | $88_{12}$ | $2 p_{8}$ | 6s ${ }_{5}$ | 5 |  |  |  |
| 4,628.3113 B | $3 p_{12}^{\prime}$ | $7 d_{23}^{\prime}$ | $2 p_{4}$ | $7 s_{1}^{\prime \prime \prime}$ | 7 | 2.49 | 2.39 |  |
| 4,636.125 $M$ | $3 p_{11}$ | $7 d_{22}$ | $2 p_{7}$ | $7 d_{1}^{\prime \prime}$ | 5 | 2.0 |  |  |
| 4,636.630 | $3 p_{11}$ | $7 d_{11}$ | $2 p_{7}$ | $7{ }^{7}{ }^{\prime \prime}$ | 5 | 2.0 |  |  |
| 4,645.4180 B | $3 p_{11}$ | $6 d_{12}^{\prime}$ | $2 p_{7}$ | $6 s_{1}^{\prime \prime}$ | 8 | 2.672 | 2.607 |  |
| 4,649.904 M | $3 p_{22}$ | $7 s_{01}^{\prime}$ | $2 p_{8}$ | $5 s_{2}$ | 5 |  |  |  |
| 4,656.3936 B | $3 p_{01}$ | $6 s_{01}^{\prime}$ | $2 p_{10}$ | $4 s_{2}$ | 8 | 2.916 | 2.828 | 2.799 |
| 4,661.1054 B | $3 p_{01}$ | 6s $s_{00}^{\prime}$ | $2 p_{10}$ | $4 s_{3}$ | 7 | 2.634 | 2.559 |  |
| 4,670.884 M | $3 p_{12}^{\prime \prime}$ | $8 s_{01}^{\prime}$ | $2 p_{4}$ | $6 s_{2}$ | 5 |  |  |  |
| 4,678.218 M | $3 p_{12}$ | $7 d_{23}$ | $2 p_{6}$ | $7 d_{1}^{\prime}$ | 8 | 2.4 | 2.3 |  |
| 4,679.135 M | $3 p_{12}$ | $7 d_{12}$ | $2 p_{6}$ | $7 d_{3}$ | 7 | 2.2 | 2.1 |  |
| 4,687.6724 B | $3 p_{12}$ | $6 d_{23}^{\prime}$ | $2 p_{6}$ | $6 s_{1}^{\prime \prime \prime}$ | 6 | 2.410 | 2.340 |  |
| 4,702.526 | $3 p_{01}$ | $5 d_{11}$ | $2 p_{10}$ | $5 d_{2}$ | 7 | 2.472 | 2.427 |  |
| 4,704.3949 B | $3 p_{01}$ | $5 d_{12}$ | $2 p_{10}$ | $5 d_{3}$ | 15 | 3.701 | 3.729 | 3.437 |
| 4,708.8619 B | $3 p_{01}$ | $5 d_{01}$ | $2 p_{10}$ | $5 d_{5}$ | 12 | 3.688 | 3.693 | 3.459 |
| 4,710.0669 B | $3 p_{01}$ | $5 d_{00}$ | $2 p_{10}$ | $5 d_{6}$ | 10 | 3.33 | 3.33 | 3.34 |
| 4,712.0661 B | $3 p_{23}$ | $6 d_{23}$ | $2 p^{9}$ | 6d $d_{1}^{\prime}$ | 10 | 2.96 | 2.90 | 2.55 |
| 4,715.3466 B | $3 p_{23}$ | $6 d_{34}$ | $2 p_{9}$ | $6 d_{4}^{\prime}$ | 15 | 3.57 | 3.50 | 3.17 |
| $4,725.145 \mathrm{M}$ | $3 p_{12}$ | $8 s_{12}$ | $2 p_{6}$ | $6 s_{5}$ | 5 |  |  |  |
| 4,749.5754 B | $3 p_{22}$ | $6 d_{22}$ | $2 p_{8}$ | $6 d_{1}^{\prime}$ | 8 | 2.78 | 2.68 |  |
| 4,752.7320 B | $3 p_{22}$ | $6 d_{33}$ | $2 p_{8}$ | $6 d_{4}$ | 10 | 3.329 | 3.243 | 2.974 |
| 4,788.9270 $B$ | $3 p_{23}$ | $7 s_{12}$ | $2 p_{9}$ | $5 s_{5}$ | 12 | 3.16 | 3.05 |  |
| 4,790.217 $B$ | $3 p_{11}^{\prime}$ | $6 d_{22}$ | $2 p_{5}$ | $6 s_{1}^{\prime \prime}$ | 10 | 2.84 | 2.77 |  |
| 4,800.100 B | $3 p_{12}$ | $7 d_{23}$ | $2 p_{4}$ | $7{ }^{7}{ }_{1}^{\prime \prime}$ | 5 |  |  |  |
| 4,810.0640 B | $3 p_{12}^{\prime}$ | $6 d_{23}^{\prime}$ | $2 p_{4}$ | $6 s_{1}^{\prime \prime \prime}$ | 7 | 3.07 | 3.01 | 2.70 |
| 4,817.6386 B | $3 p_{11}$ | $6 d_{22}$ | $2 p_{7}$ | $6 d_{1}^{\prime \prime}$ | 8 | 2.861 | 2.775 | 2.597 |
| 4,818.748 | $3 p_{11}$ | $6 d_{11}$ | $2 p_{7}$ | $6 d_{2}$ | 7 | 2.599 | 2.499 | 2.335 |
| 4,821.9236 B | $3 p_{22}$ | $7 s_{11}$ | $2 p_{8}$ | ${ }_{5} s_{4}$ | 8 | 2.864 | 2.646 | 2.693 |
| 4,823.174 | $3 p_{00}$ | $6 d_{11}^{\prime}$ | $2 p_{3}$ | $6 s_{1}^{\prime}$ | 6 | 2.3 | 2.2 |  |
| 4,827.3444 B | $3 p_{01}$ | $6 s_{11}$ | $2 p_{10}$ | $4 s_{4}$ | 10 | 2.9 | 2.8 |  |
| 4,827.587 B | $3 p_{22}$ | $7 s_{12}$ | $2 p_{8}$ | $5 s_{5}$ | 8 |  |  |  |
| 4,837.3139 $B$ | $3 p_{01}$ | $6 s_{12}$ | $2 p_{10}$ | $4 s_{5}$ |  | 3.442 | 3.402 | 3.177 |
| 4,852.6571 $B$ | $3 p_{01}^{\prime}$ | $6 d^{\prime 2}$ | $2 p_{2}$ | $6 s_{1}^{\prime \prime \prime \prime}$ | 0 | 2.731 | 2.632 |  |
| 4,863.0800 B | $3 p_{12}$ | $6 d_{23}$ | $2 p_{6}$ | $6 d_{1}^{\prime}$ | 6 | 3.131 | 3.064 |  |
| 4,865.5009 B | $3 p_{12}$ | $6 d_{12}$ | $2 p_{6}$ | $6 d_{3}$ | 6 |  |  |  |
| 4,866.477 B | $3 p_{12}$ | $6 d_{33}$ | $2 p_{6}$ | $6 d_{4}$ | 5.5 | 2.61 | 2.53 |  |
| 4,867.010 | $3 p_{11}^{\prime}$ | $7 s_{00}^{\prime}$ | $2 p_{5}$ | $5 s_{3}$ | 5 | 2.4 | 2.3 |  |
| 4,884.9170 B | $3 p_{12}^{\prime}$ | $7 s_{01}^{\prime}$ | $2 p_{4}$ | $5 s_{2}$ | 10 | 3.2 | 3.2 | 3.0 |
| 4,892.1007 B | $3 p_{11}$ | $7 s_{11}$ | $2 p_{7}$ | $5 s_{4}$ | 9 | 2.58 | 2.38 |  |
| 4,928.241 $B$ | $3 p_{01}^{\prime}$ | $7 s_{01}^{\prime}$ | $2 p_{2}$ | $5 s_{2}$ | 5 |  |  |  |

IMPORTANT ATOMIC SPECTRA
Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 4,939.0457 B | $3 p_{12}$ | $7 s_{12}$ | $2 p_{6}$ | $5 s_{4}$ | 6 | 2.626 | 2.462 |  |
| 4,944.9899 B | $3 p_{12}$ | $7 s_{12}$ | $2 p_{6}$ | $5 s_{5}$ | 6 | 2.641 | 2.517 |  |
| 4,957.0335 B | $3 p_{11}$ | $5 d_{12}^{\prime}$ | $2 p_{7}$ | $5 s_{1}^{\prime \prime}$ | 10 | 3.3 | 3.4 |  |
| 4,957.123 B | $3 p_{11}$ | $5 d_{22}^{\prime}$ | $2 p_{7}$ | $5 s_{1}^{\prime \prime \prime \prime}$ | 7 |  |  |  |
| 4,973.538 | $3 p_{11}^{\prime}$ | $6 d_{22}$ | $2 p_{5}$ | $6 d_{1}^{\prime \prime}$ | 6 | 2.496 | 2.406 | 2.89 |
| 4,994.913 B | $3 p_{12}^{\prime}$ | $6 d_{23}$ | $2 p_{4}$ | $6 d_{1}^{\prime}$ | $74 r$ | 2.451 | 2.365 |  |
| 5,005.1587 B | $3 p_{12}$ | $5 d_{23}^{\prime}$ | $2 p_{6}$ | $5 s_{1}^{\prime \prime \prime}$ | 10 | 3.10 | 3.13 | 3.58 |
| 5,011.003 M | $3 p_{00}$ | $6 d_{11}$ | $2 p_{3}$ | $6 d_{2}$ | 4 | 2.279 | 2.208 |  |
| 5,022.864 B | $3 p_{22}$ | 6s ${ }_{01}^{\prime}$ | $2 p_{8}$ | $4 s_{2}$ | 4 | 2.592 | 2.506 |  |
| 5,031.3504 B | $3 p_{23}$ | $5 d_{23}$ | $2 p_{9}$ | $5 d_{1}^{\prime}$ | 9 | 3.634 | 3.665 | 3.374 |
| 5,035.989 | $3 p_{23}$ | $5 d_{12}$ | $2 p_{9}$ | $5 d_{3}$ | 5 | 2.818 | 2.823 |  |
| 5,037.7512 B | $3 p_{23}$ | $5 d_{34}$ | $2 p_{9}$ | $5 d_{4}^{\prime}$ | 10 | 4.27 | 4.29 | 4.01 |
| 5,074.2007 B | $3 p_{22}$ | $5 d_{22}$ | $2 p_{8}$ | $5 d_{1}^{\prime}$ | 5 | 3.53 | 3.54 | 3.27 |
| 5,080.3852 B | $3 p_{22}$ | $5 d_{33}$ | $2 p_{8}$ | $5 d_{4}$ | 8 | 4.038 | 4.061 | 3.803 |
| 5,104.7011 B | $3 p_{11}$ | $6 s_{00}^{\prime}$ | $2 p_{7}$ | $4 s_{3}$ | 5 | 2.798 | 2.745 |  |
| 5,113.6724 B | $3 p_{01}$ | $4 d_{11}^{\prime}$ | $2 p_{10}$ | $4 s_{1}^{\prime}$, | 7 | 3.475 | 3.654 | 3.326 |
| 5,116.5032 B | $3 p_{01}$ | $4 d_{12}^{\prime}$ | $2 p_{10}$ | $4 s_{1}^{\prime \prime}$ | 8 | 4.11 | 4.36 | 3.92 |
| 5,122.2565 B | $3 p_{11}^{\prime}$ | $5 d_{12}^{\prime}$ | $2 p_{5}$ | $5 s_{1}^{\prime \prime}$ | 8 | 3.6 | 3.6 |  |
| 5,144.9384 B | $3 p_{12}^{\prime}$ | $5 d_{23}^{\prime}$ | $2 p_{4}$ | $5 s_{1}^{\prime \prime}$ | 10 | 3.9 | 4.0 |  |
| 5,150.077 | $3 p_{12}$ | $6 s_{01}^{\prime}$ | $2 p_{6}$ | $4 s_{2}$ | 5 | 2.9 | 2.9 |  |
| 5,151.9610 B | $3 p_{11}$ | $5 d_{22}$ | $2 p_{7}$ | $5 d_{1}^{\prime \prime}$ | 7 | 3.595 | 3.597 | 3.352 |
| 5,154.4271 B | $3 p_{11}$ | $5 d_{11}$ | $2 p_{7}$ | $5 d_{2}$ | 6 | 3.292 | 3.286 |  |
| 5,156.6672 B | $3 p_{11}$ | $5 d_{12}$ | $2 p_{7}$ | $5 d_{3}$ | 6 | 2.5 | 2.5 |  |
| 5,158.9018 B | $3 p_{00}$ | $5 d_{11}^{\prime}$ | $2 p_{3}$ | $5 s_{1}^{\prime}$ | 6 | 3.087 | 3.094 |  |
| 5,188.6122 B | $3 p_{23}$ | $68_{12}$ | $2 p_{9}$ | $4 s_{5}$ | 8 | 3.813 | 3.898 | 3.519 |
| 5,191.3223 B | $3 p_{01}^{\prime}$ | $5 d_{11}^{\prime}$ | $2 p_{2}$ | $5 s_{1}^{\prime}{ }^{\prime}$ | 5 |  |  |  |
| 5,193.1302 B | $3 p_{01}^{\prime \prime}$ | $5 d_{12}^{\prime \prime}$ | $2 p_{2}$ |  |  |  | 3.6 |  |
| 5,193.2227 B | $3 p_{01}^{\prime}$ | $5 d_{22}^{\prime}$ | $2 p_{2}$ | $5 s_{1}^{\prime \prime \prime \prime}$ | 8 \} | 3.6 | 3.6 |  |
| $5,203.8962 B$ | $3 p_{12}$ | $5 d_{23}$ | $2 p_{6}$ | $5 d_{1}^{\prime}$ | 8 | 3.837 | 3.884 | 3.515 |
| $5,208.8648$ B | $3 p_{12}$ | $5 d_{12}$ | $2 p_{6}$ | $5 d_{3}$ | 7 | 3.584 | 3.585 |  |
| 5,210.5672 B | $3 p_{12}$ | $5 d_{38}$ | $2 p_{6}$ | $5 d_{4}$ | 6 |  |  | 2.860 |
| 5,214.3389 B | $3 p_{12}$ | $5 d_{01}$ | $2 p_{6}$ | $5 d_{5}$ | 5 | 2.777 | 2.745 |  |
| 5,222.3517 B | $3 p_{22}$ | $6 s_{11}$ | $2 p_{8}$ | $4 s_{4}$ | 6 | 3.549 | 3.431 | 3.592 |
| 5,234.0271 B | $3 p_{22}$ | $6 s_{12}$ | $2 p_{8}$ | $4 s_{5}$ | 6 | 3.161 | 3.125 |  |
| 5,274.0393 B | $3 p_{11}^{\prime \prime}$ | $6 s_{01}^{\prime}$ | $2 p_{5}$ | $4 s_{2}$ | 5.5 | 2.767 | 2.649 |  |
| 5,280.0853 B | $3 p_{11}^{\prime}$ | $6 s_{00}^{\prime}$ | $2 p_{5}$ | $4 s_{3}$ | 6 | 2.962 | 2.899 | 2.660 |
| 5,298.1891 B | $3 p_{12}^{\prime}$ | $6 s_{01}^{\prime}$ | $2 p_{4}$ | $4 s_{2}$ | 8 | 3.492 | 3.396 | 3.300 |
| 5,304.7580 B | $3 p_{11}$ | $6 s_{11}$ | $2 p_{7}$ | $4 s_{4}$ | 7 | 3.255 | 3.154 | 3.088 |
| 5,326.3968 B | $3 p_{01}$ | $4 d_{11}$ | $2 p_{10}$ | $4 d_{2}$ | 7 | 3.388 | 3.540 |  |
| 5,330.7775 B | $3 p_{01}$ | $4 d_{12}$ | $2 p_{10}$ | $4 d_{3}$ | 12 | 4.547 | 4.771 | 4.360 |

Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 5,341.0938 B | $3 p_{01}$ | $4 d_{01}$ | $2 p_{10}$ | $4 d_{5}$ | 20 | 4.537 | 4.732 |  |
| 5,343.2834 B | $3 p_{01}$ | $4 d_{00}$ | $2 p_{10}$ | $4 d_{6}$ | 12 | 4.3 | 4.5 | 3.936 |
| 5,349.2038 B | $3 p_{01}^{\prime}$ | $6 s_{01}^{\prime}$ | $2 p_{2}$ | $4 s_{2}$ | 8 | 3.072 | 3.004 | 2.810 |
| 5,360.0121 B | $3 p_{12}$ | $6 s_{11}$ | $2 p_{6}$ | $4 s_{4}$ | 8 | 3.392 | 3.297 | 3.129 |
| 5,372.3110 B | $3 p_{12}$ | $6 s_{12}$ | $2 p_{6}$ | $4 s_{5}$ | 7 | 3.318 | 3.282 | 2.196 |
| 5,374.9774 B | $3 p_{00}$ | $5 d_{11}$ | $2 p_{3}$ | $5 d_{2}$ | 6 | 3.002 | 2.984 |  |
| 5,383.2503 $B$ | $3 p_{00}$ | $5 d_{01}$ | $2 p_{3}$ | $5 d_{5}$ | 4 | 2.487 | 2.525 |  |
| 5,400.5616 B | $3 s_{11}$ | $3 p_{00}^{\prime}$ | $1 s_{4}$ | $2 p_{1}$ | 50 | 4.735 | 5.079 | 4.832 |
| 5,412.6490 B | $3 p_{01}^{\prime}$ | $5 d_{12}$ | $2 p_{2}$ | $5 d_{3}$ | 9 | 2.948 | 3.015 |  |
| 5,418.5584 B | $3 p_{01}^{\prime}$ | $5 d_{01}$ | $2 p_{2}$ | $5 d_{5}$ | 8 | 2.88 | 2.85 |  |
| 5,433.6513 B | $3 p_{01}$ | $58_{01}^{\prime}$ | $2 p_{10}$ | $3 s_{2}$ | 9 | 3.349 | 3.377 | 3.223 |
| 5,448.5091 $B$ | $3 p_{01}$ | $5 s_{00}^{\prime}$ | $2 p_{10}$ | $3 s_{3}$ | 8 | 3.077 | 3.169 |  |
| 5,494.4158 B | $3 p_{11}^{\prime}$ | $6 s_{11}$ | $2 p_{5}$ | $4 s_{4}$ | 6 | 2.843 | 2.745 |  |
| 5,533.6788 B | $3 p_{12}^{\prime}$ | $6 s_{12}$ | $2 p_{4}$ | $4 s_{5}$ | 7 | 2.738 | 2.720 |  |
| 5,538.6510 B | $3 p_{00}$ | $6 s_{11}$ | $2 p_{3}$ | $4 s_{4}$ | 6 | 2.625 | 2.532 |  |
| 5,562.7662 B | $3 p_{22}$ | $4 d_{23}^{\prime}$ | $2 p_{8}$ | $4 s_{1}^{\prime \prime}{ }^{\prime \prime}$ | 10 | 3.9 | 4.1 | 3.7 |
| 5,652.5664 B | $3 p_{11}$ | $4 d_{11}^{\prime}$ | $2 p_{7}$ | $4 s_{1}^{\prime}, \ldots$ | 7 | 3.400 | 3.562 | 3.240 |
| 5,656.6588 B | $3 p_{11}$ | $4 d_{22}^{\prime}$ | $2 p_{7}$ | $4 s_{1}^{\prime \prime \prime \prime}$ | 10 | 4.20 | 4.40 | 3.96 |
| 5,662.5489 B | $3 p_{01}$ | $5 s_{11}$ | $2 p_{10}$ | $3 s_{4}$ | 7 | 3.438 | 3.665 |  |
| 5,689.8163 B | $3 p_{01}$ | $5 s_{12}$ | $2 p_{10}$ | $3 s_{5}$ | 8 | 4.179 | 4.305 | 3.949 |
| 5,719.2248 B | $3 p_{12}$ | $4 d_{23}^{\prime}$ | $2 p_{6}$ | $4 s_{1}^{\prime \prime \prime}$ | 10 | 3.9 | 4.1 | 3.7 |
| 5,748.2985 B | $3 p_{23}$ | $4 d_{23}$ | $2 p$, | $4 d_{1}^{\prime}$ | 10 | 4.4 | 4.6 | 4.1 |
| 5,760.5885 B | $3 p_{23}$ | $4 d_{12}$ | $2 p$ | $4 d_{3}$ | 7 | 3.603 | 3.800 |  |
| 5,764.4188 B | $3 p_{23}$ | $4 d_{24}$ | $2 p$ | $4 d_{4}^{\prime}$ | 15 | 5.080 | 5.312 | 4.868 |
| 5,804.4496 $B$ | $3 p_{22}$ | $4 d_{22}$ | $2 p_{8}$ | $4 d_{1}^{\prime \prime}$ | 10 | 4.374 | 4.585 | 4.121 |
| 5,811.4066 B | $3 p_{22}$ | $4 d_{11}$ | $2 p_{8}$ | $4 d_{2}$ | 8 | 3.53 | 3.69 |  |
| 5,820.1558 B | $3 p_{22}$ | $4 d_{33}$ | $2 p_{8}$ | $4 d_{4}$ | 10 | 4.870 | 5.080 | 4.638 |
| 5,852.4878 S | $3 s_{01}^{\prime}$ | $3 p_{00}^{\prime}$ | $1 s_{2}$ | $2 p_{1}$ | 50 | 5.904 | 6.268 | 6.442 |
| 5,868.4183 B | $3 p_{11}^{\prime}$ | $4 d_{11}^{\prime}$ | $2 p_{5}$ |  | , | 3.659 | 4.341 |  |
| 5,872.8275 B | $3 p_{11}^{\prime \prime}$ | $4 d_{22}^{\prime}$ | $2 p_{5}$ | $4 s_{1}^{\prime \prime \prime}$ | 10 | 4.47 | 4.74 | 4.27 |
| 5,881.8950 $S$ | $3 s_{12}$ | $3 p_{01}^{\prime}$ | $1 s_{5}$ | $2 p_{2}$ | 20 | 5.235 | 6.300 | 5.974 |
| 5,902.4623 B | $3 p_{12}^{\prime}$ | $4 d^{\prime 3}$ | $2 p_{4}$ | 4s ${ }_{\text {c }}^{\prime \prime \prime}$ |  | 4.82 | 5.05 | 4.626 |
| 5,902.7835 B | $3 p_{12}^{\prime}$ | $4 d_{22}^{\prime}$ | $2 p_{4}$ | $4 s_{1}^{\prime \prime \prime \prime}$ | 1.5 |  |  |  |
| 5,906.4294 B | $3 p_{11}$ | $4 d_{22}$ | $2 p_{7}$ | $4 d_{1}^{\prime \prime}$ | 6 | 4.448 | 4.671 | 4.185 |
| 5,913.6327 B | $3 p_{11}$ | $4 d_{11}$ | $2 p_{7}$ | $4 d_{2}$ | 9 | 4.133 | 4.303 | 3.927 |
| 5,918.9068 B | $3 p_{00}$ | $4 d_{11}^{\prime}$ | $2 p_{3}$ | $4 s_{1}^{\prime}$ | 9 | 4.09 | 4.28 | 3.860 |
| 5,944.8342 S | $3 s_{12}$ | $3 p_{12}^{\prime}$ | 185 | $2 p_{4}$ | 10 | 5.365 | 6.380 | 6.104 |
| 5,961.6228 B | $3 p_{01}^{\prime}$ | $4 d_{11}^{\prime}$ | $2 p_{2}$ | $4 s_{1}^{\prime}$ | ${ }^{7}$ | 3.903 | 4.198 | 3.717 |
| 5,965.4710 B | $3 p_{01}^{\prime}$ | $4 d_{12}^{\prime}$ | $2 p_{2}$ | $4 s_{1}^{\prime \prime}$ | 10 | 4.54 | 4.75 | 4.25 |
| 5,974.6273 B | $3 p_{12}$ | $4 d_{23}$ | $2 p_{6}$ | $4 d_{1}^{\prime}$ | 10 | 4.7 | 5.6 |  |

Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 5,975.5340 S | $3 s_{12}$ | $3 p_{11}^{\prime}$ | $1 s_{5}$ | $2 p_{5}$ | *12 | 5.14 | 6.05 |  |
| 5,987.9074 B | $3 p_{12}$ | $4 d_{12}$ | $2 p_{6}$. | $4 d_{3}$ | 8 | 4.373 | 4.601 | 4.058 |
| 5,991.6532 B | $3 p_{12}$ | $4 d_{23}$ | $2 p_{6}$ | $4 d_{4}$ | 7 | 4.049 | 4.237 | 3.729 |
| 6,000.9275 B | $3 p_{12}$ | $4 d_{01}$ | $2 p_{6}$ | $4 d_{5}$ | 6 | 3.725 | 3.925 |  |
| 6,029.9971 S | $3 s_{11}$ | $3 p_{01}^{\prime}$ | $1 s_{4}$ | $2 p_{2}$ | 10 | 5.200 | 6.266 | 5.748 |
| 6,046.1348 B | $3 p_{11}$ | $5 s_{01}^{\prime}$ | $2 p_{7}$ | $3 s_{2}$ | 4 | 3.249 | 3.961 |  |
| 6,064.5359 B | $3 p_{11}$ | $5 s_{00}^{\prime}$ | $2 p_{7}$ | $3 s_{3}$ | 4 | 3.613 | 3.995 |  |
| 6,074.3377 S | $3 s_{11}$ | $3 p_{00}$ | $1 s_{4}$ | $2 p_{3}$ | 10 | 5.411 | 6.490 | 6.093 |
| 6,096.1630 S | $3 s_{11}$ | $3 p_{12}$ | $1 s_{4}$ | $2 p_{4}$ | 8 | 5.428 | 6.550 | 6.161 |
| 6,128.4498 B | $38_{11}$ | $3 p_{11}^{\prime}$ | $1 s_{4}$ | $2 p_{5}$ | 6 | 4.908 | 5.580 | 5.024 |
| 6,143.0623 S | $3 s_{12}$ | $3 p_{12}$ | $1 s_{5}$ | $2 p_{6}$ | 10 | 5.48 | 6.63 | 6.198 |
| 6,163.5939 S | $3 s_{00}^{\prime}$ | $3 p_{01}^{\prime}$ | $1 s_{3}$ | $2 p_{2}$ | 12 | 5.231 | 6.488 | 6.010 |
| 6,174.8829 B | $3 p_{12}$ | $4 d_{23}$ | $2 p_{4}$ | $4 d_{1}$ | 5 | 3.9 | 4.3 |  |
| 6,182.1460 B | $3 p_{23}$ | $5 s_{12}$ | $2 p_{9}$ | $3 s_{5}$ | 7 | 3.610 | 4.737 | 4.334 |
| 6,189.0649 B | $3 p_{12}$ | $4 d_{12}$ | $2 p_{4}$ | $4 d_{3}$ | 5 | 3.544 | 3.846 |  |
| 6,193.0663 B | $3 p_{12}$ | $4 d_{23}$ | $2 p_{4}$ | $4 d_{4}$ | 4 |  | 3.498 |  |
| 6,205.7775 B | $3 p_{00}$ | $4 d_{11}$ | $2 p_{3}$ | $4 d_{2}$ | 6 | 3.785 | 4.043 |  |
| 6,213.8758 B | $3 p_{22}$ | $5 s_{11}$ | $2 p_{8}$ | $3 s_{4}$ | 7 | 4.376 | 4.473 |  |
| 6,217.2813 S | $3 s_{12}$ | $3 p_{11}$ | $1 s_{5}$ | $2 p_{7}$ | 15 | 5.359 | 6.436 | 5.962 |
| 6,246.7294 B | $3 p_{22}$ | $5 s_{12}$ | $2 p_{8}$ | $3 s_{5}$ | 6 | 3.929 | 4.129 |  |
| 6,266.4950 $S$ | $3 s_{00}^{\prime}$ | $3 p_{11}^{\prime}$ | $1 s_{3}$ | $2 p_{5}$ | 15 | 5.336 | 6.606 | 6.156 |
| 6,293.7447 B | $3 p_{00}^{\prime}$ | $5 s_{01}^{\prime}$ | $2 p_{5}$ | $3 s_{2}$ | 6 | 3.683 | 3.900 |  |
| 6,304.7892 S | $3 s_{11}$ | $3 p_{12}$ | $1 s_{4}$ | $2 p_{6}$ | 6 | 5.422 | 6.391 | 6.009 |
| 6,313.6921 B | $3 p_{00}^{\prime}$ | $5 s_{00}^{\prime}$ | $2 p_{5}$ | $3 s_{3}$ | 7 | 3.899 | 4.151 |  |
| 6,328.1646 B | $3 p_{12}^{\prime}$ | $5 s_{01}^{\prime}$ | $2 p_{4}$ | $3 s_{2}$ | 8 | 4.424 | 4.546 |  |
| 6,334.4279 S | $3 s_{12}$ | $3 p_{22}$ | $1 s_{5}$ | $2 p_{8}$ | 10 | 5.567 | 6.679 | 6.281 |
| 6,351.8618B | $3 p_{00}$ | $5 s_{01}^{\prime}$ | $2 p_{3}$ | $3 s_{2}$ | 6 |  |  |  |
| 6,382.9914 S | $3 s_{11}$ | $3 p_{11}$ | $1 s_{4}$ | $2 p_{7}$ | 12 | 5.503 | 6.684 | 6.221 |
| 6,402.2460 B | $3 s_{12}$ | $3 p_{23}$ | $1 s_{5}$ | $2 p_{9}$ | 20 | 5.93 | 6.83 | 6.389 |
| 6,421.7108B | $3 p_{01}^{\prime}$ | $5 s_{12}$ | $2 p_{2}$ | $3 s_{5}$ | 6 | 3.701 | 3.893 |  |
| 6,444.7118 B | $3 p_{12}$ | $5 s_{12}$ | $2 p_{6}$ | $3 s_{5}$ | 7 | 4.094 | 4.191 | 3.823 |
| 6,506.5279 $S$ | $3 s_{11}$ | $3 p_{22}$ | $1 s_{4}$ | $2 p_{8}$ | 15 | 5.635 | 6.709 | 6.287 |
| 6,532.8824 S | $3 s_{00}^{\prime}$ | $3 p_{11}$ | $1 s_{3}$ | $2 p_{7}$ | 6 | 5.381 | 6.531 | 6.094 |
| 6,598.9529 $S$ | $3 s_{01}^{\prime}$ | $3 p_{01}^{\prime}$ | $1 s_{2}$ | $2 p_{2}$ | 15 | 5.736 | 6.691 | 6.213 |
| 6,652.0925 B | $3 s_{01}^{\prime}$ | $3 p_{00}$ | $1 s_{2}$ | $2 p_{3}$ | 7 | 4.279 | 4.681 | 4.203 |
| 6,666.8967 B | $3 p_{00}$ | $5 s_{11}$ | $2 p_{3}$ | $3 s_{4}$ | 6 |  |  |  |
| 6,678.2764 S | $3 s_{01}^{\prime}$ | $3 p_{12}^{\prime}$ | $1 s_{2}$ | $2 p_{4}$ | 9 | 5.840 | 6.806 | 6.393 |
| 6,717.0428 S | $3 s_{01}^{\prime}$ | $3 p_{11}^{\prime}$ | $1 s_{2}$ | $2 p_{5}$ | 2 | 5.765 | 6.712 | 6.286 |
| 6,929.4672 B | $3 s_{01}^{\prime}$ | $3 p_{12}$ | $1 s_{2}$ | $2 p_{6}$ | 10 | 5.965 | 6.783 | 6.421 |
| 7,024.0500 B | $3 s_{01}^{\prime}$ | $3 p_{11}$ | $1 s_{2}$ | $2 p_{7}$ | 9 | 5.436 | 6.068 | 5.568 |

Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 7,032.4127 S | $3 s_{12}$ | $3 p_{01}$ | $1 s_{5}$ | $2 p_{10}$ | 10 | 5.732 | 6.917 | 6.362 |
| 7,051.2937 B | $3 p_{01}$ | $3 d_{11}^{\prime}$ | $2 p_{10}$ | $3 s_{1}^{\prime}$ | 5 | 4.286 |  | 4.281 |
| 7,059.1079 B | $3 p_{01}$ | $3 d_{12}^{\prime}$ | $2 p_{10}$ | $3 s_{i}^{\prime \prime}$ | 7.5 | 4.868 | 5.534 | 4.904 |
| 7,173.9380 B | $3 s_{01}^{\prime}$ | $3 p_{22}$ | $1 s_{2}$ | $2 p_{8}$ | 10 | 5.793 | 6.411 | 6.022 |
| 7,245.1665 B | $3 s_{11}$ | $3 p_{01}$ | $1 s_{4}$ | $2 p_{10}$ | 10 | 5.751 | 6.756 | 6.289 |
| 7,438.8981 B | $3 s_{00}^{\prime}$ | $3 p_{01}$ | $1 s_{3}$ | $2 p_{10}$ | 8 | 5.510 | 6.424 |  |
| 7,472.4383 B | $3 p_{01}$ | $3 d_{11}$ | $2 p_{10}$ | $3 d_{2}$ | 4 | 4.432 | 5.021 | 4.441 |
| 7,488.8712 $B$ | $3 p_{01}$ | $3 d_{12}$ | $2 p_{10}$ | $3 d_{3}$ | 9 | 5.398 | 6.052 | 5.424 |
| 7,535.7739 B | $3 p_{01}$ | $3 d_{01}$ | $2 p_{10}$ | $3 d_{5}$ | 8 | 5.352 | 5.978 | 5.387 |
| 7,544.0439 ${ }^{\text {b }}$ | $3 p_{01}$ | $3 d_{00}$ | $2 p_{10}$ | $3 d_{6}$ | 6 | 4.962 | 5.667 | 4.956 |
| 7,724.6281 B | $3 p_{00}^{\prime}$ | $5 s_{11}$ | $2 p_{1}$ | $3 s_{4}{ }^{\prime \prime}$ | 10 |  |  |  |
| 7,839.0550 B | $3 p_{23}$ | $3 d_{23}^{\prime}$ | $2 p_{9}$ | $3 s_{1}^{\prime \prime \prime}$ | 30 | 3.303 | 3.939 | 3.19 |
| 7,927.1172 B | $3 p_{22}$ | $3 d_{11}^{\prime}$ | $2 p_{8}$ | $3 s_{1}^{\prime}$ | 40 |  |  | 3.48 |
| 7,936.9946 B | $3 p_{22}$ | $3 d_{12}^{\prime}$ | $2 p_{8}$ | $3 s_{1}^{\prime \prime}$ | 70 | 3.487 | 4.043 | 4.040 |
| 7,943.1805 B | $3 p_{22}$ | $3 d_{23}^{\prime}$ | $2 p_{8}$ | $3 s_{1}^{\prime \prime \prime}$ | 200 | 4.718 | 5.412 | 4.725 |
| 8,082.4576 B | $3 s_{01}^{\prime}$ | $3 p_{01}$ | $1 s_{2}$ | $2 p_{10}$ | 200 | 4.676 | 5.203 | 4.629 |
| 8,118.5495 $B$ | $3 p_{11}$ | $3 d_{11}^{\prime}$ | $2 p_{7}$ | $3 s_{1}^{\prime}$ | 100 | 4.452 | 5.030 | 4.419 |
| 8,128.9077 B | $3 p_{11}$ | $3 d_{12}^{\prime}$ | $2 p_{7}$ | $3 s_{1, \prime \prime}^{\prime}$ | 60 | 3.916 | 4.633 | 3.85 |
| 8,136.4061 $B$ | $3 p_{11}$ | $3 d_{2}^{\prime}$ | $2 p_{7}$ | $3 s_{1}^{\prime \prime \prime \prime}$ | 300 | 5.047 | 5.718 | 5.029 |
| 8,248.6812 $B$ | $3 p_{12}$ | $3 d_{11}^{\prime}$ | $2 p_{6}$ | $3 s_{1}^{\prime}$ | 30 | 3.467 | 4.038 | 3.34 |
| 8,259.3795 B | $3 p_{12}$ | $3 d_{12}^{\prime}$ $3 d^{\prime}$ | $2 p_{6}$ | $3 s_{1}^{\prime}$ $3 s^{\prime \prime \prime}$ | 150 | 4.327 |  | 4.280 4.691 |
| 8,266.0788 $B$ | $3 p_{12}$ | $3 d^{\prime}$ | $2 p_{6}$ | 3s ${ }_{1}^{\prime \prime \prime}$ | 250 | . . . | 5.387 | 4.691 |
| 8,267.1166 $B$ | $3 p_{12}$ | $3 d^{\prime}{ }^{\prime}$ | $2 p_{6}$ | $3 s_{1}^{\prime \prime \prime}$ 3 | 80 |  |  |  |
| 8,300.3248 B | $3 p_{23}$ | $3 d_{23}$ | $2 p_{9}$ | $3 d_{1}^{\prime}$ | 600 | 5.31 | 5.97 | 5.316 |
| 8,365.7464 B | $3 p_{23}$ | $3 d_{12}$ | $2 p_{9}$ | $3 d_{3}$ | 150 | 4.439 | - . . | 4.415 |
| 8,377.6062 B | $3 p_{23}$ | $3 d_{34}$ | $2 p_{9}$ | $3 d_{4}^{\prime}$ | 800 |  |  | 5.957 |
| 8,417.1614 $B$ | $3 p_{22}$ | $3 d_{23}$ | $2 p_{8}$ | $3 d_{1}^{\prime}$ | 100 | 4.2 | 4.9 |  |
| 8,418.4265 $B$ | $3 p_{22}$ | $3 d_{22}$ | $2 p_{8}$ | $3 d_{1}^{\prime}$ | 400 | 5.15 | 5.87 | 5.244 |
| 8,463.3569 B | $3 p_{22}$ | $3 d_{11}$ | $2 p_{8}$ | $3 d_{2}$ | 150 | 4.433 | 5.039 | 4.452 |
| 8,484.4424 B | $3 p_{22}$ | $3 d_{12}$ | $2 p_{8}$ | $3 d_{3}$ | 80 | 3.930 | 4.678 | 3.90 |
| 8,495.3591 $B$ | $3 p_{22}$ | $3 d_{33}$ | $2 p_{8}$ | $3 d_{4}$ | 500 | 5.703 | 6.324 | 5.764 |
| 8,544.6952 B | $3 p_{22}$ | $3 d_{01}$ | $2 p_{8}$ | $3 d_{5}$ | 60 | 4.014 | 4.752 | 3.98 |
| 8,571.3535 $B$ | $3 p_{11}^{\prime}$ | $3 d_{11}^{\prime}$ | $2 p_{5}$ | $3 s_{1}^{\prime}, \ldots$ | 100 | 4.332 | 5.012 | 4.330 |
| 8,591.2583 B | $3 p_{11}^{\prime \prime}$ | $3 d_{22}^{\prime}$ | $2 p_{5}$ | $3 s_{1}^{\prime \prime \prime \prime}$ | 400 | 5.436 | 6.057 | 5.450 |
| 8,634.6472 B | $3 p_{11}$ | $3 d_{22}$ | $2 p_{7}$ | $3 d_{1}^{\prime}$ | 600 | 5.3 | 6.0 | 5.386 |
| 8,647.0400 B | $3 p_{12}$ | $3 d_{12}^{\prime}$ | $2 p_{4}$ | $3 s_{1}^{\prime \prime}$ | $\begin{array}{r}300 \\ \hline\end{array}$ | 4.709 | 5.235 |  |
| 8,654.3837 B | $3 p_{12}^{\prime}$ | $3 d^{\prime}{ }^{\prime}$ | $2 p_{4}$ | $3 s_{1}^{\prime \prime \prime}$ $3 s^{\prime \prime \prime \prime \prime}$ | 1,500 | 5.56 | 6.26 | 5.747 |
| 8,655.5206 B | $3 p_{12}^{\prime}$ | $3 d^{\prime}{ }^{\prime}$ | $2 p_{4}$ | $3 s_{1}^{\prime \prime \prime}$ | $400$ |  |  |  |
| $8,679.4898 B$ $8,681.9216 B$ | $3 p_{00}$ | $3 d_{11}^{\prime}$ $3 d_{11}$ | $2 p_{3}$ $2 p_{7}$ | $3 s_{1}^{\prime}$ $3 d_{2}$ | $\left.\begin{array}{l} 500 \\ 500 \end{array}\right\}$ | 5.2 | 5.8 | $\begin{aligned} & 5.016 \\ & 5.075 \end{aligned}$ |
| 8,681.9216 B | $3 p_{11}$ | $3 d_{11}$ | $2 p_{7}$ | $3 d_{2}$ |  |  |  |  |

Table 7g-2. The Spectrum of Neon I (Continued)

| Wavelength | Classification |  |  |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  |  |  |  |  |
| 8,704.1132 B | $3 p_{11}$ | $3 d_{12}$ | $2 p_{7}$ | $3 d_{3}$ | 200 | 4.243 | 4.992 | 4.201 |
| 8,771.6592 $B$ | $3 p_{01}^{\prime}$ | $3 d_{11}^{\prime}$ | $2 p_{2}$ | $3 s_{1}^{\prime}$ | 400 | 4.845 | 5.467 | 4.888 |
| 8,780.6223 B | $3 p_{12}$ | $3 d_{23}$ | $2 p_{6}$ | $3 d_{1}^{\prime}$ | 1,200 |  |  | 5.642 |
| 8,783.7539 B | $3 p_{01}^{\prime}$ | $3 d_{23}^{\prime}$ | $2 p_{2}$ | $3 s_{1}^{\prime \prime \prime}$ | 1,000 |  |  | 5.488 |
| 8,830.9078 $B$ | $3 p_{12}$ | $3 d_{11}$ | $2 p_{6}$ | $3 d_{2}$ | 50 | 3.606 | 4.258 | 3.61 |
| 8,853.8669 B | $3 p_{12}$ | $3 d_{12}$ | $2 p_{6}$ | $3 d_{3}$ | 700 | 5.233 | 5.805 | 5.246 |
| 8,865.3057 B | $3 p_{12}$ | $3 d_{33}$ | $2 p_{6}$ | $3 d_{4}$ | $100\}$ |  |  |  |
| 8,865.7562 $B$ | $3 p_{01}$ | $4 s_{01}^{\prime}$ | $2 p_{10}$ | $2 s_{2}$ | $500\}$ | 5.0 | 5.6 | 5.0 |
| 8,919.4987 B | $3 p_{12}$ | $3 d_{01}$ | $2 p_{6}$ | $3 d_{5}$ | 300 | 4.623 | 5.290 | 4.624 |
| 8,988.58 | $3 p_{01}$ | $4 s_{00}^{\prime}$ | $2 p_{10}$ | $2 s_{3}$ | 200 | 4.310 | 4.712 | 4.12 |
| 9,148.68 | $3 p_{11}^{\prime}$ | $3 d_{22}$ | $2 p_{5}$ | $3 d_{1}^{\prime \prime}$ | 600 | 4.809 | 5.501 | 4.808 |
| 9,201.76 | $3 p_{11}^{\prime}$ | $3 d_{11}$ | $2 p_{5}$ | $3 d_{2}$ | 600 | 4.786 | 5.381 | 4.826 |
| 9,220.05 | $3 p_{12}^{\prime}$ | $3 d_{23}$ | $2 p_{4}$ | $3 d^{\prime}$ | 400 | 4.54 | 5.23 | 4.624 |
| 9,221.59 | $3 p_{12}^{\prime}$ | $3 d_{22}$ | $2 p_{4}$ | $3 d_{1}^{\prime \prime}$ | 200 | 4.0 | 4.7 |  |
| 9,226.67 | $3 p_{11}^{\prime}$ | $3 d_{12}$ | $2 p_{5}$ | $3 d_{3}$ | 200 | 4.040 | 4.785 | 4.01 |
| 9,275.53 | $3 p_{12}^{\prime}$ | $3 d_{11}$ | $2 p_{4}$ | $3 d_{2}$ | 100 |  | 4.466 | 3.83 |
| 9,300.85 | $3 p_{12}^{\prime}$ | $3 d_{12}$ | $2 p_{4}$ | $3 d_{3}$ | 600 | 4.650 | 5.261 | 4.639 |
| 9,310.58 | $3 p_{11}^{\prime}$ | $3 d_{00}$ | $2 p_{5}$ | $3 d_{6}$ | 150 | 4.213 | 4.966 | 3.60 |
| 9,313.98 | $3 p_{12}^{\prime}$ | $3 d_{33}$ | $2 p_{4}$ | $3 d_{4}$ | 300 | 4.224 | 4.947 | 4.23 |
| 9,326.52 | $3 p_{00}$ | $3 d_{11}$ | $2 p_{3}$ | $3 d_{2}$ | 600 | 4.682 | 5.285 | 4.710 |
| 9,373.28 | $3 p_{12}^{\prime}$ | $3 d_{01}$ | $2 p_{4}$ | $3 d_{5}$ | 200 | 4.008 | 4.712 | 3.96 |
| 9,425.38 | $3 p_{00}$ | $3 d_{01}$ | $2 p_{3}$ | $3 d_{5}$ | 500 | 4.472 | 5.225 | 4.47 |
| 9,459.21 | $3 p_{01}^{\prime}$ | $3 d_{12}$ | $2 p_{2}$ | $3 d_{3}$ | 300 | 4.211 | 4.969 | 4.15 |
| 9,486.680 $M$ | $3 p_{01}$ | $4 s_{11}$ | $2 p_{10}$ | $2 s_{4}$ | 500 | 4.793 | 5.280 | 4.76 |
| 9,534.167 M | $3 p_{01}^{\prime}$ | $3 d_{01}$ | $2 p_{2}$ | $3 d_{5}$ | 500 | 4.555 | 5.319 | 4.567 |
| 9,547.40 | $3 p_{01}^{\prime}$ | $3 d_{00}$ | $2 p_{2}$ | $3 d_{6}$ | 300 | 4.241 | 4.986 | 4.15 |
| 9,665.424 M | $3 p_{01}$ | $4 s_{12}$ | $2 p_{10}$ | $2 s_{5}$ | 1,000 | 5.207 | 5.552 | 5.155 |



Fig. $7 \mathrm{~g}-1$. Photoelectric traces of the neon spectrum, microwave discharge at 1.25 mm . Wavelength range is $3,000-10,000 \mathrm{~A}$.


Neon Microwave
1.25 mm Pressure End-on View


Fig. 7g-1 (Continued)


$$
\text { Fig. } 7 \mathrm{~g}-1 \text { (Continued) }
$$

Neon Microwave
1.25 mm Pressure



Fig. 7g-1 (Continued)



Fig. 7g-1 (Continued)



Fig. 7g-1 (Continued)



M, Meggers and Humphreys, J. Research Natl. Bur. Standards 13, 293 (1934)
$S$, International secondary standard ${ }^{1}$
The classification is expressed in two notations:
Systematic (Modified Racah). Orbital angular momentum of the last electron (valence electron) is specified by the symbols $s, p, d$, etc. (not the angular momentum of the configuration as in $L, S$ coupling). The first subscript is the angular momentum $K$ of the atom exclusive of the spin of the valence electron minus $\frac{1}{2}$. The second index is the total angular momentum $J$ of the atom ( $J=K \pm \frac{1}{2}$ ). The levels are primed if they converge to the ${ }^{2} P_{\frac{1}{3}}$ level of the ion which lies above the lowest ionization limit ${ }^{2} P_{3}^{2}$.

Paschen Notation. This is a semiempirical notation first used by Paschen and extensively used in the literature for the rare-gas spectra. It is now obsolete.

The intensities are standardized in such a way that they give the energy flux from $100 \mathrm{~cm}^{2}$ of the light source per unit solid angle in ergs per second. $I_{1}$, glow discharge, 60 cycles, pressure $1.25 \mathrm{~mm} ; I_{2}$, microwave discharge; pressure $10 \mathrm{~mm} ; I_{3}$, hollowcathode discharge, pressure 3.5 mm , current 90 ma .

Argon I. Listed in Table $7 \mathrm{~g}-3$ are the strongest lines in the argon spectrum and some others for which accurate wavelength determinations have been made. Letters indicate origin of wavelengths:

B, Burns and Adams, J. Opt. Soc. Am. 43, 1020 (1953)
L, Littlefield and Turnbull, Proc. Roy. Soc. (London) A218, 577 (1953)
M, Meggers and Humphreys, J. Research Natl. Bur. Standards 13, 293 (1934)
There are systematic deviations between the wavelengths of different observers, and care should be exercised if the lines are to be used as wavelength standards.
columns 2 то 5: Classification, systematic (modified Racah) and conventional Paschen designations (see Table $7 \mathrm{~g}-2$ ).
columns 6 and 7: Intensities (logarithmic scale): $I_{1}$, intensity in 60-cycle a-c glow discharge; current 60 ma , argon pressure $3 \mathrm{~mm} ; I_{2}$, hollow-cathode discharge with iron electrodes, current 150 ma , argon pressure 1 mm .
${ }^{1}$ Trans. Intern. Astron. Union 5, 86 (1935).

Table 7g-3. The Spectrum of Argon I

| $\boldsymbol{\lambda}$ | Classification |  |  |  | Intensities |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  | $\log I_{1}$ | $\log I_{2}$ |
| 3,319.3446 B | $4 s_{12}$ | $7 p_{12}$ | $1 s_{5}$ | $5 p_{6}$ |  |  |
| 3,373.4823 B | $4 s_{11}$ | $7 p_{00}$ | $1 s_{4}$ | $5 p_{5}$ |  |  |
| 3,554.3048 L | $4 s_{12}$ | $6 p_{12}$ | $1 s_{5}$ | $4 p_{6}$ |  |  |
| 3,567.6550 L | $4 s_{12}$ | $6 p_{23}$ | $1 s_{5}$ | $4 p_{9}$ |  |  |
| 3,572.2960 B | $4 s_{01}^{\prime}$ | $7 p_{00}$ | $1 s_{2}$ | $5 p_{5}$ |  |  |
| 3,606.5207 L | $4 s_{11}$ | $6 p_{00}$ | $1 s_{4}$ | $4 p_{5}$ |  |  |
| 3,649.8310 L | $4 s_{01}^{\prime}$ | $6 p_{00}^{\prime}$ | $1 s_{2}$ | $4 p_{1}$ |  |  |
| 3,834.6775 L | $4 s_{01}^{\prime}$ : | $6 p_{00}$ | $1 s_{2}$ | $4 p_{5}$ | 2.18 |  |
| 3,894.6609 L | $4 s_{01}^{\prime}$ | $6 p_{01}$ | $1 s_{2}$ | $4 p_{10}$ | 1.75 |  |
| 3,947.5046 L | $4 s_{12}$ | $5 p_{12}^{\prime}$ | $1 s_{5}$ | $3 p_{3}$ | 1.54 |  |
| 3,948.9785 L | $4 s_{12}$ | $5 p_{0,1}^{\prime}$ | $1 s_{5}$ | $3 p_{2}$ | 3.09 | 2.65 |
| 4,044.4176 L | $4 s_{11}$ | $5 p_{12}^{\prime}$ | $1 s_{4}$ | $3 p_{3}$ | 3.16 |  |
| 4,045.9645 L | $4 s_{11}$ | $5 p_{01}^{\prime}$ | $1 s_{4}$ | $3 p_{2}$ | 2.17 |  |
| 4,054.5259 L | $4 s_{11}$ | $5 p_{11}^{\prime}$ | $1 s_{4}$ | $3 p_{4}$ | 1.92 |  |
| 4,158.5906L | $4 s_{12}$ | $5 p_{12}$ | $1 s_{5}$ | $3 p_{6}$ | 3.80 | 3.56 |
| $4,164.1794 L$ $4,181.8833 L$ | $4 s_{12}$ $4 s^{\prime}$ | $5 p_{11}$ $5 p^{\prime}$ | $1 s_{5}$ | $3 p_{7}$ | 3.03 | 2.62 |
| 4,181.8833 L | $4 s_{00}^{\prime}$ | $5 p_{01}^{\prime}$ | $1 s_{3}$ | $3 p_{2}$ | 3.13 | 2.56 |
| 4,190.7126 L | $4 s_{12}$ | $5 p_{22}$ | $1 s_{5}$ | $3 p_{8}$ |  | 3.11 |
| 4,191.0292L | $4 s_{00}^{\prime}$ | $5 p_{11}^{\prime}$ | $1 s_{3}$ | $3 p_{4}$ |  |  |
| 4,198.3174 L | $4 s_{11}$ | $5 p_{00}$ | $1 s_{4}$ | $3 p_{5}$ | 3.53 |  |
| : 4,200.6745L | $4 s_{12}$ | $5 p_{23}$ | $1 s_{5}$ | $3 p_{9}$ | 3.83 |  |
| 4,251.1848 L | $4 s_{12}$ | $5 p_{01}$ | $1 s_{5}$ | $3 p_{10}$ | 2.73 |  |
| 4,259.3615 L | $4 s_{01}^{\prime}$ | $5 p_{00}^{\prime}$ | $1 s_{2}$ | $3 p_{1}$ | 3.40 |  |
| 4,266.2865 L | $4 s_{11}$ | $5 p_{12}$ | $1 s_{4}$ | $3 p_{6}$ | 3.29 | 3.11 |
| 4,272.1688L | $4 s_{11}$ | $5 p_{11}$ | $1 s_{4}$ | $3 p_{7}$ | 3.54 |  |
| 4,300.1005 L | $4 s_{11}$ | $5 p_{00}$ | $1 s_{4}$ | $3 p_{5}$ | 3.40 |  |
| 4,333.5611 L | $4 s_{01}^{\prime}$ | $5 p_{12}^{\prime}$ | $1 s_{2}$ | $3 p_{3}$ | 3.32 | 3.00 |
| 4,335.3374 L | $4 s_{01}^{\prime}$ | $5 p_{01}^{\prime}$ | $1 s_{2}$ | $3 p_{2}$ | 2.95 | 2.52 |
| 4,345.1679 L | $4 s_{01}^{\prime}$ | $5 p_{11}^{\prime}$ | $1 s_{2}$ | $3 p_{4}$ | 2.91 | 2.59 |
| 4,363.7944L | $4 s_{11}$ | $5 p_{01}$ | $1 s_{4}$ | $3 p_{10}$ | 1.89 | 2.30 |
| 4,510.7332 $L$ $4,522.3231 L$ | $4 s_{01}^{\prime}$ | $5 p_{00}$ | $1 s_{2}$ | $3 p_{5}$ | 3.13 | 2.92 |
| 4,522.3231 L | $4 s_{00}^{\prime}$ | $5 p_{01}$ | $1 s_{3}$ | $3 p_{10}$ | 2.62 | 2.19 |
| 4,596.0963 L | $4 s_{01}$ | $5 p_{11}$ | $1 s_{2}$ | $3 p_{7}$ | 2.65 | 2.20 |
| 4,628.4406L | $4 s_{01}$ | $5 p_{22}$ | $1 s_{2}$ | $3 p_{8}$ | 2.42 |  |
| 4,702.3160 L | $4 s_{01}^{\prime}$ | $5 p_{01}$ | $1 s_{2}$ | $3 p_{10}$ | 2.74 | 2.27 |
| 4,768.6750 B | $4 p_{01}$ | $6 d_{12}^{\prime}$ | $2 p_{10}$ | $6 s_{1}^{\prime \prime}$ | 1.63 |  |
| 4,876.2610 L | $4 p_{01}$ | $7 d_{12}$ | $2 p_{10}$ | $7 d_{3}$ | 1.80 |  |
| 4,887.9478 $B$ | $4 p_{01}$ | $7 d_{01}$ | $2 p_{10}$ | $7 d_{5}$ | 1.77 |  |
| 5,060.0793 B | $4 p_{28}$ | $8 d_{34}$ | $2 p$ | $8 d_{4}$ | 1.65 |  |
| 5,151.3943 B | $4 p_{01}$ | $6 d_{00}$ | $2 p_{10}$ | $6 d_{6}$ | 2.00 |  |

Table 7g-3. The Spectrum of Argon I (Continued)

| $\lambda$ | Classification |  |  |  | Intensities |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  | $\log I_{1}$ | $\log I_{2}$ |
| 5,162.2847 L | $4 p_{01}$ | $6 d_{01}$ | $2 p_{10}$ | $6 d_{5}$ | 2.47 |  |
| 5,187.7467 L | $4 p_{01}$ | $5 d_{12}^{\prime}$ | $2 p_{10}$ | $5 s_{1}^{\prime \prime}$ | 2.53 | 2.01 |
| 5,221.2690 L | $4 p_{23}$ | $7 d_{34}$ | $2 p_{9}$ | $7 d_{4}^{\prime}$ | 2.17 |  |
| 5,252.7857 L | $4 p_{22}$ | $7 d_{33}$ | $2 p_{8}$ | $7{ }^{7}{ }_{4}$ | 1.85 |  |
| 5,373.4951 B | $4 p_{11}$ | $7 d_{22}$ | $2 p_{7}$ | $7 d_{1}^{\prime \prime}$ | 1.45 |  |
| 5,410.4750 B | $4 p_{12}$ | $7 d_{23}$ | $2 p_{6}$ | $7 d_{1}^{\prime}$ | 2.49 |  |
| 5,421.3492 L | $4 p_{23}$ | $88_{12}$ | $2 p_{9}$ | $5 s_{5}$ | 2.00 |  |
| 5,439:9903 B | $4 p_{01}$ | $7 \mathrm{~s}_{11}$ | $2 p_{10}$ | $4 s_{4}$ | 1.67 |  |
| 5,451.6506 L | $4 p_{01}$ | $73_{12}$ | $2 p_{10}$ | $4 s_{5}$ | 2.42 | 2.00 |
| 5,457.4158 B | $4 p_{22}$ | $8 s_{11}$ | $2 p_{8}$ | $5 s_{4}$ | 1.09 |  |
| 5,467.1626 B | $4 p_{22}$ | $8 s_{12}$ | $2 p_{8}$ | $58_{5}$ | 1.28 |  |
| 5,473.455 B | $4 p_{22}$ | $7 s_{01}^{\prime}$ | $2 p_{8}$ | $4 s_{2}$ | 145 |  |
| 5,495.8728 L | $4 p_{23}$ | $6 d_{34}$ | $2 p$ | 6d ${ }_{4}^{\prime}$ | 2.72 | 2.39 |
| 5,506.1105 L | $4 p_{22}$ | $6 d_{33}$ | $2 p_{8}$ | $6 d_{4}$ | 2.00 | 1.98 |
| 5,524.9576 L | $4 p_{23}$ | $5 d_{23}^{\prime}$ | $2 p_{9}$ | $5 s_{1}^{\prime \prime \prime}$ | 1.70 | 1.43 |
| 5,558.7015 L | $4 p_{01}$ | $5 d_{12}$ | $2 p_{10}$ | $5 d_{3}, \ldots$ | 2.84 | 2.48 |
| 5,572.5406 L | $4 p_{22}$ | $5 d_{23}^{\prime}$ | $2 p_{8}$ | $5 s^{\prime \prime \prime}$ | 2.35 | 2.09 |
| 5,588.7213 B | $4 p_{22}$ | $5 d_{22}^{\prime}$ | $2 p_{8}$ |  | 1.55 |  |
| 5,597.4783 B | $4 p_{12}^{\prime}$ | $6 d_{23}^{\prime}$ | $2 p_{3}$ | $6 s_{1}^{\prime \prime \prime}$ | 1.58 |  |
| 5,606.7328 L | $4 p_{01}$ | $5 d_{01}$ | $2 p_{10}$ | $5 d_{5}$ | 2.84 | 2.56 |
| 5,650.7042 L | $4 p_{01}$ | $5 d_{00}$ | $2 p_{10}$ | $5 d_{6}$ | 2.54 | 2.21 |
| 5,659.1278 B | $4 p_{12}$ | $8 s_{12}$ | $2 p_{6}$ | $58_{5}$ | 1.61 |  |
| 5,681.8976 L | $4 p_{12}$ | $6{ }^{6}{ }_{2}$ | $2 p_{6}$ | $6 d_{1}^{\prime}$ | 1.78 | 1.43 |
| 5,739.5191 L | $4 p_{11}$ | $5 d_{22}^{\prime}$ | $2 p_{7}$ | $5 s_{1,}^{\prime \prime \prime}$ | 2.25 | 1.93 |
| 5,772.1143 L | $4 p_{12}$ | $5 d_{23}^{\prime}$ | $2 p_{6}$ | $5 s_{1}^{\prime \prime \prime}$ | 1.83 | 1.71 |
| 5,802.0802 L | $4 p_{12}$ | $6 d_{01}$ | $2 p_{6}$ | $6 d_{5}$ | 1.69 |  |
| 5,834.2640 L | $4 p_{12}$ | $5 d_{12}^{\prime}$ | $2 p_{6}$ | $5 s_{1}^{\prime \prime}$ | 2.01 | 1.75 |
| 5,860.3098 L | $4 p_{01}$ | $68_{01}^{\prime}$ | $2 p_{10}$ | $3 s_{2}$ | 2.19 | 2.05 |
| 5,882.6245 L | $4 p_{01}$ | $68_{00}^{\prime}$ | $2 p_{10}$ | $3 s_{3}$ | 2.41 | 1.98 |
| 5,888.5830 L | $4 p_{23}$ | $78_{12}$ | $2 p$ | $4 s_{5}$ | 2.78 | 2.34 |
| 5,912.0848 L | $4 p_{01}$ | $4 d_{11}^{\prime}$ | $2 p_{10}$ | $4 s_{1}^{\prime}$ | 2.82 | 2.62 |
| 5,928.8119 L | $4 p_{22}$ | $7 s_{11}$ | $2 p_{8}$ | $4 s_{4}$ | 2.43 | 2.17 |
| 5,942.6676 L | $4 p_{22}$ | $7 s_{12}$ | $2 p_{8}$ | $4 s_{5}$ | 1.96 | 1.84 |
| 5,987.3027 B | $4 p_{23}$ | $5 d_{33}$ | $2 p_{9}$ | $5 d_{4}$ | 2.10 1.90 | 1.75 |
| 5,999.0004 $B$ | $4 p_{22}$ | $5 d_{22}$ | $2 p_{8}$ | $5 d_{1}^{\prime \prime}$ | 1.90 |  |
| 6,005.7246 B | $4 p_{12}^{\prime}$ | $8 s_{11}$ | $2 p_{3}$ | $55_{4}$ | 1.33 |  |
| 6,013.6790 B | $4 p_{23}$ | $5 d_{12}$ | $2 p_{9}$ | $5 d_{3}$ | 1.75 |  |
| 6,025.1515 B | $4 p_{12}^{\prime \prime}$ | $7 \mathrm{~s}_{01}^{\prime}$ | $2 p_{3}$ | $4 s_{2}$ | 1.97 |  |
| 6,032.1273 L | $4 p_{23}$ | $5 d_{34}$ | $2 p_{9}$ | $5 d_{4}^{\prime}$ | 3.33 | 2.91 |
| 6,043.2232 L | $4 p_{22}$ | $5 d_{33}$ | $2 p_{8}$ | $5 d_{4}$ | 2.88 | 2.46 |

Table 7g-3. The Spectrum of Argon I (Continued)

| $\boldsymbol{\lambda}$ | Classification |  |  |  | Intensities |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  | $\log I_{1}$ | $\log I_{2}$ |
| 6,052.7230 L | $4 p_{01}$ | $4 d^{\prime}$ | $2 p_{10}$ | $4 s_{1}^{\prime \prime \prime \prime}$ | 2.28 | 1.84 |
| 6,059.3723 L | $4 p_{01}$ | $4 d_{12}^{\prime}$ | $2 p_{10}$ | $4 s_{1}^{\prime \prime}$ | 2.59 | 2.25 |
| 6,098.8046 B | $4 p_{11}$ | $7 s_{11}$ | $2 p_{7}$ | $4 s_{4}$ | 2.10 | 2.05 |
| 6,105.6346 L | $4 p_{11}^{\prime}$ | $5 d_{2}^{\prime}$ | $2 p_{4}$ | $5 s_{1}^{\prime \prime \prime \prime}$ | 2.28 | 2.81 |
| 6,145.4406 L | $4 p_{12}^{\prime}$ | $4 d_{23}^{\prime}$ | $2 p_{3}$ | $5 s_{1}^{\prime \prime \prime}$ | 2.25 | 1.93 |
| 6,155.2393 B | $4 p_{12}$ | $7 s_{11}$ | $2 p_{6}$ | $4 s_{4}$ | 1.93 |  |
|  | $4 p_{11}^{\prime}$ | $5 d_{12}^{\prime}$ | $2 p_{4}$ | $5 s_{1}^{\prime \prime}$ |  |  |
| 6,170.1734L | $4 p_{12}$ | $7 s_{12}$ | $2 p_{6}$ | $4 s_{5}$ | 2.25 |  |
| 6,173.0949 L | $4 p_{11}$ | $5 d_{22}$ | $2 p_{7}$ | $5 d_{1}^{\prime \prime}$ | 2.30 | 2.71 |
| 6,212.5015 L | $4 p_{12}$ | $5 d_{23}$ | $2 p_{6}$ | $5 d_{1}^{\prime}$ | 2.26 | 1.97 |
| 6,215.9423 B | $4 p_{12}^{\prime}$ | $5 d_{12}^{\prime}$ | $2 p_{3}$ | $58_{1}^{\prime \prime}$ | 2.01 |  |
| 6,296.8739 L | $4 p_{01}^{\prime}$ | $5 d_{12}^{\prime}$ | $2 p_{2}$ | $5 s_{1}^{\prime \prime}$ | 2.18 |  |
| 6,307.6561 L | $4 p_{12}$ | $5 d_{12}$ | $2 p_{6}$ | $5 d_{3}$ | 2.36 | 2.09 |
| 6,364.8940 L | $4 p_{11}$ | $5 d_{00}$ | $2 p_{7}$ | $5 d_{6}$ | 1.75 |  |
| 6,369.5756 L | $4 p_{12}$ | $5 d_{01}$ | $2 p_{6}$ | $5 d_{5}$ | 2.05 |  |
| 6,384.7160 L | $4 p_{01}$ | $6 s_{11}$ | $2 p_{10}$ | $3 s_{4}$ | 2.60 | 2.34 |
| 6,416.3064 L | $4 p_{01}$ | $6 s_{12}$ | $2 p_{10}$ | $3 s_{5}$ | 3.36 | 2.87 |
| 6,431.5553 L | $4 p_{22}$ | $6 s_{01}^{\prime}$ | $2 p_{8}$ | $3 s_{2}$ | 1.60 |  |
| 6,466.5498 L | $4 p_{00}$ | $5 d_{11}$ | $2 p_{5}$ | $5 d_{2}$ | 1.64 |  |
| 6,538.1118 L | $4 p_{23}$ | $4 d_{23}^{\prime}$ | $2 p_{9}$ | $4 s_{1}^{\prime \prime \prime}$ | 2.18 |  |
| 6,604.8542 B | $4 p_{22}$ | $4 d_{23}^{\prime}$ | $2 p_{8}$ | $4 s_{1}^{\prime \prime}$ | 2.43 |  |
| 6,660.6784 $B$ | $4 p_{11}$ | $6 s_{01}^{\prime}$ | $2 p_{7}$ | $3 s_{3}$ | 212 |  |
| 6,664.0533 B | $4 p_{22}$ | $4 d_{12}^{\prime}$ | $2 p_{8}$ | $4 s_{1}^{\prime \prime \prime \prime}$ | 2.16 |  |
| 6,677.2812 B | $4 s_{11}$ | $4 p_{00}^{\prime}$ | $1 s_{4}$ | $2 p_{1}$ | 3.40 | 3.01 |
| 6,698.8752 B | $4 p_{12}$ | $6 s_{01}^{\prime}$ | $2 p_{6}$ | $3 s_{2}$ | 1.97 |  |
| 6,719.2193 B | $4 p_{00}$ | $5 d_{01}$ | $2 p_{5}$ | $5 d_{5}$ | 1.92 |  |
| 6,752.8347 B | $4 p_{01}$ | $4 d_{12}$ | $2 p_{10}$ | $4 d_{3}$ | 3.60 | 3.26 |
| $6,766.6134 ~ B$ $6,827.2529$ | $4 p_{12}$ | $4 d_{11}^{\prime}$ | $2 p_{6}$ | $4 s_{1}^{\prime}$ | 2.27 | 3.26 |
| 6,827.2529 B | $4 p_{12}^{\prime}$ | $5 d_{01}$ | $2 p_{3}$ | $5 d_{5}$ | 1.89 |  |
| 6,871.2898 B | $4 p_{01}$ | $4 d_{01}$ | $2 p_{10}$ | $4 d_{5}$ | 3.53 | 3.26 |
| 6,888.1704 B | $4 p_{11}$ | $4 d_{12}^{\prime}$ | $2 p_{7}$ | $4 s_{1}^{\prime \prime}$ | 2.45 |  |
| 6,937.6658 $B$ | $4 p_{01}$ | $4 d_{00}$ | $2 p_{10}$ | $4 d_{6}$ | 3.15 | 2.86 |
| 6,965.4304 B | $4 s_{12}$ | $4 p_{01}^{\prime}$ | $1 s_{5}$ | $2 p_{2}$ | 5.06 | 4.75 |
| 7,030.2519 B | $4 p_{23}$ | $6 s_{12}$ | $2 p_{9}$ | $3 s_{5}$ | 3.57 | 3.19 |
| 7,067.2175 B | $4 s_{12}$ | $4 p_{12}^{\prime}$ | $1 s_{5}$ | $2 p_{3}$ | 5.01 | 4.75 |
| 7,107.4777 B | $4 p_{22}$ | $6 s_{12}$ | $2 p_{8}$ | $3 s_{5}$ | 2.79 |  |
| 7,125.825 B | $4 p_{11}^{\prime}$ | $6 s_{01}^{\prime}$ | $2 p_{4}$ | $3 s_{2}$ | 2.47 |  |
| 7,147.0408 B | $4 s_{12}$ | $4 p_{11}^{\prime}$ | $1 s_{5}$ | $2 p_{4}$ | 4.42 | 3.83 |
| 7,206.9812 $B$ | $4 p_{12}^{\prime}$ | $6 s_{01}^{\prime}$ | $2 p_{3}$ | $3 s_{2}$ | 2.93 |  |
| 7,272.9349 B | $4 s_{11}$ | $4 p_{01}^{\prime}$ | $1 s_{4}$ | $2 p_{2}$ | 4.71 | 4.23 |
| 7,311.724 B | $4 p_{11}$ | $6 s_{11}$ | $2 p_{7}$ | $3 s_{4}$ | 2.89 |  |

Table 7g-3. The Spectrum of Argon I (Continued)

| $\lambda$ | Classification |  |  |  | Intensities |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | System. |  | Paschen |  | $\log I_{1}$ | $\log I_{2}$ |
| 7,353.316 | $4 p_{22}$ | $4 d_{33}$ | $2 p_{8}$ | $4 d_{4}$ | 3.32 |  |
| 7,372.1189 B | $4 p_{23}$ | $4 d_{34}$ | $2 p$ | $4 d_{4}^{\prime}$ | 3.76 | 3.44 |
| 7,383.9796 B | $4 s_{11}$ | $4 p_{12}^{\prime}$ | $1 s_{4}$ | $2 p_{3}$ | 5.02 | 5.03 |
| 7,412.334 B | $4 p_{11}^{\prime}$ | $4 d_{22}^{\prime}$ | $2 p_{4}$ | $4 s_{1}^{\prime \prime \prime \prime}$ | 2.55 |  |
| 7,425.290 B | $4 p_{12}^{\prime \prime}$ | $4 d_{23}^{\prime}$ | $2 p_{3}$ | $4 s_{1}^{\prime \prime \prime}$ | 2.48 |  |
| 7,471.1676 B | $4 s_{11}$ | $4 p_{11}^{\prime}$ | $1 s_{4}$ | $2 p_{4}$ | 2.86 |  |
| 7,503.8685 B | $4 s_{01}^{\prime}$ | $4 p_{00}^{\prime}$ | $1 s_{2}$ | $2 p_{1}$ | 5.35 | 5.28 |
| 7,514.6514 B | $4 s_{11}$ | $4 p_{00}$ | $1 s_{4}$ | $2 p_{5}$ | 5.22 | 5.07 |
| 7,635.1056 B | $4 s_{12}$ | $4 p_{12}$ | $1 s_{5}$ | $2 p_{6}$ | 5.53 | 5.36 |
| 7,723.7599 B | $4 s_{12}$ | $4 p_{11}$ | $1 s_{5}$ | $2 p_{7}$ | 5.44 | 5.19 |
| 7,891.0777 B | $4 p_{12}$ | $4 d_{12}$ | $2 p_{6}$ | $4 d_{3}$ | 3.60 |  |
| 7,948.1755 B | $4 s_{00}^{\prime}$ | $4 p_{11}^{\prime}$ | $1 s_{3}$ | $2 p_{4}$ | 5.13 | 5.13 |
| 8,006.1566 B | $4 s_{11}$ | $4 p_{12}$ | $18_{4}$ | $2 p_{6}$ | 5.23 | 5.06 |
| 8,014.7853 B | $4 s_{12}$ | $4 p_{22}$ | $1 s_{5}$ | $2 p_{8}$ | 5.30 | 5.29 |
| 8,103.6920 B | $4 s_{11}$ | $4 p_{11}$ | $1 s_{4}$ | $2 p_{7}$ | 5.31 | 5.30 |
| 8,115.3108 B | $4 s_{12}$ | $4 p_{23}$ | $1 s_{5}$ | $2 p$ | 5.58 | 5.59 |
| 8,264.5221 B | $4 s_{01}^{\prime}$ | $4 p_{01}^{\prime}$ | $1 s_{2}$ | $2 p_{2}$ | 5.28 | 5.07 |
| 8,408.2094 B | $4 s_{01}^{\prime}$ | $4 p_{12}^{\prime}$ | $1 s_{2}$ | $2 p_{3}$ | 5.36 | 5.35 |
| 8,424.6473 B | $4 s_{11}$ | $4 p_{22}$ | $18_{4}$ | $2 p_{8}$ | 5.35 | 5.48 |
| 8,521.4428 B | $48_{01}^{\prime}$ | $4 p_{11}^{\prime}$ | $1 s_{2}$ | $2 p_{4}$ | 5.18 | 5.09 |
| 8,605.7790 $B$ | $4 p_{12}^{\prime}$ | $4 d_{12}$ | $2 p_{3}$ | $4 d_{3}$ |  |  |
| 8,620.4602 B | $4 p_{00}$ | $4 d_{01}$ | $2 p_{5}$ | $4 d_{5}$ |  |  |
| 8,667.9438 B | $4 s_{00}^{\prime}$ | $4 p_{11}$ | $1 s_{3}$ | $2 p_{7}$ | 4.52 | 4.64 |
| 8,761.6907 B | $4 p_{01}^{\prime}$ | $4 d_{12}$ | $2 p_{2}$ | $4 d_{3}$ |  |  |
| 8,799.082 B | $4 p_{12}^{\prime}$ | $4 d_{01}$ | $2 p_{3}$ | $4 d_{5}$ |  |  |
| 9,122.9660 B | $4 s_{12}$ | $4 p_{01}$ | $1 s_{5}$ | $2 p_{10}$ | $\ldots$ | 5.58 |
| 9,194.637 B | $4 p_{01}$ | $5 s_{00}^{\prime}$ | $2 p_{10}$ | $2 s_{2}$ |  |  |
| 9,224.4955 B | $4 s_{0,1}^{\prime}$ | $4 p_{12}$ | $1 s_{2}$ | $2 p_{6}$ | $\ldots$ | 5.19 |
| 9,354.218 M | $4 s_{01}^{\prime}$ | $4 p_{11}$ | $1 s_{2}$ | $2 p_{7}$ | $\ldots$ | 4.18 |
| 9,657.7841 M | $4 s_{11}$ | $4 p_{01}$ | $1 s_{4}$ | $2 p_{10}$ |  | 5.36 |
| 9,784.5010 M | $4 s_{01}^{\prime}$ | $4 p_{22}$ | $1 s_{2}$ | $2 p_{8}$ |  | 4.72 |
| 10,470.051 M | $4 s_{00}^{\prime}$ | $4 p_{01}$ | $1 s_{3}$ | $2 p_{10}$ |  |  |

Argon Microwave
6.5 mm Pressure

End-on View


Fig. 7g-2. Photoelectric traces of the argon spectrum, microwave discharge at 6.5 mm pressure. Wavelength range is $3,500-10,000 \mathrm{~A}$.





Fig. 7g-2 (Continued)


Fig. 7g-2 (Continued)



Fig. 7g-2 (Continued)
Krypton I. Notation and arrangement of Table $7 \mathrm{~g}-4$ are similar to those of the Tables $7 \mathrm{~g}-2$ and $7 \mathrm{~g}-3$.

## Wavelengths

All values given to 8 significant figures are interferometric values.
$S$, International secondary standard ${ }^{1}$
L, Littlefield, Proc. Roy. Soc. (London), ser. A, 187, 220 (1946)
${ }^{1}$ Trans. Intern. Astron. Union 5, 87 (1935).

Table 7g-4. The Spectrum of Krypton I

| $\lambda$ | Classification |  | $I_{0}$ | $\log I_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4,273.9700 $S$ | $5 s_{12}$ | $6 p_{12}$ | 1,000 | 5.573 |
| 4,282.9683 $S$ | $58_{12}$ | $6 p_{11}$ | 100 | 4.540 |
| 4,286.4873 $S$ | $5 s_{00}^{\prime}$ | $6 p_{01}^{\prime}$ | 40 | 4.039 |
| 4,300.4877 S | $5 s_{00}^{\prime}$ | $6 p_{11}^{\prime}$ | 50 | 3.812 |
| 4,318.5525 S | 5812 | $6 p_{22}$ | 400 |  |
| 4,319.5797 S | $5 s_{12}$ | $6 p_{23}$ | 1,000 | 5.66 |
| 4,351.3607 S | $5 s_{01}^{\prime}$ | $6 p_{00}^{\prime}$ | 1,000 | 3.938 |
| 4,362.6423 $S$ | $5 s_{12}$ | $6 p_{01}$ | 500 | 4.958 |
| 4,376.1220 $S$ | $5 s_{11}$ | $6 p_{00}$ | 800 | 5.208 |
| 4,399.9670 $S$ | $58_{01}$ | $6 p_{12}^{\prime \prime}$ | 200 | 4.430 |
| 4,410.369 | $5 s_{01}^{\prime}$ | $6 p_{01}^{\prime}$ | 50 | 3.440 |
| 4,418.769 | $5 s_{01}^{\prime}$ | $5 f_{22}$ | 50 | 3.391 |
| 4,425.1909 | 5s $5_{01}^{\prime}$ | $6 p_{11}^{\prime}$ | 100 | 3.874 |
| 4,453.9179 S | $5_{5811}$ | $6 p_{12}$ | 600 | 5.027 |
| 4,463.6902 S | $5 s_{11}$ | $6 p_{11}$ | 800 | 5.252 |
| 4,502.3547 S | $5 s_{11}$ | $6 p_{22}$ | 600 | 5.117 |
| 4,550.298 | $5 s_{11}$ | $6 p_{01}$ | 40 | 3.210 |
| 4,812.607 | $5 s_{00}^{\prime}$ | $4 f_{11}$ | 40 | 3.611 |
| 4,969.08 | $5 s_{01}^{\prime}$ | $4 f_{12}$ | 20 | 3.560 |
| 5,490.94 | 5 $p_{01}$ | $7 d_{12}$ | 50 | 3.903 |
| 5,500.71 | $5 p_{01}$ | $7 d_{01}$ | 50 | 3.924 |
| 5,520.52 | $5 p_{23}$ | $8 d_{34}$ | 40 | 3.757 |
| 5,562.2257 S | 5812 | $5 p_{12}^{\prime}$ | 500 | 5.338 |
| 5,570.2895 S | $5 s_{12}$ | $5 p_{01}^{\prime}$ | 2,000 | 5.937 |
| 5,580.3890 L | $58_{01}^{\prime}$ | $6 p_{00}$ | 80 | 4.399 |
| 5,649.5629 S | $5 s_{00}^{\prime}$ | $6 p_{01}$ | 100 | 4.518 |
| 5,672.4514 L | $5 s_{12}$ | $5 p_{11}^{\prime}$ | 50 | 3.993 |
| 5,707.5128 L | $5 s_{01}^{\prime}$ | $6 p_{12}$ | 40 | 3.800 |
| 5,824.50 | $5 p_{22}$ | $7 d_{33}$ | 40 | 4.032 |
| 5,827.07 | $5 p_{01}$ | $8 s_{12}$ | 20 | 3.833 |
| 5,832.8600 L | $5 p_{23}$ | $7 d_{34}$ | 100 | 4.345 |
| $5,866.7514 L$ | $5 s_{01}^{\prime}$ | $6 p_{01}$ | 50 |  |
| 5,870.9158 S | $5 s_{11}$ | $5 p_{12}^{\prime}$ | 3,000 | 6.040 |
| 5,879.9004 L | $5 s_{11}$ | $5 p_{01}^{\prime}$ | 50 | 4.696 |
| 5,993.8503 S | 5s,11 | $5 p_{11}^{\prime \prime}$ | 60 | 4.618 |
| 6,035.82 | $5 p_{11}$ | $7 d_{22}$ | 15 | 3.707 |
| 6,056.1274 L | $5 p_{01}$ | $6 d_{01}$ | 60 | 4.617 |
| 6,075.24 | $5 p_{12}$ | $7 d_{23}$ | 20 | 3.780 |
| 6,082.8630 L | $5 p_{01}$ | $6 d_{00}$ | 40 | 4.292 |

Table 7g-4. The Spectrum of Krypton I (Continued)

| $\lambda$ | Classification |  | $I_{0}$ | $\log I_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 6,151.38 | $5 p_{12}$ | $7 d_{12}$ | 20 | 3.798 |
| 6,222.71 | $5 p_{22}$ | $8 s_{11}$ | 20 | 3.865 |
| 6,236.3520 L | $5 p_{23}$ | $8 s_{12}$ | 30 | 4.140 |
| 6,346.66 | $5 p_{23}$ | $6 d_{23}$ | 20 | 3.795 |
| 6,373.58 | $5 p_{22}$ | $6 d_{22}$ | 30 | 4.027 |
| 6,421.0285 L | $5 p_{22}$ | $6 d_{33}$ | 100 | 4.900 |
| 6,456.2910 L | $5 p_{23}$ | $6 d_{34}$ | 200 | 5.103 |
| 6,576.42 | $5 p_{12}$ | $8 s_{12}$ | 20 | 3.799 |
| 6,652.24 | $5 p_{11}$ | $6 d_{22}$ | 40 | 4.351 |
| 6,699.23 | $5 p_{12}$ | $6 d_{23}$ | 60 | 4.474 |
| 6,740.10 | $5 p_{11}$ | $6 d_{12}$ | 20 | 3.75 |
| 6,813.10 | $5 p_{12}$ | $6 d_{12}$ | 50 | 4.466 |
| 6,846.40 | $5 p_{01}$ | $7 s_{11}$ | 20 | 3.83 |
| 6,869.63 | $5 p_{12}$ | $6 d_{01}$ | 20 | 4.025 |
| 6,904.68 | $5 p_{01}$ | $7 s_{12}$ | 100 | 5.029 |
| 7,224.109 | $5 p_{01}$ | $5 d_{12}$ | 100 | 5.090 |
| 7,287.262 | $5 p_{01}$ | $6 s_{01}^{\prime}$ | 80 | 4.966 |
| 7,425.54 | $5 p_{22}$ | $7 s_{11}$ | 60 | 4.707 |
| 7,486.850 | $\begin{aligned} & 5 p_{01} \\ & 5 p_{23} \end{aligned}$ | $\left.\begin{array}{l} 6 s_{00}^{\prime} \\ 7 s_{12} \end{array}\right\}$ | 100 | 5.119 |
| 7,493.58 | $5 p_{22}$ | $5 d_{11}$ |  | 4.692 |
| 7,494.15 | $5 p_{22}$ | $78_{12}$ | 30) |  |
| 7,587.4135 | $58_{11}$ | $5 p_{00}$ | 1,000 | 6.357 |
| 7,601.5465 | $5 s_{12}$ | $5 p_{12}$ | 2,000 | 6.908 |
| 7,685.2472 | $5 s_{01}^{\prime}$ | $5 p_{00}^{\prime}$ | 1,000 | 6.369 |
| 7,694.5401 | $5 s_{12}$ | $5 p_{11}$ | 1,200 | 6.507 |
| 7,741.39 | $5 p_{23}$ | $5 d_{23}$ | 40 | 4.340 |
| 7,746.831 | $5 p_{01}$ | $5 d_{00}$ | 150 | 5.317 |
| 7,776.28 | $5 p_{22}$ | $5 d_{22}$ | 40 | 4.509 |
| 7,806.52 | $5 p_{11}$ | $7 s_{11}$ | 50 | 4.536 |
| 7,854.823 | $5 s_{00}^{\prime}$ | $5 p_{01}^{\prime}$ | 800 | 6.448 |
| 7,863.91 | $5 p_{23}$ | $5 d_{12}$ | 20 | 4.250 |
| 7,881.76 | $5 p_{11}$ | $5 d_{11}$ | 30 | 4.318 |
| 7,904.62 | $5 p_{12}$ | $7 s_{11}$ | 30 | 4.17 |
| 7,913.443 | $5 p_{01}$ | $5 d_{01}$ | 200 | 5.536 |
| 7,920.47 | $5 p_{23}$ | $5 d_{33}$ | 40 | 4.38 |
| 7,928.602 | $5 p_{22}$ | $5 d_{33}$ | 180 | 5.458 |
| 7,946.99 | $5 p_{22}$ | $6 s_{01}^{\prime}$ | 20 | 4.05 |
| 7,982.42 | $5 p_{12}$ | $7 s_{12}$ | 100 | 4.826 |
| 8,059.5053 | $5 s_{00}^{\prime}$ | $5 p_{11}^{\prime}$ | 1,500 | 6.422 |
| 8,104.3660 | $5 s_{12}$ | $5 p_{22}$ | 4,000 | 6.813 |

Table 7g-4. The Spectrum of Krypton I (Continued)

| $\boldsymbol{\lambda}$ | Classification |  | $I_{0}$ | $\log I_{1}$ |
| :---: | :---: | :---: | :---: | :---: |
| 8,112.9023 | $5 s_{12}$ | $5 p_{23}$ | 6,000 | 6.994 |
| 8,190.0570 | $5 s_{11}$ | $5 p_{12}$ | 3,000 | 6.682 |
| 8,218.40 | $4 d_{12}$ | $6 f_{22}$ | 80 | 3.99 |
| 8,263.2412 | $5 s_{01}^{\prime}$ | $5 p_{12}^{\prime}$ | 3,000 | 6.764 |
| 8,272.36 | $5 p_{12}$ | $5 d_{23}$ | 100 | 5.171 |
| 8,281.05 | $5 s_{01}^{\prime}$ | $5 p_{01}^{\prime}$ | 1,500 | 6.450 |
| 8,298.1091 | $5 s_{11}$ | $5 p_{11}$ | 5,000 | 6.857 |
| 8,412.45 | $5 p_{10}$ | $5 d_{12}$ | 100 | 4.746 |
| 8,498.21 | $5 p_{10}$ | $6 s_{01}^{\prime}$ | 30 | 4.16 |
| 8,508.8736 | $5 s_{01}^{\prime}$ | $5 p_{11}^{\prime}$ | 3,000 | 6.537 |
| 8,537.93 | $4 d_{00}$ | $5 f_{11}$ | 40 | 4.17 |
| 8,560.89 | $5 p_{00}$ | $7 s_{11}$ | 50 | 4.22 |
| 8,569.02 | $4 d_{00}$ | $6 p_{11}^{\prime}$ | 20 | 3.85 |
| 8,605.85 | $4 d_{33}$ | $6 f_{45}$ | 40 | 4.16 |
| 8,697.50 | $5 p_{22}$ | $5 d_{01}$ | 40 | 4.341 |
| 8,755. 20 | $4 d_{01}$ | $5 f_{22}$ | 30 | 4.13 |
| 8,764.09 | $5 p_{23}$ | $4 d_{23}^{\prime}$ | 150 | 5.149 |
| 8,776.7498 | $5 s_{11}$ | $5 p_{22}$ | 6,000 | 6.941 |
| 8,805.78 | $4 d_{01}$ | $6 p_{11}^{\prime}$ | 20 | 3.78 |
| 8,928.6934 | $5 s_{12}$ | $5 p_{01}$ | 2,000 | 6.893 |
| 8,967.53 | $5 p_{23}$ | $4 d_{22}^{\prime}$ | 10 | 3.95 |
| 8,977.99 | $5 p_{22}$ | $4 d_{22}^{\prime}$ | 50 | 4.925 |
| 8,999.19 | $5 p_{11}$ | $5 d_{00}$ | 30 | 4.528 |
| 9,094.33 | $4 d_{22}$ | $6 f_{3}$ | $4 h$ | 3.94 |
| 9,111.69 | $5 p_{23}$ | $4 d_{12}^{\prime}$ | 20 | 4.27 |
| 9,122.49 | $5 p_{22}$ | $4 d_{12}^{\prime}$ | 20 | 4.32 |
| 9,243.54 | $\ldots$ | . . . | 30 | 4.783 |
| 9,270.96 | $4 d_{12}$ | $5 f_{12}$ | 10 | 4.38 |
| 9,326.03 | $4 d_{34}$ | $5 f_{3}$ | 10 | 4.17 |
| 9,352.23 | $4 d_{34}$ | $5 f_{4}$ | 100 | 5.122 |
| 9,362.03 | $5 p_{12}$ | $5 d_{01}$ | 100 | 5.181 |
| 9,450.88 | $5 p_{12}$ | $4 d_{23}^{\prime}$ | 20 | 4.44 |
| 9,540.89 | $5 p_{11}$ | $4 d_{2}^{\prime}$ | 30 | 4.72 |
| 9,687. 83 | $5 p_{12}$ | $4 d_{22}^{\prime}$ | 10 | 4.06 |
| 9,704.22 | $5 p_{11}$ | $4 d_{12}^{\prime}$ | 50 | 5.00 |
| 9,714.85 | $4 d_{33}$ | $5 f_{3}$ | 15 | 2.26 |
| 9,743.11 | $4 d_{33}$ | $5 f_{44}$ | 50 | 4.990 |
| 9,751.74 | $5 s_{11}$ | $5 p_{01}$ | 2,000 | 6.545 |
| 9,856.24 | $5 p_{12}$ | $4 d_{12}^{\prime}$ | 500 | 5.677 |
| 11,819.43 | $5 p_{01}$ | $6 s_{12}$ | 2,000 |  |

## 7-70

Table 7g-4. The Spectrum of Krypton I (Continued)

| $\lambda$ | Classification |  | $I_{0}$ | $\log I_{1}$ |
| :---: | :---: | :---: | ---: | ---: |
|  |  |  |  |  |
| $12,204.39$ | $4 d_{34}$ | $4 f_{45}$ | 700 |  |
| $12,879.00$ | $4 d_{33}$ | $4 f_{44}$ | 500 |  |
| $13,177.38$ | $5 p_{22}$ | $6 s_{11}$ | 850 |  |
| $13,622.28$ | $5 p_{22}$ | $4 d_{11}$ | 800 |  |
| $13,634.22$ | $5 p_{23}$ | $6 s_{12}$ | 1,700 |  |
|  |  |  |  |  |
| $14,426.93$ | $5 p_{11}$ | $6 s_{11}$ | 1,100 |  |
| $14,734.46$ | $5 p_{23}$ | $4 d_{23}$ | 900 |  |
| $15,239.85$ | $5 p_{22}$ | $4 d_{22}$ | 900 |  |
| $15,335.29$ | $5 p_{01}$ | $4 d_{12}$ | 850 |  |
| $16,784.65$ | $5 p_{12}$ | $4 d_{23}$ | 950 |  |
|  |  |  |  |  |
| $16,890.40$ | $5 p_{22}$ | $4 d_{33}$ | 1,000 |  |
| $16,896.58$ | $5 p_{01}$ | $4 d_{01}$ | 700 |  |
| $16,935.71$ | $5 p_{11}$ | $4 d_{22}$ | 800 |  |
| $18,167.12$ | $5 p_{23}$ | $4 d_{34}$ | 1,500 |  |

Wavelengths not followed by a capital letter and all $I_{0}$ values are taken from the three following sources:

4,273 to 7,601 A: Meggers, deBruin, and Humphreys, J. Research Natl. Bur. Standards 7, 643 (1931)
7,685 to 9,856 A: Meggers and Humphreys, J. Research Natl. Bur. Standards 10, 443 (1933)
11,792 to 18,167 A: Humphreys and Kostkowski, J. Research Natl. Bur. Standards 49, 73 (1952)
$I_{1}$, intensity in a microwave discharge at 1.6 mm pressure. This is approximately the vapor pressure of krypton at the temperature of liquid nitrogen $\left(77^{\circ} \mathrm{K}\right)$. Immersing a discharge tube with krypton at a room-temperature pressure of more than 7 mm in liquid nitrogen will keep the pressure very steady at about 1.6 mm and therefore will produce very constant intensities.


Fig. $\mathbf{7 g}-3$. Photoelectric traces of the krypton spectrum, microwave discharge at 1.6 mm pressure. Wavelength range is $3,500-10,000 \mathrm{~A}$.



Fig. 7g-3 (Continued)




Fig. 7g-3 (Continued)





Xenon I. Wavelengths in Table 7g-5 are from Humphreys and Meggers ${ }^{1}$ and Humphreys and Kostkowski ${ }^{2}$ (above 11,000 A). Notation is the same as for Ne I and A 1.

Intensities are as follows: $I_{0}$, conventional estimates quoted from the literature; $I_{1}$, microwave discharge, pressure of $0.002 \mathrm{~mm} ; I_{2}$, same, $p=0.07 \mathrm{~mm} ; I_{3}$, same, $p=16 \mathrm{~mm} ; I_{4}$, d-c glow discharge, $p=4.1 \mathrm{~mm} .^{3}$

For significance of the intensity scale, see Table $7 \mathrm{~g}-2$.
${ }^{1}$ C. V. Humphreys and W. F. Meggers, J. Research Natl. Bur. Standards 10, 139 (1933).
${ }^{2}$ Humphreys and Kostkowski, J. Research Natl. Bur. Standards 49, 73 (1952).
${ }^{3}$ The $I_{1}$ to $I_{4}$ intensities were measured by M. Thekaekara, S.J.

IMPORTANT ATOMIC SPECTRA
Table 7g-5. The Spectrum of Xenon I

| Wavelength | Classification |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,685.90 | $6 s_{12}$ | $9 p_{12}$ | 40 |  |  |  |  |
| 3,693.49 | $6 s_{12}$ | $9 p_{23}$ | 40 |  |  |  |  |
| 3,745.38 | $6 s_{11}$ | $6 f_{12}$ | 10 |  |  |  |  |
| 3,796.30 | $6 s_{12}$ | $5 f_{23}$ | 40 |  |  |  |  |
| 3,948.163 | $6 s_{11}$ | $5 f_{12}$ | 60 | 3.06 | 3.70 | 2.89 | 2.32 |
| 3,950.925 | $6 s_{12}$ | $8 p_{12}$ | 120 | 3.86 | 4.55 | 3.62 | 3.21 |
| 3,967. 541 | $6 s_{12}$ | $8 p_{23}$ | 200 | 3.94 | 4.66 | 3.74 | 3.34 |
| 3,974.417 | $6 s_{12}$ | $8 p_{22}$ | 40 | 3.02 | 3.70 | 2.71 | 2.34 |
| 3,985.202 | $6 s_{12}$ | $8 p_{01}$ | 30 | 2.91 | 3.60 | 2.65 | 2.26 |
| 4,078.8207 | $6 s_{11}$ | $8 p_{00}$ | 100 | 4.06 | 4.32 | 3.40 | 2.76 |
| 4,109.7093 | $6 s_{11}$ | $8 p_{12}$ | 60 | 3.33 | 4.00 | 3.05 | 2.66 |
| 4,116.1151 | $6 s_{11}$ | $8 p_{11}$ | 80 | 3.56 | 4.17 | 3.23 | 2.71 |
| 4,135. 1337 | $6 s_{11}$ | $8 p_{22}$ | 20 | 2.66 | 3.31 |  |  |
| 4,193.5296 | $6 s_{12}$ | $4 f_{23}$ | 150 | 3.62 | 4.51 | 3.54 | 3.25 |
| 4,203.6945 | $6 s_{12}$ | $4 f_{12}$ | 50 | 2.91 | 4.01 | 3.54 | 3.25 |
| 4,205.404 | $6 s_{12}$ | $4 f_{11}$ | 10 |  | 3.02 |  |  |
| 4,372.287 | $6 s_{11}$ | $4 f_{22}$ | 20 |  | 3.02 |  |  |
| 4,383.9092 | $6 s_{11}$ | $4 f_{12}$ | 100 | 3.08 | 4.13 | 3.12 | 2.83 |
| 4,385.7693 | $6 s_{11}$ | $4 f_{11}$ | 70 |  | 2.80 | 2.82 | 2.55 |
| 4,500.9772 | $6 s_{12}$ | $6 p_{01}^{\prime}$ | 500 | 4.06 | 5.13 | 4.23 | 2.98 |
| $4,524.6805$ $4,582.7474$ | $6 s_{12}$ | $6 p_{12}^{\prime}$ | 400 | 3.97 | 4.85 | 3.96 | 3.64 |
| $4,582.7474$ $4,611.8896$ | $6 s_{11}$ | $6 p_{00}^{\prime}$ | 300 | 4.16 | 4.66 | 3.68 | 3.42 |
| 4,611.8896 | $6 s_{12}$ | $7 p_{11}$ | 100 | 2.86 | 3.86 | 2.84 | 2.61 |
| 4,624.2757 | $6 s_{12}$ | $7 p_{12}$ | 1,000 | 4.76 | 5.61 | 4.72 | 4.44 |
| 4,671.226 | $6 s_{12}$ | $7 p_{23}$ | 2,000 | 4.98 | 5.81 | 4.99 | 4.70 |
| 4,690.9711 | $6 s_{12}$ | $6 p_{11}^{\prime}$ | 100 | 3.29 | 4.46 | 3.43 | 3.25 |
| $4,697.020$ $4,734.1524$ | $6 s_{12}$ | ${ }^{7} p_{22}$ | 300 | 4.21 | 5.17 | 4.13 | 3.92 |
| $4,734.1524$ $4,792.6192$ | $6 s_{11}$ | $6 p_{12}^{\prime}$ | 600 | 4.25 | 5.27 | 4.39 | 4.10 |
| 4,792.6192 | $6 s_{12}$ | $7 p_{01}$ | 150 | 3.48 | 4.32 | 3.29 | 3.12 |
| 4,807.019 | $6 s_{11}$ | $7 p_{00}$ | 500 | 4.52 | 5.31 | 4.35 | 3.12 4.12 |
| 4,829.709 | $6 s_{11}$ | $7 p_{11}$ | 400 | 4.27 | 5.19 | 4.21 | 3.97 |
| 4,843.294 | $6 s_{11}$ | $7 p_{12}$ | 300 | 4.50 | 5.06 | 4.07 | 3.84 |
| 4,916.508 | $6 s_{11}$ | $6 p_{11}^{\prime}$ | 500 | 4.04 | 5.15 | 4.16 | 3.95 |
| 4,923.1522 | $6 s_{11}$ | $7 p_{22}$ | 500 | 4.30 | 5.22 | 4.21 | 3.99 |
| 5,028.2796 | $6 s_{11}$ | $7 p_{01}$ | 200 | 3.54 | 4.52 | 3.42 | 3.95 3.25 |
| 5,162.711 | $6 s_{00}^{\prime}$ | $7 f_{11}$ | 10 | 2.86 | 3.30 | 3.12 |  |
| 5,362.244 | $6 p_{01}$ | $10 d_{01}$ | 15 |  |  |  |  |
| 5,364.626 | $6 p_{01}$ | $10 d_{12}$ | $30\}$ | 2.97 | 3.24 | 3.20 |  |
| 5,392.795 | $6 s_{00}^{\prime}$ |  |  |  |  |  |  |
| 5,394.738 | $6 p_{01}$ | $7 s_{01}^{\prime}$ | 20\} | 3.31 | 3.86 | 3.35 | 2.46 |

Table 7g-5. The Spectrum of Xenon I (Continued)

| Wavelength | Classification |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5,439.923 | $6 s_{01}^{\prime}$ | $7 f_{12}$ | 30 | 3.65 | 3.49 | 3.21 | 2.03 |
| 5,460.037 | $6 p_{01}$ | $11 s_{12}$ | 15 | 3.23 | 3.12 | 2.81 |  |
| 5,488.555 | $6 p_{22}$ | $11 d_{33}$ | $20 h$ | 2.85 | 3.22 | 3.56 |  |
| 5,552.385 | $6 p_{01}$ | $9 d_{12}$ | 80 | 3.32 | 3.78 | 3.48 | 2.42 |
| 5,566.615 | $6 p_{01}$ | $9 d_{01}$ | 100 | 3.41 | 3.86 | 3.52 | 2.10 |
| 5,581.784 | $6 p_{01}$ | $9 d_{00}$ | 50 | 3.13 | 3.53 | 3.52 |  |
| 5,618.878 | $6 p_{22}$ | $10 d_{33}$ | 80 | 3.21 | 3.60 | 3.61 | 2.21 |
| 5,688.373 | $6 s_{01}^{\prime}$ | $6 f_{22}$ | 40 | 2.97 | 3.41 | 2.84 |  |
| 5,695.750 | $6 s_{01}^{\prime}$ | $6 f_{12}$ | $\left.\begin{array}{r}100 \\ 80\end{array}\right\}$ | 3.61 | 4.06 | 3.50 | 2.62 |
| 5,696.479 | $6 s_{01}^{\prime}$ | $6 f_{11}$ | 80 ) | 3.61 |  |  |  |
| 5,715.716 | $6 p_{01}$ | $10 s_{12}$ | $\left.\begin{array}{l}70 \\ 80\end{array}\right\}$ | 3.56 | 4.00 | 3.83 | 2.57 |
| 5,716.252 | $6 p_{23}$ | $10 d_{34}$ | $80\}$ |  |  |  |  |
| 5,807.311 | $6 p_{22}$ | $9 d_{23}$ | 15 | 2.39 | 2.93 | 2.67 |  |
| 5,814.505 | $6 p_{22}$ | $9 d_{22}$ | 60 | 3.16 | 3.58 | 3.31 | 2.16 |
| 5,823.890 | $6 s_{00}^{\prime}$ | $5 f_{11}$ | 300 | 3.96 | 4.65 | 4.08 | 3.23 |
| 5,824.800 | $6 p_{22}$ | $9 d_{33}$ | 150 |  |  |  |  |
| 5-,856.509 | $6 p_{01}$ | $8 d_{22}$ | 15 | 2.61 | 3.21 | 2.81 |  |
| 5,875.018 | $6 p_{01}$ | $8 d_{12}$ | 100 | 4.03 | 5.41 | 3.77 | 2.98 |
| 5,894.988 | $6 p_{01}$ | $8 d_{01}$ | 100 | 3.92 | 4.44 | 3.85 | 3.02 |
| 5,904.462 | $6 p_{23}$ | $9 d_{23}$ | 20 | 3.15 | 3.42 . | 3.16 |  |
| 5,922.550 | $6 p_{23}$ | $9 d_{33}$ | 20 | 3.02 | 3.52 | 3.23 |  |
| 5,931. 241 | $6 p_{01}$ | $8 d_{00}$ | 80 | 3.83 | 4.32 | 4.05 | 2.95 |
| 5,934.172 | $6 p_{23}$ | $9 d_{34}$ | $100\}$ | 3.83 |  |  |  |
| 5,974.152 | $6 p_{12}$ | $10 d_{23}$ | 40 | 3.50 | 3.42 | 3.57 |  |
| 5,989.18 | $6 p_{12}$ | $10 d_{12}$ | 20 | 2.90 | 3.19 | 3.17 |  |
| 5,998.115 | $6 p_{22}$ | $10 s_{11}$ | 30 | 3.17 | 3.51 | 3.12 |  |
| 6,007.909 | $6 p_{22}$ | $10 s_{12}$ | 15 | 2.87 | 3.20 | 2.79 |  |
| 6,111.759 | $6 p_{11}$ | $9 d_{22}$ | 30 | 3.63 |  | 3.72 | 2.56 |
| 6,111.951 | $6 p_{23}$ | $10 s_{12}$ | 40 \} | 3.63 |  |  |  |
| 6,152.069 | $6 p_{22}$ | $8 d_{23}$ | 20 |  | 3.46 |  |  |
| 6,163.660 | $6 p_{22}$ | $8 d_{22}$ | $\left.\begin{array}{l}90 \\ 80\end{array}\right\}$ | 3.95 |  | 3.85 | 3.07 |
| 6,163.935 | $6 s_{01}^{\prime}$ | $5 f_{22}$ | 80\} | 3.95 |  |  |  |
| 6,178.302 | $6 s_{01}^{\prime}$ | $5 f_{12}$ | 150 | 3.99 |  | 3.95 | 3.28 |
| 6,179.665 | $6 s_{01}^{\prime}$ | $5 f_{11}$ | $120\}$ |  |  |  |  |
| 6,182.420 | $6 p_{22}$ | $8 d_{33}$ | 300 | 4.19 |  | 4.19 | 3.42 |
| 6,189.10 | $6 p_{01}$ | $9 s_{11}$ | 20 | 2.89 | 3.43 | 3.16 |  |
| 6,198.260 | $6 p_{01}$ | $9 s_{12}$ | $100\}$ | 3.72 | 3.64 | 3.72 | 3.01 |
| 6,200.890 | $6 p_{12}$ | $9 d_{23}$ | 60 |  |  |  |  |
| 6,206. 297 | $6 p_{22}$ | $8 d_{01}$ | 20 | 3.18 |  | 3.27 |  |
| 6,224.169 | $6 p_{12}$ | $9 d_{12}$ | 40 |  | 3.67 | 3.39 |  |

Table 7g-5. The Spectrum of Xenon I (Continued)

| Wavelength | Classification |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6,261.212 | $6 p_{23}$ | $8 d_{23}$ | 50 | 3.39 | 4.03 | 3.45 |  |
| 6,265.301 | $6 s_{00}^{\prime}$ | $8 p_{01}$ | 40 | 3.18 | 3.87 | 2.96 |  |
| 6,286.011 | $5 d_{34}$. | $8 f_{45}$ | 100 | 3.34 | 3.82 | 3.84 |  |
| 6,292.649 | $6 p_{23}$ | $8 d_{33}$ | 50 | 3.43 | 4.06 | 3.47 |  |
| 6,318.062 | $6 p_{23}$ | $8 d_{34}$ | 500 | 4.34 | 4.93 | 4.42 | 3.66 |
| 6,430.155 | $6 p_{12}$ | $10 s_{12}$ | 20 | . . . | 3.44 |  |  |
| 6,469.705 | $6 p_{01}$ | $7 d_{12}$ | 300 | 4.15 | 4.92 | 4.05 | 3.56 |
| 6,472.841 | $6 p_{01}$ | $7 d_{11}$ | 150 | 3.92 | 4.57 | 3.70 | 3.20 |
| 6,487.765 | $6 p_{01}$ | $7 d_{22}$ | 120 | 3.90 | 4.59 | 3.72 | 3.22 |
| 6,497.43 | $5 d_{34}$ | $7 f_{33}$ | 30 hl |  |  |  |  |
| 6,498.718 | $6 p_{11}$ | $8 d_{22}$ | 100 | 3.90 | 4.44 | 3.89 | 3.09 |
| 6,504.18 | $6 s_{01}^{\prime}$ | $8 p_{00}$ | $200 h$ | 3.82 | 4.37 | 4.16 | 3.05 |
| 6,521.508 | $6 p_{11}$ | $8 d_{12}$ | 40 | 3.30 | 3.88 | 3.25 |  |
| 6,533.159 | $6 p_{22}$ | $9 s_{11}$ | 100 |  | 4.32 | 3.56 |  |
| 6,543.360 | $6 p_{22}$ | $9 s_{12}$ | 40 | 3.78 | 3.95 |  |  |
| 6,554.196 | $5 d_{12}$ | $7 f_{23}$ | 50hl | 3.54 | 4.02 | 3.78 |  |
| 6,595.561 | $6 p_{12}$ | $8 d_{23}$ | 100 | 4.08 | 4.61 | 4.05 | 3.20 |
| 6,632.464 | $6 p_{12}$ | $8 d_{12}$ | 50 | 3.76 | 4.32 | 3.73 |  |
| 6,666.965 | $6 p_{23}$ | $9 s_{12}$ |  |  |  |  |  |
| 6,668.920 | $6 p_{01}$ | $7 d_{00}$ | 150\} | 4.26 | 5.03 | 4.19 | 3.69 |
| 6,678.972 | $6 s_{01}^{\prime}$ | $8 p_{01}$ | 25 | 3.49 | 4.12 |  |  |
| 6,681.036 | $5 d_{00}$ | $6 f_{11}$ | 20 |  |  |  |  |
| 6,728.008 | $6 p_{01}$ | $7 d_{01}$ | 200 | 4.48 | 5.22 | 4.34 | 3.85 |
| 6,777.57 | $5 d_{01}$ | $6 f_{12}$ | 50 |  |  |  |  |
| 6,778.60 | $5 d_{01}$ | $6 f_{11}$ | 40 \} | 3.86 | 4.32 | 3.85 | 2.96 |
| 6,827.315 | $6 s_{00}^{\prime}$ | $4 f_{11}$ | 200 | 3.91 | 4.12 | 4.27 | 3.83 |
| 6,846.613 | $6 p_{22}$ | $7 d_{12}$ | 60 | 3.95 | 4.72 | 4.03 | 3.45 |
| 6,866.838 | $6 p_{22}$ | $7 d_{22}$ | 50 | 3.87 | 4.56 |  |  |
| 6,872.107 | $5 d_{34}$ | $6 f_{45}$ | 100 | 4.19 | 4.84 | 4.52 | 3.58 |
| 6,882. 155 | $6 p_{22}$ | $7 d_{33}$ | 300 | 4.77 | 5.41 | 4.68 | 4.14 |
| 6,925.53 | $5 d_{12}$ | $6 f_{23}$ | 100 | 3.97 | 4.51 | 3.88 | 3.25 |
| 6,976.182 | $6 p_{23}$ | $7 d_{23}$ | 100 | 4.07 | 4.93 | 3.99 | 3.52 |
| 7,119.598 | $6 p_{23}$ | $7 d_{34}$ | 500 | 4.91 | 5.62 | 4.92 | 4.43 |
| 7,257.94 | $5 d_{33}$ | $6 f_{44}$ | 60 | 4.07 | 4.73 | 4.07 | 3.39 |
| 7,262.54 | $6 p_{11}$ | $7 d_{12}$ | 20 | 4.02 | 4.70 | 3.83 | 3.26 |
| 7,266.49 | $6 p_{11}$ | $7 d_{11}$ | 25 |  | 4.60 |  |  |
| 7,283.961 | $6 s_{01}^{\prime}$ | $4 f_{22}$ | 40 |  |  |  |  |
| 7,285.301 | $6 p_{11}$ | $7 d_{22}$ | $60\}$ | 4.61 | 5.33 | 4.50 | 4.00 |
| 7,316.272 | $6 s_{01}^{\prime}$ | $4 f_{12}$ | 70 | 4.09 | $5.07$ | 4.35 | 3.83 |
| 7,321.452 | $6 s_{01}^{\prime}$ | $4 f_{11}$ | 80 |  | 5.00 |  |  |

Table 7g-5. The Spectrum of Xenon I (Continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Wavelength \& \multicolumn{2}{|l|}{Classification} \& $I_{0}$ \& $\log I_{1}$ \& $\log I_{2}$ \& $\log I_{3}$ \& $\log I_{4}$ <br>
\hline 7,336.480 \& $6 p_{22}$ \& $5 d_{23}^{\prime}$ \& 50 \& 4.57 \& 5.02 \& 3.97 \& 3.56 <br>
\hline 7,355.58 \& $5 d_{00}$ \& $5 f_{11}$ \& 40 \& 3.80 \& 5.63 \& 3.79 \& 3.26 <br>
\hline 7,386.002 \& $6 p_{01}$ \& $8 s_{12}$ \& 100 \& 4.26 \& 5.16 \& 4.27 \& 3.85 <br>
\hline 7,393.793 \& $6 p_{12}$ \& $7 d_{23}$ \& 150 \& 4.49 \& 5.30 \& 4.46 \& 3.96 <br>
\hline 7,400.41 \& $6 p_{12}$ \& $7 d_{12}$ \& 30 \& 4.05 \& 4.80 \& 3.89 \& 3.46 <br>
\hline 7,451.00 \& $5 d_{01}$ \& $5 f_{22}$ \& 25 \& 3.69 \& 4.46 \& \& 3.05 <br>
\hline 7,472.01 \& $5 d_{01}$ \& $5 f_{12}$ \& 40 \& 4.37 \& 4.94 \& 4.19 \& 3.65 <br>
\hline 7,474.01 \& $5 d_{01}$ \& $5 f_{11}$ \& 25 \& \& \& \& <br>
\hline 7,492.23 \& $6 p_{23}$ \& $5 d_{23}^{\prime}$ \& 20 \& 4.18 \& 4.65 \& 3.64 \& 3.27 <br>
\hline 7,559.79 \& $5 d_{34}$ \& $5 f_{33}$ \& 40 \& 3.76 \& 4.72 \& 3.88 \& 3.35 <br>
\hline 7,584.680 \& $5 d_{34}$ \& $5 f_{4,}$ \& 200 \& 4.59 \& 5.42 \& 4.86 \& 4.28 <br>
\hline 7,642.025 \& $6 s_{00}^{\prime}$ \& $6 p_{01}^{\prime}$ \& $\left.\begin{array}{l}500 \\ 100\end{array}\right\}$ \& 4.98 \& 5.92 \& 5.36 \& 4.88 <br>
\hline 7,643.91 \& $5 d_{12}$ \& $5 f_{33}$ \& 100 ) \& \& \& \& <br>
\hline 7,664.56 \& $5 d_{12}$ \& $5 f_{12}$ \& 30 \& 4.26 \& 4.83 \& 4.00 \& 3.47
3.17 <br>
\hline 7,740.31 \& $6 p_{12}$ \& $7 d_{01}$ \& 40 \& 3.87 \& 4.59 \& 3.67 \& 3.17 <br>
\hline 7,783.66 \& $5 d_{22}$ \& $6 f_{33}$ \& 50 \& 3.90 \& 4.55 \& 3.84 \& 3.17 <br>
\hline 7,802.651 \& $6 p_{22}$ \& $8 s_{11}$ \& 100 \& 4.31 \& 5.19 \& 4.33 \& 3.89 <br>
\hline 7,881.320 \& $6 p_{22}$ \& $8 s_{12}$ \& 100 \& \& 4.73 \& \& 3.45 <br>
\hline 7,887.395 \& $6 s_{01}^{\prime}$ \& $6 p_{00}^{\prime}$ \& 300 \& 5.20 \& 5.66 \& 4.90 \& 4.45 <br>
\hline 7,937.41 \& $6 p_{00}$ \& $7 d_{11}$ \& 40 \& 3.75 \& 4.42 \& 3.50 \& 3.05 <br>
\hline 7,967.341 \& $6 s_{00}^{\prime}$ \& $7 p_{11}$ \& 500 \& 4.82
3.95 \& 5.45
4.85 \& 4.97
3.79 \& 4.53
3.46 <br>
\hline 8,029.67 \& $5 d_{33}$ \& $5 f_{33}$ \& 100 \& 3.95 \& 4.85 \& 3.79 \& 3.46
4.10 <br>
\hline 8,057.258 \& $5 d_{33}$ \& $5 f_{44}$ \& 200 \& 4.55 \& 5.33 \& 4.67 \& 4.10 <br>
\hline 8,061.340 \& $6 p_{23}$ \& $8 s_{12}$ \& 150 \& 4.53 \& 5.38 \& 4.55 \& 4.12 <br>
\hline 8,101.98 \& $5 d_{23}$ \& $6 f_{33}$ \& 100 \& 3.92 \& 4.71 \& 3.93 \& 3.25 <br>
\hline 8,171.02 \& $5 d_{01}$ \& $8 p_{22}$ \& 100 \& 4.52
4.85 \& 4.97
6.01 \& 4.01
5.20 \& 3.55
4.85 <br>
\hline 8,206.341 \& $6 s_{00}^{\prime}$ \& $6 p_{11}^{\prime}$ \& 700
10,000 \& 4.85 \& 6.01 \& 5.20
6.87 \& 4.85
6.37 <br>
\hline 8,231.6348 \& $6 s_{12}$ \& $6 p_{12}$

$p^{\prime}$ \& 10,000
500 \& 5.66
4.75 \& 7.16
5.93 \& 6.87
5.20 \& 6.37
4.72 <br>
\hline 8,266.519 \& $6 s_{01}^{\prime}$ \& $6 p_{01}^{\prime}$ \& 500
7000 \& 4.75
5.99 \& 5.93
6.73 \& 5.20 \& 4.72
6.21 <br>
\hline 8,280.1163 \& $6 s_{11}$ \& $6 p_{00}$ \& 7,000 \& 5.99 \& 6.73 \& 6.71 \& 6.21 <br>
\hline 8,346.823 \& $6 s_{01}^{\prime}$ \& $6 p_{12}^{\prime}$ \& 2,000 \& 5.50 \& 6.36 \& 5.82 \& 5.29
5.63 <br>
\hline 8,409.190 \& $6 s_{12}$ \& $6 p_{11}$ \& 2,000 \& 4.96 \& 6.60 \& 6.01 \& 5.63 <br>
\hline 8,522.55 \& $6 s_{00}^{\prime}$ \& $7 p_{00}$ \& 30 \& 3.69 \& 4.72 \& 3.69 \& 3.28 <br>
\hline 8,530.10 \& $6 p_{12}$ \& $8 s_{11}$ \& 30 \& 3.79 \& 4.74 \& 3.83 \& 3.39 <br>
\hline 8,576.01 \& $6 s_{01}^{\prime}$ \& $7 p_{00}$ \& 200 \& 4.38 \& 5.26 \& 4.42 \& 3.98 <br>
\hline 8,624.24 \& $6 p_{12}$ \& $8 s_{12}$ \& 80
250 \& 4.07
4.65 \& 5.00
5.56 \& 4.10
4.77 \& 3.65
4.32 <br>
\hline 8,648.54 \& $6 s_{01}^{\prime}$ \& $7 p_{11}$ \& 250 \& 4.65 \& 5.56
5.13 \& 4.77
4.31 \& 4.32
3.87 <br>
\hline 8,692. 20 \& $6 s_{01}^{\prime}$ \& $7 p_{12}$ \& 100 \& 4.47 \& 5.13
5.19 \& 4.31
4.46 \& 3.87
3.86 <br>
\hline 8,696.86 \& $5 d_{22}$ \& $5 f_{33}$ \& $200\}$ \& \& 5.19 \& 4.46
3.84 \& 3.86 <br>
\hline 8,709.64 \& $5 d_{22}$ \& $5 f_{22}$ \& 40 \& 3.93 \& \& 3.84 \& <br>
\hline
\end{tabular}

Table 7g-5. The Spectrum of Xenon I (Continued)

| Wavelength | Classification |  | $I_{0}$ | $\log I_{1}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8,739.39 | $6 p_{01}$ | $6 d_{12}$ | 300 | 4.99 | 6.03 | 5.22 | 4.80 |
| 8,758.20 | $6 p_{22}$ | $6 d_{23}$ | 100 | 4.13 | 5.35 | 5.22 4.8 | 4.80 4.01 |
| 8,819.412 | $6 s_{12}$ | $6 p^{23}$ | 5,000 | 5.75 | 5.35 | 7.02 | 6.51 |
| 8,862.32 | $6 p_{01}$ | $6 d_{01}$ | 300 | 5.10 | 6.17 | 5.44 | 4.99 |
| 8,908.73 | $6 p_{01}$ | $6 d_{00}$ | 200 | 4.76 | 5.94 | 5.12 | 4.71 |
| 8,930.83 | $6 s_{01}^{\prime}$ | - $6 p_{11}^{\prime}$ | 200 | 4.93 | 6.02 | 5.25 | 4.74 |
| 8,952.254 | $6 s_{11}$ | $6 p_{12}$ | 1,000 | 5.92 | 6.76 | 6.72 | 6.23 |
| 8,981.05 | $6 p_{23}$ | $6 d_{23}$ | 100 | 4.34 | 5.61 | 4.61 | 4.23 |
| 8,987.57 | $6 p_{22}$ | $6 d_{22}$ | 200 | 4.73 | 5.82 | 5.00 | 4.55 |
| 9,025.98 | $6 p_{11}$ | $6 d_{11}$ | 30 | 4.58 | 5.25 | 4.38 | 3.87 |
| 9,032.18 | $5 d_{00}$ | $4 f_{11}$ | 50 | 4.49 | 5.36 | 4.69 | 4.14 |
| 9,045.446 | $6 s_{12}$ | $6 p_{22}$ | 400 | 5.60 | 6.00 | 5.73 | 5.28 |
| 9,096.13 | $5 d_{23}$ | $5 f_{33}$ | 50 | 4.39 | 5.32 | 4.53 | 3.98 |
| 9,152.12 | $5 d_{01}$ | $4 f_{22}$ | 20 | 4.16 | 5.30 |  |  |
| 9,162.654 | $6 s_{11}$ | $6 p_{11}$ | 500 | 5.97 | 6.93 | 6.94 | 6.39 |
| 9,167.52 | $6 p_{22}$ | $6 d_{33}$ | 100 |  | 6.22 |  |  |
| 9,203. 20 | $5 d_{01}$ | $4 f_{12}$ | 30 | 4.60 | 5.67 | 4.88 | 4.36 |
| 9,211.38 | $5 d_{01}$ | $4 f_{11}$ | 25 | 4.21 | 5.40 | 4.73 | 4.06 |
| 9,301. 95 | $5 d_{34}$ | $4 f_{33}$ | 30 |  | 5.46 | 4.73 | 4.06 4.20 |
| 9,306.64 | $6 s_{01}^{\prime}$ | $7 p_{01}$ | 40 | 4.74 | 5.59 | 4.75 | 4.20 4.33 |
| 9,374.76 | $5 d_{34}$ | $4 f_{45}$ | 100 | 4.86 | 5.66 | 5.61 | 5.08 |
| 9,412.01 | $6 p_{23}$ | $6 d_{33}$ | 60 | 4.66 | 5.10 | 5.05 | 5.08 4.56 |
| 9,445.34 | $5 d_{12}$ | $4 f_{23}$ | 80 | 4.81 | 5.86 | 5.31 | 4.77 |
| 9,497.07 | $5 d_{12}$ | $4 f_{12}$ | 40 | 4.40 | 5.50 | 4.71 | 4.19 |
| 9,513.379 | $6 p^{23}$ | $6 d_{34}$ | 200 | 5.48 | 6.30 | 5.91 | 5.41 |
| $9,585.14$ $9,685.32$ | $6 p_{22}$ | $6 d_{01}$ | 20 | 3.95 | 6. 04 | 4.27 | 3.77 |
| 9,685.32 | $6 p_{12}$ | $6 d_{23}$ | 150 | 5.04 | 6.04 | 5.40 | 4.88 |
| 9,700.99 | $6 p_{23}$ | $6 d_{12}$ | 20 | 4.14 | 6.00 | 4.31 | 3.82 |
| 9,718.16 | $6 p_{11}$ | $6 d_{22}$ | 100 | 5.04 | 6.95 | 5.31 | 4.80 |
| 9,799.699 | $6 s_{12}$ | $6 p_{01}$ | 2,000 | 5.79 | 6.78 | 7.00 | 6.49 |
| 9,923.192 | $6 s_{11}$ | $6 p_{22}$ | 3,000 | 6.19 |  | 7.03 | 6.51 |
| 10,023.72 | $5 d_{12}$ | $4 f_{33}$ | 50 | 4.49 |  | 4.85 | 4.39 |
| 10,107.34 | $5 d_{12}$ | $4 f_{44}$ | 80 |  |  |  |  |
| 10,838.34 | $6 s_{11}$ | $6 p_{01}$ | 1,000 |  |  |  |  |
| 11,742.26 | $5 d_{23}$ | $4 f_{34}$ | 90 |  |  |  |  |
| 12,623.32 | $6 p_{01}$ | $7 s_{12}$ | 300 |  |  |  |  |
| 13,656.48 | $6 p_{22}$ | $7 s_{11}$ | 150 |  |  |  |  |
| 14,142.09 | $6 p_{22}$ | $7 s_{12}$ | 80 |  |  |  |  |
| 14,732.38 | $6 p_{23}$ | $7 s_{12}$ | 200 |  |  |  |  |
| 15,418.01 | $6 p_{11}$ | $7 s_{11}$ | 110 |  |  |  |  |


0.002 mm


Fig. 7g-4. Photoelectric traces of the xenon spectrum, microwave discharges at 16 mm (upper traces) and 0.002 mm (lower traces). Wavelength range is $3,500-10,000 \mathrm{~A}$. The $16-\mathrm{mm}$ trace shows the Xe I spectrum with the lines broadened. The strongest lines in the $0.002-\mathrm{mm}$ trace are those for Xe II.






7-82 ATOMIC AND MOLECULAR PHYSICS






Fig. 7g-4 (Continued)


Iron I. The lines of the iron spectrum are extensively used as wavelength standards and may be used equally well as intensity standards. The traditional iron arc in air no longer satisfies the demands on accuracy and convenience because the lines are relatively broad, the wavelengths are not constant, and the arc cannot be made to burn steadily. A hollow-cathode discharge ${ }^{1}$ with iron electrodes and neon at about 3 mm pressure is much superior. Microwave discharges ${ }^{2}$ with volatile iron salts in a rare gas also give very sharp lines but are less suitable for providing intensity standards.
${ }^{1}$ Crosswhite, Dieke, and Legagneur, J. Opt. Soc. Am. 45, 270 (1955).
${ }^{2}$ W. F. Meggers and F. O. Westfall, J. Research Natl. Bur. Standards 44.447 (1950).

Accurate wavelengths measurements by several independent investigators are available for many iron lines, and these have been adopted as international secondary standards ${ }^{1}$ (marked $S$ in the table). Many other lines are unsuitable as standards because their wavelengths are not constant. These ordinarily come from high-lying excited states.

No such difficulties are encountered with the hollow-cathode discharge. At the present time, however, not enough measurements have been made to qualify any line as an international standard and there are some contradictory results. The values given in column $\lambda_{2}$ may be considered accurate in general to better than 0.001 . As there is a systematic shift between the wavelengths of the low-pressure discharges and those of the arc in air, the arc wavelengths should not be used for the hollowcathode discharge and vice versa. More and improved wavelengths for column $\lambda_{2}$ may be expected in the near future.

Explanation of Table 7g-6. column $\lambda_{1}$ : Wavelengths of the iron are in air taken from the compilation of Russell and Moore. ${ }^{2} \quad S$ signifies international standard.
column $\lambda_{2}$ : Wavelengths of the hollow-cathode discharge: $L$, J. Blackie and T. Littlefield ${ }^{3}$ measured with the reflecting echelon; $H$, measured at The Johns Hopkins University ${ }^{4}$ with the Fabry-Pérot interferometer; $W$, Williams and Middleton ${ }^{5}$ vacuum echelon. Values shown in parentheses have been obtained from the arc values $\lambda_{1}$ by applying the pressure correction. The remaining values in column $\lambda_{2}$ are taken from Johns Hopkins Spectroscopic Report No. 13 (1956).
classification: Standard $L, S$ coupling notation ${ }^{2} E^{\prime}$ energy of the upper state above the ground state in wave numbers. For more accurate values, see Moore. ${ }^{6}$
intensity columns: $\log I_{2}$, quantitative intensities of a standard hollow-cathode discharge in neon at 3.5 mm pressure, current $90 \mathrm{ma} .^{7}$ Values with three decimals are photoelectric measurements, those with two decimals photographic measurement with photoelectric calibration. Sensitivity calibration above $3,150 \mathrm{~A}$, standard tungsten ribbon-filament lamp calibrated by the National Bureau of Standards; between 2,700 and $3,150 \mathrm{~A}$, indirect calibration through self-absorption behavior; below 2,700, extrapolated. The scale in the $\log I_{2}$ column is the same as for neon and argon (see Table 7g-2).
$\log I_{3}$, iron arc in air, current 1 amp , photographic measurements on arbitrary scale. Sensitivity correction as for $I_{2} . \quad r$, self-reversal between 10 and 30 per cent; $R$, same, larger than 30 per cent.
$\log I_{4}$, iron arc in air, current 2.2 amp photoelectric measurement; otherwise same as $I_{3}$.
$\log \nu A_{\nu}$, absolute line emissive power in units of microergs per second per excited atom. Derived from measurements of Crosswhite ${ }^{8}$ except the values in parentheses, which are from measurements by King, ${ }^{9}$ King and King, ${ }^{10}$ and Carter. ${ }^{11}$

[^345]Table 7g-6. The Spectrum of Iron I

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,408.045 |  | $a^{5} F_{8}$ | $v^{3} D_{2}$ | 49,243 | 4.44 |  |  |  |
| 2,443.871 | . 872 | $a^{5} F_{5}$ | $x^{3} G_{5}$ | 47,835 | 4.36 |  |  |  |
| 2,447.708 S | (.707) | $a^{5} D_{4}$ | $x^{5} F_{3}$ | 40,842 | 3.85 |  |  |  |
| 2,457.596 | . 5975 L | $a^{5} \mathrm{~F}_{5}$ | $v^{5} F_{5}$ | 47,606 | 5.09 |  |  |  |
| 2,462.645 | . 648 | $a^{5} D_{4}$ | $x^{5} F_{4}$ | 40,594 | 5.08 |  |  |  |
| 2,465.148 | . 149 | $a^{5} F_{4}$ | $v^{5} F_{4}$ | 47,930 | 4.85 |  |  |  |
| 2,468.878 | . 879 | $a^{5} F_{5}$ | $w^{5} G_{6}$ | 47,420 | 4.86 |  |  |  |
| 2,472.343 | ......... | $a^{5} F_{4}$ | $x^{2} G_{4}$ | 47,812 | 4.87 |  |  |  |
|  |  | $a^{5} \mathrm{~F}_{5}$ | $w^{5} G_{6}$ | 47,363 |  |  |  |  |
| 2,472.910 | . 895 | $a^{5} D_{3}$ | $x^{5} F_{3}$ | 40,842 | 5.13 |  |  |  |
| 2,473.156 | ......... | $a^{5} D_{4}$ | $y^{\top} P_{4}$ | 40,422 | 5.00 |  |  |  |
| 2,474.813 | . 814 | $a^{5} F_{3}$ | $v^{5} F_{3}$ | 48,123 | 4.69 |  |  |  |
| 2,479.775 | . 776 | $a^{5} D_{2}$ | ${ }^{6} F_{2}$ | 41,018 | 5.07 |  |  |  |
| 2,483.270 | . 271 | $a^{5} D_{4}$ | $x^{5} F_{5}$ | 40,257 | 5.75 |  |  |  |
| 2,483.531 | ......... | $a^{5} \mathrm{~F}_{2}$ | $v^{5} \mathrm{~F}_{2}$ | 48,239 | 4.54 |  |  |  |
| 2,484.186 |  | $a^{5} D_{1}$ | $x^{5} F_{1}$ | 41,131 | 4.97 |  |  |  |
| 2,486.372 | ... | $a^{5} D_{4}$ | $y^{7} P_{3}$ | 40,207 | 4.90 |  |  |  |
| 2,488.143 | . 143 | $a^{5} D_{3}$ | ${ }^{5} \mathrm{~F}_{4}$ | 40,594 | 5.59 |  |  |  |
| 2,489.751 | ........ | $a^{5} D_{0}$ | ${ }^{6} F_{1}$ | 41,131 | 4.98 |  |  |  |
| 2,490.642 | . 644 | $a^{5} D_{2}$ | $x^{5} F_{3}$ | 40,842 | 5.45 |  |  |  |
| 2,491.155 | . 155 | $a^{5} D_{1}$ | $x^{5} F_{2}$ | 41,018 | 5.20 |  |  |  |
| 2,496.532 | . 533 | $a^{5} F_{4}$ | $w^{5} G^{5}$ | 47,420 | 4.78 |  |  |  |
| 2,501.130 | . 1326 L | $a^{5} D_{4}$ | $x^{5} D_{3}$ | 39,970 | 5.03 |  |  |  |
| 2,507.899 | ......... | $a^{5} F_{3}$ | $w^{5} G_{4}$ | 47,590 | 4.73 |  |  |  |
| 2,510.833 | . 835 | $a^{5} D_{3}$ | - $x^{5} D_{2}$ | 40,231 | 5.04 |  |  |  |
| 2,512.361 | ......... | $a^{5} D_{3}$ | $y^{7} P_{3}$ | 40,207 | 4.63 |  |  |  |
| 2,517.658 | .... | $a^{5} F_{2}$ | $w^{6} G_{3}$ | 47,693 | 4.58 |  |  |  |
| 2,518.100 | . 102 | $a^{5} D_{2}$ | $x^{5} D_{1}$ | 40,405 | 4.92 |  |  |  |
| 2,522.848 | . 849 | $a^{5} D_{4}$ | $x^{5} D_{4}$ | 39,626 | 5.54 |  |  |  |
| 2,524.290 | . 293 | $a^{5} D_{1}$ | $x^{5} D_{0}$ | 40,491 | 4.65 |  |  |  |
| 2,527.433 | . 435 | $a^{5} D_{3}$ | $x^{5} D_{3}$ | 39,970 | 5.30 |  |  |  |
| 2,529.134 | . 135 | $a^{5} D_{2}$ | $x^{5} D_{2}$ | 40,231 | 4.86 |  |  |  |
| 2,535.604 | . 608 | $a^{5} D_{0}$ | $x^{6} D_{1}$ | 40,405 | 4.60 |  |  |  |
| 2,540.971 | . 9719 L | $a^{5} D_{1}$ | $x^{5} D_{2}$ | 40,231 | 4.85 |  |  |  |
| 2,542.101 | ......... | ${ }^{3} \mathrm{~F}_{2}$ | $r^{2} G_{3}$ | 60,365 | 4.46 |  |  |  |
| 2,543.920 |  | ${ }^{3} \mathrm{~F}_{3}$ | $r^{2} G_{4}$ | 60,172 | 4.40 |  |  |  |
| 2,545.977 | . 9789 L | $a^{5} D_{2}$ | $x^{5} D_{3}$ | 39,970 | 4.92 |  |  |  |
| 2,549.612 | . 6140 L | $a^{5} D_{3}$ | $x^{5} D_{4}$ | 39,626 | 4.87 |  |  |  |
| 2,576.688 | . 6907 L | $a^{5} F_{5}$ | $x^{5} G_{6}$ | 45,726 | 4.50 |  |  |  |
| 2,584.536 S | . 5364 L | $a^{5} F_{5}$ | $x^{5} G_{6}$ | 45,608 | 5.17 |  |  |  |
| 2,599.565 | ......... | $a^{5} F_{4}$ | $x^{5} G 4$ | 45,833 | 4.50 |  |  |  |
| 2,605.656 | . 657 | $a^{5} \mathrm{~F}_{5}$ | $y^{3} G_{5}$ | 45,295 | 3.86 |  |  |  |
| 2,606.826 | . 8270 L | $a^{5} \mathrm{~F}_{4}$ | $x^{5} G_{5}$ | 45,726 | 4.56 |  |  |  |
| 2,612.771 | . 772 | $a^{5} D_{3}$ | $y^{3} D_{2}$ | 38,678 | 3.2 |  |  |  |
| 2,623.532 |  | $a^{5} F_{3}$ | $x^{5} G_{4}$ | 45,833 | 4.65 |  |  |  |
| 2,635.808 S | . 8096 L | $a^{5} F_{2}$ | $x^{5} \mathrm{G}_{3}$ | 45,914 | 4.48 |  |  |  |
| 2,643.997 | . 998 | $a^{5} F_{1}$ | $x^{5} G_{2}$ | 45,965 | 4.32 |  |  |  |
| 2,666.811 |  | $a^{5} F_{5}$ | $v^{5} D_{4}$ | 44,415 | 4.45 |  |  |  |
| 2,679.062 S | . 0622 L | $a^{5} \mathrm{~F}_{5}$ | $w^{5} F_{5}$ | 44,244 | 4.79 |  |  |  |
| 2,689.212 S | . 2131 L | $a^{5} F_{4}$ | $\nu^{5} D_{3}$ | 44,551 | 4.63 |  |  |  |
| 2,699.107 S | (.105) | $a^{5} F_{4}$ | $v^{5} D_{4}$ | 44,415 | 4.20 |  |  |  |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,706.581 | . 5829 L | $a^{5} F_{3}$ | $v^{5} D_{2}$ | 44,664 | 4.59 |  |  |  |
| 2,711.655 | . $6555 L$ | $a^{5}{ }^{5}+$ | $w^{5} F_{5}$ | 44,244 | 4.29 |  |  |  |
| 2,719.027 |  | $a^{5} \mathrm{D}_{4}$ | $y^{5} \mathrm{P}_{3}$ | 36,767 | 5.44 |  |  |  |
|  |  | ( $b^{3} F_{3}$ ) | ( ${ }^{3} \mathrm{~F}_{3}$ ) | $(57,641)$ |  |  |  |  |
| 2,720.902 | . 902 | $a^{5} D_{3}$ | $y^{5} \mathrm{P}_{2}$ | 37,158 | 5.08 |  |  |  |
| 2,723.577 S | . $5776 L$ | $a^{5} D_{2}$ | $y^{5} P_{1}$ | 37,410 | 4.61 |  |  |  |
| 2,733.581 | . $5810 L$ | $a^{5} F_{5}$ | $w^{5} D_{4}$ | 43,500 | 4.96 |  |  |  |
| 2,735.475 S | (.475) | $a^{5} F_{4}$ | $w^{5} D_{3}$ | 43,923 | 4.71 | $4.70 R$ |  |  |
| 2,737.310 | . 3099 L | $a^{5} D_{1}$ | $y^{5} P_{1}$ | 37,410 | 4.74 | $4.70 R$ |  |  |
| 2,742.256 | . 253 | $a^{5} \mathrm{~F}_{3}$ | $w^{5} D_{2}$ | 44,184 | 4.4 | $4.50 R$ |  |  |
| 2,742.406 | . 4060 L | $a^{5} D_{2}$ | $y^{5} P_{2}$ | 37,158 | 5.02 | $4.64 R$ |  |  |
| 2,744.068 | . 068 | $a^{5} D_{0}$ | $y^{5} P_{1}$ | 37,410 | 4.33 | $4.66 R$ |  |  |
| 2,750.140 | . 140 | $a^{5} D_{8}$ | $y^{5} P_{3}$ | 36,767 | 5.02 | $4.66 R$ |  |  |
| 2,756.329 | . 325 | $a^{5} D_{1}$ | $y^{5} P_{2}$ | 37,158 | 4.36 |  |  |  |
| 2,761.780 | . 781 | $a^{5} F_{2}$ | $w^{5} D_{2}$ | 44,184 | 4.14 | $4.32 R$ |  |  |
| 2,762.027 | . 027 | $a^{5} \mathrm{~F}_{3}$ | $w^{5} D_{3}$ | 43,923 | 4.09 | $4.40 R$ |  |  |
| 2,767.523 S | . 516 | $a^{5} \mathrm{~F}_{4}$ | $w^{5} D_{4}$ | 43,500 | 4.39 | $4.44 R$ |  |  |
| 2,772.083 | . 074 | $a^{5} F_{5}$ | $z^{5} H_{5}$ | 42,992 | 4.47 | $4.64 R$ |  |  |
| 2,778.221 S | . $2205 L$ | $a^{5} F_{5}$ | $y^{5} G_{5}$ | 42,912 | 4.70 | $4.49 R$ |  |  |
| 2,788.106 | . 108 | $a^{5} F_{5}$ | $y^{5} G_{6}$ | 42,784 | 5.60 | $4.65 R$ |  |  |
| 2,797.775 | . 776 | $a^{5} F_{4}$ | $z^{5} H_{4}$ | 43,109 | 4.24 | $4.16 R$ |  |  |
| 2,804.521 S | . 521 | $a^{5} \mathrm{~F}_{4}$ | $y^{5} G_{4}$ | 43,023 | 4.65 | $4.48 R$ |  |  |
| 2,806.984 | . $9845 L$ | $a^{5} F_{4}$ | $z^{5} H_{5}$ | 42,992 | 5.02 | $4.56 R$ |  |  |
| 2,813.288 S | . 2867 L | $a^{5} \mathrm{~F}_{4}$ | $\boldsymbol{y}^{5} G_{5}$ | 42,912 | 5.37 | $4.62 R$ |  |  |
| 2,823.276 S | . $2763 L$ | $a^{5} F_{3}$ | $\boldsymbol{\nu}^{5} \mathrm{G}_{3}$ | 43,138 | 4.56 | $4.50 R$ |  |  |
| 2,825.557 | . 5559 L | $a^{5} \mathrm{~F}_{3}$ | $z^{5} \mathrm{H}_{4}$ | 43,109 | 4.81 | $4.52 R$ |  |  |
| 2,825.687 | . 684 | $a^{5} D_{4}$ | $z^{3} G_{5}$ | 35,379 | 3.4 | $4.15 r$ |  |  |
| 2,832.436 S | .4357 L | $a^{5} \mathrm{~F}_{8}$ | $y^{5} G_{4}$ | 43,023 | 4.90 | $4.65 R$ |  |  |
| 2,835.457 | . 455 | $a^{5} D_{4}$ | $z^{5} G_{4}$ | 35,257 | 3.29 | $4.06 R$ |  |  |
| 2,838.120 S | . 119 | $a^{5} F_{2}$ | $y^{5} G_{2}$ | 43,210 | 4.36 | $4.33 r$ |  |  |
| 2,843.977 | . 976 | $a^{5} F_{2}$ | $\boldsymbol{y}^{5} \mathrm{G}_{3}$ | 43,138 | 4.96 | $4.61 R$ |  |  |
| 2,851.798 S | . 7973 L | $a^{5} F_{1}$ | $y^{5} G_{2}$ | 43,210 | 4.80 | $4.60 R$ |  | 2.72 |
| 2,863.864 | . 863 | $a^{5} D_{2}$ | $z^{5} G_{3}$ | 35,612 | 3.23 | $4.10 r$ |  | 1.00 |
| 2,869.308 S | . 307 | $a^{5} D_{3}$ | $z^{5} G_{4}$ | 35,259 | 3.76 | $4.41 R$ |  | 1.30 |
| 2,874.172 | . 173 | $a^{5} D_{4}$ | $z^{5} G_{5}$ | 34,782 | 3.92 | $4.48 R$ |  | 1.36 |
| 2,912.158S | (.157) | $a^{5} D_{4}$ | $y^{5} \mathrm{~F}_{3}$ | 34,329 | 4.08 | $4.55 R$ | $\cdots$ | (1.00) |
| 2,929.008 S | (.007) | $a^{5} D_{3}$ | $y^{5} \mathrm{~F}_{2}$ | 34,547 | 4.20 | $4.50 R$ |  | (1.12) |
| 2,936.904 | . 904 | $a^{5} D_{4}$ | $y^{5} F_{4}$ | 34,040 | 5.02 | $4.55 R$ |  | (1.38) |
| 2,941.343 S | (.342) | $a^{5} D_{2}$ | $y^{5} F_{1}$ | 34,692 | 3.82 | $4.55 R$ |  | (1.06) |
| 2,947.877 | . 876 | $a^{5} D_{3}$ | $y^{5} \mathrm{~F}_{3}$ | 34,329 | 4.95 | $4.54 R$ |  | (1.43) |
| 2,953.940 S | (.939) | $a^{5} D_{2}$ | $y^{5} F_{2}$ | 34,547 | 4.75 | $4.52 R$ |  | (1.42) |
| 2,957.365 S | (.364) | $a^{5} D_{1}$ | $y^{5} F_{1}$ | 34,692 | 4.45 | $4.55 R$ |  | (1.32) |
| 2,965.255 S | (.254) | $a^{5} D_{0}$ | $y^{5} F_{1}$ | 34,692 | 4.01 | $4.54 R$ |  | (1.20) |
|  |  | ( $a^{3} G_{6}$ ) | ( $v^{3} H_{5}$ ) | $(55,430)$ |  |  |  |  |
| 2,966.901 | . 898 | $a^{5} D_{4}$ | $y^{5} \mathrm{~F}_{5}$ | 33,695 | 5.48 | $4.47 R$ |  | (1.61) |
| 2,970.106 |  | $a^{5} D_{2}$ | $z^{3} P_{1}$ | 34,363 | 4.80 | $4.52 R$ |  | (1.40) |
|  |  | $a^{5} D_{1}$ | $y^{5} \mathrm{~F}_{2}$ | 34,547 |  |  |  |  |
| 2,973.134 | . 132 | $a^{5} D_{2}$ | $y^{5} \mathrm{~F}_{3}$ | 34,329 | 5.13 | $4.5 R$ |  | 1.7 |
| 2,973.237 | . 235 | $a^{5} D_{3}$ | $y^{5} \mathrm{~F}_{4}$ | 34,040 | 4.7 | $4.5 R$ |  | 1.3 |
| 2,981.446 | . 445 | $a^{5} D_{3}$ | $z^{3} P_{2}$ | 33,947 | 4.83 | $4.52 R$ |  | (1.11) |
| 2,983.574 | . 570 | $a^{5} D_{4}$ | $y^{5} \mathrm{D}_{3}$ | 33,507 | 5.11 | $4.55 R$ | . . | (1.52) |
| 2,986.456 | . 456 | $a^{5} D_{1}$ | $z^{3} P_{1}$ | 34,362 | 3.26 | 3.57 | . . . . | (0.51) |
| 2,987.292 S | (.291) | $a^{5} F_{4}$ | $x^{5} F_{3}$ | 40,842 | 3.52 | $4.44 r$ | ..... | (2.22) |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A_{\nu}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,994.427 | . 427 | $a^{5} D_{3}$ | $y^{5} \mathrm{D}_{2}$ | 33,802 | 5.1 |  |  |  |
| 2,994.507 | . 502 | $a^{5} D_{0}$ | $z^{3} P_{1}$ | 34,802 | 5.1 4.4 | $4.56 R$ |  | (1.59) 1.0 |
| 2,999.512 S | (.511) | $a^{5} \mathrm{~F}_{5}$ | $x^{5} F_{5}$ | 40,527 | 4.73 | $4.63 R$ |  | (2.49) |
| $3,000.452$ $3,000.950$ | . 451 | $a^{3} F_{4}$ | $y^{3} G_{5}$ | 45,295 | 4.11 | 3.98 |  | (2.49) 2.44 |
| 3,000.950 | . 947 | $a^{5} D_{2}$ | $y^{5} D_{1}$ | 34,017 | 4.94 | $4.53 R$ |  | (1.62) |
| 3,003.031 | . 029 | $a^{5} F_{3}$ | ${ }^{5} F_{2}$ | 41,018 | 3.31 |  |  |  |
| 3,007. 281 | . 282 | $a^{5} D_{2}$ | $z^{3} P_{2}$ | 33,947 | 3.31 4.36 | 4.39r |  | $(2.24)$ .$(0.99)$ |
| 3,008. 139 | . 138 | $a^{5} D_{1}$ | $\boldsymbol{y}^{5} \mathrm{D}_{0}$ | 34,947 34,122 | 4.36 4.62 | $4.5 R$ $4.49 R$ |  | (0.99) $(1.50)$ |
| 3,009.570 | . 568 | $a^{5} F_{4}$ | ${ }^{5}{ }^{5} \mathrm{~F}_{4}$ | 40,594 | 4.27 | $4.61 R$ |  | (1.50) $(2.46)$ |
| 3,016.186 | . 184 | $a^{5} F_{2}$ | $x^{6} F_{1}$ | 41,131 | 3.19 | 4.61R ${ }^{\text {4.20r }}$ |  | (2.46) $(2.15)$ |
| 3,017.628 | . 627 | $a^{5} D_{1}$ | $y^{5} D_{1}$ | 34,017 | 3.80 | $4.51 R$ |  |  |
| 3,018. 983 | . 983 | $a^{5} F_{3}$ | ${ }^{5} \mathrm{~F}_{3}$ | 40,842 | 3.80 3.72 | 4.48 l |  | $\begin{array}{r}\text { (1.15) } \\ \hline(2.44)\end{array}$ |
| 3,020.487 | . 490 | $a^{5} D_{2}$ | $y^{5} D_{2}$ | 33,802 | 4.7 | $4.48 R$ $4.5 R$ |  | \% <br> $(1.44)$ <br> $(1.41)$ |
| 3,020.640 | . 639 | $a^{5} D_{4}$ | $y^{5} D_{4}$ | 33,096 3 | 5.64 | $4.5 R$ $4.4 R$ |  | $(1.41)$ $(1.66)$ |
| 3,021.074 | . 073 | $a^{5} D_{3}$ | $y^{5} D_{3}$ | 33,507 | 5.24 | 4.46R |  | $\begin{array}{r} (1.66) \\ (1.75) \end{array}$ |
| 3,024.033 | . 032 | $a^{5} D_{1}$ | $z^{3} \mathrm{P}_{2}$ | 33,947 | 4.59 | $4.54 R$ |  |  |
| 3,025.638 |  | $a^{3} H_{6}$ | $w^{2} H_{6}$ | 52,431 | 4.17 | 4.54R $4.12 r$ |  | (1)15) |
| 3,025.843 | . 843 | $a^{5} D_{0}$ | $y^{5} D_{1}$ | 34,017 | 4.69 | $4.54 R$ |  | (1,48) |
| 3,026.462 | . 462 | $a^{5} \mathrm{~F}_{2}$ | $x^{5} \mathrm{~F}_{2}$ | 41,018 | 3.48 | $4.54 R$ $4.43 R$ |  | 4.i. $(1.48)$ |
| 3,030. 149 | . 148 | $a^{3} H_{5}$ | $w^{8} H_{5}$ | 52,613 | 3.92 | 4.43 R 4.04 |  | $\begin{array}{r} (2.38) \\ 3.51 \end{array}$ |
| $3,031.213$ $3,031.638$ |  | $a^{8} \mathrm{H}_{4}$ | $w^{2} H_{4}$ | 52,769 | 3.81 | 3.96 |  |  |
| 3,031.638 | . 637 | $a^{5} F_{1}$ | $x^{5} F_{1}$ | 41,131 | 3.36 | 3.96 $4.39 R$ |  | $\begin{array}{r} 3.45 \\ (2.31) \end{array}$ |
| 3,037.388 S | . 387 | $a^{5} D_{1}$ | $y^{5} D_{2}$ | 33,802 | 3.89 4.89 | $4.39 R$ $4.56 R$ |  | $\begin{array}{r} \text { (2.31) } \\ (1.59) \end{array}$ |
| 3,040.428 | . 427 | $a^{5} \mathrm{~F}_{4}$ | $x^{5} F_{5}$ | 40, 257 | 3.74 | 4.34 r |  | (2, 14) |
| 3,041.639 | . 637 | $a^{3} F_{3}$ | $y^{3} G_{4}$ | 45,428 | 3.9 | 3.8 |  | 2.3 |
| 3,041.745 |  | $a^{5} F_{3}$ | $x^{5} \mathrm{~F}_{4}$ | 40,594 | 3.9 | $4.3 r$ |  | (2.30) |
| $3,042.020$ $3,042.666$ | . 020 | $a^{5} F_{1}$ | ${ }^{5}{ }^{5} \mathrm{~F}_{2}$ | 41,018 | 3.12 | $4.16 r$ |  | (2.05) |
| 3,042.666 $\mathbf{3 , 0 4 7 . 6 0 5 ~ S ~}$ | (.665 | ${ }^{a^{5} F_{2}}{ }^{5}{ }^{5} \mathrm{D}_{2}$ | ${ }^{55} F_{3}$ | 40,842 | 3.39 | $4.36 r$ |  | (2.28) |
| $3,047.605$ $3,057.446 S$ | (.603) .445 | $a^{5} D_{2}$ $a^{5} F_{5}$ | $y^{5} D_{3}$ $x^{5} D_{4}$ | 33,507 39,626 | 5.02 | 4.56R |  | \% $(1,59)$ |
|  | . 445 | ${ }^{6}{ }^{5} F_{5}$ | $x^{5} D_{4}$ | 39,626 | 4.82 | $4.7 R$ |  | (2.63) |
| 3,059.086 S | . 087 | $a^{5} \mathrm{D}_{3}$ | $y^{5} D_{4}$ | 33,096 | 5.06 |  |  |  |
| 3,067.244 S | . 245 | ${ }^{5}{ }^{5} \mathrm{~F}_{4}$ | $x^{5} D_{3}$ | 39,970 | 5.06 4.66 | $4.5 R$ $4.7 R$ |  | $\begin{aligned} & (1.51) \\ & (2.64) \end{aligned}$ |
| 3,075.721 S | . 721 | $\mathrm{a}^{5} \mathrm{~F}_{3}$ | $x^{5} D_{2}$ | 40,231 | 4.09 | $4.7 R$ |  | (2.61) |
| $3,083.742 S$ <br> $3,091.578$ | .740 .577 | $a^{5} F_{2}$ $a^{5} F_{1}$ | $x^{5} D_{1}$ | 40,405 | 3.78 | $4.6 R$ |  | $\begin{array}{r}\text { (2.50) } \\ \hline(2.55)\end{array}$ |
| 3,091.578 S | . 577 | ${ }^{5}{ }^{5} F_{1}$ | $x^{5} D_{0}$ | 40,491 | 3.41 | $4.5 r$ |  | (2.35) |
| 3,099.897 | . 897 | $a^{5} F_{1}$ | $x^{5} D_{1}$ | 40,405 | 4.1 |  |  |  |
| 3,099.971 | . 967 | $a^{5} \mathrm{~F}_{4}$ | $x^{5} D_{4}$ | 39,626 | 4.1 | $4.5 R$ $4.6 R$ |  | (2.48) (2.41) |
| $3,100.304$ $3,100.666$ | .305 .666 | $a^{5} F_{2}$ | $x^{5} D_{2}$ | 40,231 | 3.80 | $4.6 R$ $4.5 R$ |  | $(2.41)$ $(2.51)$ |
| $3,100.666$ $3,116.633$ | . 666 | $a^{5} F_{3}$ | ${ }^{5}{ }^{5} D_{3}$ | 39,970 | 4.01 | 4.6R |  | (2.46) |
| 3,116.633 S | . 632 | $a^{5} F_{1}$ | $x^{5} D_{2}$ | 40,231 | 2.86 | 3.99 |  | (1.88) |
| 3,125.653 |  | $a^{5} F_{2}$ | $x^{5} D_{3}$ | 39,970 | 3.49 |  |  |  |
| 3,134.111 S | . 109 | $\mathrm{a}^{5} \mathrm{~F}_{3}$ | $x^{5} D_{4}$ | 39,970 | 3.49 3.05 | 4.18 3.97 |  | $\begin{aligned} & (1.98) \\ & (1.79) \end{aligned}$ |
| 3,142.453 3,142.888 | . 456 | $z^{7} D_{3}$ | $e^{7} S_{3}$ | 51,570 | 2.84 | 3.25 |  | (1.79) <br> 2.58 |
| 3,142.888 | . 890 | $a^{3}{ }^{3}{ }_{2}$ | $w^{3} P_{2}$ | 50,187 | 2.90 | 3.23 |  | 2.58 2.37 |
| 3,143.242 | . 242 | $a^{5} D_{4}$ | $z^{3} F_{3}$ | 31,805 | 2.88 | 3.05 |  | (-0.26) |
| 3,143.990 |  | $z^{5} D_{4}$ | $i^{5} \mathrm{D}_{4}$ | 57,698 | 3.14 | 3.19 |  |  |
| 3,151.353 | . 353 | $a^{3} G_{4}$ | $y^{1} H_{5}$ | 53,722 | 3.39 | 3.45 | 3.880 |  |
| 3,153.200 | . 199 | $z^{7} D_{3}$ | $f^{5} F_{\text {d }}$ | 51,462 | 3.03 | 3.44 | 3.76 | 3.08 2.76 |
| 3,157.040 S | . 037 | $2^{7} D_{4}$ | $e^{7} G_{5}$ | 51,229 | 3.24 | 3.66 | 3.974 | 2.96 |
| 3,157.88 | . 885 | $2^{7} D_{2}$ | $e^{7} S_{3}$ | 51,570 | 3.06 | 3.48 | 3.830 | 2.83 |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\therefore \boldsymbol{\lambda}_{1}$ | - $\boldsymbol{\lambda}_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,160.658 S | . 659 | $\boldsymbol{z}^{7} \mathrm{D}_{4}$ | $e^{7} F_{4}$ | 51,192 | 3.33 | 3.73 | 4.06 | 3.02 |
| 3,161.948 | . 948 | $\boldsymbol{z}^{7} \mathrm{D}_{5}$ | $e^{7} G_{6}$ | 50,968 | 3.08 | 3.56 | 3.766 | 2.83 |
| 3,165.860 |  | $z^{7} D_{3}$ | $e^{7} G_{4}$ | 51,335 | 2.87 | 3.24 | 3.543 | 2.55 |
| 3,166.435 |  | $b^{3} F_{4}^{4}$ | $t^{3} D_{3}$ | 52,213 | 3.08 | 3.44 | 3.772 | 2.87 |
| 3,175.447 S | (.444) | $\boldsymbol{z}^{7} D_{5}$ | $e^{7} F_{5}$ | 51,192 | 3.44 | 3.77 | 4.072 | 3.07 |
| 3,178.015 S | (.012) | $\boldsymbol{z}^{7} \mathrm{D}_{5}$ | $f^{7} \mathrm{D}_{4}$ | 50,808 | 3.29 | 3.65 | 3.948 | 2.90 |
| 3,180.223 | (.012) | $z^{7} D_{3}$ | $e^{7} F_{4}$ | 51,192 | 3.81 | 4.07 | $4.37 r$ | 3.36 |
| 3,180.756 | . 755 | $a^{5} D_{2}$ | $z^{3} F_{2}$ | 32, 134 | 3.79 | 3.73 | $3.81 R$ | (0.41) |
| 3,182.970 | . 978 | $a^{5} P_{2}$ | $v^{3} D_{3}$ | 49,135 | 3.07 | 3.30 | 3.521 | 2.31 |
| 3,184.896 S | . 895 | $a^{5} D_{3}$ | $z^{3} \mathrm{~F}_{3}$ | 31,805 | 4.29 | $4.15 R$ | $3.97 R$ | (0.66) |
| 3,188.567 |  | $z^{7} D_{6}$ | $e^{5} G_{5}$ | 50,704 | 3.06 | 3.31 | 3.81 | 2.54 |
| 3,188.819 |  | $z^{7} D_{1}$ | $e^{5} G_{2}$ | 51,370 | 3.48 | 3.58 | 3.95 | 2.93 |
| 3,191.659 S | . 658 | $a^{5} D_{4}$ | $z^{3} D_{3}$ | 31,323 | 4.42 | $4.21 R$ | $4.00 R$ | (0.58) |
| 3,192.799 |  | $z^{7} D_{1}$ | $e^{7} F_{2}$ | 51,331 | 3.57 | 3.86 | 4.06 |  |
|  |  | $\left(b^{3} G_{4}\right)$ | $\left(v^{3} H_{5}\right)$ | $(55,430)$ |  |  |  |  |
| 3,193.228 |  | $a^{5} D_{4}$ | $z^{3} \mathrm{~F}_{4}$ | 31,307 | 4.86 | $4.44 R$ | $4.66 R$ | (0.71) |
| 3,196.930 S | (.927) | $z^{7} D_{4}$ | $e^{7} F_{5}$ | 50,833 | 4.41 | $4.4 r$ | $4.67 r$ | $3.92$ |
| 3,196.977 |  | $a^{5} D_{3}$ | $z^{3} D_{2}$ | 31,686 | 4.03 | $4.1 r$ 4.08 | 3.53 | $\begin{gathered} (0.49) \\ 3.30 \end{gathered}$ |
| 3,199.530 |  | $2^{7} \mathrm{D}_{4}$ | $f^{7} D_{4}$ | 50,808 | 4.03 | 4.08 | 3.53 | 3.30 $(0.33)$ |
|  |  | ( $a^{5} D_{1}$ ) | ( $z^{3} \mathrm{~F}_{2}$ ) | 32,134 | 3.97 |  |  | (0.33) |
| 3,200.475 S | (.472) | $2^{7} D_{2}$ | $e^{7} F_{3}$ | 51,149 | 3.97 | 4.09 | 4.407 | 3.35 |
|  |  | $2^{7} D_{2}$ | $e^{5} S_{2}$ | 51,149 |  |  |  |  |
| 3,200.784 | . 784 | $a^{5} D_{2}$ | $z^{3} D_{1}$ | 31,937 | 3.10 | 3.22 |  | (-0.19) |
| 3,205.400 S | (.397) | $z^{7} D_{1}$ | $e^{7} F_{1}$ | 51,208 | 3.68 | 4.00 | 4.308 | 3.28 |
| 3,209.297 |  | $z^{5} \mathrm{~F}_{2}$ | $g^{5} G_{8}$ | 58,710 | 3.76 | 3.48 | 3.887 |  |
|  |  | $z^{7} F_{6}$ | $g^{7} D_{5}$ | 53,801 |  |  |  |  |
| 3,210.230 |  | $z^{7} \mathrm{D}_{4}$ | $e^{5} G_{5}$ | 50,704 | 3.56 | 3.64 | 4.05 | 2.84 |
| 3,210.830 |  | $z^{7} D_{2}$ | $f^{7} D_{1}$ | 51,048 | 3.65 | 3.89 | 4.25 | 3.13 |
| 3,211.487 |  | $z^{7} D_{1}$ | $e^{5} S_{2}$ | 51,149 | 3.0 | 3.34 |  | . 60 |
| 3,211.683 |  | $z^{5} \mathrm{~F}_{5}$ | $g^{5} G_{6}$ | 58,002 | 3.81 | 3.56 | 4.11 | 3.74 |
| 3,211.989 |  | $z^{7} D_{5}$ | $e^{7} P_{4}$ | 50,475 | 3.2 | 4.13 | $4.65 r$ | 3.29 |
| 3,214.044 |  | $z^{5} \mathrm{~F}_{4}$ | $g^{5} G_{5}$ | 58,271 | 4.38 | 4.07 | $4.78 r$ |  |
|  |  | $z^{7} D_{3}$ | $\mathrm{fl}^{7} \mathrm{D}_{3}$ | 50,862 |  |  |  |  |
|  |  | $\left(z^{7} D_{3}\right)$ | ( $e^{7} \mathrm{P}_{2}$ ) | $(50,861)$ |  |  |  |  |
| 3,214.396 | . 395 | $a^{5} D_{2}$ | $z^{3} \mathrm{~F}_{3}$ | 31,805 | 4.39 | 4.07 | 4.346 | (0.61) |
| 3;215.940 S | (.937) | $z^{7} D_{2}$ | $f^{\prime} D_{2}$ | 50,999 | 3.84 | 4.00 | 4.346 | 3.25 |
| 3,217.380 S | (.377) | $z^{7} D_{5}$ | $f^{5} D_{4}$ | 50,423 | 3.75 | 3.87 | 4.162 | 3.04 |
| 3,219.581 |  | $z^{7} D_{3}$ | $f^{7} D_{4}$ | 50,808 | 3.93 | 4.12 | 4.41 4.33 | 3.35 |
| 3,219.806 |  | $z^{7} D_{4}$ | $e^{7} \mathrm{P}_{3}$ | 50,611 | 3.87 | 3.95 | 4.33 |  |
|  |  | $\left(a^{5} D_{1}\right)$ | ( $z^{3} D_{1}$ ) | $(31,937)$ |  |  |  |  |
| 3,222.069 S | (.066) | $z^{7} D_{5}{ }^{\text {a }}$ | $f D_{5}$ | 50,378 | 4.53 | $4.52 r$ | $4.79 R$ | 3.89 |
| 3,225.789 S | (.786) | $z^{7} D_{5}$ | $e^{7} F_{6}$ | 50,342 | 4.76 | $4.65 R$ | $4.89 R$ | 4.17 |
| 3,227.798 |  | $z^{7} D_{4}$ | $f^{5} D_{3}$ | 50,534 | 4.04 | 4.11 | 4.48 | 3.30 |
| 3,229.123 | . 121 | $a^{5} D_{0}$ | $z^{3} D_{1}$ | 31,937 | 3.70 | 3.62 | . . . . | (0.22) |
| 3,230.210 |  | $z^{7} D_{2}$ | $e^{7} P_{2}$ | 50,861 | 3.32 | 3.54 |  | 2.78 |
| 3,230.963 |  | $z^{7} D_{3}$ | $f^{5} D_{2}$ | 50,699 | 3.66 | 3.83 | 4.156 | 3.04 |
| 3,233.053 |  | $b^{3} H_{6}$ | $x^{3} I_{7}$ | 57,028 | 3.87 | 3.52 | 4.060 | 3.58 |
| 3,233.967 |  | $z^{7} D_{4}$ | $e^{7} P_{4}$ | 50,475 | 3.76 | 3.82 | 4.149 | 2.99 |
| 3,234.614 | . 612 | $a^{5} D_{3}$ | $z^{3} \mathrm{D}_{3}$ | 31,323 | 4.09 | 3.91 | 3.75 | (0.44) |
| 3,236.223 S | . 222 | $a^{5} D_{2}$ | $z^{3} \mathrm{~F}_{4}$ | 31,307 | 4.55 | 4.18 | $3.98 r$ | (0.64) |
| 3,239.436 S | (.433) | $z^{7} D_{4}$ | $f^{5} \mathrm{D}_{4}$ | 50,423 | 4.12 | 4.10 | 4.427 | 3.27 |
| 3,244.190 S | (.187) | $z^{7} D_{4}$ | $f^{7} D_{5}$ | 50,378 | 4.22 | 4.07 | 4.368 | 3.24 |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,246.005 | . 004 | $a^{5} D_{1}$ | $z^{3} D_{2}$ | 31,686 | 4.02 |  | 3.72 | (0.48) |
| 3,246.962 |  | $a^{5} \mathrm{P}_{2}$ | $x^{3} P_{1}$ | 48,516 | 2.92 | 3.47 |  | 2.37 |
| 3,248. 206 |  | $z^{7} D_{3}$ | $f^{3} D_{3}$ | 50,534 | 3.1 | 3.75 | 3.964 | 2.93 |
| 3,254.363 | . 361 | $b^{3} H_{5}$ | $x^{3} I_{6}$ | 57,070 | 3.80 | 3.56 | 3.99 |  |
| 3,257.594 S | . 595 | $a^{5} \mathrm{P}_{3}$ | $v^{5} F_{2}$ | 48,239 | 3.11 | 3.53 | 3.71 |  |
| 3,265.046 | . 046 | $a^{5} D_{2}$ | $z^{3} D_{3}$ | 31,323 | 4.03 | 3.83 | 3.69 | (0.36) |
| 3,265.616 | . 617 | $a^{6}{ }^{\text {P }}$ | $v^{5} \mathrm{P}_{2}$ | 48,163 | 3.78 | 4.03 | 4.293 |  |
| 3,271.002 S | . 999 | $a^{5} \mathrm{P}_{2}$ | $v^{5} P_{1}$ | 48,290 | 3.74 | 4.05 | 4.279 |  |
| 3,280. 261 | . 262 | ${ }^{3} \mathrm{H}_{4}$ | $x^{8} I_{5}$ | 57,104 | 3.78 | 3.46 | 3.89 |  |
| 3,284.588 S | . 587 | $a^{5} \mathrm{P}_{2}$ | $v^{5} P_{2}$ | 48,163 | 2.81 | 3.40 | 3.552 |  |
| 3,286.755 S | . 7508 W | $a^{5} \mathrm{P}_{3}$ | $v^{5} \mathrm{P}_{3}$ | 47,967 | 4.42 | 4.38 | $4.62 r$ r |  |
| 3,292.022 | . 020 | $a^{3} D_{3}$ | $u^{8} \mathrm{~F}_{4}$ | 56,593 | 3.70 | 3.49 | 3.861 |  |
| 3,292.590 | . 589 | $a^{5} P_{1}$ | $v^{5} \mathrm{P}_{1}$ | 48,290 | 3.41 | 3.76 | 4.008 |  |
| 3,298.133 S | . 130 | $a^{5} P_{1}$ | $v^{5} F_{2}$ | 48,239 | 3.27 | 3.51 | 3.687 |  |
| 3,305.971 | . 973 | $a^{5} P_{2}$ | $v^{5} \mathrm{P}_{3}$ | 47,967 | 4.09 | 4.25 | 4.44 |  |
| 3,306.356 | . 352 | $a^{5} P_{1}$ | $v^{5} \mathrm{P}_{2}$ | 48,163 | 4.20 | 4.29 | 4.48 |  |
| 3,314.742 | . 742 | $a^{3} D_{2}$ | $u^{3} \mathrm{~F}_{3}$ | 56,783 | 3.67 | 3.41 | 3.80 |  |
| 3,323.737 | . 738 | $b^{3} P_{2}$ | $v^{3} P_{2}$ | 52,916 |  | 3.41 | 3.723 |  |
| 3,328.867 | . 867 | $b^{3} H_{6}$ | $u^{3} H_{5}$ | 56,383 | 3.50 |  | 3.666 |  |
| 3,337.666 | . 666 | $a^{3} G_{5}$ | $u^{3} G_{4}$ | 51,668 | 3.25 | $\ldots$ | 3.433 |  |
| 3,340.566 S | . 565 | $a^{8} P_{2}$ | $x^{3} P_{2}$ | 48,305 | 3.16 | ..... | 3.395 |  |
| 3,341.906 | . 906 | $a^{2} G_{5}$ | 65 | 51,630 | 3.22 |  |  |  |
| 3,342.216 | . 215 | $a^{3} P_{2}$ | $v^{5} P_{1}$ | 48,290 | 2.86 |  | 3.53 |  |
| 3,342.298 | . 292 | $b^{3} P_{1}$ | 81 | 52,858 | 3.31 |  |  |  |
| 3,347.927 S | . 926 | $a^{3} P_{2}$ | ${ }^{\mathbf{5}} \mathrm{F}_{2}$ | 48,239 | 3.06 |  | 3.331 |  |
| 3,355.228 | . 226 | $b^{3} \mathrm{H}_{4}$ | $u^{3} \mathrm{H}_{4}$ | 56,423 | 3.43 |  | 3.615 |  |
| 3,369.549 | . 549 | $a^{3} G_{4}$ | $u^{3} G_{4}$ | 51,668 | 3.82 | 3.74 | 3.964 |  |
| 3,370.786 S | . 784 | $a^{3} G_{6}$ | $u^{2} G_{5}$ | 51,374 | 4.07 | 3.99 | 4.196 |  |
| 3,378.676 | . 676 | $a^{2} G_{5}$ | $v^{3} F_{4}$ | 51,305 | 3.59 | 3.41 | 3.70 |  |
| 3,379.017 | . 017 | $a^{5} P_{3}$ | $w^{3} D_{2}$ | 47,136 | 3.38 | 3.48 | 3.74 |  |
| 3,380.111 | . 110 | $a^{3} G_{3}$ | $u^{3} G_{3}$ | 51,826 | 3.71 | 3.63 | 3.86 |  |
| 3,383.981 | . 980 | $a^{5} \mathrm{P}_{3}$ | $x^{3} F_{3}$ | 47,093 | 3.82 | 3.81 | 3.99 |  |
| 3,389.748 | . 741 | $a^{5} P_{1}$ | 12 | 47,420 | 3.05 |  | 3.832 |  |
| 3,392.304 | . 305 | $a^{5} P_{2}$ | $x^{3} F_{2}$ | 47,197 | 3.72 | 3.72 |  |  |
| 3,392.652 | . 653 | $a^{5} \mathrm{P}_{3}$ | $w^{3} D_{3}$ | 47,107 | 4.14 | 4.20 | 4.32 |  |
| 3,394.583 | . 583 | $a^{5} \mathrm{P}_{2}$ | $u^{5} D_{1}$ | 47,177 | 3.41 | 3.54 | 3.683 |  |
| 3,396.978 S | . 979 | $a^{5} F_{3}$ | $y^{5} P_{2}$ | 37,158 | 2.74 | 3.62 | 3.47 |  |
| 3,399.336 S | . 334 | $a^{5} P_{2}$ | $w^{3} D_{2}$ | 47,136 | 4.13 | 4.22 | 4.301 |  |
| 3,401.521 S | . 516 | $\mathrm{a}^{5} \mathrm{~F}_{4}$ | $y^{5} \mathrm{P}_{3}$ | 42,967 | 3.15 | 3.92 | $3.79 r$ |  |
| 3,402.256 | . 255 | $b^{3} H_{6}$ | $v^{3} H_{6}$ | 55,490 | 3.67 | 3.51 | 3.770 |  |
| 3,404.357 | . 351 | $a^{5} P_{2}$ | $x^{3} F_{3}$ | 47,093 | 4.06 | 4.11 | 4.270 |  |
| 3,406.803 | . 803 | $a^{5} P_{1}$ | $w^{3} \mathrm{D}_{1}$ | 47,272 | 3.75 | 3.86 | 3.95 |  |
| 3,407.461 S | . 4573 W | $a^{5} \mathrm{P}_{3}$ | $x^{3} F_{4}$ | 46,889 | 4.63 | 4.68 | 4.67 r |  |
| 3,413.135 S | . 1295 W | $a^{5} \mathrm{P}_{2}$ | $w^{2} D_{3}$ | 47,017 | 4.44 | 4.39 | $4.42 r$ |  |
| 3,417.842 | . 843 | $a^{5} \mathrm{P}_{1}$ | $u^{5} \mathrm{D}_{1}$ | 47,177 | 4.62? | 4.19 | 4.241 |  |
| 3,418.507 | . 507 | $a^{5} P_{1}$ | $u^{5}{ }^{\text {d }}$ 0 | 47,172 | 3.88 | 4.09 | 4.173 |  |
| 3,422.656 | . 656 | $a^{5} P_{1}$ | $w^{3} D_{2}$ | 47,136 | 3.84 | 3.96 | 4.12 |  |
| 3,424.284 | . 285 | $a^{5} \mathrm{P}_{3}$ | $u^{5} D_{3}$ | 46,745 | 4.04 | 4.17 | 4.228 |  |
| 3,426.383 | . 381 | $a^{5} \mathrm{P}_{3}$ | $y^{3} P_{2}$ | 46,727 | 3.59 | 3.94 | 4.14 |  |
| 3,426.637 |  | $a^{5}{ }^{2} 2$ | $y^{3} P_{1}$ | 46,902 | 3.73 | 3.85 |  |  |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,427.121 S | . 119 | $a^{5} \mathrm{P}_{3}$ | $u^{5} D_{4}$ | 46,721 | 4.57 | 4.63 | $4.61 r$ |  |
| 3,428.192 | . 193 | $a^{5} \mathrm{P}_{2}$ | $u^{5} D_{2}$ | 46,889 | 3.98 | 4.06 | 4.127 |  |
| 3,440.610 | . 606 | $a^{5} D_{4}$ | $z^{5} \mathrm{P}_{8}$ | 29,056 | 5.76 | $5.46 R$ | $4.6 R$ | 2.4 |
| 3,440.989 | . 989 | $a^{5} D_{3}$ | $2^{5} \mathrm{P}_{2}$ | 29,469 | 5.39 | $5.22 R$ | $4.5 R$ | 2.0 |
| 3,443.878 S | (.878) | $a^{5} D_{2}$ | $z^{5} P_{1}$ | 29,733 | 5.02 | $4.89 r$ | 4.32R | 1.728 |
| 3,445.151 S | (.148) | $a^{5} \mathrm{P}_{2}$ | $u^{5}{ }^{\text {D }}$ 3 | 46,745 | 4.28 | 4.32 | $4.34 r$ | 3.56 |
| 3,450.328 | . 328 | $a^{5} P_{1}$ | $y^{3} P_{1}$ | 46,902 | 3.75 | 3.93 | 3.922 | 3.20 |
| 3,451.915 | . 915 | $a^{5} P_{1}$ | $u^{5} \mathrm{D}_{2}$ | 46,889 | 3.76 | 3.93 | 4.13 | 3.20 |
| 3,452.273 | . 274 | $a^{5} \mathrm{~F}_{3}$ | $y^{3} \mathrm{~F}_{4}$ | 36,686 | 3.69 | 4.14 | 4.13 | (1.59) |
| 3,465.863 S | . 8592 W | $a^{5} D_{1}$ | $z^{5} P_{1}$ | 29,733 | 5.13 | $5.02 r$ | $4.36 R$ | 1.898 |
| 3,475.450 | . 448 | $a^{5} D_{2}$ | $z^{5} \mathrm{P}_{2}$ | 29,469 | 5.32 | $5.13 R$ | $4.48 R$ | 2.031 |
| 3,476.704 S | . 7003 W | $a^{5} D_{0}$ | $z^{5} \mathrm{P}_{1}$ | 29,733 | 4.80 | $4.74 r$ | $4.32 R$ | 1.578 |
| 3,490.575 S | (.574) | $a^{5} D_{3}$ | $z^{5} \mathrm{P}_{3}$ | 29,056 | 5.38 | $5.06 R$ | $4.43 R$ | 1.971 |
| 3,497.110 |  | $a^{5} P_{8}$ | $w^{5} \mathrm{P}_{3}$ | 46,137 | 3.58 | 3.99 | 4.152 | 3.18 |
| 3,497.843 S | . 8384 W | $a^{5} D_{1}$ | $z^{5} \mathrm{P}_{2}$ | 29,469 | 4.82 | $4.62 r$ | 4.30R | 1.537 |
| 3,513.820 S | . 8158 W | $a^{5} F_{5}$ | $z^{3} G_{5}$ | 35,379 | 4.55 | 4.48 | $4.48 R$ | (2.16) |
| 3,521.264 S | . 2601 W | $a^{5} F_{4}$ | $z^{3} G_{4}$ | 35,768 | 4.45 | 4.52 | 4.51 | (2.24) |
| 3,526.039 | . 040 | $a^{5} D_{2}$ | $z^{5} \mathrm{P}_{3}$ | 29,056 | 4.65 \} | 4. | $4.7 R$ | (0.83) |
| 3,526.167 | . 163 | $a^{5} \mathrm{~F}_{3}$ | $z^{3} G_{3}$ | 36,079 | 4.15 ( | 4. | 4.72 | (2.00) |
| 3,533. 201 | . 196 | ${ }^{7} F_{1}$ | $e^{7} G_{2}$ | 51,540 | 3.96 | 3.98 | 4.20 | 3.87 |
| 3,536.556 | . 554 | $z^{7} F_{2}$ | $e^{7} G_{3}$ | 51,461 | 4.15 4.34 | 4.15 4.29 | 4.425 $4.56 r$ | 4.04 4.14 |
| 3,541.083 | . 083 | $z^{7} F_{4}$ | $e^{7} G_{5}$ | 51,229 51,335 | 4.34 4.29 | 4.29 4.24 | $4.56 r$ $4.52 r$ | 4.14 4.10 |
| 3,542.076 | . 076 | $z^{7} F_{8}$ | $e^{7} G_{4}$ $z^{5} G_{2}$ | 51,335 35,856 | 4.29 3.16 | 4.24 3.85 | $4.52 r$ 4.04 | 4.10 1.59 |
| 3,554.122 | . 117 | $a^{5} \mathrm{~F}_{3}$ | $z^{5} G_{2}$ $e^{7} G_{6}$ | 35,856 $\mathbf{5 0 , 9 6 8}$ | 3.16 4.29 | 3.85 4.53 | 4.04 $4.79 r$ | 4.35 |
| 3,554.922 | . 927 | $z^{7} F_{5}$ | $e^{7} G_{6}$ | 50,968 | 4.29 | 4.53 | $4.79 r$ | 4.35 |
| 3,556.877 | . 877 | $z^{7} F_{4}$ | $f^{5} \mathrm{~F}_{5}$ | 51,103 | 4.22 | 4.10 | 4.326 | 3.93 |
| 3,558.518 S | (.516) | $a^{5} \mathrm{~F}_{2}$ | $z^{3} G_{3}$ | 36,079 | 4.54 | 4.73 | $4.59 R$ | (2.55) |
| 3,565.381 S | . 3778 W | $a^{5} F_{3}$ | $z^{3} G_{4}$ | 35,768 | 4.98 | 5.22 | $4.80 R$ | (2.99) |
| 3,570.100 | . 0964 H | $a^{5} F_{4}$ | $z^{3} G_{5}$ | 35,379 | 5.13 | 5.51R $\}$ | $5.11 R$ | (3.14) |
| 3,570.243 |  | $z^{7} F_{6}$ | $e^{7} G_{7}$ | 50,652 | 4.91 |  |  |  |
| 3,571.995 | . 995 | $z^{7} F_{6}$ | $e^{7} F_{5}$ | 50,833 | 3.94 | 3.87 | 4.124 | 3.67 |
| 3,573.896 | . 886 | $b^{3} H_{4}$ | $t^{3} G_{8}$ | 54,600 | 3.81 | 3.79 | 4.00 | 4.12 |
| 3,581.195 S | .1926 H | $a^{5} \mathrm{~F}_{5}$ | ${ }^{2} G_{6}$ | 34,844 | 5.56 | $5.73 R$ | $4.98 R$ | 3.6 |
| 3,582. 201 | . 201 | $b^{3} H_{6}$ | 125 | 54,014 | 4.05 | $\ldots$ | 4.01 |  |
| 3,584.663 S | (.659) | $a^{3} G_{5}$ | $y^{3} H_{5}$ | 49,604 | 4.14 | 4.09 | 4.32 | 3.73 |
| 3,585.320 S | (.318) | $a^{5} \mathrm{~F}_{3}$. | $z^{5} G_{3}$ | 35,612 | 4.60 | 4.72 | 5.02 | (2.40) |
| 3,585.708 |  | $a^{5} \mathrm{~F}_{4}$ | $z^{5} G_{4}$ | 35,257 | 4.35 | 4.47 | 4.74 | (2.14) |
| 3,586.114 S | (.109) | $b^{3} H_{6}$ | $t^{3} G_{6}$ | 53,983 | 4.40 | 4.02 | 4.23 | 4.26 |
| 3,586.985 |  | $a^{5} \mathrm{~F}_{2}$ | $z^{5} G_{2}$ | 35,856 | 4.60 | 4.71 | $4.64 R$ | (2.46) |
| 3,589.107 S | (.105) | $a^{5} \mathrm{~F}_{5}$ | $z^{5} G_{6}$ | 34,782 | 3.66 | 4.11 | 4.34 | (1.42) |
| 3,594.632 | . 631 | $z^{7} F_{4}$ | $f D_{4}$ | 50,808 | 3.91 | 3.91 | 4.068 | 3.71 |
| 3,603.205 | . 205 | $a^{8} G^{6}$ | $v^{2} G_{5}$ | 49,461 | 4.117 | 4.08 | 4.274 | 3.70 |
| 3,605.450 | . 454 | $a^{3} G_{4}$ | $y^{3} \mathrm{H}_{4}$ | 49.727 | 4.386 | 4.22 | $4.56 r$ | 3.87 |
|  |  | ( $z{ }^{\prime} F_{6}$ ) | $\left(f / D_{5}\right)$ | 50,378 |  |  |  |  |
| 3,606.679 | . 679 | $a^{3} G_{5}$ | $y^{3} H_{6}$ | 49,434 | 4.38 | 4.52 | $4.65 r$ | $4.13$ |
| 3,608.861 S | . 8591 H | $a^{5} F_{1}$ | ${ }^{2} G_{2}$ | 35,856 | 5.239 | $5.27 r$ | $4.78 R$ | (3.02) |
| 3,610.159 |  | $z^{7} F_{6}$ | $e^{7} F_{6}$ | 50,342 | 4.353 | 4.26 | $4.53 r$ | 3.99 |
| 3,617.788 S |  | $c^{3} P_{2}$ | $u^{3} \mathrm{D}_{3}$ | 51,969 | 4.137 | 4.01 | 4.26 | 3.97 |
| 3,618.769 S | . 7672 H | $a^{5} F_{2}$ | ${ }^{5} \mathrm{~F}_{3}$ | 35,612 | 5.364 | $5.35 r$ | $4.83 R$ | (3.18) |
| 3,621.463 S | (.460) | $a^{3} G_{4}$ | $y^{3} H_{5}$ | 49,604 | 4.33 | 4.30 | $4.48 r$ | 3.94 |
| 3,622.001 | . 004 | $a^{3} G_{2}$ | $v^{3} G_{3}$ | 49,851 | 4.16 | 4.11 | 4.36 | 3.80 |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{5}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,623.187 | . 186 | $a^{3} H_{6}$ | $z^{3} H_{6}$ | 46,982 | 4.141 | 3.88 | 4.013 | 3.59 |
| 3,631.464 S | . 4625 H | $a^{5} \mathrm{~F}_{3}$ | ${ }^{25} G_{4}$ | 35,257 | 5.441 | 5.38 | $4.85 R$ | (3.01) |
| 3,634.326 | . 325 | $z^{7} P_{4}$ | $e^{5} G_{3}$ | 51,219 | 3.53 |  | 4.85R 3.83 |  |
| 3,638.296 | . 296 | $a^{3} G_{3}$ | $y^{3} \mathrm{H}_{4}$ | 49,727 | 3.96 | 3.95 | 4.15 | 3.60 |
| 3,640.388 | . 388 | $a^{3} G_{4}$ | $v^{3} G_{5}$ | 49,461 | 4.253 | 4.21 | 4.390 | 3.83 |
| 3,645.822 | . 818 | $c^{3} P_{0}$ | $u^{3} D_{1}$ | 52,512 | 3.56 |  | 3.83 |  |
| 3,647.844 S | . 8419 H | $a^{5} \mathrm{~F}_{4}$ | $z^{5} G_{5}$ | 34,782 | 5.411 | $5.30 r$ | 4.80 R | (2.91) |
| 3,649.304 | . 301 | $a^{5} D_{4}$ | ${ }_{2}{ }^{5} F_{3}$ | 27,395 | 3.58 | 4.00 |  | (0.13) |
| 3,649.508 S | (.505) | $a^{2} G_{5}$ | $w^{3} \mathrm{~F}_{4}$ | 49,109 | 4.397 | 4.23 | 3.44 |  |
| 3,650.031 | . 026 | $z^{7} \mathrm{P}_{3}$ | $e^{7} S_{3}$ | 51,570 | 3.54 | 4.23 4.05 | 3.44 | 3.95 |
| 3,650. 280 | . 278 | $a^{3} \mathrm{H}_{5}$ | $z^{3} \mathrm{H}_{5}$ | 47,008 | 4.141 | 3.86 | 3.0 | 3.15 |
| 3,651.469 S | (.466) | $a^{2} G_{3}$ | $v^{3} G_{4}$ | 49,628 | 4.361 | 3.86 4.21 | 3.471 | 3.15 |
| 3,659.516 | . 516 | $a^{3} H_{4}$ | $z^{3} H_{4}$ | 47,107. | 3.899 | 3.78 | 3.471 | 3.85 3.08 |
| 3,669.523 S | (.520) | $a^{2} G_{4}$ | $w^{3} F_{3}$ | 49,243 | 4.101 | 3.95 | 4.19 | 3.54 |
| 3,676.314 S | (.311) | ${ }^{3} F_{4}$ | $x^{3} G_{5}$ | 47,835 | 3.934 | 3.72 | 3.844 | 3.11 |
| 3,677.630 S | (.627) | $a^{8} G_{3}$ | $w^{3} F_{2}$ | 49,433 | 4.15 | 4.16 | 4.38 | 3.77 |
| 3,679.915 S | . 9128 H | $a^{5} D_{4}$ | ${ }^{5} F_{4}$ | 27,167 | 5.071 | $4.88 r$ | $4.36 R$ | 1.449 |
| 3,682. 226 |  | $a^{1} D_{2}$ | $w^{1} D_{2}$ | 55,754 | 4.175 | 3.97 | 4.260 | 4.45 |
| 3,683. 054 |  | $a^{5} D_{3}$ | $z^{5} F_{2}$ | 27,560 | 3.945 | 3.89 | 4.10 R | 0.496 |
| 3,684. 108 | . 109 | $a^{3} G_{4}$ | $v^{3} D_{3}$ | 49,135 | 4.156 | 4.04 | 4.210 | 3.61 |
| 3,685.998 | . 995 | ${ }^{7}{ }^{7}{ }_{4}$ | $e^{7} F_{5}$ | 50,833 | 4.01 | 4.00 | 4.22 | 3.80 |
| 3,687.458 S | . 4559 H | $a^{5} F_{5}$ | $y^{5} F_{4}$ | 34,040 | 4.663 | $5.11 r$ | $4.63 R$ | 2.378 |
| 3,689.457 | . 457 | $z^{7} P_{4}$ | $f^{\prime} D_{4}$ | 50,808 | 3.876 | 3.97. | 4.196 | 3.77 |
|  |  | ${ }^{3} P_{1}$ | $w^{3} P_{1}$ | 50,043 |  |  |  |  |
| 3,694.005 | . 005 | $z^{7} P_{2}$ | $e^{7} S_{3}$ | 51,570 | 4.11 | 4.16 | 4.333 | 4.06 |
| 3,695.054 S | (.051) | ${ }^{3} F_{3}$ | $v^{5} F_{4}$ | 47,930 | 4.014 | 3.80 | 3.998 | 4.06 3.20 |
| 3,697.426 | . 424 | $z^{7} P^{3}$ | $e^{5} \mathrm{G}_{3}$ | 51,219 | 3.485 | 3.73 | 3.837 | 3.58 |
| 3,701.086 | . 085 | $z^{7} P_{3}$ | $e^{7} F_{4}$ | 51,192 | 4.10 | 4.11 | 4.330 | 3.96 |
| 3,703.556 | . 546 | $a^{3} G_{3}$ | $w^{3} F_{3}$ | 49,243 | 3.47 |  | 3.93 |  |
| 3,704.463 S | (.460) | $a^{3} G_{5}$ | $y^{1} G_{4}$ | 48,703 | 3.971 | 4.12 | 4.00 | 3.64 |
| 3,705.567 S | . 5657 H | $a^{5} D_{3}$ | ${ }^{25} F_{3}$ | 27,395 | 5.249 | $4.04 r$ | 5.45R | 1.698 |
| 3,707.048 | . 041 | $z^{7} P_{3}$ | $e^{\boldsymbol{T}} \mathrm{F}_{3}$ | 51,149 | 3.79 | 3.83 | 4.040 | 3.67 |
| 3,707.824 | . 822 | $a^{5} D_{2}$ | ${ }^{5} F_{1}$ | 27,666 | 4.17 \} |  |  |  |
| 3,707.918 | . 918 | $a^{5} \mathrm{P}_{3}$ | $y^{5} S_{2}$ | 44,512 | 4.42 \} | 4.56 | $4.65 R$ | 0.652 |
| 3,709.246 | . 246 | $a^{5} \mathrm{~F}_{4}$ | $y^{5} F_{3}$ | 34,329 | 4.758 | $5.00 r$ | $4.66 R$ | 2.540 |
| 3,716.442 | . 439 | $z^{7} P_{4}$ | $e^{7 P_{3}}$ | 50,611 | 3.877 | 3.87 | 4.083 | 3.65 |
| 3,719.935 S | . 9346 H | $a^{5} D_{4}$ | $2^{5} F_{5}$ | 26,875 | 5.954 | 5.73R | $4.76 R$ | 2.541 |
| 3,722.564 S | . 5627 H | $a^{6} D_{2}$ | $z^{5} \mathrm{~F}_{2}$ | 27,560 | 5.10 | $5.06 r$ | 4.45R | 1.747 |
| 3,724.380 S | (.377) | $a^{3} \mathrm{P}_{2}$ | $x^{3} D_{3}$ | 45,221 | 4.04 | 3.99 | 4.162 | 3.03 |
| 3,727.621 S | . 6174 W | $\mathrm{a}^{\text {b }} \mathrm{F}_{3}$ | $y^{5} \mathrm{~F}_{2}$ | 34,547 | 4.69 | $4.97 r$ | 4.68R | 2.543 |
| 3,730.386 | . 386 | $\boldsymbol{a}^{1} G_{4}$ | $u^{2} G_{6}$ | 51,826 | 3.64 |  | 3.804 |  |
| 3,732.399 S | (.396) | $a^{5} \mathrm{P}_{2}$ | $y^{5} S_{2}$ | 44,512 | 4.29 | 4.22 | 4.43 r | 3.16 |
| 3,733.319 S | . 3163 H | $a^{5}{ }^{\text {d }}$ | $z^{5} F_{1}$ | 27,666 | 5.00 | $4.96 r$ | $4.46 R$ | 1.624 |
| 3,734.867 S | . 8622 W | ${ }^{5}{ }^{5} F_{5}$ | $y^{5} F_{5}$ | 33,695 | 5.57 | $5.76 R$ | 5.03R | 3.475 |
| 3,737.133 S | . 1317 H | $a^{5} \mathrm{D}_{3}$ | $z^{5} \mathrm{~F}_{4}$ | 27,167 | 5.89 | 5.57R | 4.79R | 2.408 |
| 3,738.308 S | (.305) | ${ }^{3}{ }^{3} H_{5}$ | $z^{1} I_{6}$ | 53,094 | 4.31 | 3.86 | 4.19 | 3.97 |
| 3,743.364 | . 362 | $a^{5} F_{2}$ | $y^{5} F_{1}$ | 34,692 | 4.53 | 4.77 | 4.75R | 2.392 |
| 3,745.561 | . 561 | $a^{5} D_{2}$ | $z^{5} F_{3}$ | 27,395 | 5.66 | $5.38 R$ | 4.78 | (2.20) |
| 3,745.901 | . 900 | $a^{5} D^{\text {a }}$ | $z^{5} F_{1}$ | 27,666 | 5.09 | $4.96 r$ |  | (1.7) |
| 3,748.264 S | (.262) | $a^{5} D_{1}$ | $z^{5} \mathrm{~F}_{2}$ | 27,560 | 5.41 | 5.19R | $4.61 R$ | 1.990 |
| 3,749.487 S | (.485) | $a^{5} F_{4}$ | $y^{5} \mathrm{~F}_{4}$ | 34,040 | 5.43 | 5.57R | $4.98 R$ | 3.310 |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A_{\nu}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,753.610 | . 610 | $a^{5} P_{3}$ | $w^{5} D_{2}$ | 44,184 | 3.75 | 3.92 | 4.134 | 2.82 |
| 3,758.235 S | . 2328 H | $\mathrm{a}^{5} \mathrm{~F}_{8}$ | $y^{5} \mathrm{~F}_{3}$ | 34,329 | 5.25 | $5.35 r$ | $4.90 R$ | 3.119 |
| 3,760.052 S | . 0492 H | $\mathrm{a}^{3} \mathrm{H}_{6}$ | $z^{3} I_{7}$ | 45,978 | 4.51 | 3.88 | 4.130 | 3.03 |
| 3,763.790 S | . 7888 H | $\mathrm{a}^{5} \mathrm{~F}_{2}$ | $y^{5} F_{2}$ | 34,547 | 5.01 | $5.17 r$ | $4.81 R$ | 2.926 |
| 3,765.542 S | . 5386 H | $b^{3} H_{6}$ | $y^{3} I_{7}$ | 52,655 | 4.52 | 4.25 | $4.60 r$ | 4.31 |
| 3,767.194 S | . 1911 H | $a^{5} F_{1}$ | $y^{5} F_{1}$ | 34,692 | 4.75 | $5.03 r$ | $4.89 R$ | 2.785 |
| 3,785.950 |  | $a^{8} H_{5}$ | $z^{3} I_{6}$ | 46,027 | 4.36 | 3.86 | 4.04 | 3.00 |
| 3,786.678 | . 676 | $a^{5} F_{1}$ | $z^{3} P_{0}$ | 34,556 | 3.91 | 3.86 | $3.93 r$ | (1.22) |
| 3,787.883 S | . 8799 H | $a^{5} F_{1}$ | $y^{5} F_{2}$ | 34,547 | 4.450 | 4.76 | $4.63 R$ | 2.290 |
| 3,790.095 S | . 0926 H | $\mathrm{a}^{5} \mathrm{~F}_{2}$ | $z^{3} P_{1}$ | 34,363 | 4.345 | 4.22 | $4.32 R$ | (1.62) |
| 3,794.340 |  | $a^{3} H_{4}$ | $z^{3} I_{5}$ | 46,136 | 4.226 | 3.74 | 3.936 | 2.90 |
| 3,795.004 S | (.002) | $a^{5} \mathrm{~F}_{2}$ | $\boldsymbol{y}^{5} \mathrm{~F}_{3}$ | 34,329 | 4.580 | 4.89 | $4.69 R$ | 2.384 |
| 3,797.517 S | (.514) | $b^{3} H_{6}$ | $w^{8} \mathrm{H}_{6}$ | 52,431 | 4.091 | 4.01 | 4.344 | 4.03 |
| 3,798.513 S | (.511) | $a^{5} \mathrm{~F}_{4}$ | $y^{5} \mathrm{~F}_{5}$ | 33,695 | 4.421 | 4.66 | $4.61 R$ | 2.028 |
| 3,799.549 S | . 5471 H | $a^{5} \mathrm{~F}_{3}$ | $y^{5} \mathrm{~F}_{4}$ | 34,040 | 4.577 | 4.82 | $4.69 R$ | 2.306 |
| 3,805.345 S | . 3425 H | ${ }^{3}{ }^{3} H_{4}$ | $y^{3} I_{5}$ | 52,889 | 4.304 | 4.18 | 4.440 | 4.27 |
| 3,806.697 |  | $b^{3} H_{5}$ | $w^{3} \mathrm{H}_{5}$ | 52,613 | 3.945 | 3.98 | 4.24 | 4.03 |
|  |  | ( $b^{3} F_{8}$ ) | ( $w^{3} D_{2}$ ) | 47,136 |  |  |  |  |
| 3,807.534 | . 536 | $a^{5} P_{1}$ | $w^{5} D_{2}$ | 44,184 | 3.59 | 3.90 | 4.076 | 2.80 |
| 3,812.964 | . 9639 H | $a^{5} \mathrm{~F}_{3}$ | $z^{3} P_{2}$ | 33,947 | 4.784 | 4.70 | $4.68 R$ | (2.16) |
| 3,814.526 |  | $a^{5} F_{1}$ | $z^{3} P_{1}$ | 34,363. | 3.74 | 3.80 | $3.90 R$ | (1.02) |
| 3,815.842 S | . 8402 H | $a^{3} \mathrm{~F}_{4}$ | $y^{3} D_{8}$ | 38,175 | 5.291 | $5.19 r$ | $4.98 R$ | (3.36) |
| 3,820.428 | . 4253 H | $a^{5} \mathrm{~F}_{5}$ | $y^{5} D_{4}$ | 33,096 | 5.444 | $5.36 r$ | $4.98 R$ | (3.13) |
| 3,821.181 | . 175 | $b^{3} \mathrm{H}_{5}$ | $y^{3} I_{6}$ | 52,514 | 4.21 |  | 4.48 |  |
| 3,824.444 S | . 4440 H | $\mathrm{a}^{5} \mathrm{D}_{4}$ | $z^{5} D_{3}$ | 26,140 | 5.357 | $5.04 r$ | $4.65 R$ | 1.634 |
| 3,825.884 S | . 8809 H | $a^{5} \mathrm{~F}_{4}$ | $y^{5} D_{3}$ | 33,507 | 5.240 | $5.42 r$ | $4.99 R$ | (2.98) |
| 3,827.825 S | . 8228 H | $a^{3} \mathrm{~F}_{8}$ | $y^{3} D_{2}$ | 38,678 | 5.091 | $5.06 r$ | $4.96 R$ | (3.31) |
| 3,834.225 S | . 2219 H | $\mathrm{a}^{5} \mathrm{~F}_{3}$ | $y^{5} D_{2}$ | 33,802 | 4.973 | $5.11 r$ | $4.83 R$ | (2.81) |
| 3,839.259 S | (.256) | $a^{1} G_{4}$ | $x^{1} G_{4}$ | 50,614 | 4.114 | 3.98 | 4.15 | 3.76 |
| 3,840.439 S | (.437) | $a^{5} \mathrm{~F}_{2}$ | $y^{5} D_{1}$ | 34,017 | 4.697 | $5.02 r$ | $4.72 R$ | (2.58) |
| 3,841.051 S | . 0481 H | $a^{3} F_{2}$ | $y^{3} D_{1}$ | 38,996 | 4.942 | 4.98 | $4.86 R$ | (3.19) |
| 3,843.259 S | . 2568 H | $a^{1} G_{4}$ | $z^{1} F_{3}$ | 50,587 | 4.160 |  |  |  |
| 3,846.803 S | . 8004 H | $a^{3} D_{3}$ | $t^{3} D_{3}$ | 52,213 | 3.938 | 3.95 | 4.22 | 3.94 |
| 3,849.969 | . $9591 H$ | $a^{5} F_{1}$ | $y^{5} D_{0}$ | 34,122 | 4.326 | 4.80 | $4.65 R$ | (2.34) |
| 3,850.820 S | (.818) | $a^{5} \mathrm{~F}_{2}$ | $z^{3} \mathrm{P}_{2}$ | 33,947 | 4.083 | 4.25 | $4.34 R$ | (1.63) |
| 3,852.574 |  | $a^{5} P_{3}$ | $w^{5} D_{4}$ | 43,500 | 3.381 | 3.78 | 3.938 | 2.59 |
| 3,856.373 S | $.3714 H$ | $a^{5} D_{8}$ | $z^{5} D_{2}$ | 26,340 | 5.365 | $5.08 r$ | $4.25 R$ | 1.691 |
| 3,859.214 | . 211 | $a^{3} H_{6}$ | $y^{3} G_{5}$ | 45,295 | 4.17 |  | 4.31 |  |
| 3,859.913 S | . $9123 H$ | $a^{5} D_{4}$ | $z^{5} D_{4}$ | 25,900 | 5.978 | 5.52R | $4.76 R$ | 2.244 |
| 3,865.526 S | (.524) | $a^{5} F_{1}$ | $y^{5} D_{1}$ | 34,017 | 4.250 | 4.72 | $4.64 R$ | (2.25) |
| 3,867.219 S | . 2157 H | $c^{3} \mathrm{P}_{2}$ | $w^{3} P_{2}$ | 50,817 | 3.801 | 3.82 | 4.004 | 3.62 |
| 3,872.504 S | . 5006 H | $a^{5} \mathrm{~F}_{2}$ | $y^{5} D_{2}$ | 33,802 | 4.366 | 4.77 | $4.63 R$ | (2.24) |
| 3,873.763 S | . 7608 H | $a^{3} H_{5}$ | $y^{3} G_{4}$ | 45,428 | 4.158 | 3.91 | 4.11 | 2.97 |
| 3,878.021 S | (.019) | $a^{5} \mathrm{~F}_{3}$ | $y^{5} D_{3}$ | 33, 501 | 4.36 | 4.79 | $4.66 R$ | (2.24) |
| 3,878.575 S | . 5734 H | $a^{5} \mathrm{D}_{2}$ | $z^{5} D_{1}$ | 26,479 | 5.257 | $5.00 r$ | $4.68 R$ | 1.694 |
| 3,885.512 | . 508 | $a^{3} P_{1}$ | $x^{3} D_{2}$ | 45,282 | 3.57 |  | 3.92 |  |
| 3,886.284 S | . 2829 H | $a^{5} \mathrm{D}_{3}$ | $z^{5} D_{3}$ | 26,140 | 5.619 | $5.11 r$ | $4.60 R$ | 1.865 |
| 3,887.051 S | (.049) | $a^{5} \mathrm{~F}_{4}$ | $y^{5} D_{4}$ | 33,096 | 4.303 | 4.63 | $4.59 R$ | (2.05) |
| 3,888.517 S | . 5135 H | $a^{3} F_{2}$ | $y^{3} D_{2}$ | 38,678 | 4.459 | 4.57 | $4.78 R$ | (2.70) |
| 3,893.391 | . 390 | $b^{3} G_{5}$ | $v^{3} G_{5}$ | 49,461 | 3.71 | 3.80 | 4.04 | 3.42 |
| 3,895.658 S | . 6563 H | $a^{5} D_{1}$ | $z^{5} D_{0}$ | 26,550 | 4.907 | $4.81 r$ | $4.43 R$ | 1.266 |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A_{\nu}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3,897.896 | . 8889 H | $a^{3} G_{6}$ | $w^{5} G_{6}$ | 47,363 | 2.54 \} |  |  |  |
| 3,898.012 | . 009 | $a^{5} F_{1}$ | $y^{5} D_{2}$ | 33, 802 | 3.33 \} | 4.09 | 4.35 | (1.34) |
| 3,899.709 S | . 7077 H | $a^{5} D_{2}$ | $z^{5} D_{2}$ | 26,340 | 5.112 | $4.99 r$ | $4.43 R$ | 1.402 |
| 3,902.948 S | . 9454 H | $a^{3} F_{3}$ | $y^{3} D_{3}$ | 38,175 | 4.624 | 4.72 | 4.78R | (2.87) |
| 3,903.902 | . 898 | $b^{3} G_{4}$ | $y^{3} \mathrm{H}_{4}$ | 49,727 | 3.20 | 3.60 | 3.794 | 3.25 |
| 3,906.482 S | . 4795 H | $a^{5} D_{1}$ | $z^{5} \mathrm{D}_{1}$ | 26,479 | 4.371 | 4.40 | 4.28R | 0.816 |
| 3,907.464 |  | $a^{3} G_{3}$ | $x^{3} G_{3}$ | 47,834 | 3.02 |  |  |  |
| 3,907.937 S | (.934) | $a^{3} G_{3}$ | $w^{5} G_{2}$ | 47,831 | 3.51 | 3.55 | 3.669 | 2.95 |
| 3,916.733 |  | ${ }^{3} H_{6}$ | 65 | 51,630 | 3.732 | 3.56 | 3.79 | 3.47 |
| 3,917.185 S | (.183) | $a^{5} F_{2}$ | $y^{5} D_{3}$ | 33,507 | 3.19 | 3.94 | 4.01 | (1.23) |
| 3,918.644 |  | $b^{3} G_{3}$ | $v^{2} G_{3}$ | 49,851 | 3.52 |  | 3.87 |  |
| 3,920.260 S | . 2579 H | $a^{5} D_{0}$ | $2^{5} D_{1}$ | 26,479 | 4.848 | $4.74 r$ | $4.34 R$ | 1.324 |
| 3,922.914 S | . 9115 H | $a^{5} D_{3}$ | $z^{5} D_{4}$ | 25,900 | 5.084 | $4.91 r$ | $4.42 R$ | 1.300 |
| 3,925.946 | ……... | $b^{3} P_{0}$ | $x^{3} P_{1}$ | 48,516 | 3.40 | 3.63 | 3.81 | 3.12 |
| 3,927.922 S | . 9204 H | $a^{5} D_{1}$ | $z^{5} D_{2}$ | 26,340 | 5.107 | 4.96 | $4.51 R$ | 1.391 |
| 3,930.299 S | . 2967 H | $a^{5} D_{2}$ | $z^{5}{ }^{\text {d }}$ \% | 26,140 | 5.161 | $5.00 r$ | $4.49 R$ | 1.389 |
| 3,935.815 S | . 8125 H | $b^{3} \mathrm{P}_{2}$ | $v^{6} \mathrm{~F}_{2}$ | 48,239 | 3.41 | 3.62 | 3.764 | 3.07 |
| 3,940.882 S | (.880) | $a^{5} F_{2}$ | $y^{5} D_{4}$ | 33,096 | 2.91 | 3.66 | 3.66 | (0.80) |
| 3,942.443 S | (.440) | $b^{3} P_{1}$ | $x^{3} \mathrm{P}_{2}$ | 48,305 | 3.14 | 3.54 | 3.688 | 3.00 |
| 3,948.779 S | (.776) | $b^{3} H_{5}$ | $u^{3} G_{4}$ | 51,668 | 3.773 | 3.72 | 3.955 | 3.64 |
| 3,949.954 | . 9526 H | ${ }^{5}{ }^{5} \mathrm{P}_{3}$ | $x^{5} \mathrm{P}_{2}$ | 42,860 | 3.804 | 3.92 | 3.996 | 2.64 |
| 3,951. 164 | . 1636 H | $a^{3} D_{1}$ | $y^{1} D_{2}$ | 51,708 | 3.715 | 3.66 | 3.879 | 1.81 |
| 3,952.606 | . 6015 H | $a^{3} G_{5}$ | $z^{3} \mathrm{H}_{5}$ | 47,008 | 3.680 | 3.59 | 3.802 | 2.88 |
| 3,956.681 S | . 6771 H | $a^{2} G_{5}$ | $z^{3} H_{6}$ | 46,982 | 4.428 | 4.03 | 4.49 | 3.32 |
| 3,966.066 S | (.063) | $a^{3} F_{2}$ | $y^{3} D_{3}$ | 38,175 | 3.41 | 3.85 | $4.04 r$ | 1.91 |
| 3,966.630 |  | $z^{5} \mathrm{D}_{4}$ | ${ }^{\text {f }} \mathrm{F}_{6}$ | 51,103 | 3.781 | 3.79 | 4.055 | 3.63 |
| 3,967.423 S | (.420) | $\mathrm{b}^{3} \mathrm{H}_{4}$ | $u^{3} G_{3}$ | 51,826 | 3.07 | 3.59 | 3.836 | 3.53 |
| 3,969.261 S | . 2570 H | $a^{3} \mathrm{~F}_{4}$ | $y^{3} \mathrm{~F}_{3}$ | 37,163 | 4.796 | 4.81 | $4.85 R$ | (2.77) |
| 3,971.325 | ........ | $a^{3} G_{5}$ | $x^{3} \mathrm{~F}_{4}$ | 46,889 | 3.54 | 3.64 | 3.865 | 2.91 |
| 3,977.743 | . 7413 H | $a^{5} P_{2}$ | $x^{5} P_{2}$ | 42,860 | 3.932 | 3.90 | 4.121 | 2.62 |
| 3,981.775 | . 7712 H | $a^{3} G_{4}$ | $z^{3} \mathrm{H}_{4}$ | 47.107 | 3.593 | 3.55 | 3.686 | 2.85 |
| 3,983.960 | . 9570 H | $a^{3} G_{4}$ | $x^{3} \mathrm{~F}_{3}$ | 47,197 | 3.677 | 3.72 | 3.880 | 3.03 |
| 3,997. 394 | . 3923 H | $a^{3} G_{4}$ | $z^{8} H_{6}$ | 47,008 | 4.300 | 4.10 | 4.290 | 3.39 |
| 3,998.054 | . 052 | $a^{3} G_{5}$ | $u^{5} D_{4}$ | 46,721 | 3.613 | 3.78 | 3.981 | 3.03 |
| 4,005.246 S | . 2419 H | $a^{3} \mathrm{~F}_{3}$ | $y^{3} F_{2}$ | 37,521 | 4.591 | 4.64 | $4.76 R$ | (2.66) |
| 4,009.714 | . 7130 H | $a^{5} \mathrm{P}_{1}$ | $x^{5} \mathrm{P}_{2}$ | 42,860 | 3.772 | 3.78 | 3.994 | 2.50 |
| 4,014.534 S | . 5310 H | $a^{1} H_{5}$ | $y^{1} H_{5}$ | 53,722 | 3.934 | 3.69 | 3.962 | 3.89 |
| 4,021.869 | . 8665 H | $a^{2} G_{3}$ | $2^{3} \mathrm{H}_{4}$ | 47,107 | 3.990 | 3.75 | 4.033 | 3.05 |
| $4,045.815 \mathrm{~S}$ | . 8141 H | $a^{3} F_{4}$ | $y^{3} \mathrm{~F}_{4}$ | 36,686 | 5.565 | $5.39 r$ | 5.08R | (3.34) |
| 4,062.446 | . 4412 H | ${ }^{3}{ }^{3} P_{1}$ | $y^{3} S_{1}$ | 47,556 | 3.716 | 4.04 | 3.90 | 3.60 |
| 4,063.597 | . 5949 H | $a^{3} F_{3}$ | $y^{3} F_{2}$ | 37,163 | 5.247 | $5.20 r$ | $4.96 R$ | (3.19) |
| 4,066.979 S | (.976) | ${ }^{3} \mathrm{P}_{2}$ | 12 | 47,420 | 3.686 | 3.49 | 3.66 | 2.84 |
| 4,067.275 S | (.272) | $\mathrm{b}^{3} \mathrm{~F}_{4}$ | $x^{3} D_{3}$ | 45,221 | 3.37 |  |  |  |
| 4,067.984 | .... | ${ }^{5}{ }^{5} \mathrm{D}_{4}$ | $e^{7} P_{4}$ | 50,475 | 3.720 | 3.66 | 3.89 | 3.42 |
| 4,071.740 | . 7374 H | $a^{3} F_{2}$ | $y^{3} F_{2}$ | 37,521 | 5.114 | $4.99 r$ | $4.98 R$ | (3.14) |
| 4,076.636 | . 6297 H | $2^{5} \mathrm{D}_{4}$ | $\mathrm{f}^{6} \mathrm{D}_{4}$ | 50,423 | 3.641 | 3.63 | 3.940 | 3.39 |
| 4,100.745 | . 7378 H | $a^{5} \mathrm{~F}_{5}$ | $z^{3} F_{4}$ | 31,307 | 3.627 | 3.38 | 3.279 | 0.50 |
| 4,107.492 S | . 4884 H | $b^{3} P_{2}$ | $u^{5} \mathrm{D}_{1}$ | 47,177 | 3.638 | 3.72 | 3.957 | 3.02 |
| 4,109.808 | . 8020 H | $b^{3} P_{1}$ | $w^{3} D_{1}$ | 47,272 | 3.544 | 3.56 | 3.784 | 2.87 |
| 4,114.449 $S$ | (.446) | ${ }^{3}{ }^{3}{ }_{2}$ | $w^{3} D_{2}$ | 47,136 | 3.25 | 3.37 | 3.478 | 2.66 |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4,118.549 S | . 5450 H | $a^{1} H_{5}$ | $z^{1} I_{6}$ | 53,094 | 4.225 | 3.93 | 4.30 | 4.04 |
| 4,120.211 | . 2065 H | $b^{3} G_{4}$ | $\boldsymbol{z}^{1} H_{5}$ | 48,383 | 3.302 | 3.30 | 3.393 | 2.76 |
| $4,121.806 \mathrm{~S}$ | (.803) | $b^{3} P_{2}$ | $x^{3} F_{3}$ | 47,093 | 3. 281 | 3.34 | 3.420 | 2.64 |
| 4,127.612 S | . 6087 H | $b^{3} P_{0}$ | $w^{3} D_{1}$ | 47,272 | 3.581 | 3.55 | 3.81 | 2.86 |
| 4,132.060 $S$ | . 0580 H | $a^{3} F_{2}$ | $y^{3} F_{3}$ | 37,163 | 4.581 | 4.53 | $4.81 R$ | (2.58) |
| 4,132.903 | . 899 | $b^{3} P_{1}$ | $w^{3} D_{2}$ | 47,136 | 3.512 | 3.63 | 3.86 | 2.92 |
|  |  | ( $a^{3} \mathrm{~F}_{2}$ ) | ( $y^{5} \mathrm{P}_{2}$ ) | 37,158 |  |  |  |  |
| 4,134.681 $S$ | . 6774 H | $b^{3} P_{2}$ | $w^{3} D_{3}$ | 47, 017 | 3.929 | 3.86 | 4.17 | 3.16 |
| 4,137.002 | . 9978 H | $a^{1} P_{1}$ | $y^{1} D_{2}$ | 51,708 | 3.566 | 3.45 | 3.677 | 3.37 |
| 4,143.418 |  | $a^{1} G_{4}$ | $y^{1} G_{1}$ | 48,703 | 4.298 | 3.97 |  | 3.50 |
| 4,143.871 $S$ | . 8684 H | $a^{3} F_{3}$ | $y^{3} F_{4}$ | 36,686 | 4.862 | 4.70 | $4.86 R$ | (2.68) |
| 4,147.673 $S$ | . 6691 H | $a^{3} F_{4}$ | $z^{3} G_{3}$ | 36,079 | 3.399 | 3.65 | 3.81 | 1.43 |
| 4,149.372 | . 3662 H | $z^{5} F_{5}$ | $e^{7} G_{6}$ | 50,968 | 3.15 | 3.31 | 3.446 | 3.14 |
| 4,152.172 | . 1697 H | $a^{5} \mathrm{~F}_{3}$ | $z^{3} \mathrm{~F}_{3}$ | 31,805 | 3.474 | 3.33 | 3.26 | 0.52 |
| 4,153.906 |  | $z^{5} \mathrm{~F}_{3}$ | $\mathrm{f}^{5} \mathrm{~F}_{4}$ | 51,462 | 3.616 | 3.74 | 3.909 | 3.63 |
| 4,154.502 | . 499 | $b^{3} P_{2}$ | $y^{3} P_{1}$ | 46,902 | 3.749 | 3.53 | 4.15 | 2.80 |
| 4,156.803 S | (.800) | $b^{3} P_{2}$ | $u^{5} D_{2}$. | 46,889 | 3.781 | 3.76 | 4.064 | 3.03 |
| 4,157.788 |  | $z^{5} F_{2}$ | $f^{5} F_{3}$ | 51,604 | 3.448 | 3.57 | 3.726 | 3.48 |
| 4,170.906 S | (.903) | $c^{3} P_{2}$ | $x^{3} P_{2}$ | 48,305 | 3.300 | 3.40 | 3.575 | 2.88 |
| 4,172.126 |  | $a^{3} D_{3}$ | $w^{3} P_{2}$ | 50,187 | 3.323 | 3.37 | 3.57 | 3.09 |
| 4,172.749 | . 743 | $a^{5} F_{3}$ | $z^{3}{ }^{\text {d }}$ | 31,686 | 3. 678 | 3.45 | 3.519 | 0.63 |
| 4,174.917 | . 911 | $a^{5} \mathrm{~F}_{4}$ | $z^{3} D_{3}$, | 31,323 | 3.783 | 3.48 | 3.452 | 0.60 |
| 4,175.640 S | (.637) | $b^{3} P_{1}$ | $u^{5} D_{2}$ | 46,889 | 3.705 | 3.74 | 4.004 | 3.01 |
| 4,176.571 |  | $z^{5} \mathrm{~F}_{4}$ | $f^{5} F_{5}$ | 51,103 | 3.358 | 3.49 | 3.638 | 3.33 |
|  |  | ( ${ }^{5} F_{3}$ ) | ( $e^{7} F_{2}$ ) | 51,331 |  |  |  |  |
| 4,177.597 | . 5936 H | $a^{5} F_{4}$ | $z^{3} F_{4}$ | 31,307 | 3.747 | 3.44 | 3.393 | 0.56 |
| 4,181.758 | . 7546 H | $b^{3} \mathrm{P}_{2}$ | $u^{5} D_{3}$ | 46,745 | 4.125 | 4.11 | 4.427 | 3.36 |
| 4,184.895 S | . 8918 H | ${ }^{3} P_{2}$ | $y^{3} P_{2}$ | 46,727 | 3.665 | 3.66 | 3.904 | 2.91 |
| 4,187.044 | . 041 | $z^{7} D_{8}$ | $e^{7} D_{2}$ | 43,634 | 4.110 | 4.12 | 4.48 r | 2.94 |
| 4,187.802 | . 798 | $z^{7} D_{4}$ | $e^{7} D_{3}$ | 43,435 | 4.146 | 4.12 | $4.49 r$ | 2.92 |
| 4,191.436 | . 4301 H | $z^{7} D_{2}$ | $e^{7} D_{1}$ | 43,764 | 3.923 | 4.04 | 4.336 | 2.88 |
| 4,195.337 |  | $z^{5} F_{5}$ | $e^{5} G_{5}$ | 50,704 | 3.551 | 3.63 | 3.80 | 3.42 |
| 4,196.218 |  | $z^{5} \mathrm{~F}_{3}$ | $e^{5} G_{3}$ | 51,219 | 3.30 | 3.37 | 3.54 | 3.23 |
| 4,198.310 | . 3040 H | $z^{7} D_{5}$ | $e^{7} D_{4}$ | 43,163 | 4.161 | 4.11 | $4.46 r$ | 2.87 |
| 4,199.098 | . 0952 H | $a^{1} G_{4}$ | $z^{1} H_{5}$ | 55,526 | 4.620 | 4.23 | $4.64 r$ | 4.69 |
| 4,202.031 S | . 0286 H | $a^{3} F_{4}$ | $z^{3} G_{4}$ | 35,768 | 4.540 | 4.66 | $4.81 R$ | (2.47) |
| 4,203.987 S | (.984) | $b^{3} P_{1}$ | $y^{3} P_{2}$ | 46,727 | 3.619 | 3.60 | 3.852 | 2.85 |
| 4,206.702 | . 6957 H | $a^{5} D_{3}$ | ${ }^{7} P_{3}$ | 24,181 | 3.85 ? | 3.35 |  |  |
| 4,207.130 | . 127 | $b^{3} P_{2}$ | $z^{3} S_{1}$ | 46,601 | 3.03 | 3.26 | 3.30 | $(-0.71)$ |
| 4,210.352 | . 347 | $z^{7} D_{1}$ | $e^{7} D_{1}$ | 43,764 | 3.87 | 3.86 | 4.124 | 2.70 |
| 4,213.650 S | (.647) | ${ }^{3}{ }^{P_{1}}$ | $y^{3} P_{0}$. | 46,673 | 3.30 | 3.33 | 3.425 | 2.57 |
| 4,216.186 S | . 1830 H | $a^{5} D_{4}$ | $z^{7} P_{4}$ | 23,711 | 4.636 | 3.83 | $3.83 r$ | $(-0.16)$ |
| 4,217.551 |  | $z^{5} F_{1}$ | $e^{5} G_{2}$ | 51,370 | 3.180 | 3.51 | 3.698 | 3.38 |
| 4,219.364 S | . 3601 H | $a^{1} H_{5}$, | $y^{3} I_{6}$ | 52,514 | 4.019 | 3.80 | 4.124 | (3.92) |
| 4,222. 219 | . 2132 H | $z^{7} D_{3}$ | $e^{7} D_{3}$ | 43,435 | 3.717 | 3.86 | 4.097 | (2.63) |
| 4,224.176 |  | $z^{5} \mathrm{~F}_{4}$ | $e^{T} F_{5}$ | 50,833 | 3.400 | 3.57 | 3.91 | 3.37 |
| 4,225.460 |  | $z^{5} F_{2}$ | $e^{6} G_{3}$ | 51,219 | 3.347 | 3.55 | 3.756 | 3.41 |
| 4,227.434 | . 4261 H | ${ }^{5}{ }^{5}{ }_{5}$ | $e^{5} G_{6}$ | 50,523 | 4.268 | 4.15 | 4.520 | (3.86) |
| 4,231.525 |  | $a^{3} D_{3}$ | $v^{3} G_{3}$ | 49,851 | 2.84 |  |  | (3.55) |
| 4,232.732 |  | $a^{5} D_{1}$ | $z^{7} P_{2}$ | 24,507 | 3.02 |  |  | (-1.13) |
| 4,233.608 | . 6023 H | $z^{7} D_{1}$ | $e^{7} D_{2}$ | 43,634 | 4.021 | 4.06 | $4.42 r$ | (2.95) |
| 4,235.942 | . 9365 H | $z^{7} D_{4}$ | $e^{7} D_{4}$ | 43,163 | 4.432 | 4.27 | $4.67 r$ | (3.17) |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A^{\nu}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4,238.816 | . 8091 H | $z^{5} \mathrm{~F}_{3}$ | $e^{5} G_{4}$ | 50,980 | 3.661 | 3.81 | 3.982 | (3.55) |
| 4,239.847 |  | $a^{3} G_{5}$ | $y^{3} G_{5}$ | 45,295 | 2.67 |  |  | (-0.08) |
| 4,245.258 | . 2568 H | $b^{3} P_{0}$ | $z^{3} S_{1}$ | 46,661 | 3.191 | 3.43 | 3.570 | 2:67 |
| 4,247.432 | . 4250 H | ${ }^{5} \mathrm{~F}$ \% | $e^{5} G_{5}$ | 50,704 | 3.749 | 3.75 | 4.008 | (3.50) |
| 4,248.228 |  | $c^{8} P_{1}$ | $x^{3} \mathrm{P}_{2}$ | 48,305 | 2.969 | 3.18 | 3.267 | (3.17) |
| 4,250.125 |  | $z^{7} D_{2}$ | $e^{7} D_{\text {d }}$ | 43,435 | 4.278 | 4.22 | $4.59 r$ | (3.01) |
| 4,250.790 S | (.786) | $a^{3} F_{3}$ | $z^{2} G_{3}$ | 36,079 | 4.508 | 4.59 | $4.76 R$ | (2.45) |
| 4,258.320 | . 3154 H | $a^{5} D_{2}$ | ${ }_{2}{ }^{7} \mathrm{P}_{3}$ | 24,181 | 3. 573 |  | 2.99 | (-0.92) |
| 4,260.479 | . 4737 H | $2^{7} D_{5}$ | $e^{7} D_{5}$ | 42,816 | 4.894 | 4.62 | $4.95 r$ | (3.41) |
| 4,267.830 S | (.826) | $c^{3} P_{0}$ | $x^{3} P_{1}$ | 48,516 | 3.14 | 3.33 | 3.417. | 2.82 |
| 4,271.159 |  | $2^{7} D_{3}$ | $e^{7} D_{4}$ | 43,163 | 4.40 | 4.25 | $4.67 r$ | (3.12) |
| 4,271.764 S | . 7605 H | $a^{3} F_{4}$ | $z^{3} G_{5}$ | 35,379 | 5.088 | $4.96 r$ | $4.95 R$ | (2.88) |
| 4,282.406 S | . 4031 H | $a^{5} \mathrm{P}_{3}$ | $z^{5} S_{2}$ | 40,895 | 4.391 | 4.12 | $4.48 r$ | (2.85) |
| 4,285.445 S | (.441) | $b^{3} H_{6}$ | $y^{3} H_{6}$ | 49,434 | 3.08 | 3.23 | 3.276 | 2.84 |
| 4,291.466 | . 4632 H | $a^{3} F_{3}$ | $z^{5} G_{2}$ | 35,856 | 3.881 | 3.36 | 3.215 | 1.11 |
|  |  | $a^{5} D_{3}$ | $z^{7} \mathbf{P}_{4}$ | 23,711 |  |  |  | (-0.86) |
| 4,294.128 S | . 1245 H | $a^{3}{ }_{4}$ | ${ }^{56} \mathrm{G}_{4}$ | 35,257 | 4.148 | 4.35 | 4.65R | (2.07) |
| 4,298.040 S | (.036) | $a^{1} G_{4}$ | $x^{2} G_{5}$ | 47,835 | 3.313 | 3.23 | 3.255 | 2.62 |
| 4,299.242 | . 2343 H | $z^{7} \mathrm{D}_{4}$ | $e^{7} D_{5}$ | 42,816 | 4.394 | 4.23 | $4.66 r$ | (2.82) |
|  |  | $\left(b^{3} H_{6}\right)$ | ( $y^{3} H_{6}$ ) | 49,604 |  |  |  |  |
| 4,305.455 S | (.451) | $c^{3} \mathrm{P}_{2}$ | $y^{3} S_{1}$ | 47,556 | 3.20 | 3.29 | 3.344 | 2.65 |
| 4,307.906 S | . 9019 H | $a^{8} F_{3}$ | $z^{3} G_{4}$ | 35,768 | 5:129 | $4.91 r$ | $4.93 R$ | (3.01) |
| 4,309.380 | . 374 | ${ }^{3} \mathrm{G}_{6}$ | ${ }^{3} \mathrm{H}_{6}$ | 46,982 | 3.524 | 3.44 | 3.60 | 2.73 |
| 4,315.087 S | . 0842 H | $a^{5} \mathrm{P}_{2}$ | ${ }^{5} \mathrm{~S}_{2}$ | 40,895 | 4.212 | 4.03 | 4.31 | 2.48 |
| 4,325.765 S | . 7620 H | $a^{3} \mathrm{~F}_{2}$ | $z^{3} G_{3}$ | 36,079 | 5.181 | $4.96 r$ | $4.95 R$ | (3.06) |
|  |  | $\left(a^{5} D_{4}\right)$ | ( $z^{7} F_{3}$ ) | 23,111 |  |  |  |  |
| 4,327.100 |  | $a^{1} D_{2}$ | $y^{1} D_{2}$ | 51,708 | 3.310 |  | 3.38 |  |
| 4,337.049 S | . 0464 H | $a^{3} F_{3}$ | ${ }^{5} \mathrm{G}_{3}$ | 35,612 | 3.471 | 3.98 | $4.15 r$ | (1.59) |
| 4,347.239 |  | $a^{5} D_{4}$ | $z^{7} F_{4}$ | 22,997 | 2.53 |  |  | (-1.16) |
| 4,352.737 S | . 7342 H | $a^{5} \mathrm{P}_{1}$ | ${ }_{2}^{5} S_{2}$ | 40,895 | 3.9 | 3.82 | 3.998 | 2.27 |
| 4,367.581 | . 5779 H | ${ }^{3} G_{4}$ | $z^{2} H_{5}$ | 47,008 | 3.400 | 3.32 |  | 2.61 |
| 4,369.774 S | . 7716 H | ${ }^{1}{ }^{1} G_{4}$ | $z^{1} G_{4}$ | 47,453 | 3.910 | 3.55 | 3.699 | 2.90 |
| 4,375.932 S | . 9295 H | $a^{5} D_{4}$ | $z^{7} F_{5}$ | 22,846 | 4.945 | 4.04 | $4.11 R$. | (0.11) |
| 4,383.547 S | . 5454 H | $a^{3} F_{4}$ | ${ }^{5} G_{5}$ | 34,782 | 5:472 | $4.99 r$ | $5.08 R$ | (3.23) |
| 4,388.412 |  | ${ }_{2}{ }^{5} \mathrm{P}_{8}$ | $e^{5} \mathrm{P}_{3}$ | 51,837 | 3.200 | 3.36 | 3.441 | 3.30 |
| 4,390.954 S | (.950) | ${ }^{3} \mathrm{G}_{2}$ | $z^{3} H_{4}$ | 47, 107 | 3.217 | 3.20 | 3.110 | 2.50 |
| 4,404.752 S | . 7508 H | $a^{3} F_{3}$ | ${ }^{5} G_{4}$ | 35,257 | 5.068 | 4.91 | $4.95 R$ | (2.93) |
| 4,408.419 S | (.415) | $a^{5}{ }^{5}$ \% | $x^{5} D_{1}$ | 40,405 | 2.62 | 3.53 | 3.599 | 1.91 |
| 4,415.125 S | . 1227 H | $a^{3} F_{2}$ | $2^{5} G_{3}$ | 35,612 | 4.528 | 4.71 | $4.81 R$ | (2.45) |
| 4,422.570 S | . 5680 H | . ${ }^{3} \mathrm{P}_{3}$ | $x^{3} D_{1}$ | 45,552 | 3.483 | 3.53 | 3.669 | 2.61 |
| 4,427.312 S | . 3098 H | $a^{5} D_{3}$ | $z^{1} F_{4}$ | 23,193 | 4.823 | 3.99 | $4.08 R$ | (0.09) |
| 4,430.618 S | (.615) | $a^{5} P_{1}$ | $x^{5} D_{0}$ | 40,491 | 2.67 | 3.57 | 3.66 | (0.80) |
| 4,433.223 |  | ${ }_{2}{ }^{5} \mathrm{P}_{3}$ | $e^{5} P_{1}$ | 52,020 | 3.12 | 3.25 | 3.328 | 3.22 |
| 4,442.343 S | (.340) | $a^{5} \mathrm{P}_{2}$ | $x^{5}{ }_{2}$ | 40,231 | 2.33 | 3.87 | 4.06 | (2.25) |
| 4,443.197 S | (.193) | ${ }^{3} P_{0}$ | $x^{3} D_{1}$. | 45,552 | 3.509 | 3.57 | 3.72 | (3.54) |
| 4,445.48 |  | $a^{5} D_{2}$ | ${ }^{7}{ }^{7} \mathrm{~F}_{2}$ | 23,193 | 2.39 |  |  | (-1.43) |
| 4,447.722 S | (.719) | $a^{5} P_{1}$ | $x^{5} D_{1}$ | 40,405 | 3.017 | 3.78 | 3.958 | (2.30) |
| 4,450.320 |  | $c^{3} P_{0}$ | $\boldsymbol{y}^{3} S_{1}$ | 47,556 | 3.39 |  | 2.432 | (3.92) |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4,454.383 S | (.379) | ${ }^{3}{ }^{3} P_{2}$ | $x^{3} D_{2}$ | 45,282 | 3.364 | 3.41 | 3.484 | (2.84) |
| 4,459.121 S | (.118) | $a^{5} \mathrm{P}_{3}$ | $x^{5} D_{3}$ | 39,970 | 3.24 | 3.89 | 4.072 | (2.47) |
| 4,461.654 S | . 6528 H | $a^{5} D_{2}$ | $2^{7} F_{3}$ | 23,111 | 4.576 | 3.94 | 3.88R | (-0.10) |
| 4,466.554 S | . 5506 H | ${ }^{3}{ }^{3} P_{2}$ | $x^{3} D_{3}$ | 45,221 | 4.057 | 3.93 | 4.164 | (-0.57) |
|  |  | ( $a^{5} D_{1}$ ) | $\left(z^{7} F_{0}\right)$ | 23,270 |  |  |  | (-1.07) |
| 4,469.381 | . 3747 H | $z^{5} \mathrm{P}_{2}$ | $e^{5} P_{3}$ | 51,837 | 3.391 | 3.47 | 3.614 | 3.41 |
| 4,476.021 | . 0173 H | ${ }^{3}{ }^{3} P_{1}$ | $x^{3} D_{2}$ | 45,282 | 3.895 | 3.85 | 4.086 | (2.83) |
| 4,482.171 | . 1689 H | $a^{5} D_{1}$ | ${ }^{27} F_{2}$ | 23,193 $\}$ |  |  |  |  |
| 4,482.257 | . 253 | $a^{5} P_{1}$ | $x^{5} D_{2}$ | 40,231 | 4.4 | 3.9 | 4.0 | $(-0.36)$ |
| 4,489.741 S | . 7396 H | $a^{5} D_{0}$ | $z^{7} F_{1}$ | 23,245 | 3.741 | 3.41 |  | (-0.77) |
| 4,494.568 $S$ | . 5632 H | $a^{5} \mathrm{P}_{2}$ | $x^{5} D_{3}$ | 39,970 | 3.353 | 3.98 | 4.182 | 2.30 |
| 4, 517.530 S | . 526 | $c^{3} P_{1}$ | $y^{3} \mathrm{P}_{1}$ | 46,802 | 2.40 |  | 2.724 |  |
| 4,528.619 $S$ | . 6137 H | $a^{5} \mathrm{P}_{3}$ | $x^{5} D_{4}$ | 39,626 | 3.747 | 4.17 | $4.46 r$ | (2.74) |
| $4,531.152 \mathrm{~S}$ | . 149 | $\mathrm{a}^{3} \mathrm{~F}_{4}$ | $\boldsymbol{y}^{6} \mathrm{~F}_{4}$ | 34,040 | 3.050 |  | 3.804 | (1.41) |
| 4,547.851 S | . 847 | $a^{1} D_{2}$ | $z^{15} F_{3}$ | 50,587 | 3.409 |  | 3.425 |  |
| 4,592.655 S | . 652 | $a^{3} F_{3}$ | $y^{5} F_{3}$ | 34,329 | 2.77 |  | 3.500 |  |
| 4,602.944 S | . 942 | $a^{3} F_{4}$ | $y^{5} F_{5}$ | 33,695 | 3.123 |  | 3.774 | (1.48) |
| 4,647.437 S | . 4338 H | ${ }^{3} G_{5}$ | $y^{2} G_{5}$ | 45,295 | 3.532 |  | 3.473 |  |
| 4,667.459 S | (.455) | ${ }_{2}{ }^{5} \mathrm{P}_{3}$ | $e^{7} P_{4}$ | 50,475 | 3.231 |  | 3.455 |  |
| 4,678.852 S | (.848) | ${ }_{2}{ }^{5} \mathrm{P}_{8}$ | $f^{5} \mathrm{D}_{4}$ | 50,423 | 3,254 |  | 3.556 |  |
| 4,691.414 S | . 410 | $b^{3} G_{4}$ | $y^{2} G_{4}$ | 45,428 | 3.345 |  | 3.330 |  |
| 4,707.281 S | . 277 | $\boldsymbol{z}^{6} \mathrm{D}_{3}$ | $e^{5} \mathrm{~F}_{4}$ | 47,378 | 3.342 |  | 3.525 |  |
| $4,710.286 \mathrm{~S}$ | . 282 | $b^{3} G_{3}$ | $y^{3} G_{3}$ | 45,563 | 3.26 |  | 3.127 |  |
| 4,733.596 S | . 592 | $a^{3} \mathrm{~F}_{4}$ | $y^{5} D_{4}$ | 33,096 | 2.42 |  | 3.025 |  |
| 4.736 .780 | . 777 | $z^{5} \mathrm{D}_{4}$ | $e^{5} F_{5}$ | 47,006 | 3.517 |  | 3.798 |  |
| 4,741.533 S | . 529 | $b^{3} \mathrm{P}_{2}$ | $w^{5} D_{3}$ | 43,923 | 2.44 |  | 2.87 |  |
| 4,745:806 S | (.802) | $z^{5} \mathrm{P}_{2}$ | $f^{6} \mathrm{D}_{3}$ | 50,534 | 2.605 |  | 2.86 |  |
|  |  | $y^{5} \mathrm{D}_{4}$ | $\mathrm{f}^{5} \mathrm{G}_{3}$ | 54.161 |  |  |  |  |
| 4,772.817 S | (.814) | $c^{3} \mathrm{P}_{2}$ | $x^{3} D_{2}$ | 45,282 | 2.602 |  | 2.84 |  |
|  |  | $a^{3} F_{3}$ | $y^{5} D_{3}$ | 33,507 |  |  |  |  |
| $4,786.810 \mathrm{~S}$ | . 807 | $c^{3} \mathrm{P}_{2}$ | $x^{3} D_{3}$ | 45,221 | 2.888 |  | 3.161 |  |
| $4,789.654 \mathrm{~S}$ | . 650 | $a_{1} D_{2}$ | $z^{1} D_{2}$ | 49,477 | 3.415 |  | 3.301 |  |
| 4,859.748 S | . 744 | $z^{7} F_{2}$ | $e^{7} D_{1}$ | 43,764 | 3.654 |  | 4.017 |  |
| 4,871.323 | . 3174 H | $z^{7} F_{3}$ | $e^{7} D_{2}$ | 43,634 | 4.096 |  | 4.529 |  |
| 4,872.144 | . 140 | $z^{7} F_{1}$ | $e^{7} D_{1}$ | 43,764 | 3.790 |  | 4.207 |  |
| 4,878.218 S | . 214 | $2^{7} F_{0}$ | $e^{7} D_{1}$ | 43,764 | 3.527 |  | 3.894 |  |
| 4,890,762 | . 758 | $z^{7} F_{2}$ | $e^{7} D_{2}$ | 43,634 | 4.049 |  | 4.352 |  |
| 4,891.496 | . 4915 H | $2^{7} \mathrm{~F}_{4}$ | $e^{7} D_{3}$ | 43,435 | 4.404 |  | $4.64 r$ |  |
| 4,903.317 S | . 313 | $\boldsymbol{z}^{\mathbf{7}} \mathrm{F}_{1}$ | $e^{7} D_{2}$ | 43,634 | 3.513 |  | 3.852 |  |
| 4,918.999 $S$ | . 996 | $z^{7} F_{3}$ | $e^{7} D_{3}$ | 43,435 | 4.178 | $\ldots$ | 4.410 |  |
| 4,920.509 | . 5020 H | $z^{7} F_{5}$ | $e^{7} D_{4}$ | 43,163 | 4.681 |  | $4.80 r$ |  |
| 4,924.776 S | . 772 | $a^{3} P_{2}$ | $y^{8} D_{2}$ | 38,678 | 2.75 |  | 3.030 |  |
| 4,838.820 | . 816 | $z^{7} F_{2}$ | $e^{7} D_{3}$ | 43,435 | 3.438 |  | 3.74 |  |
| 4,939,690 S | . 687 | $\mathrm{a}^{5} \mathrm{~F}_{5}$ | ${ }^{5} \mathrm{~F}_{4}$ | 27,167 | 3.024 |  | 3.350 |  |
| 4,957,302 | . 302 | $z^{7} F_{4}$ | $e^{7} D_{4}$ | 43,163 | 3.14 |  |  |  |
| 4,957.603 | . 5956 H | $z^{7} F_{6}$ | $e^{7} D_{5}$ | 42,816 | 5.16 |  | $5.0 R$ |  |
| 4,966,096 S | . 0937 H | ${ }^{5} \mathrm{~F}_{5}$ | $e^{5} F_{5}$ | 47,005 | 3.400 |  | 3.614 |  |
| 4,882.507 | . 504 | $y^{5} D_{4}$ | $\mathrm{frP}_{3}$ | 53,161 | 3.430 |  | 3.714 |  |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4,994.133 $S$ | . 129 | $a^{5} F_{4}$ | $z^{5} F_{3}$ | 27,395 | 3.191 | ... | 3.410 |  |
| 5,001.871 S | . 866 | $z^{3} F_{4}$ | $e^{3} D_{3}$ | 51,294 | 3.861 |  | 3.895 |  |
| 5,006.126 | . 125 | $z^{7} F_{5}$ | $e^{7} D_{5}$ | 42,816 | 4.051 |  | 4.176 |  |
| 5,012.071 S | . 080 | ${ }^{5}{ }^{5} \mathrm{~F}_{6}$ | $\boldsymbol{z}^{5} \mathrm{~F}_{5}$ | 26,875 | 3.791 |  | 3.887 | (0.33) |
| 5,014.950 | . 952 | ${ }^{3} \mathrm{~F}_{3}$ | $e^{8} D_{2}$ | 51,740 | 3.538 |  | 3.682 |  |
| 5,041.759 S | . 756 | $a^{3}{ }^{3} 4$ | $z^{3} \mathrm{~F}_{3}$ | 31,806 | 4.241 | $\ldots$ | 3.748 |  |
| $5,049.825 \mathrm{~S}$ | . 823 | $a^{3} P_{2}$ | $y^{3} D_{3}$ | 38,175 | 3.506 |  | 3.979 |  |
| 5,051.636 S | . 636 | $a^{5} \mathrm{~F}_{4}$ | ${ }^{5} \mathrm{~F}_{4}$ | 27,167 | 3.523 |  | 3.690 |  |
| 5,079.226 | . 220 | $a^{5} \mathrm{P}_{2}$ | $y^{5} P_{1}$ | 37,410 | 3.732 |  | 3.557 |  |
| 5,083.342 S | . 341 | $\mathrm{a}^{5} \mathrm{~F}_{3}$ | $z^{5} \mathrm{~F}_{3}$ | 26,875 | 3.278 |  | 3.492 |  |
| 5,110.414 S | . 4127 H | $a^{5} D_{4}$ | $z^{7} D_{4}$ | 19,562 | 4.238 |  | 3.613 | (-0.85) |
|  |  | ( $a^{1} H_{5}$ ) | ( $2^{1} H_{6}$ ) | 48,383 |  |  |  |  |
| 5,123.723 S | . 721 | $a^{5} F_{1}$ | $z^{5} F_{1}$ | 27,666 | 3.323 |  | 3.415 |  |
| 5,127.363 S | . 361 | $a^{5} F_{4}$. | $z^{5} \mathrm{~F}_{6}$ | 26,875 | 3.002 |  | 3.212 |  |
| 5,133.692 | . 6893 H | $y^{5} F_{5}$ | $\mathrm{f}^{5} \mathrm{G}_{6}$ | 53,169 | 3.577 |  | 3.786 |  |
| $5,150.843 \mathrm{~S}$ | . 840 | $a^{5} F_{2}$ | $z^{5} \mathrm{~F}_{3}$ | 27,395 | 2.506 |  | 3.322 |  |
| 5,166.286 | . 2816 H | $a^{5} D_{4}$ | $z^{7} D_{6}$ | 19,351 | 3.901 |  | 3.190 | (-1.21) |
| 5,167.491 S | . 4882 H | $a^{2} F_{4}$ | $z^{3} D_{3}$ | 31,323 | 5.37 |  | $4.71 R$ | (1.67) |
| 5,168.901 S | . 8980 H | $a^{5}{ }^{5}$ | $2^{7} D_{3}$ | 19,757 | 3.928 |  | $3.48 r$ | (-1.03) |
| 5,171.599 S | . 5959 H | $a^{3} F_{4}$ | $z^{3} \mathrm{~F}_{4}$ | 31,307 | 4.651 |  | $4.23 R$ | (1.25) |
| 5,191.460 | . 4539 H | $z^{7} \mathrm{P}_{2}$ | $e^{7} D_{1}$ | 43,764 | 3.701 |  | 4.080 | (2.64) |
| 5,192.350 | . 3432 H | $z^{7} \mathrm{P}_{3}$ | $e^{7} \mathrm{D}_{3}$ | 43,435 | 3.914 |  | 3.250 | (2.80) |
| 5,194.943 | . 942 | $a^{8} F_{8}$ | $z^{3} \mathrm{~F}_{3}$ | 31,805 | 4.275 |  | $3.88 r$ | (0.96) |
| $5,198.714 \mathrm{~S}$ | . 713 | $a^{5} \mathrm{P}_{1}$ | $y^{5} \mathrm{P}_{3}$ | 37,158 | 2.39 |  | 3.32 |  |
| 5,202.339 S | . 332 | $a^{5} \mathrm{P}_{3}$ | $y^{5} \mathrm{P}_{3}$ | 36,767 | 2.85 |  | 3.725 | (1.26) |
| 5,204.582 | . 5822 H | $a^{5} D_{2}$ | $z^{7} D_{2}$ | 19,913 | 3.464 |  | 2.86 | (-1.34) |
| 5,216.278 S | . 2737 H | $a^{3} \mathrm{~F}_{2}$ | $z^{2} F_{2}$ | 32,134 | 4.171 |  | 3.78 | (0.97) |
| 5,225.531 | . 531 | $a^{5} D_{1}$ | $z^{7} D_{1}$ | 20,020 | 2.90 |  |  | $(-1.78)$ |
| 5,227.192 S | . 1880 H | $a^{3} F_{3}$ | $z^{3} D_{2}$ | 31,686 | 5.02 |  | 4.93 |  |
| 5,232.946 | . 9404 H | $z^{7} P_{4}$ | $e^{7} D_{6}$ | 42,816 | 4.436 |  | $4.61 r$ | (2.95) |
| $5,235.392 \mathrm{~S}$ | . 387 | $b^{3} F_{3}$ | $x^{5} \mathrm{D}_{3}$ | 39,970 | 2.73 |  | 2.96 |  |
|  |  | $c^{3} F_{4}$ | $u^{3} D_{3}$ | 51,969 |  |  |  |  |
| 5,236.204 |  | $c^{3} F_{2}$ | 81 | 52,858 | 1.83 |  |  |  |
| 5,242.495 S | . 491 | $a^{1} I_{6}$ | $z^{1} \mathrm{H}_{6}$ | 48,383 | 3.20 |  | 3.326 |  |
| 5,247.065 | . 061 | $a^{5} D_{2}$ | $z^{7} D_{3}$ | 19,757 | 2.89 |  |  | (-2.00) |
| 5,250.211 | . 216 | $a^{5} D_{0}$ | $z^{7} D_{1}$ | 20,020 | 2.44 |  |  | $(-1.93)$ |
| $5,250.650 \mathrm{~S}$ | . 647 | $a^{5} \mathrm{P}_{2}$ | $y^{5}{ }^{3}$ | 36,767 | 2.78 |  | 3.402 | (1.02) |
| 5,263.314 | . 3051 H | $z^{5} \mathrm{D}_{2}$ | $e^{5} D_{2}$ | 45,334 | 3.195 |  | 3.60 |  |
| 5,266.562 | . 5553 H | $z^{7} P_{3}$ | $e^{7} D_{4}$ | 43,163 | 4.033 |  | 4.281 | (3.26) |
| 5,269.541 | . 538 | $a^{\text {a }} \mathrm{F}_{5}$ | ${ }^{5} \mathrm{D}_{4}$ | 25,900 | 5.058 |  | $4.68 r$ | (1.45) |
| 5,270.360 $S$ | . 357 | $a^{3} F_{2}$ | $z^{3} D_{1}$ | 31,937 | 4.914 |  |  | (1.48) |
| 5,281.796 | . 7899 H | $z^{7} P_{2}$ | $e^{7} D_{3}$ | 43,435 | 3.477 |  | 3.832 |  |
| 5,283.628 | . 6208 H | $2^{5} \mathrm{D}_{3}$ | $e^{5} D_{z}$ | 45,061 | 3.811 |  | 4.045 |  |
| 5,302.307 | . 2994 H | $z^{5} D_{1}$ | $e^{5} D_{2}$ | 45,335 | 3.423 |  | 3.736 |  |
| 5,307.365 S | . 3607 H | $a^{3} F_{2}$ | $z^{3} F_{3}$ | 31,805 | 3.337 |  | 3.00 | (0.12) |
| 5,324.185 | . 1787 H | $z^{5} \mathrm{D}_{4}$ | $e^{5} D_{4}$ | 44,677 | 4.182 |  | 4.393 | (3.07) |
| 5,328.042 | . 039 | $a^{5} \mathrm{~F}_{4}$ | $2^{5} D_{3}$ | 26,140 | 4.867 |  | 4.70 R | (1.29) |

Table 7g-6. The Spectrum of Iron I (Continued)

| $\lambda_{1}$ | $\lambda_{2}$ | Classification |  | $E^{\prime}$ | $\log I_{2}$ | $\log I_{3}$ | $\log I_{4}$ | $\log \nu A \nu$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5,328.534 S | . 530 | $a^{3} F_{3}$ | $z^{3} D_{3}$ | 31,323 | 4.507 | ..... | $4.20 r$ | (1.19) |
| 5,332.903 | . 8990 H | $a^{3} \mathrm{~F}_{3}$ | $z^{3} \mathrm{~F}_{4}$ | 31,307 | 3.951 | $\ldots$ | 3.155 | (0.25) |
| 5,339.935 | . 9289 H | $z^{5} D_{2}$ | $e^{5} D_{3}$ | 45,061 | 3.874 |  | 3.846 |  |
| $5,341.026 \mathrm{~S}$ | . 0239 H | $a^{3} F_{2}$ | $z^{3} D_{2}$ | 31,686 | 4.65 |  | $4.00 r$ | (1.11) |
| 5,364.874 |  | $z^{5} G_{2}$ | $e^{5} \mathrm{H}_{3}$ | 54,491 | 3.384 | $\ldots$ | 3.64 |  |
| 5,367.470 | . 4674 H | $z^{5} G_{3}$ | $e^{5} \mathrm{H}_{4}$ | 54,237 | 3.564 |  | 3.79 |  |
| 5,369.965 | . 9624 H | $z^{5} G_{4}$ | $e^{5} H_{5}$ | 53,874 | 3.725 |  | 3.91 |  |
| 5,371.493 S | . 4895 H | $a^{5} \mathrm{~F}_{3}$ | $z^{5} D_{2}$ | 26,340 | 4.622 |  | $4.61 R$ | (1.10) |
|  |  | ( $z^{3} G_{4}$ ) | $\left(e^{3} G_{3}\right)$ | 54,379 |  |  |  |  |
| 5,383.374 | . 3692 H | ${ }^{5} \mathrm{G}_{5}$ | $e^{5} H_{6}$ | 53,353 | 3.844 |  | 4.11 |  |
| 5,397.131 S | . 1275 H | $a^{5} F_{4}$ | $z^{5} D_{4}$ | 25,900 | 4.459 |  | $4.43 R$ | (0.81) |
| 5,404.144 |  | $z^{3} G_{4}$ | $e^{3} \mathrm{H}_{5}$ | 54,267 | 3.819 |  | 4.08 |  |
| 5,405.778 S | . 7747 H | $a^{5} F_{2}$ | $z^{5} D_{1}$ | 26,479 | 4.353 |  | $4.49 R$ | (0.86) |
| 5,424.072 | . 0689 H | $z^{5} G_{6}$ | $e^{5} \mathrm{H}_{7}$ | 53,275 | 3.842 | .... | 4.08 |  |
| 5,429.699 S | . 6966 H | $a^{5} F_{3}$ | $z^{5} \mathrm{D}_{3}$ | 26,140 | 4.414 |  | $4.48 R$ | (0.89) |
| 5,434.527 S | . 5240 H | $a^{5} F_{1}$ | $z^{5} D_{0}$ | 26,550 | 4.048 |  | $4.28 R$ | (0.72) |
| 5,446.920 S | . 9171 H | $a^{5} \mathrm{~F}_{2}$ | $z^{5} D_{2}$ | 26,340 | 4.337 |  | $4.42 R$ | (0.82) |
| 5,455.613 S | . 6096 H | $a^{5} \mathrm{~F}_{1}$ | ${ }^{5} \mathrm{D}_{1}$ | 26,479 | 4.144 |  | $4.42 R$ | (0.72) |
| 5,497.519 S | . 5162 H | $a^{5} F_{1}$ | $2^{5} D_{2}$ | 26,340 | 3.374 |  | 3.60 |  |
| 5,501.469 S | . 4636 H | $a^{5} \mathrm{~F}_{3}$ | $z^{5} D_{4}$ | 25,900 | 3.299 |  | 3.46 |  |
| 5,506.782 S | . 7788 H | $a^{5} F_{2}$ | $z^{5} \mathrm{D}_{3}$ | 26,140 | 3.494 |  | 3.68 |  |
| 5,569.625 S | . 6176 H | ${ }^{5} \mathrm{~F}_{2}$ | $e^{5} D_{1}$ | 45,509 | 3.541 |  | 3.807 |  |
| 5;572.849 S | . 8421 H | $z^{5} \mathrm{~F}_{8}$ | $e^{5} D_{2}$ | 45,334 | 3.806 |  | 4.06 |  |
| 5,586.763 S | . 7557 H | $z^{5} F_{4}$ | $e^{5} D_{3}$ | 45,061 | 4.074 |  | 4.43 |  |
| 5,615.652 S | . 6436 H | $z^{5} F_{5}$ | $e^{5} D_{4}$ | 44,677 | 4.262 |  | 4.375 |  |
| 5,624.549 S | . 5419 H | ${ }^{5} \mathrm{~F}_{2}$ | $e^{5} D_{2}$ | 45,334 | 3.319 |  | 3.574 |  |
| 5,658.826 S | . 8158 H | ${ }^{5} \mathrm{~F}_{3}$ | $e^{5} D_{3}$ | 45,061 | 3.22 |  | 3.597 |  |
| 5,662.525 S |  | $y^{5} \mathrm{~F}_{6}{ }^{\text {b }}$ | $g^{5} D_{4}$ | 51,351 | 3.661 |  | 3.241 |  |
| 7,187.341 |  | $y^{5} D_{4}$ | $e^{5} F_{5}$ | 47,006 | 3.53 |  |  |  |
| 7,445.776 |  | $y^{5} \mathrm{~F}_{3}$ | $e^{5} \mathrm{~F}_{3}$ | 47,756 | 3.48 |  |  |  |
| 7,495.088 |  | $y^{5} F_{4}$ | $e^{6} \mathrm{~F}_{4}$ | 47,378 | 3.53 |  |  |  |
| 7,511.045 |  | $y^{5} F_{5}$ | $e^{5} \mathrm{~F}_{2}$ | 47,006 | 3.66 |  |  |  |
| 7,586.044 |  | $z^{5} G_{5}$ | $e^{3} \mathrm{~F}_{4}$ | 47,961 | 3.39 |  |  |  |
| 7,780.586 |  | $z^{3} G_{3}$ | $e^{3} F_{2}$ | 48,928 | 3.28 |  |  |  |
| 7,937.166 |  | $z^{5} G_{5}$ | $e^{5} \mathrm{~F}_{4}$ | 47,378 | 4.040 |  |  |  |
| 7,998.972 |  | $z^{5} G_{4}$ | $e^{5} \mathrm{~F}_{3}$ | 47,756 | 3.26 |  |  |  |
| 8,046.073 |  | $z^{5} G 7$ | $e^{3} F_{2}$ | 48,532 | 3.36 |  |  |  |
| 8,220.406 |  | $z^{6} G_{6}$ | $e^{5} F_{5}$ | 47,006 | 3.69 |  |  |  |
| 8,248.151 |  | $z^{5} G_{4}$ | $e^{5} \mathrm{~F}_{4}$ | 47,378 | 3.34 |  |  |  |
| 8,327.063 |  | $a^{5} P_{2}$ | $z^{6} P_{1}$ | 29,773 | 3.61 |  |  |  |
| 8,331.941 |  | $z^{3} G_{5}$ | $e^{5} F_{4}$ | 47,378 | 3.11 |  |  |  |
| 8,387.781 |  | $a^{5} \mathrm{P}_{8}$ | $z^{5} \mathrm{P}_{2}$ | 29,469 | 3.79 |  |  |  |
| 8,661.908 | ......... | $a^{5} \mathrm{P}_{1}$ | $z^{5} P_{2}$ | 29,469 | 3.75 |  |  |  |
| 8,688.633 |  | $a^{5} \mathrm{P}_{3}$ | ${ }_{2}{ }^{5} \mathrm{P}_{3}$ | 29,056 | 4.161 |  |  |  |
| 8,824.227 |  | $a^{5} \mathrm{P}_{2}$ | $z^{5} \mathrm{P}_{3}$ | 29,056 | 3.76 |  |  |  |

90 mA Iron-Neon
Hollow Cathode


Fig. 7g-5. Photoelectric traces of the iron spectrum, hollow cathode discharge in neon. Wavelength range, 2,400-5,700 A. Single dots denote neon lines; two dots indicate Fe II lines.


Fig. 7g-5 (Continued)


Fig. 7g-5 (Continued)



Fig. 7g-5 (Continued)

## 5.0 <br> $\qquad$ <br> 90 mA Iron-Neon Hollow Cathode



Fig. 7g-5 (Continued)



言 言 言言畜 㜔誩
Fig．7g－5（Continued）


Fig. 7g-5 (Continued)





Fig. 7g-5 (Continued)

7-114 ATOMIC AND MOLECULAR PHYSICS





Fig. 7g-5 (Continued)


ercury I. This spectrum is very useful because of the ease with which it can be obtained. Any low-pressure mercury tube gives sharp lines; for example, a commercial so-called bactericidal lamp is suitable. High-pressure lamps give broader lines and very-high-pressure lamps (commercial type H 6 ) a continuous spectrum. The mercury spectrum is useful as a general reference spectrum. Under high dispersion most lines show elaborate isotopic and hyperfine structure because there are six isotopes with considerable abundance: 198 (10.1 per cent), 199 ( 17.0 per cent), 200 (23.3 per cent), 201 ( 13.2 per cent), 202 ( 29.6 per cent), 204 ( 6.7 per cent). The two odd ones have lines with hyperfine structure. The structure of the lines is sometimes useful for obtaining the resolving power of spectrographs (for details of structure, see Schüler and Burns and Adams ${ }^{1}$ ). An example is shown in Fig. 7g-6.


Frg. 7g-6. High-dispersion photoelectric trace of the 5,461-A line of ordinary mercury showing isotope and hyperfine structure. Resolving power was 400,000.

Pure $\mathrm{Hg}^{198}$ can be obtained by irradiation of gold with neutrons. Lamps with this isotope are now commercially available and the spectrum shows very sharp single lines. Meggers has proposed to adopt the wavelength of the green line $(5,461)$ of $\mathbf{H g}^{198}$ as a primary standard of length. International adoption of this proposal, however, awaits investigation of the variability of the wavelength with discharge conditions. In the meantime most of the strong lines of $\mathrm{Hg}^{198}$, particulary those marked $S$ in Table $7 \mathrm{~g}-7$, may be used as standards for interferometric wavelength measurements.
$\mathrm{Hg}^{202}$ is the most abundant isotope in natural mercury. Tubes with nearly pure $\mathrm{Hg}^{202}$ are also available and their wavelengths may also be used as standards.

Table $7 \mathrm{~g}-7$ gives the wavelengths of natural mercury, $\mathrm{Hg}^{198}$ and $\mathrm{Hg}^{202}$. All valves listed between 2,300 and $6,900 \mathrm{~A}$ are recent interferometric wavelengths; those outside this interval are known with much less accuracy.

[^346]7-120 ATOMIC AND MOLECULAR PHYSICS
Table 7g-7. The Spectrum of Mercury I

| Classification |  | $\lambda$ (Hg nat.) | $\lambda \mathrm{Hg}^{198}$ | $\lambda \mathrm{Hg}^{202}$ | $\log I$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6^{1 / S}$ | $6^{1 P}$ | 1,402.72 0 |  |  | (4) |
| $6^{1}$ S | $7^{1} P$ | 1,849.52 O |  |  | (20) |
| $6{ }^{1 / S}$ | $7^{3} P_{2}$ | 2,296.97 O |  |  |  |
| $6^{3} P_{0}$ | $10^{3} \mathrm{~S}$ | 2,345.433 O | 45.4400 | 45.4369 | 5.33 |
| $6^{3} P_{0}$ | $8^{3} D_{1}$ | 2,378.316 $O$ | 78.3246 | 78.3224 | 6.60 |
| $6^{3} P_{1}$ | $10^{3} S$ | 2,446.895 | 46.8998 | 46.8974 | 4.44 |
| $6^{3} P_{0}$ | ${ }^{93} \mathrm{~S}$ | 2,464.057 | 64.0636 | 64.0614 | 4.31 |
| $6^{3} P_{1}$ | $8^{3} D_{2}$ | 2,481.996 | 81.9993 | 81.9971 | 5.43 |
| $6^{3} P_{1}$ | $8^{3} D_{1}$ | 2,482.710 | 82.7131 | 82.7112 | 4.94 |
| $6^{3} P_{1}$ | $8^{1} D_{2}$ | 2,483.815 | 83.8215 | 83.8196 | 5.23 |
| $6^{3} P_{0}$ | $7^{3} D_{1}$ | 2,534.764 | 34.7691 | 34.7662 | 6.35 |
| $6^{1} S$ | ${ }_{6}{ }^{3} P_{1}$ | 2,536.517 | 36.5063 | 36.5277 | 8.95 |
| $6^{3} P_{1}$ | $9^{1}$ S |  | 63.8610 | 63.8584 |  |
| $6^{3} P_{1}$ | $9^{3} \mathrm{~S}$ | 2,576.285 | 76.2904 | 76.2882 | 5.00 |
| $6^{3} P_{1}$ | $7^{3} D_{2}$ | 2,652.039 | 52.0425 | 52.0399 | 6.20 |
| $6^{3} P_{1}$ | $7^{3} D_{1}$ | 2,653.679 | 53.6827 | 53.6809 | 6.75 |
| $6^{3} P_{1}$ | $7^{1} \mathrm{D}$ | 2,655.127 | 55.1305 | 55.1284 | 5.63 |
| $6^{3} P_{2}$ | $9^{3} D_{3}$ | 2,698.828 | 98.8314 | 98.8293 | 5.35 |
| $6^{3} P_{0}$ | $8^{3} S$ | 2,752.778 | 52.7828 | 52.7801 | 5.58 |
| $6^{3} P_{2}$ | $10^{3} \mathrm{~S}$ | 2,759.706 | 59.7103 | 59.7077 | 4.0 |
| $6^{3} P_{2}$ | $8^{3} D_{3}$ | 2,803.465 | 03.4706 | 03.4678 | 5.25 |
| $6^{3} P_{2}$ | $8^{3} D_{2}$ | 2,804.434 | 04.4378 | 04.4357 | 4.56 |
| $6^{3} P_{2}$ | $8^{3} D_{1}$ | 2,805.344 | 05.347 | 05.3474 | 3.49 |
| $6^{3} P_{2}$ | $8^{1} \mathrm{D}$ | 2,806.759 | 06.765 | 06.7630 | 3.52 |
| $6^{3} P_{1}$ | $8^{1} S$ | 2,856.935 | 56.9389 | 56.9357 | 4.30 |
| $6^{3} P_{1}$ | $8^{3} S$ | 2,893.594 | 93.5982 | 93.5952 | 5.88 |
| $6^{3} P_{2}$ | $9^{3} \mathrm{~S}$ | 2,925.410 | 25.4135 | 25.4104 | 4.82 |
| $6^{3} P_{0}$ | $6^{3} D_{1}$ | 2,967. 280 | 67.2832 | 67.2819 | 6.52 |
| $6^{3} P_{0}$. | $6^{1} D$ | 2,967.543 |  |  |  |
| $6^{3} P_{2}$ | $7^{3} D_{3}$ | 3,021.498 | 21.4996 | 21.4973 | 6.09 |
| $6^{3} P_{2}$ | $7^{3} D_{2}$ | 3,023.475 | 23.4764 | 23.4739 | 5.45 |
| $6^{3} \mathrm{P}_{2}$ | $7^{3} D_{1}$ | 3,025.606 | 25.6080 | 25.6056 | 4.43 |
| $6^{3} P_{2}$ | $7^{1} \mathrm{D}$ | 3,027.487 | 27.4896 | 27.4874 | 4.76 |
| $6^{3} P_{1}$ | $6^{6} D_{2}$ | 3,125.6681 | 25.6698 | 25.6675 | 6.62 |
| $6^{3} P_{1}$ | $6^{3} D_{1}$ | 3,131.5485 | 31.5513 | 31.5480 | 6.48 |
| $6^{3} P_{1}$ | $6^{1} \mathrm{D}$ | 3,131.8391 | 31.8423 | 31.8394 | 6.56 |
| $6{ }^{3} P_{2}$ | $8^{3}$ S | 3,341.4766 | 41.4814 | 41.4766 | 5.85 |
| $6^{3} P_{2}$ | $6^{3} D_{3}$ | 3,650.1533 | 50.1564* | 50.1532 | 6.94 |
| $6^{3} P_{2}$ | $6^{3} D_{2}$ | 3,654.8363 | 54.8392 | 54.8361 | 6.51 |
| $6^{3} \mathrm{P}_{2}$ | $6^{3} D_{1}$ | 3,662.879 | 62.8826 | 62.8801 | 5.70 |

Table 7g-7. The Spectrum of Mercury I (Continued)

| Classification |  | $\lambda$ (Hg nat.) | $\lambda \mathrm{Hg}^{198}$ | $\lambda \mathrm{Hg}^{202}$ | $\log I$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $6^{3} P_{2}$ | $6^{1} D$ | 3,663.2793 | 63.2808 | 63.2778 | 6.35 |
| $6^{1} P$ | $9^{1} D$ | 3,704.1655 | 04.1698 | 04.1712 | 6.35 3.94 |
| $6^{12} P$ | $8^{81} D$ | 3,906.371 | 06.3715 | 06.3715 | 4.56 |
| $6^{3} P_{0}$ | $7^{7} \mathrm{~S}$ | 4,046.5630 | 46.5712* | 46.5619 | 7.09 |
| $6^{3} P_{1}$ | $7^{1} \mathrm{~S}$ | 4,077.8314 | 77.8379 | 77.8284 | 6.00 |
| $6^{1} P$ | ${ }^{91} S$ | 4,108.054 | 08.0574 | 08.0572 |  |
| $6^{1} P$ | $7^{3} D_{2}$ | 4,339.2232 | 39.2244 | 39.2251 | 4.74 |
| $6^{1} P$ | $7^{71} \mathrm{D}$ | 4,347.4945 | 47.4958 | 47.4967 | 5.17 |
| $6^{3} P_{1}$ | $7^{7} \mathrm{~S}$ | 4,358.3277 | 58.3372* | 58.3257 | 7.07 |
| $6{ }^{1} P$ | $8^{1} S$ | 4,916.068 | 16.0681 | 16.0677 | 4.35 |
| $6_{3}{ }^{2}$ | $7^{3} S$ | 5,460.7348 | 60.7532 S | 60.7355 | 6.76 |
| $6^{1} P_{1}$ | $6^{3} D_{2}$ | 5,769.5982 | 69.5985 S | 69.6000 | 6.02 |
| $6_{61}{ }^{1}{ }_{1}$ | $6^{3} D_{1}$ | 5,789.664 | 89.669 | 89.671 | 4.41 |
| $6^{61} P$ | $6^{1} D_{2}$ | 5,790.6630 | 90.6629 S | 90.6648 | 5.97 |
| $7^{3}$ S | $8^{1} P$ |  | 6,072.7128 | 72.6260 |  |
| $7^{71 S}$ | $9^{9} P$ |  | 6,234.4020 | 34.3776 |  |
| $7^{71} 5$ | $8^{1} P$ |  | 6,716.4289 | 16.3253 |  |
| $7^{7}{ }^{3}$ | $8^{3} P_{2}$ | 6,907.52 O | -07.4612 | 07.4675 |  |
| $7^{73} S$ | $8^{3} P_{1}$ | 7,082.01 0 |  |  |  |
| $7^{3} S$ | $8^{3} P_{0}$ | 7,092.20 O |  |  |  |
| $6^{1 P}$ | $7^{1}$ S | 10,139.75 O |  |  |  |
| $7^{3}{ }^{3} \mathrm{~S}$ | $7^{7}{ }^{3} \mathrm{P}_{2}$ | 11,287.04 O |  |  | 5.98 |
| ${ }^{71 S}$ | ${ }_{71}{ }^{1} \mathrm{P}$ | 13,570.70 O |  |  | 5.36 |
| $7^{3} S$ | ${ }_{7}{ }^{7} P^{3} P_{1}$ | 13,673.09 O |  |  | 5.53 |
| $7^{3} \mathrm{~S}$ | ${ }^{3} P_{0}$ | 13,950.75 O | ............ |  | 5.26 |
| $6^{1} D$ | $5^{1} F$ | $15,295.25$ $16,918.3$ |  |  | 5.78 |
| $7^{3} P_{2}$ | $7^{3} D_{3}$ | 16,920.97 $O$ |  |  |  |
| $6^{3}{ }^{3}$ | ${ }^{5}{ }^{4} F_{2}$ | 16,942.33 O |  |  | 4.72 |
| $7^{3} \mathrm{P}_{2}$ | $7^{1} \mathrm{D}$ | 17,072.67 O |  |  | 4.90 |
| $6^{3} D_{2}$ | $5^{3} F_{3}$ | 17,109.57 0 |  |  | 4.74 |
| $6^{3} D_{3}$ | $5^{3} F_{4}$ | 17,202.08 $O$ |  |  |  |
| $7^{3} P_{0}$ | $8^{83} 5$ | 22,499.29 O |  |  |  |
| $7^{3} P_{1}$ | $8^{3} 5$ | 23,253.47 0 |  |  | 4.49 |
| $7^{3} P_{2}$ | $8^{83} \mathrm{~S}$ | 36,261 $O$ |  |  |  |

## 7-122

Values obtained by Blank ${ }^{1}$ for $\mathrm{Hg}^{198}$ are 3,650.1569, 4,046.5716, and 4,358.3376.
Intensities are rough photoelectric values obtained at The Johns Hopkins University with a low-pressure neon-mercury discharge. The scale is the same as for neon (Table $7 \mathrm{~g}-2$ ). Intensities may be considerably different for other discharge conditions.

Mercury Tube


Fig. 7g-7. Photoelectric traces of the mercury spectrum, low-pressure mercury tube, 60-cps discharge. Wavelength range $2,400-5,800 \mathrm{~A}$. In order to bring out the weaker lines, the sensitivity was increased so that the ghosts of the strong lines show.

Notes on Table 7g-7. All wavelengths are interferometric values by Burns, ${ }^{2}$ except where otherwise noted.

Those marked $O$ (natural mercury) are older values, sometimes of questionable accuracy. The values of $\mathrm{Hg}^{198}$ marked by ${ }^{*}$ or $S$ are averages, the latter proposed for international standards.

[^347]
## 7h. Data on Characteristic X-ray Spectra

X-ray wavelengths have been measured in two kinds of units. The older measurements are given in X units ( XU ) which are based on the effective lattice constant of rock salt being $2,814.00 \mathrm{XU}$. More recently X-ray wavelengths have been directly connected, through measurements with ruled gratings, to the wavelengths in the optical region and through them to the standard meter. It turned out that the XU which was originally intended as $10^{-11} \mathrm{~cm}$ was 0.202 per cent larger than this value. It has become customary to give X-ray wavelengths in Angstrom units (A) when the absolute scale is used $\left(1 \mathrm{~A}=10^{-8} \mathrm{~cm}\right)$. The two are related by

$$
1,000 \mathrm{XU}=(1.00202 \pm 0.00003) \mathrm{A}
$$

and wavelengths given in XU must be multiplied by 1.00202 and then divided by 1,000 in order to convert them into Angstrom units.

In the following tables the wavelengths are in general expressed in XU/1,000 and should be multiplied by the conversion factor, therefore, in order to convert them to absolute Angstroms.

The terminology of X-ray levels and lines is shown in Fig. 7h-1.


Fig. 7h-1. Energy-level diagrams of X-ray spectra.

Table 7h-1. Wavelengths of $K$ Series Lines Representing Transitions in the Ordinary X-ray Energy-Level Diagram Allowed by the Selection Principles*

| Siegbahn Sommerfeld transition | $K \alpha_{2}$ <br> $K \alpha^{\prime}$ <br> $K-L_{\text {II }}$ | $K \alpha_{1}$ <br> $K \boldsymbol{\alpha}$ <br> $K-L_{\text {III }}$ | $K \beta$ <br> $K \beta_{3}$ <br> $K-M_{\text {II }}$ | $K \beta_{1}$ <br> $K \beta$ <br> $K-M_{\text {III }}$ | $\begin{aligned} & K \beta_{2} \\ & K \gamma \\ & K-L_{I I} N_{\text {III }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 Be | 115.7 |  |  |  |  |
| 5 B | 67.71 |  |  |  |  |
| 6 C | 44.54 |  |  |  |  |
| 7 N | 31.557 |  |  |  |  |
| 80 | 23.567 |  |  |  |  |
| 9 F | 18.275 |  |  |  |  |
| 11 Na | 11.885 |  | 11.594 |  |  |
| 12 Mg | 9.869 |  | 9.539 |  |  |
| 13 Al | 8.3205 |  | 7.965 |  |  |
| 14 Si | 7.11106 |  | 6.7545 |  |  |
| 15 P | 6.1425 |  | 5.7921 |  |  |
| 16 S | 5.3637 | 5.3613 | 5.0211 |  |  |
| 17 Cl | 4.7212 | 4.7182 | 4.3942 |  |  |
| 19 K | 3.73707 | 3.73368 | 3.4468 |  |  |
| 20 Ca | 3.35495 | 3.35169 | 3.0834 |  |  |
| 21 Sc | 3.02840 | 3.02503 | 2.7739 |  |  |
| 22 Ti | 2.74681 | 2.74317 | 2.5090 |  |  |
| 23 V | 2.50213 | 2.49835 | 2.2797 |  |  |
| 24 Cr | 2.28891 | 2.28503 | 2.0806 |  |  |
| 25 Mn | 2.10149 | 2.09751 | 1.90620 |  |  |
| 26 Fe | 1.936012 | 1.932076 | 1.753013 |  |  |
| 27 Co | 1.78919 | 1.78529 | 1.61744 |  |  |
| 28 Ni | 1.65835 | 1.65450 | 1.47905 |  | 1.48561 |
| 29 Cu | 1.541232 | 1.537395 | 1.38935 |  | 1.37824 |
| 30 Zn | 1.43603 | 1.43217 | 1.29255 |  | 1.28107 |
| 31 Ga | 1.34087 | 1.33715 | 1.20520 |  | 1.1938 |
| 32 Ge | 1.25521 | 1.25130 | 1.12671 |  | 1.11459 |
| 33 As | 1.17743 | 1.17344 | 1.05510 |  | 1.04281 |
| 34 Se | 1.10652 | 1.10248 | 0.99013 |  | 0.97791 |
| 35 Br | 1.04166 | 1.03759 | 0.93087 |  | 0.91853 |
| 36 Kr | 0.9821 | 0.9781 | 0.8767 |  | 0.8643 |
| 37 Rb | 0.92776 | 0.92364 | 0.82749 | 0.82696 | 0.81476 |
| 38 Sr | 0.87761 | 0.87345 | 0.78183 | 0.78130 | 0.76921 |
| 39 Y | 0.83132 | 0.82712 | 0.73972 | 0.73919 | 0.72713 |
| 40 Zr | 0.78851 | 0.78430 | 0.70083 | 0.70028 | 0.68850 |
| 41 Nb | 0.74889 | 0.74465 | 0.66496 | 0.66438 | 0.65280 |
| 42 Mo | 0.712105 | 0.707831 | 0.631543 | 0.630978 | 0.619698 |
| 43 Tc | 0.675 | 0.672 | 0.601 |  |  |
| 44 Ru | 0.64606 | 0.64174 | 0.57193 | 0.57131 | 0.56051 |
| 45 Rh | 0.61637 | 0.61202 | 0.54509 | 0.54449 | 0.53396 |
| 46 Pd | 0.58863 | 0.58427 | 0.52009 | 0.51947 | 0.50918 |
| 47 Ag | 0.56267 | 0.55828 | 0.49665 | 0.49601 | 0.48603 |
| 48 Cd | 0.53832 | 0.53390 | 0.47471 | 0.47408 | 0.46420 |
| 49 In | 0.51548 | 0.51106 | 0.45423 | 0.45358 | 0.44408 |

Table 7h-1. Wavelengths of $K$ Series Lines Representing Transitions in the Ordinary X-ray Energy-level Diagram Allowed by the

Selection Principles* (Continued)

| Siegbahn Sommerfeld transition | $K \alpha_{2}$ <br> $K \boldsymbol{\alpha}$ <br> $K-L_{\text {II }}$ | $K \alpha_{1}$ <br> $K \boldsymbol{\alpha}$ $K-L_{\mathrm{III}}$ | $\begin{aligned} & K \beta \\ & K \beta_{3} \\ & K-M_{\mathrm{II}} \end{aligned}$ | $\begin{aligned} & K \beta_{1} \\ & K \beta \\ & K-M_{\text {III }} \end{aligned}$ | $\begin{aligned} & K \beta_{2} \\ & K \gamma \\ & K-L_{I I} N_{\text {III }} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 50 Sn | 0.49402 | 0.48957 | 0.43495 | 0.43430 | 0.42499 |
| 51 Sb | 0.47387 | 0.46931 |  |  | 0.40710 |
| 52 Te | 0.45491 | 0.45037 |  |  | 0.39037 |
| 53 I | 0.43703 | 0.43249 | 0.38292 | 0.38315 | 0.37471 |
| 54 Xe | 0.417 |  | 0.360 |  |  |
| 55 Cs | 0.40411 | 0.39959 | 0.35436 | 0.35360 | 0.34516 |
| 56 Ba | 0.38899 | 0.38443 | 0.34089 | 0.34022 | 0.33222 |
| 57 La | 0.37466 | 0.37004 | 0.32809 | 0.32726 | 0.31966 |
| 58 Ce | 0.36110 | 0.35647 | 0.31572 | 0.31501 | 0.30770 |
| 59 Pr | 0.34805 | 0.34340 | 0.30439 | 0.30360 | 0.29625 |
| 60 Nd | 0.33595 | 0.33125 | 0.29351 | 0.29275 | 0.28573 |
| 62 Sm | 0.31302 | 0.30833 | 0.27325 | 0.27250 | 0.26575 |
| 63 Eu | 0.30265 | 0.29790 | 0.26386 | 0.26307 | 0.25645 |
| 64 Gd | 0.29261 | 0.28782 | 0.25471 | 0.25394 | 0.24762 |
| 65 Tb | 0.28286 | 0.27820 | 0.24629 | 0.24551 | 0.23912 |
| 66 Dy | 0.27375 | 0.26903 | 0.23787 | 0.23710 | 0.23128 |
| 67 Ho | 0.26499 | 0.26030 |  |  |  |
| 68 Er | 0.25664 | 0.25197 | 0.22300 | 0.22215 | 0.21671 |
| 69 Tm | 0.24861 | 0.24387 | 0.21558 | 0.21487 |  |
| 70 Yb | 0.24098 | 0.23628 | 0.20916 | 0.20834 | 0.20322 |
| 71 Lu | 0.23358 | 0.2282 | 0.20252 | 0.20171 | 0.19649 |
| 72 Hf | 0.22653 | 0.22173 | 0.19583 | 0.19515 | 0.19042 |
| 73 Ta | 0.21973 | 0.21488 | 0.18991 |  | 0.18452 |
| 74 W | 0.21337 | 0.20856 | 0.18475 | 0.18397 | 0.17906 |
| 76 Os | 0.20131 | 0.19645 | 0.17361 |  | 0.16875 |
| 77 Ir | 0.19550 | 0.19065 | 0.16850 |  | 0.16376 |
| 78 Pt | 0.19004 | 0.18223 | 0.16370 |  | 0.15887 |
| 79 Au | 0.18483 | 0.17996 | 0.15902 |  | 0.15426 |
| 81 Tl | 0.17466 | 0.16980 | 0.15011 |  | 0.14539 |
| 82 Pb | 0.17004 | ' 0.16516 | 0.14606 |  | 0.14125 |
| 83 Bi | 0.16525 | 0.16041 | 0.14205 |  | 0.13621 |
| 92 U | 0.13095 | 0.12640 | 0.11187 |  | 0.10842 |

[^348]Table 7h-2. Wavelengths of the More Prominent $L$ Group Lines*

| Siegbahn Sommerfeld transition | $\begin{aligned} & \alpha_{2} \\ & \alpha^{\prime} \\ & L_{\mathrm{III}}-M_{\mathrm{IV}} \end{aligned}$ | $\begin{aligned} & \alpha_{1} \\ & \alpha \\ & L_{1 \mathrm{II}}-M_{\mathrm{V}} \end{aligned}$ | $\begin{aligned} & \beta_{1} \\ & \beta \\ & L_{\mathrm{II}}-M_{\mathrm{V}} \end{aligned}$ | $\begin{aligned} & l \\ & \epsilon \\ & L_{\mathrm{III}}-M_{\mathrm{I}} \end{aligned}$ | $\begin{aligned} & \eta \\ & \eta \\ & L_{\mathrm{II}}-M_{\mathrm{I}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 S | 36.27 |  |  | 83.75 |  |
| 20 Ca |  |  |  | 40.90 |  |
| 21 Sc | 36.2731.37 |  |  | 35.71 |  |
| 22 Ti | 27.37 |  |  | 31.33 |  |
| 23 V | 24.31 |  |  | 27.70 |  |
| 24 Cr | 21.53 |  | 21.19 | 23.84 | 23.28 |
| 25 Mn | 19.40 |  | 19.04 | 22.34 |  |
| 26 Fe | 17.57 |  | 17.23 | 20.09 | 19.76 |
| 27 Co | 15.93 |  | 15.63 | 18.25 | 17.86 |
| 28 Ni | 14.53 |  | 14.25 | 16.66 | 16.28 |
| 29 Cu | 13.306 |  | 13.027 | 15.26 | 14.87 |
| 30 Zn | 12.229 |  | 11.960 | 13.97 | 13.61 |
| 31 Ga | 11.27 |  | 11.01 | 12.89 | 12.56 |
| 32 Ge | 10.415 |  | 10.153 | 11.922 | 11.587 |
| 33 As | 9.652 |  | 9.395 | 11.048 | 10.711 |
| 34 Se | 8.972 |  | 8.718 | 10.272 | 9.939 |
| 35 Br | 8.358 |  | 8.109 | 9.564 | 9.235 |
| 37 Rb | 7.3027 |  |  |  |  |
| 38 Sr | 6.8486 |  | 6.610 | 7.822 |  |
| 39 Y | 6.4357 |  | 6.2039 |  | $7.0310$ |
|  |  |  |  | $\begin{aligned} & \beta_{2} \\ & \gamma \\ & L_{\mathrm{III}}-N_{\mathrm{v}} \end{aligned}$ | $\begin{aligned} & \gamma_{1} \\ & \boldsymbol{\delta} \\ & L_{\mathrm{II}}-N_{\mathrm{IV}} \end{aligned}$ |
| 40 Zr | , 6.057 |  | 5.8236 | 5.5742 | 5.3738 |
| 41 Nb | 5.718 | 5.7120 | 5.4803 | 5.2260 | 5.0248 |
| 42 Mo | 5.401 | 5.3950 | 5.1665 | 4.9100 |  |
| 44 Ru | 4.8437 | 4.8357 | 4.6110 | 4.3619 | 4.1728 |
| 45 Rh | 4.5956 | 4.5878 | 4.3640 | 4.1221 | 3.9357 |
| 46 Pd | 4.3666 | 4.3585 | 4.1373 | 3.9007 | 3.7164 |
| 47 Ag | 4.1538 | 4.1456 | 3.9266 | 3.6938 | 3.5149 |
| 48 Cd | 3.9564 | 3.9478 | 3.7301 | 3.5064 | 3.3280 |
| 49 In | 3.7724 | 3.7637 | 3.5478 | 3.3312 | 3.1553 |
| 50 Sn | 3.60151 | 3.59257 | 3.3779 | 3.16861 | 2.99494 |
| 51 Sb | 3.4408 | 3.4318 | 3.2184 | 3.0166 | 2.8451 |
| 52 Te | 3.2910 | 3.2820 | 3.0700 | 2.8761 | 2.7065 |
| 53 I | 3.1509 | 3.1417 | 2.9309 | 2.7461 | 2.5775 |
| 55 Cs | 2.8956 | 2.8861 | 2.6778 | 2.5064 | 2.3425 |
| 56 Ba | 2.7790 | 2.7696 | 2.5622 | 2.3993 | 2.2366 |
| 57 La | 2.6689 | 2.6597 | 2.4533 | 2.2980 | 2.1372 |
| 58 Ce | 2.5651 | 2.5560 | 2.3510 | 2.2041 | 2.0443 |
| 59 Pr | 2.4676 | 2.4577 | 2.2539 | 2.1148 | 1.9568 |
| 60 Nd | 2.3756 | 2.3653 | 2.1622 | 2.0314 | 1.8738 |
| 62 Sm | 2.2057 | 2.1950 | 1.9936 | 1.8781 | 1.7231 |
| 63 Eu | 2.1273 | 2.1163 | 1.9163 | 1.8082 | 1.6543 |

Table 7h-2. Wavelengths of the More Prominent $L$ Group
Lines* (Continued)

| Siegbahn Sommerfeld transition | $\begin{aligned} & \alpha_{2} \\ & \alpha^{\prime} \\ & L_{\mathrm{III}}-M_{\mathrm{IV}} \end{aligned}$ | $\begin{aligned} & \alpha_{1} \\ & \alpha \\ & L_{\mathrm{III}}-M_{\mathrm{V}} \end{aligned}$ | $\begin{aligned} & \beta_{1} \\ & \beta \\ & L_{\mathrm{II}}-M_{\mathrm{V}} \end{aligned}$ | $\begin{aligned} & l \\ & \epsilon \\ & L_{\mathrm{III}}-M_{\mathrm{I}} \end{aligned}$ | $\begin{aligned} & \eta \\ & \eta \\ & L_{11}-M_{I} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 64 Gd | 2.0526 | 2.0419 | 1.8425 | 1.7419 | 1.5886 |
| 65 Tb | 1.9823 | 1.9715 | 1.7727 | 1.6790 | 1.5266 |
| 66 Dy | 1.9156 | 1.9046 | 1.7066 | 1.6198 | 1.4697 |
| 67 Ho | 1.8521 | 1.8410 | 1.6435 | 1.5637 | 1.4142 |
| 68 Er | 1.79202 | 1.78068 | 1.58409 | 1.51094 | 1.3611 |
| 69 Tm | 1.7339 | 1.7228 | 1.5268 | 1.4602 | 1.3127 |
| 70 Yb | 1.67942 | 1.66844 | 1.4725 | 1.41261 | 1.26512 |
| 71 Lu | 1.6270 | 1.61617 | 1.42067 | 1.36731 | 1.21974 |
| 72 Hf | 1.57704 | 1.56607 | 1.3711 | 1.3235 | 1.1765 |
| 73 Ta | 1.52978 | 1.51885 | 1.32423 | 1.28190 | 1.13558 |
| 74 W | 1.48438 | 1.47336 | 1.27917 | 1.24203 | 1.09630 |
| 75 Re | 1.4410 | 1.42997 | 1.23603 | 1.2041 | 1.0587 |
| 76 Os | 1.39866 | 1.38859 | 1.19490 | 1.16884 | 1.02296 |
| 77 Ir | 1.3598 | 1.34847 | 1.15540 | 1.13297 | 0.98876 |
| 78 Pt | 1.32155 | 1.31033 | 1.11758 | 1.09974 | 0.95599 |
| 79 Au | 1.28502 | 1.27377 | 1.08128 | 1.06801 | 0.92461 |
| 80 Hg | 1.24951 | 1.23863 | 1.04652 | 1.03770 | 0.8946 |
| 81 Tl | 1.21626 | 1.20493 | 1.01299 | 1.00822 | 0.86571 |
| 82 Pb | 1.18408 | 1.17258 | 0.98083 | 0.98083 | 0.83801 |
| 83 Bi | 1.15301 | 1.14150 | 0.95002 | 0.95324 | 0.81143 |
| 90 Th | 0.96585 | 0.95405 | 0.76356 | 0.79192 | 0.65176 |
| 91 Pa | 0.9427 | 0.9309 | 0.7407 | 0.7721 | 0.6325 |
| 92 U | 0.92062 | 0.90874 | 0.71851 | 0.75307 | 0.61359 |

[^349]Table 7h-3. Wavelengths of $M$ Series Lines from 73 Ta to 92 U*

| Transition | 73 Ta | 74 W | 75 Re | 76 Os | 77 Ir | 78 Pt | 79 Au | 81 Tl | 82 Pb | 83 Bi | 90 Th | 92 U |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{\text {II }} O_{\text {IV }}$ |  |  |  |  |  |  |  |  |  |  | 2.613 | 2.440 |
| $M_{\text {I }} N_{\text {III }}$ |  | 5.163 |  |  |  | 4.451 | 4.291 | 4.005 | 3.864 | 3.732 | 2.938 | 2.745 |
| $M_{\text {II }} N_{\text {IV }}$ | 5.558 | 5.342 |  | 4.944 | 4.770 | 4.590 | 4.424 | 4.110 | 3.964 | 3.829 | 3.006 | 2.813 |
| $M_{\text {III }} O_{\mathrm{V}}$ |  |  |  |  | 4.859 | 4.682 | 4.514 | 4.207 | 4.063 | 3.926 | 3.124 | 2.941 |
| $M_{\text {III }} O_{\text {I }}$ |  | 5.620 |  |  |  |  |  |  | 4.235 | 4.096 |  | 3.114 |
| $M_{\text {II }} N_{\text {I }}$ |  |  |  |  |  |  |  |  |  |  |  | 3.322 |
| $\gamma^{\prime}$ |  |  |  |  |  |  |  | 4.800 | 4.650 | 4.506 | 3.661 | 3.463 |
| $M_{\text {III }} N_{\text {V }}$ | 6.299 | 6.076 | 5.875 | 5.670 | 5.490 | 5.309 | 5.135 | 4.815 | 4.665 | 4.522 | 3.672 | 3.473 |
| $M_{\text {III }} N_{\text {IV }}$ | 6.340 | 6.121 | 5.919 | 5.712 | 5.529 | 5.346 | 5.175 | 4.855 | 4.705 | 4.560 | 3.710 | 3.514 |
| $M_{\text {IV }} O_{\text {II }}$ | 7.083 | 6.794 |  |  |  |  |  |  |  | 4.813 | 3.804 | 3.570 |
| $\beta^{\prime}$ | 6.984 | 6.718 |  | 6.233 | 6.009 | 5.796 | 5.595 | 5.220 | 5.045 | 4.881 | 3.924 | 3.698 |
| $M_{\text {IV }} N_{\text {VI }}$ | 7.008 | 6.743 | 6.491 | 6.254 | 6.025 | 5.8168 | 5.612 | 5.239 | 5.065 | 4.899 | 3.934 | 3.708 |
| $M_{\text {v }} O_{\text {III }}$ |  |  |  |  |  | 5.975 | 5.755 |  |  |  |  |  |
| $\alpha^{\prime \prime}$ | 7.2016 | 6.932 |  | 6.440 | 6.215 | 5.997 | 5.794 | 5.416 | 5.239 |  |  |  |
| $\alpha^{\prime}$ | 7.219 | 6.948 |  | 6.459 | 6.231 | 6.011 | 5.8115 | 5.433 | 5.256 | 5.087 | 4.112 | 3.886 |
| $M_{\mathrm{v}} N_{\text {VII }}$ | 7.2376 | 6.969 | 6.715 | 6.477 | 6.249 | 6.034 | 5.828 | 5.450 | 5.274 | 5.108 | 4.130 | 3.902 |
| $M_{\mathrm{v}} N_{\mathrm{vI}}$ |  |  |  |  | 6.262 | 6.045 | 5.842 | 5.4615 | 5.288 | 5.119 | 4.143 | 3.916 |
| $M_{\text {III }} N_{\text {I }}$ | 7.596 | 7.346 |  |  | 6.653 | 6.442 | 6.2415 | 5.870 | 5.694 | 5.526 | 4.554 | 4.322 |
| $M_{\text {IV }} N_{\text {III }}$ |  | 8.559 | 8.222 |  | 7.629 | 7.356 | 7.086 |  | 6.371 | 6.149 | 4.901 | 4.615 |
| $M_{\mathrm{V}} N_{\text {III }}$ | 9.297 | 8.943 | 8.612 | 8.293 | 8.002 | 7.722 | 7.451 | 6.960 | 6.726 | 6.508 | 5.229 | 4.937 |
| $M_{\text {IV }} N_{\text {II }}$ | 9.311 | 8.977 | 8.646 | 8.344 | 8.048 | 7.774 | 7.507 | 7.017 | 6.788 | 6.5715 | 5.329 | 5.040 |

[^350]

|  |  |  |
| :---: | :---: | :---: |
|  | 侖 |  |
|  |  |  |
|  | $\begin{array}{llll} \vdots & & \sim & \infty \\ \vdots \prod_{n} & & \infty & \text { in } \end{array}$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  <br>  <br>  |  |
|  |  <br>  <br>  |  |
|  か숭 Nix in <br>  |  |  |
|  | なొo <br>  |  |

Table 7h-4. Critical Absorption Wavelengths (Continued)


Table 7h-5. Energy Levels of X-ray Spectra* [Units $\nu / R\left(R=109,737.3 \mathrm{~cm}^{-1}\right)$ ]

|  | $K$ | $L_{\text {I }}$ | $L_{\text {II }}$ | $L_{\text {III }}$ | $M_{\text {I }}$ | $M_{\text {II }}$ | $M_{\text {III }}$ | $M_{\text {IV }}$ | $M_{\text {v }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 He | 1.8 |  |  |  |  |  |  |  |  |
| 3 Li | 3.6 |  |  |  |  |  |  |  |  |
| 4 Be | 8.2 | 0.7 |  |  |  |  |  |  |  |
| 5 B | 14.2 |  |  |  |  |  |  |  |  |
| 6 C | 21.04 |  |  |  |  |  |  |  |  |
| 7 N | 29.4 |  |  | 4 |  |  |  |  |  |
| 8 O | 39.3 |  |  | 7 |  |  |  |  |  |
| 9 F | 50.6 |  |  |  |  |  |  |  |  |
| 10 Ne | 64.0 | 3.56 | 1.59 | 1.58 |  |  |  |  |  |
| 11 Na | 78.93 | 4.678 | 2.263 | 2.248 |  |  |  |  |  |
| 12 Mg | 96.0 | 6.513 | 3.658 | 3.638 |  | 0. |  |  |  |
| 13 Al | 114.8 | 8.485 | 5.372 | 5.343 |  | 0. |  |  |  |
| 14 Si | 135.4 | 11.0 | 7.378 | 7.325 |  |  |  |  |  |
| 15 P | 157.8 | 13.6 | 9.68 | 9.60 |  |  |  |  |  |
| 16 S | 181.9 | 16.5 | 12.11 | 12.02 | 1.23 |  |  |  |  |
| 17 Cl | 207.91 | 19.8 | 14.9 | 14.8 | 1.4 | 0. |  |  |  |
| 18 Ar | 235.7 | . | 18.1 | 17.9 |  |  | 0.8 |  |  |
| 19 K | 265.6 | 27.7 | 21.7 | 21.5 | 2.40 | $\cdots$ |  | 0. |  |
| 20 Ca | 297.4 | 32.3 | 25.8 | 25.5 | 3.22 | 1. |  | 0.37 0.3 |  |

[^351]
## 7-134 ATOMIC AND MOLECULAR PHYSICS

Table 7h-5. Energy Levels of X-ray Spectra (Continued)

|  | $K$ | $L_{\text {I }}$ | $L_{\text {II }}$ | $L_{\text {IIII }}$ | $M_{\text {I }}$ | $M_{\text {II }}$ | $M_{\text {III }}$ | $M_{\text {IV }}$ | $M \mathrm{~V}$ | $N_{\text {I }}$ | $N_{\text {II }}$ | $N_{\text {III }}$ | $N_{\text {IV }}$ | $N \mathrm{~V}$ | $Y_{1}$ | $Y_{\text {II }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 sc | 331.2 | 37.2 | 30.3 | 30.0 | 4.27 | 2.7 |  | $0.81 \mid$ |  |  |  |  |  |  |  |  |
| 22 Ti | 365.8 | 41.5 | 34.0 | 33.6 | 4.48 |  |  | $0.24 \mid$ 0.3 |  |  |  |  |  |  |  |  |
| 23 Va | 402.7 | 46.4 | 38.5 | 37.9 | 5.05 | 3.0 |  | 0.19 0.3 |  |  |  |  |  |  |  |  |
| 24 Cr | 441.1 | 51.4 | 43.0 | 42.3 | 5.40 | 3. |  | 0.051 0.1 |  |  |  |  |  |  |  |  |
| 25 Mn | 481.9 | 57.2 | 48.3 | 47.4 | 6.36 | 3.8 |  | $0.44 \mid$ 0.4 |  |  |  |  |  |  |  |  |
| 26 Fe | 523.9 | 62.5 | 53.2 | 52.2 | 6.95 | 4. |  | 0.31 0.3 |  |  |  |  |  |  |  |  |
| 27 Co | 568.1 | $\ldots$ | 58.8 | 57.7 | 7.73 | 1 |  | $\begin{array}{r} 0.42 \mid \\ 0.4 \end{array}$ |  |  |  |  |  |  |  |  |
| 28 Ni | 614.1 | 74.8 | 64.6 | 63.2 | 8.53 |  |  | 0.51 0.5 |  |  |  |  |  |  |  |  |
| 29 Cu | 661.44 | 80.8 | 70.18 | 68.703 | 9.06 |  | . 54 | $\begin{array}{r} 0.28 \mid \\ 0.3 \end{array}$ |  |  |  |  |  |  |  |  |
| 30 Zn | 711.79 | 88.5 | 77.21 | 75.50 | 10.30 |  | . 77 | $\begin{array}{r} 0.80 \mid \\ 0.7 \end{array}$ |  | 0.7 |  | 0.5 |  |  |  |  |
| 31 Ga | 765.6 |  | 86.0 | 84.1 | 11.89 |  |  | $\begin{array}{r} 1.45 \\ 1.7 \end{array}$ |  |  |  |  |  |  |  |  |
| 32 Ge | 817.6 |  | 91.6 | 89.3 | 12.9 |  | 1 | 1.82 |  |  |  | $0$ |  |  |  |  |
| 33 As | 874.05 | 112.62 | 100.08 | 97.48 | 15.00 |  | . 37 | 3.0 |  | $\ldots$ |  | 0.2 |  |  |  |  |
| 34 Se | 932.17 |  | 108.60 | 105.62 | 16.91 |  | 11.82 | 5.07 | 4.00 |  |  | 0.32 |  |  |  |  |
| 35 Br | 992.6 |  | 117.8 | 114.3 | 19.48 | 13.60 | 13.21 | 5.27 | 5.13 | $\ldots$ |  | 0.5 |  |  |  |  |
| 36 Kr | 1,055.05 |  | 127.18 | 123.38 |  |  | . 62 |  | .... |  |  | 0.71 |  |  |  |  |
| 37 Rb | 1,119.65 | 152.65 | 137.43 | 133.04 | 23.86 | 18.41 | 17.69 | 8.39 | 8.26 | 2.28 |  | 1.22 |  |  |  |  |
| 38 Sr | 1,186.27 | 163.33 | 147.90 | 142.97 | 26.44 | 20.71 | 19.92 | 10.06 | 9.91 | 2.89 |  | 1.55 |  |  | 0.58 |  |
| 39 Y | 1,254.90 | 174.72 | 158.72 | 153.16 | 29.03 | 23.00 | 22.10 | 11.72 | 11.56 | 3.31 |  | 1.87 1.93 |  |  |  |  |
| 40 Zr | 1,325.45 | 186.27 | 169.78 | 163.56 | 31.57 | 25.14 | 24.16 | 13.32 | 13.14 15.26 | 3.66 4.52 |  | 1.93 2.67 |  | ${ }^{.} 62$ | 1.16 1.70 | 0.40 0.50 |
| 41 Nb | 1,398.5 | 198.9 | 181.7 | 174.7 | 34.7 | 28.11 | 26.91 | 15.48 | 15.26 | 4.52 4.82 |  | 2.67 2.73 |  | ${ }^{1.62}$ | 1.70 | 0.51 0.33 |
| 42 Mo | 1.473.29 | 211.22 | 193.60 | 185.87 | 37.43 | 30.35 | 29.07 | 17.21 | 16.97 | 4.82 5.50 |  | 2.73 3.24 |  | \| 0.5 | 1.73 2.20 | 0.3 0.46 |
| 44 Ru | 1.629.01 | 237.54 | 218.49 | 209.00 | 43.07 | 35.69 | 33.97 36.49 | 20.86 | 20.55 | 5.50 5.84 |  | 3.24 3.50 |  | . 16 | 2.20 | 0.46 0.21 |
| 45 Rh | 1,710.12 | 251.26 | 231.60 | 221.11 <br> 23365 | 46.07 49.27 | 38.35 41.07 | 36.49 39.04 | 22.84 | 22.49 24.59 | 5.84 6.29 |  | 3.50 3.67 |  | . 09 | 2.17 | 0.30 |
| 46 Pd | 1.793 .46 | 265.37 | 245.21 | 233.65 246.94 | 49.27 52.98 | 41.07 44.49 | 39.04 42.21 | 24.97 27.56 | 24.59 27.13 | 6.29 |  | 3.67 4.28 |  | \| 0.36 | 2.32 | 0.16 |
| 47 Ag | 1.879.33 | 280.42 | 259.67 | 246.94 | 52.98 | 44.49 | 42.21 | 27.56 | 27.13 | 7.15 |  | 4.28 | 0.45 | . 39 | 2.32 | 0.16 |

Table 7h-5. Energy Level of X-ray Spectra (Continued)
DATA ON CHARACTERISTIC X-RAY SPECTRA
7-135


## 7i. Constants and Energy Levels of Diatomic Molecules

## 7i-1. Constants of Diatomic Molecules

## Explanation of Columns in Table 7i-1

1. Identification of molecule.
2. Mass numbers of the constituent atoms to which the data refer. If these are not specified, the naturally occurring isotope mixture is used.
3. Reduced mass $\mu$ in atomic units ( $0^{16}=16.0000$ ).
4. Designation of the normal state of the molecule.
5. $B=h /\left(8 \pi^{2} c \mu r_{e}{ }^{2}\right)$ where $r_{e}$ is the equilibrium distance.
6. $\alpha$ from $B_{v}=B-\alpha\left(v+\frac{1}{2}\right) ;-\alpha=Y_{11}$.
7. $r_{e}$ equilibrium distance.
8. Vibrational frequency $\omega=Y_{10}$.
9. Anharmonic constant $-x=Y_{20}, E_{v}=\omega\left(v+\frac{1}{2}\right)-x\left(v+\frac{1}{2}\right)^{2}$.
10. Dissociation energy $D_{0}$ in electron volts.

Uncertain quantities are enclosed in parentheses. Quantities listed within square brackets refer to the $v=0$ state instead of the equilibrium state.

The data are derived mostly from molecular spectra (visible, infrared, or microwave); some are from X-ray or electron diffraction or thermochemical data. They have been chiefly taken from the compilation of Herzberg. For further details and literature references, see this compilation: G. Herzberg, "Spectra of Diatomic Molecules," D. Van Nostrand \& Company, Inc., Princeton, N.J., 1950; also B. Rosen, "Données concernant les molécules diatomiques" (1951).

The constants in the expression for the potential energy,

$$
V(r)=a_{0}\left(r-r_{e}\right)^{2}\left[1+a_{1}\left(r-r_{e}\right)^{2}+a_{2}\left(r-r_{e}\right)^{2}+\cdots\right]
$$

may be derived from the approximate expressions

$$
\begin{aligned}
& \omega^{2}=4 B a_{0} \quad x=-\frac{3}{2} B\left(a_{2}-\frac{5}{4} a_{1}{ }^{2}\right) \\
& \alpha=-\frac{6 B^{2}}{\omega}\left(1+a_{1}\right) \\
& a_{0}=\frac{\omega^{2}}{4 B} \quad a_{1}=1-\frac{\alpha \omega}{6 B^{2}} \quad a_{2}=-\frac{2 x}{3 B}+\frac{5}{4} a_{1}{ }^{2}
\end{aligned}
$$

Table 7i-1. Constants of Diatomic Molecules*


Table 7i-1 Constants of Diomatic Molecules (Continued)


CONSTANTS AND ENERGY LEVELS of diatomic molecules $7-139$
Table 7i-1. Constants of Diatomic Molecules (Continued)


Table 7i-1. Constants of Diatomic Molecules (Continued)


## CONSTANTS AND ENERGY LEVELS Of díatómic molecules 7-141

Table 7i-1. Constants of Diatomic Molecules (Continued)

| (1) | $\boldsymbol{m}_{1}$ | ${ }_{\text {(2) }}{ }^{m_{2}}$ | $\mu$ (3) | Normal <br> state <br> (4) | B <br> (5) | $\alpha$ <br> (6) | (7) | $\omega$ (8) | $x$ (9) | $D_{0}$, electron volts (10) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SbF. |  | 19 | 16.4394 | $\ldots$ |  |  |  | 614.2 | 2.77 | (4.2) |
| SbN . |  | 14 | 12.5627 | ${ }^{1}$ |  |  |  | 942.0 | 5.6 | (4.8) |
| SbO. |  | 16 | 14.1421 | ${ }^{1 I}$ |  |  |  | 817.2 | 5.30 | (3.8) |
| ScO | 45 | 16 | 11.8012 | ${ }^{2}$ |  |  |  | 971.55 | 3.95 | (7) |
| $\mathrm{Se}_{2}$. | 80 | 80 | 39.971 | ${ }^{15}{ }_{0}{ }^{+}$ | 0.0907 | 0.00027 | 2.157 | 391.77 | 1.06 | 3.55 |
| SeO |  | 16 | 13.3047 | .... |  |  |  | 907.1 | 4.61 | (5.4) |
| $\mathrm{Siz}_{2}$ |  |  | 14.034 | $\ldots$ |  |  |  | (750) |  |  |
| Sibr. |  |  | 20.774 | 2II |  |  |  | 425.4 | 1.5 | (3.7) |
| SiCl. | 28 | 35 | 15.5474 | 2 II |  |  |  | 535.4 | 2.20 | (4.0) |
| SiF. | 28 | 19 | 11.3187 | 2 II | 0.5795 |  | 1.603 | 856.7 | 4.7 |  |
| SiH. | 28 | 1 | 0.97308 | ${ }^{2} 11$ | 7.496 | 0.213 | 1.520 | $(2,080)$ |  |  |
| SiN | 28 | 14 | 9.33526 | ${ }^{2}{ }^{2}$ | 0.7310 | 0.00567 | $1.571_{8}$ | 1,151.680 | 6.5600 | (4.5) |
| SiO. | 28 | 16 | 10.18013 | ${ }^{15}{ }^{+}$ | 0.7263 | 0.00494 | 1.5101 | 1,242.03 | 6.047 | (7.4) |
| $\mathrm{SiO}^{+}$ | 28 | 16 | 10.18006 | ${ }^{2}$ | 0.7320 | 0.0133 | 1.5042 | (851) |  |  |
| SiS. | 28 | 32 | 14.92589 | ${ }^{15}$ | 0.30363 | 0.00149 | 1.9288 | 749.69 | 2.58 | (6.6) |
| SiSe. | 28 |  | 20.6646 | ${ }^{1}$ |  |  |  | 580.0 | 1.78 | (5.8) |
| SiTe. | 28 |  | $22.954{ }^{2}$ | ${ }^{15}{ }^{+}$ |  |  |  | 481.2 | 1.30 | (5.5) |
| SnBr |  |  | 47.774 | 2III |  |  |  | 247.7 | 0.62 | (3.0) |
| SnCl |  | 35 | 27.0190 | ${ }^{21 I}$ |  |  |  | 352.5 | 1.06 | (3.6) |
| SnF . |  | 19 | 16.3823 | ${ }^{2}{ }^{2} \frac{1}{3}$ |  |  |  | 582.9 | 2.69 | (3.9) |
| SnH |  | 1 | 0.99964 | 2II | 5.293 |  | 1.785 |  |  |  |
| SnO . |  | 16 | 14.0999 | ${ }^{15}{ }^{+}$ | 0.3540 | 0.00450 | 1.837, | 822.4 | 3.73 | (5.6) |
| SnS . |  |  | 25.253 | ${ }^{12}{ }^{+}$ | (0.157) |  | (2.06) | 487.68 | 1.34 | 3.0 |
| SnSe. |  |  | 47.430 | ${ }^{15}$ |  |  |  | 331.2 | 0.736 | (4.6) |
| SnTe. |  |  | 61.514 | ${ }^{12}$ |  |  |  | 259.5 | 0.50 | (4.2) |
| SO.. | 32 | 16 | 10.66472 | ${ }^{3}{ }^{-}$ | 0.70894 | 0.005622 | 1.4933 | 1,123.73 | 6.116 | 5.146 |
| SrBr . |  | 79 | 41.532 | ${ }^{2 \Sigma^{+}}$ |  |  |  | 216.5 | 0.51 | (2.8) |
| $\mathrm{SrCl} .$ |  | 35 | $\mathrm{2F.001}_{8}$ | ${ }^{2} \Sigma^{+}$ |  |  |  | 302.3 | 0.95 | (3.0) |
| SrF. |  | 19 | 15.6183 | ${ }^{2} \Sigma^{+}$ |  |  |  | 500.1 | 2.21 | (3.5) |
| SrH |  | 1 | 0.99667 | ${ }^{2} \mathbf{\Sigma}^{+}$ | 3.6751 | 0.0814 | 2.1455 | 1,206.2 | 17.0 | $\leq 1.68$ |
| SrI. |  | 127 | 51.849 | ${ }^{25}$ ? |  |  |  | 173.9 | 0.42 | (2.2) |
| SrO |  | 16 | 13.5302 | $1 \Sigma$ | 0.3378 | 0.0020 | 1.921 | 653.5 | 4.0 | (4.5) |
| SrS . |  |  | 23.482 |  |  |  |  |  |  | $\leq 2.7$ |
| $\mathrm{Te}_{2}$.. |  |  | 63.823 | $\cdots$ |  |  | [2.59] |  | 0.55 | $\leq 3.18$ |
| TeO. |  | 16 | 14.2169 | $\ldots$ |  |  |  | 796.0 | 3.50 | ${ }^{3.453}$ |
| TiCl. | 48 | 35 | 20.2278 | $\ldots$ |  |  |  | 456.4 | 6.3 | (1.0) |
| TiO. | 48 | 16 | 11.9979 | ${ }^{3} 1$ | 0.5355 | 0.0031 |  | 1,008.4 | 4.61 | (6.9) |
| TIBr. |  | 81 | 57.979 | ${ }^{15}{ }^{+}$ | ......... |  | (2.68) | 192.1 | 0.39 | $\leq 3.19$ |
| TICl. |  | 35 | 29.869 | ${ }^{12}{ }^{+}$ | ......... |  | 2.55 | 287.47 | 1.24 | 3.75 |
| TIF. |  | 19 | 17.3882 | ${ }^{15}{ }^{+}$ | ......... |  |  | 475.00 | 1.89 | <4.72 |
| TIH. |  |  | 1.003184 | ${ }^{15}{ }^{+}$ | 4.806 | 0.154 | 1.870 | 1,390.7 | 22.7 | $\leq 2.18$ |
| TII. |  | 127 | 78.312 | ${ }^{15}{ }^{+}$ |  |  | (2.87) | 150 | 0.6 | $\leq 2.64$ |
| vo.. | 51 | 16 | 12.1768 | ${ }^{2} \Delta$ ? | 0.3876 | 0.0024 | 1.890 | 1,012.7 | 4.9 | (6.4) |
| YbCl. |  |  | 29.435 | 28? | ......... |  |  | 293.61 | 1.23 | (1.2) |
| Y0... | 89 | 16 | 13.5606 | ${ }^{22}$ |  |  |  | 852.5 | 2.45 | (9) |
| ZnBr . |  |  | 35.970 | ${ }^{22}$ ? | ......... |  |  | (220) |  |  |
| ZnCl . |  | 35 | 22.790 | ${ }^{2}$ | . |  |  | 390.5 | 1.55 | (3.0) |
| ZnF |  | 19 | 14.725 | ${ }^{2}$ |  |  |  | (630) | (3.5) |  |
| ZnH.. |  | 1 | 0.992826 | ${ }^{2} \mathbf{\Sigma}^{+}$ | 6.6794 | 0.2500 | 1.5945 | 1,607.6 | 55.14 | 0.851 |
| $\mathrm{ZnH}^{+}$. |  | 1 | 0.992826 | ${ }^{15}{ }^{+}$ | 7.403 | 0.236 | 1.5146 | 1,916 | 39 | (2.5) |
| ZnI . | 64 | 127 | 42.528 | ${ }^{2}$ 2? |  |  |  | 223.4 | 0.75 | (2.0) |
| $\mathrm{nnS}$. |  |  | 21.520 | .... |  |  |  |  | ....... | 4.4 |
| $\mathrm{ZnTe} .$ |  |  | 43.243 |  |  |  |  |  | ...... | 2.2 |
| ZrO. | 90 | 16 | 13.5836 | ${ }^{\text {III }}$ | 0.6187 | 0.0070 | (1.416) | 936.6 | 3.45 | (7.8) |

## 7i-2. Energy Levels and Potential Curves of Important Diatomic Molecules

The following molecules are represented:

| $\mathrm{C}_{2} \ldots \ldots \ldots \ldots$. | Fig. 7i-1 | $\mathrm{N}_{2} \ldots \ldots \ldots .$. | Fig. 7i-4 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{CN} \ldots \ldots \ldots$. | Fig. 7i-2 | $\mathrm{NO} \ldots \ldots \ldots$. | Fig. 7i-5 |
| $\mathrm{CO} \ldots \ldots \ldots \ldots$. | Fig. 7i-3 | $\mathrm{O}_{2} \ldots \ldots \ldots \ldots$. | Fig. 7i-6 |



Fig. 7i-1. Potential curves of $\mathrm{C}_{2}$. (G. Herzberg, "Spectra of Diatomic Molecules," $2 d$ ed., D. Van Nostrand Company, Inc., Princeton, N.J., 1950.)

CONSTANTS AND ENERGY LEVELS OF DIATOMIC MOLECULES 7-143


Fig. 7i-2. Potential curves of CN. (G. Herzberg, "Spectra of Diatomic Molecules," 2d ed., D. Van Nostrand Company, Inc., Princeton, N.J., 1950.)


Fig. 7i-3. Energy levels of CO. (Herzberg, "Spectra of Diatomic Molecules," 2d ed., D. Van Nostrand Company, Inc., Princeton, N.J., 1950.)

7-144


[^352]

CONSTANTS OF POLYATOMIC MOLECULES


Fig. 7i-6. Potential curves of $\mathrm{O}_{2}$. (G. Herzberg, "Spectra of Diatomic Molecules," 2d ed., D. Van Nostrand Company, Inc., Princeton, N.J., 1950.)

# 7j. Constants of Polyatomic Molecules 

G. HERzBERG AND L. HERZBERG<br>Division of Physics<br>National Research Council of Canada

7j-1. Introduction. The following tables present some of the more important data on simple polyatomic molecules derived from infrared, Raman, and microwave spectra. Tables $7 \mathrm{j}-1$ through $7 \mathrm{j}-4$ give the fundamental vibrational frequencies (in $\mathbf{c m}^{-1}$ ) of all triatomic and four-atomic molecules for which these quantities have been determined and for a few important five- and six-atomic molecules. The point groups to which the molecules belong are indicated in the last column. The numbering of the vibrations is in accordance with the practice followed by many authors in recent years ${ }^{1}$ and now established by international agreement. ${ }^{2}$

For most molecules listed the fundamentals are active in both the infrared and the Raman spectrum. However, for molecules of high symmetry, certain vibrations cannot occur in the Raman spectrum, others not in the infrared spectrum, and a few in neither one: for triatomic linear symmetric molecules $\left(D_{o h h}\right), \nu_{1}$ is Raman active and $\nu_{2}$ and $\nu_{3}$ infrared active; for four-atomic linear symmetric molecules $\left(D_{\omega h}\right), \nu_{1}, \nu_{2}$, and $\nu_{4}$ are Raman active and $\nu_{3}$ and $\nu_{5}$ infrared active; for four-atomic planar molecules

[^353]with a threefold axis ( $D_{3 h}$ ), $\nu_{1}$ is Raman active, $\nu_{2}$ infrared active, and $\nu_{3}$ and $\nu_{4}$ are both Raman and infrared active; for five-atomic tetrahedral molecules ( $T_{d}$ ) all vibrations are Raman active but only $\nu_{3}$ and $\nu_{4}$ are infrared active; for linear symmetric sixatomic molecules, the vibrations $\nu_{1}, \nu_{2}, \nu_{3}, \nu_{6}, \nu_{7}$ are Raman active and the remaining ones are infrared active, for six atomic molecules with three mutually perpendicular planes of symmetry $\left(V_{h}\right)$, the vibrations $\nu_{7}, \nu_{9}, \nu_{10}, \nu_{11}, \nu_{12}$ are infrared active and all others, except $\nu_{4}$, are Raman active, for six atomic molecules of $C_{2 h}$ symmetry, $\nu_{1}, \nu_{2}$, $\nu_{3}, \nu_{4}, \nu_{5}$, and $\nu_{8}$ are Raman active, and the others are infrared active.

Tables 7j-5 through 7j-15 give the rotational constants $A_{[0]}, B_{[0]}, C_{[0]}$ of all triatomic, four-atomic, five-atomic, and six-atomic molecules for which they are known. These rotational constants are, apart from the factor $h / 8 \pi^{2} c$, the reciprocal moments of inertia, and therefore from them the geometrical parameters of the molecule can be determined if a sufficient number of isotopes have been investigated. The geometrical parameters thus obtained are also listed in Tables $7 \mathrm{j}-5$ through $7 \mathrm{j}-15$.

The constants $A_{[0]}, B_{[0]}, C_{[0]}$ refer to the lowest vibrational level which still includes the zero-point vibration. In the few cases in which these constants have been determined for the true equilibrium positions, the equilibrium constants $A_{e}, B_{e}, C_{e}$ are also listed.
Mierowave spectra give the constants in Mc/sec while infrared and Raman spectra give them in $\mathrm{cm}^{-1}$. Here all microwave values have been converted to $\mathrm{cm}^{-1}$ by dividing by $c=2.997928 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$.
In the alphabetical order used, D is counted as an H in order to have the deuterated molecules appear with the corresponding nondeuterated ones. Element symbols without mass numbers refer to the most abundant isotope.
Many of the data have been taken from the books by Herzberg ${ }^{1}$ and by Gordy, Smith, and Trambarulo. ${ }^{2}$ In addition, the literature up to the end of 1953 has been included. For detailed tables of microwave frequencies, reference should be made to Kisliuk and Townes. ${ }^{3}$

Most of the geometrical data are still based on DuMond and Cohen's 1951 set of atomic constants. ${ }^{4}$ A few data that were recalculated are based on the 1953 set. ${ }^{5}$ However, the difference amounts to less than 0.01 per cent ( $<0.0001 \mathrm{~A}$ ).

[^354]
## 7j-2. Fundamental Vibrations

Table 7j-1. Triatomic Molecules

| Molecule | $\nu_{1}, \mathrm{~cm}^{-1}$ | $\nu_{2}, \mathrm{~cm}^{-1}$ | $\nu_{3}, \mathrm{~cm}^{-1}$ | Point group |
| :---: | :---: | :---: | :---: | :---: |
| $\left(\mathrm{BO}_{2}\right)^{-}$ | 749* |  | $(1,480)$ | $D_{\text {o }}$ |
| BrCN | 580 | 368 | 2,187 | $C_{\infty \nu}$ |
| $\mathbf{C F}_{2}$ | 1,162 | 665.0 |  |  |
| CICN | 714 | 396* | 2,213 | $C_{2 v}$ |
| $\mathrm{Cl}_{2} \mathrm{O}$ | 688 | (330) | 969 | $C_{\text {co }}$ |
| $\mathrm{ClO}_{2}$ | 943.2 | 445 | 1,110.5 | $C_{2 v}$ |
| $\left(\mathrm{ClO}_{2}\right)$ | 797 | 396 | 844 |  |
| $\stackrel{\mathrm{CO}_{2}}{ }$ | 1,388.3; $2 \nu_{2}=1,285.5 \dagger$ | 667.3 | 2,349.3 | $D_{\text {coh }}$ |
| $\left(\mathrm{CO}_{2}\right)^{+}$ $\mathrm{CS}_{2} \ldots$ | $(1,265)$ |  |  | $D_{\text {coh }}$ |
| $\mathrm{CSO}_{2}$ FCN | 655 | (397) | 1,510 | $D_{\text {ch }}$ |
| FCN $\mathrm{F}_{2} \mathrm{O}$ | $(2,294)$ |  | $(1,052)$ | $C_{\text {cov }}$ |
| $\mathrm{F}_{2} \mathrm{O}$ | 928 | 461 | 828 | $C_{20}$ |
| DCN | 2,095.5 | 711.7 | 3,311.68 | $C_{\infty} 0$ |
| $\left(\mathrm{HF}_{2}\right)^{-}$ | 1,928 | 568.9 | 2,629.3 | $C_{\infty} 0$ |
| $\mathrm{HgBr}_{2}$. | ${ }_{223}{ }^{(595)} \ddagger$ | 1,248 $\ddagger$ | 1,510 $\ddagger$ | $C_{\text {cos }}($ ? $)$ |
| HgBrI | 195 | 53 | (307) | $D_{\infty}$ |
| $\mathrm{HgCl}_{2}$. | 363 | 75 | 423 | $C_{\infty}$ D |
| HgClBr | 270 | (40) |  | $D_{\text {m }}$ |
| HgClI . | 204 | (50) | 408 | $C_{\infty 0}$ |
| $\mathrm{HgI}_{2}$ | 156 | 46 | (235) | $C_{\infty 0}$ |
| $\mathrm{H}_{2} \mathrm{O}$. | 3,657.05 | 1,595.0 | 3 (235) 79 | $D_{\text {coh }}$ |
| HDO | 2,723.7 | 1,403 | 3,775.79 | $C_{20}$ |
| $\mathrm{D}_{2} \mathrm{O}$. | 2,666 | 1,178.7 | 2,787.3 | C. |
| HOCl | 3,626 | 1,242 | 2,739 | $C_{\text {2v }}$ |
| DOCl. | 2,674 | 911 | 739 | C. |
| $\mathrm{H}_{2} \mathrm{~S}$. | 2,610.8 | 1,183 | 739 2,626 | ${ }_{\text {c }}$ |
| HDS. |  |  | 2,626 | $\mathrm{C}_{20}$ |
| $\mathrm{D}_{2} \mathrm{~S}$. | 1,892 | 1,090 855 | $(2,684)$ | ${ }_{\text {c }}$ |
| $\mathrm{H}_{2} \mathrm{Se}$. | 2,260 | 1,855 1,074 | 1,900 2,350 | ${ }_{C}{ }_{\text {c }}$ |
| HDSe | 1,691 | -905 | 1,350 $\mathbf{2 , 3 5 2}$ |  |
| $\mathrm{D}_{2} \mathrm{Se}$. | 1,630 | 745 | 1,696 | ${ }_{\text {Cos }}$ |
| ICN. | 470 | 321 | 2,158 | ${ }_{\text {Cob }}{ }_{\text {20 }}$ |
| $\left(\mathrm{N}_{3}\right)^{-}$ | 1,350* | 630* | 2,080* | ${ }_{\text {D }}^{\infty}$ |
| $\mathrm{N}_{2} \mathrm{O}$. | 1,285.0 | 588.78 | 2,223.75 | ${ }_{C \infty}{ }_{\text {con }}$ |
| $\mathrm{NO}_{2}$ | 1,306 | 755 | 1,621 |  |
| $\left(\mathrm{NO}_{2}\right)^{-}$ | 1,325 $\ddagger$ | $831 \ddagger$ | 1,360 $\ddagger$ | $C_{20}$ |
| $\left(\mathrm{NO}_{2}\right)^{+}$. | 1,400* |  |  |  |
| NOCl. | 1,799 | 592 | 332 | Cs |
| NOF. | 1,844.0 | 521 | 765.9 | C. |
| $\mathrm{O}_{3}$. | 1,110 | 705 | 1,043 | $C_{20}$ |
| (OCN) ${ }^{-}$ | 870* |  | 2,180* | $C_{\infty 0}$ |
|  | 859.2 | 521.5 | 2,050.5 | $C_{\infty}{ }_{\infty}$ |
| (SCN)- | 2,066* | (398)* | 750* | $C_{\infty}$ |
| $(\mathrm{SeCN})^{-}$ | 2,051.5* | 575* |  | $C_{\infty 00}$ |
| $\xrightarrow[\left(\mathrm{UO}_{2}\right)^{++}]{\mathrm{SO}_{2} \ldots}$ | 1,151.4 | $\begin{array}{r}517.7 \\ (210) \\ \hline\end{array}$ | $\begin{gathered} 1,361.8 \\ 930 \ddagger \end{gathered}$ | $\mathrm{C}_{20}$ $\mathrm{C}_{2 v}$ |

[^355]Table 7j-2. Four-atomic Molecules

| Molecule | $\nu_{1}, \mathrm{~cm}^{-1}$ | $\nu_{2}, \mathrm{~cm}^{-1}$ | $\nu 3, \mathrm{~cm}^{-1}$ | $\nu_{4}, \mathrm{~cm}^{-1}$ | $\nu_{5}, \mathrm{~cm}^{-1}$ | $\nu_{6}, \mathrm{~cm}^{-1}$ | Point group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{AsCl}_{3}$ | 410 | 193 | 370 | 159 |  |  | $C_{3 v}$ |
| $\mathrm{AsF}_{3}$ | 707 | 341 | 644 | 274 |  |  | $C_{30}$ |
| $\mathrm{AsH}_{3}$ | 2,116.1 | 2,123 | 906 | 1,003 |  |  | $\mathrm{C}_{3 v}$ |
| $\mathrm{AsD}_{3}$ | 1,523.1 | 1,529.3 | 660.0 | 714 |  |  | $C_{3 v}$ |
| $\mathrm{BBr}_{3}$ | 279 | (372) | 806 | 151 |  |  | $D_{3 k}$ |
| $\mathrm{BCl}_{3}$ | $\cdot 471$ | 460 | 956 | 243 |  |  | $D_{3 h}$ |
| $\mathrm{BF}_{3}$ | 888 | 691.3 | 1,445.9 | 480.4 |  |  | $D_{36}$ |
| $\mathrm{BiCl}_{3}$ | 288 | 130 | 242 | 96 |  |  | $C_{3 v}$ |
| $\left(\mathrm{BrO}_{3}\right)^{-}$ | 803* | 428* | 828* | 350* |  |  | $C_{3 v}$ |
| CFClO. | 1,868 | 1,095 | 776 | 501 | 415 | 667 | ${ }^{\text {c }}$ |
| $\mathrm{CF}_{2} \mathrm{O}$. | 1,942 | $\begin{gathered} 965 ; \\ 2 \nu_{2}=1,907 \dagger \end{gathered}$ | 626 | 1,249 | 584 | 774 | $C_{20}$ |
| $\mathrm{C}_{2} \mathrm{H}_{2}$. | 3,373.2 | 1,974.0 | 3,282.5 | 613.3 | 730.74 |  | $D_{\text {ct }}$ |
| $\mathrm{C}_{2} \mathrm{HD}$ | 3,334.8 | 1,851.2 | 2,584 | 518.8 | 683 |  | $C_{\text {cou }}$ |
| $\mathrm{C}_{2} \mathrm{D}_{2}$. | 2,701.8 | 1,764.9 | 2,439.1 | 511.4 | 538.7 |  | $D_{\text {wh }}$ |
| $\mathrm{C}_{2} \mathrm{I}_{2}$ | 2,113 | 191 | 718 | 307 | (115) |  | $D_{\text {of }}$ |
| $\mathrm{Cl}_{2} \mathrm{CO}$ | 1,827 | 575 | 297 | 849 | 240 | 440 | $C_{20}$ |
| $\mathrm{Cl}_{2} \mathrm{CS}$. | 1,121 | 496 | 287 | (660) | (363) | (200) | $C_{2 v}$ |
| $\mathrm{ClF}_{3}$. | 750 | 644 | 508 | 428 | 316 | 395 | $\mathrm{C}_{8}$ |
| $\left(\mathrm{ClO}_{3}\right)^{-}$. | 940* | 617* | 988* | 479* |  |  | $C^{5 v}$ |
| $\mathrm{C}_{2} \mathrm{~N}_{2} \ldots$ | 2,328.5 | 850.6 | 2,149 | 507.2 | (240) |  | $D_{\infty}$ |
| $\left(\mathrm{CO}_{3}\right)^{-}$ | 1,088* | 1,438* | 866* | 714 |  |  | $\mathrm{D}_{3}{ }^{\text {d }}$ |
| $\left(\mathrm{GeCl}_{3}\right)^{-}$ | 320* | 162* | 253* | 139* |  |  | ${ }^{\text {c }}$ \% |
| $\mathrm{HC}_{2} \mathrm{Cl}$. | 3,319 | 2,109 | 756 |  | 606 |  | $C_{\infty}$ |
| $\mathrm{DC}_{2} \mathrm{Cl}$. | 2,610 | 1,979 | 742 |  | 476 |  | ${ }_{\text {cos }}$ |
| $\left(\mathrm{HCO}_{2}\right)^{-}$ | 2,825* | 1,584* | 1,386* | 1,352* | 773* | 1,069* | $C_{2 v}$ |
| $\mathrm{H}_{2} \mathrm{CO} \ldots$. | 2,780 | 1,743.6 | 1,503 | 2,874 | 1,280 | 1,167 | $\mathrm{C}_{20}$ |
| HDCO | 2,845 | 2,121 | 1,723 | 1,398 | 1,041 | 1,074 | ${ }^{\text {c }}$ |
| $\mathrm{D}_{2} \mathrm{CO}$. | 2,055.8 | 1,700 | 1,105.7 | 2,159.7 | 990 | 938 | ${ }_{2}{ }^{2 v}$ |
| $\mathrm{HN}_{3}$. | 3,335.6 | 2,140.4 | 1,269.0 | 1,152.5 | 657.9 | 738.8 | ${ }^{\text {c }}$ |
| HNCO | 3,531 | 2,274 | 1,527 | 798 | 572 | 670 | $\mathrm{C}_{3}$ |
| HNCS | 3,536 | 1,963 | 995 | (817) | 469 | 600 | ${ }_{\text {c }}$ |
| $\mathrm{HNO}_{2}$ (cis) | 3,426 |  | $(1,292)$ | 856 | (598) | 637 | ${ }^{\text {c }}$ |
| (trans) . | 3,590 | 1,696 | 1,260 | 794 | 598 | 543 | ${ }_{\text {c }}$ |
| $\mathrm{DNO}_{2}$ (cis) | 2,530 |  |  | 816 | (591) | 508 | ${ }^{\text {c }}$ |
| (trans). . | 2,650 | 1,690 | 1,018 | 739 | 591 | 416 | ${ }^{\text {c }}$ |
| $\mathrm{H}_{2} \mathrm{O}_{2} \ldots \ldots$. | 3,395* | 1,421* | 877 | (490) | 3,590 | 1,255 | $C_{2}$ |
| $\mathrm{D}_{2} \mathrm{O}_{2}$ | 2,510* | 1,009* | 878* | 538* | 2,482* | 1,004* | $C_{2}$ |
| $\mathrm{H}_{2} \mathrm{~S}_{2}$ | 2,513* | 882* | 510** |  | 2,577 | 886 | $C_{2}$ |
| $\left(\mathrm{IO}_{3}\right)^{-}$ | 779* | $390 \ddagger$ | 826* | 330* |  |  | $\mathrm{C}_{3} \mathrm{v}$ |
| $\mathrm{NF}_{3}$ | 1,032 | 647 | 905 | 493 |  |  | ${ }_{30}$ |
| $\mathrm{NH}_{3} \ldots$ | 3,336.7 | 949.8 | 3,444 1,592 | $1,627.5$ 884 |  |  | C3v Cs |
| $\mathrm{NH}_{2} \mathrm{D}$. |  | 2,418 | 1,592 | 884 813 | 2,556 | 1,464 | $\mathrm{Cs}_{8}$ |
| $\mathrm{ND}_{3}$. | 2,420.4 | 748.8 | 2,555.6 | $61,191.2$ |  |  | $C_{3 v}$ |
| $\left(\mathrm{NO}_{3}\right)^{-}$. | 1,048 $\ddagger$ | 1,380 $\ddagger$ | $714 \ddagger$ | $834 \ddagger$ |  |  | $D_{3}$ |
| $\mathrm{P}_{4}$. | 606 | 363 | 465 |  |  |  | $T_{d}$ |

Table 7j-2. Four-atomic Molecules (Continued)

| Molecule | $\nu_{1}, \mathrm{~cm}^{-}$ | $\nu_{2}, \mathrm{~cm}^{-1}$ | $\nu_{3}, \mathrm{~cm}^{-1}$ | $\nu_{4}, \mathrm{~cm}^{-1}$ | $\nu_{5}, \mathrm{~cm}^{-1}$ | $\nu_{6}, \mathrm{~cm}^{-1}$ | Point group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{PBr}_{3}$. | 380 | 162 | 400 | 116 |  |  | $C_{30}$ |
| $\mathrm{PCl}_{3}$ | 510 | 257 | 480 | 190 |  |  | $C_{80}$ |
| $\mathrm{PF}_{3}$ | 892 | 487 | 860 | 344 |  |  | $C_{30}$ |
| $\mathrm{PFBr}_{2}$ | 817 | 421 |  |  | 393 |  | $C$. |
| $\mathrm{PFCl}_{2}$. | 827 | 524 |  |  | 496 |  | $C$ |
| $\mathrm{PF}_{2} \mathrm{Cl}$. | 860 | 527 |  |  | 833 |  | $C$. |
| PFClBr | 822 | 503 | 415 |  |  |  | $C_{1}$ |
| $\mathrm{PH}_{3}$ | 2,322.9 | 992.0 | 2,327.7 | 1,122.4 |  |  | $C_{s v}$ |
| $\mathrm{PH}_{2} \mathrm{D}$. |  | 1,700 | 1,097 | 892 |  |  | C. |
| $\mathrm{PHD}_{2}$. | 2,320 | . ..... | 906 |  |  | 980 | C. |
| $\mathrm{SbCl}_{3}$. | 360 | 165 | 320 | 134 |  |  | $C_{3 v}$ |
| $\mathrm{SbH}_{3}$. | 1,890.9 | 781.5 | 1,894.2 | 830.9 |  |  | (?) $C_{30}$ |
| $\mathrm{SbD}_{3}$. | 1,358.8 | 561.1 | 1,362.0 | 592.5 |  |  | (?) $C_{3 v}$ |
| $\mathrm{S}_{2} \mathrm{Cl}_{2}$. | 448 | 438 | 206 | 53 | 537 | 245 | $C_{2}$ |
| $\left(\mathrm{SnCl}_{3}\right)^{-}$. | 278* |  | 220* |  |  |  | $C_{s v}$ |
| $\mathrm{SO}_{3}$. | 1,067 | 1,390 |  | 531 |  |  | $D_{3}{ }^{\text {b }}$ |
| $\mathrm{S}_{2} \mathrm{O}_{2}$ | 679 |  |  |  |  |  | $C_{2 v}$ |
| $\mathrm{SOCl}_{2}$. | $(1,229)$ | (488) | (443) | (343) | (282) | (192) | (?) $C_{8}$ |
| $\mathrm{SOF}_{2}$. | $(1,312)$ | (795) | (720) | (529) | (395) | (326) | Cs |

[^356]
## ATOMIC AND MOLECULAR PHYSICS

Table 7j-3. Some Five-atomic Molecules

| Molecule | $\nu_{1}, \mathrm{~cm}^{-1}$ | $\nu_{2}, \mathrm{~cm}^{-1}$ | $\nu_{3}, \mathrm{~cm}^{-1}$ | $\nu_{4}, \mathrm{~cm}^{-1}$ | $\nu_{5}, \mathrm{~cm}^{-1}$ | $\nu_{6}, \mathrm{~cm}^{-1}$ | Point group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{4}$. | 2,916.5 | 1,533.6 | 3,018.7 | 1,306.2 |  |  | $T_{\text {d }}$ |
| $\mathrm{CD}_{4}$ | 2,084.7 | $(1,054)$ | 2,258.2 | 995.6 |  |  | $T_{\text {d }}$ |
| CFi | 904 | 435 | 1,283 | 632 |  |  | ${ }_{T}{ }_{\text {d }}$ |
| $\mathrm{CCl}_{4}$ | 459 | 221 | $\left\{\begin{array}{l}794 \\ 756\end{array}\right.$ | 310.0 |  |  | $T_{\text {d }}$ |
| $\mathrm{CBr}_{4}$ | 267* | 122* | 671* | 182* |  |  | $T_{\text {d }}$ |
| $\mathrm{SiH}_{4}$ | 2,187 | 978 | 2,183 | 910 |  |  | $T_{\text {d }}$ |
| $\mathrm{SiF}_{4}$ | 800 | 268 | 1,031 | 391 |  |  | $T_{\text {d }}$ |
| $\mathrm{SiCl}_{4}$. | 424* | 150* | 608* | 221* |  |  | $T_{\text {d }}{ }_{\text {d }}$ |
| $\mathrm{SiBr}_{4}$ | 249* | 90* | 487* | 137* |  |  | $T_{\text {d }}$ |
| $\mathrm{GeH}_{4}$. |  | 819.3 | 2,113.6 | 930.9 |  |  | $T_{\text {d }}$ |
| $\mathrm{GeF}_{4}$. | (740) | (200) | 800 | 260 |  |  | $T_{\text {d }}$ |
| $\mathrm{GeCl}_{4}$. | 396* | 134* | 453* | 172* |  |  | $T_{\text {d }}$ |
| $\mathrm{GeBr}_{4}$. | (234)* | 78* | 328* | 111* |  |  | $T_{\text {d }}$ |
| $\mathrm{CH}_{3} \mathrm{~F}$ | 2,964.5 | 1,475.3 | 1,048.2 | 2,983 | 1,468 | 1,198 | $C_{3 v}$ |
| $\mathrm{CH}_{3} \mathrm{Cl}$ | 2,966.2 | 1,354.9 | 732.1 | 3,043 | 1,451 | 1,017 | $C_{30}$ |
| $\mathrm{CH}_{3} \mathrm{Br}$. | 2,972 | 1,307 | 610 | 3,056 | 1,443 | 954 | $C_{8 v}$ |
| $\mathrm{CH}_{3} \mathrm{I}$. | 2,969.8 | 1,251.5 | 532.8 | 3,061 | 1,439 | 882 | $C_{3 v}$ |
| $\mathrm{SiH}_{3} \mathrm{Cl}$. | 2,195 | 1,090 | (460) | 2,150 | 952 | 770 | ${ }_{3}{ }^{\text {b }}$ |
| $\mathrm{CHF}_{3}$. | 3,035 | 1,140 | 700 | 1,378 | 1,152.2 | 508 | $C_{3 v}$ |
| $\mathrm{CHCl}_{3}$ | 3,032 | 671 | 365 | 1,218 | 768 | 256 | $C_{80}$ |
| $\mathrm{CHBr}_{3}$ | 3,040 | 541 | 222 | 1,142 | 668 | 154 | $C_{30}$ |
| $\mathrm{CHI}_{3}$. | $(3,040) \dagger$ | $385 \dagger$ | $145 \dagger$ | 1,064 $\dagger$ | $581 \dagger$ | $92 \dagger$ | $C_{3 v}$ |
| $\mathrm{SiHCl}_{3}$. | 2,274 | 497 | 250* | 810 | 600 | 179* | $C_{3 v}$ |
| $\mathrm{SiHBr}_{3}$. | 2,232* | 358* | 169* | 769* | 473* | 111* | ${ }_{3}{ }_{3}$ |
| $\mathrm{CF}_{3} \mathrm{Cl}$. | 1,102 | 783 | 478* | 1,210 | 560 | $356 *$ | $C_{3 v}$ |
| $\mathrm{CF}_{3} \mathrm{Br}$ | 1,087 | 762 | 348 | 1,207 | 548 | $305 *$ | ${ }_{5}{ }_{5 v}$ |
| $\mathrm{CF}_{3} \mathrm{I}$. | 1,076 | 743 | 284 | 1,185 | 539 | 265* | $C_{3 v}$ |

Values in parentheses are uncertain or have been obtained indirectly.

* Observed in liquid phase only.
$\dagger$ Observed in solution only.

CONSTANTS OF POLYATOMIC MOLECULES
Table 7j-4. Some Six-atomic Molecules

| Molecule | $\begin{gathered} \nu_{1}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{2}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{3}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\stackrel{\nu_{4},}{\mathrm{~cm}^{-1}}$ | $\begin{gathered} \nu_{5} \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{6}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{7}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{8}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{9}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{10}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{11}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | $\begin{gathered} \nu_{12}, \\ \mathrm{~cm}^{-1} \end{gathered}$ | Point group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$ | $(3,293)$ | 2,184 | 874 | 3,329 | 2,020 | 627 | 482 | 630 | (231) |  |  |  |  |
| $\mathrm{C}_{2} \mathrm{H}_{4}$ | 3,019.3 | 1,623.3 | 1,342.4 | $(1,027)$ | 3,108 | $(1,236)$ | 949.2 | 634 | 3,105.5 | 810.3 |  |  | ${ }_{\infty} h$ |
| $\mathrm{C}_{2} \mathrm{D}_{4}$ | 2,251 | 1,515 | 981 | (726) | 2,305 | $(1,009)$ | 720.0 | 780 | 3,105.5 2,345 | (586) | 2,989.5 | 1,443.5 | $V_{h}$ |
| $\mathrm{C}_{2} \mathrm{~F}_{4}$ | 1,872 | 778 | 394 | (210) | $(1,100)$ | $(1,009)$ 551 | 407 . | 510 | 2,345 1,337 | (245) | $2,200.2$ 1,186 | $1,077.9$ 558 | $V_{h}$ |
| $\mathrm{C}_{2} \mathrm{Cl}_{4}$ | 1,571* | 447* | 237* | (135) | 1,000* | 347* | 288* | 512* | 1,337 782 | 194* | 1,186 913 | 558 318 | $V_{h}$ |
| $\mathrm{C}_{2} \mathrm{Br}_{4}$ | 1,546* | 266* | 144* | (135) | 1,000** | 211* | 288 | 463* | 782 | 194* | 913 | 318* | $V_{h}$ |
| $\mathrm{H}_{2} \mathrm{C}: \mathrm{CF}_{2}$. | 3,058.3 | 1,728.5 | 1,410 | 925.3 | 550 | 590 | 3,099.8 | 1,302 | 955 | 438 | 801 | 3 |  |
| $\mathrm{H}_{2} \mathrm{C}: \mathrm{CCl}_{2}$ | 3,035* | 1,616* | 1,391* | 601* | 299* | 686* | 3, 130* | 1,088* | 788* | 375* | 874* | 613 458 | ${ }_{C}^{C v}$ |
| $\operatorname{cis} \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ | 3,077* | 1,587* | 1, 179* | 711* | 173* | 876* | 406* | 3,072* | 1,294* | 848* | 571* | 697* | $C_{2 v}$ v |
| trans $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$ | 3,071* | 1,576* | 1,270* | 844* | $349^{*}$ | 895* | 192* | 758* | 3,080* | 1,200* | 817* | 269** | $\mathrm{C}_{2 \mathrm{lv}} \mathrm{C}_{2 \mathrm{~h}}$ |
| $\mathrm{H}_{2} \mathrm{C}: \mathrm{CBr}_{2}$. | 3,023* | 1,593* | 1,379* | 467* | 184* | 668* | 3, 108* | 1,065* | 3,080 696 | $1,200^{*}$ $322^{*}$ | 886** | 265** |  |
| cis $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$.. | 3,084* | 1,584* | 1,150* | 580* | 109* |  | 372* | 1,065 | 696 | (673) | (460) | 405 | $\mathrm{C}_{2 v} \mathrm{v}$ |
| trans $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$ | 3,084* | 1,578* | 1,246* | 748* | 218* |  |  |  |  | (673) | (673) |  | ${ }^{\text {C }}$ 2h |
| $\mathrm{N}_{2} \mathrm{O}_{4}$. | 1,360 | 813 | - 283 |  | 1,724 | 500 | 680 |  | 1,749 | 380 | 1,265 | 752 | $\mathrm{C}_{2 h} \mathrm{~V}_{h}$ |
| $\mathrm{N}_{2} \mathrm{H}_{4}$. | 3,325 | $(3,160)$ | 1,493 | 1,098 | -873 | 780 | (725) | 3,350 | 3,297 | 1,607 | 1,265 1,275 | 950 | $V_{2 v}{ }^{\text {b }}$ |
| $\mathrm{CH}_{3} \mathrm{CN}$ | 2,965.3 | 2,267.3 | 1,400.0 | 1,098.9 | 3,009.0 | 1,454.0 | 1,041.0 | 361.0 | 3,297 | 1,607 | 1,275 | 950 | $C_{2 v}$ $C_{3 v}$ |
| $\mathrm{CH}_{3} \mathrm{NC}$ | 2,965.8 | 2,166.0 | 1,410.0 | 944.6 | 3,014.3 | 1,459.0 | 1,130.0 | (270) |  |  |  |  | 3v |
| $\mathrm{CH}_{3} \mathrm{OH}$ | 3,682 | 2,977 | 2,844 | 1,477 | $(1,430)$ | 1,340 | 1,056 | 1,034 | $(2,977)$ | 1,455 | 1,171 | 270 | $C_{8}$ |
| $\mathrm{CH}_{3} \mathrm{SH}$. | 2,946 | 2,869 | 2,607 | 1,475 | 1,335 | 1,070 | 1,03 | 1,034 704 | 2,999 | 1,430 | 1,171 955 | (600) | $\mathrm{Cs}_{8}$ |

Values in parentheses are uncertain or have been obtained indirectly.

* Observed in liquid only.

7-152 ATOMIC AND MOLECULAR PHYSICS
7j-3. Rotational Constants and Geometrical Parameters
Table 7j-5. Triatomic Linear Molecules

| Molecule | $B_{[0]}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: |
| $\mathrm{Br}^{79} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.1374348 | $C_{\infty}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CBr})=1.790 \mathrm{~A} \\ r_{0}(\mathrm{CN})=1.159 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Br}^{79} \mathrm{C}^{13} \mathrm{~N}^{14}$. | 0.1358729 |  |  |
| $\mathrm{Br}^{79} \mathrm{C}^{12} \mathrm{~N}^{15}$. | 0.1315857 |  |  |
| $\mathrm{Br}^{81} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.1366539 |  |  |
| $\mathrm{Br}^{81} \mathrm{C}^{13} \mathrm{~N}^{14}$. | 0.1350802 |  |  |
| $\mathrm{Br}^{81} \mathrm{C}^{12} \mathrm{~N}^{15}$ | 0.1308165 |  |  |
| $\mathrm{Cl}^{35} \mathrm{C}^{12} \mathrm{~N}$ | 0.1991648 |  |  |
| $\mathrm{Cl}^{35} \mathrm{C}^{13} \mathrm{~N}$. | 0.1981294 | $C_{\infty}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CCl})=1.629 \mathrm{~A} \\ r_{0}(\mathrm{CN})=1.163 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Cl}^{36} \mathrm{C}^{12} \mathrm{~N}$. | 0.19707 |  |  |
| $\mathrm{Cl}^{17} \mathrm{C}^{12} \mathrm{~N}$ | $0.195043{ }_{3}$ |  |  |
| $\mathrm{Cl}^{137} \mathrm{C}^{13} \mathrm{~N}$ | 0.1939576 |  |  |
| $\mathrm{C}^{12} \mathrm{O}_{2}$ | $\left\{\begin{array}{l}0.3902_{0} \\ B_{e}=0.3915_{5}\end{array}\right\}$ | $D_{\text {ch }}$ | $r_{0}(\mathrm{CO})=1.1621 \mathrm{~A} ; r_{e}(\mathrm{CO})=1.1601 \mathrm{~A}$ |
| $\mathrm{C}^{13} \mathrm{O}_{2}$ | 0.39037 | $D_{\text {sh }}$ | $r_{0}(\mathrm{CO})=1.1618 \mathrm{~A}$ |
| $\left(\mathrm{CO}_{2}\right)^{+}$ | 0.3806 | $D_{\infty} h$ | $r_{0}(\mathrm{CO})=1.177 \mathrm{~A}$ |
| $\mathrm{CS}_{2}$. | 0.1092 | $D_{\text {ch }}$ | $r_{0}(\mathrm{CS})=1.554 \mathrm{~A}$ |
| HC ${ }^{12}$ N. | $\left\{\begin{array}{l}1.47823 \\ B_{e}=1.4849\end{array}\right\}$ | $C_{\infty}$ |  |
| $\mathrm{HC}^{13} \mathrm{~N}$. | 1.43999 |  | $\left\{\begin{array}{rl} r_{0}(\mathrm{CH}) & =1.064 \mathrm{~A} ; r_{e}(\mathrm{CH}) \\ r_{0}(\mathrm{CN}) & =1.156 \mathrm{~A} ; r_{e}(\mathrm{CN}) \end{array}=1.0657 \mathrm{~A}\right.$ |
| $\mathrm{DC}^{12} \mathrm{~N}$ | $\left\{\begin{array}{l}1.20775 \\ B_{e}=1.2118\end{array}\right\}$ |  |  |
| $\mathrm{DC}^{13} \mathrm{~N}$. | 1.18708 |  |  |
| $\mathrm{I}^{127} \mathrm{C}^{12} \mathrm{~N}$ | 0.1075935 | $C_{\infty}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CI})=1.995 \mathrm{~A} \\ r_{0}(\mathrm{CN})=1.159 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{I}^{127} \mathrm{C}^{13} \mathrm{~N}$ | $0.105974\}$ |  |  |
| $\mathrm{N}^{14}{ }^{14} \mathrm{O}$. | $\left\{\begin{array}{l}0.4190113 \\ B_{e}=0.42118_{1}\end{array}\right\}$ |  |  |
| $\mathrm{N}^{14} \mathrm{~N}^{15} \mathrm{O}$ |  | $C_{\infty}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{NN})=1.126 \mathrm{~A} ; r_{e}(\mathrm{NN})=1.126 \mathrm{~A} \\ r_{0}(\mathrm{NO})=1.191 \mathrm{~A} ; r_{e}(\mathrm{NO})=1.186 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{N}^{15} \mathrm{~N}^{14} \mathrm{O}$. | $\left\{\begin{array}{l} 0.404856_{2} \\ B_{e}=0.40693_{5} \end{array}\right\}$ |  |  |
| $\mathrm{N}_{2}{ }^{15} \mathrm{O}$. | 0.4048592 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{~S}^{32}$. | 0.202857 |  |  |
| $0^{016} \mathrm{C}^{13} \mathrm{~S}^{32}$. | 0.2022025 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{~S}^{33}$ | 0.2003016 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{~S}^{34}$. | 0.1978971 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{~S}^{35}$. | 0.1956134 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{~S}^{36}$. | 0.193456 |  | $\left\{\begin{array}{l} r_{0}(\mathrm{CO}(\mathrm{CS}=1.1637 \mathrm{~A} \\ r_{n}(\mathrm{CS} \end{array}\right.$ |
| $\mathrm{O}^{16} \mathrm{C}^{13} \mathrm{~S}^{34}$. | 0.197194 | $C_{\infty}$ |  |
| $\mathrm{O}^{16} \mathrm{C}^{14} \mathrm{~S}^{32}$. | 0.201581 |  |  |
| $\mathrm{O}^{17} \mathrm{C}^{12} \mathrm{~S}^{32}$. | 0.196258 |  |  |
| $\mathrm{O}^{18} \mathrm{C}^{12} \mathrm{~S}^{32}$. | 0.190292 |  |  |
| $\mathrm{O}^{18} \mathrm{C}^{12} \mathrm{~S}^{34}$. | 0.185458 |  |  |
| $\mathrm{O}^{18} \mathrm{C}^{13} \mathrm{~S}^{32}$ 。 | 0.189829 |  |  |

Table 7j-5. Triatomic Linear Molecules (Continued)

| Molecule | $B_{[0]}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{Se}^{74}$. | 0.1366207 | $C_{\infty}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CO})=1.1588 \mathrm{~A} \\ r_{0}(\mathrm{CSe})=1.7090 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{Se}^{76}$. | 0.1357092 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{Se}^{77}$. | 0.1352700 |  |  |
| $00^{16} \mathrm{C}^{12} \mathrm{Se}^{78}$. | 0.1348418 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{Se}^{79}$ | 0.1344213 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{Se}^{80}$ | 0.1340151 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{12} \mathrm{Se}^{82}$ | 0.1332256 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{13} \mathrm{Se}^{78}$ | 0.1335960 |  |  |
| $\mathrm{O}^{16} \mathrm{C}^{13} \mathrm{Se}^{80}$ | 0.1327598 |  |  |
| $S^{32} \mathrm{C}^{12} \mathrm{Se}^{76}$. | 0.068387 |  |  |
| $\mathbf{S}^{32} \mathrm{C}^{12} \mathrm{Se}^{77}$. | 0.068124 |  |  |
| $\mathrm{S}^{32} \mathrm{C}^{12} \mathrm{Se}^{78}$. | 0.067757 | $C_{\infty}$ | $\begin{cases}r_{0}(\mathrm{TeC}) & =1.904 \mathrm{~A} \\ r_{0}(\mathrm{CS}) & =1.557 \mathrm{~A}\end{cases}$ |
| $S^{32} \mathrm{C}^{12} \mathrm{Se}^{80}$ | 0.067276 |  |  |
| $\mathrm{S}^{32} \mathrm{C}^{12} \mathrm{Se}^{82}$. | 0.066773 |  |  |
| $\mathrm{Te}^{122} \mathrm{C}^{12} \mathrm{~S}^{32}$ | 0.05284053 | $C_{\infty}$ |  |
| $\mathrm{Te}^{123} \mathrm{C}^{12} \mathrm{~S}^{32}$ | 0.05273373 |  |  |
| $\mathrm{Te}^{124} \mathrm{C}^{12} \mathrm{~S}^{32}$ | 0.05262935 |  |  |
| $\mathrm{Te}^{125} \mathrm{C}^{12} \mathrm{~S}^{32}$ | 0.05252595 |  |  |
| $\mathrm{Te}^{126} \mathrm{C}^{12} \mathrm{~S}^{32}$. | 0.05242459 |  |  |
| $\mathrm{Te}^{128} \mathrm{C}^{12} \mathrm{~S}^{32}$ | 0.05222612 |  |  |
| $\mathrm{Te}^{130} \mathrm{C}^{12} \mathrm{~S}^{32}$. | 0.05203361 |  |  |

Table 7j-6. Triatomic, Asymmetric top Molecules

| $\begin{gathered} \text { Mole- } \\ \text { cule } \end{gathered}$ | $A_{\text {[0] }}\left(\mathrm{cm}^{-1}\right)$ | $\mathrm{B}_{\text {(0) }\left(\mathrm{cm}^{-1)}\right.}$ | $\mathrm{C}_{\text {[0] }\left(\mathrm{mm}^{-1}\right)}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{ClO}_{2}$. | (1.740) | $\begin{aligned} & (0.3242) \\ & 1.495 \\ & 1.282 \end{aligned}$ | $\begin{aligned} & (0.2733) \\ & 1.401 \\ & 1.172 \end{aligned}$ | $\begin{aligned} & C_{2 v} \\ & C_{0} \end{aligned}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.08 \mathrm{~A} \text { (assumed) } \Varangle \mathrm{HCO}=118^{\circ} \\ r_{0}(\mathrm{CO})=1.19_{\mathrm{3}} \mathrm{~A} \end{array}\right.$ |
| HCO... |  |  |  |  |  |
| DCO... |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{O} \ldots$. | $\left\{\begin{array}{l} 27.877 \\ A_{0}=27.33 \end{array}\right.$ | $\begin{gathered} 14.512 \\ B_{c}=14.57_{b} \end{gathered}$ | $\left\{\begin{array}{c} 9.285 \\ C_{t}=9.49_{9} \end{array}\right\}$ | $C_{20}$ | $\left\{\begin{array}{l} \left\{_{0}(\mathrm{OH})=0.9568 \mathrm{~A} ; \Varangle_{0}(\mathrm{HOH})=105^{\circ} 3^{\prime}\right. \\ r_{e}(\mathrm{OH})=0.958 ، \mathrm{~A} ; \Varangle_{e}(\mathrm{HOH})=104^{\circ} 27^{\prime} \end{array}\right.$ |
| HDO. | 23.40 | Bo 9.096 | $C_{0}=9.499$ 6.418 | $C_{\text {c }}$ |  |
| $\mathrm{D}_{2} \mathbf{O}$ | 15.38 | 7.25 | 4.835 | $C_{20}$ |  |
| $\mathrm{H}_{2} \mathrm{~S}$. | 10.373 | 8.991 | 4.732 | $C_{20}$ |  |
| HDS. | 9.683 | 4.843 | 3.140 | C. $\}$ | $r_{0}(\mathrm{SH})=1.334 \mathrm{~A} ; \Varangle \mathrm{HSH}=\mathbf{9 2}^{\circ}{ }^{\prime} \mathbf{6}^{\prime}$ |
| $\mathrm{H}_{2} \mathrm{Se}$ $\mathrm{D}_{2} \mathrm{Se}$ | 7.77 3.88 | $\left.\begin{array}{l}\text { 3.83 } \\ 1.92\end{array}\right\}$ |  | $C_{2 v}$ | $r_{0}(\mathrm{HSe})=1.6 \mathrm{~A}$ |
| NOC1s5. | 2.8448 | 0.1914 |  |  |  |
| NOC187. | 2.8538 | 0.1868 | 0.1753 \} | C. |  |
| NOF.. | 3.175250 | 0.395070 | 0.350524 | C. |  |
| $\mathrm{O}_{3}$ | 3.55345 | 0.445276 | 0.394749 | $C_{2 v}$ |  |
| $\mathrm{SO}_{2}$ | 2.02396 | 0.344161 | 0.293519 | $C_{20}$ | $\begin{array}{ll} r_{0}(S O)=1.433 \mathrm{~A} ; & \Varangle O S O=116^{\circ}{ }^{\circ} 9^{\prime} 9^{\prime}=119^{\circ} 33^{\prime} \end{array}$ |

Table 7j-7. Four-atomic Linear Molecules


Table 7j-8. Four-atomic Symmetric and Spherical top Molecules

| Molecule | $A_{(0)}$ or $C_{[0]}, \mathrm{cm}^{-1}$ | $B_{[0]} \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{AsCl}_{3}{ }^{35}$. |  | 0.071623 \} | $C_{8 v}$ | $\left\{\begin{array}{l}r_{0}(\mathrm{AsCl})=2.161 \mathrm{~A}\end{array}\right.$ |
| $\mathrm{AsCl}_{3}{ }^{37}$. |  | 0.068204 \} |  | $\left\{\chi^{(\mathrm{ClAsCl})=98^{\circ} 5^{\prime}}\right.$ |
| AsFs. |  | 0.1961011 | $C_{30}$ | $\left\{\begin{array}{l}r_{0}(\mathrm{AsF})=1.712 \mathrm{~A} \\ \Varangle(\mathrm{FAsF})=102^{\circ} \text { (assumed) }\end{array}\right.$ |
| $\mathrm{AsH}_{3}$. |  | 3.723 | $C_{30}$ | $\left\{r_{0}(\mathrm{AsH})=1.523 \mathrm{~A} ; \Varangle(\mathrm{HAsH})=91^{\circ} 34^{\prime}\right.$ |
| $\mathrm{AsD}_{3}$. |  | 1.896 |  |  |
| BF8. | $A_{\text {[0] }}=(0.17 \mathrm{~s})$ | 0.35s | $D_{3}{ }^{\text {h }}$ | $r_{0}(\mathrm{BF})=1.291 \mathrm{~A}$ |
| $\mathrm{N}^{14} \mathrm{~F}_{3}$. |  | 0.356282 \} | $C_{3 v}$ | $\left\{r_{0}(\mathrm{NF})=1.371 \mathrm{~A} ; \Varangle(\mathrm{FNF})=102^{\circ}{ }^{\prime}\right.$ |
| $\mathrm{N}^{15} \mathrm{~F}_{3}$. |  | $0.354556\}$ | ${ }^{\circ}$ |  |
| $\mathrm{NH}_{3}$ | $A=(6.24)$ | 9.941 | $C_{3 v}$ | $\left\{r_{0}(\mathrm{NH})=1.014 \mathrm{~A} ; \Varangle(\mathrm{HNH})=106^{\circ} 47^{\prime}\right.$ |
| ND: | $\mathrm{A}=$ (3.157) | 5.138 |  |  |
| $\mathrm{PCl}_{3}{ }^{\mathbf{3 6}}$. |  | $\left\{\begin{array}{l} 0.087297 \\ 0.082974 \end{array}\right\}$ | $C_{30}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{PCl})=2.043 \mathrm{~A} \\ \Varangle(\mathrm{ClPCl})=100^{\circ} 6^{\prime} \end{array}\right.$ |
| $\mathrm{PCl}_{3}{ }^{37}$ $\mathrm{PF}_{3}$. |  | $\begin{aligned} & 0.0829745 \\ & 0.260847 \end{aligned}$ | $C_{3 v}$ | $r_{0}(\mathrm{PF})=1.535 \mathrm{~A} ; \Varangle(\mathrm{FPF})=100^{\circ} \text { (assumed) }$ |
| PF | $C=3.87$ | 4.446 | $C_{30}$ | $r_{0}(\mathrm{PH})=1.424 \mathrm{~A} ; \Varangle(\mathrm{HPH})=93^{\circ} 50^{\prime}$ |
| PH2D. | $\frac{A-C}{2}=0.776956$ |  | Cs | $r_{0}(\mathrm{PH})=1.4177 \mathrm{~A} ; \Varangle(\mathrm{HPH})=93^{\circ} 21^{\prime} 36^{\prime \prime}$ |
| PHD2. | $\frac{B-C}{2}=0.284657$ |  | C. | $r_{0}(\mathrm{PH})=1.4116 \mathrm{~A} ; \Varangle(\mathrm{HPH})=93^{\circ} 15^{\prime} 24^{\prime \prime}$ |
| $\mathrm{Sb}^{121} \mathrm{Cl}_{3}$ $\mathrm{Sb}^{123} \mathrm{Cl}_{8}$ |  | $\left.\begin{array}{l}0.05850 \\ 0.05840\end{array}\right\}$ | $C 30$ | $r_{0}(\mathrm{SbCl})=2.325 ; ~(\mathrm{ClSbCl})=99^{\circ} 30^{\prime}$ |
| $\xrightarrow[\mathrm{Sbb}]{3} \mathrm{Sb}$. | $C_{[0]}=2.80$ | $\left.\begin{array}{l}2.94 \\ 1.49\end{array}\right\}$ | $C_{3 v}$ | $\left\{r_{0}(\mathrm{SbH})=1.71 \mathrm{~A} ; \Varangle(\mathrm{HSbH})=91^{\circ} 30^{\prime}\right.$ |

Table 7j-9. Four-atomic Asymmetric top Molecules

| Molecule | $A_{[0]}, \mathrm{cm}^{-1}$ | $B_{[0]}, \mathrm{cm}^{-1} \quad C_{[0]}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CCl}_{2}{ }^{35} \mathrm{O}$. | 0.264141 | 0.120086 0.0804639 |  |  |
| $\mathrm{CCl}^{35} \mathrm{Cl}^{37} \mathrm{O}$ | 0.262440 | 0.112743 0.0787704 | $C^{\text {c }}$ | $\begin{cases}\mathrm{ClF}_{2} \mathrm{~F}^{\prime} & \begin{array}{l} r_{0}(\mathrm{ClF})=1.698 \mathrm{~A} ; \Varangle(\mathrm{FClF})=174^{\circ}{ }^{\circ} 8^{\prime} \\ r_{0}\left(\mathrm{ClF}^{\prime}\right) \end{array}=1.598 \mathrm{~A} ; \Varangle\left(\mathrm{F}^{\prime} \mathrm{ClF}\right)=87^{\circ} 29^{\prime}\end{cases}$ |
| $\mathrm{CF}_{2} \mathrm{O}$ | $A \approx B=0.3925 \quad 0.19462$ |  | $C_{2 v}$ |  |
| $\mathrm{Cl}^{13}{ }^{3} \mathrm{Cl}_{3}{ }^{3}$ | 0.458573 | 0.153830 0.115039 |  |  |
| $\mathrm{Cl}^{37} \mathrm{~F}_{3}$ | 0.455421 | 0.153836 0.114840 | C |  |
| $\mathrm{H}_{2} \mathrm{CO}$. | 9.41003 | $1.2953_{6} \quad 1.1342_{5}$ | $C_{2 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.12 \mathrm{~A} \\ r_{0}(\mathrm{CO})=1.21 \mathrm{~A} \end{array}\right\} \Varangle(\mathrm{HCH})=118^{\circ}$ |
| $\mathrm{HNa}_{3}{ }^{14}$. | 20.346 | $\frac{1}{2}(B+C)=0.397200$ |  |  |
| HN ${ }^{14} \mathrm{~N}^{14} \mathrm{~N}^{16}$ $\mathrm{HN}{ }^{14} \mathrm{~N}^{15} \mathrm{~N}^{14}$ |  | $\frac{1}{2}(B+C)=0.38440$ |  | $\mathbf{H N}^{\prime} \mathrm{N}^{\prime \prime} \mathrm{N}^{\prime \prime \prime}$ |
| $\begin{aligned} & H N^{14} N^{15} N \\ & H N^{15} N^{14} N \end{aligned}$ |  | $\frac{1}{2}(B+C)=0.39717$ | C. | $r_{0}\left(\mathrm{~N}^{\prime} \mathrm{H}\right)=1.021 \mathrm{~A} ; \Varangle\left(\mathrm{N}^{\prime} \mathrm{N}^{\prime \prime} \mathrm{N}^{\prime \prime \prime}\right)=\left(180^{\circ}\right)$ (assume |
| $\mathrm{DN}^{1{ }^{14} \ldots \ldots .}$ |  | $\frac{1}{2}(B+C)=0.38521$ |  | $r^{r_{0}\left(\mathrm{~N}^{\prime} \mathrm{N}^{\prime}\right)=1.240 \mathrm{~A}} \begin{aligned} & \\ & \left.\mathrm{N}^{\prime \prime \prime \prime}\right)\end{aligned}$ |
| HN ${ }^{14} \mathrm{CO}$ | 30.57 | $\frac{1}{2}(B+C)=0.37219$ $\frac{1}{2}(B+C)$ |  | . $134 \mathrm{~A} ; \Varangle\left(\mathrm{HN}^{\prime} \mathrm{N}^{\prime}\right)=112^{\circ} 39^{\prime}$ |
| HN ${ }^{15} \mathrm{CO}$ |  |  |  |  |
| DN ${ }^{14} \mathrm{CO}$ |  | $\left(\begin{array}{c}\frac{( }{2}(B+C)=0.34015 \\ 0.19628(K=1) \mid 0.19503(K=1)\end{array}\right\}$ | Cs | $\left\{\begin{array}{l} r_{0}(\mathrm{NC})=1.207 \mathrm{~A} ; \Varangle(\mathrm{NCO})=\left(180^{\circ}\right)(\text { assumed }) \\ r_{0}(\mathrm{CO})=1.171 \mathrm{~A} \end{array}\right.$ |
| HN ${ }^{14} \mathrm{C}^{12} \mathrm{~S}^{32}$ |  | $\left\{\begin{array}{c}0.19628(K=1) \mid 0.19503(K=1) \\ \frac{1}{2}(B+C)=0.19562(K=0)\end{array}\right\}$ |  |  |
| HN ${ }^{14} \mathrm{C}^{12} \mathrm{~S}^{33}$ |  | $\left\{\begin{array}{l}\frac{1}{2}(B+C)=0.19562(K=0) \\ \frac{1}{2}(B+C)=0.19325(K=0)\end{array}\right\}$ | C. | $\left\{\begin{array}{l} r_{0}(\mathrm{NH})=(1.013 \mathrm{~A}) ; \Varangle(\mathrm{HNC})=130^{\circ} 15^{\prime} \\ r_{0}(\mathrm{NC})=1.2158 \mathrm{~A} \\ r_{0}(\mathrm{CS})=1.5609 \mathrm{~A} \end{array}\right.$ |
| HN ${ }^{14} \mathrm{C}^{12} \mathrm{~S}^{34}$ |  | $\left.\begin{array}{l}\frac{1}{2}(B+C)=0.19325(K=0) \\ \frac{1}{2}(B+C)=0.19102(K=0) \\ \frac{1}{2}(B+C)=0.1950(K=1)\end{array}\right\}$ |  |  |
| HN ${ }^{14} \mathrm{C}^{13} \mathrm{~S}^{32}$ |  |  |  |  |
| DN ${ }^{14} \mathrm{C}^{12} \mathrm{~S}^{32}$ |  | $\frac{1}{2}(B+C)=0.18256(K=0)$$\frac{1}{2}(B+C)=0.18212(K=1)$ | C。 | $\left\{\begin{array}{l} r_{0}(\mathrm{ND})=1.003 \mathrm{~A} ; \Varangle(\mathrm{CND})=132^{\circ} 16^{\prime} \\ r_{0}(\mathrm{NC})=1.2158 \mathrm{~A} \\ r_{0}(\mathrm{CS})=1.5609 \mathrm{~A} \end{array}\right.$ |
| DN ${ }^{14} \mathrm{C}^{13} \mathrm{~S}^{32}$. |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{O}_{2}$. | 10.056 | $\left\{\begin{array}{l}(0.825) \\ \frac{1}{2}(B+C) \\ 0.822_{5}\end{array}\right\}$ | $C_{2}$ | $r_{0}(\mathrm{OO})=1.48 \mathrm{~A}$ |

## 7-156

Table 7j-10. Five-atomic Linear Molecules

| Molecule | $B_{[0]}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: |
| $\mathrm{HC}^{12} \mathrm{C}^{12} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.151740 | $C_{\infty v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.057 \mathrm{~A} ; r_{0}(\mathrm{C} \equiv \mathrm{C})=1.203 \mathrm{~A} \\ r_{0}(\mathrm{C}-\mathrm{C})=1.382 \mathrm{~A} ; r_{0}(\mathrm{CN})=1.157 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{HC}^{12} \mathrm{C}^{12} \mathrm{C}^{13} \mathrm{~N}^{14}$. | 0.151112 |  |  |
| $\mathrm{HC}^{12} \mathrm{C}^{13} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.151099 |  |  |
| $\mathrm{HC}^{13} \mathrm{C}^{12} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.147050 |  |  |
| $\mathrm{HC}^{12} \mathrm{C}^{12} \mathrm{C}^{12} \mathrm{~N}^{15}$. | 0.147332 |  |  |
| $\mathrm{DC}^{12} \mathrm{C}^{12} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.140817 |  |  |
| $\mathrm{DC}^{12} \mathrm{C}^{12} \mathrm{C}^{13} \mathrm{~N}^{14}$. | 0.140181 |  |  |
| $\mathrm{DC}^{12} \mathrm{C}^{13} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.140350 |  |  |
| $\mathrm{DC}^{13} \mathrm{C}^{12} \mathrm{C}^{12} \mathrm{~N}^{14}$. | 0.137002 |  |  |
| $\mathrm{DC}^{12} \mathrm{C}^{12} \mathrm{C}^{12} \mathrm{~N}^{15}$. | 0.136775 |  |  |

Table 7j-11. Five-atomic Symmetric and Spherical top Molecules

| Molecule | $A_{[0]}$ or $C_{[0]} \mathrm{cm}^{-1}$ | $B_{[0]} \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CF}_{3} \mathrm{Br}^{79}$ |  | $0.069984$ |  |  |
| $\mathrm{CF}_{3} \mathrm{Br}^{81}$. |  | $0.069331\}$ | $C_{3 v}$ | $\left\{\begin{array}{l} \mathrm{r}_{0}(\mathrm{CF})=1.33 \mathrm{~A} ; \Varangle(\mathrm{FCF})=108^{\circ} \text { (assumed) } \\ r_{0}(\mathrm{CBr})=1.908 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{CF}_{3} \mathrm{Cl}^{35}$. |  | 0.111262 \} |  | $\left\{r_{0}(\mathrm{CF})=1.328 \mathrm{~A} ; \Varangle(\text { FCF })=108^{\circ}\right. \text { (assumed) }$ |
| $\mathrm{CF}_{3} \mathrm{Cl}^{137}$ |  | 0.108458 \} | $C_{3 v}$ | $\left\{\begin{array}{l} r(\mathrm{CCl})=1.740 \mathrm{~A} \\ r_{0}\left(\begin{array}{l} \text { a } \end{array}\right. \end{array}\right.$ |
| $\mathrm{CF}_{3} \mathrm{I}$. |  | 0.050809 | $C_{3 v}$ | $\left\{\begin{array}{l} \left.r_{0}(\mathrm{CF})=1.33 \mathrm{~A} \text { (assumed) } ; \Varangle \mathrm{FCF}=108^{\circ} \text { (assumed) }\right) \\ r_{0}(\mathrm{CI})=2.134 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{CH}_{4}$. |  | 5.249 | Td | $r_{0}(\mathrm{CH})=1.0931 \mathrm{~A}$ |
| $\mathrm{CH}_{3} \mathrm{D}$. |  | 3.878 | $C_{3 v}$ | $r_{0}(\mathrm{CD})=r_{0}(\mathrm{CH})=1.0936 \mathrm{~A}$ |
| $\mathrm{CHD}_{3}$ |  | 3.278 | $C_{3 v}$ | $r_{0}(\mathrm{CH})=r_{0}(\mathrm{CD})=1.0919 \mathrm{~A}$ |
| $\mathrm{CD}_{4}$. |  | 2.647 | $T_{d}$ | $r_{0}(\mathrm{CD})=1.089 \mathrm{~A}$ |
| $\mathrm{CHBr}^{3}{ }^{79}$ |  | 0.041616 |  |  |
| $\mathrm{CHBr}_{3} \mathrm{CCDBr}_{3}{ }^{\text {7 }}$. |  | 0.040605 | $C_{30}$ | $\left\{r^{(m)}(\mathrm{CH})=1.06{ }_{8} \mathrm{~A} ; \Varangle(\mathrm{BrCBr})=110^{\circ} 48^{\prime}\right.$ |
| $\mathrm{CDBr}_{3}{ }^{\text {81 }}$. |  | 0.041344 0.040345 |  | $\underline{r o}(\mathrm{CBr})=1.930 \mathrm{~A}$ |
| $\mathrm{C}^{12} \mathrm{H}_{3} \mathrm{Br}^{79}$. | $A_{\text {[0] }}=5.082$ | 0.319167 ) |  |  |
| $\mathrm{Cl}^{12} \mathrm{H}_{3} \mathrm{Br}^{81}$ | $A_{[0]}=5.082$ | 0.317953 |  | $\left\{r_{0}(\mathrm{CBr})=1.9391 \mathrm{~A} ; \Varangle(\mathrm{HCH})=111^{\circ} 14^{\prime}\right.$ |
| $\mathrm{Ca}^{13} \mathrm{H}_{3} \mathrm{Br}^{79}$ |  | $0.304194\}$ | $C_{3 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CDr})=1.9391 \\ r_{0}(\mathrm{CH})=1.113 \end{array}\right.$ |
| $\mathrm{Cl}^{13} \mathrm{H}_{3} \mathrm{Br}^{81}$. |  | 0.302971 |  |  |
| $\mathrm{Cl}^{12} \mathrm{HD}_{2} \mathrm{Br}^{79}$. | $2(B-C)=0$ | 0.010597 ) |  |  |
| $\mathrm{C}^{12} \mathrm{HD}_{2} \mathrm{Br}^{81}$. | $2(B-C)=$ | . 010489 | Cs |  |
| $\mathrm{Cl}^{12} \mathrm{D}_{2} \mathrm{Br}^{79}$ |  | 0.257330 | $C_{30}$ | $\left\{r_{0}(\mathrm{CBr})=1.9391 \mathrm{~A} ; \Varangle(\mathrm{DCD})=111^{\circ} 2^{\prime}{ }^{\prime}\right.$ |
| $\mathrm{Cl}^{12} \mathrm{D}_{3} \mathrm{Br}^{81}$ |  | 0.256218 \} | $C_{30}$ | $\left\{_{\text {rof }}(\mathrm{CD})=1.104 \mathrm{~A}\right.$ |
| $\mathrm{CHCl}_{3} \mathrm{CHCl}_{3}{ }^{37}$. |  | 0.110141 |  | $\left(r_{0}(\mathrm{CH})=1.073 \mathrm{~A} ; \Varangle(\mathrm{ClCCl})=110^{\circ} 24^{\prime}\right.$ |
| $\mathrm{CDCl}_{3}{ }^{\text {55 }}$. |  | 0.108414 | $C_{30}$ | $\mathrm{lr}_{\mathrm{ro}}(\mathrm{CCl})=1.767 \mathrm{~A}$ |
| $\mathrm{C}^{12} \mathrm{H}_{3} \mathrm{Cl}^{35}$. | $A_{[0]}=5.097$ | 0.443402 |  |  |
| $\mathrm{C}^{12} \mathrm{H}_{3} \mathrm{Cl}^{37}$. |  | 0.436574 |  | $\left(\mathrm{ro}(\mathrm{CCl})=1.7810 \mathrm{~A} ; \Varangle(\mathrm{HCH})=110^{\circ} 31^{\prime}\right.$ |
| $\mathrm{Cl}^{13} \mathrm{H}_{3} \mathrm{Cl}^{35}$. |  | $0.426835\}$ | $C_{3 v}$ | $\left\{\begin{array}{l} \mathrm{rar}(\mathrm{CH})=1.8810 \mathrm{~A} \\ \mathrm{rof}(\mathrm{CH})=1.113 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{C}^{13} \mathrm{H}_{3} \mathrm{Cl}^{37}$. |  | 0.419957 |  |  |
| $\mathrm{Cl}^{12} \mathrm{D}_{3} \mathrm{Cl}^{35}$. |  |  |  |  |
| $\mathrm{Cl}^{12} \mathrm{D}_{3} \mathrm{Cl}^{37}$. |  | 0.355528 \} | $C_{30}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CCD})=1.7810 \mathrm{~A} \\ r_{0}(\mathrm{CD})=1.104 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{C}^{12} \mathrm{H}_{3} \mathrm{Cl}^{36}$. | ....... | 0.439892 | $C_{80}$ |  |
| $\mathrm{C}^{12} \mathrm{H}_{2} \mathrm{DCl}{ }^{35}$. | $\frac{3}{3}(B+C)=0$ | 0.41125 |  |  |
| $\mathrm{C}^{12} \mathrm{H}_{2} \mathrm{DCl}{ }^{37}$. | $\frac{1}{2}(B+C)=0$ | . 40471 |  |  |
| $\mathrm{C}^{12} \mathrm{HD}_{2} \mathrm{Cl}^{35}$. | $C_{[0]}=0.37935$ | 0.38965 | Cs |  |
| $\mathrm{Cl}^{12} \mathrm{HD}_{2} \mathrm{Cl}^{37}$. | $\frac{1}{2}(B+C)=0$ | . 37816 |  |  |
| $\mathrm{C}^{12} \mathrm{HF}_{3}$ |  | 0.345196 |  |  |
| $\mathrm{Cl}^{12} \mathrm{CFF}_{3}$ |  | 0.330940 | $C_{3 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.098 \mathrm{~A} ; \Varangle(\mathrm{FCF})=108^{\circ} 48^{\prime} \\ r_{0}(\mathrm{CF})=1.332 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Cl}^{18} \mathrm{HF}_{3}$. |  | 0.347640 |  |  |
| $\mathrm{C}^{12} \mathrm{H}_{3} \mathrm{~F}$. | $A_{[0]}=5.100$ | 0.851785 |  |  |
| $\mathrm{Cl}^{\mathrm{C}^{12} \mathrm{H}_{3} \mathrm{~F}}$. | ............ | 0.829318 | $C_{3 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.10_{9} \mathrm{~A} ; \Varangle(\mathrm{HCN})=110^{\circ} 0^{\prime} \\ r_{0}(\mathrm{CF})=1.385 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{C}^{\mathbf{C} 2 \mathrm{C}_{3} \mathrm{H} \mathrm{I}}$. | ${ }_{\text {a }} \ldots \ldots \ldots \ldots$ | 0.682132 <br> 0.250215 |  |  |
| ${ }^{\mathrm{C}^{13} \mathrm{H}_{3} \mathrm{I}} \ldots$ |  | $\left.\begin{array}{l}0.250215 \\ 0.237465\end{array}\right\}$ | $C_{30}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.106 \mathrm{~A} ; \Varangle(\mathrm{HCH})=111^{\circ} 10^{\prime} \\ \mathrm{ro}_{0}(\mathrm{CI})=2.1396 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Cl}^{12} \mathrm{D}_{3} \mathrm{I}$... |  | 0.201482 |  |  |
| $\mathrm{Cl}^{12} \mathrm{HD}_{2} \mathrm{I}$. | $2(B-C)=0$ | . 006519 | ${ }_{\text {c }}^{3 \mathrm{sm}}$ | $\mathrm{r}_{0}(\mathrm{CI})=2.1392 \mathrm{~A} ; \mathrm{ro}_{0}(\mathrm{CD})=1.104 ; \Varangle(\mathrm{DCD})=111^{\circ} 37^{\prime}$ |
| $\mathrm{Ge}^{70} \mathrm{~F}_{3}{ }^{19} \mathrm{Cl}^{35} \ldots$ | . | 0.072334 |  |  |
| $\mathrm{Ge}^{70} \mathrm{~F}_{5}{ }^{19} \mathrm{Cl}{ }^{37}$. |  | 0.070320 |  |  |
| $\mathrm{Ge}^{72} \mathrm{~F}_{3}{ }^{19} \mathrm{Cl}^{135}$. |  | 0.072301 |  | $\left\{\mathrm{ro}_{0}(\mathrm{GeF})=1.688 \mathrm{~A} ; \Varangle(\mathrm{FGeF})=107^{\circ} 42^{\prime}\right.$ |
| $\mathrm{Ge}^{72} \mathrm{~F}_{3}{ }^{19} \mathrm{Cl}^{37}$. |  | 0.070283 ( | $C_{30}$ | $\left\{_{\text {ro }}(\mathrm{GeCl})=2.067 \mathrm{~A}\right.$ |
| $\mathrm{Ge}^{74} \mathrm{~F}^{19} \mathrm{~F}^{19} \mathrm{Cl}{ }^{135}$. $\mathrm{Ge}^{74} \mathrm{~F}^{19} \mathrm{C} \mathrm{Cl}^{37}$. |  | 0.072270 |  |  |
| $\mathrm{Ge}^{74} \mathrm{~F}^{19}{ }^{19} \mathrm{Cl}^{17}$. |  | 0.070248 |  |  |
| $\mathrm{GeH}_{4} \mathrm{Ge}^{70} \mathrm{H}_{3} \mathrm{Br}^{79} \ldots$ |  | 2.87 | $T_{\text {d }}$ | $\mathrm{r}_{0}(\mathrm{GeH})=1.47_{8} \mathrm{~A}$ |
| $\mathrm{Ge}^{70} \mathrm{H}_{3} \mathrm{Br}^{79}$. $\mathrm{Ge}^{70} \mathrm{H}_{2} \mathrm{Br}^{81}$. |  | 0.081342 |  |  |
|  |  | 0.080395 |  |  |
| $\mathrm{Ge}^{72} \mathrm{H}_{3} \mathrm{Br}^{81}$. . |  | 0.079322 |  |  |
| $\mathrm{Ge}^{74} \mathrm{H}_{8} \mathrm{Br}^{79} \ldots$ |  | ${ }_{0}^{0.079251}$ ( $\}$ | $C_{3 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{GeH})=1.55 \mathrm{~A} ; \Varangle(\mathrm{HGeH})=112^{\circ} 0^{\prime} \\ r_{0}(\mathrm{GeBr})=2.297 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Ge}^{74} \mathrm{H}_{3} \mathrm{Br}^{81}$. | . 0 | 0.078303 |  |  |
| $\mathrm{Ge}^{76} \mathrm{H}_{3} \mathrm{Br}^{79}$. |  | 0.078282 |  |  |
| $\underline{\mathrm{Ge}^{76} \mathrm{H}_{8} \mathrm{Br}^{81} \ldots \ldots .}$ | .......... | 0.077332 |  |  |

Table 7j-11. Five-atomic Symmetric and Spherical top Molecules (Continued)

| Molecule | $A_{\text {[0] }}$ or $C_{[0]} \mathrm{cm}^{-1}$ | $B_{[0]}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ge}^{70} \mathrm{HCl}_{3}{ }^{65}$. |  | 0.072475 |  |  |
| $\mathrm{Ge}^{72} \mathrm{HCl}^{36}$. |  | 0.0723586 |  |  |
| $\mathrm{Ge}^{74} \mathrm{HCl}_{3}{ }^{35}$. |  | 0.0722445 | $C_{30}$ | $\left\{\mathrm{ro}_{0}(\mathrm{GeCl})=2.1139 \mathrm{~A} ; \Varangle(\mathrm{ClGeCl})=108^{\circ} 17^{\prime}\right.$ |
| $\mathrm{Ge}^{70} \mathrm{HCl}_{3}{ }^{37}$. |  | 0.0688389 | $0_{30}$ |  |
| $\mathrm{Ge}^{72} \mathrm{HCl} 3^{37}$. |  | 0.0687284 ) |  |  |
| $\mathrm{Ge}^{74} \mathrm{HCl}^{37}$. |  | 0.0686207 ) |  |  |
| $\mathrm{Ge}^{70} \mathrm{H}_{3} \mathrm{Cl}^{35}$. |  | 0.146828 |  |  |
| $\mathrm{Ge}^{7} \mathrm{H}_{3} \mathrm{Cl}^{35}$. | $A_{\text {[0] }}=2.603$ | 0.144563 | $C_{3 v}$ |  |
| $\mathrm{Ge}^{74} \mathrm{H}_{3} \mathrm{Cl}^{137}$. |  | 0.139359 | ${ }_{3 v}$ | ro(GeCl) $=2.147 \mathrm{~A}$ |
| $\mathrm{Ge}^{7} \mathrm{H}_{3} \mathrm{Cl}^{37}$. |  | 0.13831 |  |  |
| $\mathrm{MnO}_{3} \mathrm{~F}$. |  | 0.137732 | $C_{3 v}$ |  |
| POCl ${ }^{36}$. |  | $0.067220\}$ | $C_{3 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{PCl})=1.99 \mathrm{~A} ; \Varangle(\mathrm{ClPCl})=103^{\circ} 36^{\prime} \\ r_{0}(\mathrm{PO})=1.45 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{POCl}_{3}{ }^{37}$. |  | 0.064457 |  |  |
| $\mathrm{PO}^{16} \mathrm{~F}_{3}$ |  | $\left.\begin{array}{l}0.1532485 \\ 0.146610\end{array}\right\}$ | $C_{8 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{PF})=1.52 \mathrm{~A} ; \\ r_{0}(\mathrm{PO})=1.45 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{PO}^{18} \mathrm{~F}_{3} \ldots$ |  | 0.146610 0.046787 |  |  |
| $\mathrm{PS}^{\mathrm{PS}^{32} \mathrm{Cl}^{2} \mathrm{Cl}^{35}{ }^{35} .}$ |  | $\left.\begin{array}{l}0.046787 \\ 0.045222\end{array}\right\}$ | $C_{80}$ | $\left\{\mathrm{r}_{0}(\mathrm{PCl})=2.02 \mathrm{~A} ; \Varangle(\mathrm{ClPCl})=100^{\circ} 30^{\prime}\right.$ |
| $\mathrm{PS}^{32} \mathrm{~F}_{3} \ldots$ |  | 0.0886500 |  |  |
| $\mathrm{PS}^{33} \mathrm{~F}_{3}$. |  | 0.087218 | $C_{80}$ | $\left\{\begin{array}{l} \mathrm{r}(\mathrm{PS})=1.87 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{PS}^{34} \mathrm{~F}_{3}$. |  | 0.086052 |  |  |
| $\mathrm{Re}^{185} \mathrm{O}_{3} \mathrm{Cl}^{35}$. |  | 0.069856 |  |  |
| $\mathrm{Re}^{1880} \mathrm{O}_{3} \mathrm{Cl}^{177}$. |  | 0.067547 | $C_{30}$ |  |
| $\mathrm{Re}^{187} \mathrm{O}_{3} \mathrm{Cl}^{35}$. |  | 0.069834 |  | $r_{\text {ro }}(\mathrm{ReCl})=2.230 \mathrm{~A}$ |
| $\mathrm{Re}^{187} \mathrm{O}_{3} \mathrm{Cl}^{37}$. |  | 0.067525 |  |  |
| $\mathrm{SiF}_{3} \mathrm{Br}^{79}$. |  | $0^{0.051702}$ 0.051173 $\}$ | $C_{3 v}$ | $\left\{\begin{array}{l} \mathrm{r}(\mathrm{SiF})=1.560 \mathrm{~A} ; \Varangle(\mathrm{FSiF})=108^{\circ} 30^{\prime} \\ \mathrm{r}(\mathrm{SiBr})=2.153 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{SiF}_{3} \mathrm{Br}^{81}$ |  | 0.051173 |  | ${ }^{\text {ro }}(\mathrm{SiBr})=2.153 \mathrm{~A}, ~(\mathrm{SSF})=1.560 \mathrm{~A} \cdot \Varangle(\mathrm{FSiF})=108^{\circ} 30^{\circ}$ |
| $\mathrm{SiF}_{3} \mathrm{Cl}^{35}$. |  | $\left.\begin{array}{l}0.082650 \\ 0.080491\end{array}\right\}$ | $C_{80}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{SiF})=1.560 \mathrm{~A} ; \Varangle(\mathrm{FSiF})=10830^{\circ} \\ \mathrm{r}_{0}(\mathrm{SiCl})=1.989 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{SiFs}_{3} \mathrm{Cl}^{37}$. |  | 0.080491 |  |  |
| $\mathrm{SiH}_{4}$. |  | (2.96) | Td $C_{30}$ | $\} \mathrm{r}(\mathrm{SiH})=1.4798 \mathrm{~A}$ |
| $\mathrm{SiHD}_{3}$. |  | 1.7755 | $C_{30}$ |  |
| $\mathrm{Si}^{28} \mathrm{H}_{3} \mathrm{Br}^{79}$. | ............ | 0.144159 |  |  |
| $\mathrm{Si}^{28} \mathrm{H}_{3} \mathrm{Br}^{81}$..... |  | 0.143187 |  |  |
| $\mathrm{Si}^{20} \mathrm{H}_{3} \mathrm{Br}^{79}$. |  | 0.141196 | $C^{20}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{SiH})=1.57 \mathrm{~A} ; \Varangle(\mathrm{HSiH})=111^{\circ} 20^{\prime} \\ r_{0}(\mathrm{SiBr})=2.209 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Si}^{29} \mathrm{H}_{3} \mathrm{Br}^{81}$. |  | 0.140220 |  |  |
| $\mathrm{Si}^{20} \mathrm{H}_{3} \mathrm{Br}^{79}$. |  | 0.138409 |  |  |
| $\mathrm{Si}^{20} \mathrm{H}_{3} \mathrm{Br}^{81}$ |  | 0.137431 |  |  |
| $\mathrm{SiHCl}^{35}$ |  | $0.0824732\}$ | $C_{30}$ |  |
| $\mathrm{SiHCl}^{187}$. |  | 0.0782564 |  | $r_{\text {ro }}(\mathrm{SiCl})=2.021 \mathrm{~A} \ldots$ |
| ${\mathrm{Si} 28 \mathrm{H}_{3} \mathrm{Cl}^{35} \text {. }}$ |  | 0.22261 |  |  |
| $\mathrm{Si}^{20} \mathrm{H}_{3} \mathrm{Cl}^{35}$. |  | 0.21634 |  |  |
|  |  | 0.21723 |  | $\mathrm{rr}_{0}(\mathrm{SiCl})=2.048 \mathrm{~A} ; \Varangle(\mathrm{HSiH})=110^{\circ} 7^{\prime}$ |
| $\mathrm{Si}^{28} \mathrm{D}_{3} \mathrm{Cl}^{35}$. |  | 0.19739 | $C_{30}$ | $\mathrm{rro}_{\mathrm{ro}}(\mathrm{SiH})=1.50 \mathrm{~A}$ |
| $\mathrm{Si}^{22} \mathrm{D}_{3} \mathrm{Cl}^{35}$. |  | 0.19715 |  |  |
| $\mathrm{Si}^{30} \mathrm{D}_{3} \mathrm{Cl}^{35}$. |  | 0.19303 |  |  |
| $\mathrm{Si}^{28} \mathrm{D}_{3} \mathrm{Cl}^{37}$ |  | 0.19256 |  |  |
| $\mathrm{Si}^{2} \mathrm{H}^{\text {HF}}$ |  | 0.240432 |  | $\left\{\mathrm{rr}_{0}(\mathrm{SiF})=1.565 \mathrm{~A} ; \Varangle(\mathrm{FSiF})=108^{\circ} 17^{\prime}\right.$ |
| $\mathrm{Si}^{29} \mathrm{HFF}_{3}$. |  | 0.240021 | $C_{30}$ | $\left\{_{\text {ro }}(\mathrm{SiH})=1.455 \mathrm{~A}\right.$ (assumed) |
| $\mathrm{Si}^{30} \mathrm{HF}_{3}$. |  | 0.239622 |  |  |
| $\mathrm{Si}^{28} \mathrm{H}_{3} \mathrm{~F}$. |  | 0.477927 |  |  |
| $\mathrm{Si}^{29} \mathrm{H}_{3} \mathrm{~F} .$. |  | 0.473550 |  |  |
| $\mathrm{SS}^{\mathrm{Si}^{20} \mathrm{H}_{3} \mathrm{~F} \text { F. }}$ |  | $\left.\begin{array}{l}0.469411 \\ 0.408732\end{array}\right\}$ | $C_{30}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{SiH})=1.503 \mathrm{~A} ; \\ r_{0}(\mathrm{SiF})=1.593 \mathrm{~A} \end{array}\right.$ |
| $\mathrm{Si}^{28} \mathrm{D}_{3} \mathrm{~F}$. |  | 0.408732 |  | $r_{\text {ro }(\mathrm{SIF})}=1.593 \mathrm{~A}$ |
| $\mathrm{Si}^{20} \mathrm{D}_{3} \mathrm{~F}$. |  | 0.406150 |  |  |
| $\mathrm{Si}^{30} \mathrm{D}_{3} \mathrm{~F}$. . | . | 0.403685 |  |  |
| $\mathrm{SiH}_{3} \mathrm{I}$. |  | 0.10726 | $C_{3 v}$ |  |

CONSTANTS OF POLYATOMIC MOLECULES
Table 7j-12. Five-atomic Asymmetric top Molecules

| Molecule | $A_{\text {[0] }}, \mathrm{cm}^{-1}$ | $B_{[0]}, \mathrm{cm}^{-1}$ | $C_{\text {[0] }}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{2} \mathrm{Br}_{2}$ | $\left[A-\frac{B+C}{2}\right]=0.821$ |  |  | $C_{2 v}$ | $r_{0}(\mathrm{CBr})=1.907 \mathrm{~A} ; \Varangle(\mathrm{HCH})=112^{\circ}$ (elec. diffr.) |
| $\mathrm{CH}_{2} \mathrm{CO}$ |  | 0.343347 | 0.330757 | $C_{2 v}$ |  |
| $\mathrm{CHD}_{2} \mathrm{CO}$ |  | 0.321790 | 0.306032 | $C_{8}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CH})=1.075 \mathrm{~A} ; \Varangle(\mathrm{HCH})=122.0^{\circ} \\ r_{0}(\mathrm{CO})=1.16 \mathrm{~A} \text { (assumed) } ; r_{0}(\mathrm{CC})=1.31_{5} \mathrm{~A} \end{array}\right.$ |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{35}$. |  | 0.304237 | 0.285286 | $C_{2 v}$ |  |
| $\mathrm{CH}_{2} \mathrm{Cl}^{35} \mathrm{Cl}^{37}$ | 1.06746 1.063342 | 0.11076 | 0.10224 | $\mathrm{C}_{2 \mathrm{v}}$. |  |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{37} \ldots$ | 1.063342 1.0592 | 0.10779 0.1048 | 0.099677 |  |  |
| $\mathrm{CHDCl}_{2}{ }^{35} \ldots$ | 0.9072 | 0.1048 0.1102 | 0.09713 0.1010 |  |  |
| $\mathrm{CHDCl}^{35} \mathrm{Cl}^{37}$ | 0.90364 | 0.10732 | 0.109845 | $C_{1}{ }_{1}$ | $\left\{\begin{array}{l} (\mathrm{CH})=1.068 \mathrm{~A} ; \Varangle(\mathrm{HCH})=112^{\circ} 0^{\prime} \\ r_{0} \end{array}\right.$ |
| $\mathrm{CD}_{2} \mathrm{Cl}_{2}{ }^{35} \ldots$ $\mathrm{CD}_{2} \mathrm{Cl}^{35} \mathrm{Cl}^{37}$ | 0.78976 | 0.1095 | 0.09985 | $C_{2 v}$ |  |
| $\mathrm{CD}_{2} \mathrm{Cl}^{35} \mathrm{Cl}^{37}$ | 0.78660 | 0.10666 | 0.09740 | Cs |  |
| $\mathrm{CH}_{2} \mathrm{ClBr}$. | $\cdots \quad\left[A-\frac{B+C}{2}\right]=0.897{ }_{5}$ |  |  | C | $\left\{\begin{array}{l} r_{0}(\mathrm{CBr})=1.911 \mathrm{~A} ; r_{0}(\mathrm{CCl})=1.766 \mathrm{~A} \text { (assumed) } \\ \Varangle(\mathrm{HCH})=112^{\circ} \text { (elec. diffr.) } \end{array}\right.$ |
| $\mathrm{CH}_{2} \mathrm{~F}_{2}$ | 1.6391 | 0.3537 | 0.3085 | $C_{2 v}$ | $\left\{r_{0}(\mathrm{CH})=1.09 \mathrm{~A} ; \Varangle(\mathrm{HCH})=112^{\circ}\right.$ |
| $\mathrm{HCO}_{2} \mathrm{H}$ | $\begin{aligned} & 2.554 \\ & 0.171444 \end{aligned}$ | 0.39991 |  | $C_{s}(?)$ | $\gamma_{0}(\mathrm{CF})=1.36 \mathrm{~A} ; \Varangle(\mathrm{FCF})=108^{\circ}$ |
| $\mathrm{S}^{32} \mathrm{O}_{2} \mathrm{~F}_{2}$. $\mathrm{S}^{34} \mathrm{O}_{2} \mathrm{~F}_{2}$. |  | 0.1693770.169217 | 0.34967 | $0_{0}($ ? | $\left\{\begin{array}{l} r_{0}(\mathrm{SO})=1.370 ; \Varangle(\mathrm{OSO})=129^{\circ} 38^{\prime} \\ r_{0}(\mathrm{SF})=1.570 ; \Varangle(\mathrm{FSF})=92^{\circ} 47^{\prime} \end{array}\right.$ |
| $\mathrm{S}^{34} \mathrm{O}_{2} \mathrm{~F}_{2}$ | $\begin{aligned} & 0.171444 \\ & 0.171444 \end{aligned}$ |  | $\left.\begin{array}{l}0.168690 \\ 0.168533\end{array}\right\}$ | $C_{20}$ |  |

Table 7j-13. Six-atomic Linear Molecules

| Molecule | $B_{[0]}, \mathrm{cm}^{-1}$ | Point <br> group | Geometrical parameters |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}_{4} \mathrm{H}_{2} \ldots \ldots$ | 1.14641 | $D_{\infty h}$ | $r_{0}(\mathrm{C}-\mathrm{C})=1.37_{\mathrm{s}} \mathrm{A} ;$ assuming $r_{0}(\mathrm{C} \equiv \mathrm{C})=1.207 \mathrm{~A}$ <br> and $r_{0}(\mathrm{CH})=1.060 \mathrm{~A}$ |

Table 7j-14. Six-atomic Symmetric and Spherical top Molecules

CONSTANTS OF POLYATOMIC MOLECULES
Table 7j-15. Six-atomic Asymmetric top Molecules

| Molecule | $A_{[0]}, \mathrm{cm}^{-1}$ | $B_{[0]}, \mathrm{cm}^{-1}$ | $C_{\text {[0] }}, \mathrm{cm}^{-1}$ | Point group | Geometrical parameters |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{2} \mathrm{H}_{4}$ | 4.867 | (0.9116) | ) |  | $r_{0}(\mathrm{CH})=1.071 \mathrm{~A} ; \Varangle(\mathrm{HCH})=119^{\circ} 55^{\prime}$ |
| $\mathrm{C}_{2} \mathrm{D}_{4}$ | 2.437 | (0.652 ${ }^{\text {) }}$ | \} | $V_{n}$ | $\left\{\begin{array}{l}r_{0}(\mathrm{C}=\mathrm{C})=1.353 \mathrm{~A}\end{array}\right.$ |
|  |  |  |  |  | $\left(r_{0}(\mathrm{CH})=(1.07 \mathrm{~A}) ; \Varangle(\mathrm{HCH})=\left(110^{\circ}\right)\right.$ |
| $\mathrm{CH}_{2} \mathrm{CF}_{2}$ | 0.36698 |  | 0.17831 | $C_{2 v}$ | $\left\{\begin{array}{l} r_{0}(\mathrm{CF})=(1.32 \mathrm{~A}) ; \Varangle(\mathrm{FCF})=\left(110^{\circ}\right) \\ r_{0}(\mathrm{CC})=(1.31 \mathrm{~A}) \end{array}\right.$ |
| $\mathrm{CH}_{2} \mathrm{CFCl}^{35}$. | 0.356300 |  | 0.115025 |  |  |
| $\mathrm{CH}_{2} \mathrm{CFCl}^{37}$. | 0.356290 |  | 0.112761 \} | C. |  |
| $\mathrm{CH}_{2} \mathrm{CHBr}^{79}$. |  | 0.13885 | 0.12884 |  |  |
| $\mathrm{CH}_{2} \mathrm{CHBr}^{81}$. |  | 0.13804 | 0.12814 \} | C. |  |
| $\mathrm{CH}_{2} \mathrm{CHCl}^{36}$ |  | 0.20116 | 0.18163 \} |  |  |
| $\mathrm{CH}_{2} \mathrm{CHCl}^{37}$. |  | 0.19693 | 0.17817 \} | C. |  |
| $\mathrm{CH}_{2} \mathrm{CHI}$. |  | 0.10870 | 0.10230 | $C$. |  |
| $\mathrm{CH}_{3} \mathrm{OH}$. |  | (0.8032) |  | C. | $\left\{\begin{array}{l} r_{0}(\mathrm{C}-\mathrm{O})=1.434 \mathrm{~A} ; \Varangle(\mathrm{COH})=105^{\circ} 56^{\prime} \\ \left.r_{0}(\mathrm{CH})=1.093 \mathrm{~A} \text { (assumed) }\right) \Varangle(\mathrm{HCH})=109^{\circ} 30^{\prime} \\ r_{0}(\mathrm{OH})=0.937 \mathrm{~A} \\ \text { Distance of } 0 \text { atom from symmetry axis of } \mathrm{CH}_{3} \text { grou } \end{array}\right.$ |
| $\mathrm{CH}_{3} \mathrm{~S}^{32} \mathrm{H}$ |  |  |  |  | Distance of O atom from symmetry axis of $\mathrm{CH}_{3}$ group: 0.079 A $\left(r_{0}(\mathrm{CH})=1.10 \mathrm{~A}\right.$ (assumed) |
| $\mathrm{CH}_{3} \mathrm{~S}^{34} \mathrm{H}$. |  | $\begin{aligned} & \frac{1}{2}(B+C) \\ & \frac{1}{2}(B+C) \end{aligned}$ | $\left.\begin{array}{l} =0.42181 \\ =0.4150 \end{array}\right\}$ | C. | $\left\{\begin{array}{l} r_{0}(\mathrm{SH})=1.34 \mathrm{~A} ; \Varangle(\mathrm{HCH})=109^{\circ} 28^{\prime} \text { (assumed) } \\ r_{0}(\mathrm{CS})=1.815 \mathrm{~A} ; \Varangle(\mathrm{HSC})=100^{\circ} \text { (assumed) } \end{array}\right.$ |

7-161

## 7k. Wave Mechanics

7k-1. Fundamental Relations. A mechanical system is determined by its Hamiltonian $H\left(q_{i} p_{i} t\right)$ which is a function of the $f$ coordinates $q_{i}$ and their conjugate momenta $p_{i}$. The quantity $f$ is the number of degrees of freedom. The Hamiltonian may or may not contain the time explicitly.

The wave equation

$$
\begin{equation*}
H_{\phi}=-i \hbar \frac{\partial \phi}{\partial t} \tag{7k-1}
\end{equation*}
$$

is obtained by considering $H$ an operator in which $p_{i} \equiv-i \hbar\left(\partial / \partial q_{i}\right)(\hbar=h / 2 \pi)$. If $H\left(q_{i}, p_{i}\right)$ represents a conservative system (does not contain the time explicitly), one can write

$$
\begin{equation*}
\phi\left(q_{i}, t\right)=e^{-(2 \pi i W / h) t} \psi\left(q_{i}\right) \tag{7k-2}
\end{equation*}
$$

This changes ( $7 \mathrm{k}-1$ ) into

$$
\begin{equation*}
H \psi\left(q_{i}\right)=W \psi\left(q_{i}\right) \tag{7k-3}
\end{equation*}
$$

The task of wave mechanics is to find the solutions of Eqs. ( $7 \mathrm{k}-1$ ) or ( $7 \mathrm{k}-3$ ) with the following boundary conditions: $\psi$ must be single-valued and it and its derivatives continuous everywhere. At infinity $\psi$ must remain finite. The integral $\int|\psi|^{2} d \tau$ over a finite part of the configuration space should not be infinite. If the integral $\int|\psi|^{2} d \tau$ over the whole configuration space exists, the $\psi$ can be normalized so that

$$
\int|\psi|^{2} d \tau=1
$$

7k-2. Special Solvable Systems. The wave equation can be solved in terms of known elementary functions in only relatively few cases. The following are some of the more important ones.

One-dimensional motion of particle in potential $V$

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}}(W-V) \psi=0 \tag{7k-4}
\end{equation*}
$$

1. Free particle $V=0$

$$
\begin{gather*}
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m W}{\hbar^{2}} \psi=0  \tag{7k-5}\\
\psi=A e^{i\left(p_{x} / \hbar\right)}+B e^{-i\left(p_{x} / \hbar\right)} \quad W=\frac{p_{x}^{2}}{2 m}
\end{gather*}
$$

all values of $E \geq 0$ allowed
2. Harmonic oscillator $V=2 \pi^{2} \omega^{2} m x^{2}$

$$
\begin{gather*}
\frac{d^{2}}{d x^{2}}+\frac{2 m}{\hbar^{2}}\left(E-2 \pi^{2} \omega^{2} m x^{2}\right) \psi=0  \tag{7k-6}\\
\psi(x)=2^{-v / 2}(v!)^{-\frac{1}{2} \alpha^{\frac{1}{2}} \pi^{-\frac{1}{2}} e^{-\alpha 2 x} H_{v}(x) \quad \alpha^{2}=\frac{4 \pi^{2} m \omega}{h}} .
\end{gather*}
$$

where $\omega$ is classical vibration frequency and $H_{v}(x)$ Hermitian polynomial of order $v$.

$$
W_{v}=\left(v+\frac{1}{2}\right) \omega h \underset{7-162}{v}=0,1,2, \ldots
$$

3. Morse potential $V(r)=D\left[1-e^{-\beta\left(x-x_{e}\right)}\right]^{2}$

$$
\begin{align*}
W_{v} & =\beta h \sqrt{\frac{D}{2 \pi^{2} m}}\left(v+\frac{1}{2}\right)-\frac{\hbar^{2} \beta^{2}}{2 m}\left(v+\frac{1}{2}\right)^{2}  \tag{7k-7}\\
& =h \omega\left(v+\frac{1}{2}\right)-\frac{h^{2} \omega^{2}}{4 D}\left(v+\frac{1}{2}\right)^{2}
\end{align*}
$$

with $\omega=(\beta / 2 \pi) \sqrt{2 D / m}$ the classical frequency for small amplitudes. The wave functions are generalized Laguerre functions. ${ }^{1}$
4. Teller-Pöschl potential

$$
\begin{gather*}
V=\frac{\hbar^{2} \alpha^{2}}{2 m}\left[\frac{\nu(\nu-1)}{\sinh ^{2} \alpha\left(r-r_{0}\right)}-\frac{\mu(\mu+1)}{\cosh ^{2} \alpha\left(r-r_{0}\right)}\right] \quad \begin{array}{l}
\mu>1 \\
\nu>1 \\
\alpha>0
\end{array}  \tag{7k-8}\\
\psi_{0}=K_{0} \sinh ^{\nu} \alpha\left(r-r_{0}\right) \cosh ^{-\mu} \alpha\left(r-r_{0}\right) \\
\psi_{v}=K_{v} \psi_{0} \sum_{k=0}^{v} a_{v, 2 k} \sinh ^{2 k} \alpha\left(r-r_{0}\right) \\
W_{v}=\frac{\hbar^{2} \alpha^{2}}{2 m}(\mu-\nu-2 v)^{2} \quad v=0,1,2, \ldots
\end{gather*}
$$

The Morse curve is a special case of the Teller-Pöschl potential for which $\nu \rightarrow \infty$, $\mu \rightarrow \infty$ with $\mu-\nu$ fixed; $r_{0} \rightarrow-\infty$.
5. One-dimensional rotator

$$
\begin{gathered}
\frac{d^{2} \psi}{d \phi^{2}}+\frac{2 I W}{\hbar^{2}} \psi=0 \quad I=\text { moment of inertia } \\
\psi(\phi)=A \cos m \phi+B \sin m_{\phi} \quad m=0,1,2,3 \\
W=\frac{\hbar^{2}}{2 I} m^{2}
\end{gathered}
$$

6. Two-dimensional rotator ( $\theta, \phi$ )

$$
\begin{align*}
& \frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \phi^{2}}+\frac{2 I W}{\hbar^{2}} \psi=0  \tag{7k-10}\\
& \psi_{J, m}=P^{m} J(\cos \theta) e^{ \pm i m \phi} \\
& \quad \begin{array}{l}
|m| \leq J \\
W_{J}= \\
\hbar^{2} \\
2 I \\
2 I \\
J \hbar \\
J \hbar
\end{array} \quad=\text { total angular momentum }  \tag{7k-11}\\
& m \hbar=\text { its projection on } z \text { axis }
\end{align*}
$$

Every state is $2 J+1$ fold degenerate
7. Symmetrical top

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta}\left(\frac{\partial}{\partial \phi}-i \Lambda \cos \theta\right)^{2} \psi+\frac{A}{C} \frac{\partial^{2} \psi}{\partial x^{2}}+\frac{2 A W}{\hbar^{2}} \psi=0 \tag{7k-12}
\end{equation*}
$$

$\Lambda \hbar$ angular momentum about figure axis

$$
\psi(\theta, \phi, \chi)=e^{ \pm i(m \phi+\Lambda \chi)} U(u)
$$

where $u=\cos \theta, m \hbar$ component of angular momentum along $z$ axis, $\Delta \hbar$ component of angular momentum along symmetry axis. $U(u)$ satisfies
${ }^{1}$ P. M. Morse, Phys. Rev. 34, 57 (1929).


$$
\begin{gathered}
\left(1-u^{2}\right) \frac{d^{2} U}{d u^{2}}-2 u\left(1-u^{2}\right) \frac{d U}{d u}+\left[D\left(1-u^{2}\right)-\left(\Lambda^{2}+m^{2}\right)+2 \Lambda m u\right] U=0 \\
W=\frac{\hbar^{2}}{2}\left[\frac{J(J+1)-\Lambda^{2}}{A}+\frac{\Lambda^{2}}{C}\right] \quad \text { with } D=\frac{2 A W}{\hbar^{2}}+\left(1-\frac{A}{C}\right) \Lambda^{2} \\
U_{\rho, \Lambda, m}=\sin ^{d} \frac{\theta}{2} \cos ^{8} \frac{\theta}{2} G_{\rho}\left(1+s+d, 1+d, \sin ^{2} \frac{\theta}{2}\right)
\end{gathered}
$$

$\alpha$ is equal to $|\Lambda|$ or $|m|$, whichever is larger; $s=|m+\Lambda| ; d=|m-\Lambda| ; \rho=J-\alpha$; $\boldsymbol{G}_{\rho}$ is the appropriate Jacobi polynomial.
8. One-center problem

$$
\begin{equation*}
V=-\frac{Z e^{2}}{r} \tag{7k-13}
\end{equation*}
$$

Spherical coordinates $=r, \theta, \phi$
$\mu=m M /(m+M)=$ reduced mass; $m=$ mass of electron; $M=$ mass of nucleus. For $W<0$

$$
\begin{gathered}
\psi(r, \theta, \phi)=R(r) \Theta(\theta) \frac{1}{\sqrt{2 \pi}} e^{i m \phi} \\
\Theta(\theta)=\frac{(2 l+1)(l-m)!}{2(l+m)!} \sin ^{m} \theta P_{l^{m}(\cos \theta)} \quad \text { (normalized) }
\end{gathered}
$$

$P_{l^{m}}$ are the associate Legendre polynomials (see $7 \mathrm{k}-3$ )

$$
R_{n, l}(\rho)=\frac{4(n-l-1)!Z^{3}}{(n+l)!^{3} n^{4} a_{1}^{3}} \rho^{l} e^{-\rho / 2} L_{n+l}^{2 l+1}(\rho) \quad \text { (normalized) }
$$

where $L_{n+l}^{2 l+1}$ is an associate Laguerre polynomial (see $7 \mathrm{k}-3$ )
$a_{1}=\frac{\hbar^{2}}{\mu e^{2}}=$ radius of the first Bohr orbit

$$
W_{n}=-\frac{\mu e^{4}}{2 \hbar^{2}} \frac{Z^{2}}{n^{2}}
$$

For $W>0$ all energies are allowed; wave functions, see Bethe (1933).

## 7k-3. Often-used Wave Functions

1. Hermite polynomials

$$
\begin{aligned}
\psi_{v}(x) & =\rho^{-\left(\alpha^{2} / 2\right) x^{2}} H(\alpha x) \\
H_{0}(x) & =1 \\
H_{1}(x) & =2 x \\
H_{2}(x) & =4 x^{2}-2 \\
H_{3}(x) & =8 x^{3}-12 x \\
H_{4}(x) & =16 x^{4}-48 x^{2}+12 \\
H_{5}(x) & =32 x^{5}-160 x^{3}+120 x
\end{aligned}
$$

Normalization factor

$$
N_{v}=\left(\frac{\alpha}{2^{v} v!}\right)^{\frac{1}{2}} \pi^{-z}
$$

2. Legendre polynomials and associate Legendre polynomials

$$
P_{l^{m}(\cos \theta)}=\sin ^{m} \theta \frac{d^{m}}{(d \cos \theta)^{m}} P_{l}(\cos \theta)
$$

where $P_{l}(z)=P_{l}(\cos \theta)$ are the Legendre polynomials defined by

$$
P_{l}(z)=\frac{d^{l}\left(z^{2}-1\right)^{l}}{d z^{l}} \quad z=\cos \theta
$$

Legendre polynomials
$P_{0}(z)=1$
$P_{1}(z)=z \quad=\cos \theta$
$\begin{array}{ll}P_{2}(z) & =\frac{1}{2}\left(3 z^{2}-1\right) \\ P_{3}(z) & =\frac{1}{4}(3 \cos 2 \theta+1)\end{array}$
$P_{3}(z)=\frac{1}{2}\left(5 z^{3}-3 z\right)$
$=\frac{1}{8}(5 \cos 3 \theta+3 \cos \theta)$
$P_{4}(z)=\frac{1}{8}\left(35 z^{4}-30 z^{2}+3\right)$
$=\frac{1}{64}(35 \cos 4 \theta+20 \cos 2 \theta+9)$
$P_{5}(z)=\frac{1}{8}\left(63 z^{5}-70 z^{3}+15 z\right)$
$=\frac{1}{12} \overline{8}(63 \cos 5 \theta+35 \cos 3 \theta+30 \cos \theta)$
$P_{6}(z)=\frac{1}{16}\left(231 z^{6}-315 z^{4}+105 z^{2}-5\right)=\frac{1}{512}(231 \cos 6 \theta+126 \cos 4 \theta$
$+105 \cos 2 \theta+50)$
Associate Legendre polynomials

$$
\begin{array}{ll}
P_{1}{ }^{1}(z)=\left(1-z^{2}\right)^{\frac{1}{2}} & =\sin \theta \\
P_{2}{ }^{1}(z)=3\left(1-z^{2}\right)^{\frac{1}{2}} z & =\frac{3}{2} \sin 2 \theta \\
P_{2}{ }^{2}(z)=3\left(1-z^{2}\right) & =\frac{3}{2}(1-\cos 2 \theta) \\
P_{3}{ }^{1}(z)=\frac{3}{2}\left(1-z^{2}\right)^{\frac{1}{2}}\left(5 z^{2}-1\right) & =\frac{3}{8}(\sin \theta+5 \sin 3 \theta) \\
P_{3}{ }^{2}(z)=15\left(1-z^{2}\right) z & =\frac{15}{4}(\cos \theta-3 \cos 3 \theta) \\
P_{3}{ }^{3}(z)=15\left(1-z^{2}\right)^{\frac{3}{2}} & =\frac{1^{4} 5}{4}(3 \sin \theta-\sin 3 \theta) \\
P_{4}(z)=\frac{5}{2}\left(1-z^{2}\right)^{\frac{3}{2}}\left(7 z^{3}-3 z\right) & =\frac{5}{16}(2 \sin 2 \theta+7 \sin 4 \theta) \\
P_{4}{ }^{2}(z)=\frac{15}{2}\left(1-z^{2}\right)\left(7 z^{2}-1\right) & =\frac{15}{16}(3+4 \cos 2 \theta-7 \cos 4 \theta) \\
P_{4}^{3}(z)=105\left(1-z^{2}(z)\right. & =\frac{105}{8}(2 \sin 2 \theta-\sin 4 \theta) \\
P_{4}{ }^{4}(z)=105\left(1-z^{2}\right)^{2} & =\frac{105}{8}(3-4 \cos 2 \theta+\cos 4 \theta)
\end{array}
$$

3. Radial wave functions of the one-center problem

$$
\begin{aligned}
R_{10} & =2 e^{-r} \\
R_{20} & =\frac{1}{\sqrt{2}} e^{-\frac{1}{2} r}\left(1-\frac{1}{2} r\right) \\
R_{21} & =\frac{1}{2 \sqrt{6}} e^{-\frac{3}{2} r} \\
R_{30} & =\frac{2}{3 \sqrt{3}} e^{-\frac{1}{2} r}\left(1-\frac{2}{3} r+\frac{2}{27} r^{2}\right) \\
R_{31} & =\frac{8}{27 \sqrt{6}} e^{-\frac{3}{3} r} r\left(1-\frac{1}{6} r\right) \\
R_{32} & =\frac{4}{81 \sqrt{30}} e^{-\frac{1}{3} r} r^{2} \\
R_{40} & =\frac{1}{4} e^{-\frac{1}{2} r}\left(1-\frac{3}{4} r+\frac{1}{8} r^{2}-\frac{1}{192} r^{3}\right) \\
R_{41} & =\frac{1}{16} \sqrt{\frac{5}{3}} e^{-\frac{l}{2} r} r\left(1-\frac{1}{4} r+\frac{1}{80} r^{2}\right) \\
R_{42} & =\frac{1}{64 \sqrt{5}} e^{-\frac{1}{2} r^{2}}\left(1-\frac{1}{12} r\right) \\
R_{43} & =\frac{1}{768} \frac{\sqrt{35}}{} e^{-\frac{1}{2} r^{3}}
\end{aligned}
$$

7k-4. Approximation Methods. Perturbation Method for Non-time-dependent Cases. Required, the solution of the wave equation

If

$$
\begin{align*}
H \psi & =W \psi \\
H & =H^{0}+S
\end{align*}
$$

and $\psi_{n}{ }^{0}$ and $W_{n}{ }^{0}$ are the known solutions and eigen values of the "unperturbed" wave equation

$$
\begin{equation*}
\boldsymbol{H}^{0} \psi^{0}=W^{0} \psi^{0} \tag{7k-15}
\end{equation*}
$$

then often good approximations to the solution of ( $7 \mathrm{k}-14$ ) can be found by the perturbation method. For this method to be applicable it is necessary that the influence of $S$ is not large so that the solutions of ( $7 \mathrm{k}-14$ ) are relatively close to those of ( $7 \mathrm{k}-15$ ). For an exact meaning of this condition see later on. The procedure is simpler if the unperturbed states are not degenerate.

Nondegenerate States. Develop the solution of $\psi_{n}$ of ( $7 \mathrm{k}-14$ ) in terms of the $\psi_{n}{ }^{0}$

$$
\begin{equation*}
\psi_{n}=\psi_{n}^{0}+\sum_{i} a_{i n} \psi_{i}^{0}+\sum_{i} b_{i n} \psi_{i} 0+\cdots \tag{7k-16}
\end{equation*}
$$

All $a_{i n}$ are small of first order, the $b_{n n}$ are small of order two, etc. The energy becomes

$$
\begin{equation*}
W_{n}=W_{n}^{0}+\epsilon_{n}{ }^{(1)}+\epsilon_{n}^{(2)}+\cdots \tag{7k-17}
\end{equation*}
$$

One finds, if the perturbation matrix elements $S_{i j}$ are defined by

$$
\begin{equation*}
S_{i j}=\int \bar{\psi}_{i} S \psi_{j} d \tau \tag{7k-18}
\end{equation*}
$$

that

$$
\begin{gathered}
\epsilon_{n}^{(1)}=S_{n n} \\
a_{i n}=\frac{S_{i n}}{W_{i}-W_{n}} \quad \text { for } i \neq n, \quad a_{n n}=0
\end{gathered}
$$

$\Sigma^{\prime}$ means summation over all values of $i$ except $i=n$.

$$
\begin{aligned}
\epsilon_{n}^{(2)} & =\sum_{j}^{\prime} \frac{S_{n j} S_{i n}}{W_{n}-W_{j}} \\
b_{i n} & =\sum_{j}^{\prime} \frac{S_{i j} S_{i n}}{\left(W_{n}-W_{i}\right)\left(W_{n}-W_{j}\right)}-\frac{S_{i n} S_{n n}}{\left(W_{n}-W_{i}\right)^{2}}
\end{aligned}
$$

$b_{n n}$ is obtained from normalization. $\quad-b_{n n}=\frac{1}{2} \sum_{i}\left|a_{i n}\right|^{2}$. Higher-order approximations become increasingly complex.

Degenerate Case. Consider an f-fold degenerate state with energy $W$ and wave functions $\psi_{1}{ }^{0}$ to $\psi_{f}{ }^{0}$ so that

$$
\begin{equation*}
H^{0} \psi_{n}{ }^{0}=W \psi_{n}{ }^{0} \quad n=1,2, \cdots f \tag{7k-19}
\end{equation*}
$$

Any linear combination

$$
\psi_{n}=\sum_{i=1}^{f} A_{i n} \psi_{i}^{0}
$$

is again a solution ( $7 \mathrm{k}-19$ ). A perturbation will in general require a definite linear combination as zero approximation. The coefficients $A_{\text {in }}$ which are of order of magnitude one are found as solutions of the set of linear equations

| $\left(S_{11}-\epsilon_{n}\right) A_{1 n}+S_{12} A_{2 n}$ | $+\cdots+S_{1 f} A_{f n}$ | $=0$ |
| :--- | :--- | :--- |
| $S_{21} A_{1 n}$ | $+\left(S_{22}-\epsilon_{n}\right) A_{2 n}+\cdots+S_{2 f} S_{f n}$ | $=0$ |
| $\cdots \cdots \cdots \cdots+\cdots$ | $\cdots+\cdots$ |  |
| $S_{f 1} A_{1 n}$ | $+S_{f 2} A_{2 n}$ | $+\cdots+\left(S_{f f}-\epsilon_{n}\right) A_{f n}=$ |

These are solvable only if the secular determinant is zero

$$
\left.\left\lvert\, \begin{array}{cccc}
S_{11}-\epsilon_{n} & S_{12} & \cdots & S_{1 f} \\
S_{21} & S_{22}-\epsilon_{n} & \cdots & S_{2 f} \\
\cdots \cdots & \cdots & \cdots & \cdots
\end{array}\right.\right)=0
$$

There are $f$ solutions of the secular determinant for $\epsilon_{n}$. All may be different. In that case the degeneracy is completely removed and the zero-order approximation is completely determined as all $A_{i j}$ values are fixed, except for a common factor.
If there are two or more identical roots $\epsilon_{n}$ part of the degeneracy remains and some of the $A_{i j}$ are arbitrary.

For cases where the degeneracy is removed only in a higher order, consult the literature.

Second and Higher Orders. With the wave functions $\psi_{n}{ }^{0}$ as zero-order approximations, the second- and higher-order approximations can be carried out exactly as for the nondegenerate case.
Semidegenerate Case. If

$$
\begin{equation*}
\left|S_{i j}\right| \ll\left|W_{i}-W_{j}\right| \tag{7k-20}
\end{equation*}
$$

the method for the nondegenerate states can be employed. If this condition is not fullfilled for some states for which, however, $W_{i} \neq W_{i}$, these states can be dealt with by a method very similar to that for the degenerate states. States for which ( $7 \mathrm{k}-20$ ) is not fullfilled, whether they are degenerate or not, are called close states; their interaction can be taken care of provided their number $f$ is finite.
The positions of the unperturbed levels are $\delta_{1}, \delta_{2}, \ldots \delta_{f}$ where the $\delta_{i}$ are counted from some fixed arbitrary energy. All $\delta_{i}$ may be different or some or all may be equal.

The procedure is now exactly the same as for an $f$-fold degenerate state except that the coefficients $A_{m n}$ and the energies are given by the equations.

$$
\begin{aligned}
& \left(S_{11}+\delta_{1}-\epsilon_{n}\right) A_{1 n}+S_{12} A_{2 n}+\cdots+S_{1 f} A_{f n}=0 \\
& S_{21} A_{1 n}+\left(S_{22}+\delta_{2}-\epsilon_{n}\right) A_{2 n}+\cdots+S_{2 f} A_{f n}=0 \\
& \left.\cdots \cdots \cdots+\cdots \cdots+\cdots+\cdots+\cdots+\cdots+\cdots+\cdots+\epsilon_{f}\right) A_{f n}=0
\end{aligned}
$$

with the secular determinant

$$
\left|\begin{array}{cccc}
S_{12}+\delta_{1}-\epsilon_{n} & S_{12} & \cdots & S_{1 f} \\
S_{21} & S_{22}+\delta_{2}-\epsilon_{n} & \cdots & S_{2 f} \\
\cdots \cdots \cdots \cdots & \cdots \cdots \cdots & \cdots \cdots & \cdots \cdots \\
S_{f 1} & & S_{f 2} & \cdots
\end{array}\right|=0
$$

Everything from here on is analogous to the procedure in the degenerate case.
Variation Method. It can be shown that, if $\chi$ is a normalized arbitrary function of the coordinates and $W_{0}$ the lowest energy value of a system, we have

$$
\begin{equation*}
W_{0} \leq \int \bar{\chi} H_{\chi} d \tau \tag{7k-21}
\end{equation*}
$$

The equality sign applies when $\chi=\psi$ is the correct wave function of the lowest state.
The variational method consists of the systematic variation of a function with several adjustable parameters chosen so (often by intuition) as to be very similar to the wave function. The variation of the integral ( $7 \mathrm{k}-21$ ) is observed when the constants are varied. The function which gives the smallest value for the integral is the best approximation to the wave function obtainable with the chosen function type, and the minimum value of the integral the best value for the energy. The accuracy of the energy value depends on how closely the trial function can approximate the real wave function.

If there are several different symmetry types the variational method can be used to calculate the lowest state of each symmetry type.

Upper values of other excited states can be obtained if the trial function is orthogonal to that of all lower states.

## 71. Zeeman Effect

When atoms and molecules are placed in a magnetic field their spectrum lines usually are split into several components with characteristic polarization. As a rule the amount of the splitting is proportional to the field strength $H$ (linear Zeeman effect). The following cases are of importance.

71-1. Free Atoms, No Nuclear Spin. If $J$ is the total angular momentum, the level is $2 J+1$ fold degenerate. In a magnetic field of strength $H$ the level splits into $2 J+1$ components. The energy changes compared with the field free energy are given by

$$
\begin{array}{cc}
\epsilon=g \beta M H & -J \leq M \leq+J  \tag{7l-1}\\
\beta=\frac{\hbar}{2 m c} & \text { (Bohr magneton) }
\end{array}
$$

The splitting factor for Russell-Saunders coupling is given by Lande's formula

$$
\begin{equation*}
g=1+\frac{J(J+1)+S(S+1)-L(L+1)}{2 J(J+1)} \tag{71-2}
\end{equation*}
$$

Numerical values of $g$ are given in Table $7 \mathrm{~m}-1 .{ }^{1}$
In the literature the case for which $g=1$ is usually called the normal Zeeman effect and other cases are called the anomalous Zeeman effects. Normal Zeeman effects occur chiefly for singlets ( $S=0$ ).

Equation (7l-2) holds only as long as $L, S$ coupling is a good approximation. Equation (71-1) holds with $g$ values not necessarily given by (71-2) as long as the magnetic splitting is small compared with the distance to a neighboring level.

Selection and Polarization Rules for Electric-dipole Transition

| Transition | Polarization |  | |
|---|---|---|---|
|  | Observation perpendicular <br> to $H$ | Observation parallel <br> to $H$ |
| $\Delta M= \pm 1$ | Linear, $\perp H$ | $\Delta M=+1$ right circular <br> $\Delta M=-1$ left circular (opposite if $g^{\prime}$ and <br> $g^{\prime \prime}$ have opposite sign) <br> Absent |
| $\Delta M=0$ | Linear, $\\| H$ |  |

For $g^{\prime}=g^{\prime \prime}=1$, the normal triplet is obtained, as all lines with the same change in $M$ coincide.
${ }^{1}$ A table of $g$ values arranged in order of increasing numerical values is found in Charlotte E. Moore, "Atomic Energy Levels," vol. I, tables 3 and 4, 1949; Kiess and W. F. Meggers, J. Research Natl. Bur. Standards 1, 641 (1928). For tables of $g$ values for $j j$ coupling, see J. C. Green et al., Phys. Rev. 52, 736 (1937); 54, 876 (1938); 58, 1094 (1940); 59, 72 (1941); 64, 151 (1943).

For quadrupole transitions, see Condon and Shortley, ${ }^{1}$ and Rubinowicz and Blaton. ${ }^{2}$
The intensities are given by

| Transition |  | Intensity |
| :---: | :---: | :---: |
| $J \rightarrow J$ | $M \rightarrow M$ | $A M^{2}$ a |
|  | $\left.\begin{array}{l} M \rightarrow M+1  \tag{71-3a}\\ M+1 \rightarrow M \end{array}\right\}$ | $\frac{1}{2} A[J(J+1)-M(M+1)]$ |
| $J \rightarrow J+1$ | $M \rightarrow M$ | $B\left[(J+1)^{2}-M^{2}\right]$ |
|  | $M \rightarrow M+1$ | $\frac{1}{2} B(J+M+1)(J+M+2)$ |
|  | $M \rightarrow M-1$ | $\frac{1}{2} B(J-M+1)(J-M+2)$ |
| $J \rightarrow J-1$ | $M \rightarrow M$ | ${ }^{[ }\left[J^{2}-M^{2}\right]$ |
|  | $\begin{align*} & M \rightarrow M+1  \tag{7l-3c}\\ & M \rightarrow M-1 \end{align*}$ | $\frac{1}{\frac{1}{2} C(J-M)(J-M-1)}$ |

These formulas hold as long as Eq. (71-1) holds but are independent of the particular coupling scheme, i.e., independent of the $g$ values. They hold equally well for diatomic molecules. $A, B$, and $C$ are proportionality constants which are different for each line.

The formulas represent the intensity distribution in a Zeeman pattern as long as the temperature is so high that $k T$ is large compared with the magnetic splitting. They are proportional to the transition probabilities for all temperatures.

When the magnetic splitting is not small compared with the distance to neighboring levels, the splitting is not symmetric. The line has asymmetries in both position of the components and their intensities (incipient Paschen back effect). When the distance between multiplet components is small compared with the magnetic splitting, the pattern is simple again and essentially that for the normal Zeeman ( $S=0$ ) effect (complete Paschen back effect).
71-2. Zeeman Effects in Other Cases. If there is hyperfine structure because the nuclear spin is different from zero, the number of components is given by $2 F+1$ when $F \hbar$ is the total angular momentum including nuclear spin $I \hbar$. The splitting factor is

$$
g_{n}=g \frac{F(F+1)+J(J+1)-I(I+1)}{2 F(F+1)}
$$

where $g$ is the splitting factor without consideration of the nuclear spin. This situation prevails only as long as the magnetic splitting is small compared with the hyperfine structure. At the other extreme (hyperfine structure small compared with magnetic splitting) the influence of the nuclear spin may be neglected.
Diatomic Molecules. The splitting and intensities are given by Eqs. (71-1) and (71-3). The splitting factor depends on the coupling within the molecule. A simple case is when influence of the spin can be neglected and the orbital angular momentum $L$ is coupled to the internuclear axis (Hund's case $b$ ). If $\Lambda$ is the component of $L$ along the internuclear axis we have for the splitting factor

$$
g=\frac{\Lambda^{2}}{J(J+1)}
$$

This expression shows that appreciable splittings can be expected only for small values of $J$. Noticeable splittings for larger $J$ values are found when the angular momentum $L$ is decoupled from the internuclear axis.
${ }^{1}$ E. U. Condon and G. H. Shortley, "The Theory of Atomic Spectra," Cambridge University Press, New York, 1935 (reprinted 1953).
${ }^{2}$ A. Rubinowicz, Z. Physik 53, 267 (1929); 61, 338 (1930); A. Rubinowicz and J. Blaton, Ergeb. exak. Naturwiss. 11, 176 (1932).

Table 71-1. Values of $g$ for $L-S$ Coupling
(Odd multiplicites)

| $\begin{aligned} & \text { Spin......... } \\ & \text { Multiplicity } . \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | 1 3 | 2 5 | 3 7 | 4 9 | $\begin{array}{r} 5 \\ 11 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level J |  |  |  |  |  |  |  |
| S |  | $g=2$ for all multiplicities |  |  |  |  |  |
| $P$ | 0 |  | \% |  |  |  |  |
|  | 1 | 1.000 | 1.500 | 2.500 |  |  |  |
|  | 2 |  | 1.500 | 1.833 | 2.333 |  |  |
|  | 3 |  |  | 1.667 | 1.917 | 2.250 |  |
|  | 4 |  |  |  | 1.750 | 1.950 | 2.200 |
|  | 5 |  |  | … | 1.750 | 1.800 | 1.967 |
|  | 6 |  |  |  |  | . .... | 1.833 |
| D | 0 |  |  | \% |  |  |  |
|  | 1 |  | 0.500 | 1.500 | 3.000 |  |  |
|  | 2 | 1.000 | 1.167 | 1.500 | 2.000 | 2.667 |  |
|  | 3 |  | 1.333 | 1.500 | 1.750 | 2.083 | 2.500 |
|  | 4 |  |  | 1.500 | 1.650 | 1.850 | 2.100 |
|  | 5 |  |  |  | 1.600 | 1.733 | 1.900 |
|  | 6 |  |  |  |  | 1.667 | 1.786 |
|  | 7 |  |  |  |  |  | 1.714 |
| $F$ | 0 |  |  |  | \% |  |  |
|  | 1 |  | $\ldots$ | 0.000 | 1.500 | 3.500 |  |
|  | 2 |  | 0.667 | 1.000 | 1.500 | 2.167 | 3.000 |
|  | 3 | 1.000 | 1.083 | 1.250 | 1.500 | 1.833 | 2.250 |
|  | 4 | 1.00 | 1.250 | 1.350 | 1.500 | 1.700 | 1.950 |
|  | 5 |  | ..... | 1.400 | 1.500 | 1.633 | 1.800 |
|  | 6 |  | $\ldots$ | ..... | 1.500 | 1.595 | 1.714 |
|  | 7 |  | ..... | ..... | ...... | 1.571 | 1.661 |
|  | 8 |  |  | ..... |  |  | 1.625 |
| $G$ | 0 |  |  |  |  | \% |  |
|  | 1 |  |  |  | $-0.500$ | 1.500 | 4.000 |
|  | 2 |  |  | 0.333 | 0.833 | 1.500 | 2.333 |
|  | 3 |  | 0.750 | 0.917 | 1.167 | 1.500 | 1.917 |
|  | 4 | 1.000 | 1.050 | 1.150 | 1.300 | 1.500 | 1.750 |
|  | 5 | ..... | 1.200 | 1.267 | 1.367 | 1.500 | 1.667 |
|  | 6 |  | ..... | 1.333 | 1.405 | 1.500 | 1.619 |
|  | 7 | ..... |  | . .... | 1.429 | 1.500 | 1.589 |
|  | 8 |  | $\ldots$ |  | ..... | 1.500 | 1.569 |
|  | 9 |  |  | $\ldots$. |  |  | 1.556 |
| H | 0 |  |  |  |  |  |  |
|  | 1 |  | ..... |  |  | $-1.000$ | 1.500 |
|  | 2 |  |  |  | 0.000 | 0.667 | 1.500 |
|  | 3 |  |  | 0.500 | 0.750 | 1.083 | 1.500 |
|  | 4 |  | 0.800 | 0.900 | 1.050 | 1.250 | 1.500 |
|  | 5 | 1.000 | 1.033 | 1.100 | 1.200 | 1.333 | 1.500 |
|  | 6 |  | 1.167 | 1.214 | 1.286 | 1.381 | 1.500 |
|  | 7 |  | 1.16 | 1.286 | 1.339 | 1.411 | 1.500 |
|  | 8 |  |  | . . . . | 1.375 | 1.431 | 1.500 |
|  | 9 |  |  |  | ..... | 1.444 | 1.500 |
|  | 10 |  |  |  | ...... | ...... | 1.500 |

Table 71-1. Values of $g$ for L-S Coupling (Continued)
(Odd multiplicities)

| Spin Multiplicity |  | $\begin{array}{r}0 \\ \hline 1\end{array}$ | 1 3 | 2 5 | 3 7 | 4 9 | 5 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level $J$ |  |  |  |  |  |  |  |
| S$I$ |  |  | $g=2$ for all multiplicities |  |  |  |  |
|  | 1 |  |  |  |  |  | $-1.500$ |
|  | 2 |  | ..... |  | -... | -0.333 | 0.500 |
|  | 3 | $\ldots$ |  |  | 0.250 | 0.583 | 1.000 |
|  | 4 |  |  | 0.600 | 0.750 | 0.950 | 1.200 |
|  | 5 |  | 0.833 | 0.900 | 1.00 | 1.133 | 1.300 |
|  | 6 | 1.000 | 1.024 | 1.071 | 1.143 | 1.238 | 1.357 |
|  | 7 | ..... | 1.143 | 1.179 | 1.232 | 1.304 | 1.393 |
|  | 8 | . .... | ..... | 1.250 | 1.292 | 1.347 | 1.417 |
|  | 9 | $\ldots$. |  |  | 1.333 | 1.378 | 1.433 |
|  | 10 |  |  |  | . | 1.400 | 1.445 |
|  | 11 | ..... |  |  | .... |  | 1.455 |
| $K$ | 2 |  |  |  | . . |  | -0.667 |
|  | 3 |  |  |  |  | 0.000 | 0.417 |
|  | 4 | $\ldots$ |  |  | 0.400 | 0.600 | 0.850 |
|  | 5 | . |  | 0.667 | 0.767 | 0.900 | 1.067 |
|  | 6 | $\cdots$ | 0.857 | 0.905 | 0.976 | 1.071 | 1.191 |
|  | 7 | 1.000 | 1.018 | 1.054 | 1.107 | 1.179 | 1.268 |
|  | 8 |  | 1.125 | 1.153 | 1.194 | 1.250 | 1.319 |
|  | 9 10 |  |  | 1.222 | 1.256 | 1.300 | 1.356 |
|  | 10 11 | $\cdots$ |  |  | 1.300 | 1.336 | 1.382 |
|  | 11 |  |  |  |  | 1.364 | 1.402 |

Atoms or Ions in Crystals. In this case the $2 J+1$ fold degeneracy is entirely or partly removed by the Stark effect due to the crystal field. If the electron orbits are protected, sharp levels may result, particularly at low temperatures. Sharp absorption or fluorescence lines in crystals have been observed for salts of elements where $d$ and $f$ shells are being filled. Such lines may show characteristic Zeeman effects. In general the level splits into two components if the number of electrons is odd (Kramers degeneracy). For an even number of electrons there is no degeneracy and therefore no linear Zeeman effect unless the symmetry of the crystal field is high. If the average orbital angular momentum is zero, the degeneracy is $2 S+1$ and is due to the resultant electron spin $S$.

This magnetic splitting of electronic levels in crystals is directly observed for the ground state in paramagnetic resonance experiments (often modified by the nuclear spin). It is also directly observed for the ground and excited states in optical-absorption spectra in a magnetic field when there are sharp lines. This splitting is directly connected with the magnitude of the magnetic susceptibility and paramagnetic rotation as well as with cooling by adiabatic demagnetization.

7-172 ATOMIC AND MOLECULAR PHYSICS
Table 71-2. Values of $g$ for $L-S$ Coupling
(Even multiplicities)


## Table 7l-2. Values of $g$ for L-S Coupling (Continued)

 (Even multiplicities)

# 7m. Motions of Electrons and Ions in Gases 

S. C. BROWN AND W. P. ALLIS

Massachusetts Institute of Technology

7m-1. Collision Probabilities. The probability of collision $P_{c}$ is defined as the fraction of particles scattered out of a collimated beam per centimeter path per millimeter pressure at $0^{\circ} \mathrm{C}$. Similarly the "probability" of any event occurring on collision, such as excitation $P_{x}$ or ionization $P_{i}$, is the fraction of particles suffering that event per centimeter path and millimeter pressures. The probability $P$ is related to the cross section $q$ by

$$
P=\frac{L q}{760} \quad \mathrm{~cm}^{-1}\left(\mathrm{~mm} \mathrm{Hg}^{-1}\right.
$$

where $L$ is Loschmidt's number, or

$$
P=3.5357 q
$$

where $q$ is in square Angstrom units. The mean free path $l$ is given by

$$
l=\frac{1}{p_{0}} P \quad \mathrm{~cm}
$$

and the mean free time $\tau$ by

$$
\frac{1}{\tau}=\frac{v}{l}=5.93107 \times 10^{7} u_{\frac{1}{2}} p_{0} P \quad \sec ^{-1}
$$

Here $u=m v^{2} / 2 e$ is the energy in electron volts, and $p_{0}=273.16 p / T$ is the "reduced" pressure in millimeters of mercury. $p_{0}$ does not express a pressure, but a concentration

$$
\frac{N}{V}=3.5357 \times 10^{18} p_{0} \quad \text { molecules } / \mathrm{cm}^{3}
$$

Cross sections are sometimes given in units of $\pi a_{0}{ }^{2}=0.87981 \mathrm{~A}^{2}$, and energies in Hartree units, $k^{2}=V / 13.605$.
If $q(\theta)$ is the differential cross section for elastic scattering into unit solid angle at an angle $\theta$ to the incident direction,

$$
q_{c}=\int q(\theta) 2 \pi \sin \theta d \theta
$$

A more important quantity is the cross section for momentum transfer.

$$
q_{m}=\int q(\theta)(1-\cos \theta) 2 \pi \sin \theta d \theta
$$

In general, $q_{m} \leq q_{c}$; experimental values of $P_{c}$ should be "corrected" to $P_{m}$ in all gas-discharge applications.

## 7m-1.1 Elastic Collisions by Electrons

Figs. $7 \mathrm{~m}-1$ to $7 \mathrm{~m}-7$


Fig. 7m-1. "Probability" of collision in $\mathrm{H}_{2}$, He. [R. B. Brode, Revs. Modern Phys. 5, 257 (1933); A. V. Phelps, O. T. Fundingsland, S. C. Brown, Phys. Rev. 84, 559 (1951).]


Fig. 7m-2. "Probability" of collision in the alkali metals. [R. B. Brode, Revs. Modern Phys. 5, 257 (1933).]


Fig. 7m-4. "Probability" of collision in Ne, A, Kr, Xe. [R. B. Brode, Revs. Modern Phys. 5, 257 (1933).]


Fig. 7m-5. "Probability" of collision in $\mathrm{O}_{2}$, $\mathrm{N}_{2}$, CO. [R. B. Brode, Revs. Modern Phys. 5, 257 (1933).]


Fig. 7m-6. "Probability" of collision in $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$. [R. B. Brode, Revs. Modern Phys. 5, 257 (1933).]


Fig. 7m-7. "Probability" of collision in $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}$. [R. B. Brode, Revs. Modern Phys. 5, 257 (1933).]

7m-1.2 Inelastic Collisions by Electrons
Figs. $7 \mathrm{~m}-8$ to $7 \mathrm{~m}-18$


Fig. 7m-8. "Probability" of excitation and ionization in He, H2, Ne, A. [M. J. Druyvesteyn, and F. M. Penning, Revs. Modern Phys. 12, 87 (1940).]


Fig. 7m-9. "Probability" of ionization in He, Ne, A. [P. T. Smith, Phys. Rev. 36, 1293 (1930).]


Fig. 7m-10. "Probability" of ionization in neon. [W. Bleakney, Phys. Rev. 36, 1303 (1930).]


Fia. 7m-11. "Probability" of ionization in hydrogen. (M. Knoll, F. Ollendorff, and R. Rompe, "Gastentladungstabellen," p. 66, J. Springer Verlag, Berlin, 1935.)


Fig. 7m-12. "Probability" of ionization in argon. [W. Bleakney, Phys. Rev. 36, 1303 (1930).]


Fig. 7 m -13. Relative ionization probability for ionization to the ${ }^{2} \mathrm{P}_{1 / 2}$ state in krypton. [R. E. Fox, W. M. Hickam, and T. Kjeldaas, Phys. Rev. 89, 555 (1953).]

7-180


Fig. 7m-14. "Probability" of ionization in mercury. [W. B. Nottingham, Phys. Rev. 55, 203 (1939).]


Fig. 7m-15. "Probability" of ionization in mercury. [W. B. Nottingham, Phys. Rev. 55, 203 (1939).]


Fig. 7m-16. "Probability" of ionization in mercury. [W. B. Nottingham, Phys. Rev. 55, 203 (1939).]


Fig. 7m-17. "Probability" of ionization in mercury. [W. Bleakney, Phys. Rev. 35, 139 (1930).]


Fig. 7m-18. "Probability" of ionization in $\mathrm{N}_{2}, \mathrm{O}, \mathrm{CO}, \mathrm{NO}, \mathrm{C}_{2} \mathrm{H}_{2}$. [J. T. Tate and P.T. Smith, Phys. Rev. 39, 270 (1932).]

7m-1.3 Electron Attachment
Figs. $7 \mathrm{~m}-19$ to $7 \mathrm{~m}-26$


Fig. $7 \mathrm{~m}-19$. Cross sections for radiative attachment of electrons by neutral hydrogen atoms. (H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," p. 335, Clarendon Press, Oxford, 1952.)


Frg. $7 \mathrm{~m}-20$. Electron attächment coefficient for air [M. A. Harrison and R. Geballe, Phys. Rev. 91, 1 (1953).]


Fig. $7 \mathrm{~m}-21$. Electron attachment coefficients for freon-12 and $\mathrm{CF}_{3} \mathrm{SF}_{5}$ [M. A. Harrison and R. Geballe, Phys. Rev. 91, 1 (1953).]


Fig. $7 \mathrm{~m}-22$. "Probability" of formation of $\mathrm{O}^{-}$ions from carbon monoxide as a function of the energy of the impacting electrons. [H. D. Hagstrum and J. T. Tate, Phys. Rev. 59, 354 (1941).]


Fig. 7m-23. "Probability" of formation of $\mathrm{O}^{-}$ions from nitric oxide as a function of the energy of the impacting electrons. [H. D. Hagstrum and J. T. Tate, Phys. Rev. 59, 354 (1941).]


Frg. $7 \mathrm{~m}-24$. "Probability" of formation of $\mathrm{O}^{-}$ions from oxygen. [H. D. Hagstrum and J. T. Tate, Phys. Rev. 59, 354 (1941).]


Fig. $7 \mathrm{~m}-25$. $\mathrm{F}^{-}$ion current as a function of electron energy. [A. J. Ahearn and N. B. Hannay, J. Chem. Phys. 21, 119 (1953).]


Fig. $7 \mathrm{~m}-26 . \mathrm{SF}_{6}-$ ion current as a function of electron energy. [A. J. Ahearn and N. B. Hannay, J. Chem. Phys. 21, 119 (1953).]

## 7m-1.4 Elastic Collisions by Ions

Figs. $7 \mathrm{~m}-27$ to $7 \mathrm{~m}-31$


Fig. 7 m -27. "Probability" of collision for positive ions of $\mathrm{Li}, \mathrm{K}, \mathrm{Cs}$ in helium. [C. Ramsauer and O. Beeck, Ann. Physik 87, 1 (1928).]


Fig. 7m-28. "Probability" of collision for positive ions of $\mathrm{Li}, \mathrm{K}, \mathrm{Cs}$ in neon. [C. Ramsauer and O. Beeck, Ann. Physik 87, 1 (1928).]


Fic. 7m-29. "Probability" of collision for positive ions of Li, Na, K, Rb, Cs in argon. [C. Ramsauer and O. Beeck, Ann. Physik 87, 1 (1928).]


Fig. $7 \mathrm{~m}-30$. Elastic scattering of low-velocity hydrogen ions in hydrogen. [J. H. Simons, C. M. Fontana, E. E. Muschlitz, Jr. and S. R. Jackson, J. Chem. Phys. 11, 307 and 316 (1943).]


Frg. 7m-31. "Probability" of collision for positive ions of $K$ in $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}$. [C. Ramsauer and O. Beeck, Ann. Physik 87, 1 (1928).]

## 7m-1.5 Charge Transfer

Figs. $7 \mathrm{~m}-32$ to $7 \mathrm{~m}-37$


Fra. $7 \mathrm{~m}-32$. Charge-transfer cross section of $\mathrm{H}^{+}$in $\mathrm{H}_{2}$. (H. S. W. Massey and E. H. S. Burbop, "Electronic and Ionic Impact Phenomena," p. 526, Clarendon Press, Oxford, 1952.)


Fig. 7m-33. Charge-transfer cross sections of $\mathrm{A}^{+}$in $\mathrm{A}, \mathrm{He}^{+}$in He as a function of energy. [J. B. Hasted, Proc. Roy. Soc. (London), ser. A 205, 421 (1951).]

## $7-190$


[B. M. Palyukh
Fig. 7m-34. Charge-transfer cross sections of ions and atoms of mercury and L. A. Sena, J. Exp. Theor. Phys. U.S.S.R. 20, 481 (1950).]


Fig. 7m-35. Normal charge-transfer cross sections. [J. B. Hasted, Proc. Roy. Soc. (London), ser. A, 205, 421 (1951).]


Fig. 7m-36. Abnormal charge-transfer cross sections with metastable ions present. [J. B. Hasted, Proc. Roy. Soc. (London), ser. A, 205, 421 (1951).]


Fig. $7 \mathrm{~m}-37$. Charge-transfer cross section of $\mathrm{O}^{+}$in $\mathrm{N}_{2}$ as a function of energy. Dashed line is extrapolated. [J. B. Hasted, Proc. Roy. Soc. (London), ser. A, 205, 421 (1951).]

7m-2. Surface Phenomena (Ions impinging on metal surfaces). Secondary Emission $\gamma_{i}$. The secondary emission coefficient $\gamma_{i}$ is the number of free electrons released from a surface by the impact of a positive ion, over and above any electrons taken from the surface to neutralize the ion. If $\phi$ is the work function of the surface, and $V_{i}$ is the ionization potential of the ion, secondary emission requires that $V_{i}>2 \phi$.

The secondary emission coefficient is in general greatly reduced by the presence of adsorbed gas on the surface.

Effective Secondary Emission $\gamma$. The second Townsend coefficient $\gamma$ is defined as the number of secondary electrons escaping from the cathode per positive ion produced in the gas. It is a function of $E / p$ in the gas and is, in general, the resultant effect of photons, ions, and metastables reaching the cathode, and of back diffusion.

7m-2.1 Secondary Emission
Figs. $7 \mathrm{~m}-38$ to $7 \mathrm{~m}-51$


Fig. $7 \mathrm{~m}-38$. Ejected electron yield of $\mathrm{He}^{+}, \mathrm{Ne}^{+}$, and $\mathrm{A}^{+}$on nickel. (H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," p. 549, Clarendon Press, Oxford, 1952.)


Fig. $7 \mathrm{~m}-39$. Ejected electron yield of $\mathrm{He}^{+}$on nickel outgassed (lower curve) and not outgassed (upper curve). (A. von Engel and M. Steenbeck, "Elektrische Gesentladungen," vol. I, p. 118, J. Springer Verlag, Berlin, 1932).


Fig. $7 \mathrm{~m}-40$. Ejected electron yield of $\mathrm{A}^{+}$ions on $\mathrm{H}_{2-}, \mathrm{N}_{2-}$, and $\mathrm{O}_{2}$ - treated platinum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]

7-194


Fig. $7 \mathrm{~m}-41$. Ejected electron yield of $\mathrm{A}^{+}$ions on (A) outgassed, (B) $\mathrm{H}_{2^{-}}$, (C) $\mathrm{N}_{2}$, and (D) $\mathrm{O}_{2}$ treated tantalum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]


Fig. $7 \mathrm{~m}-42$. Ejected electron yield of $\mathrm{Li}^{+}, \mathrm{K}^{+}$, and $\mathrm{Rb}^{+}$on aluminum. (H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," p. 549, Clarendon Press, Oxford, 1952).


Fig. 7m-43. Ejected electron yield of $\mathrm{K}^{+}$on Al , Ni, and Mo. (H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," p. 549, Clarendon Press, Oxford, 1952.)


Fig. $7 \mathrm{~m}-44$. Ejected electron yield of $\mathrm{H}_{2}{ }^{+}$and $\mathrm{H}^{+}$ions on $\mathrm{H}_{2}$-covered platinum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]


Fig. 7m-45. Ejected electron yield of $\mathrm{N}_{2}{ }^{+}$and $\mathrm{N}^{+}$ions on $\mathrm{N}_{2}$-covered tantalum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]


Fig. $7 \mathrm{~m}-46$. Ejected electron yield of $\mathrm{N}_{2}{ }^{+}$and $\mathrm{N}^{+}$ions on $\mathrm{N}_{2}$-covered platinum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]


Fig. 7m-47. Ejected electron yield of $\mathrm{O}_{2}{ }^{+}$and $\mathrm{O}^{+}$ions on $\mathrm{O}_{2}$-covered tantalum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]


Fig. $7 \mathrm{~m}-48$. Ejected electron yield of $\mathrm{O}_{2}{ }^{+}$and $\mathrm{O}^{+}$ions on $\mathrm{O}_{2}$-covered platinum. [J. A. Parker, Jr., Phys. Rev. 93, 1148 (1954).]


Fig. 7m-49. Total electron yield. Curves 1 and 3 are for atomically clean Mo, curves 2, 4, 5 for Mo covered with monolayer of gas. [H. D. Hagstrum, Phys. Rev. 89, 244 (1953).]


Fig. $7 \mathrm{~m}-50$. Total electron yield for $\mathrm{He}^{+}, \mathrm{He}^{++}$, and $\mathrm{He}_{2}{ }^{+}$for gas-covered tantalum. [H. D. Hagstrum, Phys. Rev. 91, 543 (1953).]


Fig. $7 \mathrm{~m}-51$. Total electron yield for singly charged ions on atomically clean tungsten. [H. D. Hagstrum, Phys. Rev. 96, 325 (1954).]

## 7m-2.2 Effective Secondary Emission

Figs. $7 \mathrm{~m}-52$ to $7 \mathrm{~m}-55$


Fig. 7m-52. Second Townsend coefficient for copper in the rare gases. [M. J. Druyvesteyn and F. M. Penning, Revs. Modern Phys. 12, 87 (1940).]


Fig. $7 \mathrm{~m}-53$. Second Townsend coefficient for argon with different cathode materials. [M. J. Druyvesteyn and F. M. Penning, Revs. Modern Phys. 12, 87 (1940).]


Fig. $7 \mathrm{~m}-54$. Second Townsend coefficient of $\mathrm{Ne}^{+}, \mathrm{A}^{+}, \mathrm{Kr}^{+}$, incident on a clean molybdenum cathode, and of $\mathrm{A}^{+}$on a partially activated coated cathode. [R. N. Varney, Phys. Rev. 93, 1156 (1954).]


Frg. 7m-55. Second Townsend coefficients for aluminum in benzene, toluene, and cyclohexane. [M. Valeriu-Petrescu, Bull. Soc. Roumaine de Phys. 44, 3 (1943).]

Figs. $7 \mathrm{~m}-56$ to $7 \mathrm{~m}-59$


Fra. $7 \mathrm{~m}-56$. Probability of conversion of positive hydrogen ions into negative hydrogen ions on nickel. [F. L. Arnot, Proc. Roy. Soc. (London), ser. A, 158, 137 (1937).]


Fig. $7 \mathrm{~m}-57$. Probability of conversion of positive nitrogen ions into negative nitrogen ions on nickel. [F. L. Arnot, Proc. Roy. Soc. (London), ser. A, 158, 137 (1937).]


Fig. $7 \mathrm{~m}-58$. Probability of conversion of positive oxygen ions into negative oxygen ions on nickel. [F. L. Arnot, Proc. Roy. Soc. (London), ser. A, 158, 137 (1937).]


Fig. $7 \mathrm{~m}-59$. Probability of conversion of positive carbon dioxide ions into negative carbon dioxide ions on nickel. [F. L. Arnot, Proc. Roy. Soc. (London), ser. A, 158, 137 (1937).]

## 7m-2.4 Seondary Emission by Electrons

Fig. 7m-60


Fig. 7m-60. Ratio of the number of secondary electrons emitted from a surface to the number of primary electrons incident as a function of incident energy. (H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," p. 306, Clarendon Press, Oxford, 1952.)

7m-3. Average Motions of Electrons and Ions. The drift velocity $\overrightarrow{v_{d}}$ of a charged particle of mass $m$ and charge $e$ in a gas of molecules of mass $M$, under an electric field $\vec{E}$, is given by

$$
\begin{equation*}
\overrightarrow{v_{d}}=e \vec{E} \frac{M+m}{M m} \int l \frac{\partial f}{\partial v} \frac{4 \pi}{3} v^{2} d v \tag{7m-1}
\end{equation*}
$$

where $f(v)$ is the velocity-distribution function.
For particles with a constant mean free time $\tau_{c}$ this yields, for all $E / p$,

$$
\begin{equation*}
\overrightarrow{v_{d}}=\frac{M+m}{\overline{M m}} e \vec{E}_{\tau_{c}} \tag{7m-2}
\end{equation*}
$$

If collisions are caused by a polarization force

$$
\begin{equation*}
\tau_{c}=\frac{1.8096 \epsilon_{0}}{e n_{g}}\left(\frac{M m / \alpha}{M+m}\right)^{\frac{1}{2}} \tag{7~m-3}
\end{equation*}
$$

where the polarizability $\alpha=\left(\epsilon-\epsilon_{0}\right) / n_{g}$.
For particles with a constant mean free path $l_{c}$. (rigid spheres) there are two limiting forms:

1. Near thermal equilibrium

$$
\begin{equation*}
\overrightarrow{v_{d}}=\frac{3 e \vec{E} l_{c}}{8}\left(\frac{\pi}{2 k T} \frac{M+m}{M m}\right)^{\frac{1}{2}} \tag{7m-4}
\end{equation*}
$$

2. For high $E / p$

$$
\overrightarrow{v_{d}}=a\left(\frac{M+m}{m}\right)^{\frac{1}{2}}\left(\frac{e E l_{c}}{M}\right)^{\frac{1}{2}} \quad a=\left\{\begin{array}{l}
0.8973 \text { for } m \ll M  \tag{7m-5}\\
0.9643 \text { for } m=M \\
1
\end{array} \text { for } m \gg M\right.
$$

The mobility $\mu$ in a mixture of gases $a, b, c, \ldots$ is given by Blanc's law

$$
\begin{equation*}
\frac{1}{\mu}=\frac{1}{\mu_{a}}+\frac{1}{\mu_{b}}+\frac{1}{\mu_{c}}+\cdots \tag{7~m-6}
\end{equation*}
$$

where $\mu_{a}, \mu_{b}, \mu_{c}, \ldots$ are the mobilities in the pure gases $a, b, c, \ldots$ at their partial pressures $p_{a}, p_{b}, p_{c}, \ldots$ provided the mobilities are sensibly independent of field strength.

Because of charge transfer when moving in the parent gas and clustering in the presence of an attaching gas, ions may move considerably more slowly than indicated by these equations.

In the case of a constant mean free time $\tau_{c}$, the mobility in an a-c electric field of circular frequency $\omega$ and in the presence of a magnetic field whose component perpendicular to the electric field is $B_{\perp}$, is given by

$$
\begin{equation*}
\mu=\frac{e / 2 m}{\nu_{c}+j\left(\omega+\omega_{b}\right)}+\frac{e / 2 m}{\nu_{c}+j\left(\omega-\omega_{b}\right)} \tag{7~m-7}
\end{equation*}
$$

where $\omega_{b}=B_{\perp} e / m$ is the cyclotron frequency.
The complex conductivity of a plasma is given by

$$
\begin{equation*}
\sigma=n_{+} e \mu_{+}+n e \mu_{-}+j \omega \epsilon_{0} \tag{7m-8}
\end{equation*}
$$

For a completely ionized plasma

$$
\sigma=\frac{1.1632 m}{z \ln (q-1)}\left(\frac{4 \pi \epsilon_{0}}{e}\right)^{2}\left(\frac{2 k T}{\pi m}\right)^{\frac{3}{2}}=\frac{19,141}{z \ln (q-1)}\left(\frac{k T}{e}\right)^{\frac{3}{2}} \quad \mathrm{mho} / \mathrm{m} \quad(7 \mathrm{~m}-9)
$$

where $q=12 \pi n \lambda_{D^{3}}, \lambda_{D}{ }^{2}=\epsilon_{0} k T / n e^{2}$ is the Debye length, and $n \lambda_{D^{2}}=3.134 \times 10^{4} T$ $\mathrm{m}^{-1}$. $z$ is the charge on the ions.

If $\lambda$ is the mean fraction of the energy difference which is transferred in a collision, the mean energy of an electron or ion is given by

$$
\begin{equation*}
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T+\frac{e E \tau_{c} v_{d}}{\lambda} \tag{7~m-10}
\end{equation*}
$$

For elastic collisions

$$
\lambda=\frac{2 M m}{(M+m)^{2}}
$$

For the mean free time case

$$
\begin{equation*}
\frac{v_{d}{ }^{2}}{\overline{v^{2}}}=\frac{M+m}{2 M} \lambda\left(1-\frac{3 k T}{m \overline{v^{2}}}\right) \tag{7m-11}
\end{equation*}
$$

Mean energies are usually determined by the approximate relation

$$
\begin{equation*}
\frac{D}{\mu}=\frac{m\left(\overline{v^{2}}-v_{d^{2}}\right)}{3 e} \tag{7m-12}
\end{equation*}
$$

which is exact when the distribution function is Maxwellian.
The diffusion coefficient is given by

$$
\begin{equation*}
D=\int \frac{l v}{3} f 4 \pi v^{2} d v \tag{7m-13}
\end{equation*}
$$

7m-3.1 Drift Velocity of Electrons
Figs. $7 \mathrm{~m}-61$ to $7 \mathrm{~m}-72$


Fig. 7 m -61. Drift velocity of electrons in helium as a function of $E / p$. [R. A. Nielsen, Phys. Rev. 50, 950 (1936); J. A. Hornbeck, Phys. Rev. 83, 374 (1951).]


Fig. 7 m -62. Drift velocity of electrons in neon as a function of $E / p$. [R. A. Nielsen, Phys. Rer. 50, 950 (1936).]


Fig. $7 \mathrm{~m}-63$. Drift velocity of electrons in argon as a function of $E / p$. [R. A. Nielsen, Phys. Rev. 50, 950 (1936).]


Fra. 7m-64. Electron drift velocities in argon and argon-nitrogen mixtures.
[L. Colli and U. Facchini, Rev. Sci. Instr. 23, 39 (1952).]


Fig. 7m-65. Drift velocity of electrons in hydrogen as a function of $E / p$. [N. E. Bradbury and R. A. Nielsen, Phys. Rev. 49, 388 (1936).]


Fig. 7 m -66. Drift velocity of electrons in nitrogen as a function of $E / p$. [R. A. Nielsen, Phys. Rev. 50, 950 (1936).]


Fig. 7 m -67. Drift velocity of electrons in oxygen as a function of $E / p$. [R. A. Nielsen and N. E. Bradbury, Phys. Rev. 51, 69 (1937).]


Fig. 7m-68. Drift velocity of electrons in air as a function of $E / p$. [R. A. Nielsen and N. E. Bradbury, Phys. Rev. 51, 69 (1937).]


Fig. 7m-69. Drift velocity of electrons in nitrous oxide as a function of $E / p$. [R. A. Nielsen, N. E. Bradbury, Phys. Rev. 51, 69 (1937).]


Fig. 7m-70. Drift velocity of electrons in ammonia as a function of $E / p$. [R. A. Nielsen and N. E. Bradbury, Phys. Rev. 51, 69 (1937).]

## 7m-3.2 Mean Energies of Electrons

Figs. $7 \mathrm{~m}-71$ to $7 \mathrm{~m}-74$


Fig. 7m-71. Average electron energy in hydrogen. [L. J. Varnerin, Jr. and S. C. Brown, Phys. Rev. 79, 946 (1950); J. S. Townsend and V. A. Bailey, Phil. Mag. 42, 873 (1921).]


Fig. 7m-72. Ratio of electron to gas temperature. (R. H. Healey and J. W. Reed, "The Behavior of Slow Electrons in Gases," p. 78, Amalgamated Wireless, Ltd., Sydney, 1941.)


Fig. 7m-73. Average energy of electrons in helium. [F. H. Reder and S. C. Brown, Phys.
Rev. 95, 885 (1954).]


Fig. 7m-74. Ratio of electron to gas temperature. (R. H. Healey and J. W. Reed, "The Behavior of Slow Electrons in Gases," p. 79, Amalgamated Wireless, Ltd., Sydney, 1941.)

## 7m-3.3 Drift Velocities of Ions

Figs. $7 \mathrm{~m}-75$ to $7 \mathrm{~m}-87$


Frg. 7m-75. Mobility of $\mathrm{He}^{+}$and $\mathrm{H}_{2}{ }^{+}$in helium. [M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).]


Fig. $7 \mathrm{~m}-76$. Mobility of $\mathrm{Ne}^{+}$and $\mathrm{Ne}_{2}{ }^{+}$in neon. [M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).]

MOTIONS OF ELECTRONS AND IONS IN GASES 7-213


Fra. 7m-77. Mobility of $\mathrm{A}^{+}$and $\mathrm{A}_{2}{ }^{+}$in argon. [M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).]


Frg. $7 \mathrm{~m}-78$. Mobility of $\mathrm{Kr}^{+}$and $\mathrm{Kr}_{2}{ }^{+}$in krypton. [M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).]


Fig. 7m-79. Mobility of $\mathrm{Xe}^{+}$and $\mathrm{Xe}_{2}{ }^{+}$in xenon. [M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).]


Fig. $7 \mathrm{~m}-80$. Drift velocity of atomic ions in helium, neon, and argon. [J. A. Hornbeck, Phys. Rev. 84, 615 (1951).]


Fig. 7 m -81. Drift velocity of atomic ions in krypton and xenon. [R. N. Varney, Phys. Rev. 88, 362 (1952).]


Frg. 7m-82. Mobility at standard gas density of atomic and molecular ions in krypton and xenon. [R. N. Varney, Phys. Rev. 88, 362 (1952).]


Fig. $7 \mathrm{~m}-83$. Drift velocity of ions in nitrogen. Low $(E / p) \mathrm{N}_{4}{ }^{+}$, high $(E / p) \mathrm{N}_{2}{ }^{+}$. [R. N Varney, Phys. Rev. 89, 708 (1953).]


Fig. 7m-84. Drift velocity of ions in oxygen. [R. N. Varney, Phys. Rev. 89, 708 (1953).]


Fig. $7 \mathrm{~m}-85$. Drift velocity of ions in carbon monoxide. Low $(E / p) \mathrm{CO}^{+}$, high ( $E / p$ ), intermediate ( $E / p$ ) may be $\mathrm{CO}_{2}{ }^{+}$. [R. N. Varney, Phys. Rev. 89, 708 (1953).]


Fig. 7m-86. Mobility of alkali ions in gases at 1 atmospheric pressure. [C. F. Powell and L. Brata, Proc. Roy. Soc. (London), ser. A, 138, 117 (1932).]


Fig. $7 \mathrm{~m}-87$. Mobility in nitrogen of various ions as a function of mass at 1 atmospheric pressure. [J. H. Mitchell, K. E. W. Ridler, Proc. Roy. Soc. (London), ser. A, 146, 911 (1934).]

## Table 7m-1. Ambipolar Diffusion Coefficients <br> (Room temp.)

| Element | $D_{\text {apo }}, \mathrm{cm}^{\mathbf{2}} \mathrm{sec}^{-1}$ |
| :---: | :---: |
| $\mathrm{H}_{2}{ }^{\text {* }}$ | 700 |
| He $\dagger$ | 540 |
| Ne $\ddagger$ | 115 |
| A 1 | 900 |

* K. B. Persson, PhD Thesis, MIT, 1954.
$\dagger$ M. A. Biondi and S. C. Brown, Phys. Rev. 75, 1700 (1949).
$\ddagger$ M. A. Biondi, Phys. Rev. 79, 733 (1950).
TI M. A. Biondi, Phys. Rev. 83, 1078 (1951).


## General References to Section 7

It is impossible to quote all books on atomic physics and quantum mechanics. Those quoted usually are particularly complete in some phases or carry considerable numerical data.
Bacher, R., and S. Goudsmit: "Atomic Energy States," McGraw-Hill Book Company, Inc., New York, 1932. This is now superseded by the work of C. Moore but is still the chief source of information on energy levels for the heavy elements for which Miss Moore's compilation has not yet appeared.
Bethe, H.: Quantenmechanik der Ein und Zwei Elektronen Probleme, in "Handbuch der Physik," 2d ed., vol. 24-1, 1933.
Brode, W. R.: "Chemical Spectroscopy," 2d ed., 677 pp., John Wiley \& Sons, Inc., New York, 1943.
Canchois, Y., and H. Hulubel: Longueurs d'onde d'émission X et des discontinuités d'absorption X, 1947.
Condon, E. U., and G. H. Shortley: "The Theory of Atomic Spectra," Cambridge University Press, New York, 1935 (reprinted 1953).
Fowler, A.: "Report on Series in Line Spectra," Fleetway Press, London, 1922.
Gatterer, A., and J. Junkes: "Atlas der Restlinien von 30 chemischen Elementen Text and Atlas," Specolar Vaticana, 1937.
Gatterer, A., and J. Junkes: "Spektren der seltenen Erden," 2 vols., text and plates, Specolar Vaticana, 1945.
Gombás, P.: "Die statistische Theorie des Atoms und ihre Anwendungen Wien," 406 pp., Springer-Verlag OHG, Berlin, 1949.

Grotrian, W.: "Graphische Darstellung der Spektren von Atomen und Ionen mit ein, zwei und drei Valenzelektronen," vol. I, 245 pp.; vol. II, 268 pp., Springer-Verlag OHG, Berlin, 1928.
Herzberg, G.: "Spectra of Diatomic Molecules," 2d ed., D. Van Nostrand Company, Inc., Princeton, N.J., 1950.
Herzberg, G.: "Infrared and Raman Spectra," D. Van Nostrand Company, Inc., Princeton, N.J., 1945.
Kayser, H.: "Handbuch der Spektroscopie," 8 vols., S. Hirzel Verlag, Leipzig. Volumes I-VI (1912) are now out of date but are still the chief source for the earlier developments in spectroscopy. Vols. VII (1934) and VIII (1932) are more recent but also not quite up to modern standards. This handbook contains the most detailed compilation of spectroscopic data.
Landolt-Börnstein: "Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik," 6th ed., A. Eucken, ed., Springer-Verlag OHG, Berlin, Göttingen, Heidelberg. This is probably the most complete and detailed collection of data in existence. For this section the following parts of vol. I: Atom und Molekularphysik, are of importance; (vol. I is published in 5 parts) I-1, Atome und Ionen, 441 pp., 1950; I-2, Molekeln I (Kerngerüst), 571 pp., 1951; I-3, Molekeln II (Elektronenhülle), 724 pp., 1951; I-4, Kristalle, 1007 pp., 1955.
Loeb, L. B.: "Basic Processes of Gaseous Electronics," 1,012 pp., University of California Press, 1955.
Minnaert, M., G. F. W. Mulders, and J. Houtgast: "Photometric Atlas of the Solar Spectrum," Amsterdam, 1940.
Moore, C. E.: A Multiplet Table of Astrophysical Interest, I. Table of Multiplets, II. Finding List, Contribs. Princeton University Observatory, no. 20, 1945.

Moore, C.: Atomic Energy Levels, Natl. Bur. Standards (U.S.) Circ. 467. Contains all available information on energy levels of atoms in all stages of ionization as derived from optical spectra and extensive references on the spectra themselves. So far two volumes have appeared. Two additional volumes are in preparation. vol. I, Elements 1 (H) to 23 (V), 1949; vol. II, Elements 24 (Cr) to 41 (Nb), 1952; vol. III, Elements 42 (Mo) to 57 (La) and 73 (Ta) to 89 (Ac), 1956; vol. IV, remaining elements (lanthanides and actinides).
Moore, C. E.: An Ultraviolet Multiplet Table, Natl. Bur. Standards (U.S.) Circ. 488. I, Elements (H) to 23 (V), 1950; II, Elements 24 (Cr) to $41(\mathrm{Nb}), 1952$. List of the most important lines and multiplets for wavelengths shorter than $3,000 \mathrm{~A}$.
Paschen, F., and R. Götze: "Seriengesetze der Linienspektren," 154 pp., SpringerVerlag OHG, Berlin, 1922. This and the similar book by Fowler, though now largely out of date, nevertheless contain material on the simpler spectra not found conveniently anywhere else.
Pearse, R. W. B., and A. G. Gaydon: "The Identification of Molecular Spectra," 2d ed., John Wiley \& Sons, Inc., New York, 1950. A detailed compilation of molecular bands, chiefly those of diatomic molecules in the visible, ultraviolet, and photographic infrared.
Rosen, B., ed.: "Données spectroscopiques concernant les molecules diatomiques," 366 pp., Hermann \& Cie, Paris, 1951.
Rosen, B.: "Atlas des longeurs d'onde caractéristiques des bandes d'émission et d'absorption des molécules diatomiques," 1952.
Wilson, E. B., Jr., J. C. Decius, and P. C. Cross: "Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra," 388 pp., McGraw-Hill Book Company, Inc., New York, 1955.

## Section 8

## NUCLEAR PHYSICS

FRANZ N. D. KURIE, Editor<br>U.S. Navy Electronics Laboratory

## CONTENTS

8a. Introduction and General Constants
8-2
8-2
8b. Systematics of Stable Nuclei ..... 8-5
8c. Passage of Particles through Matter
8-23
8-23
8d. Decay-energy Systematics of the Heavy Elements
8-40
8-40
8e. Energy Levels of the Light Nuclei ..... 8-56
8f. Gamma Rays
8-87
8-87
8 g . Artificial Radioisotopes and Isomers ..... 8-96
8h. Neutrons
8-129
8-129
8i. - Particle Accelerators.
8i. - Particle Accelerators. .....
8-172 .....
8-172
8j. Fission-product Chains and Yields
8j. Fission-product Chains and Yields
8-202
8-202
8k. Nuclear Reactors
8k. Nuclear Reactors ..... 8-227
81. Mesons and Hyperons
8-240
8-240
8m. Health Physics ..... 8-250

# 8a. Introductiôn and General Constants 

FRANZ N. D. KURIE<br>U.S. Navy Electronics Laboratory

8a-1. Definitions. Many of the terms of nuclear science are in common use in other branches of physics and will be found elsewhere in this handbook. The National Research Council has published a useful glossary of terms in this field. ${ }^{1}$ It would be out of place, in this volume, to attempt to define all the unique terms used in nuclear science. There are, however, certain basic ones which are defined below.

Nucleon. A constituent of a nucleus, either a proton or a neutron.
Nuclide. A specific nucleus, characterized by having a definite number of neutrons and a definite number of protons.

Isotopes. A group of atoms whose nuclei have the same number of protons and are therefore chemically identical.

Isotones. A group of atoms whose nuclei have the same number of neutrons:
Isobars. A group of atoms whose nuclei have the same number of nucleons.
Nuclear Reaction (see Sec. 8a-2). The interaction between nuclides (including $\gamma$ rays) to form a compound nucleus which separates into two or more different nuclides. In most cases there are only two products, one of which is quite light.

Energy Balance. The amount of energy released in each individual reaction. It is designated by $Q$ and is positive when energy is produced, negative when it is absorbed.

Fission. A type of nuclear reaction in which the products (called fragments) are of comparable mass. It is usually accompanied by the emission of a number of neutrons and the release of energy.

Spallation Reactions. These are caused by particles of great energy and lead to the breakup of the compound nucleus into many parts.

8a-2. Nuclear Reactions. Nuclear science largely depends on the interactions of nuclides with each other. In order to simplify the discussion of these reactions symbolic representations are used. A nuclide is designated by the following symbol:

## $z(\text { Chemical symbol })^{A}$

$Z$ is the atomic number (number of protons) and $A$ is the atomic weight (number of nucleons) of the isotope to which the nuclide belongs. This leads to symbols like ${ }_{11} \mathrm{Na}^{23}$ and ${ }_{92} \mathrm{U}^{235}$. Since the chemical symbol specifies $Z$ it is usually omitted and one simply writes $\mathrm{Na}^{23}$ and $\mathrm{U}^{235}$. It also is becoming common to see these written as $\mathrm{Na}-23$ and U-235.

Certain nuclides and particles have acquired special names and symbols. These are given in Table 8a-1.

1 "A Glossary of Terms in Nuclear Science and Technology," American Society of Mechanical Engineers, New York, 1954.

INTRODUCTION AND GENERAL CONSTANTS
Table 8a-1. Special Nuclides* and Particles

| Short symbol | Name | Standard symbol |
| :---: | :--- | :--- |
| $\boldsymbol{p}$ | Proton | $\mathbf{H}^{\mathbf{1}}$ |
| $n$ | Neutron | $n^{1}$ |
| $d$ | Deuteron | $\mathbf{H}^{2}$ |
| $t$ | Triton | $\mathrm{H}^{3}$ |
| $\alpha$ | Alpha particle | $\mathrm{He}^{4}$ |
| $\gamma$ | Gamma quantum | $h_{\nu}$ |
| $\beta^{-}$ | Electron |  |
| $\beta^{+}$ | Positron |  |

* No notation for mesons is given here because they do not, as yet, figure in nuclear technology. The current nomenclature for mesons and related particles will be found in Sec. 8-1.
Nuclear reactions may be written like chemical reactions, thus:

$$
\mathrm{Li}^{7}+\mathrm{H}^{1} \rightarrow 2 \mathrm{He}^{4}
$$

This is cumbersome; so now one writes the same reaction more simply as

$$
\mathrm{Li}^{7}(p, \alpha) \mathrm{He}^{4}
$$

Other reactions may obviously be written

$$
\begin{aligned}
& \mathrm{Na}^{23}(d, p) \mathrm{Na}^{24} \\
& \mathrm{Cu}^{65}(p, n) \mathrm{Zn}^{65} \\
& \mathrm{Br}^{79}(d, 2 n) \mathrm{Kr}^{79}
\end{aligned}
$$

This symbolism may be extended to spallation reactions like

$$
\mathrm{As}^{75}(\alpha, 18 p 23 n) \mathrm{Cl}^{38}
$$

and fissions

$$
\mathrm{U}^{235}\left(n, \mathrm{Sr}^{93}\right) \mathrm{Xe}^{143}
$$

The probability of a nuclear reaction taking place is measured by the cross section $\sigma$ for the reaction. The unit for nuclear cross sections is the barn $\left(=10^{-24} \mathrm{~cm}^{2}\right)$; occasionally small cross sections are expressed in millibarns $\left(=10^{-3}\right.$ barns $=10^{-27}$ $\mathrm{cm}^{2}$ ).

8a-3. Unstable Nuclei. The products of many nuclear reactions are nuclei which are not found in nature. The number of neutrons and protons in these nuclides is out of stable balance. The nuclides proceed to adjust this by those nucleons which are in excess, changing, by a process known as $\beta$ decay, to the type in which the nuclide is deficient. Thus, if the nuclide has more neutrons than its stable isobars, this is corrected by the neutrons changing to protons until it becomes stable. To conserve charge this $n \rightarrow p$ change is accompanied by the emission of a negative electron ( $\beta^{-}$particle), often of high energy but never of constant energy. To conserve energy requires the emission of another neutral particle, a neutrino (symbol $\nu$ ), the sum of whose energy with that of the $\beta^{-}$particle is constant. In other cases the number of protons may be excessive and one or more may change to neutrons. Accompanying each $p \rightarrow n$ change there may be a positron ( $\beta^{+}$particle) and an antineutrino emitted. Again the sum of the energies of positron and antineutrino is constant. Often an excess of protons is corrected by the nucleus capturing one of its orbital electrons. This process is called $K$ capture and is accompanied by the emission of $X$ rays or Auger electrons. $\beta$ decay is frequently accompanied by $\gamma$ radiation.
8a-4. Nuclear Constants. Only those general constants which are peculiar to nuclear science are given here. These are taken from a paper by DuMond and Cohen. ${ }^{1}$ The symbols used, where not explained, are conventional.

[^357]
## 8-4

## NUCLEAR PHYSICS

Atomic mass of neutron

$$
n=1.008982 \pm 0.000003
$$

Atomic mass of hydrogen

$$
\mathrm{H}=1.008142 \pm 0.000003
$$

Atomic mass of deuterium

$$
D=2.014735 \pm 0.000006
$$

Electron rest mass

$$
m=(9.1085 \pm 0.0006) \times 10^{-28} \mathrm{~g}
$$

Proton rest mass

$$
m_{p}=(1.67243 \pm 0.00010) \times 10^{-24}
$$

Neutron rest mass

$$
m_{n}=(1.67474 \pm 0.00010) \times 10^{-24}
$$

Ratio of proton mass to electron mass

$$
=1,836.13 \pm 0.04 \text {. }
$$

Compton wavelength of the electron

$$
\lambda_{c e}=h / m c=(24.2625 \pm 0.0006) \times 10^{-11} \mathrm{~cm}
$$

Compton wavelength of the proton

$$
\lambda_{c p}=h / m_{p} c=(13.2139 \pm 0.0004) \times 10^{-14} \mathrm{~cm}
$$

Compton wavelength of the neutron

$$
\lambda_{c n}=h / m_{n} c=(13.1958 \pm 0.0004) \times 10^{-14} \mathrm{~cm}
$$

Thomson cross section

$$
\phi=(6.65196 \pm 0.0005) \times 10^{-25} \mathrm{~cm}^{2}
$$

Magnetic moment of the electron

$$
\mu_{e}=(0.92838 \pm 0.00006) \times 10^{-20} \mathrm{erg} \mathrm{gauss}^{-1}
$$

Nuclear magneton

$$
\mu_{n}=h e / 4 \pi m_{p} c=(0.505038 \pm 0.000036) \times 10^{-23} \mathrm{erg}_{\mathrm{gauss}}{ }^{-1}
$$

Proton magnetic moment
$\mu=2.79277 \pm 0.00006$ nuclear magnetons
Mass energy conversion factors

$$
\begin{aligned}
1 \mathrm{~g}=(5.60999 \pm 0.00025) & \times 10^{26} \mathrm{Mev} \text { (million electronvolts) } \\
1 \text { electron mass } & =0.510984 \pm 0.00016 \mathrm{Mev} \\
1 \text { atomic mass unit } & =931.162 \pm 0.024 \mathrm{Mev} \\
1 \text { proton mass } & =938.232 \pm 0.024 \mathrm{Mev} \\
1 \text { neutron mass } & =939.526 \pm 0.024 \mathrm{Mev}
\end{aligned}
$$

Quantum energy conversion factors
1 electron volt (ev) $=(1.60207 \pm 0.00007) \times 10^{-12} \mathrm{erg}$
1 million electron volts $(\mathrm{Mev})=(1.60207 \pm 0.00007) \times 10^{-6} \mathrm{erg}$
1 billion electron volts $(\mathrm{Bev})=(1.60207 \pm 0.00007) \times 10^{-3} \mathrm{erg}$
Velocity of a thermal ( $\frac{1}{40} \mathrm{ev}$ ) neutron

$$
v_{z \mathrm{zf}}=2,187.017 \pm 0.028 \mathrm{~m} / \mathrm{sec}
$$

# 8b. Systematics of Stable Nuclei 

GEORGE L. TRIGG<br>Oregon State College

8b-1. Table of Nuclear Properties. Table $8 \mathrm{~b}-1$ lists the known properties of all stable nuclei, plus those whose half lives are long enough to be of geological significance. Unstable species are denoted by an asterisk following the mass number.

Nuclear spins are given in units of $\hbar(=h / 2 \pi)$, magnetic moments in units of the nuclear magneton, quadripole moments in units of the proton barn, and binding energies in Mev. Binding energies are given only when they have been determined directly from $(\gamma, n)$ or ( $\gamma, p$ ) thresholds or $(d, n)$ or $(d, p) Q$ values. Magnetic moments are quoted directly from the corresponding references and are therefore not uniformly corrected for diamagnetism. Cosmic abundances are numbers of atoms per $10^{4}$ atoms of total silicon.

The number in parentheses following a listed value is the uncertainty of the last figure as given in the reference. The placing of an entire number in parentheses indicates that the quantity has not been measured; the value so designated is an estimate or a value suggested by theory.
For the radioactive elements, the mode of decay and half life are given in the Notes column; except for $\mathrm{Nd}^{144}$, data are from ref. 46.

8b-2. Shell Structure. The existence of "shells" of nucleons is inferred from a single-particle model under the following assumptions: ${ }^{1,2}$

1. The single-particle levels of nucleons in a nucleus are those of a rounded-off square well, with strong spin-orbit coupling giving rise to inverted doublets; the doublet splitting increases with the orbital angular momentum quantum number $l$.
2. An even number of identical nucleons in any state with total angular momentum quantum number $\boldsymbol{j}$ couple to give total spin zero and no contribution to the magnetic moment; an odd number of identical nucleons in a state $\boldsymbol{j}$ couple to give total spin $\boldsymbol{j}$ (usually) and a magnetic moment equal to that of a single particle in that state.
3. For a given nucleus the pairing energy of nucleons in states of the same $j$ increases with $j$.
It is recognized empirically that there exist differences in the behavior of neutrons and protons above $N$ or $Z=50$; one suggestion ${ }^{2}$ is that this results from a lowering in energy of proton states corresponding classically to circular orbits, relative to the positions of the corresponding neutron states, due to Coulomb forces. On the other hand, the level order is presumably to be considered as resulting from the potential energy as seen by the "last" nucleon; and in view of the fact that, for $N$ or $Z$ above $50, N=Z$ is not a valid approximation, there is no reason to expect that the potential energy of, say, the sixty-fifth neutron in a nucleus containing 65 neutrons should be the same as that of the sixty-fifth proton in a nucleus containing 65 protons.
[^358]Table 8b-1. Properties

| Atomic No. $Z$ | Name | Chem. symbol | Neutron No. $N$ | $\left\|\begin{array}{c} \text { Mass } \\ \text { No. } \\ A=N+Z \end{array}\right\|$ | Atomic mass M | $\underset{I}{\text { Spin }}$ | $\begin{gathered} \text { Par- } \\ \text { ity } \end{gathered}$ | \% abundance (ref. 46) | Cosmic abundance (ref. 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | Neutron | $n$ | 1 | 1* | 1.008986(3) | $\frac{1}{2}$ | $+$ | ... |  |
| 1 | Hydrogen | H | 0 | 1 | 1.008146 (3) | $\frac{1}{2}$ | $+$ | 99.9849-61 | $3.5 \times 10^{8}$ |
|  |  |  | 1 | 2 | 2.014741 (3) | 1 | $+$ | 0.0139-51 $\}$ |  |
| 2 | Helium | He | 1 | 3 | 3.016977(11) | $\frac{1}{2}$ | (+) | $(1.3-1.7) \times 10^{-4}$ | $3.5 \times 10^{7}$ |
|  |  |  | 2 | 4 | 4.003879(9) | 0 | + | $\sim 100$ |  |
| 3 | Lithium | Li | 3 | 6 | 6.017021(22) | 1 | + | 7.52 | $\qquad$ |
|  |  |  | 4 | 7 | 7.018223(26) | $\frac{3}{2}$ | (-) | 92.48 |  |
| 4 | Beryllium | Be | 5 | 9 | 9,015043(30) | $\frac{3}{2}$ | ( | 100 |  |
| 5 | Boron | B | 5 | 10 | 10.016110(10) | 3 | + | 18.45-18.98 | c.......$\ldots \ldots .$. |
|  |  |  | 6 | 11 | 11.012811(9) | $\frac{3}{2}$ | $(-)$ | - 81.02-81.55 |  |
| 6 | Carbon | C | 6 | 12 | 12.003842(4) | 0 | $(+)$ | 98.892 | 80,000 |
|  |  |  | 7 | 13 | 13.007505(12) | $\frac{1}{2}$ | - | 1.108 \} |  |
| 7 | Nitrogen | N | 7 | 14 | 14.007550(5) |  |  |  | 160,000 |
|  |  |  | 8 | 15 | 15.004902(9) | $\frac{1}{2}$ | - | : 0.365 |  |
| 8 | Oxygen | 0 | 8 | 16 | 16.00000000 | 0 | $+$ | 99.759 | 220,000 |
|  |  |  | 9 | 17 | $17.004533(7)$ | $\frac{5}{2}$ | $+$ | 0.037 | 86 |
|  |  |  | 10 | 18 | 18.004883(20) | 0. | $+$ | 0.204 | $\therefore \quad 450$ |
| 9 | Fluorine | F | 10 | 19 | 19.004444(22) | $\frac{1}{2}$ | $+$ | 100 | 90 |
| 10 | Neon | Ne | 10 | 20 | 19.998772(13) | (0) | (+) | 90.92 | 42,000 |
|  |  |  | 11 | 21 | 21.000504(22) | $\frac{3}{2}$ | $(+)$ | 0.257 | 130 |
|  |  |  | 12 | 22 | $21.998382(24)$ | (0) | (+) | 8.82 | 4,300 |
| 11 | Sodium | Na | 12 | 23 | 23.001768(26) | $\frac{3}{2}$ | + | 100 | $462 \pm 36$ |
| 12 | Magnesium | Mg | 12 | 24 | 23.992628(26) | (0) | (+) | 78.60 | 6,970 $\pm 240$ |
|  |  |  | 13 | 25 | 24.993745(27) | $\frac{5}{2}$ | $(+)$ | 10.11 | 897 $\pm 97$ |
|  |  |  | 14 | 26 | 25.990802(29) | (0) | ( + ) | 11.29 | $1,000 \pm 100$ |
| 13 | Aluminum <br> Silicon | ${ }_{\text {Al }}^{\text {Si }}$ | 14 | 27 | 26.990109(23) | $\frac{5}{2}$ | $(+)$ | 100 | $882 \pm 81$ |
| 14 |  |  |  | 28 | 27.985825(18) | (0) | $(+)$ | 92.27 | 9,228 $\pm 3$ |
|  |  |  | 15 | 29. | 28.985705(21) | $\frac{1}{2}$ | (+) | 4.68 | $467 \pm 1$ |
|  |  |  | 16 | 30 | $29.983307(31)$ | (0) | $(+)$ | 3.05 | $305 \pm 3$ |
|  |  | $\begin{aligned} & \mathbf{P} \\ & \mathbf{S} \end{aligned}$ | 16 | 31 | 30.983619(7) | $\frac{1}{2}$ | (+) | 100 | 130 |
| 16 |  |  | 16 | 32 | 31.9822366 (7) | 0 | + | 95.018 | 3,300 |
|  |  |  | 17 | 33 | $32.98213(5)$ | $\frac{3}{2}$ | $+$ | 0.750 | 26 |
|  | Sulfur |  | 18 | 34 | $33.97876(5)$ | 0 | $+$ | 4.215 | 150 |
|  |  |  | 20 | 36 | 35.97893(7) | (0) | (+) | 0.017 | 0.56 |
| 17 | Chlorine | Cl | 18 | 35 | 34.98004(5) | $\frac{3}{2}$ | + | 75.4 | 130 |
|  |  |  | 20 | 37 | 36.97766(5) | $\frac{3}{2}$ | (+) | 24.6 | 42 |
| 18. | Argon | A |  | 36 | 35.97900(3) | (0) | (t) | 0.337 | 450 |
|  |  |  | 20 | 38 | $37.97491(4)$ | (0) | (+) | 0.063 | 87 |
|  |  |  | 22 | 40 | 39.97513(3) | (0) | ( + ) | 99.600 |  |
| 19 | Potassium | K | 20 | 39 | 38.97606(3) | $\frac{3}{2}$ | $(+)$ | 93.08(v) | $64.7 \pm 7.0$ |
|  |  |  | 21 | $40^{*}$ | 39.97654(8) | 4 | $(-)$ | 0.0119 | 0.0076(8) |
|  |  |  | 22 | 41 | 40.97490(4) | $\frac{3}{2}$ | $+$ | 6.91 | 4.64(50) |
| 20 | Calcium | Ca | 20 | 40 | $39.97545(9)$ : | (a) | (+) | 96.97 | 650(72) |
|  |  |  | 22 | 42 | 41.97216(4) | (0) | (+) | 0.64 | 4.29(49) |
|  |  |  | 23 | 43 | 42.97251(6) | $\frac{7}{2}$ | $(-)$ | 0.145 | 1.01(12) |
|  |  |  | 24 | 44 | 43.96924(6) | (0) | (+) | 2.06 | 13.8(16) |
|  |  |  | 26 | 46 | ............ | (0) | (+) | 0.0033 | 0.022(4) |
|  |  |  | 28 | 48 | 47.96778(10) | (0) | $(+)$ | 0.0185 | 1.27(15) |
| 21 | Scandium | Sc | 24 | 45 | $44.97010(5)$ | $\frac{7}{2}$ | $(-)$ | 100 | 0.18 |
| 22 | Titanium | Ti | 24 | 46 | $45.96697(5)$ ' | (0) | (+) | 7.95 | $2.07(72)$ |
|  |  |  | 25 | 47 | 46.96668(10) | $\frac{5}{2}$ | $(-)$ | 7.75 | 2.02 (70) |
|  |  |  | 26 | 48 | 47.96317 (6) | (0) | ( + ) | 73.45 | 19.1(66) |
|  |  |  | 27 | 49 | 48.96358(5) | $\frac{7}{2}$ | $(-)$ | 5.51 | 1.43 (50) |
|  |  |  | 28 | 50 | 49.96077 (4) | (0) | (+) | 5.34 | $1.39(48)$ |

See page 8-16 for footnotes and pages 8-16 to 8-18 for References.
of Stable Nuclei

| Magnetic dipole moment $\mu$ | Electric quadrupole moment Q | Binding energy of last neutron $E_{n}$ | Binding <br> energy <br> of last <br> proton <br> $E_{p}$ | Groundstate configuration (ref. 38) | Ref. <br> M | $\left\lvert\, \begin{gathered} \text { Ref. } \\ I \end{gathered}\right.$ | $\left\|\begin{array}{c} \text { Ref. } \\ \mu \end{array}\right\|$ | $\left\|\begin{array}{c} \text { Ref. } \\ \boldsymbol{Q} \end{array}\right\|$ | $\begin{gathered} \text { Ref. } \\ \boldsymbol{E}_{n} \end{gathered}$ | $\left.\begin{gathered} \text { Ref. } \\ E_{p} \end{gathered} \right\rvert\,$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -1.91280(9) |  | 2 | 2 | ${ }^{8} \frac{1}{2}$ | 15 | 7 | 7 | $\cdots$ | $\cdots$ | ... | $\beta^{-} ; 12.8$ min |
| +279255(10) |  | 2 | 2 |  | 18 | 7 | 38 |  |  |  |  |
| +0.957354(9) | +0.002738(14) | $2.225(2)$ | $2.225(2)$ | $\left(\frac{1}{2}, \frac{1}{2}\right)_{1}$ | 40 | 7 | 7 | 55 | 15 | 15 |  |
| (-)2.127414(3) |  | 6.255(6) |  |  | 15 | 7 | 7 | ... | 12 |  |  |
|  |  |  |  |  | 40 |  |  |  |  |  |  |
| +0.82189(4) |  | 5.35(20) |  | $\left(\frac{3}{2}, \frac{3}{2}\right)_{1}$ | 15 | 7 |  |  | 37 |  |  |
| +3.25586(11) | +(0.02)(2) | 7.244(7) | 9.8 (5) | $p^{\frac{3}{2}}$ | 15 | 7 | 7 | 7 | 37 | 37 |  |
| -1.1774(8) | (0.02) | 1.664(2) | 16.93(15) |  | 15 | 38 | 38 | 38 | 21 | 29 |  |
| +1.8004(7) | +0.0740(50) | 8.55(25) |  | $\left(\frac{3}{2}, \frac{3}{2}\right)_{3}$ | 40 | 7 | 7 | 55 | 37 |  |  |
| +2.68858(28) | +0.0355(20) | 11.460(11) |  | $p^{\frac{3}{2}}$ | 40 | 7 | 7 | 55 | 37 |  |  |
|  |  |  |  |  | 18 | 7 |  |  |  |  |  |
| +0.70225(14) |  | 4.957(6) |  |  | 40 | 7 | 7 |  | 37 |  |  |
| +0.40365(3) | +0.02 | 10.7(2) |  | $\left(\frac{1}{2}, \frac{1}{2}\right)_{1}$ | 40 | 7 | 7 | 7 | 37 |  |  |
| -0.28299(3) |  | 10.838(11) |  |  | 40 | 7 | 7 | $\cdots$ | 37 |  |  |
|  |  | 16.3(4) |  |  | Standard | 7 | ... |  | 37 |  |  |
| -1.8935(2) | -0.005(+ ${ }^{\times}$) | 4.143(8) |  | $d_{1}$ | 32 | 38 | 38 | 20 | 37 |  |  |
|  |  |  | 16.35(20) |  | 40 | 46 |  |  | .. | 37 |  |
| +2.62728(10) |  |  |  |  | 40 | 7 | 35 |  |  |  |  |
|  |  |  |  |  | 40 | 7 |  |  |  |  |  |
|  |  | 6.754(7) |  | $\left(d_{\text {5 }}^{2}\right)_{3}{ }_{3}$ | 32 | 7 | $\ldots$ | $\ldots$ | 37 | ... | $a$ |
|  |  | 10.362(11) |  |  | 40 | 7 | $\ldots$ | $\ldots$ | 37 |  |  |
| +2.21711(25) | $\ldots$ | 12.05(20) |  | $\left(d_{\frac{5}{2}}\right)^{\frac{3}{2}}$ | 32 | 7 | 7 | $\cdots$ | 56 |  |  |
| (2) |  | 16.55(25) | $\cdots$ |  | 32 | 7 | $\ldots$ | $\ldots$ | 56 |  |  |
| -0.8552(2) | ...... | 7.322(7) | 11.5(10) | $d_{2}$ | 32 | 46 | 38 | $\ldots$ | 56 | 56 |  |
|  |  | 11.15(20) | 14.0(10) |  | 32 | 7 | $\ldots$ | . | 56 | 56 |  |
| +3.6408(4) | +0.149(2) | 12.75(20) | 8.6(5) |  | 40 | 7 | 7 | 55 | 56 | 56 | $\cdot$ |
|  |  | 16.9(2) | 11.31(20) |  | 40 | 7 | ... |  | 56 | 56 |  |
| -0.55492(4) |  | 8.471(10) |  |  | 40 | 55 | 55 | $\ldots$ | 56 | 56 |  |
|  |  | 10.613(13) |  |  | 40 | 7 | $\ldots$ | $\cdots$ | 56 | 56 |  |
| +1.13165(20) |  | 12.35(20) | 7.15(4) | $8_{\frac{1}{2}}$ | 41 | 7 | 7 | ... | 56 |  |  |
|  |  |  | 9.04(8) |  | 18 | 7 |  |  |  | 56 |  |
| +0.64292(14) | -0.064(10) | 8.647(11) |  | ${ }^{d_{3}}$ | 18 | 7 | 55 | 53 | 56 |  |  |
|  |  | 10.85(20) | ...... |  | 18 | 7 | ... | $\ldots$ | 56 |  |  |
|  |  |  |  |  | 3 | 7 |  |  |  |  |  |
| +0.82191(22) | -0.07894(2) |  |  |  | 18 | 7 | 7 | 38 |  |  |  |
| +0.68414(24) | -0.06213(2) | 9.95(20) |  | ${ }^{\frac{1}{2}}$ | 18 | 7 | 7 | 38 | 56 |  |  |
|  |  |  |  |  | 18 | 7 |  |  |  |  |  |
|  |  |  |  |  | 18 | 7 |  |  |  |  |  |
|  |  |  |  |  | 45 | 7 |  |  |  |  |  |
| +0.390873(13) |  | 13.2(2) |  |  | 18 | 7 | 47 | $\cdots$ | 56 |  |  |
| -1.2982(4) |  | 7.801(10) |  | $\left(\frac{3}{2}, \frac{7}{2}\right)_{4}$ | 34 | 7 | 23 | $\ldots$ | 56 |  | $\beta^{-}$, EC; $1.2 \times$ |
| +0.21453(3) |  |  |  | $d_{3}$ |  |  |  |  |  |  | $10^{0}$ years |
|  |  | 15.9(4) |  |  | 45 | 7 | ... |  | 56 |  |  |
|  |  |  |  |  | 18 | 7 |  |  |  |  |  |
| -1.3152(2) |  | 7.93(2) |  | $f_{\frac{7}{2}}$ | 18 | 55 | 55 | $\ldots$ | 56 |  |  |
|  |  |  |  |  | 18 | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  | 18 | 7 |  |  |  |  |  |
| +4.75633(>12) |  |  |  |  | 18 | 7 | 19 |  |  |  |  |
|  |  | 13.3(2) |  |  | 24 | 7 | $\ldots$ | $\ldots$ | 11 |  |  |
| -0.78706(10) |  | 8.74(10) |  | $\left({ }_{(1)}\right)^{5} \frac{5}{2}$ | 24 | 55 | 55 | $\ldots$ | 11 | $\cdots$ | b |
|  |  | 11.05(40) |  |  | 24 | 7 | ... | $\ldots$ | 11 |  |  |
| -1.1022(2) |  | 8.15(5) |  | $f_{\frac{7}{2}}$ | 24 | 55 | 55 | $\cdots$ | 11 |  |  |
|  |  |  |  |  | 24 | 7 |  |  |  |  | $\cdots$ |

Table 8b-1. Properties

| Atomic No. Z | Name | Chem. symbol | Neutron No. $N$ | $\left\|\begin{array}{c} \text { Mass } \\ \text { No. } \\ A=N+Z \end{array}\right\|$ | Atomic mass M | $\underset{I}{\text { Spin }}$ | $\begin{gathered} \text { Par- } \\ \text { ity } \end{gathered}$ | \% abundance (ref. 46) | Cosmic abundance (ref. 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | Vanadium | V | 27 | 50 | 49.96330(12) | 6 | (+) | 0.24 | 0.006 |
|  |  |  | 28 | 51 | $50.96052(5)$ | $\frac{7}{2}$ | $(-)$ | 99.76 | 2.5 |
| 24 | Chromium | Cr | 26 | 50 | 49.96210(7) | (0) | (+) | 4.31 | 4.3 |
|  |  |  | 28 | 52 | $\cdot 51.95707(9)$ | (0) | $(+)$ | 83.76 | 80 |
|  |  |  | 29 | 53 | 52.95772(8) | $\frac{3}{2}$ | (-) | 9.55 | 9.0 |
|  |  |  | 30 | 54 | 53.9563 (2) | (0) | (+) | 2.38 | 2.2 |
| 25 | Manganese | Mn | 30 | 55 | 54.95581(10) | $\frac{5}{2}$ | (-) | 100 | 77 |
| 26 | Iron | Fe | 28 | 54 | 53.95704(5) | (0) | $(+)$ | 5.84 | 1,100 |
|  |  |  | 30 | 56 | 55.95274(9) | (0) | $(+)$ | 91.68 | 17,000 |
|  |  |  | 31 | 57 | 56.95359(10) | ( $\frac{3}{2}$ ) | (-) | 2.17 | 400 |
|  |  |  | 32 | 58 | 57.9520(4) | (0) | $(+)$ | 0.31 | 60 |
| 27 | Cobalt | Co | 32 | 59 | 58.95157(10) | $\frac{7}{2}$ | $(-)$ | 100 | 99 |
| 28 | Nickel | Ni | 30 | 58 | 57.95349(9) | (0) | (+) | 67.76 | 910 |
|  |  |  | 32 | 60 | 59.94925(13) | (0) | $(+)$ | 26.16 | 350 |
|  |  |  | 33 | 61 | 60.94907(23) | ( $\frac{3}{2}$ ) | $(-)$ | 1.25 | 17 |
|  |  |  | 34 | 62 | 61.94681(9) | (0) | $(+)$ | 3.66 | 49 |
|  |  |  | 36 | 64 | 63.94755(7) | (0) | ( + ) | 1.16 | 16 |
| 29 | Copper | Cu | 34 | 63 | 62.94926(6) |  | ( | 69.1 | 3.2 |
|  |  |  | 36 | 65 | 64.94835(6) | $\frac{3}{2}$ | - | 30.9 | 1.4 |
| 30 | Zinc | Zn | 34 | 64 | 63.94955(2) | (0) | (+) | 48.89 | 0.78 |
|  |  |  | 36 | 66 | 65.94722(6) | (0) | ( + ) | 27.81 | 0.44 |
|  |  |  | 37 | 67 | 66.94815(6) | $\frac{5}{2}$ | - | 4.11 | 0.065 |
|  |  |  | 38 | 68 | 67.94686(7) | (0) | (+) | 18.56 | 0.30 |
|  |  |  | 40 | 70 | 69.94779(6) | (0) | (+) | 0.62 | 0.0099 |
| 31 | Gallium | Ga | 38 | 69 | 68.94778(6) |  | - | 60.2 | 0.39 |
|  |  |  | 40 | 71 | 70.94752(9) | $\frac{3}{2}$ | - | 39.8 | 0.26 |
| 32 | Germanium | Ge | 38 | 70 | 69.94637(7) | (0) | (+) | 20.55 | 0.51 |
|  |  |  | 40 | 72 | 71.94462(7) | (0) | (+) | 27.37 | 0.68 |
| 32 | Germsnium | Ge | 41 | 73 | 72.94669(4) |  |  | 7.67 |  |
|  |  |  | 42 | 74 | 73.94466(6) | (0) | (+) | 36.74 | 0.92 |
|  |  |  | 44 | 76 | 75.94559(5) | (0) | (+) | . 7.67 | 0.19 |
| 33 | Arsenic |  | 42 | 75 | 74.94570(5) | $\frac{3}{2}$ | - | 100 | 4.8 |
| 34 | Selenium | Se | 40 | 74 | 73.94620(8) | 0 | (+) | 0.87 | 0.0022 |
|  |  |  | 42 | 76 | 75.94357(5) | (0) | ( + ) | 9.02 | 0.023 |
|  |  |  | 43 | 77 | 76.94459(5) | $\frac{1}{2}$ | - | 7.58 | 0.019 |
|  |  |  | 44 | 78 | 77.94232 (5) | 0 | (+) | 23.52 | 0.059 |
|  |  |  | 46 | 80 | 79.94205(5) | (0) | (+) | 49.82 | 0.12 |
|  |  |  | 48 | 82 | $81.94285(6)$ | (0) | (+) | 9.19 | 0.023 |
| 35 | Bromine | Br |  |  | 78.94365 (6) |  | - | 50.52 | 0.21 |
|  |  |  | 46 | 81 | 80.94232(6) | $\frac{3}{2}$ | - | 49.48 | 0.21 |
| 36 | Krypton | Kr | 42 | 78 | 77.94519(18) | (0) | (+) | 0.354 |  |
|  |  |  | 44 | 80 | 79.94246(11) | (0) | $(+)$ | 2.27 |  |
|  |  |  | 46 | 82 | 81.93961(11) | (0) | ( + + | 11.56 |  |
|  |  |  | 47 | 83 | 82.94059(7) | $\frac{9}{2}$ | + | 11.55 | $\sim 0.87$ |
|  |  |  | 48 | 84 | 83.93836(9) | (0) | (+) | $56.90$ |  |
|  |  |  | 50 | 86 | 85.93820(8) | (0) | (+) | 17.37 |  |
| 37 | Rubidium | Rb | $48$ |  | 84.93920(8) |  |  | 72.15 |  |
|  |  |  | $50$ | $87^{*}$ | 86.93709(17) | $\frac{3}{2}$ | - | 27.85 | 0.019 |
| 38 | Strontium | Sr | 46 | 84 | 83.94011(15) | (0) | (+) | 0.56 | 0.0023 |
|  |  |  | 48 | 86 | 85.93684(11) | (0) | (+) | 9.86 | 0.040 |
|  |  |  | 49 | 87 | 86.93677(8) | $\frac{9}{2}$ | $+$ | 7.02 | 0.029 |
|  |  |  | 50 | 88 | 87.93408(11) | (0) | (+) | 82.56 | 0.34 |
| 39 | Yttrium | $\mathbf{Y}$ | 50 | 89 | 88.93421(11) | $\frac{1}{2}$ | - | 100 | 0.10 |

See page 8-16 for footnotes and pages 8-16 to 8-18 for References.
of Stable Nuclei (Continued)

| Magnetic dipole moment $\mu$ | Electric quadrupole moment Q | Binding <br> energy <br> of last <br> neutron <br> $E_{n}$ | Binding energy of last proton $E_{p}$ | Ground- <br> state <br> configu- <br> ration <br> (ref. 38) | Ref. M | Ref. I | $\begin{gathered} \text { Ref. } \\ \mu \end{gathered}$ | $\begin{gathered} \text { Ref. } \\ Q \end{gathered}$ | $\left\|\begin{array}{c} \text { Ref. } \\ E_{n} \end{array}\right\|$ | $\left\|\begin{array}{c} \text { Ref. } \\ \boldsymbol{E}_{\boldsymbol{p}} \end{array}\right\|$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +3.3412(3) |  |  |  | $\left(\frac{7}{2}, \frac{7}{2}\right)_{6}$ | 27 | 55 | 28 |  |  | $\ldots$ | c |
| +5.1478(5) | +0.3(2) | 11.15(20) |  |  | 24 | 7 | 38 | 44 | 17 |  |  |
|  |  | 13.4(2) |  |  | 24 | 7 | .. |  | 11 |  |  |
|  |  | 11.80(25) |  |  | 24 | 7 | ... |  | 17 |  |  |
| -0.47351(60) | . | 7.75(20) |  | $p_{3}$ | 24 | 55 | 55 | ... | 17 |  |  |
|  |  |  |  |  | 24 | 7 |  |  |  |  |  |
| +3.4681(4) | +0.5 | 10.15(20) |  | $\left(f_{7}\right)^{5} \frac{5}{2}$ | 24 | 7 | 7 | 42 | 11 |  |  |
|  |  | 13.8(2) |  |  | 24 | 7 |  | $\ldots$ | 11 |  |  |
|  |  | 11.15(25) |  |  | 45 | 7 | $\ldots$ | $\cdots$ | 17 |  |  |
| +0.05 |  | 7.75(20) |  | $p_{2}$ | 24 | 7 | 55 | ... | 17 |  |  |
|  |  |  |  |  | 24 | 7 |  |  |  |  |  |
| +4.6484(16) | +0.5(2) | 10.25(20) |  | $f_{\frac{7}{2}}$ | 45 | 7 | 7 | 44 | 17 |  |  |
|  |  | 11.7(2) |  |  | 45 | 7 |  | ... | 11 |  |  |
|  |  |  |  |  | 45 | 7 |  |  |  |  |  |
|  |  |  |  | $p_{3}$ | 24 |  | $\ldots$ | $\cdots$ | $\ldots$ | $\cdots$ | d |
|  |  |  |  |  | 24 | 7 |  |  |  |  |  |
|  |  |  |  |  | 24 | 7 |  |  |  |  |  |
| +2.22617(36) | -0.157 | 10.85(20) |  | $p_{\frac{3}{2}}$ | 24 | 7 | 7 | 55 | 17 |  |  |
| +2.3845(4) | -0.145 | 9.75(20) |  | $p_{12}$ | 24 | 7 | 7 | 55 | 17 |  |  |
|  |  | 11.65(20) |  |  | 24 | 7 |  |  | 17 |  |  |
|  |  | 11.15(20) |  |  | 24 | 7 | $\ldots$ | ... | 17 |  |  |
| +0.87378(13) |  | 7.00(20) |  | $f_{\frac{8}{2}}$ |  | 7 | 55 | ... | 17 |  |  |
|  |  | 10.15(20) $9.2(2)$ |  |  | 24 | 7 |  | $\cdots$ | 17 |  |  |
|  |  | 9.2(2) | . |  | 24 | 7 | $\ldots$ |  | 11 |  |  |
| +2.167(11) | +0.2318(23) | 10.10(20) |  | $p_{3}$ | 52 | 7 | 7 | 7 | 17 |  |  |
| +2.5614(10) | +0.1461(15) | 9.05(20) |  | $p_{3}$ | 52 | 7 | 7 | 7 | 17 |  |  |
| ............. | ............. |  |  |  | 52 | 7 |  |  |  |  |  |
| ….......... |  |  |  |  | 52 | 7 |  |  |  |  |  |
| -0.87675(12) | -0.2(11) |  |  | $g^{9}$ | 52 | 55 | 55 | 38 |  |  |  |
| ............... | ............ | .......... |  |  | 52 | 7 |  |  |  |  |  |
|  |  |  |  |  | 52 | 7 |  |  |  |  |  |
| +1.4347(3) | +0.3(2) | 10.2(2) |  | $p^{\frac{3}{2}}$ | 52 | 7 | 55 | 38 | 11 |  |  |
|  |  | . | .... | $\ldots$ | 52 | 7 |  |  |  |  |  |
| +0.53326(5) |  |  |  |  | 52 | 7 |  |  |  |  |  |
| +0.53326(5) |  | 7.5(3) |  | $p_{1}$ |  | 7 | 55 | $\cdots$ | 10 |  |  |
|  |  |  | ...... | ........ |  | 7 |  |  |  |  |  |
|  | ......... | 9.8(5) |  |  | 52 52 | 7 |  |  |  |  |  |
| +2.10576(37) | +0.26(8) | 10.60(20) |  | $p_{\text {a }}$ | 52 | 7 | 7 | 7 | 17 |  |  |
| +2.2696(5) | +0.21(7) | 9.95(20) |  | $p_{3}$ | 52 | 7 | 7 | 7 | 17 |  |  |
|  |  |  |  |  | 45 | 7 |  |  |  |  |  |
|  |  |  |  |  | 45 | 7 |  |  |  |  |  |
|  |  |  |  |  | 45 | 7 |  |  |  |  |  |
| -0.9704 | +0.15 |  |  | ${ }^{9}$ | 52 | 7 | 7 | 7 |  |  |  |
|  |  |  |  |  | 45, 52 | 7 |  |  |  |  |  |
|  |  |  | .... |  | 45 | 7 |  |  |  |  |  |
| +1.3532(4) |  |  |  |  | 52 | 7 | 7 |  |  |  |  |
| +2.7501(5) |  | 10.0 |  | $p^{3}$ | 52 | 7 | 7 | $\ldots$ | 11 | ... | $\underset{\text { years }}{\beta^{-} ; 6 \times 10^{10}}$ |
|  |  |  |  |  | 52 | 7 |  |  |  |  |  |
|  |  | 9.50(20) |  |  | 52 | 7 | ... | $\cdots$ | 17 |  |  |
| -1.0892(15) |  | 8.40(20) |  | ${ }^{9}$ | 52 | 7 | 55 | $\ldots$ | 17 |  |  |
|  |  | 11.15(20) |  |  | 52 | 7 | ... |  | 17 |  |  |
| -0.14 |  |  |  |  | 52 | 7 | 7 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table 8b-1. Properties

| Atomic No. Z | Name | Chem. symbol | Neutron No. $N$ | $\left\|\begin{array}{c} \text { Mass } \\ \text { No. } \\ A=N+Z \end{array}\right\|$ | Atomic mass M | $\underset{I}{\text { Spin }}$ | $\begin{gathered} \text { Par- } \\ \text { ity } \end{gathered}$ | \% abundance (ref. 46) | Cosmic abundance (ref. 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40 | Zirconium | Zr | 50 | 90 | 89.93311(25) | (0) | (+) | 51.46 | 0.77 |
|  |  |  | 51 | 91 | 90.9343(4) | $\frac{5}{2}$ | + | 11.23 | 0.17 |
|  |  |  | 52 | 92 | 91.9339(4) | (0) | (+) | 17.11 | 0.26 |
|  |  |  | 54 | 94 | 93.9365(5) | (0) | (+) | 17.40 | 0.26 |
|  |  |  | 56 | 96 | 95.9394(5) | (0) | (+) | 2.80 | 0.042 |
| 41 | Columbium or Niobium Molybdenum | $\begin{gathered} \mathrm{Cb} \\ \text { or } \mathrm{Nb} \end{gathered}$ | 52 | 93 | 92.93540(9) | $\frac{9}{2}$ | $+$ | 100 | 0.009 |
| 42 |  | Mo | 50 | 92 | 91.9352(4) | (0) | (+) | 15.86 | 0.030 |
|  | Molybdenum |  | 52 | 94 | 93.9353(4) | (0) | (+) | 9.12 | 0.017 |
|  |  |  | 53 | 95 | 94.946(8) | $\frac{5}{2}$ | $+$ | 15.70 | 0.030 |
|  |  |  | 54 | 96 | 95.9358(4) | (0) | ( + ) | 16.50 | 0.031 |
|  |  |  | 55 | 97 | 96.945(9) | $\frac{5}{2}$ | + | 9.45 | 0.018 |
|  |  |  | 56 | 98 | 97.93610(40) | (0) | ( + ) | 23.75 | 0.045 |
|  |  |  | 58 | 100 | 99.93860(40) | (0) | (+) | 9.62 | 0.018 |
| 44 | Ruthenium | Ru | 52 | 96 | 95.9388(4) | (0) | (+) | 5.7 | 0.0053 |
|  |  |  | 54 | 98 | 97.943(11) | (0) | ( + ) | 2.2 | 0.0021 |
|  |  |  | 55 | 99 | 98.944(11) | $\frac{5}{2}$ | $(+)$ | 12.8 | 0.012 |
|  |  |  | 56 | 100 | 99.942(11) | (0) | (+) | 12.7 | 0.012 |
|  |  |  | 57 | 101 | 100.946(11) | $\frac{5}{2}$ | + | 17.0 | 0.016 |
|  |  |  | 58 | 102 | 101.941(11) | (0) | (+) | 31.3 | 0.029 |
|  |  |  | 60 | 104 | , | (0) | (+) | 18.3 | 0.017 |
|  | Rhodium |  | 58 | 103 | 102.941(11) | $\frac{1}{2}$ | - | 100 | 0.035 |
| 46 | Palladium | Pd | 56 | 102 | 101.93750(9) | (0) | (+) | 0.8 | 0.00026 |
|  |  |  | 58 | 104 | $103.93655(11)$ | (0) | $(+)$ | 9.3 | 0.0030 |
|  |  |  | 59 | 105 | 104.93840(15) | $\frac{5}{2}$ | + | 22.6 | 0.0072 |
|  |  |  | 60 | 106 | 105.93680(19) | (0) | (+) | 27.2 | 0.0087 |
|  |  |  | 62 | 108 | 107.93801(11) | (0) | ( + | 26.8 | 0.0086 |
|  |  |  | 64 | 110 | 109.93965(13) | (0) | ( + | 13.5 | 0.0043 |
| 47 | Silver | Ag | 60 | 107 | 106.9387(2) |  | ( | 51.35 | 0.014 |
|  |  |  | 62 | 109 | 108.9394(5) | $\frac{1}{2}$ | - | 48.65 | 0.013 |
| 48 | Cadmium | Cd | 58 | 106 | 105.93984(14) | (0) | (+) | 1.215 | 0.00032 |
|  |  |  | 60 | 108 | 107.93860(11) | (0) | (+) | 0.875 | 0.00023 |
|  |  |  | 62 | 110 | 109.93856 (13) | (0) | (+) | 12.39 | 0.0032 |
|  |  |  | 63 | 111 | $110.93978(10)$ | $\frac{1}{2}$ | $+$ | 12.75 | 0.0033 |
|  |  |  | 64 | 112 | 111.93885(17) | (0) | (+) | 24.07 | 0.0063 |
|  |  |  | 65 | 113 | 112.94061 (11) | $\frac{1}{2}$ | + | 12.26 | 0.0032 |
|  |  |  | 66 | 114 | $113.93997(9)$ | (0) | (+) | 28.86 | 0.0075 |
|  |  |  | 68 | 116 | $115.94202(12)$ | (0) | $(+)$ | 7.58 | 0.0020 |
| 49 | Indium | In | 64 | 113 | 112.94045(12) | $\frac{9}{2}$ | $+$ | 4.23 | 0.00042 |
|  |  |  | 66 | 115* | 114.94040(11) | $\frac{9}{2}$ | + | 95.77 | 0.0096 |
| 50 | Tin | Sn | 62 | 112 | 111.9407(5) |  |  | 0.95 |  |
|  |  |  | 64 | 114 | $113.9394(6)$ | (0) | (+) | 0.65 | 0.0038 |
|  |  |  | 65 | 115 | 114.94014(25) | $\frac{1}{2}$ | $+$ | 0.34 | 0.0022 |
|  |  |  | 66 | 116 | 115.93927(11) | (0) | (+) | 14.24 | 0.087 |
|  |  |  | 67 | 117 | 116.94052(10) | $\frac{1}{2}$ | + | 7.57 | 0.047 |
|  |  |  | 68 | 118 | 117.93978(16) | (0) | (+) | 24.01 | 0.149 |
|  |  |  | 69 | 119 | 118.94122(12) | $\frac{1}{2}$ | $+$ | 8.58 | 0.053 |
|  |  |  | 70 | 120 | 119.94059(14) | (0) | (+) | 32.97 | 0.19 |
|  |  |  | 72 | 122 | 121.94249(15) | (0) | (+) | 4.71 | 0.030 |
|  |  |  | 74 | 124 | 123.94490(11) | (0) | (+) | 5.98 | 0.038 |
| 51 | Antimony | Sb | 70 | 121 | 120.9426(2) |  |  | 57.25 | $0.0097$ |
|  |  |  | 72 | 123 | 122.9430 (3) | $\frac{7}{2}$ | $+$ | 42.75 | 0.0073 |
| 52 | Tellurium | Te | 68 | 120 | 119.94288(16) | (0) | (+) | 0.089 | ....... |

See page 8-16 for footnotes and pages 8-16 to 8-18 for References.
of Stable Nuclei (Continued)


Table 8b-1. Properties

| Atomic No. Z | Name | Chem. symbol | Neutron No. $N$ | Mass <br> No. $A=N+Z$ | Atomic mass M | $\begin{gathered} \text { Spin } \\ I \end{gathered}$ | Par- <br> ity | \% abundance (ref. 46) | Cosmic abundance (ref. 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | Tellurium | Te | 70 | 122 | 121.94193(8) | (0) | (t) | 2.46 |  |
|  |  |  | 71 | 123 | 122.94368(39) | $\frac{1}{2}$ | + | 0.87 |  |
|  |  |  | 72 | 124 | 123.94278(11) | (0) | (+) | 4.61 |  |
|  |  |  | 73 | 125 | 124.94460(31) | $\frac{1}{2}$ | + | 6.99 |  |
|  |  |  | 74 | 126 | 125.94420(7) | (0) | (+) | 18.71 | ........... |
|  |  |  | 76 | 128 | 127.94649(13) | (0) | $(+)$ | 31.79 | ........... |
|  |  |  | 78 | 130 | 129.94853(10) | (0) | $(+)$ | 34.49 |  |
| 53 | Iodine | I | 74 | 127 | 126.94528(13) | $\frac{5}{2}$ | $+$ | 100 | 0.018 |
| 54 | Xenon | Xe | 70 | 124 | 123.94578(7) | (0) | (+) | 0.096 |  |
|  |  |  | 72 | 126 | 125.94476(14) | (0) | $(+)$ | 0.090 |  |
|  |  |  | 74 | 128 | 127.94446(9) | (0) | (+) | 1.919 |  |
|  |  |  | 75 | 129 | 128.94601(15) | $\frac{1}{2}$ | $+$ | 26.44 |  |
|  |  |  | 76 | 130 | 129.94501(10) | (0) | (+) | 4.08 > | $\sim 0.015$ |
|  |  |  | 77 | 131 | 130.94673(42) | $\frac{3}{2}$ | $+$ | 21.18 |  |
|  |  |  | 78 | 132 | 131.94615(10) | (0) | $(+)$ | 26.89 |  |
|  |  |  | 80 | 134 | 133.94803(12) | (0) | $(+)$ | 10.44 |  |
|  |  |  | 82 | 136 | 135.95046(11) | (0) | (+) | 8.87 |  |
| 55 | Cesium | Cs | 78 | 133 | .............. | $\frac{7}{2}$ | $+$ | 100 | 0.001 |
| 56 | Barium | Ba | 74 | 130 | . | (0) | (+) | 0.101 | $3.9 \times 10^{-5}$ |
|  |  |  | 76 | 132 | .............. | (0) | (+) | 0.097 | $3.8 \times 10^{-5}$ |
|  |  |  | 78 | 134 | .. | (0) | (+) | 2.42 | 0.00094 |
|  |  |  | 79 | 135 | ............. | $\frac{3}{2}$ | $(+)$ | 6.59 | 0.0026 |
|  |  |  | 80 | 136 | 135.9488(10) | (0) | (+) | 7.81 | 0.0030 |
|  |  |  | 81 | 137 | 136.9502(10) | $\frac{3}{2}$ | $+$ | 11.32 | 0.0044 |
|  |  |  | 82 | 138 | 137.9498(5) | (0) | (+) | 71.66 | 0.028 |
| 57 | Lanthanum | $\mathbf{L a}$ | 81 | 138* |  | $\cdots$ | $\cdots$ | 0.089 | $1.9 \times 10^{-5}$ |
|  |  |  | 82 | 139 | 138:953(8) | $\frac{7}{2}$ | $(+)$ | 99.911 | 0.021 |
| 58 | Cerium | Ce | 78 | 136 | .............. | (C) | $(+)$ | 0.193 | $4.4 \times 10^{-5}$ |
|  |  |  | 80 | 138 |  | (0) | $(+)$ | 0.250 | $5.8 \times 10^{-5}$ |
|  |  |  | 82 | 140 | 139.9488(10) | (0) | (+) | 88.48 | 0.020 |
|  |  |  | 84 | 142 | 141.9528(4) | (0) | (+) | 11.07 | 0.0025 |
| 59 | Praseodymium | Pr | 82 | 141 | 140.9509(4) | $\frac{5}{2}$ | $+$ | 100 | 0.0096 |
| 60 | Neodymium | Nd | 82 | 142 | . | (0) | (+) | 27.13 | 0.0090 |
|  |  |  | 83 | 143 | ................ | $\frac{7}{2}$ | (-) | 12.20 | 0.0040 |
|  |  |  | 84 | 144* | 143.9562(3) | (0) | (+) | 23.87 | 0.0079 |
|  |  |  | 85 | 145 | 144.962(4) | $\frac{7}{2}$ | $(-)$ | 8.30 | 0.0027 |
|  |  |  | 86 | 146 | 145.962(4) | (0) | $(+)$ | 17.18 | 0.0057 |
|  |  |  | 88 | 148 | 147.9642(6) | (0) | ( + ) | 5.72 | 0.0019 |
|  |  |  | 90 | 150 | 149.9676(3) | (0) | (+) | 5.60 | 0.0018 |
| 62 | Samarium | Sm | 82 | 144 | 143.9567(9) | (0) | (+) | 3.16 | 0.00038 |
|  |  |  | 85 | 147* | .............. | $\frac{7}{2}$ | $(-)$ | 15.07 | 0.0018 |
|  |  |  | 86 | 148 | 147.9616(7) | (0) | (+) | 11.27 | 0.0014 |
|  |  |  | 87 | 149 | ............. | $\frac{7}{2}$ | $(-)$ | 13.84 | 0.0017 |
|  |  |  | 88 | 150 | 149.9632(10) | (0) | (+) | 7.47 | 0.0009 |
|  |  |  | 90 | 152 | 151.9677(5) | (0) | (+) | 26.63 | 0.0032 |
|  |  |  | 92 | 154 | 153.9712(5) | (0) | $(+)$ | 22.53 | 0.0027 |
| 63 | Europium | Eu | 88 | 151 | (53.0712. |  | $(+)$ | 47.77 | 0.0013 |
|  |  |  | 90 | 153 |  | $\frac{5}{2}$ | $+$ | 52.23 | 0.0015 |
| 64 | Gadolinium | Gd | 88 | 152 |  | (0) | (+) | 0.20 |  |
|  |  |  | $90$ | $154$ | 153.9694(4) | (0) | (+) | $2.15$ | $0.00037$ |
|  |  |  | 91 | 155 | 154.971(6) | $\left(\frac{7}{2}\right)$ | (-) | 14.73 | 0.0025 |

See page 8-16 for footnotes and pages 8-16 to 8-18 for References.
of Stable Nuclei (Continued)

| Magnetic dipole moment $\mu$ | Electric quadrupole moment Q | Binding <br> energy <br> of last <br> neutron <br> $E_{n}$ | Binding <br> energy <br> of last <br> proton <br> $E_{p}$ | Ground- <br> state <br> configu- <br> ration <br> (ref. 38) | Ref. M | Ref. | $\begin{gathered} \text { Ref. } \\ \mu \end{gathered}$ | $\begin{gathered} \text { Ref. } \\ \boldsymbol{Q} \end{gathered}$ | $\left\|\begin{array}{c} \text { Ref. } \\ E_{n} \end{array}\right\|$ | $\begin{gathered} \text { Ref. } \\ \boldsymbol{E}_{\boldsymbol{p}} \end{gathered}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
| -0.73188(4) |  |  |  | $8{ }_{8}$ | 31 | 55 | 55 |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
| -0.88235(4) | . | 6.8(3) |  | $8_{2}$ | 31 | 7 | 55 | .. | 16 |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
| +2.8090(4) | -0.59(20) | 9.10(20) |  | $d_{3}$ | 31 | 7 | 7 | 7 | 11 |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
| -0.77255(2) |  |  |  | ${ }^{\frac{1}{2}}$ | 31 | 7 | 51 |  |  |  |  |
|  | . |  |  |  | 31 | 7 |  |  |  |  |  |
| +0.68680(2) |  |  |  | $d_{\frac{3}{2}}$ | 31 | 7 |  |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
|  |  |  |  |  | 31 | 7 |  |  |  |  |  |
| +2.5771(9) |  |  |  |  | 31 | 7 |  |  |  |  |  |
| +2.5771(9) |  | 9.05(20) |  | $\mathrm{g}_{\frac{7}{2}}$ |  | 7 | 7 | $\ldots$ | 17 |  |  |
| ......... |  |  |  | ....... |  | 7 |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
| +0.8346(25) |  |  |  | $\ddot{d}_{3}{ }^{\text {a }}$ |  |  | 7 |  |  |  |  |
|  |  |  |  |  | 16 | 7 |  |  |  |  |  |
| +0.9351(27) |  | 7.1(3) |  |  | 16 | 7 | 7 |  | 10 |  |  |
| ...... |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  | $\left(\frac{7}{2}, \frac{3}{2}\right)$ |  |  |  | $\cdots$ | $\cdots$ | $\ldots$ | $\beta^{-}, \mathrm{EC} ; \sim 1 \times$ |
| +2.7760(28) | +0.9(1) | 8.80(20) |  | $g_{7}$ | 2 |  |  |  | 17 |  | $10^{11}$ years |
|  |  |  |  |  |  |  |  |  | 17 |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  | 9.05(20) |  |  | 54 | 7 |  |  | 17 |  |  |
|  |  | 7.15(20) |  |  | $54$ | 7 | $\ldots$ |  | 17 |  |  |
| +3.8(4) | -0.054 | 9.8(3) |  | ${ }^{\text {d }}$ | 54 | 7 | $\ldots$ | 55 | 11 |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
| -1.0(2) |  |  |  |  |  | 38 | 38 |  |  |  |  |
|  |  |  |  |  | 16 | 7 | $\ldots$ | $\cdots$ | $\cdots$ | $\cdots$ | $\alpha ; 1.5 \times 10^{15}$ |
| -0.65(9) |  |  |  | $f_{7}$ |  |  |  |  |  |  | years (ref. 49) |
|  |  |  |  |  | 2 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  | 7.4(2) |  |  | 54 | 7 |  |  | 11 |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
| -0.68(10) |  |  |  |  |  |  | $36 a$ |  |  |  | $\alpha ; 1.5 \times 10^{11}$ |
|  |  |  |  |  |  |  |  |  |  |  | years |
|  |  |  | . | ... | 54 | 7 |  |  |  |  |  |
| -0.55(10) |  |  |  | ....... |  | 36 | $36 a$ |  |  |  |  |
| ........ |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
| +3.6 | +1.2 |  |  |  |  |  |  |  |  |  |  |
| +1.6 | +2.5 |  |  |  |  | 7 | 38 | 7 |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 2 |  |  |  |  | $\cdots$ | $d$ |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table 8b-1. Properties

| Atomic No. $Z$ | Name | Chem. symbol | Neutron No. $N$ | Mass <br> No. $A=N+Z$ | Atomic mass M | $\begin{gathered} \text { Spin } \\ I \end{gathered}$ | Par- <br> ity | \% abundance (ref. 46) | Cosmic abundanc? (ref. 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64 | Gadolinium | Gd | 92 | 156 | 155.9715(4) | (0) | (+) | 20.47 | 0.0035 |
|  |  |  | 93 | 157 | 156.973(6) | $\left(\frac{7}{2}\right)$ | (-) | 15.68 | 0.0027 |
|  |  |  | 94 | 158 | 157.9736(8) | (0) | (+) | 24.87 | 0.0042 |
|  |  |  | 96 | 160 | 159.9785(12) | (0) | (+) | 21.90 | 0.0037 |
| 65 | Terbium | Tb | 94 | 159 | .............. | $\frac{3}{2}$ | (+) | 100 | 0.0052 |
| 66 | Dysprosium | Dy | 90 | 156 |  | (0) | (+) | 0.0524 | $1.0 \times 10^{-5}$ |
|  |  |  | 92 | 158 | ............. | (0) | (+) | 0.0902 | $2.0 \times 10^{-5}$ |
|  |  |  | 94 | 160 | 159.9752(14) | (0) | (+) | 2.294 | 0.00046 |
|  |  |  | 95 | 161 |  | ( 7 ) | (-) | 18.88 | 0.0038 |
|  |  |  | 96 | 162 | 161.9779(11) | (0) | (+) | 25.53 | 0.0051 |
|  |  |  | 97 | 163 |  | ( $\frac{7}{2}$ ) | $(-)$ | 24.97 | 0.0050 |
|  |  |  | 98 | 164 | 163.9814(14) | (0) | (+) | 28.18 | 0.0056 |
| 67 | Holmium | Ho | 98 | 165 | 164.9822(8) | $\frac{7}{2}$ | $+$ | 100 | 0.0057 |
| 68 | Erbium | Er | 94 | 162 |  | (0) | (+) | 0.136 | $1.6 \times 10^{-5}$ |
|  |  |  | 96 | 164 | 163.9827(12) | (0) | (+) | 1.56 | 0.00024 |
|  |  |  | 98 | 166 |  | (0) | ( + | 33.41 | 0.0053 |
|  |  |  | 99 | 167 |  | $\frac{7}{2}$ | (-) | 22.94 | 0.0039 |
|  |  |  | 100 | 168 | 167.9849(4) | (0) | $(+)$ | 27.07 | 0.0043 |
|  |  |  | 102 | 170 | (169.9907) | (0) | (+) | 14.88 | 0.0023 |
| 69 | Thulium | Tm | 100 | 169 |  | $\frac{1}{2}$ | (+) | 100 | 0.0029 |
| 70 | Ytterbium | $\mathbf{Y b}$ | 98 | 168 |  | (0) | (+) | 0.140 | $9.0 \times 10^{-6}$ |
|  |  |  | 100 | 170 | $\cdots$ | (0) | (+) | 3.03 | $0.00063$ |
|  |  |  | 101 | 171 | $\ldots$ | $\frac{1}{2}$ | (-) | 14.31 | $0.0021$ |
|  |  |  | 102 | 172 | $\cdots$ | (0) | $(+)$ | 21.82 | $0.0032$ |
|  |  |  | 103 | 173 | . | $\frac{5}{2}$ | (-) | 16.13 | $0.0026$ |
|  |  |  | 104 | 174 |  | (0) | (+) | 31.84 | 0.0044 |
|  |  |  | 106 | 176 |  | (0) | ( + | 12.73 | 0.0020 |
| 71 | Lutecium | Lu | 104 | 175 |  | $\frac{7}{2}$ | $(+)$ | 97.40 | 0.0047 |
|  |  |  | 105 | $176{ }^{*}$ |  |  |  | 2.60 | 0.00012 |
| 72 | Hafnium | Hf | 102 | 174 |  | (0) | (+) | 0.18 | $1.3 \times 10^{-5}$ |
|  |  |  | 104 | 176 | 175.9957(7) | (0) | (+) | 5.15 | 0.00037 |
|  |  |  | 105 | 177 |  | $\frac{1}{2}, \frac{3}{2}$ | $(-)$ | 18.39 | 0.0013 |
|  |  |  | 106 | 178 | 177.9988(9) | (0) | ( + ) | 27.08 | 0.0019 |
|  |  |  | 107 | 179 | .............. | $\frac{1}{2}-, \frac{3}{2}$ | $\cdots$ | 13.78 | 0.00097 |
|  |  |  | 108 | 180 | 180.0031(8) | (0) | (+) | 35.44 | 0.0025 |
| 73 | Tantalum | Ta | 108 | 181 | 181.0031(13) | $\frac{7}{2}$ | + | 100 | 0.0031 |
| 74 | Wolfram | W | 106 | 180 | . . . . . . . . . | (0) | $(+)$ | 0.135 | $0.00021$ |
|  |  |  | 108 | 182 | 182.0041(7) | (0) | $(+)$ | 26.4 | $0.044$ |
|  |  |  | 109 | 183 | 183. C066(7) | $\frac{1}{2}$ | $(-)$ | 14.4 | $0.024$ |
|  |  |  | 110 | 184 | 184.0074(7) | (0) | (+) | 30.6 | 0.052 |
|  |  |  | 112 | 186 | .............. | (0) | (+) | 28.4 | 0.050 |
| 75 | Rhenium | Re | 110 | 185 | .............. | $\frac{5}{2}$ | $+$ | 37.07 | 0.0015 |
|  |  |  | 112 | 187* |  | $\frac{5}{2}$ | $+$ | 62.93 | 0.0026 |
| 76 | Osmium | Os | 108 | 184 |  | (0) | (+) | 0.018 | $6.3 \times 10^{-6}$ |
|  |  |  | 110 | 186 |  | (0) | $(+)$ | 1.59 | 0.00056 |
|  |  |  | 111 | 187 |  | ( $\frac{1}{2}$ ) | (-) | 1.64 | 0.00057 |
|  |  |  | 112 | 188 | 188.0157(5) | (0) | $(+)$ | 13.3 | 0.0047 |
|  |  |  | 113 | 189 | 189.04(2) | $\frac{8}{2}$ | (-) | 16.1 | 0.0056 |
|  |  |  | 114 | 190 | 190.0174(6) | (0) | $(+)$ | 26.4 | 0.0092 |
|  |  |  | 116 | 192 | 192.0225(6) | (0) | $(+)$ | 41.0 | 0.014 |
| 77 | Iridium | Ir | $114$ | $191$ | 191.038(10) | $\frac{3}{2}$ | $+$ | 38.5 | 0.0054 |
|  |  |  | 116 | 193 | 193.039(10) | $\frac{3}{2}$ | $+$ | 61.5 | 0.0086 |

See page 8-16 for footnotes and pages 8-16 to 8-18 for References.
of Stable Nuclei (Continued)

| Magnetic dipole moment <br> $\mu$ | Electric quadrupole moment Q | Binding energy of last neutron $\boldsymbol{E}_{\boldsymbol{n}}$ | Binding energy of last proton $E_{p}$ | Groundstate configuration (ref. 38) | Ref. M | $\begin{array}{\|c\|} \text { Ref. } \\ I \end{array}$ | $\left.\begin{array}{\|c\|} \hline \text { Ref. } \\ \mu \end{array} \right\rvert\,$ | $\left\|\begin{array}{c} \text { Ref. } \\ \boldsymbol{Q} \end{array}\right\|$ | $\begin{gathered} \text { Ref. } \\ E_{n} \end{gathered}$ | $\left\|\begin{array}{c} \text { Ref. } \\ E_{p} \end{array}\right\|$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\dot{f}_{\frac{7}{2}} \cdots \cdots$ | 54 2 | 7 <br> . |  |  | $\ldots$ | $\ldots$ | d |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  | din $^{\text {a }}$ | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  | $f_{\frac{7}{2}}$ |  | 44 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 44 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
| ........... | .......... |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | $\ldots$ | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 38 |  |  |  |  |  |
|  |  |  |  |  | ….. 54 | [ 38 |  |  |  |  |  |
|  |  |  |  | ... | 54 | 7 |  |  |  |  |  |
| ........ |  |  |  |  |  | 7 |  |  |  |  |  |
|  | . |  | ... |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
| +0.45 |  |  |  | $p_{1}$ |  | 7 | 7 |  |  |  |  |
| -0.65 | +3.9(4) |  |  | f...... |  | 7 |  |  |  |  |  |
|  | +3.9(4) |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
| +2.6 |  | .......... |  |  |  | 7 | 7 | 7 |  |  |  |
| +3.8 | $+7(1)$ |  |  | $\left(-\frac{21}{2}, \frac{13}{2}\right)$ |  |  | 7 | 7 |  |  | $\beta^{-} ; 7.5 \times 1{ }^{10}$ |
|  |  |  |  |  |  |  |  |  |  |  | years |
|  |  |  |  |  | -... | 7 |  |  |  |  |  |
|  |  |  |  | $p_{\frac{1}{2}}$ |  | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
| +1.9 | +5.9 | 7.55(20) |  | $g_{\frac{7}{2}}$ | 16 | 7 | 33 | 33 | 17 |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
| $+3.1714(6)$ | (+2.8) |  |  |  |  | 7 | 38 | 7 |  |  |  |
| +3.2039(6) | +2.6 | 7.30(30) |  | ${ }_{\frac{1}{8}}^{8}$ |  | 7 | 38 | 7 | 17 | $\ldots$ | $\mathrm{B}^{-} ; 4 \times 10^{12}$ |
|  |  |  |  |  |  | 7 |  |  |  |  | years |
|  |  |  |  |  |  | 7 |  |  |  |  |  |
|  |  |  |  | $p_{1}$ |  |  | $\cdots$ | $\ldots$ | $\cdots$ | $\cdots$ | d |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
| +0.70(9) | +2.0(8) |  |  |  | 2 | 30 | 30 | 30 |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
|  |  |  |  |  | 54 | 7 |  |  |  |  |  |
| +0.17(3) | +1.2(7) |  |  | ${ }^{1}$ | 1 | 38 | 30 | 30 |  |  |  |
| +0.18(3) | +1.0(5) | 7.80(20) |  | ${ }^{\text {d }}$ | 1 | 38 | 30 | 30 | 17 |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Table 8b-1. Properties

| Atomic No. Z | Name | Chem. symbol | Neutron No. $N$ | $\left\|\begin{array}{c} \text { Mass } \\ \text { No. } \\ A=N+Z \end{array}\right\|$ | Atomic mass M | $\underset{I}{\text { Spin }}$ | $\begin{gathered} \text { Par- } \\ \text { ity } \end{gathered}$ | $\begin{gathered} \% \\ \text { abundance } \\ \text { (ref. 46) } \end{gathered}$ | Cosmic abundance (ref. 4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | Platinum | Pt | 112 | 190 | ..... | (0) | (+) | 0.012 |  |
|  |  |  | 114 | 192 |  | (0) | (+) | 0.78 | 0.00068 |
|  |  |  | 116 | 194 | 194.0241(6) | (0) | (+) | 32.8 | 0.029 |
|  |  |  | 117 | 195 | 195.0265(6) | $\frac{1}{2}$ | - | 33.7 | 0.029 |
|  |  |  | 118 | 196 | 196.0267(6) | (0) | $(+)$ | 25.4 | 0.022 |
|  |  |  | 120 | 198 | 198.0327(6) | (0) | $(+)$ | 7.23 | 0.0063 |
| 79 | Gold | Au | 118 | 197 | 197.039(6) | $\frac{3}{2}$ | $+$ | 100 | 0.0082 |
| 80 | Mercury | Hg | 116 | 196 | ............. | (0) | $(+)$ | 0.146 | ......... |
|  |  |  | 118 | 198 | ... | (0) | ( + ) | 10.02 | .... |
|  |  |  | 119 | 199 | ............. | $\frac{1}{2}$ | - | 16.84 | .......... |
|  |  |  | 120 | 200 | $\ldots . . . . . . .$. | (0) | (+) | 23.13 | ........... |
|  |  |  | 121 | 201 |  | $\frac{3}{2}$ | (-) | 13.22 | $\ldots . . . . .$. |
|  |  |  | 122 | 202 |  | (0) | (+) | 29.80 | .......... |
|  |  |  | 124 | 204 |  | (0) | (+) | 6.85 | ........... |
| 81 | Thallium | Tl | 122 | 2 C 3 | 203.059(9) |  |  | 29.50 | .......... |
|  |  |  | 124 | 205 | 205.059(9) | $\frac{1}{2}$ | (+) | 70.50 |  |
| 82 | Lead | Pb | 122 | 204 | 204.0363(10) | (0) | (+) | 1.48 | 0.0041 |
|  |  |  | 124 | 206 | 206.0388(10) | (0) | ( + ) | 23.6 | 0.064 |
|  |  |  | 125 | 207 | 207.0405(10) | $\frac{1}{2}$ | - | 22.6 | 0.061 |
|  |  |  | 126 | 208 | 208.0416(10) | (0) | (+) | 52.3 | 0.14 |
|  | Bismuth | Bi | 126 | 209 | 209.0446(10) | $\frac{9}{2}$ | $(-)$ | 100 | 0.0021 |
| 90 | Thorium | Th | 142 | 232* | 232.1093(10) | (0) | ( + | 100 | 0.012 |
| 92 | Uranium | U | 142 | 234* | 234.1130(10) | (0) | (+) | 0.0058 |  |
|  |  |  | 143 | 235* | 235.1156(10) | $\frac{5}{2}$ | ( + ) | 0.715 | $1.8 \times 10^{-5}$ |
|  |  |  | 146 | 238* | 238.1242(10) | (0) | (+) | 99.28 | 0.0026 |

a. Ground-state configuration assigned by GLT by analogy with $Z=11$.
b. Ground state configuration assigned by GLT by analogy with $Z=25$.
c. Energetically unstable with respect to both $\beta^{-}$and $\beta^{+}$(ref. 27); neither so far observed.
d. Probable spin and parity assignments by GLT based on shell-model predictions of ground-state configurations.
e. Ground-state configurations assigned by GLT.

## References for Table 8b-1

1. Mattauch and Fluegge: "Nuclear Physics Tables," Interscience Publishers, Inc., New York, 1946.
2. Bethe: "Elementary Nuclear Theory," John Wiley \& Sons, Inc., New York, 1947.
3. Low and Townes: Phys. Rev. 75, 529 (1949).
4. Brown: Revs. Modern Phys. 21, 625 (1949).
5. Curtis, Hornbostel, Lee, and Salant: Phys. Rev. 77, 290 (1950).
6. Duckworth, Preston, and Woodcock: Phys. Rev. 79, 188 (1950).
7. Mack: Revs. Modern Phys. 22, 64 (1950).
8. Haslam, Katz, Moody, and Skarsgard: Phys. Rev. 80, 318 (1950).
9. Johns, Katz, Douglas, and Haslam: Phys. Rev. 80, 1062 (1950).
10. Sher, Halpern, and Stephens: Phys. Rev. 81, 154 (1951).
11. Harvey: Phys. Rev. 81, 353 (1951).
12. Strait, Van Patter, Buechner, and Sperduto: Phys. Rev. 81, 747 (1951).
13. Katz, Johns, Baker, Haslam, and Douglas: Phys. Rev. 82, 271 (1951).
14. Duckworth and Preston: Phys. Rev. 82, 468 (1951).
15. Li, Whaling, Fowler, and Lauritsen: Phys. Rev. 83, 512 (1951).
of Stable Nuclei (Continued)

16. Duckworth, Kegley, Olson, and Stanford: Phys. Rev. 83, 1114 (1951).
17. Sher, Halpern, and Mann: Phys. Rev. 84, 387 (1951).
18. Collins, Nier, and Johnson: Phys. Rev. 84, 717 (1951).
19. Hunton: Can. J. Phys. 29, 463 (1951).

19a. Mandeville, Swann, Chatterjee, and Van Patter: Phys. Rev. 85, 193 (1952).
20. Geschwind, Gunther-Mohr, and Silvey: Phys. Rev. 85, 474 (1952).
21. Noyes, Van Hoomissen, Miller, and Waldman: Phys. Rev. 85, 727 (1952).
22. Stanford, Duckworth, Hogg, and Geiger: Phys. Rev. 85, 1039 (1952).
23. Eisinger, Bederson, and Feld: Phys. Rev. 86, 73 (1952).
24. Collins, Nier, and Johnson: Phys. Rev. 86, 408 (1952).
25. Stanford, Duckworth, Hogg, and Geiger: Phys. Rev. 86, 617 (1952).
26. Ting, Biard, and Williams: Phys. Rev. 86, 618 (1952).
27. Johnson: Phys. Rev., 87, 166 (1952).
28. Walchli and Morgan: Phys. Rev. 87, 541 (1952).
29. Tucker and Gregg: Phys. Rev. 87, 907 (1952).
30. Murakawa and Suwa: Phys. Rev. 87, 1048 (1952).
31. Halsted: Phys. Rev. 88, 666 (1952).
32. Li: Phys. Rev. 88, 1038 (1952).
33. Brown and Tomboulian: Phys. Rev. 88, 1158 (1952).
34. Johnson: Phys. Rev. 88, 1213 (1952).
35. Kanda: J. Phys. Soc. Japan 7, 296 (1952).
36. Bogle and Scovil: Proc. Phys. Soc. (London) A65, 368 (1952).

## NUCLEAR PHYSICS

36a. Elliott and Stevens: Proc. Phys. Soc. (London) A65, 370 (1952).
37. Ajzenberg and Lauritsen: Revs. Modern Phys. 42, 321 (1952).
38. Klinkenberg: Revs. Modern Phys. 24, 63 (1952).
39. Steudel: Z. Physik 132, 429 (1952).
40. Ogata and Matsuda: Phys. Rev. 89, 27 (1953).
41. Ogata and Matsuda: Phys. Rev. 89, 333 (1953).
42. Javan, Silvey, Townes, and Grosse: Phys. Rev. 91, 222 (1953).
43. Sprague and Tomboulian: Phys. Rev. 91, 476 (1953).
44. Murakawa and Kamei: Phys. Rev. 92, 254 (1953).
45. Hogg and Duckworth: Can. J. Phys. 31, 942 (1953).
46. Hollander, Perlman, and Seaborg: Revs. Modern Phys. 25, 469 (1953).
47. Brun, Oeser, Staub, and Telschow: Phys. Rev. 93, 172 (1954).
48. Sogo and Jeffries: Phys. Rev. 93, 174 (1954).
49. Waldron, Schultz, and Kohman: Phys. Rev. 93, 254 (1954).
50. Dehmelt, Robinson, and Gordy: Phys. Rev. 93, 480 (1954).
51. Brun, Oeser, Staub, and Telschow: Phys. Rev. 93, 904 (1954).
52. Collins, Nier, and Johnson: Phys. Rev. 94, 398 (1954).
53. Bird and Townes: Phys. Rev. 94, 1203 (1954).
54. Hogg and Duckworth: Can. J. Phys. 32, 65 (1954).
55. Pake: Ann. Rev. Nuclear Sci. 4 (1954).
56. Endt and Kluyver: Revs. Modern Phys. 26, 95 (1954).

Assumption (2), if rigidly adhered to, leads to an extreme single-particle model, in which the properties of odd or odd-odd nuclei are to be deduced from the effects of the odd particle(s) alone. This model meets with a high degree of success in accounting for nuclear spins and parities but fails in a few cases, notably $N$ or $Z=11$ or 25 , or $Z=9$; its success is less marked, but still noteworthy, for more complex properties such as magnetic and quadrupole moments. Somewhat more general is the oddgroup model, which allows for interactions among an odd number of identical particles outside a closed shell but retains the features of the single-particle model as regards an even number of identical particles outside a shell. This model can account for the spins of systems with $N$ or $Z=11$ or 25 . A still more general model may be called the open-shell model; this permits interactions among all particles outside closed shells. A generalization in a different direction allows for a deformation of the "core" of nucleons in closed shells, either as a simple distortion ${ }^{1}$ or as the excitation of "surface waves," the core being treated as a liquid drop. ${ }^{2}$

Both the single-particle and odd-group models treat odd-odd nuclei by ascribing to each group separately the properties it could be expected to have if the other group were even, and then combining the results. If the total angular momentum of one group is $j_{1}$, that of the other $j_{2}$, then the spin $I$ of the nucleus lies between the bounds

$$
\left|j_{1}-j_{2}\right| \leq I \leq j_{1}+j_{2}
$$

Some semiempirical rules have been set forth to reduce the indicated range of choice. One general set ${ }^{3}$ is: given the $j$ 's and corresponding $l$ 's of the odd groups,

$$
\begin{array}{ll}
I=\left|j_{1}-j_{2}\right| & \text { for } j_{1}+j_{2}+l_{1}+l_{2}=2 K \\
I>\left|j_{1}-j_{2}\right| & \text { for } j_{1}+j_{2}+l_{1}+l_{2}=2 K+1
\end{array}
$$

Another ${ }^{4}$ applies to systems in which one odd group consists of a single particle outside a closed shell while the other is one particle short of forming a closed shell; then the rule is $I=j_{1}+j_{2}-1$. Both have some theoretical justification; in the only
${ }^{1}$ Rainwater, Phys. Rev. 79, 432 (1950).
${ }^{2}$ Foldy and Milford, Phys. Rev. 80, 751 (1950).
3 Nordheim, Phys. Rev. 78, 294 (1950).
${ }^{4}$ Kurath, Phys. Rev. 91, 1430 (1953).

Table 8b-2. Level Order

| Level | Proton levels |  | Total identical nucleons | Neutron levels |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. of protons |  |  | No. of neutrons |  | Level |
|  | In level | In shell (in subshell) |  | In shell (in subshell) | In level |  |
| $1 s_{\frac{1}{3}}$ | 2 | 2 | 2 | 2 | 2 | $1 s_{\frac{1}{3}}$ |
| $2 p_{3}$ | 4 |  |  |  | 4 | $2 p_{3}$ |
| $2 p_{1}$ | 2 | 6 | 8 | 6 | 2 | $2 p_{\frac{1}{2}}$ |
| $3 d_{5}$ | 6 | (6) | (14) | (6) | 6 | $3 d^{\text {s }}$ |
| $2 s_{\frac{1}{2}}$ | 2 | (2) | (16) | (2) | 2 | $2 s_{\frac{1}{2}}$ |
| $3 d_{3}$ | 4 | 12 | 20 | 12 | 4 | $3 d_{3}$ |
| $4 f_{7}$ | 8 | 8 | 28 | 8 | 8 | $4 f_{z}$ |
| $3 p_{3}$ | 4 |  |  |  | 4 | $3 p_{3}$ |
| $4 f_{i}$ | 6 | (10) | (38) | (10) | 6 | $4 f_{\frac{1}{2}}$ |
| $3 p_{\frac{1}{2}}$ | 2 | (2) | (40) | (2) | 2 | $3 p_{1}$ |
| $5 g_{2}$ | 10 | 22 | 50 | 22 | 10 | $5 g_{2}$ |
| $5 g_{3}$ | 8 | - (8) | (58) |  | 6 | $4{ }^{4}$ |
| $4 d_{\frac{5}{2}}$ | 6 |  |  |  | 8 | $5 g_{\frac{7}{2}}$ |
| $6 h_{\text {2 }}$ | 12 |  |  |  | 12 | $6 h_{\gamma_{12}}$ |
| $4 d_{3}$ | 4 | (22) | (80) | (30) | 4 | $4 d_{3}$ |
| 3s ${ }_{\frac{1}{2}}$ | 2 | 32 | 82 | 32 | 2 | $3 s_{\frac{1}{2}}$ |
| $6 h_{\frac{9}{2}}$ | 10 |  | 126 |  | 8 | ${ }^{5} 5{ }_{\frac{1}{2}}$ |
| $5 f_{7}$ $5 f_{\text {c }}$ | 8 |  |  | . | 10 | $6 h^{2}$ |
| $5 f_{8}$ | 6 |  |  | , | 6 | $5 f_{5}{ }^{\text {a }}$ |
| $7 i_{\text {Ma }}$ | 14 |  |  | 4 | 4 | $4 p_{3}$ |
| $4 p_{3}$ <br> $4 p_{1}$ | 4 |  |  |  | 14 | $7 i_{\text {2 }}^{2}$ |
| $4 p_{1}$ | 2 |  |  |  | 2 | $4 p_{1}$ |
| $7 \mathrm{iñ}_{\text {® }}$ | 12 |  |  |  | 10 | $6 g_{8}$ |
|  |  |  |  |  | 12 | $7 \mathrm{in}_{\text {, }}$ |
|  |  |  |  |  | 6 | $5 d_{5}$ |
|  |  |  |  |  | 8 | $6 g_{\frac{7}{2}}$ |
|  |  |  |  |  | 4 | $5 d_{3}$ |

case in which they conflict and a measurement has been made ( ${ }_{19} \mathrm{~K}^{40}$ ), the agreement is with the second rule.

8b-3. Semiempirical Mass Formulas. Wigner ${ }^{1}$ deduces for the binding energy of a nucleus the expression

$$
E_{B}=\frac{1}{2} A(A-1) L^{\prime}-\Xi L+B A+\left(\frac{20 B}{9}\right)\left(T_{\zeta^{2}}+\frac{1}{2} \delta_{A}\right) A^{-1}+C Z(Z-1) A^{-\frac{1}{2}}
$$

where

$$
\begin{aligned}
T_{\zeta} & =\frac{1}{2}(N-Z) \\
\delta_{A} & =1-\frac{1}{2}\left[(-1)^{N}+(-1)^{Z}\right] \\
\Xi & =2 A-\left(\frac{A^{2}}{8}\right)-\frac{1}{2} T_{\zeta}\left(T_{\zeta}+4\right)-\frac{3}{4} \delta_{A}
\end{aligned}
$$

${ }^{1}$ Wigner, "University of Pennsylvania Bicentennial Conference," University of Pennsylvania Press, Philadelphia, 1949.
$B$ and $C$ are constants, related by

$$
B C^{2}=\left(3 \pi^{2}\right)^{\frac{3}{3}}\left(\frac{9 \hbar e^{2}}{M c}\right)^{2} ;
$$

and $L$ and $L^{\prime}$ are functions of $A$. The first two terms are potential energy, the next two kinetic energy, and the last the Coulomb energy. $C$ can be evaluated from mirror nuclei, and has the value $0.635 \mathrm{~mm} \mu . \quad L$ and $L^{\prime}$ can be calculated as follows: the difference between binding energies of two isobars depends only on $L$ and known or calculable quantities; thus $L$ can be determined (for a given $A$ ), and then from the original equation $L^{\prime}$ is determined. ${ }^{1}$

Carrying out the analogy between nuclear matter and liquid droplets gives the equation ${ }^{2}$

$$
M(Z, N)=N M_{n}+Z M_{p}-\alpha A+\beta(N-Z)^{2} A^{-1}+\gamma A^{\frac{2}{3}}+\epsilon Z^{2} A^{-\frac{1}{3}}
$$

The first two terms represent the masses of the constituents, the third term a "volume" energy, the fourth a symmetry energy, the fifth a surface energy, and the last the Coulomb energy. The last term is sometimes written as $\epsilon Z(Z-1) A^{-\frac{1}{3}}$, with resulting changes in results to be given below. The most stable nucleus for a given value of $A$ has atomic number

$$
Z_{A}=\frac{1}{2} A\left(4 \beta+M_{n}-M_{p}\right)\left(4 \beta+\epsilon A^{3}\right)^{-1},
$$

and mass

$$
M\left(A, Z_{A}\right)=\left(M_{n}-\alpha+\beta\right) A+\gamma A^{\frac{3}{3}}-\frac{1}{2}\left(4 \beta+M_{n}-M_{p}\right) Z_{A} .
$$

The Coulomb constant $\epsilon$ is evaluated from mirror nuclei, $\beta$ from a fit of the curve of $Z_{A}$ vs. $A$ with known stable elements, and $\alpha$ and $\gamma$ by fitting the masses of two stable elements.

Bohr and Wheeler ${ }^{3}$ evaluate $Z_{A}$ vs. $A$ empirically, and write

$$
\begin{gathered}
M\left(Z_{A}, A\right)=A\left(1+f_{A}\right), \\
M(Z, A)=M\left(Z_{A}, A\right)+\frac{1}{2} B_{A}\left(Z-Z_{A}\right)^{2}+\left\{\begin{array}{c}
0, A \text { odd; } \\
-\frac{1}{2} \delta_{A}, A \text { even, } Z \text { even } \\
+\frac{1}{2} \delta_{A}, A \text { even, } Z \text { odd }
\end{array}\right.
\end{gathered}
$$

$f_{A}$ is the average value of the packing fraction around mass number $A$;

$$
B_{A}=\left[M_{p}-M_{n}+\left(6 Z_{A} e^{2}\right)\left(5 r_{0} A^{\frac{1}{3}}\right)^{-1}\right]\left[\frac{1}{2} A-Z_{A}\right]^{-1}+\left(6 e^{2}\right)\left(5 r_{0} A^{\frac{1}{3}}\right)^{-1} ;
$$

and $\delta_{A}$ is a pairing energy, evaluated empirically. Their values for $\delta_{A}$ range from 2.8 Mev at $A=50$ to 1.0 Mev at $A=240$.

The Bethe-Bacher formula can be put in this form: ${ }^{4}$ using the above expressions for $Z_{A}$ and $M\left(A, Z_{A}\right)$,

$$
M(Z, A)=M\left(Z_{A}, A\right)+\left(4 \beta+M_{n}-M_{p}\right) \frac{\left(Z-Z_{A}\right)^{2}}{2 Z_{A}}
$$

Both references also add the pairing-energy term; they use $\delta_{A}=0.072 A^{-\frac{3}{2}} \mathrm{amu}$ without theoretical justification.
${ }^{1}$ For further details and values of $L$ and $L^{\prime}$ see Collins, Nier, and Johnson, Phys. Rev. 86, 408 (1952) ; and Halsted, Phys. Rev. 88, 666 (1952).
${ }^{2}$ Bethe and Bacher, Revs. Modern Phys. 8, 82 (1937).
${ }^{3}$ Bohr and Wheeler, Phys. Rev. 56, 426 (1939).
${ }^{4}$ Fermi, "Nuclear Physics," University of Chicago Press, Chicago, 1950; and Metropolis and Reitwiesner, "Table of Atomic Masses," unpublished, 1950.

No account has been taken here of shell-structure effects. Wapstra ${ }^{1}$ suggests an additional term in the liquid-drop formula of the form

$$
E_{i}=A_{i} f\left(\frac{Z-Z_{i}}{W_{i}}\right)
$$

for the $i$ th proton shell, and an analogous term for neutrons; $f(x)$ is an unknown function such that $f(0)=1, f(-x)=f(x)$. Taking for simplicity $f(x)=\left(1+x^{2}\right)^{-1}$, he gets good results with $W_{i}=3.5$ for all $i, A_{Z=50}=A_{N=50}=6.25 \mathrm{Mev}, A_{N=82}=6.00$ Mev.

Stern ${ }^{2}$ adds to the liquid-drop formula, for $A \geq 208$, a term

$$
0.01270-0.02340 \exp [-18(A-208) / 208] ;
$$

no theoretical explanation is offered, but agreement with experimental data is improved.
Coryell ${ }^{3}$ suggests that solutions for $Z_{A}, B_{A}$, and $\delta_{A}$ should be sought only locally, i.e., between shells, and that good results follow from locally linear dependence of $Z_{\boldsymbol{A}}$ on $A$.

Kohman ${ }^{4}$ maintains that the pairing-energy term should have the form $\frac{1}{2} \pi_{A}(-1)^{z+1}$ $+\frac{1}{2} \nu_{A}(-1)^{N+1}$. With $\pi_{A}+\nu_{A}=\delta_{A}, \pi_{A}-\nu_{A}=\epsilon_{A}$, then empirically $\delta_{A} \cong 1.3 \mathrm{Mev}$, $\epsilon_{A}=0.1 \mathrm{Mev}$. See also Suess. ${ }^{5}$

Some attempts have been made to evaluate the coefficients in the liquid-drop formula on theoretical grounds, or to deduce the form of the equation ${ }^{6}$ or to take account of other factors such as compressibility of nuclear matter. ${ }^{7}$ However, in general the added complexity appears not to be compensated for by a significant increase in accuracy. It is of some interest to note that the expression deduced by Allard has some points of similarity to both the Wigner formula and the liquid-drop formula.

8b-4. Stability Rules. General Considerations. Assuming only (1) attractive pairing forces between nucleons and (2) saturation of nuclear forces, Sengupta ${ }^{8}$ shows that, if an odd- $A$ nuclide is $\beta^{-}$-unstable, so are all its isobars of smaller $Z$; if an odd- $A$ nuclide is $\beta^{+}$- or electron-capture-unstable, so are all its isobars of larger $Z$.

Let a given nuclide ${ }^{9}$ be specified by the number of four groups $m$, the number of ungrouped neutrons $n(=N-2 m$ ), and the number of unpaired protons $p$ ( $=Z-2 m,=0$ or 1 ). Define (by interpolation, if necessary) $E_{n}(m, n, p)$ and $E_{p}(n, m, p)$ as the energy gained by adding an even neutron or proton, respectively, to nuclide ( $m, n, p$ ), $E_{n}^{\prime}(m, n, p)$ and $E_{p}^{\prime}(m, n, p)$ as the energy gained by adding odd particles, and $E_{c}(m, n, p)$ as the Coulomb energy of nuclide ( $m, n, p$ ). Let $n_{1}, n_{2}, n_{3}$, and $n_{4}$ be the solutions of

$$
\begin{aligned}
& E_{c}\left(m+1, n_{1}-4,0\right)-E_{c}\left(m, n_{1}-1,1\right)+ m_{e} c^{2} \\
&=E_{p}\left(m, n_{1}-2,1\right)-E_{n}^{\prime}\left(m, n_{1}-2,1\right), \\
& E_{c}\left(m, n_{2}-1,1\right)-E_{c}\left(m, n_{2}, 0\right)+m_{e} c^{2}=E_{p}^{\prime}\left(m, n_{2}-1,0\right)-E_{n}^{\prime}\left(m, n_{2}-1,0\right), \\
& E_{c}\left(m+1, n_{3}-4,0\right)-E_{c}\left(m, n_{3}-1,1\right)+m_{e} c^{2} \\
&=E_{p}\left(m, n_{3}-2,1\right)-E_{n}\left(m, n_{3}-2,1\right), \\
& E_{c}\left(m, n_{4}-1,1\right)-E_{c}\left(m, n_{4}, 0\right)+m_{e} c^{2}=E_{p}^{\prime}\left(m, n_{4}-1,0\right)-E_{n}\left(m, n_{4}-1,0\right) .
\end{aligned}
$$

${ }^{1}$ Physica 18, 83 (1952).
${ }^{2}$ Revs. Modern Phys. 21, 316 (1949).
${ }^{3}$ Ann. Rev. Nuclear Sci. 3, 305 (1953).
${ }^{4}$ Phys. Rev. 85, 530 (1952); also Suess, Phys. Rev. 81, 1071 (1951).
${ }^{5}$ Phys. Rev. 81, 1071 (1951).
${ }^{6}$ For example, Gombas, Ann. Physik 10, 253 (1952) ; Allard, J. phys. radium 8 (ser. 8), 65 (1947) ; Hammack, PhD thesis, Washington University, 1951.
${ }^{7}$ Feenberg, Revs. Modern Phys. 19, 239 (1947).
${ }^{8}$ Phys. Rev. 89, 1296 (1953).
${ }^{9}$ Fuchs, Proc. Cambridge Phil. Soc. 35, 242 (1939).

Then stable isobars of nuclide ( $m, n, p$ ) can exist only for $n_{1}<n<n_{4}$, stable nuclides of type ( $m, 2 k, 1$ ) only for $n_{2}<2 k+1<n_{3}$. Neglecting spin effects, $n_{3}-n_{2} \cong 2$; spin effects generally tend to increase this somewhat. Also $n_{4}-n_{3}=n_{2}-n_{1}$. Rough estimates give

$$
\begin{gathered}
n_{4}-n_{1} \cong 3-7, \\
n_{4}-n_{30}=n_{2}-n_{1} \cong 0.5-2.5
\end{gathered}
$$

The difference between $n_{4}$ and $n_{1}$ should increase with increasing $m$; the actual decrease beyond $m \cong 30$ cannot be explained on these assumptions.

Shell structure is not taken into account in these estimates (or in others below). Its effect may be described ${ }^{1}$ as a tendency to narrow the limits of stability when a "magic" number lies between them, to widen them when such a number lies outside but near them. Another description would be to say that the lines of stability tend to lie along the "magic" number lines.

Specific Models. McMillan ${ }^{2}$ finds that, if nucleons form a degenerate Fermi gas, with $n-n, p-p$, and $n-p$ forces equal apart from Coulomb interaction, the curve of greatest stability has the form

$$
Z_{A}=\frac{1}{2} A\left[1+(9 K)(8 \mu)^{-1} A^{\frac{2}{3}}\right]^{-1}
$$

where $\mu$ is the maximum kinetic energy and $K$ a constant whose value depends on the proton density distribution (cf. relation obtained by Bethe and Bacher from liquiddrop model, above).

The liquid-drop model gives for the energy available for $\beta$ decay of nuclide $(A, Z)^{3}$

$$
E_{\beta}=B_{A}\left\{\left|Z-Z_{A}\right|-\frac{1}{2}\right\}+\left\{\begin{array}{l}
0, A \text { odd, } \\
+\delta_{A}, A \text { even, } Z \text { odd, } \\
-\delta_{A}, A \text { even, } Z \text { even. }
\end{array}\right.
$$

From this ${ }^{4}$ the upper limit of $\beta$ stability is $Z_{A}^{\prime \prime}=Z_{A}+S_{A}$, the lower limit $Z_{A}^{\prime}=Z_{A}-S_{A}$, where $S_{A}=\left(\delta_{A} / B_{A}\right)+\frac{1}{2}$. Below $A \cong 30, B_{A}>2 \delta_{A}$ and $S_{A}<1$, and there may be no even-even nuclide between $Z_{A}^{\prime}$ and $Z_{A}^{\prime \prime}$; in this case an odd-odd one may be stable.

The energy of an $\alpha$ particle emitted by nuclide $(A, Z)$ is ${ }^{5}$

$$
Q_{\alpha}=\Delta_{4}\left(A f_{A}\right)-f_{\mathrm{Ho}_{0}}-\frac{1}{2} B_{A}\left(2-\Delta_{4} Z_{A}\right)^{2}-B_{A}\left(2-\Delta_{4} Z_{A}\right)\left(Z-Z_{A}\right),
$$

where $\Delta_{n} F(A)=F(A)-F(A-n)$. If $Z_{A}$ and $A f_{A}$ are approximately linear in $A$, then

$$
Q_{\alpha} \cong \Delta_{4}\left(A f_{A}\right)-f_{\mathrm{He}}-\frac{1}{2} B_{A}\left(2-\Delta_{4} Z_{A}\right)^{2}-B_{A} \Delta_{1} Z_{A}\left(2-\Delta_{4} Z_{A}\right)\left(A-A_{Z}\right),
$$

with $A_{Z}$ the most stable $A$ for given $Z$; the main term is $\Delta_{4}\left(A f_{A}\right)$. Nuclide $(A, Z)$ is $\alpha$-unstable for $Q_{\alpha}>0$.
For liquid-drop model with shell-effect correction, Wapstra ${ }^{6}$ deduces for the line of maximum stability ("center of the valley of stability")

$$
Z_{c}=Z_{A}-\frac{M_{n}-M_{\mathrm{H}}}{4 c}-\frac{A_{i}}{4 c} \phi_{i}\left(Z_{c}\right),
$$

[^359]and for the limits of stability
$$
Z_{i}=Z_{A}-\frac{M_{n}-M_{\mathrm{H}}}{4 c} \pm \frac{1+\delta_{A}}{2 c}+\frac{A_{i}}{4 c} \phi_{i}\left(Z_{l} \mp 1\right),
$$
with
$$
c=\frac{1}{4} \epsilon A^{-3}\left(A-2 Z_{A}\right)^{-1} \quad \phi_{i}(Z)=f\left(\frac{Z-Z_{i}-1}{2 W_{i}}\right)-f\left(\frac{Z-Z_{i}+1}{2 W_{i}}\right)
$$

# 8c. Passage of Particles through Matter 

WALTER JOHN ${ }^{1}$<br>University of Illinois

8c-1. Introduction. This article presents some of the commonly used formulas and data concerning the passage of particles through matter. Because of space limitations, much useful material has been omitted. For general discussion of these topics and extensive bibliographies to the literature, the reader is referred to H . Bethe and J. Ashkin, Part II, "Experimental Nuclear Physics," E. Segrè, ed., John Wiley \& Sons, Inc., New York, 1953, and to S. K. Allison and S. D. Warshaw, Revs. Modern Phys. 25, 779 (1953).

8c-2. Range-Energy Relations for Heavy Charged Particles. Heavy charged particles lose energy principally by inelastic collisions with the electrons of the atoms in the stopping material. The average energy loss per centimeter of path length is called the stopping power. The stopping power is given by

$$
-\frac{d E}{d x}=\frac{4 \pi e^{4} z^{2} N Z}{m v^{2}}\left[\ln \frac{2 m v^{2}}{I}-\ln \left(1-\beta^{2}\right)-\beta^{2}\right]
$$

where $z=$ charge number of the incident particle
$N=$ number of atoms $/ \mathrm{cm}^{3}$ of the stopping material
$Z=$ atomic number of the stopping material
$m=$ electron mass
$v=$ velocity of the incident particle
$\beta=v / c$, where $c=$ the velocity of light
$I$ is the average excitation potential of the atom. $I$ is approximately $10 Z \mathrm{ev} .{ }^{2}$
The range of a particle is obtained from the stopping power by integration. The range of a particle of charge $z e$, mass $M$, and kinetic energy $E$ may be obtained from the range of a proton of energy $\left(M_{p} / M\right) E$, where $M_{p}$ is the proton mass, by the following relation:

$$
R_{Z, M}(E)=\frac{M}{M_{p} Z^{2}} R_{p}\left(\frac{M}{M_{p}} E\right)
$$

The tables for energy loss are derived from considerations of collision losses only.

[^360]Table 8c-1. Rate of Energy Loss and Range of Protons in Copper, $I=309.91 \mathrm{Ev}^{*}$

| E, Mev | $-\frac{d E}{d x}, \mathrm{Mev}^{-1} \mathrm{~cm}^{2}$ | $R, \mathrm{~g} \mathrm{~cm}^{-2}$ |
| :---: | :---: | :---: |
| 4 |  | $4.666 \times 10^{-2}$ |
| 5 | 47.05 | 6.803 |
| 6 | 41.27 | 9.078 |
| 8 | 33.42 | $1.4499 \times 10^{-1}$ |
| 10 | 28.29 | 2.1031 |
| 12 | 24.65 | 2.8626 |
| 14 | 21.92 | 3.7248 |
| 16 | 19.79 | 4.6865 |
| 18 | 18.08 | 5.7452 |
| 20 | 16.67 | 6.8985 |
| 22 | 15.49 | 8.1444 |
| 24 | 14.48 | 9.4811 |
| 26 | 13.61 | $1.0907 \times 10^{0}$ |
| 28 | 12.85 | 1.2420 |
| 30 | 12.19 | 1.4019 |
| 35 | 10.82 | 1.8384 |
| 40 | 9.757 | 2.3259 |
| 45 | 8.913 | 2.8628 |
| 50 | 8.223 | 3.4474 |
| 55 | 7.647 | 4.0785 |
| 60 | 7.160 | 4.7547 |
| 65 | 6.741 | 5.4749 |
| 70 | 6.377 | 6.2380 |
| 75 | 6.057 | 7.0430 |
| 80 | 5.774 | 7.8888 |
| 85 | 5.523 | 8.7746 |
| 90 | 5.296 | 9.6994 |
| 95 | 5.093 | $1.0662 \times 10$ |
| 100 | 4.908 | 1.1663 |
| 110 | 4.585 | 1.3773 |
| 120 | 4.312 | 1.6023 |
| 130 | 4.079 | 1.8409 |
| 140 | 3.877 | 2.0925 |
| 150 | 3.701 | 2.3566 |
| 160 | 3.545 | 2.6328 |
| 170 | 3.407 | 2.9206 |
| 180 | 3.284 | 3.2197 |
| 190 | 3.172 | 3.5296 |
| 200 | 3.072 | 3.8500 |
| 225 | 2.858 | 4.6948 |
| 250 | 2.686 | 5.5979 |
| 275 | 2.545 | 6.5548 |
| 300 | 2.426 | 7.5615 |
| 325 | 2.326 | 8.6143 |
| 350 | 2.240 | 9.7099 |
| 375 | 2.166 | $1.0845 \times 10^{2}$ |

Table 8c-1. Rate of Energy Loss and Range of Protons in Copper, $I=309.91 \mathrm{Ev}^{*}$ (Continued)

| $E, \mathrm{Mev}$ | $-\frac{d E}{d x}, \mathrm{Mev} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ | $R, \mathrm{~g} \mathrm{~cm}^{-2}$ |
| :---: | :---: | :---: |
| 400 | 2.101 | 1.2018 |
| 425 | 2.045 | 1.3224 |
| 450 | 1.994 | 1.4463 |
| 475 | 1.948 | 1.5731 |
| 500 | 1.909 | 1.7028 |
| 550 | 1.840 | 1.9698 |
| 600 | 1.784 | 2.2459 |
| 650 | 1.737 | 2.5300 |
| 700 | 1.698 | 2.8212 |
| 750 | 1.665 | 3.1186 |
| 800 | 1.638 | 3.4215 |
| 850 | 1.613 | 3.7294 |
| 900 | 1.592 | 4.0414 |
| 950 | 1.575 | 4.3572 |
| 1,000 | 1.558 | 4.6764 |
| 1,100 | 1.533 | 5.3235 |
| 1,200 | 1.514 | 5.9800 |
| 1,300 | 1.499 | 6.6439 |
| 1,400 | 1.488 | 7.3134 |
| 1,500 | 1.480 | 7.9874 |
| 1,600 | 1.473 | 8.6647 |
| 1,700 | 1.469 | 9.3445 |
| 1,800 | 1.466 | $1.0026 \times 10^{3}$ |
| 1,900 | 1.464 | 1.0709 |
| 2,000 | 1.463 | 1.1393 |
| 2,250 | 1.464 | 1.3102 |
| 2,500 | 1.467 | 1.4808 |
| 2,750 | 1.473 | 1.6508 |
| 3,000 | 1.481 | 1.8201 |
| 3,250 | 1.489 | 1.9885 |
| 3,500 | 1.497 | 2.1560 |
| 3,750 | 1.506 | 2.3226 |
| 4,000 | 1.515 | 2.4881 |
| 4,250 | 1.524 | 2.6526 |
| 4,500 | 1.533 | 2.8163 |
| 4,570 | 1.542 | 2.9789 |
| 5,000 | 1.551 | 3.1407 |
| 5,500 | 1.568 | 3.4613 |
| 6,000 | 1.584 | 3.7786 |
| 6,500 | 1.600 | 4.0926 |
| 7,000 | 1.616 | 4.4036 |
| 7,500 | 1.630 | 4.7116 |
| 8,000 | 1.644 | 5.0170 |
| 8,500 | 1.658 | 5.3198 |
| 9,000 | 1.671 | 5.6202 |
| 9,500 | 1.683 | 5.9182 |
| 10,000 | 1.695 | 6.2142 |

[^361]

Fig. 8c-1. Rate of energy loss of protons in air. (Aron, Hoffman, and Williams, AECU 663.)


Fig. 8c-2. Range-energy relation for protons in air. (Aron, Hoffman, and Williams, AECU 663.)

CURVE II: $100(-\mathrm{dE} / \mathrm{dx})\left(\mathrm{MEV} / \mathrm{mg}-\mathrm{cm}^{-2}\right)$


Fig. 8c-3. Rate of energy loss for protons in aluminum. (Aron, Hoffman, and Williams, $A E C U$ 663.)


Fig. 8c-4. Range-energy relation for protons in aluminum ( 0 to 18 Mev ). (Aron, Hoffman, and Williams, AECU 663.)

Table 8c-2. Rate of Energy Loss and Range of Protons in Silver, $I=470 \mathrm{Ev}^{*}$

| $E, \mathrm{Mev}$ | $-\frac{d E}{d x}, \mathrm{Mev} \mathrm{~g}^{-1} \mathrm{~cm}^{2}$ | $R, \mathrm{~g} \mathrm{~cm}^{-2}$ |
| :---: | :---: | :---: |
| 4 | 46.436 | $6.260 \times 10^{-2}$ |
| 6 | 35.194 | $1.1263 \times 10^{-1}$ |
| 8 | 28.682 | 1.7597 |
| 10 | 24.385 | 2.5189 |
| 12 | 21.320 | 3.3985 |
| 14 | 19.024 | 4.3935 |
| 16 | 17.224 | 5.5000 |
| 18 | 15.770 | 6.7149 |
| 20 | 14.569 | 8.0356 |
| 22 | 13.559 | 9.4598 |
| 26 | 11.950 | $1.2610 \times 10^{0}$ |
| 30 | 10.722 | 1.6150 |
| 34 | 9.7514 | 2.0067 |
| 38 | 8.9638 | 2.4350 |
| 42 | 8.3106 | 2.8989 |
| 46 | 7.7596 | 3.3974 |
| 50 | 7.2880 | 3.9296 |
| 60 | 6.3594 | 5.4028 |
| 70 | 5.6737 | 7.0711 |
| 80 | 5.1454 | 8.9248 |
| 90 | 4.7254 | $1.0955 \times 10$ |
| 100 | 4.3829 | 1.3155 |
| 110 | 4.0982 | 1.5516 |
| 120 | 3.8577 | 1.8033 |
| 130 | 3.6517 | 2.0699 |
| 140 | 3.4732 | 2.3508 |
| 150 | 3.3171 | 2.6455 |
| 160 | 3.1794 | 2.9536 |
| 170 | 3.0570 | 3.2744 |
| 180 | 2.9474 | 3.6077 |
| 190 | 2.8489 | 3.9258 |
| 200 | 2.7598 | 4.3095 |
| 225 | 2.5702 | 5.2493 |
| 250 | 2.4173 | 6.2532 |
| 275 | 2.2915 | 7.3161 |
| 300 | 2.1864 | 8.4337 |
| 325 | 2.0972 | 9.6017 |
| 350 | 2.0208 | $1.0817 \times 10^{2}$ |
| 375 | 1.9547 | 1.2075 |
| 400 | 1.8970 | 1.3374 |
| 425 | 1.8462 | 1.4710 |
| 450 | 1.8014 | 1.6081 |
| 475 | 1.7614 | 1.7485 |
| 500 | 1.7257 | 1.8919 |
| 600 | 1.6148 | 2.4921 |
| 700 | 1.5388 | 3.1274 |

Table 8c-2. Rate of Energy Loss and Range of Protons in Silver, $I=470 \mathrm{Ev}^{*}$ (Continued)

| $E, \mathrm{Mev}$ | $-\frac{d E}{d x}, \mathrm{Mev} \mathrm{g}^{-1} \mathrm{~cm}^{2}$ | $R, \mathrm{~g} \mathrm{~cm}^{-2}$ |
| ---: | :---: | :--- |
| 800 | 1.4847 | 3.7895 |
| 900 | 1.4452 | 4.4727 |
| 1,000 | 1.4158 | 5.1721 |
| 1,200 | 1.3769 | 6.6063 |
| 1,400 | 1.3548 | 8.0718 |
| 1,600 | 1.3426 | 9.5554 |
| 1,800 | 1.3368 | $1.1049 \times 10^{3}$ |
| 2,000 | 1.3351 | 1.2546 |
| 2,500 | 1.3413 | 1.6285 |
| 3,000 | 1.3548 | 1.9995 |
| 3,500 | 1.3712 | 2.3664 |
| 4,000 | 1.3887 | 2.7287 |
| 4,500 | 1.4063 | 3.0865 |
| 5,000 | 1.4235 | 3.4399 |
| 6,000 | 1.4563 | 4.1343 |
| 7,000 | 1.4864 | 4.8139 |
| 8,000 | 1.5141 | 5.4804 |
| 9,000 | 1.5395 | 6.1353 |
| 10,000 | 1.5630 | 6.7799 |

* W. Aron, UCRL-1325.


Fia. 8c-5. Range-energy relation for protons in aluminum ( 10 to $10,000 \mathrm{Mev}$ ). (Aron,
Hoffman, and Williams AECU 663 ) Hoffman, and Williams, AECU 663.)

Fig. 8c-6. Range-energy relation for protons, deuterons, tritons, and alpha particles in Ilford C-2 emulsion. [Vigneron, J. Phys. Radium 14, 145 (1953).]

Table 8c-3. Rate of Energy Loss and Range of Protons in Lead, $I=810.79 \mathrm{EV}^{*}$

| $E$, Mev | $-\frac{d E}{d x}, \mathrm{Mev}^{-1} \mathrm{~cm}^{2}$ | $R, \mathrm{~g} \mathrm{~cm}^{-2}$ |
| :---: | :---: | :---: |
| 1 | 71.435 | $7.90 \times 10^{-3}$ |
| 2 | 51.304 | $2.505 \times 10^{-2}$ |
| 3 | 41.418 | 4.98 |
| 4 | 34.923 | 8.1668 |
| 6 | 26.940 | $1.4752 \times 10^{-1}$ |
| 8 | 22.176 | $2.2981 \times 10$ |
| 10 | 19.082 | 3.2755 |
| 12 | 16.808 | 4.3949 |
| 14 | 15.073 | 5.6537 |
| 16 | 13.700 | 7.0474 |
| 18 | 12.585 | 8.5722 |
| 20 | 11.659 | $1.0225 \times 10^{0}$ |
| 22 | 10.877 | 1.2002 |
| 24 | 10.206 | 1.3901 |
| 26 | 9.6238 | 1.5921 |
| 28 | 9.1136 | 1.8057 |
| 30 | 8.6622 | 2.0309 |
| 35 | 7.7317 | 2.6431 |
| 40 | 7.0065 | 3.3234 |
| 45 | 6.4252 | 4.0696 |
| 50 | 5.9480 | 4.8791 |
| 55 | 5.5483 | 5.7502 |
| 60 | 5.2081 | 6.6809 |
| 65 | 4.9148 | 7.6697 |
| 70 | 4.6592 | 8.7151 |
| 75 | 4.4343 | 9.8156 |
| 80 | 4.2348 | $1.0970 \times 10$ |
| 85 | 4.0566 | 1.2177 |
| 90 | 3.8963 | 1.3435 |
| 95 100 | 3.7514 | 1.4743 |
| 100 | 3.6198 | 1.6100 |
| 110 | 3.3894 | 1.8957 |
| 120 | 3.1944 | 2.1998 |
| 130 | 3.0271 | 2.5216 |
| 140 | 2.8820 | 2.8603 |
| 150 | 2.7549 | 3.2153 |
| 160 | 2.6427 | 3.5861 |
| 170 | 2.5428 | 3.9719 |
| 180 | 2.4534 | 4.3724 |
| 190 | 2.3729 | 4.7870 |
| 200 | 2.3001 | 5.2151 |
| 225 | 2.1450 | 6.3419 |
| 250 | 2.0197 | 7.5440 |
| 275 | 1.9166 | 8.8155 |
| 300 | 1.8304 | $1.0151 \times 10^{2}$ |
| 325 | 1.7572 | 1.1546 |
| 350 | 1.6945 | 1.2995 |
| 375 | 1.6402 | 1.4495 |

[^362]Table 8c-3. Rate of Energy Loss and Range of Protons in Lead, $I=810.79 \mathrm{Ev}$ (Continued)

| $E, \mathrm{Mev}$ | $-\frac{d E}{d x}, \mathrm{Mev} \mathrm{g}{ }^{-1} \mathrm{~cm}^{2}$ | $R, \mathrm{~g} \mathrm{~cm}^{-2}$ |
| :---: | :---: | :---: |
| 400 | 1.5928 | 1.6042 |
| 425 | 1.5511 | 1.7633 |
| 450 | 1.5143 | 1.9265 |
| 475 | 1.4815 | 2.0934 |
| 500 | 1.4522 | 2.2639 |
| 550 | 1.4022 | 2.6145 |
| 600 | 1.3613 | 2.9766 |
| 650 | 1.3274 | 3.3487 |
| 700 | 1.2992 | 3.7295 |
| 750 | 1.2753 | 4.1180 |
| 800 | 1.2551 | 4.5133 |
| 850 | 1.2379 | 4.9145 |
| 900 | 1.2231 | 5.3209 |
| 950 | 1.2104 | 5.7319 |
| 1,000 | 1.1994 | 6.1469 |
| 1,100 | 1.1818 | 6.9871 |
| 1,200 | 1.1686 | 7.8383 |
| 1,300 | 1.1588 | 8.6978 |
| 1,400 | 1.1516 | 9.5635 |
| 1,500 | 1.1464 | $1.0434 \times 10^{3}$ |
| 1,600 | 1.1428 | 1.1308 |
| 1,700 | 1.1405 | 1.2184 |
| 1,800 | 1.1392 | 1.3061 |
| 1,900 | 1.1387 | 1.3939 |
| 2,000 | 1.1390 | 1.4817 |
| 2,250 | 1.1417 | 1.7010 |
| 2,500 | 1.1467 | 1.9195 |
| 2,750 | 1.1531 | 2.1369 |
| 3,000 | 1.1604 | 2.3531 |
| 3,250 | 1.1681 | 2.5678 |
| 3,500 | 1.1762 | 2.7811 |
| 3,750 | 1.1844 | 2.9929 |
| 4,000 | 1.1927 | 3.2033 |
| 4,250 | 1.2009 | 3.4122 |
| 4,500 | 1.2091 | 3.6196 |
| 4,750 | 1.2171 | 3.8257 |
| 5,000 | 1.2251 | 4.0305 |
| 5,500 | 1.2405 | 4.4360 |
| 6,000 | 1.2553 | 4.8367 |
| 6,500 | 1.2694 | 5.2328 |
| 7,000 | 1.2830 | 5.6245 |
| 7,500 | 1.2959 | 6.0123 |
| 8,000 | 1.3083 | 6.3963 |
| 8,500 | 1.3202 | 6.7767 |
| 9,000 | 1.3315 | 7.1538 |
| 9,500 | 1.3425 | 7.5278 7.8988 |
| 10,000 | 1.3529 | 7.8988 |

Table 8c-4. Rate of Energy Loss of Protons in Beryllium, Mica, Aluminum, Copper, and Gold for Proton Energies from 25 to 2,000 kev*

| Proton energy, kev | $d E / d x, \mathrm{kev} \times \mathrm{cm}^{2} / \mathrm{mg}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Be | $\begin{gathered} \text { Mica } \\ \text { (muscovite) } \end{gathered}$ | Al | Cu | Au |
| 25 | 546 |  |  |  |  |
| 50 | 617 | ... | 422 | 185 | 61 |
| 75 | 640 |  | 439 | 212 | 77 |
| 100 | 615 |  | 416 | 221 | 87 |
| 150 | 521 | ... | 366 | 225 | 90 |
| 200 | 468 | $\cdots$ | 334 | 222 | 91 |
| 250 | 433 | ... | 314 | 212 | 90 |
| 300 | 405 |  | 293 | 202 | 86 |
| 350 | 381 | 312 | 279 | 190 | 84 |
| 400 | 360 | 286 | 268 | 183 | 81 |
| 450 | 342 | 266 | 258 | 175 | 79 |
| 500 | 325 | 250 | 250 | 169 | 76 |
| 550 | 311 | 236 | 241 | 162 | 74 |
| 600 | 298 | 224 | 233 | 156 | 72 |
| 650 | 284 | 214 | 224 | 151 | 70 |
| 700 | 272 | 204 | 217 | 146 | 68 |
| 750 | 266 | 196 | 210 | 141 | 66 |
| 800 | 251 | 189 | 202 | 138 | 64 |
| 850 | 241 | 182 | 196 | 133 | 62 |
| 900 | 232 | 176 | 190 | 129 | 60 |
| 950 | 223 | 171 | 183 | 127 | 58 |
| 1,000 | 215 | 165 | 177 | 124 | 56 |
| 1,050 | 206 | 160 | 171 | 120 | 54 |
| 1,100 | 198 | 154 | 165 | 117 | 52 |
| 1,150 | 192 | 150 | 159 | 113 | 51 |
| 1,200 | 188 | 146 | 154 | 110 | 49 |
| 1,250 | 182 | 143 | 148 | 108 | 48 |
| 1,300 | 178 | 139 | 143 | 105 | 47 |
| 1,350 | 175 | 136 | 139 | 102 | 46 |
| 1,400 | 171 | 133 | 135 | 100 | 45 |
| 1,500 | 164 | 127 | 127 | 96 | 44 |
| 1,600 | 158 | 122 | 123 | 91 | 42 |
| 1,700 | 152 | 117 | 120 | 88 | 42 |
| 1,800 | 148 | 112 | 117 | 83 | 42 |
| 1,900 | 144 | 108 | 115 | 79 | 42 |
| 2,000 | 139 | 102 | 112 | 75 | 42 |

[^363]8c-3. Straggling of Heavy Particles. $(\Delta R)_{E^{2}}{ }^{2}$ denotes the mean-square fluctuation in the range of particles of energy $E$, i.e.,

$$
(\Delta R)_{E^{2}}=\left[\left(R^{2}\right)_{\mathrm{av}}-\left(R_{\mathrm{av}}\right)^{2}\right]_{E}
$$

The probability of finding a particle with range between $R$ and $R+d R$ is

$$
p(R) d R=\frac{1}{\alpha \sqrt{\pi}} \exp \left[-\frac{\left(R-R_{\mathrm{av}}\right)^{2}}{\alpha^{2}}\right] d R
$$

where $\alpha^{2}=2(\Delta R)_{E^{2}}$. More accurate theory shows deviations from the Gaussian distribution function given here. $(\Delta R)_{E^{2}}$ may be calculated from

$$
(\Delta R)_{E^{2}}=4 \pi z^{2} e^{4} N Z \int_{0}^{E}\left(\frac{d E^{\prime}}{d R^{\prime}}\right)^{-3} \frac{1-\beta^{2} / 2}{1-\beta^{2}} d E^{\prime}
$$

Here $z e$ denotes the charge of the incident particle; $N$ and $Z$ the number of atoms per $\mathrm{cm}^{3}$ and their atomic number, respectively, of the stopping material; and $\beta$ is the ratio of the velocity of the incident particle to the velocity of light.

In Figs. $8 \mathrm{c}-7$ and $8 \mathrm{c}-8$ the per cent range straggling, $100(2 \sigma / R)$, where $\sigma=(\Delta R)_{E^{2}}$, is plotted as a function of particle energy for protons, deuterons, and alpha particles in copper. The straggling of protons in other elements relative to that in copper is estimated in Table 8c-5.

Table 8c-5. Proton Straggling in Be, Al, Ag, and Pb Relative to Copper Ratio of $(2 \sigma / R)$ Relative
Element to That in Cu
Be............................. 0.90

Al............................ 0.95
Ag............................ 1.02
Pb............................ 1.06
8c-4. Range of Fission Fragments. The ratio of the range of a fission fragment to the range of an alpha particle of the same initial velocity $v$ is approximately

$$
\frac{R_{F}}{R_{\alpha}}=7\left(\frac{A_{1}}{Z_{1}{ }^{\frac{3}{3}}}\right)\left(\frac{e^{2}}{\hbar v}\right)^{2}
$$

where $A_{1}$ and $Z_{1}$ are the mass number and atomic number, respectively, of the fission fragment.
8c-5. Coulomb Scattering. The differential cross section for Coulomb scattering of a charged particle by a nucleus into the solid angle $2 \pi \sin \theta d \theta$ is

$$
\begin{aligned}
d \Phi(\theta) & =\frac{2 \pi e^{4} z^{2} Z^{2}}{16 E^{2} \sin ^{4}(\theta / 2)} \sin \theta d \theta \\
& =\frac{0.8139 z^{2} Z^{2}}{E_{\mathrm{Mev}}{ }^{2}} \frac{\sin \theta d \theta}{\sin ^{4} \theta / 2} 10^{-26} \mathrm{~cm}^{2}
\end{aligned}
$$

where $\theta$ is the angle of scattering from the incident direction, and $z e$ and $Z e$ are the charges of the incident particle and the scattering nucleus, respectively. The above formula assumes that the mass of the incident particle is small compared with the mass of the nucleus.

8c-6. Energy Loss per Ion Pair. The energy loss of a charged particle per ion pair formed in the material traversed is nearly independent of the energy and type of particle.


Fig. 8c-7. Range straggling of protons, deuterons, and alpha particles in copper. Particle energies from 10 to 100 Mev . (Millburn and Schecter, UCRL-2234 rev.)


Fig. 8c-8. Range straggling of protons, deuterons, and alpha particles in copper. Particle energies from 100 to $1,000 \mathrm{Mev}$. (Millburn and Schecter, UCRL-2234 rev.)


* Extraordinary precautions were used to purify the gas. Small traces of impurity reduce $w(\mathrm{He})$ to $30 \mathrm{ev} / \mathrm{ion}$ pair, the value ordinarily obtained. Older values for neon are about $29 \mathrm{ev} / \mathrm{ion}$ pair.


## References

1. Bortner, T. E., and G. S. Hurst: Phys. Rev. 93, 1236 (1954). Pu ${ }^{239}$ alpha particles were used. This reference also gives some results with mixtures of gases.
2. Jesse, W. P., and J. Sadauskis: Phys. Rev. 90, 1120 (1953). Polonium alpha particles were used.

8c-7. Passage of Electrons through Matter. Electrons can lose energy by inelastic collisions with the electrons of the stopping material. Above a certain "critical


Fig. 8c-9. Characteristic absorption curve of monoenergetic electrons in aluminum. Point where the extension of the linear portion of the curve meets the background is called the practical range $R_{p}$. The maximum range $R_{0}$ is the point where the absorption curve runs into the background.
energy" $E_{c}$, energy loss by radiation in the electric fields of nuclei becomes important. The critical energy is dependent on the atomic number $Z$ of the stopping material according to the approximate formula

$$
E_{c} \cong \frac{800 \mathrm{Mev}}{Z}
$$

More accurate values of $E_{c}$ are given in Table 8c-7.

Table 8c-7. Critical Energy $E_{c}$ and Radiation Length $X_{0}$ for Various Substances*

| Substance | $E_{c}, \mathrm{Mev}$ | $X_{0}, \mathrm{~g} / \mathrm{cm}^{2}$ |
| :---: | :---: | :---: |
| Hydrogen. | 340 | 58 |
| Helium | 220 | 85 |
| Carbon. | 103 | 42.5 |
| Nitrogen | 87 | 38 |
| Oxygen. | 77 | 34.2 |
| Aluminum | 47 | 23.9 |
| Argon | 34.5 | 19.4 |
| Iron. | 24 | 13.8 |
| Copper | 21.5 | 12.8 |
| Lead. | 6.9 | 5.8 |
| Air. | 83 | 36.5 |
| Water. | 93 | 35.9 |

* The data in this table have been taken from E. Segre, ed., "Experimental Nuclear Physics," p. 266, John Wiley \& Sons, Inc., New York, 1953.

An important length is associated with the traversal of matter by electrons above $E_{c}$; this is the distance in which an electron's energy is reduced to $1 / e$ of its original value and is called the "radiation length" $X_{0}$. Values of this quantity are also given in Table 8c-7.


Fig. 8c-10. Range-energy curve for monoenergetic electrons in aluminum. Practical range is used. [L. Katz and A. S. Penfold, Revs. Modern Phys. 24, 28 (1952).]

The range-energy relation for electrons is not strongly dependent on the atomic number of the stopping material. Only that for aluminum is given. Monoenergetic electrons are absorbed as indicated in Fig. 8c-9, which serves to define the "practical range" $R_{p}$ and the "maximum range" $R_{0}$. The practical range, in aluminum, is given by

$$
R_{p}=412 E_{0^{n}} \mathrm{mg} / \mathrm{cm}^{2} \quad n=1.265-0.0954 \ln E_{0}
$$

for $0.01 \leq E_{0} \leq 2.5 \mathrm{Mev}$, and by

$$
R_{p}=530 E_{0}-106 \mathrm{mg} / \mathrm{cm}^{2}
$$

for $2.5 \mathrm{Mev} \leq E_{0} \leq 20 \mathrm{Mev}$. A graph of these relations is given in Fig. $8 \mathrm{c}-10$.
The formulas given above for monoenergetic electrons may be used for continuous beta-ray spectra where $R_{p}$ and $E_{0}$ refer to the maximum beta-ray range and energy, respectively. ${ }^{1}$

# 8d. Decay-energy Systematics of the Heavy Elements ${ }^{2}$ 

I. PERLMAN AND FRANK ASARO<br>University of California

8d-1. Summary of Decay Energies. Figures 8d-1 to 8d-4 summarize total decay energies for the four radioactive series. The alpha decay energy obtained by measuring the energy of the alpha particle leading to the ground state includes the energy of the recoil nucleus. The legends indicate the meaning of superscripts and parentheses attached to some of the energy values.

The curve shown in Fig. 8d-5 defines in broad outline the conditions and regions of alpha instability. A great deal more is to be learned from a more detailed examination of the region where alpha radioactivity is prominent.

Of great value to the experimentalist is that he is able to predict alpha energies, and the agreement between predicted and measured values often serves as a criterion for isotopic assignment. A number of systems for correlating alpha decay energies have been employed, and that perhaps most widely used is illustrated in Fig. 8d-6. Here the isotopes of each element on a mass number vs. energy plot are joined, resulting in a family of curves which over a wide region comprise a series of nearly parallel lines. It will be noted that in this region (above mass number about 212) alpha energies decrease with increasing mass number for each element, i.e., with increasing neutron number. The dramatic inversion in the alpha-energy trend around mass number 212 is a consequence of the major closed shells in this region at 126 neutrons and 82 protons.

8d-2. Complex Alpha Spectra. Table 8d-2 is a compilation of all alpha-particle energies and abundances in the heavy-element region.

As in other decay processes, the appearance of multiple groups in the alpha-emission process may be considered as the result of competition in populating available energy levels. Alpha-decay lifetimes are influenced by a number of factors; among these is

[^364]
## Table 8d-1. Classical and Modern Designations of the Heavy Radionuclides*

| - Name | Classical designation | Modern designation |
| :---: | :---: | :---: |
| Uranium I | U I | $\mathrm{U}^{238}$ |
| Uranium $X_{1}$. | U $X_{1}$ | Th ${ }^{234}$ |
| Uranium $Z$, uranium $X_{2}$ | $\mathrm{U} Z, \mathrm{U} X_{2}$ | $\mathrm{Pa}^{234}$ |
| Uranium II. | U II | $\mathrm{U}^{234}$ |
| Ionium . | Io | Th ${ }^{230}$ |
| Radium. | Ra | Ra ${ }^{226}$ |
| Radon. | Rn | Em ${ }^{222}$ |
| Radium $A$ | Ra $A$ | Po ${ }^{218}$ |
| Radium $B$. | Ra $B$ | $\mathrm{Pb}^{214}$ |
| Radium $C$. | $\mathrm{Ra} C$ | $\mathrm{Bi}^{214}$ |
| Radium $C^{\prime}$. | $\mathrm{Ra} C^{\prime}$ | $\mathrm{Po}^{214}$ |
| Radium $C^{\prime \prime}$. | $\mathrm{Ra} C^{\prime \prime}$ | T ${ }^{210}$ |
| Radium $D$ (radiolead) | Ra $D$ | $\mathrm{Pb}^{210}$ |
| Radium $E$. | Ra $E$ | $\mathrm{Bi}^{210}$ |
| Radium $F$ (polonium) | Ra $F$ | $\mathrm{Po}^{210}$ |
| Radium $\boldsymbol{G}$. | $\mathrm{Ra} G$ | $\mathrm{Pb}^{210}$ |
| Thorium. | Th | Th ${ }^{232}$ |
| Mesothorium ${ }_{1}$ | $\mathrm{MsTh}_{1}$ | $\mathrm{Ra}^{228}$ |
| Mesothorium ${ }_{2}$. | $\mathrm{MsTh}_{2}$ | $\mathrm{Ac}^{228}$ |
| Radiothorium | RdTh | Th ${ }^{228}$ |
| Thorium $X$. | Th $X$ | $\mathrm{Ra}^{224}$ |
| Thoron. | Tn | Em ${ }^{220}$ |
| Thorium A | Th $A$ | $\mathrm{Po}^{216}$ |
| Thorium B. | Th $B$ | $\mathrm{Pb}^{212}$ |
| Thorium $C$. | Th $C$ | $\mathrm{Bi}^{\mathbf{2 1 2}}$ |
| Thorium $C^{\prime}$ | Th $C^{\prime}$ | $\mathrm{Po}^{212}$ |
| Thorium $C^{\prime \prime}$ | Th $C^{\prime \prime}$ | T1 ${ }^{208}$ |
| Thorium D. | Th $D$ | $\mathrm{Pb}^{208}$ |
| Actinouranium. | Ac U | $\mathrm{U}^{235}$ |
| Uranium $Y$. | U Y | Th ${ }^{231}$ |
| Protoactinium. | Pa | $\mathrm{Pa}^{231}$ |
| Actinium . | Ac | $\mathrm{Ac}^{227}$ |
| Radioactinium. | RdAc | $\mathrm{Th}^{227}$ |
| Actinium $K$. | Ac $K$ | $\mathrm{Fa}^{223}$ |
| Actinium $X$. | Ac $X$ | $\mathrm{Ra}^{223}$ |
| Actinon. | An | $\mathrm{Em}^{219}$ |
| Actinium $A$ | Ac $A$ | $\mathrm{Po}^{215}$ |
| Actinium $B$. | Ac B | $\mathrm{Pb}^{211}$ |
| Actinium $C$. | Ac $C$ | $\mathrm{Bi}^{211}$ |
| Actinium $C^{\prime \prime}$. | Ac $C^{\prime \prime}$ | $\mathrm{Po}^{211}$ |
| Actinium $C^{\prime \prime}$. | Ac $C^{\prime \prime}$ | T ${ }^{207}$ |
| Actinium $D$. | Ac $D$ | $\mathrm{Pb}^{207}$ |

[^365]\[

$$
\begin{gathered}
(Z-2)^{A-4} \frac{\alpha}{\alpha} Z^{A} E C \\
(Z-3)^{A-4} \\
\underbrace{-} \\
(Z-1)^{A}
\end{gathered}
$$
\]




Fig. 8d-3. Closed decay-energy cycles for the $4 n+2$ series: $c$, calculated; $e$, estimated; ( ), uncertain.

the sharp dependence of lifetime on decay energy. There are, however, selection processes operating which can delay the highest-energy group and cause lower-energy groups to be the most prominent. As yet there is no systematic formulation of "selection rules" for the alpha-decay process.


Fig. 8d-5. Alpha decay-energy profile. Broken-line portion of curve indicates region where direct line alpha-decay measurements are absent. Plotted points on segments of crossing curves pertain to known alpha emitters of gadolinium and uranium. Half-life guidelines indicate positions of applicable lifetimes as a function of mass number.


Fig. 8d-6. Alpha decay energy vs. mass number.
Even-even Alpha Emitters. The decay schemes for two typical even-even alpha emitters are shown in Fig. 8d-7. The similarities and differences will be explained below.
principal alpha groups (the ground state and first excited state): With a high degree of certainty it can be said that the transition to the ground state is the most abundant for this nuclear type. First excited states reached by these alpha groups all have spin 2 and even parity (see Fig. 8d-7) and we shall call each the first even-spin state or simply the first even state. The alpha population to this state is close to theoretical expectations.

A summary of the energy spacings between the ground state and first even state as a function of neutron number and proton number is shown in Fig. 8d-8. The points divide into families according to atomic number and appear to reach maxima for nuclei with 126 neutrons.
rare alpha groups (higher even states and first odd state): Many of the alpha emitters which have lent themselves to detailed analysis have proved to have one or more additional groups of lower energy and in low intensity.

In each case which could be examined in the necessary detail, there was found a rare alpha group going to a state which decays by an E2 transition only to the $2+$ state. These states are those designated as $4+$ in Fig. 8d-7 and will be known as the second even states. From the nature of the gamma-ray transition, the second state could be $0+, 2+$, or $4+$; the $4+$ assignment is made largely from agreement with energy-level spacings predicted by the Bohr-Mottelson theory of rotational states.

In a few cases, very rare gamma rays have been seen (the alpha groups would be below the limits for detection) and are assigned to transitions between the third and


Fig. 8d-7. Decay schemes of $\mathrm{Th}^{228}$ and $\mathrm{Cm}^{242}$.
second even states. In the case of $\mathrm{Pu}^{238}$ decay, the gamma ray was shown to be in coincidence with that between the $4+$ and $2+$ states. Since the energy of the state defined by the gamma ray corresponds closely with expectations if it were the third even state ( $6+$ ) of the Bohr-Mottelson rotational band, it has been so designated (see $\mathrm{Cm}^{242}$ spectrum, Fig. 8d-7).
In a number of cases, a state believed to be 1 - has entered among the low-lying even states. The spectrum for $\mathrm{Th}^{228}$ which is typical of this type is shown in Fig. 8d-7. In contrast to the second even state, this state always decays both to the first even state and to the ground state. The conversion coefficients of both conform with E1 transitions as do $\alpha-\gamma$ angular correlations made on $\mathbf{T h}^{226}, \mathbf{T h}^{228}, \mathbf{T h}^{230}$, and $\mathrm{U}^{230}$. The 1 - state has probably been identified in the decay of $\mathrm{Ra}^{222}, \mathrm{Ra}^{224}, \mathrm{Ra}^{226}$, $\mathrm{U}^{232}$, and $\mathrm{Cm}^{242}$ as well as for the four cases just mentioned. From the fragmentary evidence at hand it seems possible that the state has a minimum energy at 136 neutrons and rises at both lower and higher neutron numbers.

With respect to the degree of population of the $1-$ state in the alpha-decay process, the data are too few to arrive at any generalizations. In the cases studied, the process seems to be competitive with that leading to the $4+$ state for comparable energies.

Odd-nucleon Alpha Emitters. The alpha spectra of nuclei having odd nucleons are in general considerably more complex than those of even-even nuclei and conse-

Table 8d-2. Alpha-particle Energies and Abundances

| Alpha emitter | Alpha-particle energy, Mev | Relative abundances, \% | Type of measurement |
| :---: | :---: | :---: | :---: |
| $\overline{\mathrm{Bi}}{ }^{198}$ (1.7 min) . | 6.2 | . . . . . | ion ch |
| $\mathrm{Bi}^{198}$. | 5.83 |  | ion ch |
| $\mathrm{Bi}^{199}$. | 5.47 |  | ion ch |
| $\mathrm{Bi}^{201}$. | 5.15 | . . . . ${ }^{\text {a }}$ | ion ch |
| $\mathrm{Bi}^{203}$. | 4.85 |  | range |
| $\mathrm{Bi}^{209}$. | $\sim 3.15$ |  | range |
| $\mathrm{Bi}^{210}\left(\sim 10^{6}\right.$ year) | 4.93 |  | ion ch |
| $\mathrm{Bi}^{211}$. | 6.272 | 16 | spect |
|  | 6.618 | 84 | spect |
| $\mathrm{Bi}^{212}$. | 5.481 | 0.016 | spect |
|  | 5.603 | 1.1 | spect |
|  | 5.622 | 0.15 | spect |
|  | 5.765 | 1.7 | spect |
|  | 6.047 | 69.9 | spect |
|  | 6.086 | 27.2 | spect |
| $\mathrm{Bi}^{213}$. | 5.86 |  | ion ch |
| $\mathrm{Bi}^{214}$. | 5.444 | 55 | spect |
|  | 5.505 | 45 | spect |
| Po ${ }^{200}$ | 5.84 | . . . . . | ion ch |
| Po ${ }^{201}$. | 5.70 | . . . . . | ion ch |
| Po ${ }^{202}$. | 5.59 | . . . . ${ }^{\text {. }}$ | ion ch |
| $\mathrm{Po}^{204}$. | 5.37 |  | ion ch |
| Po ${ }^{205}$. | 5.2 |  | ion ch |
| Po ${ }^{206}$. | 5.064 | 4 | spect |
|  | 5.218 | 96 | spect |
| $\mathrm{Po}^{207}$ | 5.10 | . . . . . | ion ch |
| Po ${ }^{208}$ | 5.108 |  | spect |
| Po ${ }^{209}$. | 4.877 |  | spect |
| $\mathrm{Po}^{210}$. | 4.5 | Weak | $\alpha-\gamma$ coinc |
|  | 5.299 | 100 | spect |
| $\mathrm{Po}^{211}(0.52 \mathrm{sec})$. | 6.56 | 0.53 | spect |
|  | 6.88 | 0.50 | spect |
|  | 7.434 | 99 | range |
| $\mathrm{Po}^{211}$ ? ${ }^{\text {(25 sec }}$ ) | 7.14 | . . . . . . | ion ch |
| $\mathrm{Po}^{212} . . . . . .$. | 8.776 | . . . . . $\cdot$ | spect |
| $\mathrm{Po}^{213}$. | 8.336 | . . . . . . | ion ch |
| Po ${ }^{214}$. | 7.680 | . . . . . | spect |
| $\mathrm{Po}^{215}$. | 7.365 | . . . . . | range |
| $\mathrm{Po}^{216}$. | 6.774 | . . . . ${ }^{\text {a }}$ | spect |
| Po ${ }^{217}$. | 6.5 | . . . . . | ion ch |
| Po ${ }^{218}$. | 5.998 | . . . . . | spect |
| At ${ }^{\text {202 }}$. | 6.50 | . . . . . | ion ch |
| At>203. | 6.35 | . . . . . | ion ch |
| $\mathrm{At}^{203}$. | 6.10 | . . . . . | ion ch |
| $\mathrm{At}^{\mathbf{2 0 5}}$. | 5.90 | . . . . . | ion ch |
| At ${ }^{207}$. | 5.75 | . . . . . | ion ch |
| $\mathrm{At}^{203}$ (1.7 hr) ..... | 5.65 | . . . . . ${ }^{\text {a }}$ | ion ch |

Table 8d-2. Alpha-particle Energies and Abundances (Continued)

| Alpha emitter | Alpha-particle energy, Mev | Relative abundances, \% | Type of measurement |
| :---: | :---: | :---: | :---: |
| $\mathrm{At}^{209}$. | 5.65 |  | ion ch |
| $\mathrm{At}^{210}$. | 5.355 | 37 | spect |
|  | 5.437 | 31 | spect |
|  | 5.519 | 32 | spect |
| $\mathrm{At}^{211}$. | 5.862 |  | spect |
| $\mathrm{At}^{213}$ $\mathrm{At}^{214}$ | 9.2 |  | range |
| $\mathrm{At}^{215}$. | 8.78 8.00 |  | ion ch |
| At ${ }^{216}$. | 7.79 |  | ion ch |
| $\mathrm{At}^{217}$. | 7.02 |  | ion ch |
| $\mathrm{At}^{218}$ | 6.63 |  | range |
| At ${ }^{219}$. | 6.27 |  | ion ch |
| $\mathrm{Em}^{208}$. | 6.138 |  | spect |
| $\mathrm{Em}^{209}$. | 6.02 |  | ion ch |
| Em ${ }^{211}$. | 6.036 |  | spect |
|  | 5.605 | $\sim 1.5$ | spect |
|  | 5.778 | 67 | spect |
|  | 5.847 | 33 | spect |
| Em ${ }^{215}$. | 6.262 |  | spect |
| Em ${ }^{216}$. | 8.6 8.01 |  | ion ch |
| $\mathrm{Em}^{217}$. | 7.74 |  | ion ch |
| Em ${ }^{218}$. | 6.53 | Weak | $\alpha-\gamma$ coinc |
| Em ${ }^{219}$. | 7.127 | 100 | spect |
|  | 6.214 | 4 | spect |
|  | 6.434 | 12 | spect |
|  | 6.559 | 15 | spect |
|  | 6.824 | 69 | spect |
| Em ${ }^{220}$. | 5.747 | $\sim 0.3$ | spect |
|  | 6.282 | 100 | spect |
| $\mathrm{Fr}^{212} \ldots$ | 5.486 |  | spect |
|  | 6.387 | 34 | spect |
|  | 6.409 | 37 | spect |
| $\mathrm{Fr}^{217}$. | 8.3 |  | range |
| $\mathrm{Fr}^{218}$ Fris. | 7.85 |  | ion ch |
| $\mathrm{Fr}^{220}$ 。 | 7.30 6.69 |  | ion ch |
| $\mathrm{Fr}^{221}$. | 6.05 | $\sim 25$ | ion ch |
|  | 6.30 | $\sim 75$ | ion ch |
| $\mathrm{Ra}^{213}$. | 6.90 |  | ion ch |
| $\mathrm{Ra}^{219}$ Ra ${ }^{220}$ | 8.0 |  | ion ch |
| $\mathrm{Ra}^{220}$ $\mathrm{Ra}^{221}$ | 7.43 |  | ion ch |
| $\mathrm{Ra}^{222}$. | 6.71 6.23 |  | ion ch |
|  | 6.554 | 100 | $\alpha-\gamma$ coinc spect |

Table 8d-2. Alpha-particle Energies and Abundances (Continued)

| Alpha emitter | Alpha-particle energy, Mev | Relative abundances, \% | Type of measurement |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ra}^{223}$. | 5.419 | 3 | spect |
|  | 5.487 | 2 | spect |
|  | 5.528 | 9 | spect |
|  | 5.596 | 24 | spect |
|  | 5.704 | 53 | spect |
|  | 5.730 | 9 | spect |
|  | 5.860 | Weak | spect |
| Ra ${ }^{224}$. | 5.445 | 5.2 | spect |
|  | 5.681 | 95 | spect |
| $\mathrm{Ra}^{226}$. | 4.592 | 5.7 | spect |
|  | 4.777 | 94 | spect |
| $\mathrm{Ac}^{221}$. | 7.6 | ....... | range |
| $\mathrm{Ac}^{222}$. | 6.96 | ....... | ion ch |
| $\mathrm{Ac}^{223}$. | 6.64 | ....... | ion ch |
| $\mathrm{Ac}^{224}$. | 6.17 | ....... | ion ch |
| $\mathrm{Ac}^{225}$. | 5.80 | ....... | ion ch |
| $\mathrm{Ac}^{227}$. | 4.942 | ....... | spect |
| $\mathrm{Th}^{223}$. | 7.55 | ....... | ion ch |
| Th ${ }^{224}$. | 7.13 |  | ion ch |
| Th ${ }^{225}$. | 6.57 |  | ion ch |
| Th ${ }^{226}$. | 6.037 | 0.6 | spect |
|  | 6.100 | 1.8 | spect |
|  | 6.228 | 21 | spect |
|  | 6.336 | 77 | spect |
| Th ${ }^{227}$ | 5.651 | $\sim 2$ | spect |
|  | 5.704 | 15 | spect |
|  | 5.728 | $\sim 1$ | spect |
|  | 5.749 | 17 | spect |
|  | 5.796 | 2 | spect |
|  | 5.860 | 4 | spect |
|  | 5.922 | $\sim 2$ | spect |
|  | 5.952 | 13 | spect |
|  | 5.972 | 21 | spect |
|  | 6.001 | 5 | spect |
|  | 6.030 | 19 | spect |
| Th ${ }^{228}$. | 5.173 | 0.2 | spect |
|  | 5.208 | 0.4 | spect |
|  | 5.338 | 28 | spect |
|  | 5.421 | 71 | spect |
| Th ${ }^{229}$. | 4.85 | $\sim 70$ | ion ch |
|  | 4.94 | $\sim 20$ | ion ch |
|  | 5.02 | $\sim 10$ | ion ch |
| Th ${ }^{230}$. | 4.437 | 0.07 | spect |
|  | 4.471 | 0.2 | spect |
|  | 4.613 | 23.4 | spect |
|  | 4.682 | 76.3 | spect |

Table 8d-2. Alpha-particle Energies and Abundances (Continued)

| Alpha emitter | Alpha-particle energy, Mev | Relative abundances, \% | Type of measurement |
| :---: | :---: | :---: | :---: |
| Th ${ }^{232}$. | (3.93) | 24 | $\gamma$ energy |
|  | 3.994 | 76 | ion ch |
| $\mathrm{Pa}^{226}$. | 6.81 |  | ion ch |
| $\mathrm{Pa}^{227}$. | 6.46 |  | ion ch |
| $\mathrm{Pa}^{228}$. | 5.85 | 25 | ion ch |
|  | 6.09 | 75 | ion ch |
| $\mathrm{Pa}^{229}$. | 5.69 |  | ion ch |
| $\mathrm{Pa}^{231}$. | 4.660 | 1-3 | spect |
|  | 4.720 | 11 | spect |
|  | 4.838 | 3 | spect |
|  | 4.938 | 25 | spect |
|  | 4.998 | 23 | spect |
|  | 5.015 | 23 | spect |
|  | 5.042 | 11 | spect |
| $\mathrm{U}^{227}$. | 6.8 |  | ion ch |
| $\mathrm{U}^{228}$. | 6.67 |  | ion ch |
| $\mathrm{U}^{229}$. | 6.42 |  | ion ch |
| $\mathrm{U}^{230}$ 。 | 5.662 | 0.8 | spect |
|  | 5.819 | 31 | spect |
|  | 5.888 | 68 | spect |
| $\mathrm{U}^{\mathbf{2 3 1}}$. | 5.45 |  | ion ch |
| $\mathrm{U}^{232}$ | 5.132 | 0.3 | spect |
|  | 5.261 | 32 | spect |
|  | 5.318 | 68 | spect |
| $\mathrm{U}^{233}$. | 4.731 | 2 | spect |
|  | 4.780 | 15 | spect |
|  | 4.823 | 83 | ion ch |
| $\mathrm{U}^{234}$. | 4.59 | $\sim 0.3$ | $\alpha-\gamma$ coinc |
|  | 4.714 | 26 | spect |
|  | 4.763 | 74 | ion ch |
| $\mathrm{U}^{285}$. | 4.20 | 4 | ion ch |
|  | 4.40 | 83 | ion ch |
|  | 4.47 ? | $\sim 3$ | ion ch |
|  | 4.58 | 10 | ion ch |
| $\mathrm{U}^{236}$. | (4.45) | 27 | $\gamma$ energy |
|  | 4.499 | 73 | ion ch |
| $\mathrm{U}^{238}$. | (4.135) | 23 | $\gamma$ energy |
|  | 4.182 | 77 | ion ch |
|  | 6.28 | ...... | ion ch |
| Np ${ }^{233}$ 23 $\mathbf{N p}^{235}$. | 5.53 |  | ion ch |
| $\mathrm{Np}^{237}$ | 5.06 4.77 | ....... | ion ch |
| $\mathrm{Pu}^{232}$. | 6.58 |  | ion ch |
| $\mathrm{Pu}^{234}$. | (6.14) | 14 | $\gamma$ energy |
| $\mathrm{Pu}^{235}$. | 6.19 5.85 | $\varepsilon 6$ | ion ch |
|  | 5.85 |  | ion ch |

Table 8d-2. Alpha-particle Energies and Abundances (Continued)

| Alpha emitter | Alpha-particle energy, Mev | Relative abundances, \% | Type of measurement |
| :---: | :---: | :---: | :---: |
| $\mathrm{Pu}^{236}$. | (5.71) | 20 | $\gamma$ energy |
|  | 5.75 | 80 | ion ch |
| $\mathrm{Pu}^{238}$. | 5.352 | 0.1 | spect |
|  | 5.452 | 28 | spect |
|  | 5.495 | 72 | spect |
| $\mathrm{Pu}^{239}$. | 5.099 | 11 | spect |
|  | 5.137 | 20 | spect |
|  | 5.150 | 69 | spect |
| $\mathrm{Pu}^{240}$. | 5.014 | 0.1 | spect |
|  | 5.118 | 24 | spect |
|  | 5.162 | 76 | spect |
| $\mathrm{Pu}^{241}$. | 4.848 | 25 | spect |
|  | 4.893 | 75 | spect |
| $\mathrm{Pu}^{242}$. | 4.854 | 20 | spect |
|  | 4.898 | 80 | spect |
| $\mathrm{Am}^{237}$. | 6.01 |  | ion ch |
| $\mathrm{Am}^{239}$. | 5.75 |  | ion ch |
| Am ${ }^{241}$. | 5.379 | 1.4 | spect |
|  | 5.433 | 13.6 | spect |
|  | 5.476 | 84 | spect |
|  | 5.503 | 0.2 | spect |
|  | 5.535 | 0.3 | spect |
| $\mathrm{Am}^{243}$. | 5.171 | $\sim 3$ | spect |
|  | 5.225 | 13 | spect |
|  | 5.267 | 84 | spect |
| $\mathrm{Cm}^{238}$. | 6.50 | ....... | ion ch |
| $\mathrm{Cm}^{240}$. . | 6.25 | ....... | ion ch |
| $\mathrm{Cm}^{241}$. | 5.95 |  | ion ch |
| $\mathrm{Cm}^{242}$. | 5.697 | $0.035$ | spect |
|  | 6.066 | $26.3$ | spect spect |
|  | 6.110 | 73.7 | spect |
| $\mathrm{Cm}^{243}$. | 5.634 | 3 | spect |
|  | 5.732 | 13 | spect |
|  | 5.777 | 78 | spect |
|  | 5.985 | 6 | spect |
| $\mathrm{Cm}^{244}$. | 5.755 | 25 | spect |
|  | 5.798 | 75 | spect |
| $\mathrm{Cm}^{245}$. | 5.6 |  |  |
| $\mathrm{Bk}^{243} \ldots$ | 6.20 | 17 | ion ch |
|  | 6.55 | 53 | ion ch |
|  | 6.72 | 30 | ion ch |
| $\mathrm{Bk}^{245}$. | 5.90 |  |  |
|  | 6.15 | 48 | ion ch |
|  | 6.33 | 18 | ion ch |
| Bk ${ }^{249}$. | 5.4 | ....... | ion ch |
| Cf ${ }^{\text {244 }}$. | 7.15 |  | ion ch |

Table 8d-2. Alpha-particle Energies and Abundances (Continued)

| Alpha emitter | Alpha-particle energy, Mev | Relative abundances, \% | Type of measurement |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cf}^{246}$. | 6.711 | 22 | spect |
|  | 6.753 | 78 | spect |
| Cf ${ }^{248}$. | 6.26 |  | ion ch |
| Cf ${ }^{249}$. | 5.82 | 90 | ion ch |
|  | 6.00 | 10 | ion ch |
| Cf ${ }^{250}$. | 6.04 |  | ion ch |
| Cf ${ }^{252}$. | 6.13 |  | ion ch |
| $99^{247}$. | 7.3 | ....... | ion ch |
| $99^{253}$ | 6.62 |  | ion ch |
| $100{ }^{254}$. | 7.20 |  | ion ch |
| $100^{265}$ | 7.1 |  | ion ch |

ion $\mathbf{c h}=$ ion chamber.
spect $=$ spectrometer.
$\alpha-\gamma$ coinc $=\alpha-\gamma$ coincidence.


Fig. 8d-8. First excited-state energies of even-even nuclei in the heavy-element region.
quently have not been worked out with the same degree of certainty. Some typical decay schemes are shown in Fig. 8d-9. It will be noted that in each of the cases except that of $\mathrm{U}^{233}$ the most abundant alpha group does not lead to the ground state in sharp contrast with spectra of even-even nuclei. It is seen, however, that there is an alpha group in high abundance for each which lies at the bottom of a series of


Fig. 8d-9. Decay schemes of some odd-nucleon alpha emitters.


Fig. 8d-10. Experimental values of log half life vs. effective alpha energy. ("Effective alpha energy" includes correction of particle energy for recoil and electron screening.)
states which looks much like a rotational band of the even-even type. These are designated in Fig. 8d-9 by the terms "zero plus the energy above the ground states" (in Am ${ }^{241}$, for example, by "zero plus 60 "). Other alpha spectra (such as that for $\mathrm{Th}^{227}$ ) are much more complex than those shown in Fig. 8d-9.

8d-3. Alpha-decay Lifetimes and Theory. It is possible to correlate alpha-decay lifetimes empirically and to arrive at systems which can be used to predict half lives.

Even-even Alpha Emitters-Ground-state Transitions. Figure 8d-10 shows a plot of the half life vs. energy relationship as a family of curves. The curves are defined by the experimental half lives and are in this respect empirical. If, however, we were to calculate half lives by using the measured alpha energy for each point and assuming a function for the nuclear radius, $1.52 \times 10^{-13} \mathrm{~A}^{\frac{1}{3}}$, the resulting curves would lie close to those of Fig. 8d-10.

In summary it can be said that the basic one-body theory of alpha decay applied to the ground-state transitions of even-even alpha emitters gives a remarkably consistent picture. When reasonable and consistent assumptions for the values of the nuclear radii are used, the theory explains observed half lives which differ by a factor


Fig. 8d-11. Departure factors for alpha groups to the second even-spin state of even-even nuclides.
of $10^{24}$. It should be pointed out that different formulations of the theory will give somewhat different "best values" for the radius parameter, but each is internally consistent. It will be noted that some points (e.g., $\mathrm{Po}^{210}, \mathrm{Po}^{208}, \mathrm{Em}^{210}, \mathrm{Em}^{212}$ ) lie off their respective curves. These are the alpha emitters with 126 neutrons or fewer which have abnormally long lifetimes.

Even-even Alpha Emitters-Transitions to Excited States. For any particular case, one can calculate the partial half life to any excited state under the assumption that the only factor influencing the relative decay rates is the energy function. It is found that the populations of the $2+$ states are not far from the calculated values. There are small but significant departures which do demand explanation by an extension of alpha-decay theory.

The examination of transitions to the $4+$ states gives a totally different and unique picture. These $4+$ states are populated much more sparsely than would be expected on the basis of alpha energy alone. The ratio of measured half life to calculated half
life varies considerably and in a more or less regular way with atomic number, as shown in Fig. 8d-11. It is seen that for $\mathrm{Cm}^{242}$ the second even state is hindered in its population by a factor of 400 , while for thorium isotopes this factor is of the order of 10. An explanation for the depressed population of these states and the trend observed has been developed in terms of the interaction of the emitted alpha-particle wave with the nuclear quadrupole moment.

Other low-lying states in even-even nuclei have been identified but detailed information is lacking. There is the third even state $(6+$ ?) which is a member of the welldefined rotational band. Also, in a limited region there appear 1 - states which are populated roughly to the same extent as the $4+$ states in the same region. It is not clear what type of nuclear configuration would give rise to such states.

Odd-nucleon Alpha Emitters. The most obvious question about this category of alpha emitters is why the ground-state transition is often highly hindered and why the hindrance is so irregular. A satisfactory answer has not been obtained, although promising leads have been uncovered. For the four species shown in Fig. 8d-9 the departure factors for the apparent ground-state transitions are $\mathrm{U}^{233}=1.4$, $\mathrm{Am}^{241}=1,000, \mathrm{Am}^{243}=700, \mathrm{Cm}^{243}>26$.

These demonstrate the wide range of departure factors for ground-state transitions. It should be noted, however, that the alpha groups to the lowest rotational state of a given band in each case have departure factors of about unity.

A point to be disposed of is the effect of spin change. As already pointed out in a number of instances, both theoretical and experimental appraisal indicate that the lifetime is relatively insensitive to spin change, per se, certainly within the framework of reasonable spin changes. Conversely, we know that the ground states of Am ${ }^{241}$ and $\mathrm{Np}^{237}$ both have spin $\frac{5}{2}$ yet the transition between these states is hindered 1,000-fold.

# 8e. Energy Levels of the Light Nuclei 

T. LAURITSEN

California Institute of Technology
F. AJZENBERG-SELOVE

Boston University

In the following table are exhibited the excitation energies and principal properties of the known energy levels of the light nuclei from mass number 5 to 20 , inclusive. The following information is tabulated in the columns indicated.

Column 1. Excitation energy $E_{x}$ of the level, in Mev above the ground state. Parentheses enclosing this number indicate that the existence of the level is not clearly established.

Column 2. Total angular momentum $J$ (in units of $h / 2 \pi$ ), parity II, and isotopic (or "isobaric") spin T. Parentheses indicate that the quantity enclosed is uncertain. Where the experimental results serve only to limit the choice of $J$ to one of several values, all possibilities are indicated.

Column 3. Width $\Gamma$ or lifetime $\tau$ of the state, the former representing the full width, in center-of-mass coordinates, at half-maximum intensity, the latter either the half life $\tau_{\frac{1}{2}}$ or the mean life $\tau_{m}$, as specified.

Column 4. Observed mode of decay, including $\gamma$ radiation to a lower state of the same nucleus, or particle emission. When the level in question has been identified as an intermediate state in a nuclear reaction, it is assumed that the bombarding particle must also occur as a product, and it is so listed whether observed or not. Modes of decay whose occurrence is not clearly established are indicated in parentheses.

Supplementing the tables are diagrams in which the known levels for each isobaric set are plotted to scale. In these diagrams the level positions are indicated by horizontal lines, located at distances above the ground state proportional to the excitation energies. Where space permits, the excitation energies, in Mev , and the values of $J, \Pi$, and $T$ (where known) are indicated. Uncertain values are again enclosed in parentheses, and levels whose existence is uncertain are represented by dashed lines. Levels which are known to be particularly broad are crosshatched. Crosshatching along the right-hand edge of the diagram indicates energy regions which have been incompletely explored. Binding energies of various particles are shown at the side of the diagrams.

The level diagrams are grouped in isobaric sets to exhibit the correspondence of levels comprising isotopic spin multiplets. The relative positions of the ground states in each set have been adjusted to the extent that the first-order electrostaticenergy differences and the intrinsic (neutron - hydrogen atom) mass differences have been removed, the former calculated from the uniform model according to the expression

$$
E_{e}=0.60 \frac{Z(Z-1)}{A^{\frac{f}{f}}} \quad \mathrm{Mev}
$$

Levels for which the correspondence seems well established are connected by dashed lines.

The atomic masses used in computing binding energies and ground-state energy differences are given in the table in the form of the "mass excess" $M-A$ in Mev. The following values were assumed for the lighter particles:

$$
\begin{aligned}
n^{1} & =8.3638 \pm 0.0029 \mathrm{Mev} \\
\mathrm{H}^{1} & =7.5815 \pm 0.0027 \mathrm{Mev} \\
\mathrm{H}^{2} & =13.7203 \pm 0.006 \mathrm{Mev} \\
\mathrm{H}^{3} & =15.8271 \pm 0.010 \mathrm{Mev} \\
\mathrm{He}^{3} & =15.8086 \pm 0.010 \mathrm{Mev} \\
\mathrm{He}^{4} & =3.6066 \pm 0.014 \mathrm{Mev}
\end{aligned}
$$

References to original work have been omitted in the present compilation; such references may be found in F. Azenberg and T. Lauritsen, Energy Levels of Light Nuclei, V, Revs. Modern Phys. 27, 77 (1955). Similar information on heavier nuclides is available in P. M. Endt and J. C. Kluyver, Energy Levels of Light Nuclei ( $Z=11$ to $Z=20$ ), Revs. Modern Phys. 26, 95 (1954). An extensive theoretical discussion is given in D. R. Inglis, Energy Levels and Structure of Light Nuclei, Revs. Modern Phys. 25, 390 (1953).

## Table 8e-1. Energy Levels of the Light Nuclei

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{He}^{5}:$ mass excess $=12.92 \pm 0.08 \mathrm{Mev}$ |  |  |  |
| 0 | $\frac{3}{2}-; \frac{1}{2}$ | $\Gamma=680 \pm 200 \mathrm{kev}$ | $n$ |
| $(2.6)$ | $\frac{1}{2}-; \frac{1}{2}$ | $(\Gamma \sim 5 \mathrm{Mev})$ | $n$ |
| 16.69 | $\frac{3}{2}+; \frac{1}{2}$ | $\Gamma \cong 100 \mathrm{kev}$ | $d, n$ |



Fig. 8e-1
$\mathrm{Li}^{5}:$ mass excess $=12.99 \pm 0.15 \mathrm{Mev}$

| $\begin{gathered} 0 \\ (2.5) \\ 16.80 \end{gathered}$ | $\begin{aligned} & \frac{3}{2}-; \frac{1}{2} \\ & \frac{1}{2}-; \frac{1}{2} \\ & \frac{3}{2}+; \frac{1}{2} \end{aligned}$ | $\begin{aligned} \Gamma & =1.5 \pm 0.5 \mathrm{Mev} \\ (\Gamma & \sim 5 \mathrm{Mev}) \\ \Gamma & \cong 330 \mathrm{kev} \end{aligned}$ | $\begin{aligned} & p \\ & p \\ & d, p, \gamma \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{He}^{6}:$ mass excess $=19.40 \pm 0.036 \mathrm{Mev}$ |  |  |  |
| $\begin{aligned} & 0 \\ & 1.71 \\ & 3.35 \end{aligned}$ | $\begin{aligned} & \left(0^{+}\right) ; 1 \\ & \left(2^{+}\right) ; 1 \end{aligned}$ | $\tau_{\frac{1}{2}}=0.799 \pm 0.034 \mathrm{sec}$ | $\begin{aligned} & \beta^{-} \\ & (\gamma) \end{aligned}$ |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime' | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{Li}^{6}:$ mass excess $=15.850 \pm 0.021 \mathrm{Mev}$ |  |  |  |
| 0 | $1^{+} ; 0$ |  | Stable |
| 2.19 | $3^{+} ; 0$ | $\Gamma=22 \mathrm{kev}$ | $d$ |
| 3.57 | $\left(0^{+} ; 1\right)$ | ........... | $\gamma$ |
| 4.52 | $2^{+} ; 0$ | $\Gamma \sim 600 \mathrm{kev}$ | $d$ |
| 5.31 | (1) | $\Gamma \lesssim 100 \mathrm{kev}$ |  |
| $\sim 5.4$ | $1^{+} ; 0$ | $\Gamma \sim 1 \mathrm{Mev}$ | $d$ |
| 6.63 | (1) | $\Gamma \lesssim 100 \mathrm{kev}$ |  |
| 7.40 | (0) | $\Gamma \sim 1 \mathrm{Mev}$ |  |
| 8.37 | (1) | $\Gamma \lesssim 100 \mathrm{kev}$ |  |



Fig. 8e-2
$\mathrm{Be}^{6}:$ mass excess $=20.8 \pm 1 \mathrm{Mev}$
Not reported: ground state presumably $J=0^{+} ; T=1$; unstable to decay into $\mathrm{He}^{4}+2 p$
$\mathrm{He}^{7}:$ mass excess $=31.5 \pm 2 \mathrm{Mev}$
Not reported: if assumed mass excess is correct, the ground state ( $T=\frac{3}{2}$ ) is unstable to decay into $\mathrm{He}^{6}+n$ and $\mathrm{He}^{4}+3 n$

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $\boldsymbol{E}_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{Li}^{7}:$ mass excess $=16.969 \pm 0.024 \mathrm{Mev}$ |  |  |  |
| 0 | $\frac{3}{2}-; \frac{1}{2}$ | … . . . . . . . . . . . . . . . . . | Stable |
| 0.477 | $\frac{1}{2}-; \frac{1}{2}$ | $\tau_{m l}=0.75 \pm 0.25 \times 10^{-13} \mathrm{sec}$ |  |
| 4.61 | 2 $\frac{1}{2}$ |  | $t,(\gamma)$ |
| (5.5) | 1- $\frac{1}{2}$ |  | $(\gamma, t)$ |
| 6.6 | $\left(\frac{1}{2}^{+}, \frac{3}{2}^{+}\right) ; \frac{1}{2}$ | Broad | ( $\gamma, t$ ) |
| 7.46 | $\frac{5}{2}-\frac{1}{2}$ | $\Gamma=150 \mathrm{kev}$ | $n, t$ |
| 9.6 | $\begin{aligned} & \frac{2}{2} \\ & \frac{1}{2} \end{aligned}$ |  | $\gamma, n,(t)$ |
| 10.8 | $\frac{1}{2}$ |  | $\gamma, n$ |
| 12.4 | $\frac{1}{2}$ |  | $\gamma, n$ |
| 14.0 |  |  | $\gamma, n$ |
| 17.5 |  |  | $\gamma, n$ |



Fig. 8e-3
$\mathrm{Be}^{7}:$ mass excess $=17.832 \pm 0.024 \mathrm{Mev}$

| 0 | $\leq \frac{5}{2}-; \frac{1}{2}$ | $\tau_{\frac{1}{2}}=53.4 \pm 0.3$ days <br> $\frac{1}{2}^{-} ; \frac{1}{2}$ | $\left(\tau_{\frac{1}{2}}=1.4 \times 10^{-13} \mathrm{sec}\right)$ |
| :--- | ---: | ---: | :--- |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)


8-62

## NUCLEAR PHYSICS



Fig. 8e-4
Table 8e-1. Energy Levels of the Light Nuclei (Continued)

$$
\mathrm{B}^{8}: \text { mass excess }=25.1 \pm 0.3 \mathrm{Mev}
$$

No excited states are reported. The ground state $(T=1)$ decays by positron emission ( $\tau_{2}=0.46 \pm 0.03 \mathrm{sec}$ ) mainly to the $2.90-\mathrm{Mev}$ state of $\mathrm{Be}^{8}$. From analogy with $\mathrm{Li}^{8}$, probably $J=2^{+}$

$$
\mathrm{Li}^{9}: \text { mass excess }=28.1 \pm 1 \mathrm{Mev}
$$

No excited states are reported. The ground state $(T=1)$ decays by electron emission ( $\tau_{\frac{1}{2}}=0.169 \pm 0.003 \mathrm{sec}$ ) to neutron-unstable states of $\mathrm{Be}^{9}$

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |

$\mathrm{Be}^{9}:$ mass excess $=14.007 \pm 0.028 \mathrm{Mev}$



Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{B}^{9}:$ mass excess $=15.076 \pm 0.029 \mathrm{Mev}$ |  |  |  |
| $\begin{gathered} 0 \\ (1.4) \\ 2.37 \end{gathered}$ | $\begin{aligned} & \left(>\frac{1}{2}^{-}\right) ; \frac{1}{2} \\ & \left(>\frac{1}{2}^{-}\right) ; \frac{1}{2} \end{aligned}$ | $\begin{aligned} & \Gamma<2 \mathrm{kev} \\ & \Gamma \sim 1 \mathrm{Mev} \\ & \Gamma<100 \mathrm{kev} \end{aligned}$ | (p) |
| $\mathrm{C}^{9}:$ mass excess $=32.2 \pm 2 \mathrm{Mev}$ |  |  |  |

Not reported: if assumed mass defect is correct, the ground state ( $T=\frac{3}{2}$ ) is stable to nucleon decay

| $\mathrm{Be}^{10}:$ mass excess $=15.560 \pm 0.026 \mathrm{Mev}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | $\left(0^{+}\right) ; 1$ | $\tau_{\frac{1}{2}}=2.7 \pm 0.4 \times 10^{6}$ years | $\beta^{-}$ |
| 3.37 | $2^{+} ; 1$ |  | $\gamma$ |
| 5.96 | 1 |  | ( $\gamma$ ) |
| 6.18 | 1 |  | (r) |
| 6.26 | 1 |  | ( $\gamma$ ) |
| 7.37 | $3^{+} ; 1$ | $\Gamma=23 \mathrm{kev}$ | $n$ |
| 7.54 | (2); 1 | $\Gamma=7 \mathrm{kev}$ |  |
| 9.27 | 1 | $\Gamma \sim 100 \mathrm{kev}$ | $n,(\alpha)$ |
| (9.4) | 1 | Broad | ( $n, \alpha$ ) |
| 17.82 | $\left(2^{+}\right)$ |  | $t, n$ |
| 18.43 |  |  |  |
| $\mathrm{B}^{10}:$ mass excess $=15.004 \pm 0.026 \mathrm{Mev}$ |  |  |  |
| 0 | $3^{+} ; 0$ |  | Stable |
| 0.72 | $1^{+} ; 0$ | $\tau_{m}=7 \pm 2 \times 10^{-10} \mathrm{sec}$ | $\gamma$ |
| 1.74 | $0^{+} ; 1$ | .................... | $\gamma$ |
| 2.15 | $1^{+} ; 0$ |  | $\gamma$ |



Fig. 8e-6
Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \mathrm{II} ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 3.58 | $\left(2^{+}\right) ; 0$ |  |  |
| 4.77 | $\left(1^{+} ; 0\right)$ | $\Gamma<10 \mathrm{kev}$ | $\alpha, \gamma$ |
| 5.11 | $\left(2^{-} ; 0\right)$ | $\Gamma<10 \mathrm{kev}$ | $\begin{gathered} \alpha, \gamma \\ (\alpha) \end{gathered}$ |
| 5.16 | $\left(2^{+} ; 1\right)$ | $\Gamma<10 \mathrm{kev}$ | $\alpha, \gamma$ |
| 5.58 |  | $\Gamma<100 \mathrm{kev}$ |  |
| 5.93 |  | $\Gamma<10 \mathrm{kev}$ | ( $\gamma$ ) |
| 6.06 |  | $\Gamma<10 \mathrm{kev}$ |  |
| 6.16 6.40 |  | $\Gamma<20 \mathrm{kev}$ |  |
| 6.58 | $\ldots$ | $\Gamma<100 \mathrm{kev}$ |  |
| (6.77) |  | $\Gamma \sim 30 \mathrm{kev}$ $(\Gamma<100 \mathrm{kev})$ |  |
| 6.89 | $\left(1^{-} ; 0\right)$ | $\Gamma=125 \mathrm{kev}$ |  |
| (7.01) |  |  | $\begin{aligned} & p, d, \alpha, \gamma \\ & (p, d) \end{aligned}$ |
| (7.19) |  |  | ( $p, \gamma, d, \alpha$ ) |
| 7.48 7.56 | $\left(2^{-} ; 1\right)$ $\left(0^{+}\right)$ | $\begin{aligned} \Gamma & =79 \pm 3 \mathrm{kev} \\ \Gamma & =3.6 \mathrm{kev}\end{aligned}$ | $p, d, \alpha, \gamma$ |
| 8.89 | - ${ }^{+}{ }^{+}$+ 1 | $\Gamma=3.6 \mathrm{kev}$ $\Gamma=36 \pm 2 \mathrm{kev}$ | $p, \gamma$ |
| 10.83 |  |  | $\begin{aligned} & p, n, \alpha, \gamma \\ & p, n,(\gamma) \end{aligned}$ |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}^{10}:$ mass excess $=18.64 \pm 0.06 \mathrm{Mev}$ |  |  |  |
| 0 | $\left(0^{+}\right) ; 1$ | $\tau_{\frac{1}{2}}=19.1 \pm 0.8 \mathrm{sec}$ | $\beta^{+}$ |
| 3.34 | 1 |  | $(\gamma)$ |
| 5.1 | 1 | Broad or unresolved |  |

Not reported: if assumed mass excess is correct, the ground state $\left(T=\frac{3}{2}\right)$ is stable to Nucleon emission

| $\mathrm{B}^{11}:$ mass excess $=11.909 \pm 0.022 \mathrm{Mev}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | $\frac{3}{2}-\frac{1}{2}$ |  | Stable |
| 2.14 | $\frac{1}{2}$ | . . . . . . . . . . . . . | $\gamma$ |
| 4.46 | $\left(\frac{5}{2}-\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 5.03 |  |  | $\gamma$ |
| 6.76 |  |  | $\gamma$ |
| 6.81 | $\left(\frac{3}{2}-\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 7.30 |  |  | $\gamma$ |
| 7.99 | $\frac{1}{2}$ |  | $\gamma$ |
| 8.57 |  |  | $\gamma$ |
| 8.92 | $\left(\frac{3}{2}, \frac{5}{2}\right) ; \frac{1}{2}$ | $\Gamma<1 \mathrm{kev}$ | $\gamma$ |
| 9.19 | ( $\frac{5}{}{ }^{-}$) ; $\frac{1}{2}$ | $\Gamma \sim 2.5 \mathrm{kev}$ | $\gamma$ |
| 9.28 | $\left(\frac{5}{2}+\right) ; \frac{1}{2}$ | $\Gamma=4.5 \mathrm{kev}$ | $\gamma$ |
| 9.86 | ( $\leq \frac{5}{2}$ ) ; $\frac{1}{2}$ | $\Gamma=125 \pm 10 \mathrm{kev}$ | $\boldsymbol{\alpha}$ |
| 10.23 | $\left(\leq \frac{7}{2}\right) ; \frac{1}{2}$ | $\Gamma \sim 155 \mathrm{kev}$ | $\boldsymbol{\alpha}$ |
| 10.32 | $\frac{1}{2}$ | $\Gamma=54 \pm 17 \mathrm{kev}$ |  |



Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ |  | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 10.61 |  |  |  |
| 11.8 |  |  | ${ }_{( }^{\alpha}{ }_{\text {n }}$ |
| 13.2 14.0 |  | $(\Gamma=360 \mathrm{kev})$ | $n, \alpha$ |
| (16.6) |  | (Broad |  |
| (16.9) |  | (Broad) <br> (Broad) | (d, p) |
| 17.5 |  | (Broad) | $\begin{aligned} & (d, p) \\ & d, p \end{aligned}$ |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)



Fig. 8e-8

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, ~ І ; ~ T ~$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 10.8 | 0 | ................ | ( ${ }^{\text {) }}$ |
| 11.1 | 0 |  | ( ${ }^{(\alpha)}$ |
| 11.74 | 0 |  | ( $\alpha$ ) |
| 12.76 | 0 |  |  |
| (13.21) | 0 |  |  |
| (13.36) | 0 |  |  |
| (14.16) | 0 |  |  |
| 15.09 | (1) |  | ( $\gamma$ ) |
| (15.52) |  |  |  |
| 16.10 | $2^{+} ; 1$ | $\Gamma=6.0 \pm 1 \mathrm{kev}$ | $p, \alpha, \gamma$ |
| 16.57 | $\left(2^{-} ; 1\right)$ | $\Gamma=300 \mathrm{kev}$ | $p, \alpha, \gamma$ |
| 17.22 | $\left(1^{-}, 2^{+}\right)$ | F $=1.20 \mathrm{Mev}$ | $p, \alpha, \gamma$ |
| (17.8) | $\left(0^{+}\right)$ | $\Gamma=140 \mathrm{kev}$ | $p, \alpha$ |
| 18.39 | $\left(2^{+}\right)$ | $\Gamma=44 \mathrm{kev}$ | $p, \alpha, \gamma$ |
| 18.86 | ....... |  | $p, n, \gamma$ |
| 19.25 | ....... | ................. | $p, n, \gamma$ |
| (19.7) | ....... | ................ | ( $p, n$ ) |
| (19.9) | ....... | ................. | (p) |
| 20.25 | . . . . . |  | $p, n$ |
| 20.49 | ....... | ................. | $p, \gamma$ |
| 20.7 |  |  | $p, n, \gamma$ |
| 21.33 | ....... | ................. | $p, n$ |
| 21.79 |  | ................ | $p, n$ |
| (22.4) | ....... |  | $(\gamma, n)$ $(\gamma, n)$ |
| (22.8) | ....... | ................. |  |
| (24.3) $(25.36)$ | ...... | ................... | $(\gamma, \alpha)$ $(d, p)$ |
| 26.0 | . . . | ................ | $d,(n), p$ |
| 26.4 |  |  | $d, p$ |

No excited states are reported. The ground state $(T=1)$ decays by positron emission ( $\tau_{\frac{1}{2}}=0.0125 \pm 0.001 \mathrm{sec}$ ) to the ground state and to $\alpha$-unstable states of $\mathrm{C}^{12}$. From analogy with $\mathrm{B}^{12}$, probably $J=1^{+}$

$$
\mathrm{B}^{13}: \text { mass excess }=19 \pm 2 \mathrm{Mev}
$$

Not reported: if the assumed mass excess is correct, the ground state ( $T=\frac{3}{2}$ ) is stable with respect to nucleon emission

| $\mathrm{C}^{13}:$ mass excess $=6.958 \pm 0.013 \mathrm{Mev}$ |  |  |  |
| :--- | :---: | :---: | :--- |
| 0 | $\frac{1}{2}-; \frac{1}{2}$ | $\ldots \ldots \ldots \ldots \ldots \ldots$ | Stable |
| 3.09 | $\frac{1}{2}+; \frac{1}{2}$ | $\tau_{m}<3 \times 10^{-13} \mathrm{sec}$ | $\gamma$ |
| 3.68 | $\frac{3}{2}-; \frac{1}{2}$ | $\ldots \ldots \ldots \ldots \ldots \ldots$ | $\gamma$ |
| 3.86 | $\frac{5}{2}+; \frac{1}{2}$ | $\ldots \ldots \ldots \ldots \ldots$ | $\gamma$ |
| 6.87 | $\frac{3}{2}+, \frac{5}{2}+; \frac{1}{2}$ | $\Gamma<10 \mathrm{kev}$ | $n$ |



Fra. 8e-9
Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| (7.67) | $\left(\frac{3}{2}+; \frac{1}{2}\right)$ |  | ( $n$ ) |
| 7.75 $(8.35)$ | $\frac{1}{2}+; \frac{1}{2}$ |  | $n$ |
| (8.35) $(8.55)$ |  |  |  |
| 9.0 <br> 10.8 | $\frac{1}{2}$ |  |  |
| 10.8 | $\frac{1}{2}$ | F ~ 100 kev | $n$ |
| 11.02 |  | F ~ 100 kev | $n$ |
| 11.08 | $\left(\frac{1}{2}+\right) ; \frac{1}{2}$ |  | ${ }_{\alpha}^{\alpha, n} n$ |
| 11.64 |  | 「 $\sim 200 \mathrm{kev}$ |  |
| 11.98 | $\left(\frac{1}{2}-\right)$ | $\Gamma \sim 150 \mathrm{kev}$ | $\boldsymbol{\alpha}, n$ |
| 12.21 12.46 |  |  | $\alpha, n$ |
| 13.01 |  |  | $\alpha, n$ |
| (13.7) |  |  | $\alpha, n$ |
| $\mathrm{N}^{13}:$ mass excess $=9.179 \pm 0.013 \mathrm{Mev}$ |  |  |  |
| 0 |  |  |  |
| 2.37 | ( ${ }^{\frac{1}{2}+}+\frac{1}{2}$ | $\begin{aligned} & \begin{array}{l} \lambda_{1} \\ \Gamma \\ \Gamma \end{array}=30.05 \pm 0.03 \mathrm{~min} \mathrm{kev} \end{aligned}$ |  |
| 3.51 | $\frac{3}{2}$ - ${ }^{\frac{1}{2}}$ | $\Gamma=67 \pm 7 \mathrm{kev}$ |  |
| 3.56 | $\frac{5}{2}+$; $\frac{1}{2}$ | $\Gamma=61 \mathrm{kev}$ | $\begin{aligned} & p, \gamma \\ & p \end{aligned}$ |
| (6.4) | ${ }^{2}$ |  | $\begin{aligned} & p \\ & (p) \end{aligned}$ |
| 6.90 7.40 | $\frac{1}{2}$ |  | $\boldsymbol{p}$ |
| 7.40 | $\frac{1}{2}$ |  | $p$ |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $\boldsymbol{E}_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}^{14}:$ mass excess $=7.153 \pm 0.010 \mathrm{Mev}$ |  |  |  |
| 0 | $0^{+} ; 1$ | $\tau_{\frac{1}{2}}=5,400 \pm 200$ years | $\beta^{-}$ |
| 6.09 | $\left(1^{-}\right) ; 1$ |  | $\boldsymbol{\gamma}$ |
| 6.72 | 1 |  | $\boldsymbol{\gamma}$ |
| 6.89 | $\left(0^{-}\right) ; 1$ |  | $\gamma$ |
| $\mathrm{N}^{14}:$ mass excess $=6.998 \pm 0.010 \mathrm{Mev}$ |  |  |  |
| 0 | $1^{+} ; 0$ | . . . . . . . . . | Stable |
| 2.31 | $\left(0^{+}\right) ; 1$ | . . . . . . . . . . . . | $\boldsymbol{\gamma}$ |
| 3.95 | $\left(1^{+}\right) ; 0$ | ................. | $\boldsymbol{\gamma}$ |
| 4.91 | $\left(0^{-}\right) ; 0$ | . . . .-.......... | $\boldsymbol{\gamma}$ |
| 5.10 | $\left(1^{+}\right) ; 0$ | ................ | $\boldsymbol{\gamma}$ |
| 5.69 | (1); 0 |  | $\boldsymbol{\gamma}$ |
| 5.83 |  |  |  |
| 5.98 | 0 | . . . . . . . . . . . . . . | ( $\gamma$ ) |
| 6.23 | (1) | . . . . . . . . . . . . . . | $\boldsymbol{\gamma}$ |
| 6.44 | (3) | . . . . . . . . . . . . . | $\boldsymbol{\gamma}$ |
| 7.02 | . . . . . . . | . . . . . . . . . . . ${ }^{\text {. }}$ | $\boldsymbol{\gamma}$ |
| 7.40 | . . . . . . | ................ |  |
| 7.72 |  |  | $(p, \gamma)$ |



Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 8.06 | $1^{-} ; 1$ | $\mathrm{r}=30.2 \mathrm{kev}$ | $p, \gamma$ |
| 8.62 | $0^{+}$ | $\Gamma=5.6 \pm 2 \mathrm{kev}$ | $p, \gamma$ |
| 8.70 | $0^{-}$; 1 | $\Gamma=470 \mathrm{kev}$ | $p, \gamma$ |
| 8.90 | $3{ }^{-}$ | $\Gamma=19 \mathrm{kev}$ | $p, \gamma$ |
| 8.98 | $1^{+}$ | $\Gamma=6.5 \mathrm{kev}$ | $p, \gamma$ |
| 9.18 | $\left(2^{-} ; 1\right)$ | $\Gamma=2.0 \pm 0.2 \mathrm{kev}$ | $p, \gamma$ |
| 9.49 | $(1,2)$ | $\Gamma=42 \pm 3 \mathrm{kev}$ | $p, \gamma$ |
| 10.43 | ...... |  | $p, \gamma$ |
| 11.05 |  | r $=90 \mathrm{kev}$ | $d, n, p$ |
| 11.23 |  | $\Gamma=26 \mathrm{kev}$ | d, p |
| 11.26 |  | $\Gamma=19 \mathrm{kev}$ | $p, n$ |
| 11.26 |  | $\Gamma=170 \mathrm{kev}$ | $d, n, p$ |
| 11.35 |  | $\Gamma=140 \mathrm{kev}$ |  |
| 11.41 |  | $\Gamma=28 \mathrm{kev}$ | $d, n, p$ |
| 11.49 |  | $\Gamma=4.7 \mathrm{kev}$ | $d, p, n$ |
| 11.65 |  | $\Gamma=17 \mathrm{kev}$ | $d, n$ |
| 11.75 |  | $\Gamma=120 \mathrm{kev}$ | $d, n, p$ |
| 12.0 |  | $\stackrel{\sim}{=} 90 \mathrm{kev}$ | $d, n, p$ |
| 12.29 |  | $\Gamma \sim 200 \mathrm{kev}$ | $\alpha, n, p, d$ |
| 12.42 | $4^{-}$ | $\Gamma=43 \pm 4 \mathrm{kev}$ | $\alpha, n, p, d$ |
| 12.50 |  | $\Gamma=36 \pm 5 \mathrm{kev}$ | $\alpha, n, p, d$ |
| 12.61 |  | $\Gamma=50 \pm 5 \mathrm{kev}$ | $\alpha, p$ |
| 12.69 | $3^{-}$ | $\Gamma=14 \pm 4 \mathrm{kev}$ | $\gamma, n, p, d$ |
| 12.79 | $4^{+}$ | $\Gamma=14 \pm 4 \mathrm{kev}$ | $\alpha, n, p, d$ |
| 12.82 | $4{ }^{-}$ | $\Gamma=5 \pm 2 \mathrm{kev}$ | $\alpha, p, d$ |
| 12.92 | $4^{+}$ | $\Gamma=21 \pm 4 \mathrm{kev}$ | $\alpha, p, d$ |
| 13.16 |  | Sharp | $\alpha, n, p$ |
| $13.24$ |  | Broad | $\alpha, n, p$ |
| 13.72 |  |  | $\alpha, n, p$ |
| $\mathrm{O}^{14}:$ mass excess $=12.168 \pm 0.015 \mathrm{Mev}$ |  |  |  |
| 0 | $\left(0^{+}\right) ; 1$ | $\tau_{\frac{1}{2}}=72.1 \pm 0.4 \mathrm{sec}$ | $\beta^{+}$ |
| 6.2 | $1$ |  |  |
| $\begin{aligned} & 7.5 \\ & 9.3 \end{aligned}$ | $\begin{array}{r} 1 \\ 1 \end{array}$ | Broad and/or unresolved |  |

$$
\mathrm{C}^{15}: \text { mass excess }=13.17 \pm 0.06 \mathrm{Mev}
$$

No excited states are reported. The ground state ( $T=\frac{3}{2}$ ) decays by electron emis$\operatorname{sion}\left(\tau_{\frac{1}{2}}=2.4 \pm 0.3 \mathrm{sec}\right.$ ) to the ground state and to one or both of the $5.3-\mathrm{Mev}$ states of $\mathrm{N}^{15}$

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $\boldsymbol{E}_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}^{15}:$ mass excess $=4.528 \pm 0.011 \mathrm{Mev}$ |  |  |  |
| 0 | $\frac{1}{2}-{ }^{1} \frac{1}{2}$ |  | Stable |
| 5.28 , | $\left(\frac{1}{2}, \frac{3}{2}\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 5.31 \} | ( $\left.\frac{1}{2}, \frac{3}{2}\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 6.33 | $\left(\frac{3}{2}-{ }^{-\frac{5}{2}}{ }^{-}\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 7.16 ) | $\left(\frac{1}{2}+, \frac{3}{2}+\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 7.31 \} | ( $\left.\frac{1}{2}, \frac{1}{2}^{+}\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 7.58 |  |  | ( $\gamma$ ) |
| 8.32 ( |  |  |  |
| 8.57 \} | $\left(\frac{1}{2}^{+}, \frac{3}{2}^{+}\right) ; \frac{1}{2}$ |  | $(\gamma)$ |
| 9.06 , | $\left(\frac{1}{2}+, \frac{3}{2}+\right) ; \frac{1}{2}$ |  | $(\gamma)$ |
| 9.17 \} | $\left(\overline{2}^{+}, \overline{2}^{+}\right) ; \frac{1}{2}$ |  |  |
| 9.83 | $\frac{1}{2}$ |  | $(\gamma)$ |
| 10.07 | $\frac{1}{2}$ |  | $\gamma$ |
| 10.46 |  |  |  |
| 10.54 |  |  | $p, \gamma$ |
| 10.70 | $\frac{3}{2}-$ |  | $p, \gamma$ |
| 10.81 | 彦- |  | $p, \gamma$ |
| 11.24 | $>\frac{1}{2}$ | $\Gamma=3.3 \mathrm{kev}$ |  |
| 11.29 | - ${ }^{1}-$ | $\Gamma=7 \mathrm{kev}$ | $p, n, \gamma$ |
| 11.43 | $\frac{1}{2}+$ | F $=40 \mathrm{kev}$ | $p, n, \alpha, \gamma$ |
| 11.57 | $\frac{1}{2}+;\left(\frac{3}{2}\right)$ | $\Gamma=445 \mathrm{kev}$ | $p,(n), \gamma$ |
| 11.77 | $\frac{3}{2}+$ | $\Gamma=40 \mathrm{kev}$ | $n, p, \alpha$ |
| 11.88 | $\left(\frac{5}{2}^{+}\right)$ | $\Gamma=17 \mathrm{kev}$ | $n, p, \alpha$ |
| 11.94 | $>\frac{1}{2}$ | $\Gamma \leq 3.0 \mathrm{kev}$ | $n, \alpha$ |
| 11.96 | ( ${ }^{\frac{1}{2}-}$ ) | $\Gamma=13 \mathrm{kev}$ | $n, p$ |
| 12.09 | $\left(\frac{3}{2}, \frac{5}{2}\right)$ | $\Gamma=19 \mathrm{kev}$ | $n, p, \alpha$ |
| 12.14 | $\left(\frac{3}{2}-\right)$ | $\Gamma=50 \mathrm{kev}$ | $n, p, \alpha$ |
| 12.32 | ( ${ }^{\frac{5}{2}-}$ ) | $\Gamma=21 \mathrm{kev}$ | $n, p$ |
| 12.49 | $\frac{5}{2}$ | $\Gamma=35 \mathrm{kev}$ | $p, n, \alpha$ |
| 12.91 |  | $\Gamma \sim 50 \mathrm{kev}$ | $n, \alpha, p$ |
| 13.19 | . . . . . . ${ }^{\text {- }}$. | . . . . . . . . . | $n, \alpha$ |
| 13.38* |  |  | $n, \alpha, p$ |

[^366]

Fig. 8e-11
Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}^{15}:$ mass excess $=7.233 \pm 0.012 \mathrm{Mev}$ |  |  |  |
|  | $\frac{1}{2}-\frac{3}{2}-; \frac{1}{2}$ | $\tau_{\frac{1}{2}}=119.1 \pm 1 \mathrm{sec}$ | $\beta^{+}$ |
| 5.27 | ( $\leq \frac{7}{2}+$ ) $; \frac{1}{2}$ |  | $\gamma$ |
| 6.14 | ( $\left.\leq \frac{5}{2}-\right) ; \frac{1}{2}$ |  | $\gamma$ |
| 6.82 | $\frac{1}{2}+\frac{3}{2}+$; $\frac{1}{2}$ |  | $\gamma$ |
| 7.61 | ( $\leq \frac{5}{2}{ }^{-}$) ; ${ }^{\frac{1}{2}}$ | $\Gamma<2 \mathrm{kev}$ | $\boldsymbol{p}, \boldsymbol{\gamma}$ |
| 8.0 | $\frac{1}{2}+, \frac{3}{2}+; \frac{1}{2}$ | $\Gamma=93 \pm 30 \mathrm{kev}$ | $p, \gamma$ |
| 8.34 | ( $\leq \frac{5}{2}{ }^{-}$) ; ${ }^{\frac{1}{2}}$ | $\Gamma=4.5 \pm 1 \mathrm{kev}$ | $p, \gamma$ |
| 8.79 | ( $\begin{array}{r}\frac{1}{2}+; \\ \text { 3 } \\ \text { (2) }\end{array}$ | $\Gamma=47 \pm 20 \mathrm{kev}$ | $p, \gamma$ |
| 8.98 9.04 | ( $\begin{gathered}\left(\frac{3}{2}-\right) ; ~ \\ \left(<\frac{5}{2}-\right) ; \frac{1}{2}\end{gathered}$ | $\Gamma=10 \pm 3 \mathrm{kev}$ $\Gamma=6.5 \pm 1.5 \mathrm{kev}$ | $p, \gamma$ |
| 9.04 9.55 | ( $\left.\leq \frac{5}{2}-\right) ; \frac{1}{2}$ | $\Gamma=6.5 \pm 1.5 \mathrm{kev}$ $\Gamma=13 \pm 4 \mathrm{kev}$ | $p, \gamma$ $p, \gamma$ |
| 9.67 |  | r $=13 \pm 4 \mathrm{kev}$ r | $p, \gamma$ $p, \gamma$ |
| 9.8 11.95 | $\frac{1}{2}+, \frac{3}{2}+; \frac{1}{2}$ | $\Gamma=1.20 \pm 0.05 \mathrm{Mev}$ | $p, \gamma$ |
| 11.95 12.3 | $\begin{aligned} & 2,2 \\ & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$ | Broad | $p, \alpha$ |
| $\begin{aligned} & 12.3 \\ & 12.6 \end{aligned}$ | $\begin{aligned} & \frac{2}{2} \\ & \frac{1}{2} \\ & \hline \frac{1}{2} \end{aligned}$ | Broad <br> Broad | $p, \alpha$ |
| 12.6 13.09 | $\frac{1}{2}$ | Broad <br> Broad | $p, \alpha$ |
|  |  |  | $p, \alpha$ |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{N}^{16}:$ mass excess $=10.40 \pm 0.03 \mathrm{Mev}$ |  |  |  |
| 0 | $\left(2^{-}\right) ; 1$ | $\tau_{\frac{1}{2}}=7.37 \pm 0.04 \mathrm{sec}$ | $\beta^{-}$ |
| 0.113 | 1 | … . . . . . . . . . . . . . . | $(\gamma)$ |
| 0.300 | 1 |  | ( $\gamma$ ) |
| $0.391$ | 1 |  | ( $\gamma$ ) |
|  | 1 | $\Gamma \sim 400 \mathrm{kev}$ | $\boldsymbol{p}$ |
| $\mathrm{O}^{16}:$ mass excess $=0$ |  |  |  |
| 0 | $0^{+} ; 0$ |  | Stable |
| 6.06 | $0^{+} ; 0$ | $\tau_{\frac{1}{2}}=5.0 \pm 0.5 \times 10^{-11} \mathrm{sec}$ |  |
| 6.14 | $3^{-}$; 0 | $10^{-11}>\tau_{\frac{2}{3}}>5 \times 10^{-12} \mathrm{sec}$ |  |
| 6.91 | $2^{+} ; 0$ | $\tau_{\frac{1}{2}} \lesssim 1.2 \times 10^{-14} \mathrm{sec}$ |  |
| 7.12 | 1-; 0 | $\tau_{\frac{1}{2}} \lesssim 8 \times 10^{-15} \mathrm{sec}$ |  |
| (8.6) | 0 |  |  |
| 9.58 | $1^{-} ; 0$ | $\Gamma=650 \mathrm{kev}$ | $\alpha$ |
| 9.84 | 2+;0 | $\Gamma=0.8 \mathrm{kev}$ | $\alpha$ |
| 10.36 | $4^{+} ; 0$ | $\Gamma=27 \mathrm{kev}$ | $\alpha$ |
| (11.10) | 0 | $\Gamma=8 \mathrm{kev}$ | ( $\alpha$ ) |
| 11.25 | $0^{+} ; 0$ | $\Gamma=2.5 \mathrm{Mev}$ | $\boldsymbol{\alpha}$ |
| 11.51 | $2^{+} ; 0$ | $\Gamma=80 \mathrm{kev}$ | $\alpha$ |
| 11.62 | 3-; 0 | $\Gamma=1.2 \mathrm{Mev}$ | $\alpha$ |
| 12.43 | $\left(0^{+}, 1^{-}\right) ; 0$ | $r=88 \mathrm{kev}$ | $p, \alpha$ |
| 12.51 | $2^{-}$ | $\Gamma=0.8 \mathrm{kev}$ | $p, \alpha$ |
| 12.95 | $2^{-}$ | $\Gamma=2.1 \mathrm{kev}$ | $p, \alpha$ |
| 13.09 | $1^{-} ;(1)$ | $\Gamma \sim 140 \mathrm{kev}$ | $p, \alpha, \gamma$ |



Fig. 8e-12

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 13.24 | $4^{+}$ | $\Gamma=21 \mathrm{kev}$ | $p, \alpha$ |
| 13.65 | $1^{+}, 2^{-}$ | $\Gamma \sim 140 \mathrm{kev}$ | $p, \alpha$ |
| 16.02 |  | $\Gamma=22 \pm 8 \mathrm{kev}$ | $\gamma, n$ |
| 16.4 | .......... | .................. | $\gamma, n$ |
| 16.7 |  |  | $\gamma, n,(\alpha)$ |
| (16.85) | . . . . . |  | $\gamma, n$ |
| 16.9 |  | . | $\gamma, n$ |
| 17.1 | ......... |  | $\gamma, n,(\alpha)$ |
| (17.44) | .......... | . | $\gamma, n$ |
| (17.54) | ......... |  | $\gamma, n$ |
| 17.72 |  | $r \sim 20 \mathrm{kev}$ | $\gamma, n$ |
| (17.88) |  |  | $\gamma, n$ |
| (18.48) |  |  | $\gamma, n$ |
| 18.9 | . . . . . . . . |  | $\gamma, n$ |
| 19.3 |  |  | $\gamma, n$ |
| 20.7 |  | .................. | ${ }_{r}, n$ |
| 21.9 |  |  | $\gamma, n$ |

$\mathrm{F}^{16}:$ mass excess $=15.9 \pm 1 \mathrm{Mev}$
Not reported: if the assumed mass excess is correct, the ground state ( $T=1$ ) is unstable with respect to proton emission by 1.1 Mev . By analogy with $\mathrm{N}^{16}$, the ground state $J$ is probably $2^{-}$

$$
\mathrm{N}^{17}: \text { mass excess }=13.0 \pm 0.2 \mathrm{Mev}
$$

No excited states are reported. The ground state ( $T=\frac{3}{2}$ ) decays by electron emission ( $\tau_{\frac{1}{2}}=4.14 \pm 0.04 \mathrm{sec}$ ) to one or more excited states of $\mathrm{O}^{17}$ which are neutron unstable. Whether transitions occur to bound states of $\mathrm{O}^{17}$ is not known

| $\mathrm{O}^{17}:$ mass excess $=4.221 \pm 0.006 \mathrm{Mev}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | $\frac{5}{2}+; \frac{1}{2}$ |  | Stable |
| 0.87 | $\frac{1}{2}+; \frac{1}{2}$ | $\tau_{m}=2.5 \pm 1 \times 10^{-10} \mathrm{sec}$ | $\gamma$ |
| 3.06 |  |  | ( $\gamma$ ) |
| 3.85 | $\frac{1}{2}$ |  | ( $\gamma$ ) |
| 4.56 | $\frac{3}{2}-$; $\frac{1}{2}$ | $\Gamma=42 \mathrm{kev}$ | $n$ |
| 5.08 | $\frac{3}{2}+; \frac{1}{2}$ | $\Gamma=95 \mathrm{kev}$ | $n$ |
| (5.23) | - $\frac{1}{2}$ | $\Gamma=8 \pm 6 \mathrm{kev}$ |  |
| 5.39 | $\frac{3}{2}-$; $\frac{1}{2}$ | $\Gamma=33 \mathrm{kev}$ | $n$ |
| 5.71 | $\geq \frac{3}{2}$; $\frac{1}{2}$ | $r<7 \mathrm{kev}$ | $n$ |
| 5.87 | $\geq \frac{3}{2} ; \frac{1}{2}$ | $\Gamma<10 \mathrm{kev}$ | $n$ |
| 5.94 | 倍-; $\frac{1}{2}$ | $\Gamma=28 \mathrm{kev}$ | $n$ |
| 6.30 | $\frac{1}{2}+; \frac{1}{2}$ | $\Gamma=110 \mathrm{kev}$ | $n$ |
| 6.87 $(6.99)$ | $\frac{1}{2}$ |  |  |
| $(6.99)$ 7.16 | $\frac{1}{2}$ | $\begin{aligned} \Gamma & =20 \pm 11 \mathrm{kev} \\ \Gamma & \sim 3 \mathrm{kev} \end{aligned}$ | $\boldsymbol{\alpha}$ |



Fig. 8e-13
Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \mathrm{II} ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 7.37 | $\frac{3}{2}+; \frac{1}{2}$ | $\Gamma=210 \mathrm{kev}$ |  |
| 7:6 | $\frac{3}{2}-\frac{1}{2}$ | $\Gamma=750 \mathrm{kev}$ | ${ }_{n}^{\alpha, n}$ |
| 8.27 8.38 | ${ }^{\frac{1}{2}-} ; \frac{1}{2}$ | $\Gamma=260 \mathrm{kev}$ | $\alpha, n$ |
| 8.46 |  | . | $\alpha, n$ |
| (8.59) | $\frac{1}{2}$ |  | $\alpha, n$ |
| 8.87 | $\frac{1}{2}$ |  | $\alpha, n$ |
| 9.06 9.5 | , |  |  |
| (9.7) | $\frac{1}{2}$ |  | $n$ |
| (10.2) | $\frac{1}{2}$ |  | $n$ |
| (10.5) | $\frac{1}{2}$ |  | $n$ |
| (10.6)* | $\frac{1}{2}$ |  | $n$ |


| 0 | $\left(\frac{5}{2}+\right) ; \frac{1}{2}$ | $\tau \frac{1}{2}=66.0 \pm 1 \mathrm{sec}$ | $\beta^{+}$ |
| :--- | :--- | :--- | :--- |
| 0.510 | $\frac{1}{2}+; \frac{1}{2}$ | $\ldots \ldots \ldots \ldots \ldots$ | $\gamma$ |
| 3.10 | $\left(\frac{1}{2}-\right) ; \frac{1}{2}$ | $\Gamma=18.7 \mathrm{kev}$ | $p$ |
| 3.86 | $\left(\frac{7}{2}-\right) ; \frac{1}{2}$ | $\Gamma<3.3 \mathrm{kev}$ | $p, \gamma$ |
| 4.35 | $\left(\frac{3}{2}\right) ; \frac{1}{2}$ | $\Gamma \sim 400 \mathrm{kev}$ | $p$ |
| 4.73 | $\left(\frac{3}{2}\right) ; \frac{1}{2}$ | $\Gamma=300 \mathrm{kev}$ | $p$ |
| $(5.05)$ | $\left(\frac{1}{2}\right.$ | $\Gamma<25 \mathrm{kev}$ | $(p)$ |
| 5.1 | $\left(\frac{1}{2}+\right) ; \frac{1}{2}$ | $\Gamma=190 \mathrm{kev}$ | $p$ |
| $(5.30)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $(p)$ |
| $(5.50)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $p$ |
| $(5.7)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $p$ |
| $(6.15)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $p$ |
| 6.6 | $\left(\frac{1}{2}+\right) ; \frac{1}{2}$ | $\Gamma=140 \mathrm{kev}$ | $p$ |
| $(6.75)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $p$ |
| $(6.90)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $p$ |
| $(7.40)$ | $\frac{1}{2}$ | $\Gamma<25 \mathrm{kev}$ | $p$ |

[^367]Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, ~ \Pi ; ~ T ~$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{O}^{18}:$ mass excess $=4.522 \pm 0.022 \mathrm{Mev}$ |  |  |  |
| $\begin{aligned} & 0 \\ & 1.98 \\ & (2.45) \end{aligned}$ | 0 $\quad \begin{array}{r}1 \\ 1 \\ 1\end{array}$ |  | Stable <br> ( $\gamma$ ) <br> ( $\gamma$ ) |
| $F^{18}:$ mass excess $=6.193 \pm 0.021 \mathrm{Mev}$ |  |  |  |
| 0 | ( $1^{+}$) $; 0$ | $\tau_{\frac{1}{2}}=112 \pm 1 \mathrm{~min}$ | $\beta^{+}$ |
| 1.05 | (0) |  | $\gamma$ |
| 1.83 | (0) |  | ( $\gamma$ ) |
| 2.20 | (0) | ................ | ( $\gamma$ ) |
| 2.61 | (0) |  | ( $\gamma$ ) |
| 3.23 | (0) |  | ( $\gamma$ ) |
| 3.92 | (0) |  | ( $\gamma$ ) |
| 4.42 | (0) |  |  |
| 5.01 | (0) |  |  |
| 5.60 \} |  | $\Gamma<1.2 \mathrm{kev}$ | $\alpha, \gamma$ |
| 5.67 \} | (0) | $\Gamma<0.8 \mathrm{kev}$ | $\alpha, \gamma$ |
| 6.69 | ....... | $\Gamma=27 \pm 4 \mathrm{kev}$ | $\alpha, p$ |
| 6.85 | ....... | $\Gamma=93 \pm 8 \mathrm{kev}$ | $\alpha, p$ |
| (7.1) |  | $\Gamma \sim 460 \mathrm{kev}$ | ( $\alpha, p$ ) |
| (7.7) | ....... | ............ | $(\alpha, p)$ |
| 8.0 | ....... | ................. | $\alpha$ |
| 8.5 | . ..... | ................. | $\boldsymbol{\alpha}$ |
| 9.0 |  |  | d, p |
| 9.5 |  |  | $d, p$ |
| 9.8 | ....... | Broad | d, p |
| 10.1 |  | Broad | d, p |
| 10.5 |  | Broad | d, $p$ |
| 10.8* |  | Broad | $d, p$ |

* Six additional levels are reported below 11.1 Mev .


Fig. 8e-14

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ne}^{18}:$ mass excess $=10.4 \pm 0.2 \mathrm{Mev}$ |  |  |  |

No excited states are reported. The ground state ( $T=1$ ) decays by positron emission ( $\tau_{\frac{1}{2}}=1.6 \pm 0.2 \mathrm{sec}$ ) to the ground state of $\mathrm{F}^{18}$

| $\mathrm{O}^{19}:$ mass excess $=8.930 \pm 0.024 \mathrm{Mev}$ |  |  |  |
| :--- | :---: | :---: | :---: |
| 0 | $\left(\frac{5}{2}+\right) ; \frac{3}{2}$ | $\tau_{\frac{2}{2}}=29 \mathrm{sec}$ | $\beta^{-}$ |
| 0.096 | $\cdots \cdots \cdots \cdots$ | $(\gamma)$ |  |
| 1.470 | $\frac{1}{2}+; \frac{3}{2}$ | $\cdots \cdots \cdots \cdots$ | $(\gamma)$ |

$\mathrm{F}^{19}:$ mass excess $=4.149 \pm 0.014 \mathrm{Mev}$

| 0 | $\frac{1}{2}+; \frac{1}{2}$ | ..... | Stable |
| :---: | :---: | :---: | :---: |
| 0.110 | $\frac{1}{2}-; \frac{1}{2}$ | $\tau_{m}=1.0 \pm 0.25 \times 10^{-9} \mathrm{sec}$ | $\gamma$ |
| 0.197 | $\frac{5}{2}+; \frac{1}{2}$ | $\tau_{m}=1.0 \pm 0.2 \times 10^{-7} \mathrm{sec}$ |  |
| $(0.9)$ 1.35 |  |  | ( $\gamma$ ) |
| 1.57 | $\left(\frac{3}{2}+\right) ; \frac{\overline{1}}{2}$ |  | $\gamma$ |
| (2.2) |  |  |  |
| 2.82 |  |  |  |
| 3.94 | $\frac{1}{2}$ |  |  |
| 4.06 | $\frac{1}{2}$ |  |  |
| 4.41 | $\frac{1}{2}$ |  |  |
| 4.48 4.59 | $\frac{1}{2}$ |  |  |
| 4.59 4.76 | $\frac{1}{2}$ |  |  |
| (5.2) | $\frac{1}{2}$ |  |  |
| (5.5) |  |  |  |
| 8.56 | $\left(\frac{3}{2}\right)$ | $\Gamma \sim 25 \mathrm{kev}$ |  |
| 8.76 | (12) | $\Gamma \sim 45 \mathrm{kev}$ | $p, \alpha$ $p, \alpha$ |
| 10.47 |  | $\Gamma=38 \pm 2 \mathrm{kev}$ | $p, n$ |
| 10.54 10.59 |  |  | $p, n$ |
| 10.59 10.84 |  | $\Gamma=33 \pm 5 \mathrm{kev}$ $\Gamma=57 \pm 2 \mathrm{kev}$ | $p, n$ |
| 10.96 | ( $\frac{2}{2}$ ) | $\Gamma=57 \pm 2 \mathrm{kev}$ $\Gamma=43 \pm 10 \mathrm{kev}$ | $p, n$ |
| 11.05 | $\frac{3}{2}$ | $\Gamma=62 \pm 2 \mathrm{kev}$ | $p, n$ $p, n$ |
| 11.16 | (12) | $\Gamma=43 \pm 2 \mathrm{kev}$ | $p, n$ |
| 11.27 |  |  | $p, n$ |
| 11.37 | ....... | $\Gamma=80 \pm 20 \mathrm{kev}$ | ${ }_{p, n}$ |
| 11.51 |  |  | $p, n$ |
| 12.0 12.8 |  |  | $p, n$ |
| 13.3 | ....... | , | $p, n$ |
| 13.8 |  |  | $\boldsymbol{p}, \boldsymbol{n}$ |
| 14.3 |  |  | $p, n$ |
| 15.3 |  |  | $\gamma, n$ |

8-82
NUCLEAR PHYSICS


Fig. 8e-15

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $\boldsymbol{E}_{\boldsymbol{x}}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ne}^{19}:$ mass excess $=7.405 \pm 0.014 \mathrm{Mev}$ |  |  |  |
| $\begin{aligned} & 0 \\ & 0.255 \\ & 0.289 \end{aligned}$ | $\left(\frac{1}{2}+\right) ; \begin{array}{r}\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2}\end{array}$ |  | $\begin{aligned} & \beta^{+} \\ & (\gamma) \\ & (\gamma) \end{aligned}$ |
| $\mathrm{O}^{20}:$ mass excess $=13.3 \pm 2 \mathrm{Mev}$ |  |  |  |

Not reported: if the assumed mass excess is correct, the ground state $(T=2)$ is stable with respect to nucleon emission

| $\mathrm{F}^{20}:$ mass excess $=5.913 \pm 0.016 \mathrm{Mev}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 0 | $\left(1^{+}\right) ; 1$ | $\tau_{\frac{1}{2}}=11.4 \pm 1 \mathrm{sec}$ |  |
| 0.65 | - 1 | $\ldots$ | $(\gamma)$ |
| 0.83 | 1 |  | ( $\gamma$ ) |
| 0.99 | 1 |  | $\begin{aligned} & (\gamma) \\ & (\gamma) \end{aligned}$ |
| 1.06 | 1 |  | $\begin{aligned} & (\gamma) \\ & (\gamma) \end{aligned}$ |
| 1.31 | 1 | ................. | $(\gamma)$ |
| 1.97 | 1 |  | $(\gamma)$ |
| 2.05 2.20 | 1 | ............... | ( $\gamma$ ) |
| 2.20 $(2.55)$ | 1 | ............... | ( $\gamma$ ) |
| 2.87 | 1 | ............ | ( $\gamma$ ) |
| 2.97 | 1 |  | $(\gamma)$ $(\gamma)$ |
| 3.49 | 1 |  | $(\gamma)$ $(\gamma)$ |
| 3.53 | 1 |  | $(\gamma)$ $(\gamma)$ |
| 3.59 | 1 | ................ | $(\gamma)$ |
| 3.68 | 1 | ............... | $(\gamma)$ |
| 3.96 | 1 |  | ( $\gamma$ ) |
| 4.08 | 1 |  | ( $\gamma$ ) |
| 4.28 4.31 | 1 |  | ( $\gamma$ ) |
| (5.06) | 1 |  | (r) |
| 6.63 | 1 | $\Gamma=3 \mathrm{kev}$ | $(\gamma)$ $n$ |
| 6.65 | 1 | $\Gamma=5 \mathrm{kev}$ |  |
| 6.70 | 1 | $\Gamma=15 \mathrm{kev}$ |  |
| 6.86 | 1 | $\Gamma=28 \mathrm{kev}$ | ${ }_{n}{ }^{\prime}$ |
| 6.92 | 1 | $\Gamma \sim 200 \mathrm{kev}$ | $n$ |
| 7.00 | 1 | $\mathrm{r}=24 \mathrm{kev}$ | $n$ $n$ |
| 7.08 | 1 | 「 $=33 \mathrm{kev}$ |  |
| 7.17 7.34 | 1 | $\Gamma=28 \mathrm{kev}$ | $n, \gamma$ |
| 7.34 | 1 | ................. | $n$ |
| 7.44 | 1 |  | $n$ |
| 7.50 | 1 | ................. | $n$ |
| 7.78 | 1 |  | $n$ |

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ | $J, \Pi ; T$ | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 8.18 | 1 |  | $n$ |
| 8.54 | 1 |  | $n$ |
| (10.7) |  |  | $(n, \alpha)$ |
| (11.2) |  |  | $(n, \alpha)$ |
| $\mathrm{Ne}^{20}:$ mass excess $=-1.139 \pm 0.019 \mathrm{Mev}$ |  |  |  |
| 0 | $\left(0^{+}\right) ; 0$ |  | Stable |
| 1.63 | $2^{+} ; 0$ |  | $\gamma$ |
| (2.2) | 0 |  | $(\gamma)$ |
| 4.36 | 0 |  | $(\gamma)$ |
| 5.4 | 0 |  |  |
| 6.74 | $0^{+} ; 0$ | $\Gamma=19 \mathrm{kev}$ | $\alpha$ |
| 7.18 | $3^{-} ; 0$ | $\Gamma=8 \mathrm{kev}$ | $\alpha$ |
| 7.22 | $0^{+} ; 0$ | $\Gamma=4 \mathrm{kev}$ | $\alpha$ |
| 7.45 | $2^{+} ; 0$ | $\Gamma=8 \mathrm{kev}$ | $\alpha$ |
| 7.85 | $2^{+} ; 0$ | $\Gamma=3 \mathrm{kev}$ | $\alpha$ |
| 9.3 | $\left(1^{-}\right) ; 0$ |  | $(\gamma, \alpha)$ |
| 10.0 | $\left(1^{-}\right)$ |  | ( $\gamma, \alpha$ ) |
| 11.69 |  |  | $\gamma$ |
| 11.87 |  |  | $\gamma$ |
| 13.08 |  | $\Gamma=0.95 \mathrm{kev}$ | $p, \alpha$ |
| 13.19 | $1^{+}$ | $\Gamma=2.8 \mathrm{kev}$ | $p, \alpha$ |
| 13.33 |  | $\Gamma=2.1 \mathrm{kev}$ | $p, \alpha$ |
| 13.44 | (2) | $\Gamma=35 \mathrm{kev}$ | $p, \alpha$ |
| 13.51 | $1^{+}$ | $\Gamma=7.1 \mathrm{kev}$ | $p, \alpha, \gamma$ |
| 13.55 |  | $\Gamma=35 \mathrm{kev}$ | $p, \alpha$ |
| 13.61 |  | $\Gamma \sim 10 \mathrm{kev}$ | $p, \alpha$ |
| 13.66 |  | $\Gamma \sim 7.9 \mathrm{kev}$ | $p, \alpha$ |
| 13.67 | $0^{+}$ | $\Gamma=28 \mathrm{kev}$ | $p, \alpha$ |
| 13.70 | $2^{-}$ | $\Gamma=5.0 \mathrm{kev}$ | $p, \alpha$ |
| 13.73 |  | $\Gamma=4.5 \mathrm{kev}$ | $p, \alpha$ |
| 13.76 | $1^{+}$ | $\Gamma=7.6 \mathrm{kev}$ | $p, \alpha$ |
| 13.91 |  | $\Gamma<1.2 \mathrm{kev}$ | $p, \alpha, \gamma$ |
| 13.93 |  | 「 $\sim 60 \mathrm{kev}$ | $p, \alpha$ |
| 13.95 |  | $\Gamma=3.5 \mathrm{kev}$ | $p, \alpha$ |
| 13.99 |  | $\Gamma \sim 130 \mathrm{kev}$ | $p, \alpha$ |
| 14.04 |  | $\Gamma=70 \mathrm{kev}$ | $p, \alpha$ |
| 14.10 | $\left(3^{+}\right)$ | $\Gamma=18.2 \mathrm{kev}$ | $p, \alpha$ |
| 14.13 |  | $\Gamma=3.8 \mathrm{kev}$ | $p, \gamma$ |
| 14.16 | $2^{-}$ | $\Gamma=4.3 \mathrm{kev}$ | $p, \alpha$ |
| 14.17 | $\left(2^{+}\right)$ | $\Gamma=35 \mathrm{kev}$ | $p, \alpha$ |
| 14.18 | $2^{-}$ | $\Gamma=14.2 \mathrm{kev}$ | $p, \alpha$ |
| 14.23 | $1^{+}$ | $\Gamma=14.9 \mathrm{kev}$ | $p, \gamma$ |
| 14.41 |  | $\Gamma \sim 5 \mathrm{kev}$ | $p$ |
| 14.47 |  | $\Gamma=29 \mathrm{kev}$ | $p, \alpha$ |
| 14.50 | $0^{+}$ | $\mathrm{T}=135 \mathrm{kev}$ | $p, \alpha$ |



Fig. 8e-16

Table 8e-1. Energy Levels of the Light Nuclei (Continued)

| $E_{x}$ |  | Width or lifetime | Decay |
| :---: | :---: | :---: | :---: |
| 14.64 | $1^{-}$ | $\Gamma=127 \mathrm{kev}$ | $p, \alpha$ |
| 14.71 |  | $\Gamma=14 \mathrm{kev}$ | $p, \alpha$ |
| 14.80 |  | $\Gamma=57 \mathrm{kev}$ | $p, \alpha$ |
| 14.89 | $4^{+}$ | $\Gamma<80 \mathrm{kev}$ | $p, \alpha$ |
| 15.07 |  | $\Gamma=80 \mathrm{kev}$ | $p, \alpha$ |
| 15.08 | $2^{+}$ | $\Gamma<80 \mathrm{kev}$ | $p, \alpha$ |
| 15.25 |  | $\Gamma=28 \mathrm{kev}$ | $p, \alpha$ |
| 15.34 | $0^{+}$ | $\Gamma \sim 300 \mathrm{kev}$ | $p, \alpha$ |
| 15.37 |  | $\Gamma=85 \mathrm{kev}$ | $p, \alpha$ |
| 15.53 |  | r $=57 \mathrm{kev}$ | $p, \alpha$ $p, \alpha$ |
| 15.74 |  | $\Gamma=28 \mathrm{kev}$ | ${ }^{p}, \alpha$ |
| 15.90 |  | $\Gamma=76 \mathrm{kev}$ | $p, n, \alpha$ $p, \alpha$ |
| 16.19 |  | $\begin{aligned} \Gamma & =38 \mathrm{kev} \\ \Gamma & =28 \mathrm{kev}\end{aligned}$ | $p, \alpha$ $p, \alpha$ |
| 16.59 | ..... | $\begin{aligned} \Gamma & =28 \mathrm{kev} \\ \Gamma & =105 \mathrm{kev}\end{aligned}$ | $p, \alpha$ |
| 16.67 |  | $\Gamma=43 \mathrm{kev}$ | $p, n, \alpha$ |
| 17.11 |  | $\Gamma=76 \mathrm{kev}$ | $p, n$ |
| 17.14 |  | $\Gamma=24 \mathrm{kev}$ | $p, n, \alpha$ |
| 17.21 |  | $\Gamma=24 \mathrm{kev}$ | $p, n, \alpha$ |
| 17.26 | ...... | $\Gamma=57 \mathrm{kev}$ | $p, n$ |
| 17.35 |  | $\Gamma=24 \mathrm{kev}$ | $p, n, \alpha$ |
| 17.41 | ...... | $\Gamma=38 \mathrm{kev}$ | $p, n, \alpha$ $p, n, \alpha$ |
| 17.61 |  | $\begin{aligned} \Gamma & =19 \mathrm{kev} \\ \Gamma & =28 \mathrm{kev}\end{aligned}$ | $\begin{aligned} & p, n, \alpha \\ & p, n, \alpha \end{aligned}$ |
| 17.69 | ...... | $\Gamma=28 \mathrm{kev}$ $\Gamma=66 \mathrm{kev}$ | $p, n, \alpha$ |
| 17.81 18.01 |  | $\mathrm{r}=66 \mathrm{kev}$ | $p, n$ |
| 18.36 |  |  | $p, n$ |
| 18.65 |  |  | $p, n$ |
| 19.02 |  | ......... | $p, n$ |

No excited states are reported. The ground state $(T=1)$ decays by positron emission ( $\tau_{\frac{1}{2}}=0.38 \pm 0.01 \mathrm{sec}$ ) to $\alpha$-unstable states of $\mathrm{Ne}^{20}$

# 8f. Gamma Rays 

J. M. CORK<br>University of Michigan

8f-1. Absorption of Gamma Rays. A beam of gamma rays on passing through matter is reduced in intensity exponentially. If $I_{0}$ is the intensity of the incident radiation the intensity $I$ after passing through a finite layer of material, whose thickness is $x$, is given by

$$
I=I_{0} e^{-\mu x}
$$

where $\mu$ is the total absorption coefficient of the material. It is a function of the energy of the gamma rays and may be thought of as being the sum of a number of partial coefficients representing various processes of absorption.

It is customary to represent the probability of an absorption process by a cross section $\sigma$ which is proportional to the absorption coefficient.

The total cross section may be regarded as the sum of the cross sections for each of the various processes by which the intensity of the beam of gamma rays is reduced. These processes are

1. Photoelectric effect
2. Compton scattering
3. Pair production
4. Nuclear photodisintegration
5. Elastic scattering

8f-2. The Photoelectric Effect. A photon of sufficiently high energy may give up its entire energy to an orbital electron. In this event the kinetic energy of the electron $W_{\epsilon}$ is the difference between the gamma energy $W_{\gamma}$ and the work function $P$ of the electron, so that

$$
W_{e}=W_{\gamma}-P
$$

Absorption due to the photoelectric effect is greater the more tightly the electron is bound; hence it is more important for a $K$ electron of the heavy elements. For these elements and radiation of low energy the photoelectric effect accounts for most of the absorption.

For energies up to 0.5 Mev , in light elements, Heitler has developed an expression for the cross section $\sigma_{K}$ for the two $K$ electrons which may be expressed as

$$
\sigma_{K}=\frac{C Z^{5}}{W_{\gamma^{\frac{7}{2}}}} \quad \mathrm{~cm}^{2}
$$

where $C$ is a calculable constant, approximately $10^{-33}, Z$ is the atomic number, and $W_{\gamma}$ is the gamma energy in Mev. More detailed developments capable of being extended to the heavy elements and for higher energies have been made.

For very high energies, when $W_{\gamma} \gg 0.51 \mathrm{Mev}$, the cross section is mainly given by

$$
\sigma_{K}=\frac{1.41(10)^{-33} Z^{5}}{W_{\gamma}} \quad \mathrm{cm}^{2}
$$

Values for the cross sections for $K$ electrons in representative elements $\mathrm{Be}, \mathrm{Al}, \mathrm{Cu}$, Ag , and Pb are shown graphically in Fig. 8f-1.
To obtain the contribution to the absorption coefficient due to the photoelectric effect it is necessary to consider not only the $K$, but also the $L$ and $M$ electrons.


Fig. 8f-1. Photoelectric $K$ electron cross sections as a function of gamma energy, in various elements.

Latyshev has reported that in heavy elements the total additional cross section due to all $L$ electrons is about one-fifth that of the $K$ electrons. In addition, the contribution due to all $M$ electrons is estimated at one-twentieth that of the $K$ electrons, so that the total photoelectric cross section per atom $\sigma_{p}$ is about five-fourths of $\sigma_{K}$. For lighter elements the effect of the outer electronic shells is less, and $\sigma_{p} \cong\left(\frac{9}{8}\right) \sigma_{K}$.
$8 f-3$. The Compton Effect. A photon of energy $W_{\gamma}$, incident upon a loosely bound electron, may suffer an inelastic collision. The electron will recoil with some of the energy $W_{e}$ leaving the scattered photon with a lower energy ( $W_{\gamma}-W_{e}$ ).

The kinetic energy of the electron $W_{e}$ recoiling at an angle $\phi$ is equal in Mev to

$$
W_{e}=\frac{1.02 W_{\gamma} \cos ^{2} \phi}{\left(W_{\gamma}+0.51\right)^{2}-W_{\gamma}^{2} \cos ^{2} \phi}
$$

The photon is scattered at an angle $\theta$, which is related to $\phi$ by the relation

$$
\tan \phi=\frac{0.51 \cot \theta / 2}{W_{\gamma}+0.51}
$$

Compton scattering is particularly important in the lighter elements for energies up to a few Mev. The cross section $\sigma_{C}$ for this scattering process per electron was first formulated by Klein and Nishina with the result which is shown graphically in Fig. 8f-2. Many experiments made at intermediate energies in elements of low


Fig. 8f-2. Cross section per electron for Compton scattering as a function of gamma energy. atomic number, where corrections for the photoelectric effect and pair production are small, have confirmed the validity of this relationship.

8f-4. Pair Production. Following the discovery of the positron by Anderson several theoretical papers appeared dealing with the annihilation of a photon in the field of a nucleus. The energy of the photon $W_{\gamma}$ in excess of that needed for the creation of the electron pair ( $2 m_{0} c^{2}=1.02 \mathrm{Mev}$ ) appears as the kinetic energy of the two particles.

The differential cross section for the production of a pair of positive and negative electrons by a gamma ray has been computed by Bethe and Heitler. For intermediate energies, with no screening, this cross section is

$$
\sigma_{p p}=5.793 Z^{2}\left(3.11 \log 3.92 W_{\gamma}-8.07\right) 10^{-28} \mathrm{~cm}^{2}
$$

For the three elements $\mathrm{Al}, \mathrm{Ag}$, and Pb the cross sections are shown graphically in Fig. 8f-3.

At very high energies the screening cannot be neglected, and in this case the total cross section has been expressed as

$$
\sigma_{p p}=5.793 Z^{2}\left(3.11 \log 183 Z^{-\frac{1}{2}}-0.074\right) 10^{-28} \mathrm{~cm}^{2}
$$

This value for a particular $Z$ is independent of the energy of the photon. Hence it can give only the upper asymptotes for the curves shown in Fig. 8f-3.

It is possible for a photon to produce pairs in the field of an electron. For an element such as aluminum with its 13 electrons the distribution with energy is shown in the lower dashed curve of Fig. 8f-3. It is apparent that the electronic effect is small compared with that due to the nucleus.

8f-5. Nuclear Photodisintegration. For photon energies, above the binding energy of the neutron, interactions may occur in which the neutron is ejected from the nucleus at the expense of the energy of the photon. The effect was first observed by


Fig. 8f-3. Cross section for pair production in $\mathrm{Al}, \mathrm{Ag}$, and Pb as a function of gamma energy. The dashed curve shows the contribution due to the electrons alone in Al.

Chadwick and Goldhaber in deuterium, which has a low threshold of only 2.224 Mev . For heavier elements energies of 10 Mev are required, and many observations of the effect have been made. The cross section for the effect is small, even at energies well above the binding energy of the neutron. It increases to a maximum at energies two to four times the binding energy of the neutron and then decreases for increasingly higher energies. This decrease is due to the introduction of competing decay processes at the higher energies, such as ( $\gamma, 2 n$ ) and ( $\gamma, n p$ ) interactions.

Below 30 Mev the interaction is assumed to be by dipole absorption. In general, for elements heavier than Be the value of the cross section is peaked between 15 and 25 Mev with a resonance width from 5 to 6 Mev . Empirically, the maximum cross section occurs at an energy $W_{m}$ given by

$$
W_{m} \cong 37 A^{-0.186} \quad \mathrm{Mev}
$$

where $A$ is the atomic mass of the nucleus.

The results of Montalbetti et al. ${ }^{1}$ for $\mathrm{Al}, \mathrm{Ag}$, and Pb are shown in Fig. 8f-4. The values of the maximum cross sections are not in very good agreement with theory, especially for Pb .

8f-6. Elastic Scattering. Some contributions to the loss in intensity of a photon beam traversing matter are effected by "elastic" scattering. In this process the direction of the incident photon is altered with no change in its energy. The phenomenon is sometimes referred to as the Delbrück effect because of an early suggestion


Fig. 8f-4. Cross section for nuclear photodisintegration in Al, Ag, and PB. (Montalbetti, Katz, and Goldberg.)
regarding the possibility of the scattering of a photon by a Coulomb field. It now appears that this may be accomplished by any of the following processes:

1. Thomson scattering by nucleus
2. Rayleigh scattering by bound electrons
3. Nuclear resonance scattering
4. Potential scattering by virtual pair production

The magnitude of each of these effects is small compared with that due to Compton scattering. Rayleigh scattering dominates at small angles and is due to the coherent scattering by the electrons. In the Thomson effect the nucleus vibrates under the action of the photon and reemits the same frequency. Nuclear resonance scattering

[^368]occurs within the nucleus by the excitation to an excited virtual level by the absorption of the photon, followed by reemission. The probability of encountering this phenomenon is not large.

By observing only those scattered photons whose energies are unchanged, through the use of a pulse-height analyzer, experimental values have been obtained for the over-all effect as a function of angle. These experimental points ${ }^{1}$ for lead, for a photon energy of 1.33 Mev , are shown graphically in Fig. 8f-5. The experimental values are smaller than those expected from calculations for the combined Rayleigh and Thomson effects alone.


Fig. 8f-5. Cross section for the elastic scattering of photons.
A possible explanation of this discrepancy is to postulate the existence of some additional effect which is out of phase with the Rayleigh scattering. Such an effect might be the formation of a virtual electron pair which is annihilated with reemission of the incident energy at some angle other than the original. In combining computed values of this potential scattering with the Rayleigh and Thomson effects, the heavy curve of Fig. 8f-5 is obtained. The experimental points of Wilson show fair agreement with this curve.

8f-7. Total Absorption of Gamma Radiation. The total cross section for the loss of a gamma photon from the incident beam per atom of absorber is the sum of the individual cross sections, so that

[^369]$$
\sigma_{\text {total }}=\underset{\text { (Photoelectric) }}{\sigma_{p}}+\underset{\text { (Compton) }}{\sigma_{C}}+\underset{\substack{\text { (Pair } \\ \text { production) }}}{\sigma_{p p}}+\underset{\text { (Photodisintegration) }}{\sigma_{p d}}+\underset{\substack{\text { (Elastic } \\ \text { scattering) }}}{\sigma_{e}}
$$

At low energy, where the photoelectric effect predominates, $\sigma$ varies approximately as $Z^{5}$ while at high energies, where pair production is the principal factor, it varies as $Z^{2}$. In general, the cross section at low energies is large and decreases to a minimum value as the energy increases. Beyond this minimum it rises steadily with increasing energy, because of pair production.

The calculated values for the absorption coefficient in $\mathrm{Al}, \mathrm{Cu}$, and Pb are shown graphically in Fig. 8f-6. It is apparent that minimum absorption occurs in these elements at 25, 10, and 3 Mev , respectively.


Fig. 8f-6. Total linear absorption coefficient as a function of gamma energy for $\mathrm{Al}, \mathrm{Cu}$, and Pb .

Many experiments on the over-all absorption coefficients of various elements for monoenergetic gamma rays have been made. The accuracy is dependent among other things on the use of an ideal geometry in which the absorber is remote from the receiver, a condition that is often overlooked. Conclusions from the experimental data have been varied. In some cases the experimental results appear to be in close agreement with theory, whereas in other reports considerable disagreement exists, especially for the heavy elements. For energies of $17.6,88$, and 280 Mev the experimental values have been reported to be less than the theoretical by about 10 per cent in lead and uranium, and by 3 per cent in tin. In aluminum and beryllium the experimental value is larger than the theoretical calculation. The deviation has been expressed ${ }^{1}$ as a linear function of $Z^{2}$.
8f-8. Angular Correlation and Polarization of Gamma Rays. When an unstable aucleus emits in succession two radiations, there is the possibility that the directions of emission are not randomly distributed with respect to each other but that a certain nisotropy or correlation exists. Further a correlation may exist between the direcion of propagation of one quantum and the polarization of a second emitted quantum.
${ }^{1}$ J. L. Lawson, Phys. Rev., 75, 433 (1949).

Table 8f-1. Gamma Rays Accompanying Neutron Capture

| Element | Source | Gamma energies, Mev |
| :---: | :---: | :---: |
| 1 H | $\mathrm{H}_{2} \mathrm{O}$ | 2.23 |
| 4 Be . | Be metal | 3.41, 6.81 |
| 6 C | Graphite | 3.68, 4.95 |
| 7 N | $\mathrm{Be}_{3} \mathrm{~N}_{2}$ | 10.82, 9.16, 8.28, 7.36, 7.16, 6.32, 5.55, 5.29, 4.48 |
| 9 F | $\mathrm{C}_{2} \mathrm{~F}_{4}$ | 6.63 |
| 11 Na | NaF | 6.41, 5.61, 5.13, 3.96, 3.85, 3.60, 3.56 |
| 12 Mg . | Metal | $\begin{aligned} & 9.26,8.16,7.37,7.15,6.75,6.39,5.73,5.50,5.05,3.92 \text {, } \\ & 3.45,2.83 \end{aligned}$ |
| 13 Al. | Metal | $\begin{aligned} & 7.72,7.34,6.98,6.77,6.61,6.50,6.33,6.22,6.13,6.01 \\ & 5.89,5.78,5.60,5.41,5.32,5.21,4.94,4.79,4.66,4.45 \\ & 4.29,4.16,4.06,3.88,3.62,3.46,3.29,3.02,2.84 \end{aligned}$ |
|  | Metal | 7.6, 1.7 |
| 14 Si. | Metal | $\begin{aligned} & 10.55,8.51,7.79,7.36,7.18,6.88,6.76,6.40,6.11,5.70, \\ & 5.52,5.11,4.95,4.60,4.20,3.57,2.69 \end{aligned}$ |
| 15 P. | Red P | $\begin{gathered} 7.94,7.85,7.62,7.42,6.76,6.33,6.14,6.02,5.71,5.41 \\ 5.27,4.93,4.68,4.49,4.38,4.20,3.92,3.55,3.28,3.04 \end{gathered}$ |
| 16 S. | S | $\begin{aligned} & 8.64,7.78,7.42,7.19,6.64,5.97,5.43,5.03,4.84,4.60 \text {, } \\ & 4.38,3.69,3.36,3.21,2.94 \end{aligned}$ |
| 17 Cl | $\mathrm{C}_{6} \mathrm{Cl}_{6}$ | $\begin{aligned} & 8.56,7.77,7.42,6.98,6.62,6.12,5.72,5.51,5.01,4.46 \text {, } \\ & 4.06,3.62 \end{aligned}$ |
|  | $\mathrm{C}_{2} \mathrm{Cl}_{6}$ | $7.7,6.2,2.90,2.40,2.00,1.59,1.15,0.78,0.74$ |
| 19 K | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | $\begin{aligned} & 9.28,8.48,8.03,7.77,7.20,6.98,6.30,5.75,5.38,5.01 \text {, } \\ & 4.39,4.18,3.92,3.67 \end{aligned}$ |
|  | KF | 8.2, 6.0 |
| 20 Ca . | CaO | $7.83,7.43,6.42,5.89,5.66,5.49,4.95,4.76,4.45,3.62$ |
|  | Metal | 8.2, 6.8 |
| $21 . \mathrm{Sc}$ | ScO | 8.85, 8.54, 8.31, 8.18, 7.65, 7.15, 6.84, 6.35 |
|  | ScO | 0.22, 0.15 |
| 22 Ti | $\mathrm{TiO}_{2}$ | $\begin{aligned} & 9.39,9.19,8.27,7.80,7.38,6.76,6.53,6.41,5.65,4.96 \text {, } \\ & 4.88,4.67 \end{aligned}$ |
|  | $\mathrm{TiO}_{2}$ | $6.4,3.97,1.38,1.00,0.33$ |
| 23 V. | $\mathrm{V}_{2} \mathrm{O}_{5}$ | $\begin{aligned} & 7.31,7.15,6.87,6.62,6.51,5.88,5.74,5.51,5.21,4.98 \text {, } \\ & 4.85,4.45,4.15,3.73,3.59,3.36 \end{aligned}$ |
|  | Metal | 7.4, 6.8, 5.7, 5.3 |
| 24 Cr . | Metal | $\begin{aligned} & 9.72,8.88,8.50,7.93,7.67,7.54,7.36,7.21,7.10,6.87 \text {, } \\ & 6.64,6.36,6.26,6.12,6.00,5.61,5.26,4.83,3.72 \end{aligned}$ |
|  | Metal | 7.4, 6.8, 5.7, 5.3 |
| 25 Mn . | $\mathrm{MnO}_{2}$ | $\begin{gathered} 7.26,7.15,7.05,6.78,6.43,6.11,5.91,5.77,5.63,5.53 \\ 5.21,5.04,4.81,4.72,4.55,4.24,4.10,3.82 \end{gathered}$ |
|  | Metal | 7.2, 5.0, 0.19, 0.09 |
| 26 Fe . | Metal | $\begin{aligned} & 10.16,9.30,8.87,8.35,7.64,6.02,5.91,4.97,4.81,4.44 \text {, } \\ & 4.21,3.86,3.43 \end{aligned}$ |
|  | Metal | 8.5, 7.4, 6.0, 0.43 |
| 27 Co | Metal | $7.49,7.20,7.04,6.97,6.87,6.69,6.47,6.25,6.11,5.97$ $5.73,5.65,5.35,5.18,4.90,4.59,4.37,4.18,4.03,3.69$ 3.36 |
|  | Oxide | $7.0,5.9,1.5,1.1,0.22$ |

Table 8f-1. Gamma Rays Accompanying Neutron Capture (Continued)

| Element | Source | Gamma energies, Mev |
| :---: | :---: | :---: |
| 28 Ni . | $\mathrm{Ni}_{2} \mathrm{O}_{3}$ | $\begin{aligned} & 9.00,8.53,8.12,7.82,7.53,7.22,7.05,6.84,6.58,6.34 \text {, } \\ & 6.10,5.99,5.82,5.70,5.31 \end{aligned}$ |
|  | Metal | 9.0, 8.5, 7.5, 6.5 |
| 29 Cu . | Metal | $\begin{aligned} & 7.91,7.63,7.30,7.16,7.01,6.69,6.41,6.05,5.75,5.64 \text {, } \\ & 5.43,5.31,5.18,5.07 \end{aligned}$ |
|  | Metal | 7.5, 6.6, 0.15 |
| 30 Zn . | Metal | $\begin{aligned} & 9.51,9.12,8.98,8.58,8.31,7.88,7.19,6.94,6.65,6.49 \text {, } \\ & 6.26,6.03,5.77,5.48,5.23,4.84,4.14 \end{aligned}$ |
|  | Metal | $7.5,1.7$ |
| 33 As | $\mathrm{As}_{2} \mathrm{O}_{3}$ | 7.30, 7.05, 6.85, 6.38, 6.05, 5.41, 5.17, 4.97, 4.77, 4.53 |
| 34 Se . | $\mathrm{SeO}_{2}$ | $\begin{aligned} & 10.48,9.88,9.17,8.50,8.09,7.95,7.73,7.42,7.19,6.88 \text {, } \\ & 6.59,6.41,6.23,6.02,5.80,5.59,5.21,4.57 \end{aligned}$ |
| 38 Sr | $\mathrm{SrCO}_{3}$ | $\begin{aligned} & 9.22,9.06,8.38,8.05,7.53,6.95,6.87,6.67,6.27,6.10 \text {, } \\ & 5.82,5.43 \end{aligned}$ |
| 40 Zr . | Metal | 8.66, 7.71, 7.38, 6.30 |
| 41 Nb | $\mathrm{Nb}_{2} \mathrm{O}_{5}$ | 7.19, 6.85, 5.90 |
| 42 Mo . | MoC | 9.15, 8.39, 7.79, 7.66, 7.54, 7.40, 6.92, 6.66, 6.39 |
| 45 Rh | Metal | 0.16, 0.08 |
|  | Metal | 6.79, 6.36, 6.20, 6.06, 5.91, 5.55 |
| 47 Ag . | Metal | 0.19 |
|  | Metal | 7.27, 7.06, 6.95, 6.67, 6.55, 6.27, 6.06 |
| 48 Cd | Metal | 8.5, 0.56 |
|  | Metal | 9.05, 8.48, 7.84, 7.73, 7.66, 6.82, 5.94 |
|  | Metal | $\left(\mathrm{Cd}^{113}\right) 0.070,0.093,0.535$ |
| 49 In. | Metal | 0.26, 0.16 |
|  | Metal | 5.86, 5.73, 5.55, 5.34, 5.17, 4.97 |
| 50 Sn . | Metal | 8.0, 7.5 |
|  | Metal | 9.35 |
| 51 Sb | $\mathrm{Sb}_{2} \mathrm{O}_{3}$ | $6.80,6.50,6.33,6.11,5.89,5.61,5.43$ |
| 52 Te . | Metal | 0.61 |
| 56 Ba . | BaO | $9.23,7.79,7.18,6.68,6.44,6.06,5.74,4.98,4.70,4.10,3.66$ |
| 57 La . | LaO | 4.5 , |
| 59 Pr . | $\mathrm{PrO}_{11}$ | 5.83, 5.67, 5.16, 4.79, 4.69 |
| 62 Sm . | $\mathrm{Sm}_{2} \mathrm{O}_{3}$ | 7.89, 7.24, 6.79, 6.54, 5.99 |
| 63 Eu. | $\mathrm{Sm}_{2}{ }^{149} \mathrm{O}_{3}$ | 0.290, 0.329, 0.394, 0.433 |
| 64 Gd | GdO | 7.78, 7.36, 6.73, 6.41, 5.87, 5.61 |
|  | Metal | 0.029, 0.038, 0.071, 0.077, 0.080, 0.130 |
| 66 Dy | $\mathrm{Dy}_{2} \mathrm{O}_{3}$ | 0.074, 0.075, 0.079, 0.097, 0.135 |
| 73 Ta | Metal | 6.07, 5.78, 5.57, 5.38, 5.21, 5.05, 4.84 |
| 74 W . | Metal | $7.42,6.73,6.40,6.18,6.02,5.77,5.30,5.25,5.14,4.94,4.67$ |
| 78 Pt . | Metal | $7.92,7.26,6.07,5.24$ |
| 79 Au . | Metal | 6.49, 6.45, 6.31, 6.25, 6.15, 5.98, 5.70, 5.52, 5.20, 4.59 |
| 80 Hg . | $\mathrm{HgF}_{2}$ <br> Metal Hg ${ }^{199}$ | $6.45,5.96,5.65,5.39,5.07,4.95,4.83,4.73,4.66$ $0.282,0.270$ |
| 81 Tl . | $\mathrm{Tl}_{2} \mathrm{O}_{3}$ | 6.54, 6.20, 5.90, 5.63, 5.25, 4.91, 4.72 |

With the development of scintillation counters, having greatly increased sensitivity, many examples of the effect have been found.

8f-9. Neutron Capture Gamma Rays. The binding energy per nucleon in the elements heavier than boron is of the order of 8 Mev . It must follow that the capture of a slow neutron in any isotope results in a highly excited state of the isotope greater in mass by unity. In the adjustment to the stable state of this isotope, gamma rays will be emitted.

Investigations confirmed the existence of these gamma rays and showed that the lifetime for many such emitters was less than $10^{-7} \mathrm{sec}$. It seems quite likely that this radiation consists of gamma rays with energies up to 10 Mev , because of transitions from a high-energy state whose lifetime is of the order of $10^{-14} \mathrm{sec}$, in cascade with low-energy gamma rays due to transitions from low-lying levels to the ground state. The latter states may have lifetimes of the order of $10^{-10} \mathrm{sec}$ and the low-energy gammas are highly converted.

Extensive experimental studies have been made both at the Argonne National Laboratory and at the Canadian Chalk River Laboratory. Neutron beams from reactors irradiated the sources. In the investigations at Argonne the low-energy gamma energies have been evaluated by the use of magnetic beta spectrometers and multichannel scintillation crystal devices. The high-energy gamma rays have been studied at Chalk River by the use of magnetic electron-pair spectrometers. The difference in energies for the high-energy gamma rays should be in accord with the differences between the low-energy transitions. Many isotopes remain to be studied. The results to date are presented in Table 8f-1.

# 8g. Artificial Radioisotopes and Isomers 

L. SLACK<br>George Washington University

8g-1. Introduction. Information on the radioactive isotopes from the neutron through the radioisotopes of bismuth is given in Table $8 \mathrm{~g}-1$. The values used were selected from the data in the files of the Nuclear Data Group of the National Research Council up to March 1, 1955, which were kindly made available to the author.

In a condensed table it is not possible to list all the work which has been done on each, or in fact most, of the isotopes. Accordingly one value for the energy of each of the various radiations is given. For references to the literature, as well as for other values, one should consult National Bureau of Standards Circular 499 and the subsequent publications of the Nuclear Data Group as listed in the References. The following classes of isotopes have been omitted: (1) the stable isotopes; (2) the isotopes having a nuclear charge $Z$ greater than or equal to 84 ; (3) the isotopes emitting negative beta particles having no reported measurements of the energy of the betas; and (4) the isotopes for which the mass assignment is unknown or dubious.
$\mathbf{8 g}$-2. Explanation of Table $8 \mathrm{~g}-1$-Radioisotope Data. Column 1 lists the nucleus undergoing decay. The left subscript on the first isotope listed for a given element
is the number of protons in the nucleus. The superscript is the mass number. The letter $m$ following the mass number indicates that the decay data for the entry are for decay from a metastable or isomeric state. Decay from those states having half lives under a millisecond are listed under the parent radioactive nucleus. Metastable nuclei having half lives greater than a millisecond are listed under the nuclei themselves.

Column 2 lists the half life. Care has been exercised in the selection of values, but the values are not necessarily "best" values.

Column 3 gives the type of decay according to the following notation:
$\beta^{-}$negative beta particle (negatron) emission
$\beta^{+}$positive beta particle (positron) emission
$\epsilon$ electron capture (only when observed experimentally)
$\alpha$ alpha-particle emission
$n$ neutron emission
IT isomeric transition
Column 4 gives the energies of the component groups in beta transitions followed by information on the abundances of the groups according to the following notation: For $\beta^{-}$transitions
$(\quad+)$ relative number of $\beta^{-}$transitions in the group
(\%) number of $\beta^{-}$transitions in the group per 100 disintegrations
For $\beta^{+}$transitions

| +) | relative number of $\beta^{+}$transitions in the group |
| :---: | :---: |
| \%) | number of $\beta^{+}$transitio |
| \%T) | number of transitions in the group ( $\epsilon+\beta^{+}$) per 100 disintegrations |
|  | $\epsilon / \beta^{+}$, i.e., ratio of electron-capture transitions to $\beta^{+}$transitions (to $\epsilon / \beta^{+}$if set off by a semicolon) |

For some isotopes decaying by electron capture the disintegration energy has been measured and is denoted by $E_{\text {dis. }}$. Conversion electron energies are not given. $E_{\alpha}$ and $E_{n}$ are alpha and neutron energies, respectively.

Column 5 gives the energies of the gamma rays associated with the decay. Also given are data on the relative abundances of the gamma rays and the transitions, conversion coefficients, half lives of delayed radiations, and multipolarity in that order when these data are available. The following symbolism is used for gamma transitions:

| +) | relative number of gamma rays |
| :---: | :---: |
| \%) | number of transitions per 100 disintegrations |
| ] | number of conversion electrons per gamma ray |
| [ $K$ | number of $K$ conversion electrons per gamma ray $=\alpha_{K}$ |
| ( $\boldsymbol{r}=$ | half life of a delayed radiation |
| 2 , etc. | multipolarity of a transition when given in the literature |
| w, st, vst | weak, very weak, strong, very strong (intensity) |

The $L$-shell conversion coefficient $\alpha_{L}$ is given only when $\alpha_{K}$ has not been measured. $K / L$ ratios are not given, nor are upper limits of half lives of delayed radiations when these are the only data given. For some isotopes only the energies of those transitions observed in more than one experiment are given. If the only value available for a transition is the conversion electron energy it is not, in general, listed. Selection of a particular value was based both on the method of measurement and on consistency with other data.

The References include general discussions of subjects pertinent to the study of radioisotopes.

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{0}{ }^{1}$ | 13 min | $\beta^{-}$ | 0.78 |  |
| ${ }_{1} \mathrm{H}^{3}$. | 12.4 years | $\beta^{-}$ | 0.0180 |  |
| ${ }_{2} \mathrm{He}^{6}$ | 0.83 sec | $\beta^{-}$ | 3.50 |  |
| ${ }_{3} \mathrm{Li}^{8}$. | 0.9 sec | $\beta^{-}, 2 \alpha$ | $\begin{aligned} & \beta_{1}^{-13(\sim 90 \%) ; ~} \beta_{2}^{-} \beta_{3}^{-}(\sim 10 \%), \\ & E_{\alpha}(\text { total }) 3.2,7-9 \end{aligned}$ |  |
| Li ${ }^{\text {. }}$ | 0.17 sec | $\beta^{-}, n$ (delayed) | $\beta^{-} \sim 8$ |  |
| ${ }_{4} \mathrm{Be}^{7}$. | 53 days | $\epsilon$ |  | 0.479 |
| $\mathrm{Be}^{10}$. | $2.5 \times 10^{6}$ years | $\beta^{-}$ | 0.555 |  |
| ${ }_{5} \mathrm{~B}^{8}$. | 0.7 sec | $\beta^{+}, 2 \alpha$ | $\begin{aligned} & \beta^{+}: 13.7(\sim 85 \% T),<13,(\sim 15 \% T) \\ & E_{\alpha} \text { cf. } \mathrm{Li}^{8} \end{aligned}$ |  |
| $B^{12}$. | 0.03 sec | $\beta^{-}$ | 13.43, $\sim 9.1(\sim 4 \%)$ | $\sim 4.5$ |
| ${ }_{6} \mathrm{C}^{10}$. | 19 sec | $\beta^{+}$ | 2.1(98\% T) | 0.72(100+), 1.03(2+) |
| $\mathrm{C}^{11}$. | 20.4 min | $\beta^{+}$ | 0.968 |  |
| $\mathrm{C}^{14}$. | $\sim 5,600$ years | $\beta^{-}$ | 0.155 | No $\gamma$ |
| $\mathrm{C}^{15}$ | 2.4 sec | $\beta^{-}$ | 3.5, 8.8 | 5.3 (intense) |
| ${ }_{7} \mathrm{~N}^{12}$. | 0.013 sec | $\beta^{+}, \beta^{+}, 3 \alpha$ | $\beta^{+} 16.6 ; E_{\alpha}($ total $) \sim 4\left(\tau_{\alpha}=0.013 s\right)$ |  |
| $\mathrm{N}^{13}$. | 10.1 min | $\beta^{+}$ | 1.22 | No $\gamma$ between 0.14 and 0.7 |
| $\mathrm{N}^{16}$. | 7.4 sec | $\beta^{-}$ | $\begin{aligned} & 3.8(\sim 40 \%), 4.3(\sim 40 \%), 4.6(\sim 2 \%), \\ & 10.5(\sim 18 \%) \end{aligned}$ | 6.1(108+), 7.1(8+) |
| $\mathrm{N}^{17}$. | 4.2 sec | $\beta^{-}, n$ | $\beta^{-}: 3.7 ; E_{n}=0.92$ |  |
| ${ }_{8} \mathrm{O}^{14}$. | 77 sec | $\beta^{+}$ | 1.83(100+), 4.14(3+) | 2.30 |
| $0^{15}$. | 2.0 min | $\beta^{+}$ | 1.683 | - No $\gamma$ |
| $\mathrm{O}^{19}$. | 29.4 sec | $\beta^{-}$ | 2.9(70\%), 4.5(30\%) | $\begin{aligned} & 0.112(4+), 0.200(100+) \\ & \left(\tau=10^{-7} s\right), 1.366(67+) \end{aligned}$ |
| ${ }_{9} \mathrm{~F}^{17}$. | 70 sec | $\beta^{+}$ | 1.748 | No $\gamma$ |
| $\mathrm{F}^{18}$. | 1.87 hr | $\beta^{+}$ | 0.649 | No $\gamma$ |
| $\mathrm{F}^{20}$. | 12 sec | $\beta^{-}$ | 5.41 | 1.631 |
| ${ }_{10} \mathrm{Ne}^{18}$. | 1.6 sec | $\beta^{+}$ | 3.2 |  |


18.5 sec
40.2 sec
23 sec
2.6 years
15.0 hr
62 sec
11 sec
9.5 min
21.4 hr

2.1 sec
7.6 sec
6.7 sec
Long
2.3 min
6.6 min
4.0 sec
2.65 hr
2700 years
0.28 sec
4.6 sec
2.5 min
14.3 days
24.4 days
12.4 sec
2.4 sec
87 days
5.0 min
0.31 sec
2.8 sec
32.4 min

Table 8g-1. Radioisotope Data (Continued)

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cl}^{34}$ | 1.5 sec | $\beta^{+}$ | 4.45 |  |
| $\mathrm{Cl}^{36}$ | $4.4 \times 10^{5}$ years | $\beta^{-}$ | 0.714 |  |
| $\mathrm{Cl}^{38 m}$ | 1.5 sec | IT |  | 0.66 |
| $\mathrm{Cl}^{38}$. | 37.3 min | $\beta^{-}$ | 1.11(31\%), 2.77(16\%), 4.81(53\%) | 1.6(43+), 2.15(57+) |
| $\mathrm{Cl}^{39}$ | 56 min . | $\beta^{-}$ | 1.65(93\%), 2.96(7\%) | 0.35[0.5] |
| ${ }_{18} \mathrm{~A}^{35}$ | 1.84 sec | $\beta^{+}$ | 4.4 |  |
| $\mathrm{A}^{37}$. | 34 days | $\epsilon$ | $E_{\text {dis }}=0.82$ |  |
| $A^{38}$ | 265 years | $\beta^{-}$ | 0.565 | No $\gamma>0.3$ |
| $\mathrm{A}^{41}$. | 1.8 hr | $\beta^{-}$ | 1.245( $\sim 100 \%$ ) | $1.3\left(\tau=6.7 \times 10^{-9} \mathrm{sec}\right) \mathrm{M} 2$ |
| ${ }_{19} \mathrm{~K}^{38 m}$ | 0.94 sec | $\beta^{+}$ | 4.57 |  |
| $\mathrm{K}^{38}$ | 7.7 min | $\beta^{+}$ | 2.8 | 2.16 |
| $\mathrm{K}^{40}$ | $1.3 \times 10^{9}$ years | $\beta^{-}, \epsilon$ | 1.32; $\epsilon$ : (91\%) | 1.46 |
| $\mathrm{K}^{42}$ | 12.5 hr | $\beta^{-}$ | 1.97(18\%), 3.56 (82\%) | 0.309(1.5+), 1.51(100+) |
| $\mathrm{K}^{48}$. | 22 hr | $\beta^{-}$ | $\begin{aligned} & 0.24(5 \%), 0.46(5 \%), 0.83(83 \%) \\ & 1.22(5 \%), 1.84(2 \%) \end{aligned}$ | $\begin{gathered} 0.219(1+), 0.369(67+), 0.393(6+) \\ 0.627(100+)\left[\sim 2 \times 10^{-4}\right], 1.00(4+) \end{gathered}$ |
| $\mathrm{K}^{44}$. | 22 min | $\beta^{-}$ | 1.5, 4.9 | 1.13, 2.07, 2.48, others |
| ${ }_{20} \mathrm{Ca}^{39}$ | 0.9 sec | $\beta^{+}$ | 6.1 |  |
| $\mathrm{Ca}^{41}$ | $1.1 \times 10^{5}$ years | $\epsilon$ |  |  |
| $\mathrm{Ca}^{45}$. | 164 days | $\beta^{-}$ | 0.254 , none $>0.254$ | No $\gamma$ |
| $\mathrm{Ca}^{47}$ | 4.8 days | $\beta^{-}$ | 0.46(60\%), 1.40(40\%) | 0.150, 0.234, 0.495, 0.80, 1.30 |
| $\mathrm{Ca}^{49}$. | 8.5 min | $\beta^{-}$ | 2.0 | 3.0 |
| ${ }_{21} \mathrm{Sc}^{40}$ | 0.22 sec | $\beta^{+}$ | 9.0 | 3.75, no others |
| $\mathrm{Sc}^{41}$. | 0.87 sec | $\boldsymbol{\beta}^{+}$ | 4.94 |  |
| $\mathrm{Sc}^{43}$. | 4.0 hr | $\beta^{+}$ | 0.39(4+), $0.82(17+), 1.20(79+)$ | 0.25(1+), $0.369(16+), 0.627(4+), 0.84(\mathrm{w}+$ ) |
| $\mathrm{Sc}^{44 m}$. | 2.4 days | IT |  | 0.271 |
| $\mathrm{Sc}^{44}$ | 4.0 hr | $\beta^{+}, \boldsymbol{\epsilon}$ | 1.46(98\%) | 1.16 |
| $\mathrm{Sc}^{48 \mathrm{~m}}$. | 20 sec | IT |  | 0.135 M3 |
| $\mathrm{Sc}^{46}$. | 84 days | $\beta^{-}$ | 0.36, 1.25( $\sim 0.1 \%$ ) | $0.885\left[1.9 \times 10^{-4}\right], 1.119\left[0.88 \times 10^{-4}\right]$ |





|  |  |  |  | ザ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\stackrel{\star}{+}$
$+$

|  | $\frac{A}{\infty}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  |  | $\vdots \vdots$ | ！$\vdots \vdots$ |  |
|  |  | 京 | $\vdots \vdots \vdots$ |  |
|  |  | ： |  |  |
| 気 $\because$ <br>  | A |  |  |  |


| 8－1 |  |  | NUCLE | AR PH |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | ＇ 88$]\left(\% \mathrm{q}^{\prime} 9\right) 860^{\circ} 0^{\prime}(\% \mathrm{OL}) \angle L 0^{\circ} 0^{\prime}\left(\% \mathrm{~S}^{\circ} 0\right) \angle 90^{\circ} 0$ |
|  |  |  |  |  |  |  | － |  |
|  |  | $\begin{gathered} E \\ b=1 \\ b \end{gathered}$ |  |  | $\text { b } \quad \frac{1}{6}$ |  |  | － |
|  |  |  |  8 송 8 |  |  |  |  |  |
|  | $\begin{aligned} & \text { 递 } \\ & \text { 号 } \end{aligned}$ |  |  |  | $\begin{aligned} & 0 \\ & \text { 是 } \\ & \text { 要 } \end{aligned}$ | 等等 |  | \％ |

0.16
$\stackrel{\infty}{\sim}$




$0.535(368+), 0.602,0.750(353+)$,
$1.02(100+), 1.29(85+), 1.45(40+)$
$0.009,0.032,0.051 . \quad$ Cf． $\mathrm{Kr}^{83 m}$
0．009， $0.032,0.051$ ：Cf． $\mathrm{Kr}^{83 m}$
$0.890,1.89$
No $\gamma$
$\sim 3(80+), 5.4(20+)$
0.127 E 3
0．044，0．263［K0．016］
$0.1244,0.263[K 0.016]$
0.19 E 3
0．103［～$\sim$ ］E3
No $\gamma$
$0.176,0.950$

$0.176,0.950$
$\sim 0.6$
$0.25,0.33,0.37,0.42,0.68,0.75,0.96,1.21$
$0.160(0.64+), 0.237(20+), 0.284(0.22+)$,
$0.298(0.25+), 0.520(100+), 0.641(8.6+)$,
$0.813(25+) . \quad \mathrm{Cf}$.Se
$0.046,0.108$
$0.036[1.3] \mathrm{E} 1,0.049[>50] \mathrm{M} 3$
0.62

$0.535(368+), 0.602,0.750(353+)$,
$1.02(100+), 1.29(85+), 1.45(40+)$
$0.009,0.032,0.051 . \quad \mathrm{Cf} . \mathrm{Kr}^{83 m}$
$0.890,1.89$
$\mathrm{No} \gamma$
$\sim 3(80+), 5.4(20+)$

0.127 E 3
$0.044,0.263[\mathrm{~K} 0.016]$
0.19 E 3
 $\ldots+\ldots \ldots \ldots \ldots$
$\beta^{+}=0.86(\sim 8 \% T) ;$
$\beta^{-}=1.42(\sim 15+), 2.04(85+)$
0.465 0.940
$1.72(35 \%), 2.53(16 \%), 3.56(9 \%)$ $1.72(35 \%), 2.53(16 \%), 3.56(9 \%)$,
$4.68(40 \%)$



$$
\stackrel{\oplus}{\mathbf{i}}
$$

 neutrons $(2 \%)$ $n:$ mean $E_{n} \approx 0.5$
$1.7(\sim 30 \%)$


|  | $\frac{y}{a}$ | $\underset{\sim}{8}$ |  | $\begin{aligned} & \text { ta } \\ & \stackrel{1}{1} \\ & \text { en } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ！：： |  |  | ； |  |  | ． |  |
| ：：：：： |  |  |  |  |  |  | ．．． |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | 品 | F |  | $\begin{gathered} \text { ⿷匚⿳ } \\ \text { ロ } \end{gathered}$ |  |  |  |


| 8－1 |  | NUCLEAR | PHYSICS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\begin{aligned} & \text { 胃 } \\ & \text { 曾 } \\ & \stackrel{y}{4} \end{aligned}$ |  |  | ＋回 | b b b b | $2+\underset{0}{E}$ |
|  |  |  |  |  |  |
|  | $\begin{aligned} & \text { 淢 } \\ & \text { Z } \end{aligned}$ |  |  |  | $a_{0}^{\circ}$ |


|  |  |  |  | 会 |  |  <br> ర゙呂 ＋iた <br> Ni． <br> ๗io |  | \％ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 原 <br> 世た |  | \％ |



|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  | ベさざ边号 |  |






Table 8g-1. Radioisotope Data (Continued)

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{In}^{112 m}$. | 21 min | IT |  | 0.155[large]E3 or M3 |
|  | 14 min | $\beta^{-}, \beta^{+}, \boldsymbol{\epsilon}$ | $\beta^{-}: 0.656(44 \%), \beta^{+}: 1.52(56 \% T)$ |  |
| $\mathrm{In}^{113 m}$. | 1.73 hr | IT |  | 0.393[0.55]M4 |
| $\mathrm{In}^{114 m}$ | 50 days | IT |  | $0.192[K \sim 5] E 4$ |
| $\mathrm{In}^{114} \ldots$ | 72 sec | $\beta^{-}, \beta^{+}, \epsilon$ | $\beta^{-}: 1.98(96 \%), \beta^{+}: \sim 1.2$ ( $\left.\sim 0.004 \%\right)$ | $\begin{aligned} & 0.556(100+), 0.576,0.722(80+)(96 \% \text { M1, } \\ & 4 \% \text { E2), } 1.271(4+), 1.300 \end{aligned}$ |
| In ${ }^{115 m}$ | 4.5 hr | $\beta^{-}$, IT | 0.84(55\%) | $0.334[K 0.64] \mathrm{M} 4$ |
| $\mathrm{In}^{115}$. | $6 \times 10^{14}$ years | $\beta^{-}$ | 0.83 |  |
| $\mathrm{In}^{116 m}$. | 54.1 min | $\beta^{-}$ | 0.60(21\%), 0.87 (28\%), 1.00 (51\%) | $\begin{aligned} & 0.137(3 \%), 0.406(25 \%), 1.085(54 \%) \\ & {\left[8.4 \times 10^{-4}\right], 1.274(75 \%)\left[5.7 \times 10^{-4}\right]} \\ & 1.487(21 \%), 2.090(25 \%) \end{aligned}$ |
| In ${ }^{116}$. | 13 sec | $\beta^{-}$ | 3.29 | No $\gamma$ |
| In $^{117 m}$ | 1.9 hr | $\beta^{-}$, IT | 1.61(16\%), 1.77 (39\%) | $0.161[\mathrm{~K} 0.13] \mathrm{Mr}, 0.315[\mathrm{~K} 1.3] \mathrm{M} 4$ |
| $\mathrm{In}^{117}$. | 1.1 hr | $\beta^{-}$ | 0.740 | $0.161(86+)[K 0.13] \mathrm{M} 1,0.565(100+)[K 0.005]$ <br> Cf. $\mathrm{Sn}^{117 m}$ |
| In ${ }^{118}$. | $<1$ min | $\beta^{-}$ | 4.0 |  |
|  | 4.5 min | $\beta^{-}$ | 1.5 |  |
| In ${ }^{119}$. | 18 min | $\beta^{-}$ | 2.7 |  |
| $\mathrm{owSn}^{111}$. | 35 min | $\beta^{+}, \boldsymbol{\epsilon}$ | 1.51(29\%) |  |
| $\mathrm{Sn}^{113}$. | 118 days | IT |  | $0.156 \mathrm{M} 4,0.159[\mathrm{~K} 0.1] \mathrm{M} 1$ |
| $\mathrm{Sn}^{117 m}$ | 14 days | IT |  | $0.024[7], 0.065$ |
| $\mathrm{Sn}^{119 m}$. | 250 days | IT |  | 0.024[7], 0.065 |
| $\mathrm{Sn}^{121 m}$. | >400 days | $\beta^{-}$ | 0.42 |  |
| $\mathrm{Sn}^{121}$. | 27 hr | $\beta^{-}$ | 0.383 | No $\gamma$ |
| $\mathrm{Sn}^{123}$. | 40 min | $\beta^{-}$ | 1.26 | $0.153$ |
|  | $136{ }^{\text {days }}$ | $\beta^{-}$ | 1.42 | $\begin{aligned} & \text { No } \gamma \\ & 0.326,1.37 \end{aligned}$ |
| $\mathrm{Sn}^{125}$. | 9.5 min | $\beta^{-}$ | $\begin{aligned} & \sim 0.5,1.17,2.05 \\ & 0.40(\sim 5 \%), 2.37(95 \%) \end{aligned}$ | $\begin{aligned} & 0.326,1.37 \\ & 1.67 \end{aligned}$ |


| ${ }_{61} \mathrm{Sb}^{116}$. | 15.5 min | $\beta^{+}$ | 2.40 | 0.90, 1.30, 2.20 |
| :---: | :---: | :---: | :---: | :---: |
|  | 60 min | $\beta^{+}$ | $\sim 1.45$ | $0.41(15+), 0.95(130+), 1.31(150+)$ |
| $\mathrm{Sb}^{117}$ | 2.8 hr | $\epsilon$ | No $\beta^{+}$ | $0.156[$ large] |
| Sb ${ }^{118}$. | 3.5 min | $\beta^{+}$ | 3.1 | -.156[large] |
|  | 5.1 hr | $\epsilon$ |  | 0.260, 1.5 |
| $\mathrm{Sb}^{119}$. | 39 hr | $\epsilon$ | No $\beta^{+}$ | No $\gamma$ |
| $\mathrm{Sb}^{120}$. | 16.4 min | $\beta^{+}$ | 1.70 | No $\gamma$ |
| Sb ${ }^{122 m}$. | 3.5 min | IT |  | 0.059, 0.074 |
| Sb ${ }^{122}$. | 2.75 days | $\beta^{-}, \epsilon$ | $\begin{gathered} \beta^{-}: 0.730(4.4 \%), 1.42(69 \%) \\ 1.99(26.5 \%) ; \epsilon:(3 \%) \end{gathered}$ | 0.563, 0.693E2M1, 1.256E2 |
| $\mathrm{Sb}^{124 m}$. | 21 min | IT |  | 0.0185[ $\sim \infty$ ] |
|  | 1.3 min | IT |  | $0.012[\sim \infty]$ |
| $\mathrm{Sb}^{124}$. | 60 days | $\beta^{-}$ | $\begin{aligned} & 0.24(14 \%), 0.61(49 \%), 0.966(9 \%), \\ & 1.602(7 \%), 2.317(21 \%) \end{aligned}$ | $\begin{gathered} 0.603(100+)[0.0034] E 2,0.642,0.716,0.99 \\ (5.4+), 1.38(6.2+), 1.71(46+), 2.11(10+) \end{gathered}$ |
| $\mathrm{Sb}^{125}$. | $\sim 2.7$ years | $\beta^{\beta^{-}}$ | 0.128(33\%), $0.299(49 \%), 0.616(18 \%)$ | $\begin{aligned} & 0.035(86+), 0.110(18+), 0.175(6+), 0.255 \\ & (2+), 0.290(2+), 0.428(37+), 0.463(4+) \\ & 0.598(28+), 0.638(7+) \end{aligned}$ |
| $\underset{\text { Sb }{ }_{\text {Sb } 127}^{126} \ldots}{ }$ | $9 \mathrm{hr}$ | $\beta^{-}$ | 1 | $0.4,0.90$ |
| $\mathrm{Sb}^{127} \ldots$ | $93 \mathrm{hr}$ | $\beta^{-}$ | 1.50 |  |
| $\mathrm{s}_{\mathrm{s} 2} \mathrm{Te}^{117} .$ | 2.5 hr | $\beta^{+}$ | 2.5 |  |
| Te ${ }^{118}$. | 6 days | - |  |  |
| $\mathrm{Te}^{119}$. | 4.5 days | E |  | 1.5 |
| $\mathrm{Te}^{121 m}$ | 154 days | IT |  | 0.082[ $\sim \infty$ ] M4, $0.213[\mathrm{~K} 0.09] \mathrm{M} 1$ |
| $\mathrm{Te}^{121} \ldots$ | 17 days | E |  | 0.506(13\%)[ $\sim 0.018], 0.573(87 \%)[0.009]$ |
| Te ${ }^{123 m}$ | 104 days | IT |  | $\begin{gathered} 0.0885[\sim \infty] \mathrm{M} 4,0.159[K 0.19] \\ \left(\tau=1.9 \times 10^{-10} \mathrm{sec}\right) \mathrm{M} 1 \end{gathered}$ |
| $\mathrm{Te}^{125 m}$ | 58 days | IT |  | $\begin{aligned} & 0.0354[K 11.4] \mathrm{M} 1\left(\tau=1.6 \times 10^{-9} \mathrm{sec}\right), \\ & 0.110[K=160] \mathrm{M} 4 \end{aligned}$ |
| $\mathrm{Te}^{127 \mathrm{~m}} . .$ $\mathrm{Te}^{127} .$ | 113 days | ${ }^{\text {IT }}$ |  | 0.0887[very large]M4 |
| $\mathrm{Te}^{127} \ldots$ | 9.3 hr | $\beta^{-}$ | 0.7 |  |
| Te ${ }^{129 m}$. | 38 days | IT |  | 0.106[very large]M4 |

Table 8g-1. Radioisotope Data (Continued)

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| Te ${ }^{129}$ | 72 min | $\beta^{-}$ | 1.8 |  |
| T ${ }^{131 m}$ | 1.2 days | IT |  | $0.183[0.6] \mathrm{M} 4$ |
| $\mathrm{Te}^{131}$ | 25 min | $\beta^{-}$ | 1.35(45\%), 2.0(55\%) | 0.16(1.5+), 0.7(1.0+) |
| Te ${ }^{132}$ | 78 hr | $\beta^{-}$ | 0.22 | 0.23 |
| $\mathrm{T}^{133 m}$ | 63 min | IT |  | ~0.4[large] |
| Te ${ }^{133}$ | 2 min | $\beta^{-}$ | 1.3( $\sim 70 \%$ ), 2.4( $\sim 30 \%$ ) | 0.6, 1.0 |
| ${ }_{53} \mathrm{I}^{120}$. | 30 min | $\beta^{+}$ | 4.0 |  |
| $\mathrm{I}^{121}$ | 1.4 hr | $\beta^{+}$ | 1.2 | 0.213 |
| $\mathrm{I}^{122}$ | 3.5 min | $\beta^{+}$ | 3.12 | No $\gamma$ |
| $\mathrm{I}^{123}$ | 13 hr | $\epsilon$ |  | 0.160 M 1 |
| $\mathrm{I}^{124}$. | 4.5 days | $\beta^{+}, \epsilon$ | $\begin{aligned} & \epsilon(\sim 70 \%) ; \beta^{+}: 0.67(5+), 1.50(44+), \\ & 2.2(51+) \end{aligned}$ | 0.602, 0.73, 1.72, 1.95 |
| $\mathrm{I}^{125}$. | 60 days | $\epsilon$ |  | 0.0354 |
| $\mathrm{I}^{126}$. | 13.3 days. | $\beta^{-}, \beta^{+}, \epsilon$ | $\begin{aligned} & \beta^{-}: 0.385(5.8 \%), 0.865(29 \%), 1.250 \\ & (9.3 \%) ; \beta^{+}: 0.460(0.28 \%), 1.110 \\ & (0.96 \%) ; \epsilon:(\sim 55 \%) \end{aligned}$ | $\begin{aligned} & 0.386(336+)[K 0.017], 0.480(50.4+), 0.650 \\ & (330+), 0.750(36+), 0.860(8.4+), 1.42(5+) \end{aligned}$ |
| $\mathrm{I}^{128}$ | 25 min | $\beta^{-}, \epsilon$ | $\epsilon:(\sim 6 \%) ; \beta^{-}: 1.59(7+), 2.02(93+)$ | 0.455(100+), $0.98(2+$ ) |
| $I^{129}$ | $1.7 \times 10^{7}$ years | $\beta^{-}$ | 0.150 | 0.038[K22] |
| $\mathrm{I}^{130}$. | 12.5 hr | $\beta^{-}$ | 0.597(54\%), 1.02 (46\%) | $\begin{aligned} & 0.409(30+)[K 0.016], 0.528(100+)[K 0.0055], \\ & 0.660(90+)[K 0.0032], 0.744(80+) \\ & {[K 0.00027], 1.15(40+)\left[K 2.5 \times 10^{-4}\right]} \end{aligned}$ |
| $\mathrm{I}^{131}$. | 8.05 days | $\beta^{-}$ | $\begin{aligned} & 0.255(\sim 3 \%), 0.339(9 \%), 0.607(87 \%), \\ & 0.80(\sim 1 \%) \end{aligned}$ | $\begin{aligned} & 0.08016(6.3+)[K 1.7]\left(\tau=5 \times 10^{-10} \mathrm{sec}\right) \mathrm{M} 1, \\ & 0.163(\sim 1 \%) \mathrm{M} 1,0.28431(6.3+)[K 0.047] \mathrm{E} 2, \\ & 0.36447(80.9+)[K 0.018] \mathrm{E} 2,0.638(9.3+) \\ & {[K 0.0037] \mathrm{E} 1,0.724(2.8+)[K 0.0028] .} \\ & \mathrm{Cf} . \mathrm{Xe}^{131 \mathrm{~m}} \end{aligned}$ |
| $\mathrm{I}^{132}$ | 2.4 hr | $\beta^{-}$ | $\begin{array}{\|l} 0.73(15 \%), 0.9(20 \%), 1.16(23 \%), \\ 1.53(24 \%), 2.12(18 \%) \end{array}$ | 0.777(80+), $0.96(20+)$ |

$$
. \begin{aligned}
& 20.8 \mathrm{hr} \\
& 53 \mathrm{~min} \\
& 6.7 \mathrm{hr} \\
& 1.5 \mathrm{~min} \\
& 19 \mathrm{sec} \\
& 40 \mathrm{~min} \\
& 19 \mathrm{hr} \\
& 1.8 \mathrm{hr} \\
& 55 \mathrm{sec} \\
& 18 \mathrm{hr} \\
& 75 \mathrm{sec} \\
& 36.4 \text { days } \\
& 8.0 \mathrm{days} \\
& 12 \mathrm{days} \\
& 2.3 \text { days } \\
& 5.27 \text { days } \\
& 15.3 \mathrm{~min} \\
& 9.2 \mathrm{hr} \\
& \\
& 3.9 \mathrm{hr} \\
& 45 \mathrm{~min} \\
& 1.6 \mathrm{~min} \\
& 6.3 \mathrm{hr} \\
& 3.8 \mathrm{~min} \\
& 31 \mathrm{hr} \\
& 30 \mathrm{~min} \\
& 10 \text { days } \\
& 7.1 \mathrm{days} \\
& 3.15 \mathrm{hr}
\end{aligned}
$$



8－116 NUCLEAR PHYSICS
Table 8g－1．Radioisotope Data（Continued）

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | ¢ $\quad \ll$ | b b |  | ． | 舄舄め禹 |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |





|  |  | 品胃 |  N○が | $\begin{array}{r} \text { 焄 } \\ \text { z } \\ 0 \\ \hline \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\vdots \vdots \vdots \vdots \vdots$ |  | $\cdots$ |  |  |  |
|  |  |  | ：$: ~: ~: ~: ~: ~$ |  |  |
| － |  |  | ：$\vdots$ ： |  |  |
|  |  |  |  |  |  |
|  | $\begin{aligned} & \dot{\vdots} \mathrm{J} \\ & 0 \end{aligned}$ |  |  |  |  |


| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Nd}^{140}$. | 3.3 days | $\epsilon$ | $E_{\text {dis }} \sim 0.1$ |  |
| $\mathrm{Nd}^{141}$ | 2.4 hr | $\beta^{+}{ }^{+}, \epsilon$ | 0.7; [49] | 1.05 (w+) |
| Nd ${ }^{144}$. | $\sim 1.5 \times 10^{15}$ years | $\alpha$ | 1.8 |  |
| Nd ${ }^{147}$. | 11.6 days | $\beta^{-}$ | 0.35( $\sim 33 \%$ ), 0.78( $\sim 67 \%$ ) | 0.0918(66\%)[K0.8]M1, $0.522(32 \%) \mathrm{E} 2$ |
| Nd ${ }^{149}$. | 1.7 hr | $\beta^{-}$ | $0.95,1.1,1.5$ | $0.030,0.096 \mathrm{E} 2,0.112,0.114,0.124,0.188$, $0.198,0.226,0.240,0.266,0.424,0.538,0.650$ |
| $\mathrm{Nd}^{151}$. | 12 min | $\beta^{-}$ | 1.93 | $0.085,0.110,0.117,0.421,0.72,1.14$ |
| ${ }_{61} \mathrm{Pm}^{141}$. | 20 min | $\beta^{+}$ | $\sim 2.6$ |  |
| $\mathrm{Pm}^{143}$. | 320 days | $\beta^{-}($? ), $\epsilon$ | 0.6 ( $\beta$ or $e^{-}$) | 0.17, 0.44, 0.65 |
| $\mathrm{Pm}^{145}$ | 24 years | $\epsilon$ |  | 0.0678, 0.0727 |
| $\mathrm{Pm}^{146}$ | $\sim 1$ year | $\beta^{-}$ | $\sim 0.7$ |  |
| $\mathrm{Pm}^{147}$ | 2.6 years | $\beta^{-}$ | 0.229 |  |
| $\mathrm{Pm}^{148}$. | 5.3 days | $\beta^{-}$ | $\sim 2.5$ | $\sim 0.8$ |
|  | 42 days | $\beta^{-}$ | 0.7(93\%), 2.7(7\%) | $\underset{\sim}{\sim}$ |
| Pm ${ }^{149}$. | 50 hr | $\beta^{-}$ | 1.05 | $0.285 \mathrm{M} 1,1.3$ |
| $\mathrm{Pm}^{150}$. | 2.7 hr | $\beta^{-}$ | 2.01(70\%), 3.00(30\%) | 0.3, 1.4 |
| $\mathrm{Pm}^{161}$. | 28 hr | $\beta^{-}$ | 1.1 | $\begin{aligned} & 0.065 \mathrm{E} 2,0.066 \mathrm{E} 2,0.070 \mathrm{E} 2,0.100,0.116, \\ & 0.144,0.163,0.168,0.177,0.208,0.232, \\ & 0.240,0.275,0.340,0.715 \end{aligned}$ |
| ${ }_{62} \mathrm{Sm}^{145}$. | 410 days | $\epsilon$ |  | 0.061 |
| $\mathrm{Sm}^{146}$. | $5 \times 10^{7}$ years | $\alpha$ | 2.55 |  |
| $\mathrm{Sm}^{151}$. | $\sim 70$ years | $\beta^{-}$ | 0.076 | 0.019 |
| $\mathrm{Sm}^{153}$. | 47 hr | $\beta^{-}$ | 0.26(9\%), 0.685(70\%), 0.795(21\%) | $\begin{gathered} 0.069[K 3.8] \mathrm{M} 1 \mathrm{E} 2,0.103(100+)[K 1.1] \\ \left(\tau=3.4 \times 10^{-9} \mathrm{sec}\right), 0.545(\sim 4+) \end{gathered}$ |
| $\mathrm{Sm}^{155}$. | 24 min | $\beta^{-}$ | 1.8 | $0.105 \mathrm{M} 1 \mathrm{E} 2,0.246 \mathrm{M} 1$ |
| Sm ${ }^{166}$ | $\sim 10 \mathrm{hr}$ | $\beta^{-}$ | 0.9 |  |
| ${ }_{64} \mathrm{Eu}^{144}$. | 18 min | $\beta^{+}$ | 2.4 |  |
| Eu ${ }^{145} \ldots$ | 5 days | 1 |  | ? |



Table 8g-1. Radioisotope Data (Continued)

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{60} \mathrm{Dy}^{157}$. | 8.2 hr | $\epsilon$ | No $\beta^{+}$ | 0.325 |
| Dy ${ }^{159}$. | 140 days | $\epsilon$ |  |  |
| Dy ${ }^{165 m}$. | 1.2 min | $\beta^{-}$, IT | 0.84(calc.) | 0.108[K $\sim 4] \mathrm{E} 3,0.16,0.36,0.515$ |
| Dy ${ }^{165}$. . | 2.32 hr | $\beta^{-}$ | $\sim 0.3,1.25$ | $\begin{aligned} & 0.094[\leq 2.9] \mathrm{M} 1 \mathrm{E} 2,0.279,0.361,0.634,0.71 \\ & 1.02 \end{aligned}$ |
| Dy ${ }^{166}$. | 81 hr | $\beta^{-}$ | 0.22 | $<0.05$ |
| ${ }_{82} \mathrm{Ho}^{180}$ | 23 min | $\beta^{+}, \epsilon$ | $\sim 1.3(0.5 \%)$ | $\sim 1.2(100 \%)$ |
| $\mathrm{Ho}^{161}$ | 2.5 hr | $\epsilon$ | No $\beta^{+}$ | 0.090, 0.17(w+) |
| $\mathrm{H}^{162}$ | 5.0 hr | $\beta^{-}, \epsilon$ | No $\beta^{+} ; \beta^{-}$: $0.8(15 \%)$ | $0.19,0.71,0.95$ |
| $\mathrm{Ho}^{164}$ | 36.7 min | $\beta^{-}$ | $\sim 0.90,0.99$ | 0.037, 0.046, 0.073, 0.090 |
| $\mathrm{Ho}^{166}$ | 27.3 hr | $\beta^{-}$ | $\begin{aligned} & 0.23(\sim 0.3 \%), 0.40(1 \%), 1.76(74 \%), \\ & 1.84(25 \%) \end{aligned}$ | $\begin{array}{\|l} 0.080(85+)[1.9]\left(r=1.7 \times 10^{-9} \mathrm{sec}\right) \mathrm{E} 2 \\ 1.36(10+), 1.53(2+), 1.61(\sim 1+) \end{array}$ |
| $\mathrm{Ho}^{187}$ | 96 min | $\beta^{-}$ | 1.0 | 0.35 |
| ${ }_{88} \mathrm{Er}^{161}$ | 3.6 hr | $\epsilon$ | No $\beta^{+}$ | 0.065, 0.824, 1.120 |
| $\mathbf{E r}^{103}$ | 75 min | $\epsilon$ | No $\beta^{+}$ | 0.43, 1.10 |
| Er ${ }^{105}$ | 9.9 hr | $\epsilon$ |  | No $\gamma$ |
| $\mathbf{E r}^{160}$ | 9.4 days | $\beta^{-}$ | 0.33 | 0.185 |
| Er ${ }^{171}$. | 7.5 hr | $\beta^{-}$ | 0.67(22\%), 1.05(72\%), 1.49(6\%) | $\begin{aligned} & 0.113[1.3](\tau=2.5 \mu \mathrm{sec}), 0.118,0.126,0.176, \\ & 0.295,0.308,0.420,0.805 \end{aligned}$ |
| ${ }_{69} \mathrm{Tm}^{165}$. | 24.5 hr | $\epsilon$ | No $\beta^{+}$ | $0.205,0.808,1.16,1.38$ |
| $\mathrm{Tm}^{166}$. | 7.7 hr | $\beta^{+}, \epsilon$ | 2.1 | $1.7$ |
| Tm ${ }^{167}$ | 9.6 days | $\epsilon$ |  | $0.22,0.95$ |
| Tm ${ }^{168}$ | 87 days | $\epsilon$ |  | 0.21, 0.85 |
| Tm ${ }^{179}$ | 127 days | $\beta^{-}$ | 0.884(24\%), 0.968(76\%) | $0.0841[\mathrm{~K} 1.6]\left(\tau=1.57 \times 10^{-9} \mathrm{sec}\right) \mathrm{E} 2$ |
| $\mathbf{T m}^{171}$. | 680 days | $\beta^{-}$ | 0.10 |  |
| ${ }_{\mathbf{Y 0}} \mathrm{Yb}^{187}$. | 58 hr | $\epsilon$ |  | 0.118 |
| $\mathbf{Y b}^{167}$. | 18.5 min |  |  | 0.118 |


Table 8g-1. Radioisotope Data (Continued)

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| Ta ${ }^{182}$ | 111 days | $\beta^{-}$ | 0.510, 0.442, 0.178 ? | $\begin{aligned} & 0.06571(9+) \mathrm{M} 1 \mathrm{E} 2,0.06774(100+) \mathrm{E} 1, \\ & 0.08467(6+) \mathrm{M} 1 \mathrm{E} 2,0.1009(46+)[K 1.5] \mathrm{E} 2, \\ & 0.11366(9+)[K 1.75] \mathrm{M} 1,0.15241(43+) \\ & {[K 0.07] \mathrm{E} 1,0.15637(14+)[K \text { small], } 0.17936} \\ & (19+)[K 0.41] \mathrm{M} 1 \mathrm{E} 2,0.19831(9+)[K 0.24] \mathrm{E} 2, \\ & 0.22205(45+)[K 0.06] \mathrm{E}, 0.22927(24+) \\ & {[K 0.16] \mathrm{E} 2,0.26409(27+)[K 0.11] \mathrm{E} 2,1.122} \\ & (120+)[\mathrm{K} 0.005] \mathrm{E} 2 \mathrm{M} 1,1.155(8+) \\ & {[K 0.004] \mathrm{M} 2,1.189(56+)[K 0.006] \mathrm{E} 3 \mathrm{M} 2,} \\ & 1.222(115+)[K 0.003] \mathrm{E} 2,1.231(58+) \\ & {[K 0.003] \mathrm{E} 2, \text { eight others }(<2+\text { each })} \end{aligned}$ |
| Ta ${ }^{183}$ | 5 days | $\beta^{-}$ | 0.56 | $0.04097(10.3+) \mathrm{M} 1,0.04648(61.4+) \mathrm{M} 1$, $0.05259(41.7+) \mathrm{M} 1,0.08292(2.5+), 0.08470$ (14.0+)M1, 0.09907(31.9+)E2, 0.10793 $(45.7+) \mathrm{M} 1,0.10973(2.9+), 0.14412$ (6.4+)M1, 0.16053(4.4+)E2, 0.16136 $(18.2+) \mathrm{M} 1,0.16233(9.8+) \mathrm{M} 1,0.20987$ $(5.4+) \mathrm{E} 2,0.24426(10.0+) \mathrm{E} 2,0.24605$ $(35.6+) \mathrm{M} 1,0.29171(5.4+) \mathrm{E} 2,0.31303$ $(8.8+) \mathrm{M} 1,0.35404(12.0+) \mathrm{M} 1$, nine others (<2+ each) |
| Ta ${ }^{184}$ | 9.3 hr | $\beta^{-}$ | 1.4 |  |
| Ta ${ }^{185}$. | 48 min | $\beta^{-}$ | 1.6 |  |
| ${ }_{44} W^{176}$ | 80 min | $\beta^{+}, \epsilon$ | $\sim 2(\sim 0.5 \%)$ | $\sim 1.3$ |
| $W^{177}$. | 2.2 hr | , |  | $\sim 0.45,1.2$ |
| $\mathrm{W}^{178}$ | 22 days | $\epsilon$ |  | 0.27 |
| $W^{179}$. | 30 min 5.2 min | $\epsilon$ |  | No $\gamma$ <br> No $\gamma$ |


Table 8g-1. Radioisotope Data (Continued)


Table 8g-1. Radioisotope Data (Continued)

| Nuclide | Half life | Type of decay | Particle energy, Mev | Gamma-ray energy, Mev |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{81} \mathrm{~T}^{198 m}$ | 1.8 hr | IT |  | $0.0484[>10] \mathrm{E} 2,0.261 \mathrm{M} 4,0.282 \mathrm{M} 1 \mathrm{E} 2$ |
| Tl ${ }^{198}$ | 5.3 hr | $\epsilon$ |  | $0.195,0.284,0.402,0.411,0.675$ |
| T1 ${ }^{199}$. | 7.4 hr | $\epsilon$ |  | $\begin{array}{\|l} 0.0500,0.1584,0.2081,0.2472 \mathrm{M} 1,0.3336, \\ 0.4546 \mathrm{M} 1,0.4913 \mathrm{M} 1 \end{array}$ |
| T1 ${ }^{200}$ | 27 hr | $\epsilon$ |  | $0.252,0.289,0.368,0.579,0.629,0.829$ |
| T1 ${ }^{201}$ | 3 days | $\epsilon$ |  | $0.03,0.032,0.135 \mathrm{M} 1,0.168 \mathrm{M} 1$ |
| $\mathrm{Tl}^{202}$ | 12 days | $\epsilon$ |  | 0.4391 E 2 |
| $\mathrm{T} 1{ }^{204}$ | 4.1 years | $\beta^{-}, \epsilon$ | 0.765(98.3\%) | No $\gamma$ |
| T1 ${ }^{206}$ | 4.19 min | . $\beta^{-}$ | 1.51 | No $\gamma$ |
| $\mathrm{Tl}^{207}\left(\mathrm{AcC}^{\prime \prime}\right)$ | 4.79 min | $\beta^{-}$ | 1.44 | 0.870( $\sim 5 \%$ ) |
| $\mathrm{Tl}^{208}\left(\mathrm{ThC}^{\prime \prime}\right)$ | 3.1 min | $\beta^{-}$ | 1.25, 1.6, 1.792 | $0.233,0.27735(5+), 0.5108(15+) \mathrm{E} 2(63 \%)$ $\mathrm{M} 1(37 \%), 0.5830(40+)\left(\tau=2.4 \times 10^{-10}\right.$ sec) [K0.015]E2, $0.860 \mathrm{E} 2,2.6072[K 0.0018] \mathrm{E} 3$ |
| T1 ${ }^{209}$. | 2.2 min | $\beta^{-}$ | 1.99 | 0.12 |
| $\mathrm{Tl}^{210}\left(\mathrm{RaC}^{\prime \prime}\right)$ | 1.32 min | $\beta^{-}$ | 1.8 |  |
| ${ }_{82} \mathrm{~Pb}^{178}$. | 25 min | $\epsilon$ |  | $\begin{aligned} & 0.0484,0.2607,0.2824 . \quad \text { Cf. T1 }{ }^{198 m} \\ & 0.139,0.320 \end{aligned}$ |
| $\mathrm{Pb}^{200}$. | 180 hr | $\epsilon$ |  | $\begin{aligned} & 0.139,0.320 \\ & 0.325(100+), 0.583(33+) \end{aligned}$ |
| $\mathrm{Pb}^{201}$. | 8.4 hr 3.5 hr | $\stackrel{\epsilon}{\text { IT }}$ |  | $\begin{aligned} & 0.325(100+), 0.583(33+) \\ & 0.128 \mathrm{E} 4,0.392,0.421(95+)[K 0.035] \mathrm{E} 2,0.461 \end{aligned}$ |
| $\mathrm{Pb}^{202 m}$ | 3.5 hr | IT |  | $\begin{aligned} & (<15+)[K>0.06] \mathrm{M} 1,0.658(36+) \\ & {[K 0.005] \mathrm{E} 1,0.788(54+)[K 1.08] \mathrm{E} 5,} \\ & 0.963(106+)[0.0055] \mathrm{E} 2 \end{aligned}$ |
| $\mathrm{Pb}^{203}$. | 52 hr | $\epsilon$ |  | $\begin{aligned} & 0.153(<0.4+), 0.279(82.3+)[K 0.15] \mathrm{M} 1 \mathrm{E} 2, \\ & 0.400(3.8+)[K 0.12] \mathrm{M} 1 \mathrm{E} 2,0.678(0.7+) \\ & {[K 0.009] \mathrm{E} 2} \end{aligned}$ |
| $\mathrm{Pb}^{204 m}$. | 68 min | IT |  | $\begin{aligned} & 0.374(135+)(\tau=0.26 \mu \mathrm{sec})[K 0.04] \mathrm{E} 2, \\ & 0.913(100+)[K 0.05] \mathrm{E} 5 \end{aligned}$ |

ARTIFICIAL RADIOISOTOPES AND ISOMERS



| $\mathrm{Pb}^{206 m}$. | $145 \mu \mathrm{sec}$ |
| :---: | :---: |
| $\mathrm{Pb}^{207 m}$. | 0.82 sec |
| $\mathrm{Pb}^{209}$ | 3.3 hr |
| $\mathrm{Pb}^{210}(\mathrm{RaD})$. | 22 years |
| $\mathrm{Pb}^{211}(\mathrm{AcB})$. | 36.1 min |
| $\mathrm{Pb}^{212}$ (ThB). | 10.6 hr |
| $\mathrm{Pb}^{214}$. | 26.8 min |
| ${ }_{83} \mathrm{Bi}^{198}$. | 7 min |
| $\mathrm{Bi}^{199}$. | 25 min |
| $\mathrm{Bi}^{200}$. | 35 min |
| $\mathrm{Bi}^{201}$. | 62 min |
| $\mathrm{Bi}^{202}$ | 95 min |
| $\mathrm{Bi}^{203}$. | 12 hr |
| $\mathrm{Bi}^{204}$. | 12 hr |
| $\mathrm{Bi}^{205}$ | 14.5 days |
| $\mathrm{Bi}^{206}$ | 6.4 days |
| $\mathrm{Bi}^{207}$ | $\sim 50$ years |
| $\mathrm{Bi}^{210 m}(\mathrm{RaE})$. | 5.00 days |
| $\mathrm{Bi}^{210}$. | $2.6 \times 10^{6}$ years |
| $\mathrm{Bi}^{211}(\mathrm{AcC})$. | 2.16 min |
| $\mathrm{Bi}^{\mathbf{2 1 2}}$. | 60.5 min |

## References

## Nuclear Data

Hollander, J. M., I. Perlman, and G. T. Seaborg: Table of Isotopes, Revs. Modern Phys. 25, 469 (1953).
Way, K., et al.: Nuclear Data, Natl. Bur. Standards (U.S.) Circ. 499 and supplements; New Nuclear Data, Nuclear Science Abstracts 6, $24 B$ (1952); 7, 24B (1953); 8, 24B (1954) ; 9, 24B (1955).

## Beta Decay

Cook, C. S.: The Capture of Orbital Electrons by Nuclei, Am. J. Phys. 19, 37 (1951). Cook, C. S., and G. E. Owen: The Allowed Beta Spectrum, Am. J. Phys. 18, 453 (1950).

Konopinski, E. J.: Beta Decay, Revs. Modern Phys. 15, 209 (1943).
Konopinski, E. J., and L. M. Langer: Experimental Clarification of the Theory of Beta Decay, Ann. Rev. Nuclear Sci. 2 (1953).
Wu, C. S.: Investigation of the Shapes of Beta Ray Spectra, Revs. Modern Phys. 22, 386 (1950).
Wu, C. S.: Beta Disintegration, Allowed and Forbidden Decay, Physica XVIII, 989 (1952).

## Shell Structure

Feenberg, E.: "The Shell Theory of the Nucleus," Princeton University Press, Princeton, N.J., 1955.
Haxel, O., J. H. D. Jensen, and H. E. Suess: On the Magic Numbers in Nuclear Structure, Phys. Rev. 75, 1766 (1949).
Mayer, M. G.: On Closed Shells in Nuclei, Phys. Rev. 75, 1969 (1949); Nuclear Configurations in the Spin Orbit Coupling Model, Phys. Rev. 78, 16 (1950).
Mayer, M. G., and J. H. D. Jensen: "Elementary Theory of Nuclear Shell Structure," John Wiley \& Sons, Inc., New York, 1955.

## Isomerism

Goldhaber, M., and R. D. Hill: Nuclear Isomerism and Shell Structure, Revs. Modern Phys. 24, 179 (1952).
Goldhaber, M., and A. W. Sunyar: Classification of Nuclear Isomers, Phys. Rev. 83, 906 (1951).
Segrè, E., and A. C. Helmholtz: Nuclear Isomerism, Revs. Modern Phys. 21, 271 (1949).

## Detection and Measurements

Bell, R. E.: Nuclear Particle Detection, Ann. Rev. Nuclear Sci. 4 (1954).
Cavanagh, P. E.: Spectroscopy of Beta and Gamma Rays, "Progress in Nuclear Physics," vol. 1, Academic Press, Inc., New York, 1950.
Curtiss, L. F.: Measurements of Radioactivity, Natl. Bur. Standards (U.S.) Circ. 476 (1949).

Hayward, R. W.: Beta Ray Spectroscopy, "Advances in Electronics," vol. V, Academic Press, Inc., New York, 1953.
Marshall, J.: Nuclear Particle Detection, Ann. Rev. Nuclear Sci. 4 (1953).
Persico, E., and C. Geoffrion: Beta Ray Spectroscopes, Rev. Sci. Instr. 21, 945 (1950).
Swank, R. K.: Nuclear Particle Detection, Ann. Rev. Nuclear Sci. 4 (1954).

## General Theory

Blatt, J. M., and V. F. Weisskopf: "Theoretical Nuclear Physics," John Wiley \& Sons, Inc., New York, 1952.
Gamow, G., and C. L. Critchfield: "Theory of Atomic Nucleus and Nuclear Energy Sources," Oxford University Press, New York, 1949.
Siegbahn, K.: "Beta and Gamma Ray Spectroscopy," North Holland Publishing Co., Amsterdam, 1955.

# 8h. Neutrons 

D. J. HUGHES<br>Brookhaven National Laboratory

J. A. Harvey<br>Oak Ridge National Laboratory

Primarily because of their lack of charge and their availability in high intensity, neutrons have been used to study interactions with matter over a $10^{13}$-fold energy range ( $10^{-4}$ to $10^{9} \mathrm{ev}$ ). The complexity of these interactions is such that they cannot all be presented in tabular or graphical form in reasonable space. Here only the interactions that have been fairly well established and are of general use are included, most of these corresponding to the low-energy region.

## 8h-1. Neutron Properties ${ }^{1}$

Spin, $九 / 2$
Statistics, Fermi-Dirac
Radioactive decay, half life $=12.8 \pm 2.5 \mathrm{~min}$; mass difference $m_{n}-m_{H}=782$ $\pm 1 \mathrm{kev}$

Magnetic moment $\mu_{n}=-1.913148 \pm 0.000066$ nuclear magnetons
Neutron mass, $1.008982 \pm 0.000003$ atomic mass units (physical scale), (1.67474 $\pm 0.00010) \times 10^{-24} \mathrm{~g}, 939.526 \pm 0.024 \mathrm{Mev}$
Compton wavelength of the neutron

$$
\begin{aligned}
& \lambda_{c n}=\frac{h}{m_{n} c}=(1.31958 \pm 0.00004) \times 10^{-13} \mathrm{~cm} \\
& \lambda_{c n}=\frac{\lambda_{c n}}{2 \pi}=(2.10017 \pm 0.00007) \times 10^{-14} \mathrm{~cm}
\end{aligned}
$$

Nonrelativistic conversion formulas $\left[E=k T, \lambda=h /(2 m E)^{\frac{1}{2}}\right]$

$$
\begin{gathered}
T\left(\text { degrees K) }=1.16057 \times 10^{4} E=6.06607 \times 10^{-5} v^{2}=\frac{9.49334 \times 10^{-4}}{\lambda^{2}}\right. \\
E(\mathrm{ev})=8.6164 \times 10^{-5} T=5.22680 \times 10^{-9} v^{2}=\frac{8.17989 \times 10^{-18}}{\lambda^{2}} \\
v(\mathrm{~m} / \mathrm{sec})=1.28394 \times 10^{2} T^{\frac{1}{2}}=1.38319 \times 10^{4} E^{\frac{1}{2}}=\frac{3.95599 \times 10^{-5}}{\lambda} \\
\lambda(\mathrm{~cm})=\frac{3.08112 \times 10^{-7}}{T^{\frac{1}{3}}}=\frac{2.86005 \times 10^{-9}}{E^{\frac{1}{2}}}=\frac{3.95599 \times 10^{-5}}{v}
\end{gathered}
$$

For neutron with $v=2,200 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
& T=293.60 \pm 0.02^{\circ} \mathrm{K} \\
& \lambda=(1.79818 \pm 0.00006) \times 10^{-8} \mathrm{~cm} \\
& E=0.0252977 \pm 0.0000006 \mathrm{ev}
\end{aligned}
$$

${ }^{1}$ Based on results of J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).

## NUCLEAR PHYSICS

8h-2. Neutron Binding Energies. The compound nucleus formed by addition of a neutron to a target nucleus has an excitation energy equal to the neutron's binding energy $B_{n}$ (of the "last" neutron in the compound nucleus) plus its kinetic energy. As a result, $B_{n}$ is important in determining the excitation energy involved in neutron reactions. The binding energy of the last neutron in the nuclide indicated is tabulated in Table $8 \mathrm{~h}-1$, which is based on a compilation of neutron binding energies by N. Feather. ${ }^{1}$

8h-3. Types of Neutron Cross Sections. The various interactions of neutrons with matter are specified quantitatively in terms of cross sections, which give the probabilities of these interactions in a given neutron flux $n v$,

$$
\text { Interactions per second }=n v N \sigma_{i}
$$

where $N$ is the number of atoms present and $\sigma_{i}$ is the cross section for the interaction of type $i$. Cross sections have the dimensions of area, the usual unit being the barn ( $=10^{-24} \mathrm{~cm}^{2}$ ), with millibarns, microbarns, etc., also being used.
Partial cross sections refer to specific processes, as neutron capture, scattering, etc., and the sum of all the possible processes is the total cross section $\sigma_{T}$. The total cross section determines the diminution of a neutron beam as it traverses a sample; the ratio of the beam intensity after traversal to the incident intensity, or the transmission $T$, is given by

$$
T=e^{-n \sigma_{T} x}
$$

where $x$ is the sample thickness and $n$ the number of atoms per $\mathrm{cm}^{3}$. The differential scattering cross section $d \sigma_{s} / d \omega$ gives the probability that a neutron will be scattered in a given direction, and the integral of $d \sigma_{s} / d \omega$ over $4 \pi$ solid angle is the scattering cross section $\sigma_{s}$. The transport cross section $\sigma_{\mathrm{tr}}$ is related to the scattering cross section by

$$
\sigma_{t r}=\sigma_{s}(1-\overline{\cos \theta})
$$

where $\theta$ is the angle of scattering in the laboratory coordinate system. The activation cross section refers to the production of a specific radioactive isotope, usually as a result of the ( $n, \gamma$ ) reaction (neutron capture).
8h-4. Fast-neutron Cross Sections. The classification "fast neutrons" refers to a rather vague energy region, about 10 kev to 10 Mev . In this region, individual neutron resonances cannot be resolved in most heavy elements, and a cross section varying smoothly with energy is observed as a result. For the great majority of the fast-neutron cross-section work, total cross sections alone have been measured, although reactions and scattering have also been studied. As individual resonance parameters are not determined, except for the lightest elements, the data are not amenable to tabular presentation and the curves presenting the known results fill a large volume, "Neutron Cross Sections." Several illustrative curves only for total cross sections are reproduced here. Figure $8 \mathrm{~h}-1$ for H is smooth because there are no resonances in the energy region shown. The curve for C (Fig. 8h-2) is smooth in the low-energy region for the same reason, exhibits resonances in the 1 - to $10-\mathrm{Mev}$ region, and is smooth at higher energy because of failure to resolve resonances. Iron (Fig. $8 \mathrm{~h}-3$ ) is similar to carbon, but the characteristic features are moved to lower energies, and in U (Fig. 8h-4) the levels are so close that they are unresolved for the entire energy range shown. For those few resonances in the light elements for which reso-

[^370]

NEUTRONS


8-133

8-134
NUCLEAR PHYSICS


Table 8h-1. Table of Neutron Binding Energies

| $Z$ | Element | A | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | H | 2 | 1 | $2.226 \pm 0.003$ |
|  |  | 3 | 2 | $6.256 \pm 0.007$ |
| 2 | He | 4 | 2 | $20.58 \pm 0.02$ |
|  |  | 6 | 4 | $1.90 \pm 0.08$ |
| 3 | Li | 6 | 3 | $5.35 \pm 0.20$ |
|  |  | 7 | 4 | $7.254 \pm 0.003$ |
|  |  | 8 | 5 | $2.034 \pm 0.003$ |
| 4 | Be | 8 | 4 | $18.884 \pm 0.010$ |
|  |  | 9 | 5 | $1.667 \pm 0.002$ |
|  |  | 10 | 6 | $6.816 \pm 0.006$ |
| 5 | B | 9 | 4 | $18.4 \pm 0.3$ |
|  |  | 10 | 5 | $8.44 \pm 0.02$ |
|  |  | 11 | 6 | $11.453 \pm 0.005$ |
|  |  | 12 | 7 | $3.364 \pm 0.006$ |
| 6 | C | 11 | 5 | $13.38 \pm 0.10$ |
|  |  | 12 | 6 | $18.77 \pm 0.06$ |
|  |  | 13 | 7 | $4.946 \pm 0.002$ |
|  |  | 14 | 8 | $8.169 \pm 0.004$ |
|  |  | 15 | 9 | $2.2 \pm 0.5$ |
| 7 | N | 13 | 6 | $20.45 \pm 0.10$ |
|  |  | 14 | 7 | $10.55 \pm 0.01$ |
|  |  | 15 | 8 | $10.832 \pm 0.008$ |
|  |  | 16 | 9 | $2.6 \pm 0.2$ |
|  |  | 17 | 10 | $5.6 \pm 0.4$ |
| 8 | O | 15 | 7 | $13.23 \pm 0.10$ |
|  |  | 16 | 8 | $15.6 \pm 0.2$ |
|  |  | 17 | 9 | $4.143 \pm 0.006$ |
|  |  | 18 | 10 | $8.06 \pm 0.02$ |
|  |  | 19 | 11 | $3.961 \pm 0.008$ |
| 9 | F | 18 | 9 | $9.13 \pm 0.05$ |
|  |  | 19 | 10 | $10.3 \pm 0.3$ |
|  |  | 20 | 11 | $6.599 \pm 0.008$ |
| 10 | Ne | 20 | 10 | $16.86 \pm 0.04$ |
|  |  | 21 | 11 | $6.755 \pm 0.008$ |
|  |  | 22 | 12 | $10.363 \pm 0.011$ |
|  |  | 23 | 13 | $5.190 \pm 0.008$ |
| 11 | Na | 23 | 12 | $12.25 \pm 0.05$ |
|  |  | 24 | 13 | $6.953 \pm 0.007$ |
|  |  | 25 | 14 | $9.2 \pm 0.3$ |
| 12 | $\mathbf{M g}$ | 24 | 12 | $16.59 \pm 0.02$ |
|  |  | 25 | 13 | $7.334 \pm 0.007$ |
|  |  | 26 | 14 | $11.106 \pm 0.010$ |
|  |  | 27 | 15 | $6.440 \pm 0.008$ |
| 13 | Al | 25 | 12 | $17.0 \pm 0.4$ |
|  |  | 26 | 13 | $11.5 \pm 0.2$ |
|  |  | 27 | 14 | $12.99 \pm 0.06$ |
|  |  | 28 | 15 | $7.724 \pm 0.006$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| $Z$ | Element | $A$ | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 14 | Si | 28 | 14 | $16.84 \pm 0.11$ |
|  |  | 29 | 15 | $8.468 \pm 0.008$ |
|  |  | 30 | 16 | $10.601 \pm 0.011$ |
|  |  | 31 | 17 | $6.590 \pm 0.007$ |
| 15 | P | 30 | 15 | $11.25 \pm 0.25$ |
|  |  | 31 | 16 | $12.1 \pm 0.2$ |
|  |  | 32 | 17 | $7.930 \pm 0.008$ |
|  |  | 33 | 18 | $10.09 \pm 0.02$ |
|  |  | 34 | 19 | $6.0 \pm 0.3$ |
| 16 | S | 32 | 16 | $14.71 \pm 0.12$ |
|  |  | 33 | 17 | $8.65 \pm 0.01$ |
|  |  | 34 | 18 | $10.9 \pm 0.2$ |
|  |  | 35 | 19 | $7.0 \pm 0.3$ |
|  |  | 36 | 20 | $9.2 \pm 0.3$ |
|  |  | 37 | 21 | $5.7 \pm 0.3$ |
| 17 | Cl | 34 | 17 | $10.8 \pm 0.4$ |
|  |  | 35 | 18 | $12.8 \pm 0.3$ |
|  |  | 36 | 19 | $8.56 \pm 0.03$ |
|  |  | 37 | 20 | $9.95 \pm 0.20$ |
|  |  | 38 | 21 | $6.3 \pm 0.3$ |
|  |  | 39 | 22 | $8.4 \pm 0.3$ |
| 18 | A | 36 | 18 | $14.7 \pm 0.2$ |
|  |  | 37 | 19 | $8.82 \pm 0.03$ |
|  |  | 38 | 20 | $11.8 \pm 0.3$ |
|  |  | 39 | 21 | $6.9 \pm 0.3$ |
|  |  | 40 | 22 | $9.99 \pm 0.10$ |
|  |  | 41 | 23 | $6.07 \pm 0.08$ |
| 19 | K | 39 | 20 | $13.2 \pm 0.2$ |
|  |  | 40 | 21 | $7.795 \pm 0.008$ |
|  |  | 41 | 22 | $10.20 \pm 0.10$ |
|  |  | 42 | 23 | $7.34 \pm 0.02$ |
| 20 | Ca | 40 | 20 | $15.4 \pm 0.2$ |
|  |  | 41 | 21 | $8.366 \pm 0.010$ |
|  |  | 42 | 22 | $11.37 \pm 0.12$ |
|  |  | 49 | 29 | $5.0 \pm 0.3$ |
| 21 | Sc | 46 | 25 | $8.85 \pm 0.08$ |
|  |  | 47 | 26 | $10.5 \pm 0.2$ |
|  |  | 48 | 27 | $7.98 \pm 0.10$ |
|  |  | 49 | 28 | $10.29 \pm 0.10$ |
| 22 | Ti | 46 | 24 |  |
|  |  | 47 | 25 | $8.70 \pm 0.05$ |
|  |  | 48 | 26 | $11.36 \pm 0.05$ |
|  |  | 49 | 27 | $8.10 \pm 0.05$ |
|  |  | 50 | 28 | $10.85 \pm 0.05$ |
|  |  | 51 | 29 | $6.34 \pm 0.07$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| $Z$ | Element | A | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 23 | V | 49 | 26 | $11.51 \pm 0.10$ |
|  |  | 50 | 27 | $9.07 \pm 0.10$ |
|  |  | 51 | 28 | $11.05 \pm 0.20$ |
|  |  | 52 | 29 | $7.305 \pm 0.007$ |
| 24 | Cr | 50 | 26 | $13.4 \pm 0.2$ |
|  |  | 51 | 27 | $9.1 \pm 0.3$ |
|  |  | 52 | 28 | $11.80 \pm 0.25$ |
|  |  | 53 | 29 | $7.929 \pm 0.008$ |
|  |  | 54 | 30 | $9.716 \pm 0.008$ |
|  |  | 55 | 31 | $5.9 \pm 0.3$ |
| 25 | Mn | 52 | 27 | $10.5 \pm 0.4$ |
|  |  | 53 | 28 | $12.0 \pm 0.2$ |
|  |  | 54 | 29 | $8.94 \pm 0.10$ |
|  |  | 55 | 30 | $10.1 \pm 0.2$ |
|  |  | 56 | 31 | $7.261 \pm 0.006$ |
| 26 | Fe | 53 | 27 | $10.5 \pm 0.3$ |
|  |  | 54 | 28 | $13.8 \pm 0.2$ |
|  |  | 55 | 29 | $9.298 \pm 0.007$ |
|  |  | 56 | 30 | $11.12 \pm 0.10$ |
|  |  | 57 | 31 | $7.639 \pm 0.004$ |
|  |  | 58 | 32 | $10.16 \pm 0.04$ |
|  |  | 59 | 33 | $6.4 \pm 0.3$ |
| 27 | Co | 58 | 31 | $9.0 \pm 0.3$ |
|  |  | 59 | 32 | $10.25 \pm 0.20$ |
|  |  | 60 | 33 | $7.486 \pm 0.006$ |
|  |  | 61 | 34 | $9.96 \pm 0.05$ |
| 28 | Ni | 58 | 30 | $11.7 \pm 0.2$ |
|  |  | 59 | 31 | $8.997 \pm 0.005$ |
|  |  | 60 | 32 | $11.40 \pm 0.10$ |
|  |  | 61 | 33 | $8.532 \pm 0.008$ |
|  |  | 63 | 35 | $6.7 \pm 0.2$ |
|  |  | 64 | 36 | $9.66 \pm 0.03$ |
|  |  | 65 | 37 | $6.02 \pm 0.10$ |
| 29 | Cu | 61 | 32 | $10.6 \pm 0.2$ |
|  |  | 63 | 34 | $10.65 \pm 0.10$ |
|  |  | 64 | 35 | $7.914 \pm 0.004$ |
|  |  | 65 | 36 | $9.80 \pm 0.05$ |
|  |  | 66 | 37 | $7.1 \pm 0.2$ |
|  |  | 67 | 38 | $9.1 \pm 0.3$ |
| 30 | Zn | 63 | 33 | $9.0 \pm 0.2$ |
|  |  | 64 | 34 | $11.80 \pm 0.10$ |
|  |  | 65 | 35 | $7.876 \pm 0.007$ |
|  |  | 66 | 36 | $11.15 \pm 0.20$ |
|  |  | 67 | 37 | $7.0 \pm 0.2$ |
|  |  | 68 | 38 | $10.15 \pm 0.20$ |
|  |  | 69 | 39 | $6.3 \pm 0.3$ |
|  |  | 70 | 40 | $9.2 \pm 0.2$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| Z | Element | A | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 31 | Ga | 67 | 36 | 11.2 $\pm 0.3$ |
|  |  | 68 | 37 | $8.3 \pm 0.3$ |
|  |  | 69 | 38 | $10.1 \pm 0.2$ |
|  |  | 71 | 40 | $9.05 \pm 0.20$ |
| 32 | Ge | 75 | 43 | $6.5 \pm 0.3$ |
| 33 | As | 75 | 42 | $10.2 \pm 0.2$ |
|  |  | 76 | 43 | $7.30 \pm 0.04$ |
| 34 | Se | 77 | 43 | $7.416 \pm 0.009$ |
|  |  | 78 | 44 | $10.483 \pm 0.014$ |
|  |  | 79 | 45 | $7.0 \pm 0.3$ |
|  |  | 80 | 46 | $9.35 \pm 0.20$ |
|  |  | 81 | 47 | $6.8 \pm 0.3$ |
|  |  | 82 | 48 | $9.8 \pm 0.5$ |
| 35 | Br | 77 | 42 | $10.66 \pm 0.05$ |
|  |  | 78 | 43 | $8.40 \pm 0.10$ |
|  |  | 79 | 44 | $10.65 \pm 0.20$ |
|  |  | 80 | 45 | $7.3 \pm 0.3$ |
|  |  | 81 | 46 | $10.1 \pm 0.2$ |
| 36 | $\mathbf{K r}$ | 80 | 44 | $11.3 \pm 0.4$ |
|  |  | 85 | 49 | $5.95 \pm 0.05$ |
|  |  | 87 | 51 | $5.53 \pm 0.05$ |
|  |  | 88 | 52 | $6.8 \pm 0.3$ |
| 37 | Rb | 87 | 50 | $9.96 \pm 0.05$ |
|  |  | 88 | 51 | $6.0 \pm 0.2$ |
|  |  | 89 | 52 | $7.4 \pm 0.3$ |
| 38 | Sr | 85 | 47 | $7.5 \pm 0.3$ |
|  |  | 86 | 48 | $9.5 \pm 0.2$ |
| : |  | 87 | 49 | $8.43 \pm 0.01$ |
|  |  | 88 | 50 | $11.07 \pm 0.06$ |
|  |  | 89 | 51 | $6.55 \pm 0.10$ |
|  |  | 90 | 52 | $7.6 \pm 0.2$ |
|  |  | 91 | 53 | $5.7 \pm 0.2$ |
| 39 | Y | 87 | 48 | $10.5 \pm 0.5$ |
|  |  | 88 | 49 | $9.4 \pm 0.2$ |
|  |  | 89 | 50 | $11.7 \pm 0.2$ |
|  |  | 90 | 51 | $6.70 \pm 0.10$ |
|  |  | 91 | 52 | $7.80 \pm 0.10$ |
|  |  | 92 | 53 | $6.60 \pm 0.10$ |
|  |  | 93 | 54 | $6.8 \pm 0.4$ |
| 40 | $\mathbf{Z r}$ | 88 | 48 | $<12.3$ |
|  |  | 89 | 49 | $>9.3$ |
|  |  | 90 | 50 | $11.8 \pm 0.2$ |
|  |  | 91 | 51 | $7.16 \pm 0.05$ |
|  |  | 92 | 52 | $8.66 \pm 0.04$ |
|  |  | 93 | 53 | $6.65 \pm 0.05$ |
|  |  | 95 | 55 | $6.42 \pm 0.05$ |
|  |  | 97 | 57 | $3.7 \pm 0.4$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| $Z$ | Element | $A$ | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 41 | Nb | 91 | 50 | $10.0 \pm 0.6$ |
|  |  | 92 | 51 | $8.5 \pm 0.5$ |
|  |  | 93 | 52 | $8.7 \pm 0.2$ |
|  |  | 94 | 53 | $7.19 \pm 0.03$ |
|  |  | 95 | 54 | $9.2 \pm 0.4$ |
|  |  | 96 | 55 | $6.9 \pm 0.2$ |
|  |  | 97 | 56 | $8.1 \pm 0.3$ |
| 42 | Mo | 92 | 50 | $13.28 \pm 0.15$ |
|  |  | 93 | 51 | $7.90 \pm 0.05$ |
|  |  | 94 | 52 | $9.9 \pm 0.5$ |
|  |  | 95 | 53 | $8.0 \pm 0.3$ |
|  |  | 96 | 54 | $9.15 \pm 0.05$ |
|  |  | 97 | 55 | $6.9 \pm 0.2$ |
|  |  | 98 | 56 | $8.29 \pm 0.10$ |
| 43 | Tc | 93 | 50 | $>10.2$ |
|  |  | 94 | 51 | $8.7 \pm 0.5$ |
|  |  | 95 | 52 | $9.5 \pm 0.4$ |
|  |  | 100 | 57 | $7.1 \pm 0.4$ |
| 44 | Ru | 99 | 55 | $7.1 \pm 0.2$ |
|  |  | 100 | 56 | $9.5 \pm 0.2$ |
|  |  | 103 | 59 | $6.5 \pm 0.3$ |
| 45 | Rh | 100 | 55 | $8.0 \pm 0.3$ |
|  |  | 103 | 58 | $9.4 \pm 0.2$ |
|  |  | 104 | 59 | $6.792 \pm 0.014$ |
|  |  | 105 | 60 | $9.1 \pm 0.3$ |
| 46 | Pd | 105 | 59 | $7.1 \pm 0.2$ |
|  |  | 108 | 62 | $9.4 \pm 0.2$ |
| 47 | Ag | 108 | 61 | $7.27 \pm 0.02$ |
|  |  | 109 | 62 | $9.07 \pm 0.10$ |
|  |  | 113 | 66 | $8.6 \pm 0.4$ |
| 48 | Cd | 108 | 60 | $10.20 \pm 0.10$ |
|  |  | 113 | 65 | $6.40 \pm 0.10$ |
|  |  | 114 | 66 | $9.046 \pm 0.008$ |
|  |  | 115 | 67 | $5.6 \pm 0.2$ |
| 49 | In | 113 | 64 | $9.2 \pm 0.3$ |
|  |  | 115 | 66 | $9.1 \pm 0.2$ |
|  |  | 116 | 67 | $6.6 \pm 0.2$ |
|  |  | 118 | 69 | <9.8 |
|  |  | 119 | 70 | $>5.4$ |
| 50 | Sn | 115 | 65 | $7.7 \pm 0.3$ |
|  |  | 116 | 66 | $8.9 \pm 0.3$ |
|  |  | 118 | 68 | $9.3 \pm 0.2$ |
|  |  | 119 | 69 | $6.6 \pm 0.2$ |
|  |  | 121 | 71 | $6.15 \pm 0.07$ |
|  |  | 124 | 74 | $8.50 \pm 0.15$ |
|  |  | 125 | 75 | $5.75 \pm 0.07$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| $Z$ | Element | $A$ | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 51 | Sb | 121 | 70 | $9.25 \pm 0.10$ |
|  |  | 122 | 71 | $6.80 \pm 0.04$ |
|  |  | 124 | 73 | $6.6 \pm 0.2$ |
|  |  | 125 | 74 | $8.62 \pm 0.10$ |
| 52 | Te | 122 | 70 | $>9.3$ |
|  |  | 125 | 73 | $6.48 \pm 0.07$ |
|  |  | 126 | 74 | $7.2 \pm 0.2$ |
| 53 | I | 127 | 74 | $9.10 \pm 0.20$ |
|  |  | 128 | 75 | $6.58 \pm 0.05$ |
| 55 | Cs | 133 | 78 | $9.05 \pm 0.20$ |
|  |  | 134 | 79 | $6.73 \pm 0.10$ |
|  |  | 137 | 82 | $7.1 \pm 0.3$ |
|  |  | 138 | 83 | $4.9 \pm 0.4$ |
| 56 | Ba | 137 | 81 | $6.8 \pm 0.2$ |
|  |  | 138 | 82 | $8.55 \pm 0.25$ |
|  |  | 139 | 83 | $5.2 \pm 0.3$ |
|  |  | 141 | 85 | <5.2 |
| 57 | La | 139 | 82 | $8.8 \pm 0.2$ |
|  |  | 140 | 83 | $5.10 \pm 0.10$ |
|  |  | 141 | 84 | $6.93 \pm 0.15$ |
| 58 | Ce | 140 | 82 | $9.05 \pm 0.20$ |
|  |  | 141 | 83 | $5.50 \pm 0.15$ |
|  |  | 142 | 84 | $7.15 \pm 0.20$ |
|  |  | 143 | 85 | $5.09 \pm 0.07$ |
| 59 | Pr | 140 | 81 | $7.8 \pm 0.3$ |
|  |  | 141 | 82 | $9.40 \pm 0.15$ |
| 60 | Nd | 143 | 83 | $5.02 \pm 0.08$ |
| 62 | Sm | 155 | 93 | $5.58 \pm 0.30$ |
| 73 | Ta | 181 | 108 | $7.55 \pm 0.20$ |
|  |  | 182 | 109 | $6.03 \pm 0.15$ |
| 74 | W | 183 | 109 | $6.25 \pm 0.30$ |
|  |  | 186 | 112 | $7.15 \pm 0.30$ |
| 75 | Re | 187 | 112 | $7.3 \pm 0.3$ |
| 76 | Os | 187 | 111 | $6.6 \pm 0.3$ |
| 77 | Ir | 193 | 116 | $7.8 \pm 0.2$ |
|  |  | 195 | 118 | $6.5 \pm 0.3$ |
| 78 | Pt | 194 | 116 | $9.5 \pm 0.2$ |
|  |  | 195 | 117 | $6.12 \pm 0.08$ |
|  |  | 196 | 118 | $8.2 \pm 0.2$ |
|  |  | 197 | 119 | <6.5 |
| 79 | Au | 197 | 118 | $8.0 \pm 0.1$ |
|  |  | 198 | 119 | $6.35 \pm 0.15$ |
| 80 | Hg | 201 | 121 | $6.3 \pm 0.2$ |
| 81 | Tl | 203 | 122 | $8.80 \pm 0.20$ |
|  |  | 204 | 123 | $6.52 \pm 0.15$ |
|  |  | 205 | 124 | $7.60 \pm 0.20$ |
|  |  | 206 | 125 | $6.16 \pm 0.15$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| $Z$ | Element | $A$ | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 81 | Tl | 207 | 126 | $6.79 \pm 0.03$ |
|  |  | 208 | 127 | $3.83 \pm 0.03$ |
|  |  | 209 | 128 | $4.84 \pm 0.11$ |
|  |  | 210 | 129 | $3.88 \pm 0.13$ |
| 82 | Pb | 205 | 123 | $6.40 \pm 0.18$ |
|  |  | 206 | 124 | $8.10 \pm 0.10$ |
|  |  | 207 | 125 | $6.73 \pm 0.01$ |
|  |  | 208 | 126 | $7.38 \pm 0.01$ |
|  |  | 209 | 127 | $3.87 \pm 0.05$ |
|  |  | 210 | 128 | $5.24 \pm 0.06$ |
|  |  | 211 | 129 | $3.78 \pm 0.04$ |
|  |  | 212 | 130 | $5.17 \pm 0.03$ |
| 83 | Bi | 209 | 126 | $7.44 \pm 0.05$ |
|  |  | 210 | 127 | $4.67 \pm 0.06$ |
|  |  | 211 | 128 | $5.10 \pm 0.04$ |
|  |  | 212 | 129 | $4.38 \pm 0.02$ |
|  |  | 213 | 130 | $5.07 \pm 0.12$ |
|  |  | 214 | 131 | $4.24 \pm 0.12$ |
| 84 | Po | 209 | 125 | $6.65 \pm 0.18$ |
|  |  | 210 | 126 | $7.66 \pm 0.10$ |
|  |  | 211 | 127 | $4.55 \pm 0.03$ |
|  |  | 212 | 128 | $6.01 \pm 0.03$ |
|  |  | 213 | 129 | $4.31 \pm 0.05$ |
|  |  | 214 | 130 | $5.91 \pm 0.06$ |
|  |  | 215 | 131 | $4.10 \pm 0.04$ |
|  |  | 216 | 132 | $5.78 \pm 0.03$ |
| 85 | At | 215 | 130 | $5.90 \pm 0.06$ |
|  |  | 216 | 131 | $4.59 \pm 0.06$ |
|  |  | 217 | 132 | $5.86 \pm 0.12$ |
|  |  | 218 | 133 | $4.64 \pm 0.14$ |
| 86 | Em | 216 | 130 | $6.66 \pm 0.08$ |
|  |  | 217 | 131 | $4.58 \pm 0.07$ |
|  |  | 218 | 132 | $6.55 \pm 0.07$ |
|  |  | 219 | 133 | $4.40 \pm 0.05$ |
|  |  | 220 | 134 | $6.33 \pm 0.03$ |
| 87 | Fr | 219 | 132 | $6.46 \pm 0.08$ |
|  |  | 220 | 133 | $5.22 \pm 0.07$ |
|  |  | 221 | 134 | $6.25 \pm 0.12$ |
| 88 | Ra |  |  | $7.19 \pm 0.11$ |
|  |  | 221 | 133 | $5.32 \pm 0.08$ |
|  |  | 222 | 134 | $6.75 \pm 0.08$ |
|  |  | 223 | 135 | $5.17 \pm 0.10$ |
|  |  | 224 | 136 | $6.43 \pm 0.10$ |
|  |  | 225 | 137 | $5.07 \pm 0.13$ |
|  |  | 226 | 138 | $6.33 \pm 0.14$ |
|  |  | 227 | 139 | $4.56 \pm 0.16$ |
|  |  | 228 | 140 | $6.10 \pm 0.11$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| Z | Element | A | $N$ | $B_{n}, \mathrm{Mev}$ |
| :---: | :---: | :---: | :---: | :---: |
| 89 | Ac | 223 | 134 | $6.79 \pm 0.10$ |
|  |  | 224 | 135 | $5.70 \pm 0.09$ |
|  |  | 225 | 136 | $6.62 \pm 0.13$ |
|  |  | 226 | 137 | $5.43 \pm 0.15$ |
|  |  | 227 | 138 | $6.58 \pm 0.13$ |
|  |  | 228 | 139 | $4.84 \pm 0.10$ |
| 90 | Th | 224 | 134 | $7.62 \pm 0.11$ |
|  |  | 225 | 135 | $5.89 \pm 0.08$ |
|  |  | 226 | 136 | $7.03 \pm 0.09$ |
|  |  | 227 | 137 | $5.44 \pm 0.10$ |
|  |  | 228 | 138 | $7.05 \pm 0.10$ |
|  |  | 229 | 139 | $5.48 \pm 0.13$ |
|  |  | 230 | 140 | $6.68 \pm 0.14$ |
|  |  | 231 | 141 | $5.18 \pm 0.16$ |
|  |  | 232 | 142 | $6.20 \pm 0.04$ |
|  |  | 233 | 143 | $5.16 \pm 0.11$ |
|  |  | 234 | 144 | $6.01 \pm 0.14$ |
| 91 | Pa | 227 | 136 | $7.14 \pm 0.11$ |
|  |  | 228 | 137 | $6.08 \pm 0.09$ |
|  |  | 229 | 138 | $7.03 \pm 0.13$ |
|  |  | 232 | 141 | $5.28 \pm 0.10$ |
|  |  | 233 | 142 | $6.95 \pm 0.15$ |
|  |  | 234 | 143 | $5.38 \pm 0.14$ |
|  |  | 235 | 144 | $5.90 \pm 0.15$ |
| 92 | U | 228 | 136 | $7.73 \pm 0.13$ |
|  |  | 229 | 137 | $6.15 \pm 0.09$ |
|  |  | 230 | 138 | $7.61 \pm 0.09$ |
|  |  | 231 | 139 | $5.83 \pm 0.12$ |
|  |  | 232 | 140 | $7.20 \pm 0.12$ |
|  | U | 233 | 141 | $5.97 \pm 0.14$ |
|  |  | 234 | 142 | $6.74 \pm 0.14$ |
|  |  | 235 | 143 | $5.37 \pm 0.15$ |
|  |  | 236 | 144 | $6.29 \pm 0.04$ |
|  |  | 237 | 145 | $5.45 \pm 0.12$ |
|  |  | 238 | 146 | $6.03 \pm 0.13$ |
|  |  | 239 | 147 | $4.87 \pm 0.13$ |
|  |  | 240 | 148 | $5.77 \pm 0.30$ |
| 93 | Np | 236 | 143 | $5.61 \pm 0.10$ |
|  |  | 237 | 144 | $6.91 \pm 0.16$ |
|  |  | 238 | 145 | $5.19 \pm 0.14$ |
|  |  | 239 | 146 | $6.41 \pm 0.15$ |
|  |  | 240 | 147 | $4.83 \pm 0.30$ |
| 94 | Pu | 235 | 141 | $6.18 \pm 0.14$ |
|  |  | 236 | 142 | $7.30 \pm 0.14$ |
|  |  | 239 | 145 | $5.71 \pm 0.15$ |
|  |  | 240 | 146 | $6.28 \pm 0.05$ |
|  |  | 241 | 147 | $5.55 \pm 0.12$ |

Table 8h-1. Table of Neutron Binding Energies (Continued)

| $Z$ | Element | $A$ | $N$ | $B_{n}$, Mev |
| :---: | :---: | :---: | :---: | :---: |
| 94 | Pu | 242 | 148 | $6.06 \pm 0.14$ |
|  |  | 243 | 149 | $5.15 \pm 0.15$ |
| 95 | Am | 242 | 147 | $5.41 \pm 0.14$ |
|  |  | 243 | 148 | $6.44 \pm 0.15$ |
| 96 | Cm | 243 | 147 | $5.72 \pm 0.15$ |
|  |  | 244 | 148 | $6.51 \pm 0.07$ |

nance-level parameters have been determined, the results are given in Sec. 8h-5, although they refer to the "fast-neutron" rather than the "resonance-neutron" energy region.

8h-5. Resonance Cross Sections. The neutron energy region in which individual resonances can be resolved varies from nuclide to nuclide, but for all but the lightest elements it is about 1 ev to 10 kev . In this energy region only $l=0$ interactions are appreciable and the analysis of resonances is thereby simplified. The scattering and capture characteristics of the resonance level are given as functions of the neutron energy $E$ by the Breit-Wigner single-level formulas for scattering and neutron capture:

$$
\begin{gathered}
\sigma_{s}(E)=4 \pi \lambda_{0}{ }^{2} g \frac{\Gamma_{n} / 2}{E-E_{0}+i \Gamma / 2}+\left.\frac{R}{\lambda_{0}}\right|^{2}+4 \pi(1-g) R^{2} \\
\sigma_{\gamma}(E)=\pi \lambda_{0} g\left(\frac{E_{0}}{E}\right)^{\frac{1}{2}} \frac{\Gamma_{n} \Gamma_{\gamma}}{\left(E-E_{0}\right)^{2}+(\Gamma / 2)^{2}} \\
\Gamma=\Gamma_{\gamma}+\Gamma_{n}+\Gamma_{p}+\Gamma_{\alpha}+\cdots \\
g=\frac{1}{2}\left(\frac{2 J+1}{2 I+1}\right) \quad J=I \pm \frac{1}{2} \text { (for } l=0 \text { neutrons) }
\end{gathered}
$$

Here $\Gamma_{\gamma}, \Gamma_{n}$, etc., the "resonance parameters," are the radiation, neutron, etc., widths of the nuclear energy level corresponding to the neutron resonance, and $\Gamma$ is the total width, related to the lifetime of the state $t_{0}$ by $t_{0}=\hbar / \Gamma$. The cross sections for the $(n, p),(n, \alpha)$, etc., reactions are the same as $\sigma_{\gamma}$, with $p, \alpha$, etc., substituted for $\gamma$. The neutron width is the value at the resonance energy $E_{0}$ ( $\lambda_{0}$ is the neutron wavelength $/ 2 \pi$ at resonance), $I$ is the spin of the target nucleus, of radius $R$, and $J$ is the spin of the compound nucleus. For incoming neutrons of angular momentum $l$ greater than zero the factor $g$ is unknown in general because of the various $l$ 's that can produce a given $J$. Because neutron widths are proportional to velocity, it is often convenient to list $\Gamma_{n}{ }^{0}$, the neutron width reduced to its value at 1 ev ,

$$
\Gamma_{n}^{0}=\frac{\Gamma_{n}}{E^{1}}
$$

For an actual sample, the resonance has an observed width greater than $\Gamma$ because of the temperature motion of the atoms. This motion produces a resonance spread that is gaussian with a width $\Delta$ given by

$$
\Delta=2\left(\frac{k T E_{0} m}{M}\right)^{\frac{1}{2}}
$$

where $m / M$ is the mass ratio of neutron to nucleus and $T$ is a temperature slightly greater than the actual sample temperature. ${ }^{1}$

[^371]In Tables $8 \mathrm{~h}-2$ (light elements) and $8 \mathrm{~h}-3$ (heavy elements) the parameters are listed for those resonances for which at least $E_{0}$ and $\Gamma_{n}$ are known. Because the neutron width is much larger than the radiation width in light elements, the latter is very seldom known; partly as a result of this fact, however, the neutron angular momentum $l$ and the level spin $J$ can often be obtained. For many of the heavy elements $\Gamma_{n}$ can be obtained if $\Gamma_{\gamma}$, which is usually much larger, is approximately known. As the dependence of $\Gamma_{n}$ on $\Gamma_{\gamma}$ is often weak in these cases it is usually sufficiently accurate to use an average $\Gamma_{\gamma}$ for the particular nuclide in obtaining the $\Gamma_{n}$ 's of individual levels. The average $\Gamma_{\gamma}$ indicated in the table is obtained either from the individual $\Gamma_{\gamma}$ 's of resonances of the nuclide itself or from neighboring nuclides. The error quoted for $\Gamma_{n}$ includes the error resulting from the uncertainty in fixing this average $\Gamma_{\gamma}$. An additional error in $\Gamma_{n}$ arises because $J$ (hence $g$ ) is usually not known; this error, which is not included, is largest for $I=\frac{1}{2}$, negligible for high $I$, and zero for $I=0(g=1)$. For the few cases where $J$ 's (hence $g$ 's) are known, they are included.

8h-6. Thermal Cross Sections. Thermal neutrons are those in equilibrium with a moderating material, such as graphite or water, usually at or near room temperature. The velocity distribution of the neutrons is then Maxwellian,

$$
d n=\frac{4 n}{J_{0}{ }^{3} \sqrt{\pi}} v^{2} e^{-\left(v / v_{0}\right) 2} d v
$$

where $d n$ is the density of neutrons in the velocity band $d v$, the flux being given by $J n v$. The velocity $v_{0}$ is the most probable velocity and the energy corresponding to $v_{0}=2,200 \mathrm{~m} / \mathrm{sec}$ is 0.0253 ev , or a wavelength of 1.80 A (see Sec. $8 \mathrm{~h}-1$ for exact values).

The wavelength of thermal neutrons is convenient for observation of such optical phenomena as diffraction and refraction. In neutron optics it is necessary to consider the coherent and incoherent parts of the nuclear scattering cross section, the incoherent part arising from isotopic and spin-dependent scattering. For the two types of scattering, the coherent and incoherent components of the cross section are given by

Isotopic incoherence (for two isotopes, of abundances $f_{1}$ and $f_{2}$ and cross sections $\sigma_{1}$ and $\sigma_{2}$ ):

$$
\begin{aligned}
& \sigma_{\text {coh }}=\left(f_{1} \sigma_{\sigma_{1}^{\frac{1}{3}}}+f_{2} \sigma_{2} \sigma^{\frac{1}{3}}\right)^{2} \\
& \sigma_{\text {inc }}=f_{1} f_{2}\left(\sigma_{1}^{\frac{1}{2}}-\sigma_{2}^{\frac{1}{2}}\right)^{2}
\end{aligned}
$$

Spin-dependent incoherence (for target nucleus of spin $I$, and cross sections $\sigma_{+}$and $\sigma_{-}$for the $I+\frac{1}{2}$ and $I-\frac{1}{2}$ compound states):

$$
\begin{aligned}
& \sigma_{\mathrm{coh}}=\left(\frac{I+1}{2 I+1} \sigma_{+}^{\frac{1}{2}}+\frac{I}{2 I+1} \sigma_{-}\right)^{2} \\
& \sigma_{\mathrm{inc}}=\frac{I(2 I+1)}{(2 I+1)^{2}}\left(\sigma_{+} \frac{\frac{1}{2}}{}-\sigma_{-\frac{1}{2}}\right)^{2}
\end{aligned}
$$

The coherent scattering cross section determines the index of refraction of a noncapturing medium for neutrons,

$$
\mu^{2}-1= \pm 2 N \chi^{2}\left(\pi \sigma_{\mathrm{ooh}}\right)^{\frac{1}{2}}
$$

where $N$ is the number of nuclei per $\mathrm{cm}^{3}$ and the minus sign corresponds to a positive amplitude (hard-sphere scattering). Presence of neutron capture (written $\sigma_{\gamma}$ ) modifies the index slightly and adds an imaginary component

$$
\mu^{2}-1=N \chi^{2}\left[ \pm\left(4 \pi \sigma_{\mathrm{coh}}-\frac{\sigma_{\gamma}^{2}}{\chi^{2}}\right)^{\frac{1}{2}}+\frac{i \sigma_{\gamma}}{\lambda}\right]
$$

Table 8h-2. Resonance Parameters of Light Nuclei

| Isotope | $I$ | $E_{0}$, kev | $J$ | $l$ | $\Gamma_{n}, \mathrm{kev}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{2} \mathrm{He}^{4}$. | 0 | 1,150 $\pm 50$ | $\frac{3}{2}$ | 1 | 1,400 $\pm 200$ |
| ${ }_{3} \mathrm{Li}^{6}$. | 1 | $248 \pm 4$ | $\frac{5}{2}$ | 1 | Г $90 \pm 10$ |
|  |  |  |  |  | $\Gamma_{n} 60 \pm 15$ |
|  |  |  |  |  | $\mathrm{r}_{\alpha} 30 \pm 10$ |
| ${ }_{3} \mathrm{Li}^{7}$. | $\frac{3}{2}$ | $258 \pm 3$ | 3 | 1 | $35 \pm 5$ |
| ${ }_{4} \mathrm{Be}^{9}$. | $\frac{3}{2}$ | $620 \pm 10$ | 3 | 1 | $25 \pm 4$ |
|  |  | $810 \pm 10$ | 2 | 1,2 | $8 \pm 3$ |
| ${ }_{6} \mathrm{~B}^{11}$. | $\frac{3}{2}$ | $430 \pm 10$ | 2 | 1 | $40 \pm 5$ |
|  |  | $1,260 \pm 20$ | 3 | 2 | $140 \pm 20$ |
|  |  | $1,780 \pm 20$ | 1 | 1,2 | $60 \pm 20$ |
|  |  | $2,450 \pm 20$ | 2 | 1,2 | $120 \pm 40$ |
|  |  | $2,580 \pm 20$ | 3 | 1,2 | $60 \pm 20$ |
| ${ }_{6} \mathrm{C}^{12}$. | 0 | 2,080 $\pm 10$ | $\geq \frac{3}{2}$ | $\geq 1$ | $\leq 11$ |
|  |  | $2,950 \pm 20$ | $\frac{3}{2}$ | 2 | $\overline{60} \pm 20$ |
|  |  | $3,650 \pm 20$ | $\frac{1}{2}$ | 0 | $1,200 \pm 400$ |
| ${ }_{7} \mathrm{~N}^{14}$. | 1 | $430 \pm 5$ | $\geq \frac{3}{2}$ | $\geq 1$ | $\begin{aligned} & \Gamma_{n}<3 \\ & \Gamma_{p}<0.01 \end{aligned}$ |
|  |  | $495 \pm 5$ |  |  | $\Gamma_{p}<10$ |
|  |  |  |  |  | $\Gamma_{n}<3$ |
|  |  | $639 \pm 5$ | $\frac{1}{2}$ | 0 | $\Gamma_{n} 34 \pm 4$ |
|  |  | $998 \pm 5$ | $\frac{3}{2}$ | 0 | $\begin{aligned} & \Gamma_{p} 9 \pm 3 \\ & \Gamma_{n} 45 \pm 5 \end{aligned}$ |
|  |  | $998 \pm 5$ |  |  | $\Gamma_{p} 0.8 \pm 0.3$ |
|  |  | 1,120 $\pm 6$ | $\frac{5}{2}$ | 1,2 | $\begin{aligned} & \Gamma_{n} 19 \pm 3 \\ & \Gamma_{p} 0.20 \pm 0.12 \end{aligned}$ |
|  |  | 1,188 $\pm 6$ | $\geq \frac{3}{2}$ | $\geq 1$ | $\Gamma_{n}<2$ |
|  |  |  |  |  | $\Gamma_{p}<0.1$ |
|  |  | 1,211 $\pm 7$ | $\frac{1}{2}$ | 1 | $\begin{aligned} & \Gamma_{n} 12 \pm 2 \\ & \Gamma_{p} 0.4 \pm 0.2 \end{aligned}$ |
|  |  | 1,350 $\pm 7$ | $\frac{5}{2}$ | 1, 2 | $\Gamma_{n} 21 \pm 4$ |
|  |  |  |  |  | $\Gamma_{p} 1.0 \pm 0.6$ |
|  |  | 1,401 $\pm 8$ | $\frac{3}{2}$ | 1 | $\Gamma_{n} 42 \pm 10$ |
|  |  |  |  |  | $\Gamma_{p} 10 \pm 3$ |
|  |  |  |  |  | $\Gamma_{\alpha} 2 \pm 1$ |
|  |  | $1,595 \pm 8$ | $\frac{5}{2}$ | 1,2 | $\Gamma_{n} 21 \pm 3$ |
|  |  |  |  |  | $\Gamma_{p} 0.4 \pm 0.2$ |
|  |  |  |  |  | $\Gamma_{\alpha} 0.20 \pm 0.15$ |
|  |  | $1,779 \pm 10$ | $\frac{5}{2}$ | 1,2 | $\Gamma_{n} 18 \pm 4$ |
|  |  |  |  |  | $\Gamma_{\alpha} 6 \pm 2$ |
|  |  |  |  |  | $\Gamma_{p} 0.20 \pm 0.15$ |
| ${ }_{8} \mathrm{O}^{16}$. | 0 |  |  |  | $40 \pm 4$ |
|  |  | $1,000 \pm 10$ | $\frac{3}{2}$ | 2 | $100 \pm 10$ |
|  |  | 1,320 $\pm 10$ | $\frac{3}{2}$ | 1 | $35 \pm 4$ |
|  |  | $1,660 \pm 10$ | $\geq \frac{3}{2}$ | $\geq 1$ | <7 |
|  |  | $1,840 \pm 10$ | $\geq \frac{3}{2}$ | $\geq 1$ | $<10$ |
|  |  | 1,910 $\pm 20$ | $\frac{1}{2}$ | 1 | $30 \pm 6$ |
|  |  | $2,370 \pm 20$ | $\frac{1}{2}$ | 0 | $140 \pm 50$ |

Table 8h-2. Resonance Parameters of Light Nuclei (Continued)

| Isotope | $I$ | $E_{0}, \mathrm{kev}$ | $J$ | $l$ | $\Gamma_{n}, \mathrm{kev}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{8} \mathrm{O}^{16}$ | $\frac{1}{2}$ | $3,330 \pm 30$ | $\frac{3}{2}$ | 2 | $220 \pm 40$ |
|  |  | $3,800 \pm 80$ | $\frac{3}{2}$ | 1 | $800 \pm 200$ |
|  |  | $4,400 \pm 40$ | $\frac{1}{2}$ | 1 | $280 \pm 80$ |
| ${ }_{9} \mathrm{~F}^{19}$. |  | $28 \pm 1$ | $\geq 1$ | $\geq 1$ | <1.0 |
|  |  | $50 \pm 2$ | $\geq 1$ | $\geq 1$ | <2 |
|  |  | $100 \pm 2$ | 1 | 1,2 | $13 \pm 3$ |
|  |  | $275 \pm 10$ |  |  | $25 \pm 10$ |
|  |  | $340 \pm 20$ |  |  | $200 \pm 100$ |
|  |  | $420 \pm 10$ |  |  | $25 \pm 15$ |
|  |  | $510 \pm 10$ |  |  | $25 \pm 15$ |
|  |  | $590 \pm 10$ |  |  | $25 \pm 10$ |
| ${ }_{11} \mathrm{Na}^{23}$. | $\frac{3}{2}$ | $2.9 \pm 0.2$ | 2 | 0 | $0.24 \pm 0.12$ |
|  |  | $55 \pm 3$ |  |  | <5 |
|  |  | $204 \pm 3$ | 1 | 1 | $5 \pm 2$ |
|  |  | $217 \pm 3$ | 0 | 1 | $14 \pm 10$ |
|  |  | $243 \pm 3$ | 1, 2 | 1 | $7 \pm 2$ |
|  |  | $297 \pm 3$ | 1 |  | $4.0 \pm 1.0$ |
|  |  | $396 \pm 4$ | 0, 1 | 1 | $23 \pm 3$ |
|  |  | $451 \pm 4$ | , | 1,2 | $9 \pm 3$ |
|  |  | $542 \pm 5$ | 1 | 0 | $39 \pm 7$ |
|  |  | $602 \pm 4$ | $\geq 1$ |  | $6 \pm 4$ - |
|  |  | $710 \pm 7$ | $\geq 5$ |  | $72 \pm 10$ |
|  |  | $784 \pm 5$ | $\geq 2$ |  | $38 \pm 6$ |
|  |  | $914 \pm 5$ | $\geq 3$ |  | $36 \pm 5$ |
|  |  | $988 \pm 5$ | $\geq 1$ |  | $24 \pm 10$ |
| ${ }_{12} \mathrm{Mg}^{24}$. | 0 | $85 \pm 3$ | $\frac{1}{2}$ | 1 | $13 \pm 3$ |
|  |  | $275 \pm 8$ | $\frac{1}{2}$ | 1 | $80 \pm 20$ |
|  |  | $430 \pm 5$ | $\frac{3}{2}$ |  | $30 \pm 10$ |
| ${ }_{13} \mathrm{Al}^{27}$. | $\frac{5}{2}$ | $35 \pm 2$ | 3 | 0 | $1.2 \pm 0.5$ |
|  |  | $90 \pm 4$ | 3 | 0 | $7 \pm 2$ |
| ${ }_{14} \mathrm{Si}^{28}$. | 0 | $195 \pm 6$ | $\frac{1}{2}$ | 0 | $60 \pm 10$ |
|  |  | $570 \pm 5$ | $\frac{3}{2}$ | 1 | $15 \pm 5$ |
|  | 0 | $111 \pm 2$ | $\frac{1}{2}$ | 0 | $18 \pm 3$ |
| ${ }_{16} \mathrm{~S}^{32}$ |  | $203 \pm 2$ |  | $\geq 1$ | <2 |
|  |  | $274 \pm 2$ |  | $\geq 1$ | <3 |
|  |  | $290 \pm 2$ |  | $\geq 1$ | $<3$ |
|  |  | $375 \pm 3$ |  | 0 | $12 \pm 2$ |
|  |  | $585 \pm 3$ | $\frac{3}{2}$ | 1 | $1.4 \pm 0.5$ |
|  |  | $700 \pm 4$ | $\frac{1}{2}$ | 0 | $14 \pm 3$ |

Table 8h-3. Resonance Parameters of Heavy Nuclei

| Isotope | $I$ | $E_{0}, \mathrm{ev}$ | $\mathrm{F}_{\boldsymbol{\gamma}}$, mv* | $\Gamma_{\mathrm{n}}, \mathrm{mv}$ | $\Gamma{ }^{0}, \mathrm{mv}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{26} \mathrm{Mn}^{65} \ldots$. | $\frac{5}{2}$ | $\begin{aligned} & 337 \pm 6 \\ & 1,080 \pm 30 \\ & 2,360 \pm 100 \end{aligned}$ |  | $\begin{aligned} & (22 \pm 4) \times 10^{3} \\ & (16 \pm 5) \times 10^{3} \\ & (340 \pm 30) \times 10^{3}(J=3) \end{aligned}$ | $\begin{aligned} & 1,200 \pm 200 \\ & 500 \pm 200 \\ & 7,000 \pm 600 \end{aligned}$ |
|  | $\frac{7}{2}$ | $132 \pm 2$ |  | $(4.9 \pm 0.7) \times 10^{3}$ | $7,000 \pm 600$ $430 \pm 60$ |
| ${ }_{28} \mathrm{Ni}^{62}$. | 0 | $4,200 \pm 1,000$ |  | $(1,300 \pm 400) \times 10^{3}$ | $(20 \pm 6) \times 10^{3}$ |
| ${ }_{30} \mathrm{Zn}^{64} \ldots .$. | 0 | $2,750 \pm 100$ |  | $(70 \pm 10) \times 10^{3}$ | $1,300 \pm 200$ |
|  |  | $4,600 \pm 300$ |  | $(60 \pm 30) \times 10^{3}$ | $900 \pm 400$ |
| ${ }_{30} \mathrm{Zn}^{67} \ldots$. | $\frac{5}{2}$ | 225 455 $\pm$ | . . . . . . . . . . . ${ }^{\text {a }}$ | $(1.3 \pm 0.2) \times 10^{3}$ $(13 \pm 3) \times 10^{3}$ | $\begin{aligned} & 87 \pm 13 \\ & 610 \pm 140 \end{aligned}$ |
|  |  | 1,620 $\pm 70$ |  | $(19 \pm 9) \times 10^{3}$ | $500 \pm 200$ |
|  |  | 2,300 $\pm 100$ |  | $(29 \pm 15) \times 10^{3}$ | $600 \pm 300$ |
| ${ }_{30} \mathrm{Zn}^{88}$. . | 0 | $530 \pm 11$ |  | $(10 \pm 2) \times 10^{3}$ | $440 \pm 90$ |
| ${ }_{42} \mathrm{Mo}^{95}$. | $\frac{5}{2}$ | $45.6 \pm 0.6$ | $210 \pm 60$ | $174 \pm 10$ | $26.0 \pm 1.6$ |
|  |  | $162 \pm 4$ |  | $13.6 \pm 1.9$ | $1.1 \pm 0.2$ |
|  |  | $570 \pm 30$ |  | $120 \pm 60$ | $5 \pm 3$ |
|  |  | $700 \pm 40$ |  | $740 \pm 130$ | $28 \pm 5$ |
| ${ }_{42} \mathrm{Mo}^{96} \ldots$ | 0$\frac{5}{2}$ | $133 \pm 2$ | $26.0 \pm 60$ | $200 \pm 15$ | $17.3 \pm 1.3$ |
| ${ }_{42} \mathrm{Mo}^{97} \ldots$ |  |  | $260 \pm 80$ |  |  |
|  |  | $71.5 \pm 1.2$ | $330 \pm 80$ | $16.6 \pm 1.8$ | $2.0 \pm 0.2$ |
|  |  | $292 \pm 10$ |  | $75 \pm 15$ | $4.4 \pm 0.9$ |
|  |  | $406 \pm 17$ |  | $80 \pm 40$ | $4 \pm 2$ |
|  |  | $580 \pm 30$ |  | $670 \pm 130$ | $28 \pm 6$ |
| ${ }_{42} \mathrm{Mo}^{98} \ldots$ | 0 | $480 \pm 20$ | $260 \pm 80$ | $740 \pm 110$ | $34 \pm 5$ |
| ${ }_{42} \mathrm{Mo}^{100} \ldots$. | 0 |  | $260 \pm 80$ |  |  |
|  |  | $367 \pm 15$ |  | $1,000 \pm 120$ | $52 \pm 6$ |
| «Ru†.... | . . | $9.8 \pm 0.2$ | $150 \pm 50$ | $0.8 \pm 0.3 *$ | $0.26 \pm 0.09 *$ |
|  |  | $15.2 \pm 0.3$ |  | $1.1 \pm 0.4^{*}$ | $0.28 \pm 0.09 *$ |
|  |  | $24.1 \pm 0.5$ |  | $2.2 \pm 0.8 *$ | $0.45 \pm 0.15 *$ |
|  |  | $40.9 \pm 0.8$ |  | 7 $\pm$ 3* | $1.1 \pm 0.5 *$ |
| $\begin{aligned} & { }^{46} \mathbf{R h}^{103} \ldots \\ & { }_{47} \mathbf{A g}^{107} \ldots \end{aligned}$ | $\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \end{aligned}$ | $1.260 \pm 0.004$ | $\begin{aligned} & 155 \pm 5 \\ & 140 \pm 30 \end{aligned}$ | $0.76 \pm 0.04$ | $0.68 \pm 0.04$ |
|  |  | $16.60 \pm 0.15$ | $170 \pm 30$ | $4.8 \pm 0.5$ | $1.20 \pm 0.12$ |
|  |  | $42.4 \pm 0.6$ |  | $9 \pm 2$ | $1.4 \pm 0.3$ |
|  |  | $45.4 \pm 0.6$ |  | $1.2 \pm 0.3$ | $0.18 \pm 0.04$ |
|  |  | $52.2 \pm 0.6$ | $120 \pm 30$ | $34 \pm 4$ | $4.8 \pm 0.6$ |
| ${ }_{47}$ Ag $^{109} \ldots$ | $\frac{1}{2}$ | $5.120 \pm 0.010$ | $136 \pm 6$ | $(13.4 \pm 0.6)(J=1)$ | $5.9 \pm 0.3(J=1)$ |
|  |  | $30.9 \pm 0.3$ | $100 \pm 30$ | $11 \pm 2$ | $2.0 \pm 0.4$ |
|  |  | $40.8 \pm 0.6$ |  | $8 \pm 2$ | $1.2 \pm 0.4$ |
|  |  | $56.8 \pm 0.9$ |  | $20 \pm 5$ | $2.7 \pm 0.7$ |
|  |  | $72.0 \pm 1.2$ |  | $43 \pm 7$ | $5.1 \pm 0.8$ |
|  |  | $86.5 \pm 1.5$ |  | $6.0 \pm 1.5$ | $0.65 \pm 0.16$ |
| $\begin{aligned} & { }^{48} \mathrm{Cd}^{113} \ldots \\ & { }_{48} \mathrm{In}^{113} \ldots \end{aligned}$ | $\begin{aligned} & \frac{1}{2} \\ & \frac{9}{2} \end{aligned}$ | $0.178 \pm 0.002$ | $113 \pm 5$ | $0.65 \pm 0.02(J=1)$ | $1.50 \pm 0.05(J=1)$ |
|  |  | $1.80 \pm 0.03$ | avg $80 \pm 20$ | < 0.1 |  |
|  |  | $4.71 \pm 0.03$ |  | $0.104 \pm 0.016$ | $0.048 \pm 0.007$ |
|  |  | $14.7 \pm 0.1$ | $60 \pm 20$ | $7.7 \pm 1.0$ | $2.0 \pm 0.3$ |
|  |  | $21.7 \pm 0.2$ |  | $4.4 \pm 0.9$ | $0.95 \pm 0.20$ |
|  |  | $25.2 \pm 0.2$ | $110 \pm 40$ | $9.7 \pm 1.6$ | $1.9 \pm 0.3$ |
|  |  | $32.5 \pm 0.4$ |  | $8.5 \pm 1.0$ | $1.49 \pm 0.18$ |
|  |  | $45.6 \pm 0.6$ |  | $4.7 \pm 1.2$ | $0.69 \pm 0.018$ |
| ${ }_{49}$ In $^{115} \ldots$ | $\frac{9}{2}$ | $1.458 \pm 0.003$ | avg $77 \pm 15$ $72 \pm 2$ | $3.36 \pm 0.10$ | $2.78 \pm 0.08$ |
|  |  | $3.86 \pm 0.02$ | $81 \pm 4$ | $0.318 \pm 0.015$ | $0.162 \pm 0.008$ |
|  |  | $9.10 \pm 0.09$ | $80 \pm 40$ | $1.73 \pm 0.17$ | $0.57 \pm 0.06$ |

[^372]Table 8h-3. Resonance Parameters of Heavy Nuclei (Continued)

| Isotope | $I$ | $E_{0}, \mathrm{ev}$ | $\Gamma_{\gamma}, \mathrm{mv}^{*}$ | $\Gamma_{n}, \mathrm{mv}$ | $\Gamma_{n}{ }^{0}, \mathrm{mv}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{50} \mathrm{Sn}^{112} \ldots$ | 0 | $12.1 \pm 0.1$ | . $140 \pm 60$ | $0.106 \pm 0.013$ | $0.031 \pm 0.004$ |
|  |  | $23.0 \pm 0.2$ |  | $1.0 \pm 0.2$ | $0.21 \pm 0.04$ |
|  |  | $39.9 \pm 0.5$ | $140 \pm 50$ | $3.5 \pm 0.4$ | $0.55 \pm 0.06$ |
|  |  | $46.3 \pm 0.5$ |  | $0.43 \pm 0.09$ | $0.063 \pm 0.013$ |
|  |  | $48.6 \pm 0.7$ |  | $0.65 \pm 0.08$ | $0.093 \pm 0.012$ |
|  |  | $63.2 \pm 1.0$ |  | $1.1 \pm 0.3$ | $0.014 \pm 0.04$ |
|  |  |  | avg $110 \pm 30$ |  |  |
|  |  | $96.5 \pm 2.0$ |  | $85 \pm 10$ | $8.7 \pm 1.0$ |
|  |  | $280 \pm 9$ |  | $36 \pm 17$ | $2.2 \pm 1.0$ |
| ${ }_{50} \mathrm{Sn}^{114} . .$. | 0 | $280 \pm 9$ | avg $110 \pm 20$ | $450 \pm 90$ | $27 \pm 5$ |
| ${ }_{50} \mathrm{Sn}^{115} \ldots$ | $\frac{1}{2}$ | $290 \pm 10$ | $\operatorname{avg} 110 \pm 30$ | $260 \pm 130$ | $3.0 \pm 1.5$ |
| ${ }_{50} \mathrm{Sn}^{116} \ldots$ | 0 | $\begin{aligned} & 112 \pm 2 \\ & 149 \pm 4 \end{aligned}$ | avg $110 \pm 30$ | $\begin{aligned} & 58 \pm 6 \\ & 4.5 \pm 1.4 \end{aligned}$ | $\begin{aligned} & 5.5 \pm 0.6 \\ & 0.37 \pm 0.11 \end{aligned}$ |
| ${ }_{50} \mathrm{Sn}^{117} .$. | $\frac{1}{2}$ | ¢.... | $\operatorname{avg} 110 \pm 30$ | $5.4+0.5$ | $0.37 \pm 0.11$ $0.86+0.09$ |
|  |  | $\begin{aligned} & 39.4 \pm 0.5 \\ & 122 \pm 3 \end{aligned}$ | $106 \pm 25$ | $5.4 \pm 0.5$ $15 \pm 3$ | $\begin{aligned} & 0.86 \pm 0.09 \\ & 1.4 \pm 0.3 \end{aligned}$ |
|  |  | $125 \pm 3$ |  | $2.8 \pm 0.8$ | $0.25 \pm 0.08$ |
|  |  | $197 \pm 6$ |  | $35 \pm 9$ | $2.5 \pm 0.6$ |
|  |  | $259 \pm 8$ |  | $12 \pm 4$ | $0.8 \pm 0.3$ |
| ${ }_{60} \mathrm{Sn}^{118} \ldots$ | 0 | $\cdots 6.3 \pm 0.6$ | avg $110 \pm 33$ | $0.7 \pm 0.2$ | $0.11 \pm 0.03$ |
|  |  | $368 \pm 14$ |  | $420 \pm 30$ | $22.0 \pm 1.3$ |
| ${ }_{50} \mathrm{Sn}^{119} \ldots$ | $\frac{1}{2}$ | $1.41 \pm 3$ | avg $110 \pm 30$ | $30 \pm 12$ | $2.5 \pm 1.0$ |
|  |  | $222 \pm 7$ |  | $24 \pm 6$ | $1.6 \pm 0.4$ |
|  |  | $460 \pm 20$ |  | $200 \pm 70$ | $9 \pm 3$ |
| ${ }_{50} \mathrm{Sn}^{120} \ldots$ | 0 | $425 \pm 18$ | avg $101 \pm 30$ | $44 \pm 18$ | $2.1 \pm 0.8$ |
| ${ }_{50} \operatorname{Sn}^{124} \ldots$ | 0 |  | avg $110 \pm 30$ |  |  |
|  |  | $62.5 \pm 0.9$ |  | $12 \pm 2$ | $1.5 \pm 0.3$ |
| $\begin{aligned} & { }_{52} \mathrm{Te}^{123} \ldots \\ & { }_{53} \mathrm{I}^{127} \ldots \ldots \end{aligned}$ | $\begin{aligned} & \frac{1}{2} \\ & \frac{5}{2} \end{aligned}$ | $2.334 \pm 0.008$ | $104 \pm 9$ | $10.4 \pm 0.5(J=1)$ | $6.8 \pm 0.4(J=1)$ |
|  |  | $20.5 \pm 0.3$ | avg $100 \pm 30$ | $1.6 \pm 0.5$ | $0.34 \pm 0.10$ |
|  |  | $31.4 \pm 0.5$ |  | $21 \pm 7$ | $3.8 \pm 1.2$ |
|  |  | $37.7 \pm 0.7$ | . . . . . . . . . | $40 \pm 13$ | $7 \pm 2$ |
|  |  | $46 \pm 1$ |  | $22 \pm 10$ | $3.3 \pm 1.5$ |
| ${ }_{63} \mathrm{I}^{127}$ | $\frac{5}{2}$ | $66 \pm 2$ |  | $3 \pm 2$ | $0.3 \pm 0.2$ |
|  |  | $78 \pm 2$ |  | $30 \pm 20$ | $3 \pm 2$ |
|  |  | $91 \pm 3$ |  | $30 \pm 20$ | $3 \pm 2$ |
| $\begin{aligned} & 54 \mathrm{Xe}^{185} \ldots \\ & { }_{50} \mathrm{Cs}^{188} \ldots . \end{aligned}$ | $\frac{3}{2}$ <br> $\frac{7}{2}$ | $0.082 \pm 0.002$ | $86 \pm 11$ | $24 \pm 4$ | $83 \pm 12$ |
|  |  |  | $\operatorname{avg} 110 \pm 30$ |  |  |
|  |  | $5.90 \pm 0.04$ | $115 \pm 20$ | $5.2 \pm 0.7$ | $2.1 \pm 0.3$ |
|  |  | $22.6 \pm 0.3$ | $120 \pm 40$ | $6.6 \pm 1.4$ | $1.4 \pm 0.2$ |
|  |  | $47.8 \pm 0.6$ | $140 \pm 60$ | $19 \pm 3$ | $2.8 \pm 0.4$ |
|  |  | $83.1 \pm 1.5$ | . . . . . . . . . . | $9 \pm 3$ | $1.0 \pm 0.3$ |
|  |  | $94.8 \pm 1.8$ |  | $19 \pm 6$ | $2.0 \pm 0.6$ |
|  |  | $128 \pm 2$ |  | $112 \pm 19$ | $9.9 \pm 1.7$ |
|  |  | $143 \pm 3$ |  | $9 \pm 4$ | $0.8 \pm 0.4$ |
|  |  | $149 \pm 4$ |  | $45 \pm 20$ | $3.7 \pm 1.6$ |
|  |  | $182 \pm 5$ |  | $3.4 \pm 1.1$ | $0.25 \pm 0.08$ |
|  |  | $204 \pm 6$ |  | $57 \pm 22$ | $4.0 \pm 1.5$ |
|  |  | $224 \pm 6$ |  | $49 \pm 22$ | $3.3 \pm 1.5$ |
|  |  | $240 \pm 7$ |  | $480 \pm 90$ | $31 \pm 6$ |
| ${ }_{62} \mathrm{Sm}^{149} \ldots$ | $\frac{7}{2}$ | $0.096 \pm 0.001$ | $65 \pm 2$ | $0.56 \pm 0.04$ | $1.81 \pm 0.13$ |

Table 8h-3. Resonance Parameters of Heavy Nuclei (Continued)

| Isotope | $I$ | $E_{0}, \mathrm{ev}$ | $\Gamma_{\boldsymbol{\gamma}}, \mathbf{m v *}$ | $\Gamma_{n}, \mathrm{mv}$ | $\Gamma{ }^{0}, \mathrm{mv}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{63} \mathrm{Eu}^{151} \ldots$ | $\frac{5}{2}$ |  | avg $85 \pm 15$ |  |  |
|  |  | $0.0006 \pm 0.0010$ | $67 \pm 5$ |  | $0.10 \pm 0.02$ |
|  |  | $0.327 \pm 0.003$ | $70 \pm 10$ | $0.088 \pm 0.010$ | $0.15 \pm 0.02$ |
|  |  | $0.461 \pm 0.002$ | $93 \pm 3$ | $0.80 \pm 0.04$ | $1.11 \pm 0.06$ |
|  |  | $1.055 \pm 0.005$ | $94 \pm 4$ | $0.27 \pm 0.04$ | $0.25 \pm 0.04$ |
|  |  | $2.73 \pm 0.05$ |  | $0.08 \pm 0.04$ | $0.05 \pm 0.02$ |
|  |  | $3.35 \pm 0.02$ |  | $3.4 \pm 0.4$ | $1.8 \pm 0.2$ |
| ${ }_{63} \mathrm{Eu}^{151,2}$. . | $\frac{5}{2}$ | $4.83 \pm 0.04$ | avg $90 \pm 20$ | $0.048 \pm 0.0008$ | $0.022 \pm 0.004$ |
|  |  | $5.47 \pm 0.05$ |  | $0.133 \pm 0.018$ | $0.022 \pm 0.004$ $0.057 \pm 0.008$ |
|  |  | $6.03 \pm 0.08$ |  | $0.35 \pm 0.05$ | $0.14 \pm 0.02$ |
|  |  | $6.25 \pm 0.08$ |  | $0.41 \pm 0.07$ | $0.16 \pm 0.03$ |
|  |  | $7.24 \pm 0.10$ |  | $2.4 \pm 0.5$ | $0.89 \pm 0.18$ |
|  |  | $7.47 \pm 0.10$ |  | $2.4 \pm 0.5$ | $0.88 \pm 0.18$ |
| ${ }_{64}$ Gd $^{157} \ldots$ | $\frac{7}{2}$ | $\begin{aligned} & 0.030 \pm 0.003 \\ & 2.58 \pm 0.05 \end{aligned}$ | $\begin{aligned} & 100 \pm 30 \\ & 70 \pm 10 \end{aligned}$ | $0.65 \pm 0.10$ | $3.7 \pm 0.5$ |
| ${ }_{65} \mathrm{~Tb}^{169} \ldots$ | $\frac{3}{2}$ | $3.35 \pm 0.02$ | avg $90 \pm 30$ | $0.43 \pm 0.05$ | $0.24 \pm 0.03$ |
|  |  | $4.99 \pm 0.05$ |  | $0.055 \pm 0.008$ | $0.025 \pm 0.004$ |
|  |  | $11.14 \pm 0.10$ |  | $9.2 \pm 1.8$ | $2.8 \pm 0.6$ |
|  |  | $14.4 \pm 0.2$ |  | $0.54 \pm 0.11$ | $0.14 \pm 0.03$ |
|  |  | $21.4 \pm 0.2$ |  | $2.1 \pm 0.2$ | $0.46 \pm 0.05$ |
|  |  | $24.7 \pm 0.3$ | ..... | $5.8 \pm 0.7$ | $1.17 \pm 0.14$ |
|  |  | $27.8 \pm 0.3$ |  | $0.90 \pm 0.12$ | $0.17 \pm 0.02$ |
|  |  | $34.1 \pm 0.3$ |  | $3.3 \pm 0.7$ | $0.57 \pm 0.11$ |
|  |  | $44.2 \pm 0.6$ |  | $5.6 \pm 0.8$ | $0.84 \pm 0.13$ |
|  |  | $46.6 \pm 0.6$ |  | $15 \pm 3$ | $2.2 \pm 0.4$ |
|  |  | $51.1 \pm 0.7$ $54.9 \pm 0.7$ |  | $3.7 \pm 0.7$ | $0.52 \pm 0.10$ |
|  |  | $54.9 \pm 0.7$ 58.7 |  | $1.6 \pm 0.6$ | $0.21 \pm 0.08$ |
|  |  | $58.7 \pm 0.8$ |  | $4.6 \pm 1.1$ | $0.60 \pm 0.14$ |
|  |  | $66.1 \pm 1.1$ |  | $15 \pm 4$ | $1.9 \pm 0.5$ |
|  |  | $74.6 \pm 1.3$ |  | $20 \pm 5$ | $2.3 \pm 0.6$ |
|  |  | $78.2 \pm 1.4$ |  | $15 \pm 4$ | $1.7 \pm 0.4$ |
| ${ }_{87} \mathrm{Ho}^{165} \ldots$ | $\frac{7}{2}$ | $3.92 \pm 0.03$ | avg $90 \pm 20$ | $2.5 \pm 0.5$ | $1.3 \pm 0.2$ |
|  |  | $12.8 \pm 0.1$ |  | $13.1 \pm 1.8$ | $3.4 \pm 0.5$ |
|  |  | $18.2 \pm 0.2$ | $180 \pm 90$ | $0.92 \pm 0.17$ | $0.22 \pm 0.04$ |
|  |  | $21.3 \pm 0.2$ $35.9 \pm 0.4$ |  | $0.73 \pm 0.12$ | $0.16 \pm 0.03$ |
|  |  | $35.9 \pm 0.4$ $37.9 \pm 0.5$ | $60 \pm 20$ | $7.5 \pm 1.1$ | $1.20 \pm 0.18$ |
|  |  | $37.9 \pm 0.5$ $40.3 \pm 0.5$ | . $60 \pm 30$ | $0.36 \pm 0.07$ $21 \pm 3$ | $0.059 \pm 0.012$ |
|  |  | $48.5 \pm 0.7$ | $60 \pm 30$ | $25 \pm 4$ | $3.3 \pm 0.5$ $3.6 \pm 0.5$ |
|  |  | $52.2 \pm 0.7$ |  | $51 \pm 6$ | $7.0 \pm 0.8$ |
|  |  | $55.3 \pm 0.8$ |  | $7 \pm 3$ | $0.9 \pm 0.4$ |
|  |  | $66.3 \pm 1.1$ |  | $38 \pm 6$ | $4.6 \pm 0.7$ |
|  |  | $70.0 \pm 1.2$ |  | $1.1 \pm 0.4$ | $0.13 \pm 0.04$ |
|  |  | $73.1 \pm 1.3$ $83.4 \pm 1.5$ | $140 \pm 60$ | $35 \pm 6$ | $4.1 \pm 0.7$ |
|  |  | $83.4 \pm 1.5$ $87.2 \pm 1.6$ | $260+130$ | $1.2 \pm 0.6$ | $0.13 \pm 0.06$ |
|  |  | $87.2 \pm 1.6$ $96 \pm 2$ | $260 \pm 130$ | $96 \pm 10$ $125 \pm 15$ | $10.3 \pm 1.1$ |
|  |  | $104 \pm 2$ |  | $125 \pm 15$ $65 \pm 13$ | $\begin{aligned} & 12.7 \pm 1.5 \\ & 6.4 \pm 1.3 \end{aligned}$ |
| $69 \mathrm{Tm}^{169} \ldots$ | $\frac{3}{2}$ | $3.92 \pm 0.03$ | avg $70 \pm 20$ | $12 \pm 4$ | $6 \pm 2$ |
|  |  | $14.4 \pm 0.1$ | $75 \pm 20$ | $5.7 \pm 0.8$ | $1.5 \pm 0.2$ |
|  |  | $17.6 \pm 0.2$ | $63 \pm 16$ | $3.2 \pm 0.4$ | $0.76 \pm 0.10$ |
|  |  | $29.1 \pm 0.3$ |  | $0.37 \pm 0.13$ | $0.07 \pm 0.02$ |

* $1 \mathrm{mv}=10^{-8} \mathrm{ev}$.

Table 8h-3. Resonance Parameters of Heavy Nuclei (Continued)

| Isotope | $I$ | $E_{0}, \mathrm{ev}$ | 「 $\boldsymbol{\gamma}$, mv* | $\Gamma_{n}, \mathrm{mv}$ | $\Gamma^{\boldsymbol{n}}{ }^{0}, \mathrm{mv}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{69} \mathrm{TM}^{169} .$. | $\frac{3}{2}$ | $\begin{aligned} & 35.2 \pm 0.4 \\ & 38.1 \pm 0.5 \\ & 45.6 \pm 0.6 \\ & 51.6 \pm 0.7 \\ & 59.8 \pm 0.8 \\ & 66.8 \pm 1.1 \\ & 84.4 \pm 1.5 \\ & 96 \pm 2 \\ & 104 \pm 2 \\ & 118 \pm 2 \end{aligned}$ | $110 \pm 40$ | $\begin{aligned} & 13 \pm 2 \\ & 0.61 \pm 0.12 \\ & 6.4 \pm 1.3 \\ & 7.7 \pm 1.6 \\ & 25 \pm 5 \\ & 100 \pm 15 \\ & 11 \pm 3 \\ & 74 \pm 11 \\ & 2.7 \pm 1.5 \\ & 41 \pm 12 \end{aligned}$ | $\begin{aligned} & 2.2 \pm 0.4 \\ & 0.10 \pm 0.02 \\ & 1.0 \pm 0.2 \\ & 1.1 \pm 0.2 \\ & 3.1 \pm 0.6 \\ & 12 \pm 4 \\ & 1.2 \pm 0.4 \\ & 7.6 \pm 1.5 \\ & 0.26 \pm 0.14 \\ & 3.8 \pm 1.1 \end{aligned}$ |
| $\begin{aligned} & { }_{70} \mathrm{Yb}^{188} \ldots \\ & { }_{71} \mathrm{Ln}^{176} \ldots \end{aligned}$ | $\begin{gathered} 0 \\ \geq 7 \end{gathered}$ | $\begin{gathered} 0.597 \pm 0.003 \\ \ldots \ldots \ldots . . \\ 0.142 \pm 0.001 \\ 1.57 \pm 0.01 \end{gathered}$ | $\begin{aligned} & 70 \pm 10 \\ & \text { avg } 70 \pm 20 \\ & 63 \pm 5 \end{aligned}$ | $\begin{aligned} & 3.3 \pm 0.5 \\ & \\ & 0.093 \pm 0.009 \\ & 0.6 \pm 0.2 \end{aligned}$ | $\begin{aligned} & 4.3 \pm 0.7 \\ & 0.25 \pm 0.03 \\ & 0.5 \pm 0.2 \end{aligned}$ |
| ${ }_{71} \mathrm{Lu} \dagger . .$. |  | $\begin{aligned} & 2.62 \pm 0.02 \\ & 4.39 \pm 0.03 \\ & 4.78 \pm 0.03 \\ & 5.22 \pm 0.04 \\ & 6.17 \pm 0.05 \\ & 9.8 \pm 0.1 \\ & 11.3 \pm 0.1 \\ & 14.1 \pm 0.1 \\ & 15.5 \pm 0.2 \\ & 20.0 \pm 0.2 \\ & 20.7 \pm 0.2 \\ & 22.0 \pm 0.2 \\ & 23.7 \pm 0.2 \\ & 24.8 \pm 0.3 \\ & 27.3 \pm 0.3 \\ & 28.2 \pm 0.3 \\ & 30.4 \pm 0.3 \\ & 31.2 \pm 0.3 \\ & 37.1 \pm 0.4 \\ & 41.5 \pm 0.5 \end{aligned}$ | $\operatorname{avg} 70 \pm 20$ $40 \pm 20$ $160 \pm 50$ $70 \pm 20$ $\begin{aligned} & 90 \pm 30 \\ & 80 \pm 30 \end{aligned}$ | $\begin{aligned} & 0.16 \pm 0.07^{*} \\ & 0.012 \pm 0.006^{*} \\ & 0.28 \pm 0.03^{*} \\ & 1.2 \pm 0.02^{*} \\ & 0.062 \pm 0.012^{*} \\ & 0.044 \pm 0.012^{*} \\ & 3.2 \pm 0.5^{*} \\ & 18 \pm 3^{*} \\ & 1.4 \pm 0.15^{*} \\ & 0.08 \pm 0.02^{*} \\ & 2.3 \pm 0.3^{*} \\ & 0.07 \pm 0.2^{*} \\ & 4.9 \pm 0.7^{*} \\ & 0.17 \pm 0.06^{*} \\ & 0.27 \pm 0.08^{*} \\ & 1.4 \pm 0.3^{*} \\ & 9.2 \pm 0.7^{*} \\ & 2.3 \pm 0.6^{*} \\ & 6.4 \pm 0.9^{*} \\ & 24 \pm 3^{*} \end{aligned}$ | $\begin{aligned} & 0.10 \pm 0.04^{*} \\ & 0.006 \pm 0.003^{*} \\ & 0.128 \pm 0.014^{*} \\ & 0.52 \pm 0.09^{*} \\ & 0.025 \pm 0.005^{*} \\ & 0.014 \pm 0.004^{*} \\ & 0.95 \pm 0.15^{*} \\ & 4.8 \pm 0.7^{*} \\ & 0.35 \pm 0.04^{*} \\ & 0.018 \pm 0.005^{*} \\ & 0.51 \pm 0.07^{*} \\ & 0.015 \pm 0.004^{*} \\ & 1.01 \pm 0.14^{*} \\ & 0.034 \pm 0.012^{*} \\ & 0.052 \pm 0.06^{*} \\ & 0.26 \pm 0.05^{*} \\ & 1.7 \pm 0.3^{*} \\ & 0.41 \pm 0.10^{*} \\ & 1.05 \pm 0.14^{*} \\ & 3.7 \pm 0.4^{*} \end{aligned}$ |
| ${ }_{72} \mathrm{Hff}^{178}$. |  | $30 \pm 0.4$ | $60 \pm 20$ | $49 \pm 6$ | $8.9 \pm 1.2$ |
| ${ }_{72} \mathrm{Hf}^{177}$. | $\frac{1}{2}$, | $\begin{aligned} & 1.08 \pm 0.02 \\ & 2.36 \pm 0.02 \\ & 5.9 \pm 0.1 \\ & 6.6 \pm 0.1 \\ & 8.8 \pm 0.1 \\ & 13.7 \pm 0.2 \\ & 14.1 \pm 0.2 \\ & 22.2 \pm 0.2 \\ & 23.5 \pm 0.2 \\ & 25.9 \pm 0.3 \\ & 27.2 \pm 0.3 \\ & 33.2 \pm 0.4 \\ & 37.2 \pm 0.5 \\ & 43.6 \pm 0.6 \\ & 45.7 \pm 0.6 \\ & 46.8 \pm 0.6 \end{aligned}$ | $\begin{aligned} & \operatorname{avg} 56 \pm 15 \\ & 43 \pm 10 \\ & 63 \pm 8 \\ & \ldots \ldots \ldots \\ & 44 \pm 20 \end{aligned}$ | $1.8 \pm 0.5$ $5.2 \pm 0.9$ $5.1 \pm 1.5$ $11 \pm 3$ $8 \pm 3$ $0.67 \pm 0.08$ $2.2 \pm 0.3$ $2.7 \pm 0.3$ $1.6 \pm 0.4$ $0.41 \pm 0.08$ $1.80 \pm 0.18$ $1.2 \pm 0.2$ $23 \pm 5$ $4.3 \pm 0.5$ $4.6 \pm 0.6$ $4.9 \pm 0.8$ | $1.7 \pm 0.5$ $3.4 \pm 0.6$ $2.1 \pm 0.6$ $4.3 \pm 1.3$ $2.7 \pm 1.1$ $0.18 \pm 0.02$ $0.59 \pm 0.08$ $0.57 \pm 0.06$ $0.33 \pm 0.07$ $0.08 \pm 0.02$ $0.35 \pm 0.04$ $0.21 \pm 0.04$ $3.8 \pm 0.8$ $0.65 \pm 0.08$ $0.68 \pm 0.10$ $0.72 \pm 0.12$ |

* $1 \mathrm{mv}=10^{-3} \mathrm{ev}$.
$\dagger$ The resonances have not been identified with a particular isotope, and as a result the neutron widths are actually $a \Gamma_{n}$ and $a \Gamma_{n}{ }^{0}$, where $a$ is the abundance of the isotope.

Table 8h-3. Resonance Parameters of Heavy Nuclei (Continued)


[^373]Table 8h-3. Resonance Parameters of Heavy Nuclei (Continued)

| Isotope | I | $E_{0}$, ev | $\mathrm{r} \boldsymbol{\gamma}, \mathrm{mv*}$ | $\Gamma_{n}, \mathrm{mv}$ | $\Gamma^{\mathbf{n}}{ }^{0}, \mathrm{mv}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{79} \mathrm{Au}^{197} \ldots$ | $\frac{3}{2}$ | $4.906+0.010$ | $\begin{aligned} & 125 \pm 30 \\ & 124 \pm 3 \end{aligned}$ | $15.6 \pm 0.4(J=2)$ | $7.1 \pm 0.2(J=2)$ |
|  |  | $4.906 \pm 0.010$ $58.1 \pm 0.7$ |  | $<10$ |  |
|  |  | $61.5 \pm 1.0$ | $170 \pm 80$ | $110 \pm 20$ | $14 \pm 3$ |
|  |  | $80.2 \pm 1.5$ |  | $15 \pm 5$ | $1.7 \pm 0.5$ |
| ${ }_{79} \mathrm{Au}^{197} \ldots$ | $\frac{3}{2}$ | $110 \pm 3$ |  | $9 \pm 4$ | $0.9 \pm 0.3$ |
|  |  | $153 \pm 4$ |  | $50 \pm 30$ | $4 \pm 2$ |
|  |  | 168 $\pm 5$ |  | $100 \pm 50$ | $8 \pm 4$ |
|  |  | $194 \pm 6$ |  | $50 \pm 30$ | $4 \pm 2$ |
|  | 0 | $23.3 \pm 0.2$ | $145 \pm 20$ | $5.8 \pm 0.5$ | $1.20 \pm 0.10$ |
| $\begin{aligned} & { }_{80} \mathrm{Hg}^{\text {mog }} \ldots \\ & { }_{82} \mathrm{~Pb}^{208} \ldots \end{aligned}$ | a0 | $34.0 \pm 0.5$ $(352+3) \times 10^{3}$ | $250 \pm 70$ | $\begin{aligned} & 78 \pm 6 \\ & (8 \pm 2) \times 10^{6}\left(J=\frac{1}{2}, l=1\right) \end{aligned}$ | $13.4 \pm 1.0$ |
|  |  | $\begin{aligned} & (352 \pm 3) \times 10^{3} \\ & (524 \pm 5) \times 10^{3} \end{aligned}$ |  | $\begin{aligned} & (8 \pm 2) \times 10^{6}\left(J=\frac{1}{2}, l=1\right) \\ & (6 \pm 2) \times 10^{6}\left(J=\frac{3}{2}, l=1\right) \end{aligned}$ |  |
|  |  | $(718 \pm 7) \times 10^{3}$ |  | $(6 \pm 2) \times 10^{6}\left(J=\frac{3}{2}, l=1\right)$ |  |
| ${ }_{83} \mathrm{Bi}^{209} \ldots$ | $\frac{9}{2}$ | $\begin{aligned} & 810 \pm 30 \\ & 2,370 \pm 100 \end{aligned}$ |  | $\begin{aligned} & (5.3 \pm 1.0) \times 10^{3} \\ & (19 \pm 4) \times 10^{3} \end{aligned}$ | $\begin{aligned} & 190 \pm 40 \\ & 390 \pm 80 \end{aligned}$ |
| ${ }_{90} \mathrm{Th}^{232} \ldots$ | 0 | $22.0 \pm 0.2$ | $\begin{aligned} & \operatorname{avg} 30 \pm 10 \\ & 30 \pm 10 \end{aligned}$ | $2.0 \pm 0.4$ | $0.43 \pm 0.08$ |
|  |  | $23.7 \pm 0.3$ | $30 \pm 10$ | $3.7 \pm 0.6$ | $0.76 \pm 0.13$ |
|  |  | $59.6 \pm 0.6$ | ............ | $4.5 \pm 0.9$ | $0.59 \pm 0.12$ |
|  |  | $70.1 \pm 0.8$ |  | $40 \pm 8$ | $4.7 \pm 0.9$ |
|  |  | $114 \pm 2$ |  | $10 \pm 4$ | $0.9 \pm 0.3$ |
|  |  | $123 \pm 2$ |  | $27 \pm 6$ | $2.4 \pm 0.6$ |
|  |  | $131 \pm 3$ |  | $11 \pm 5$ | $0.9 \pm 0.4$ |
|  |  | $152 \pm 3$ |  | $15 \pm 6$ | $1.2 \pm 0.5$ |
|  |  | $174 \pm 3$ |  | $70 \pm 13$ | $5.3 \pm 1.0$ |
|  |  | $195 \pm 5$ |  | $30 \pm 14$ | $2.1 \pm 1.0$ |
|  |  | $202 \pm 5$ |  | $19 \pm 0$ | $1.3 \pm 0.7$ |
|  |  | $215 \pm 5$ |  | $2.3 \pm 1.2$ | $0.16 \pm 0.08$ |
|  |  | $226 \pm 6$ |  | $41 \pm 16$ | $2.7 \pm 1.1$ |
|  |  | $235 \pm 6$ |  | $1.3 \pm 0.6$ | $0.08 \pm 0.04$ |
|  |  | $256 \pm 7$ |  | $51 \pm 19$ | $3.2 \pm 1.2$ |
|  |  | $269 \pm 7$ |  | $22 \pm 2$ | $1.4 \pm 0.7$ |
|  |  | $290 \pm 8$ |  | $57 \pm 18$ | $3.3 \pm 1.0$ |
|  |  | $310 \pm 9$ |  | $105 \pm 30$ | $6.0 \pm 1.6$ |
| ${ }_{92} \mathrm{U}^{234} \ldots$. | 0 | $5.10 \pm 0.05$ | $19 \pm 9$ | $4.5 \pm 0.8$ | $2.0 \pm 0.4$ |
| ${ }_{92} \mathrm{U}^{238} \ldots$. | 0 | $670 \pm 0.06$ | $\underset{24}{\operatorname{avg} 25} \pm 5$ | $1.52 \pm 0.07$ | $0.59 \pm 0.03$ |
|  |  | $6.70 \pm 0.06$ $21.00 \pm 0.2$ | $24 \pm 2$ $25 \pm 5$ | $1.52 \pm 0.07$ $8.9 \pm 0.4$ | $1.94 \pm 0.11$ |
|  |  | $21.00 \pm 0.2$ $36.9 \pm 0.2$ | $25 \pm 5$ $29 \pm 9$ | $32.5 \pm 1.9$ | $5.3 \pm 0.3$ |
|  |  | $66.3 \pm 0.5$ | $2.7 \pm 1.0$ | $25 \pm 2$ | $3.1 \pm 0.3$ |
|  |  | $81.3 \pm 0.5$ |  | $2.1 \pm 0.4$ | $0.23 \pm 0.04$ |
|  |  | $103.5 \pm 0.7$ |  | $67 \pm 9$ | $6.6 \pm 0.9$ |
|  |  | $117.5 \pm 0.8$ |  | $15 \pm 2$ | $1.4 \pm 0.2$ |
|  |  | $117.5 \pm 0.8$ |  | $15 \pm 2$ | $1.4 \pm 0.2$ |
|  |  | $146 \pm 3$ |  | $0.9 \pm 0.9$ | $0.07 \pm 0.03$ |
|  |  | $166 \pm 2$ |  | $4 \pm 2$ | $0.31 \pm 0.16$ |
|  |  | $192 \pm 2$ |  | $140 \pm 20$ | $10.1 \pm 1.5$ |
| ${ }_{98} \mathrm{~Np}^{237} \ldots$${ }_{94} \mathrm{Pu}^{240} \ldots$ | $\frac{5}{2}$ |  | $32 \pm 6$ $32 \pm 3$ | $0.032 \pm 0.002$ | $0.046 \pm 0.003$ |
|  |  | $0.489 \pm 0.005$ $1.34 \pm 0.02$ |  | $0.030 \pm 0.006$ | $0.026 \pm 0.005$ |
|  |  | $1.49 \pm 0.02$ |  | $0.16 \pm 0.04$ | $0.13 \pm 0.03$ |
|  |  | $1.06 \pm 0.02$ | $42 \pm 15$ | $3.2 \pm 1.4$ | $3.1 \pm 1.4$ |

[^374]Table 8h-4. Resonance Parameters of Fissionable Nuclei

| Isotope | $\boldsymbol{I}$ | $\boldsymbol{E}_{0}, \mathrm{ev}$ | $\boldsymbol{\Gamma} \boldsymbol{\gamma}, \mathrm{mv}$ | $\Gamma_{F}, \mathrm{mv}$ | $\Gamma_{n}, \mathrm{mv}$ | $\Gamma_{\boldsymbol{n}} \mathbf{0}, \mathrm{mv}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & { }_{92} U^{233} \ldots \ldots \\ & { }_{92} U^{235} \ldots \end{aligned}$ | $\frac{7}{2}$ | $1.76 \pm 0.03$ | $70 \pm 30$ | $380 \pm 50$ | $0.49 \pm 0.03$ | $0.37 \pm 0.02$ |
|  |  | $0.29 \pm 0.01$ | $31 \pm 10$ | $110 \pm 30$ | $0.0040 \pm 0.0006$ | $0.007 \pm 0.001$ |
|  |  | $1.12 \pm 0.02$ | $15 \pm 15$ | $130 \pm 20$ | $0.016 \pm 0.003$ | $0.015 \pm 0.003$ |
|  |  | $2.04 \pm 0.01$ | $27 \pm 10$ | $20 \pm 12$ | $0.008 \pm 0.002$ | $0.005 \pm 0.001$ |
|  |  | $2.86 \pm 0.07$ |  | $60 \pm 40$ | $0.004 \pm 0.001$ | $0.002 \pm 0.001$ |
|  |  | $3.17 \pm 0.02$ | $30 \pm 15$ | $130 \pm 40$ | $0.024 \pm 0.003$ | $0.014 \pm 0.002$ |
|  |  | $3.60 \pm 0.02$ | $40 \pm 20$ | $110 \pm 20$ | $0.050 \pm 0.005$ | $0.027 \pm 0.003$ |
|  |  | $4.85 \pm 0.05$ |  | $20 \pm 10$ | $0.052 \pm 0.004$ | $0.024 \pm 0.002$ |
|  |  | $5.4 \pm 0.2$, |  |  |  |  |
|  |  | $5.9 \pm 0.2$, $\}$ |  |  | $0.04 \pm 0.02$ | $0.017 \pm 0.009$ |
|  |  | $6.2 \pm 0.2$ |  |  | $0.04 \pm 0.02$ | $0.016 \pm 0.008$ |
|  |  | $6.4 \pm 0.1$ | $30 \pm 20$ | $16 \pm 6$ | $0.34 \pm 0.03$ | $0.13 \pm 0.01$ |
|  |  | $7.1 \pm 0.1$ | $30 \pm 20$ | $30 \pm 20$ | $0.13 \pm 0.01$ | $0.049 \pm 0.005$ |
|  |  | $8.8 \pm 0.1$ | $34 \pm 14$ | $100 \pm 30$ | $1.08 \pm 0.09$ | $0.36 \pm 0.03$ |
|  |  | $9.3 \pm 0.2$ |  |  | $0.14 \pm 0.03$ | $0.046 \pm 0.009$ |
|  |  | $\left.\begin{array}{l}9.5 \pm 0.2 \\ 9.8 \pm 0.2\end{array}\right\}$ |  |  | $0.06 \pm 0.03$ | $0.02 \pm 0.01$ |
|  |  | $10.2 \pm 0.1$ |  |  | $0.09 \pm 0.02$ | $0.027 \pm 0.005$ |
| $94 \mathrm{Pu}{ }^{289}$. |  | $0.296 \pm 0.004$ | $41 \pm 7$ | $47 \pm 7$ | $0.12 \pm 0.01$ | $0.21 \pm 0.02$ |

Table 8h-5. Thermal Cross Sections (Elements 1 to 83)




| ${ }_{24} \mathrm{Cr} \ldots \ldots$. |  | $2.9 \pm 0.2$ |  | $1.56 \pm 0.03$ (+) | $4.1 \pm 0.3$ | $3.0 \pm 0.5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{Cr}^{50}(4.31)$ | $16.3 \pm 1.3$ | 27.8 days, $11 \pm 5$ |  |  |  |
|  | $\mathrm{Cr}^{52}(83.76)$ | $0.73 \pm 0.06$ |  |  |  |  |
|  | $\mathrm{Cr}^{53}(9.55)$ | $17.5 \pm 1.4$ |  |  |  |  |
|  | $\mathrm{Cr}^{54}(2.38)$ | <0.3 | $3.6 \mathrm{~min} 0.37 \pm 0.04$ |  |  |  |
| $\begin{aligned} & { }_{25} \mathrm{Mn} \ldots . . \\ & { }_{26} \mathrm{Fe} \ldots \ldots . \end{aligned}$ | $\mathrm{Mn}^{55}(100)$ | $13.2 \pm 0.4$ | $2.58 \mathrm{hr}, 13.4 \pm 0.3$ | $1.7 \pm 0.1$ (-) | $2.0 \pm 0.1$ | $\begin{array}{\|l\|l} 2.3 \pm 0.3 \\ 11 \pm 1 \end{array}$ |
|  |  | $\begin{aligned} & 2.53 \pm 0.06 \\ & n \alpha<5 \text { mbarn } \end{aligned}$ |  | $11.37 \pm 0.05$ | $11.80 \pm 0.04$ |  |
|  | $\mathrm{Fe}^{54}(5.84)$ | $2.2 \pm 0.2$ | 2.96 years, $2.2 \pm 0.5$ | $2.20 \pm 0.13(+)$ | $2.5 \pm 0.3$ |  |
|  | $\mathrm{Fe}^{56}$ (91.68) | $2.6 \pm 0.2$ |  | $12.8 \pm 0.2(+)$ | $12.8 \pm 0.2$ |  |
|  | $\mathrm{Fe}^{57}(2.17)$ | $2.4 \pm 0.2$ |  | $0.64 \pm 0.04(+)$ | $2.0 \pm 0.5$ |  |
|  | $\mathrm{Fe}^{58}(0.31)$ | $2.5 \pm 2.0$ | 46 days, $0.9 \pm 0.2$ | $0.64 \pm 0.04$ ( +1 | $2.0 \pm 0.5$ |  |
|  |  | $n \alpha<1.5 \mathrm{mbarn}$ |  |  |  |  |
| ${ }_{27} \mathrm{Co} \ldots .$. | $\mathrm{Co}^{59}(100)$ | $37.0 \pm 1.5$ | $\begin{aligned} & 10.4 \mathrm{~min}, 16 \pm 3 . \\ & 5.28 \text { years, } 20 \pm 3 \\ & (99.7 \% \text { of } 10.4 \min \rightarrow 5.28 \text { years }) \\ & 1.75 \mathrm{hr}, 100 \pm 50 \\ & 1.75 \mathrm{hr}, 6 \pm 2 \end{aligned}$ | $1.00 \pm 0.06(+)$ | $6 \pm 1$ | $7 \pm 1$ |
|  | $\mathrm{Co}^{60 \mathrm{~m}}$ (10.7 min) |  |  |  |  |  |
|  | $\mathrm{Co}^{60}$ (5.3 years) |  |  |  |  |  |
| ${ }_{28} \mathrm{Ni} \ldots \ldots$ |  | $4.6 \pm 0.2$ |  | $13.2 \pm 0.2(+)$ | $18.04 \pm 0.05$ | $17.5 \pm 1.0$ |
|  | $\mathrm{Ni}^{58}$ (67.76) | $4.2 \pm 0.3$ |  | $25.9 \pm 0.3(+)$ | $24.4 \pm 0.5$ |  |
|  | $\mathrm{Ni}^{60}(26.16)$ | $2.5 \pm 0.2$ |  | $1.1 \pm 0.1(+)$ | $1.0 \pm 0.1$ |  |
|  | $\mathrm{Ni}^{61}(1.25)$ | $1.9 \pm 1.0$ |  |  | $1.0 \pm 0.1$ |  |
|  | $\mathrm{Ni}^{62}(3.66)$ | $15 \pm 2$$\cdots \ldots \ldots$.$\ldots \ldots \ldots$. | $2.57 \mathrm{hr}, 2.6 \pm 0.4$ $56 \mathrm{hr}, 6 \pm 3$ | $9.5 \pm 0.4(-)$ | $9 \pm 1$ |  |
|  | $\mathrm{Ni}^{64}(1.16)$ |  |  | $0.5 \pm 0.4(-)$ | $0 \pm 1$ |  |
|  | $\mathrm{Ni}^{65}(2.57 \mathrm{hr})$ |  |  |  |  |  |
| ${ }_{29} \mathrm{Cu} . \ldots$. |  | $3.69 \pm 0.12$ |  | $7.0 \pm 0.4(+)$ | $8.0 \pm 0.1$ | $7.2 \pm 0.7$ |
|  | $\mathrm{Cu}^{65}(30.9)$ | $\begin{aligned} & 4.3 \pm 0.3 \\ & 2.11 \pm 0.17 \end{aligned}$ | $12.8 \mathrm{hr}, 3.9 \pm 0.8$ <br> $5.14 \mathrm{~min}, 1.8 \pm 0.4$ |  |  |  |
| ${ }_{30} \mathrm{Zn} \ldots \ldots$. |  | $\begin{aligned} & 2.11 \pm 0.17 \\ & 1.06 \pm 0.05 \end{aligned}$ |  | $4.3 \pm 0.3(+)$ | $4.1 \pm 0.2$ | $3.6 \pm 0.4$ |
|  | $\mathrm{Zn}^{64}(48.89)$ |  | $\begin{aligned} & 250 \text { days, } 0.5 \pm 0.1 \\ & 12.8 \mathrm{hr}, \mathrm{Cu}^{64}<10^{-5} \end{aligned}$ |  |  |  |
|  | $\mathrm{Zn}^{66}(27.81)$ | $n \alpha<0.02 \mathrm{mbarn}$ |  |  |  |  |



Table 8h-5. Thermal Cross Sections (Elements 1 to 83) (Continued)





| Element | Isotope (\%) | Reaction cross sections ( $2,200 \mathrm{~m} / \mathrm{sec}$ ) |  | Scattering cross sections |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\sigma_{\text {abs }}$ | $\sigma_{\text {sat }}$ | $\sigma_{\text {coh }}$ (sign) | $\sigma_{j a}\left(\frac{A+1}{A}\right)^{2}$ | $\bar{\sigma}_{s}$ |
|  | $\begin{aligned} & \mathrm{La}^{139}(99.911) \\ & \mathrm{La}^{140}(40 \mathrm{hr}) \end{aligned}$ |  | $\begin{aligned} & 40 \mathrm{hr}, 8.4 \pm 1.7 \\ & 3.7 \mathrm{hr}, 3.1 \pm 1.0 \end{aligned}$ |  |  |  |
|  |  | $0.70 \pm 0.08$ |  | $2.7 \pm 0.2(+)$ | $2.8 \pm 0.5$ | $9 \pm 6$ |
|  | $\mathrm{Ce}^{136}(0.19)$ | $25 \pm 25$ |  |  |  |  |
|  | $\mathrm{Ce}^{138}(0.26)$ | 9 ${ }^{9} \mathbf{t} 6$ | 140 days, $<0.4$ |  |  |  |
|  | $\mathrm{Ce}^{140}(88.48)$ | $0.63 \pm 0.06$ | 32 days, $0.31 \pm 0.10$ | $2.8 \pm 0.11(+)$ | $2.8 \pm 0.5$ |  |
|  | $\mathrm{Ce}^{142}(11.07)$ | $1.8 \pm 0.3$ | $34 \mathrm{hr}, 1.0 \pm 0.2$ | $2.6 \pm 0.2(+)$ | $2.6 \pm 0.5$ |  |
|  | $\operatorname{Pr}^{141}(100)$ | $11.2 \pm 0.6$ | $19.2 \mathrm{hr}, 10 \pm 3$ | $2.4 \pm 0.2(+)$ | $4.0 \pm 1.0$ |  |
| $\begin{aligned} & { }_{59} \operatorname{Pr} \ldots . . \\ & { }_{\text {s0 }} \mathrm{Nd} \ldots . . \end{aligned}$ |  | $46 \pm 2$ |  | $6.5 \pm 0.4(+)$ | $16 \pm 3$ |  |
|  | $\mathrm{Nd}^{142}(27.13)$ | $18 \pm 2$ |  | $7.5 \pm 0.6$ ( + ) |  |  |
|  | $\mathrm{Nd}^{143}(12.20)$ | $280 \pm 20$ |  |  |  |  |
|  | $\mathrm{Nd}^{144}(23.87)$ | $4.5 \pm 0.5$ |  | $1.0 \pm 0.2(+)$ |  |  |
|  | $\mathrm{Nd}^{145}(8.30)$ | $52 \pm 4$ |  |  |  |  |
|  | Nd ${ }^{146}$ (17.18) | $9.2 \pm 0.8$ | 11.3 days, $1.8 \pm 0.6$ | $9.5 \pm 0.4(+)$ |  |  |
|  | $\mathrm{Nd}^{148}$ (5.72) | $3.2 \pm 1.0$ | $1.8 \mathrm{hr}, 3.7 \pm 1.2$ |  |  |  |
|  | $\mathrm{Nd}^{150}(5.60)$ | $2.8 \pm 1.5$ |  |  |  |  |
| $\begin{aligned} & { }_{61} \mathrm{Pm} \ldots . . \\ & { }_{{ }_{22} \mathrm{Sm} \ldots} \ldots \end{aligned}$ | $\operatorname{Pm}^{147}$ (2.5 years) |  | 5.3 days, $60 \pm 20$ |  |  |  |
|  |  | $\begin{aligned} & 5,500 \pm 200(\text { not } \\ & 1 / v, \times 1.5) \end{aligned}$ |  |  |  |  |
|  | $\mathrm{Sm}^{144}(3.16)$ |  | 400 days, <2 |  |  |  |
|  | $\mathrm{Sm}^{147}$ (15.07) |  |  |  |  |  |
|  | $\mathrm{Sm}^{148}(11.27)$ |  |  |  |  |  |
|  | $\mathrm{Sm}^{149}(13.84)$ | 50,000 $\pm 20,000^{*}$ |  |  |  |  |
|  | Sm ${ }^{150}(7.47)$ |  |  |  |  |  |


| +1 |
| ---: |
| +1 |
| $\infty$ |


| $\begin{aligned} & \text { Iき } \\ & =\text { I } \\ & +1+1 \\ & \infty \infty \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |


|  | $\begin{aligned} & \mathrm{Sm}^{151}(73 \text { years }) \\ & \mathrm{Sm}^{152}(26.63) \\ & \mathrm{Sm}^{164}(22.53) \end{aligned}$ | 7,000 $\pm 2,000^{*}$ |
| :---: | :---: | :---: |
| ${ }_{63} \mathrm{Eu}$. |  | $\begin{aligned} & 4,600 \pm 400(\text { not } \\ & 1 / v, \times 0.95) \end{aligned}$ |
|  | Eu ${ }^{151}(47.77)$ | $9,000 \pm 3,000^{*}$ |
|  | $\mathrm{Eu}^{152}$ (13 years) | $5,500 \pm 1,500^{*}$ |
|  | $\mathrm{Eu}^{153}$ (52.23) | $420 \pm 100^{*}$ |
|  | Eu ${ }^{154}$ (16 years) | $1,500 \pm 400 *$ |
|  | Eu ${ }^{155}$ (1.7 years) | $14,000 \pm 4,000 *$ |
| 64Gd. |  | $\begin{aligned} & 46,000 \pm 2,000 \\ & (\text { not } 1 / v, \times 0.85) \end{aligned}$ |
|  | $\operatorname{Gd}^{152}(0.20)$ |  |
|  | $\mathrm{Gd}^{154}(2.15)$ |  |
|  | $\mathrm{Gd}^{155}(14.73)$ | 70,000 $\pm 20,000^{*}$ |
|  | $\mathrm{Gd}^{156}(20.47)$ |  |
|  | $\mathrm{Gd}^{157}(15.68)$ | $160,000 \pm 60,000^{*}$ |
|  | $\mathrm{Gd}^{158}(24.87)$ |  |
|  | $\mathrm{Gd}^{160}(21.90)$ |  |
| ${ }_{65} \mathrm{~Tb}$ <br> ${ }_{66} \mathrm{Dy}$ | $\mathrm{Tb}^{159}$ (100) | $44 \pm 4$ |
|  | Dy ${ }^{156}(0.052)$ | 1,100 $\pm 150$ |
|  | Dy ${ }^{158}(0.090)$ |  |
|  | Dy ${ }^{160}$ (2.298) |  |
|  | Dy ${ }^{161}(18.88)$ |  |
|  | Dy ${ }^{162}$ (25.53) |  |
|  | Dy ${ }^{163}$ (24.97) |  |
|  | Dy ${ }^{164}(28.18)$ |  |
|  | Dy ${ }^{165}$ (139 min) |  |


| Element | Isotope (\%) | Reaction cross sections $(2,200 \mathrm{~m} / \mathrm{sec})$ |  | Scattering cross sections |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\sigma_{\text {abs }}$ | $\cdots \sigma_{\text {act }}$ | $\sigma_{\text {coh }}(\mathrm{sign})$ | $\sigma_{f a}\left(\frac{A+1}{A}\right)^{2}$ | $\bar{\sigma}_{s}$ |
| $\begin{gathered} { }_{67} \mathrm{Ho} \ldots . . \\ { }_{68} \mathrm{Er} \ldots \ldots . \end{gathered}$ | $\mathrm{Ho}^{165}$ (100) | $\begin{aligned} & 64 \pm 3 \\ & 166 \pm 16 \end{aligned}$ | $27.3 \mathrm{hr}, 60 \pm 12$ | $7.8 \pm 0.4(+)$ | .......... | $15 \pm 4$ |
| $\begin{aligned} & { }_{69} \mathrm{Tm} \ldots . \\ & { }_{70} \mathrm{Yb} \ldots . \end{aligned}$ | $\operatorname{Er}^{162}(0.136)$ |  |  |  |  |  |
|  | $\operatorname{Er}^{164}(1.56)$ |  |  |  |  |  |
|  | $\operatorname{Er}^{166}(33.4)$ |  |  |  |  |  |
|  | $\operatorname{Er}^{167}(22.9)$ |  |  |  |  |  |
|  | $\mathrm{Er}^{168}(27.1)$ |  | 9.4 days, $2.0 \pm 0.4$ |  |  |  |
|  | Er ${ }^{170}(14.9)$ |  | $(2.5 \mathrm{sec}+7.5 \mathrm{hr}) 9 \pm 2$ |  |  |  |
|  | $\mathrm{Tm}^{169}(100)$ | $118 \pm 6$ | 129 days, $130 \pm 30$ |  |  |  |
|  |  | $36 \pm 4$ |  |  |  | $12 \pm 5$ |
|  | $\mathrm{Yb}^{168}(0.140)$ |  | 32 days, $11,000 \pm 3,000^{*}$ |  |  |  |
| ${ }_{71} \mathrm{Lu} . . .$. | $\mathrm{Yb}^{170}(3.03)$ |  |  |  |  |  |
|  | $\mathrm{Yb}^{171}(14.31)$ |  |  |  |  |  |
|  | $\mathrm{Yb}^{172}(21.82)$ |  |  |  |  |  |
|  | $\mathrm{Yb}^{173}(16.13)$ |  |  |  |  |  |
|  | $\mathrm{Yb}^{174}(31.84)$ |  | $101 \mathrm{hr}, 60 \pm 40$ |  |  |  |
|  | $\mathrm{Yb}^{176}(12.73)$ |  | $1.8 \mathrm{hr}, 5.5 \pm 1.0$ |  |  |  |
|  |  | $108 \pm 5$ |  |  |  |  |
|  | $\mathrm{Lu}^{175}$ (97.40) |  | $3.7 \mathrm{hr}, 35 \pm 15$ |  |  |  |
|  | $\mathrm{Lu}^{176}$ (2.60) |  | 6.8 days, $4,000 \pm 800$ |  |  |  |
| ${ }_{72} \mathrm{Hf} . . .$. |  | $105 \pm 5$ |  | .............. | ........... | $8 \pm 2$ |
|  | $\mathrm{Hf}^{174}(0.18)$ | $1,500 \pm 1,000$ |  |  |  |  |
|  | $\mathrm{Hf}^{176}$ (5.15) | $15 \pm 15$ |  |  |  |  |
|  | $\mathrm{Hf}^{177}$ (18.39) | $380 \pm 30$ |  |  |  |  |
|  | $\mathrm{Hf}^{178}(27.08)$ | $75 \pm 10$ |  |  |  |  |
|  | $\mathrm{Hf}^{\text {Hf }}{ }^{179}(13.78)$ | $65 \pm 15$ $13 \pm 5$ | 46 days, $10 \pm 3$ |  |  |  |

 $16.4 \mathrm{~min}, 30 \pm 10 \mathrm{mbarn}$ 111 days, $19 \pm 7$ ( $\sim 95 \%$ $16.4 \mathrm{~min} \rightarrow 111$ days) 5.5 days, $30,000 \pm 15,000$ 140 days, $10 \pm 10$ 73 days, $2.1 \pm 0.6$
$24 \mathrm{hr}, 34 \pm 7$ $24 \mathrm{hr}, 34 \pm 7$
65 days, $90 \pm$ 65 days, $90 \pm 40$ $92 \mathrm{hr}, 100 \pm 20$
$18 \mathrm{hr}, 75 \pm 15$ .................................. 00 .


| ra'ia... $^{\text {a }}$ | Ta ${ }^{181}$ (100) | $21.3 \pm 1.0$ |
| :---: | :---: | :---: |
| ${ }_{4} \mathrm{~W} . \ldots$. | $\mathrm{Ta}^{182}$ (111 days) |  |
|  |  | $19.2 \pm 1.0$ |
|  | $\mathrm{W}^{180}(0.14)$ | $60 \pm 60$ |
|  | $\mathrm{W}^{182}(26.4)$ | $19 \pm 2$ |
|  | $\mathrm{W}^{183}(14.4)$ | $11 \pm 1$ |
|  | $\mathrm{W}^{184}(30.6)$ | $2.0 \pm 0.3$ |
|  | $\mathrm{W}^{186}$ (28.4) | $34 \pm 3$ |
|  | $\mathrm{W}^{187}(24 \mathrm{hr})$ |  |
| ${ }_{75} \mathrm{Re} \ldots$. |  | $84 \pm 4$ |
|  | $\mathrm{Re}^{185}(37.07)$ | $100 \pm 8$ |
|  | $\mathrm{Re}^{187}$ (62.93) | $63 \pm 5$ |
| ${ }_{76} \mathrm{Os} \ldots \ldots$ |  | $14.7 \pm 0.7$ |
|  | $\mathrm{Os}^{184}(0.018)$ |  |
|  | $\mathrm{Os}^{186}(1.59)$ |  |
|  | $\mathrm{Os}^{187}(1.64)$ |  |
|  | $\mathrm{Os}^{188}(13.3)$ |  |
|  | $\mathrm{Os}^{189}(16.1)$ |  |
|  | $\mathrm{Os}^{190}(26.4)$ |  |
|  | Os ${ }^{192}(41.0)$ |  |
|  | $\mathrm{Os}^{193}(31 \mathrm{hr})$ |  |
| ${ }_{77} \mathrm{Ir}$. |  | $430 \pm 2$ ) |
|  | $\mathrm{Ir}^{191}(38.5)$ |  |
| ${ }_{78} \mathrm{Pt} . . .$. | $\mathrm{Ir}^{193}$ (61.5) |  |
|  |  | $8.1 \pm 0.4$ |
|  | $\mathrm{Pt}^{190}(0.012)$ |  |
|  | $\mathrm{Pt}^{192}(0.78)$ | ........... |

[^375]Table 8h-5. Thermal Cross Sections (Elements 1 to 83) (Continued)


* Pile neutrons.

The various types of thermal cross sections are listed in Table $8 \mathrm{~h}-5$ for all but the heaviest elements, which (to the extent available) are in Table 8h-6. "Reaction cross sections" apply to all cross sections except scattering, and because the former are strongly velocity-dependent, they are quoted for $2,200 \mathrm{~m} / \mathrm{sec}$ neutron velocity.


Fig. 8h-5. Attenuation of neutrons. This figure gives the attenuation of neutrons in concrete and water at energies 1,6 , and 100 Mev . The $6-\mathrm{Mev}$ curves can be taken to apply to fission neutrons because this is their effective energy for shielding purposes even though much higher than the average energy of fission neutrons. The concrete is of density 2.3 composed of 4 parts limestone gravel, 2 parts sand, and 1 part Portland cement, and is in the cured state. Its composition is approximately 70 per cent oxygen, 15 per cent silicon, and 15 per cent calcium. The intensity unit refers to the decrease in relative dose rate for an incident beam of parallel neutrons, although the intensity unit can be considered as roughly equivalent to neutron flux as well. The equivalence of dose rate received from neutrons and neutron flux is a result of the fact that the dose rate received from fast neutrons does not vary rapidly with neutron energy in the region of a few Mev. The tolerance dose rate is a flux of about 38 neutrons per $\mathrm{cm}^{2}$ per sec for a $40-\mathrm{hr}$ week at 2.5 Mev and 26 at 10 Mev , for example. The curves take into account the build-up of neutrons of lower energy as the fast neutrons are moderated.

For those reaction cross sections differing greatly from $1 / v$ (marked "not $1 / v$ ") a factor is given that, multiplied by the quoted cross section, gives the value appropriate for a Maxwell distribution-for all others the factor is unity. The "bound-atom" cross section listed after $\sigma_{\text {coh }}$ is obtained from the measured free-atom cross section by use of the reduced mass factor; the difference between it and $\sigma_{\text {coh }}$ gives $\sigma_{\text {inc. }}$. The averagescattering cross section (averaged over the Maxwell distribution) is listed as $\bar{\sigma}_{s}$.
Table 8h-6. Thermal Cross Sections (Elements 86 to 99)

0
0
+1
0
0
11
10

$00^{\circ}$
$+1+1$
*
$\bigcirc$ ~ N


[^376]
# 8i. Particle Accelerators 

E. H. KRAUSE<br>Aeronutronic Systems, Inc.

## PARTICLE ACCELERATORS-DESCRIPTIONS

8i-1. Electrostatic Accelerators. The acceleration of protons with high voltage was first accomplished by J. D. Cockcroft and E. T. S. Walton in England in 1929. Using a voltage-multiplier device, they obtained protons of energy up to 0.38 Mev , and two years later with about half this energy they accomplished the first disintegration of the lithium nucleus. At about the same time, R. J. Van de Graaff developed his accelerator, the first apparatus constructed attaining 1.5 million volts.
Today, there are approximately forty small accelerators using voltage multipliers and over one hundred Van de Graaff machines in physics laboratories throughout the world. The Cockcroft-Walton types are mostly of about 1 Mev energy; the most numerous Van de Graaff accelerators are commercially manufactured machines of 2 to 3 Mev energy. There are about ten Van de Graaff machines larger than 5 Mev in the United States and Europe, the $8.5-\mathrm{Mev}$ machine at MIT being the largest.

Regardless of the source of high voltage, all these machines accelerate particles through a long tube by the potential difference between a high-voltage terminal at one end and a grounded shield at the other. The high potential is either plus or minus depending on the type of particle to be accelerated. A source of ions, or electrons, injects the particles by some focusing method at the high-potential end and they are accelerated to the target by the grounded electrode at the opposite end. They gain energy from the electrostatic field as a fall from terminal potential to zero potential.

The tube, usually made of glass, porcelain, or similar material and evacuated, must be long enough to eliminate spark discharge between the ends. Most accelerator tubes contain alternate conducting sections (metal plates with holes in the center) so that the potential gradient can be distributed along the length by external resistors.

The simplest, but a limited, method of obtaining high potential is a standard transformer and diode-rectifier combination. Higher voltages can be obtained by the voltage-multiplier arrangement of Cockcroft and Walton (C-W) and by the electrostatic sphere and belt method of Van de Graaff (VdG). The Cockcroft-Walton voltage multiplier utilizes a bank of condensers and vacuum-tube or selenium rectifiers connected as a series of voltage doublers. By using an a-c source of 400 cps or higher, very compact high-voltage supplies can be built. This high-voltage system has the advantage of simplicity, with no moving parts. The transformer and C-W types of supplies are usually operated at atmosphere pressure in the open laboratory. Cock-croft-Walton type accelerators can supply fairly large ion currents at a constant energy and are very useful in work requiring particles of no more than 1 Mev energy.

In the Van de Graaff electrostatic machine (ref. 14), the terminal is charged by means of a fast-moving belt which, after having charges sprayed onto it at the ground end from a d-c source of about 20,000 volts, travels into the high-potential terminal where the charge is drawn off and transferred to the surface of the "sphere." Compared with about 1 million volts obtained from the voltage-multiplier arrangements, the Van de Graaff method can produce potentials of several million volts. The higher voltages are obtained by pressurizing the high-voltage system with an inert gas, breakdown potential being proportional to the pressure up to about 6 atm . Adding small percentages of carbon dioxide and/or freon increases breakdown potential, although gases like freon can cause severe corrosion problems resulting from the breakdown of the freon during discharge.

The continuous, high-intensity, monoenergetic beam from electrostatic accelerators is advantageous for many types of nuclear research as well as therapeutic and industrial applications. Also, the output energy can usually be adjusted up to the maximum of the machine. However, accelerators which produce their full energy by one single drop in potential are limited to a few Mev. Higher energies must be obtained from machines which impart repeated accelerations to the particle.

8i-2. Cyclotron. In this section the standard cyclotron and the synchro (or FM) cyclotron are discussed separately. In Table 8i-2 all types of cyclotrons are listed by location.

Standard Cyclotron. E. O. Lawrence and N. E. Edlefson reported the cyclotron principle in 1930, and in 1931 Lawrence, with M. S. Livingston, made the first experimental machine. This original cyclotron accelerated protons to an energy of 0.08 Mev. Most of the standard cyclotrons operational in 1954 (nearly 40 throughout the world) attain energies of the order of 10 Mev for protons.

Practically all cyclotrons are positive-ion accelerators. The ions are introduced at the center of a gap between two flat semicircular boxes or "dees." These evacuated chambers are positioned so that the entire circular area is between the poles of a constant-field magnet. The chambers are connected across the output of an r-f oscillator. Acceleration starts when the r-f potential attracts an ion across the gap into one of the chambers. Within the field-free chamber the principal force on the ion is the perpendicular magnetic field; so it drifts in a half-circle path. At the instant it emerges again into the gap the r-f field reverses, the ion is accelerated into the opposite "dee," and again it travels a semicircular path of a larger radius. The ions thus move in an increasing spiral gaining energy (velocity) at each turn until they reach a maximum at the outer periphery. Targets can be placed inside the "dees," or magnetic or electrostatic ejection devices can be used to bring the ion stream out of the chamber.
The "standard" cyclotron is based on the Larmor principle that the time for the ion to traverse each semicircular path is constant. This fact, which permits using a constant-frequency r-f oscillator, results from the basic relationship between the magnetic and centrifugal forces acting on a charged particle in a magnetic field:

$$
\begin{equation*}
H e v=\frac{m v^{2}}{r} \tag{8i-1}
\end{equation*}
$$

where $H$ is the field strength, $e$ (in emu), $v$, and $m$ are the charge, velocity, and mass of the particle, and $r$ is the radius of the circular path in which it moves.

For any one path the radius is

$$
\begin{equation*}
r=\frac{m v}{H e} \tag{8i-2}
\end{equation*}
$$

and the time to traverse it is

$$
\begin{equation*}
T=\frac{\pi r}{v} \tag{8i-3}
\end{equation*}
$$

Substituting from Eq. (8i-2) into Eq. (8i-3),

$$
\begin{equation*}
T=\frac{\pi m}{H e} \tag{8i-4}
\end{equation*}
$$

Since $H, e$, and $m$ are constant, the orbit time $T$ and the angular velocity are constant, provided $v$ is small compared with the speed of light.

It is apparent from Eq. (8i-4) that the frequency of the r-f oscillator must be matched to the field and to the mass/charge ratio of the particle. Thus a cyclotron designed for protons requires an oscillator frequency of twice that for deuterons or alpha particles of the same energy. The design choice determines the energies obtainable from the basic particles. The kinetic energy on ejection is

$$
\begin{align*}
E & =\frac{1}{2} m\left(\frac{H e R}{m}\right)^{2}  \tag{8i-5}\\
& =\frac{H^{2} R^{2}}{2} \frac{e^{2}}{m}
\end{align*}
$$

where $R$ is the radius of the outer orbit. If $H$ and $R$ are kept constant, $E$ is proportional to $e^{2} / m$ and protons and alpha particles acquire the same energy and deuterons one-half that amount. If oscillator frequency is kept constant, $E$ is proportional to $m$ and independent of $e$, so that deuterons and alpha particles acquire two and four times, respectively, the energy of protons. This can be shown from Eqs. (8i-4) and (8i-5):
Angular frequency is

$$
\omega=\frac{H e}{2 \pi m}
$$

Substituting in Eq. (8i-5),

$$
E=2 \pi^{2} R^{2} \omega^{2} m
$$

If $\omega$ is constant, maximum energy is proportional to $m$ and independent of $e$.
The positive-particle output of most standard cyclotrons has two to five times the energy of that from high-voltage accelerators. The copious, practically continuous (pulses are two times oscillator frequency) high-intensity beam can produce large yields of neutrons or induced radioactivities. However, the beam contains a background of mixed radiations and the particles are of a wide range of energies. Magnetic separation methods are used to sort out reasonably homogeneous beams. External beams are only a small fraction of the internal intensity.

As the maximum energy obtained from the cyclotron is proportional to the square of the magnetic field and the square of the radius, a practical limit on all cyclotrons is the cost of the magnet. Another basic limitation results from the fact that the relative mass of an ion increases with velocity, causing a decrease in angular velocity so that it arrives late at the accelerating gap. This relativistic-effect limitation of the standard cyclotron, which occurs at 10 to 20 Mev , is overcome in the synchrocyclotron.

Synchrocyclotron (FM Cyclotron). A means of overcoming the relativistic limitation of the standard cyclotron was suggested independently in 1945 by two physicistsV. Veksler (ref. 24) in Russia and E. M. McMillan (ref. 39) in the United States. They pointed out that allowance for the increasing mass of the revolving particle and the resulting decrease in angular frequency could be made by introducing a steady increase in $H$, so that $m / H$ remained constant, or by steadily decreasing the frequency of the r-f oscillator. This was tested by modifying the $37-\mathrm{in}$. cyclotron and then the $184-\mathrm{in}$. cyclotron, under construction at Berkeley, was redesigned to include modulation of the r-f oscillator. In November, 1946, synchrocyclotron operation was achieved with deuterons and alpha particles, and with protons in 1949.
The five large synchrocyclotrons in the United States (1954) produce proton energies ranging from 240 to 450 Mev . Plans are complete for rebuilding the $184-\mathrm{in}$. Berkeley machine to bring its output to 700 Mev .
In the synchrocyclotron the r-f oscillator is frequency-modulated by a rotating condenser so as to decrease the excitation frequency applied to the dees in synchronism with decreasing orbit frequency of the particle. The design requirement for the matching oscillator frequency to the mass/charge ratio of the particle and to the magnetic field strength was discussed under Standard Cyclotron. Because modulated r-f oscillators suitable for deuterons and alpha particles are incorrect for protons, the Berkeley and Chicago machines have dual-range r-f systems. The synchrocyclotron at Liverpool also has this flexibility.

Variation of frequency to correspond to the increase of mass automatically brings about synchronization of phase as a result of the relativistic effect; i.e., if a particle arrives at the gap late in phase by a few degrees it will receive less energy, there will
be less increase in mass, and the orbit time will be shortened. The particle will then be advanced in phase on the next orbit. Thus the ions oscillate in phase about their equilibrium orbits which are of increasing radius and energy. Because of this phase synchronism, the rate at which the radio frequency is decreased is not critical.
The University of Chicago synchrocyclotron, for proton acceleration, decreases the frequency from 28.6 to 18.0 Mc in $2 \mu \mathrm{sec}$. In this time, the ions are carried from the source at the center to the outer radius of 76 in . where they have an energy of 450 Mev . They have traveled approximately 350 miles. Modulation frequency for FM cyclotrons is usually about 60 cps . The output, therefore, for a single-dee machine (one chamber is a "dummy dee") consists of 60 pulses per second (ref. 19).
Reference to the tables indicates the order of energy being obtained from the combination of a large machine and synchronous operation as compared with the standard cyclotron. The acceleration of particles to these energies has opened up new research fields, particularly in meson production, detection, and mass measurement, and the distribution of high-energy neutron scattering. Like the standard cyclotron, the synchrocyclotron has the characteristic of a copious beam of high energy, but of mixed radiations and energies, so that auxiliary means of sorting and focusing are necessary. Because of the cost limitation imposed by the physical size of the magnet, it is to be expected that future higher-energy positive-ion machines will be synchrotrons or linear accelerators.

8i-3. Betatron. The first machine to produce a usable beam of electrons which were accelerated by a changing magnetic field was designed and built by D. W. Kerst in 1940 (ref. 29). Prior to this, other investigators had pointed out the feasibility of using magnetic induction to accelerate electrons-R. Wideröe in Germany in 1928 and E. T. S. Walton in England in 1929. In 1936, a German patent was issued to M. Steinbeck for an equivalent device claimed to produce $1.8-\mathrm{Mev}$ electrons in a small-intensity beam. The original betatron of 1940 produced X rays of 2.3 Mev . Today, the majority of about 20 medium-sized betatrons are in the $25-\mathrm{Mev}$ region; there are two laboratory machines of 100 Mev and one of 340 Mev .
As compared with the cyclotron, the betatron accelerates the particle in a continuous circumferential electric field instead of a periodic field across a gap. The machine can be compared with a transformer-the electrons in an evacuated doughnut chamber constituting a secondary winding about the pole of a large magnet. An electron injected into the chamber with a preliminary high-voltage acceleration will move in a circular path as a result of the perpendicular magnetic field. The basic equation of centrifugal and electric forces applies:

$$
H e v=\frac{m v^{2}}{r}
$$

or, setting the electron's momentum, $m v=p$,

$$
\begin{equation*}
p=\frac{e H r}{c} \tag{8i-6}
\end{equation*}
$$

If now the magnetic flux enclosed by the orbit $\phi$ is increased, a tangential electric field will be produced at the orbit $E_{\phi}=\phi / 2 \pi r c$, which will accelerate the electron. If the magnetic field is so arranged that $p$ and $H$ increase proportionately, the radius of the orbit will remain unchanged; the electron will continue to move in the equilibrium orbit ( $r=r_{0}$ ), but with momentum constantly increasing as $H$ is increased (ref. 30).

The proper rate of increase of the field to maintain a constant-radius orbit is found as follows:
The rate of increase of momentum of the electron is

$$
\dot{p}=\frac{e \dot{\phi}}{2 \pi r_{0} c}
$$

which gives

$$
\begin{gather*}
p=\frac{e\left(\phi-\phi_{1}\right)}{2 \pi r_{0} c} \\
H=\frac{\phi-\phi_{1}}{2 \pi r_{0}^{2}} \tag{8i-7}
\end{gather*}
$$

Thus the average magnetic field enclosed by the orbit must be twice the field at the orbit in order to keep the radius constant.

Because this 2:1 relationship must be maintained, if for example, a change of 5,000 gauss is required to produce the desired increase of electron momentum in the orbit, a change of 10,000 gauss must take place in the central flux. This requires a large magnet, designed for the strong central field and the weaker field at the orbit. The magnet must also shape the field (rate of change with increasing radius) so as to accomplish radial and vertical focusing of the electrons into the desired orbit (refs. 6,30 ).

Acceleration takes place in the first quarter cycle of the excitation to the magnet. At the peak of the quarter cycle of magnetic excitation, an auxiliary winding so disturbs the field that the electron stream is deviated from the orbit to the inner wall of the tube where it strikes a target for the production of X rays, or emerges as a beam of electrons.

In the $100-\mathrm{Mev}$ betatron an electron makes $\mathbf{2 5 0 ; 0 0 0}$ turns between injection and removal, traveling 900 miles. The particles gain 400 ev each turn. At ejection, their velocity is 99.99 per cent of the speed of light and their mass is 200 times rest mass.

The betatron is limited, as are all circular electron machines, to a maximum energy set by the radiation loss of the electron. The particle eventually loses what it gains during each turn. Radiation loss can be reduced by using a larger orbit and by imparting greater energy at each turn to reduce the number of orbits. This is done in the larger machines, but it appears that 500 Mev is about the limit that can be obtained with this principle.

8i-4. Electron Synchrotron. In 1946, F. K. Goward and D. E. Barnes in England converted a $4-\mathrm{Mev}$ betatron to $8-\mathrm{Mev}$ output by applying the principle of phase stability proposed by McMillan and by Veksler. In 1947, the betatron group at General Electric Company applied the synchrotron principle to a betatron and obtained energies of 70 Mev (ref. 35). In the 8 years since the $330-\mathrm{Mev}$ synchrotron at Berkeley became operational in December, 1948, about 20 electron synchrotrons have been constructed of which 8 are of $300-\mathrm{Mev}$ energy or higher.
Electron synchrotrons combine the induction action of the betatron with the principle of synchronously imparting periodic increments of energy from an electric field. In contrast to the synchrocyclotron, synchronism is achieved by increasing the magnetic field rather than decreasing the oscillator frequency so the orbit radius is constant. The accelerating chamber is either a circular or a racetrack path. The magnet is distributed along its circumference, and because the radius is constant, the magnet's radial width car be kept small. A resonant cavity containing a gap is fitted into one segment of the vacuum chamber and connected to a constant-frequency r-f oscillator.

Operation of most electron synchrotrons starts out like that of the betatron. Electrons are injected into the ring and an increasing field orbits them in a circle. At about $2-\mathrm{Mev}$ energy betatron action stops because of saturation of the limited-sized core of small flux bars. At this point, r-f energy is applied to the cavity and the electrons receive a thrust at each revolution. The velocity is already 97.9 per cent of the velocity of light so that it is essentially constant. On each orbit, the electrons gain energy from the r-f field, therefore, by an increase in their mass. At 2 Mev the mass is 5 times the rest mass; at 330 Mev it is 625 times the rest mass.

One typical synchrotron has a field of 80 gauss when synchrotron action begins, increasing to 10,000 gauss, a factor of 125 . An oscillator of 47 Mc and 3,000 volts
maximum connected to one side of the gap imparts $2,000 \mathrm{ev}$ to the particle each time it passes the gap in phase.

The synchrotron output, like that of the betatron and synchrocyclotron, is always in pulses at the frequency of the magnetic excitation. The electron synchrotron, like the betatron, is subject to the radiation loss of the revolving particle. However, because of the principle of phase stability the loss can be compensated to a higherenergy level. This compensation, together with the larger orbits obtainable with the distributed-type magnet, indicates that the practical limit is between 1 and 2 Bev . The Cornell and California Institute of Technology machines are designed for such an energy. There is considerable variation in design features among electron synchrotrons: As examples-at least one machine (at General Electric) is completely "ironless"; at Michigan the betatron phase of operation is eliminated by using a variable plus a fixed-frequency r-f system; and at Berkeley a linear-electron-accelerator injector will eventually replace the need for betatron starting.
8i-5. Proton Synchrotron. The proton synchrotron, like the synchrocyclotron and the electron synchrotron, is based on the synchronous principle described by McMillan and Veksler in 1945. The idea of a proton synchrotron was advanced by Oliphant as early as 1943 . The first particles of $1,000-\mathrm{Mev}(1-\mathrm{Bev})$ energy were obtained from the proton synchrotron ("Cosmotron") of the Brookhaven Laboratory in May, 1952. In July, 1953, the accelerator at Birmingham, England, was also in operation at this energy. In January, 1954, the Cosmotron output reached 2.9 Mev , and shortly after this the larger "Bevatron" was in operation at Berkeley. Protons of 6 Bev were obtained from the Bevatron in April, 1954. These three machines are the only operational proton synchrotrons. Three others, when completed, will have higher-energy outputs. The Australian National University at Canberra is building -a synchrotron expected to exceed 10 Bev , and the European Council for Nuclear Research and the Brookhaven National Laboratories are each planning similar machines, to be completed about 1960, which should attain 30 Bev or higher.

The basic principle of the proton synchrotron is similar to the electron synchrotron in that an increasing magnetic field perpendicular to the doughnut vacuum chamber induces the particles to travel in a circular orbit and an accelerating cavity imparts increments of energy to the particle each trip around. However, protons do not approach the constant velocity approximating that of the velocity of light until they have attained an energy of 4 Bev as compared with 2 Mev for electrons. Therefore, the r-f energy applied to the cavity must increase in frequency as the proton velocity increases in order to maintain phase stability. The rate of increase of frequency and field must be accurately keyed so as to maintain a constant-radius circular orbit.

Injectors for proton synchrotrons, operational and projected, include electrostatic, linear, and cyclotron accelerators of energies from 0.5 to 50 Mev . High injection energy facilitates defining the beam, amplitudes of radial and vertical oscillation are reduced, and the frequency range required of the r-f oscillator is less.

In the cycle of operation, field strength and oscillator frequency simultaneously increase for about 1 sec , after which several seconds are required to reestablish the magnetic field. The output is therefore a series of pulses at 5 - to 6 -sec intervals. In the Cosmotron, for example, when the field reaches 300 gauss, an $80-$ to $100-\mu \mathrm{sec}$ pulse of $3.6-\mathrm{Mev}$ protons is injected into the chamber from a Van de Graaff machine, and after a delay of $150 \mu \mathrm{sec}$, the radio frequency is applied. Frequency rises from an initial value of 300 kc to a final of 4.18 Mc while the field is increasing to 14,000 gauss. The protons make about 3 million revolutions, acquiring 800 ev each turn, and reach the maximum of 2.9 Bev in 1 sec . Pulse frequency is 12 per minute, each pulse lasting for about 1 msec and containing $10^{10}$ to $10^{11}$ protons. The protons can be ejected from the chamber or directed against probe targets.

Recently developed "strong-focusing" methods make it possible to confine the synchrotron beam to a small cross section (ref. 44). The "alternating-gradientsynchrotron (AGS)" design passes the beam through successive magnetic fields of
alternating transverse gradients (i.e., alternate positive and negative $n$ values ${ }^{1}$ in successive sectors). The resulting reduction in size of the required aperture, and hence of the guide magnet, makes it possible to go to higher energies without prohibitive magnet costs. The $30-\mathrm{Bev}$ machines being planned for the Brookhaven National Laboratories and the European Council for Nuclear Research (CERN) will utilize this principle. The distributed magnet (in an underground tunnel) may be as large as 850 ft in diameter, although the aperture will be the order of 1 by 2 in .

The proton synchrotron has the same advantage over the cyclotron that the electron synchrotron has over the betatron-it does not require a solid-core magnet. Its distributed magnet is considerably more practical and economical to construct. In contrast with the electron synchrotron, the proton accelerator is free of the orbitradiation problem since the proton rest mass is nearly 2,000 times that of the electron. At $6,000 \mathrm{Mev}$, the orbit radiation loss would just reach the negligible value the electron loses at 3 Mev .
Thus the proton synchrotron ranks highest of the high-energy accelerators. Today's machines make available protons of ten times the energy obtainable from the largest synchrocyclotron. The AGS accelerators planned for Brookhaven and CERN in 1960 will effect at least another tenfold increase in energy. Such high energies have previously been available only from cosmic rays. The availability of laboratorycontrolled particles in the Bev energy range opens up increasing new fields of nuclear research.

8i-6. Linear Electron Accelerator. Linear electron accelerators originated at Stanford where W. W. Hansen in 1948 obtained energies of 6 Mev with a $10-\mathrm{ft}$ model of his traveling-wave accelerator. The latest Stanford machine was operating at 630 Mev in 1954. In the United States and Great Britain there are about nine other laboratory machines in operation at various energies from 0.5 to 38 Mev . Partly• because of the increasing interest in the therapeutic application, linear electron accelerators are now being made by two commercial companies in England.

The linear electron accelerator devised by Hansen is a wave guide of circular cross section divided into sections of increasing length by disks with holes in the center. When pulsed radio frequency of about $3,000 \mathrm{Mc}$ is introduced into the guide, the wavelength of a given phase is determined by the distance between disks. Wavelength and phase velocity increase along the tube as frequency remains constant. Electrons are injected into the evacuated tube from a gun and receive acceleration from the forward phase of the axial component of the electromagnetic wave. They remain in phase with the traveling wave, increasing in velocity and, as they approach the velocity of light, increasing in mass.
Most electron accelerators are traveling-wave tubes. Both pulsed magnetrons and klystrons are used in various arrangements of power feed. The MK III Stanford tube, consisting of twenty-two 10 -ft sections, is fed by twenty-two separate klystrons driven from a common source. An energy of 630 Mev has been obtained in a beam of $0.5 \mu \mathrm{a}$ average current consisting of $0.3-\mu \mathrm{sec}$ pulses at 60 pps . It is expected that 1 Bev will eventually be obtained from this machine.

Unlike the proton linear accelerator, the energy of the emergent beam is not rigorously built into the machine. Since the electrons approximate the velocity of light for most of the distance, particles slightly out of phase pick up less energy but remain at essentially the same velocity. The energy output can therefore be regulated to a considerable extent by varying the power fed to the accelerator. Conversely, there is the disadvantage that the beam consists of particles of a wider energy range. However, the well-collimated high-intensity output plus elimination of the exit problem present in the betatron and electron synchrotron make this accelerator very useful for nuclear research. It is also receiving increasing use in therapy applications. The linear electron accelerator is of course free of the radiation-loss limitation characteristic of the orbit-type accelerators.
${ }^{1}$ Here $n=-(r / H)(d H / d r)$, in obvious nomenclature.

8i-7. Linear Proton Accelerator. A linear accelerator for heavy positive ions, built by D. H. Sloan and E. O. Lawrence in 1931, was based on a principle suggested by R . Wideröe in Germany in 1929. The availability of high-power very-high-frequency oscillators permitted L. W. Alvarez at Berkeley in 1947 to build a similar accelerator for the lighter, faster-moving proton (ref. 51). The only other linear proton accelerator is at the University of Minnesota. The first section was operating at 10 Mev in February, 1954, and additional sections will bring the output to 68 Mev . In England, a $600-\mathrm{Mev}$ linear proton accelerator is in the planning stage.

The Alvarez design of the proton accelerator utilizes a series of spaced cylinders mounted in a straight line within a larger tube. Alternate tubes are connected to opposite sides of an r-f source. The protons are accelerated across each gap, the lengths of the successive tubes being made so that the particle arrives at a gap when the r-f polarity and phase are correct. A proton acquires additional energy (velocity) each time it is so accelerated by the potential difference across a gap and drifts through successive tubes at a velocity which is constant within any one tube.
As the proton must go from one gap to the next in one period of the r-f field, the frequency and voltage of the standing wave put on the array determine the dimensions of the tubes, the number of tubes determines the final energy, and flexibility of output energy can be obtained only by constructing the array to permit combinations of demountable sections.
The r-f source at Berkeley is actually a series of 28 self-excited oscillators (202.5 Mc ) operating into the one resonant cavity. At Minnesota, the three-sectioned accelerator is excited by three power amplifiers operating from a common crystalcontrolled source. In both the Berkeley and Minnesota machines, r-f energy is pulsed and the output beam (Minnesota) consists of pulses of the order of $200 \mu \mathrm{sec}$ at 50 pps . The protons are injected into the accelerator at 4 Mev by a Van de Graaff machine at Berkeley and at 0.5 Mev by a transformer-rectifier at Minnesota.

The long pulse of monoenergetic well-collimated protons obtainable from a linear accelerator is particularly useful in certain types of nuclear research, such as protonproton scattering and inelastic scattering of protons for measuring energy levels, and for work on short-lived isotopes. Because the output beam of the linear proton accelerator is within a uniform band of energy and because the machine is inherently free from exit difficulties, it is expected that the large accelerator projected for the Atomic Energy Research Establishment at Harwell, England, will permit precise experiments hitherto impossible with synchrotron and cyclotron accelerators.

## References

## Reference Lists

1. Brookhaven National Laboratory: "Report on Particle Accelerators," May, 1948.
2. Cushman, B. E.. Bibliography of Particle Accelerators, July, 1948, to December, 1950, U.S. Atomic Energy Commission Document, UCRL-1238, March, 1951.
3. Thomas, E., et al.: Particle Accelerators-Bibliography and List of High Energy Machines, Brookhaven Natl. Lab. Report, BNL-L-101, July 1, 1948.

## General

4. Chew, G. F., and B. J. Mayer: High Energy Accelerators at University of California Radiation Laboratory, Am. J. Phys. 18, 125 (1950).
5. Glasstone, S.: The Acceleration of Charged Particles, "Source Book on Atomic Energy," chap. 9, pp. 213-244, D. Van Nostrand Company, Inc., Princeton, N.J., 1950.
6. Langmuir, R. V.: Electronuclear Machines, "Modern Physics for the Engineer," Louis Ridenour, ed., chap. 9, pp. 123-196, McGraw-Hill Book Company, Inc., New York, 1954.
7. High Energy Accelerators, Ann. Rev. Nuclear Sci., pp. 157-206, 1952. (Authors and section references for specific accelerators are given below.)

## Electrostatic Accelerator

8. Bergstralh, T. A., et al.: Portable 250-kv Accelerator, Rev. Sci. Instr. 24, 417 (June, 1953).
9. Everhart, E., and P. Lorrain: Cockroft-Walton Voltage Multiplying Circuit, Rev. Sci. Instr. 24, 221-226 (March, 1953).
10. Inglis, D. R., et al.: A Statitron for a Small Nuclear Laboratory, Rev. Sci. Instr. 20, 834-835 (1949).
11. Jennings, B.: Electronics and the Electrostatic Generator, Proc. Inst. Radio Engrs. 38, 1126-1138 (October, 1950).
12. Turner, C. M.: The Berkeley 4-Mev Electrostatic Generator, Phys. Rev. 73, 534 (1948).
13. Van de Graaff, R. J., et al.: 5-Mev Electrostatic Generator, Phys. Rev. 70, 797 (1946).
14. Van de Graaff, R. J., et al.: Electrostatic Generators for the Acceleration of Charged Particles, Repts. Progr. in Phys. 11, 1 (1948).

## Standard Cyclotron

15. Livingston, M. S.: The Cyclotron, J. Appl. Phys. 15, 2, 128 (1944).
16. Livingston, M. S.: Standard Cyclotron, Ann. Rev. Nuclear Sci. 1, 157 (1952).
17. Mann, W. B.: "The Cyclotron," 3d ed., John Wiley \& Sons, Inc., New York, 1950.
18. Schmidt, F. H., et al.: University of Washington $60-\mathrm{inch}$ Cyclotron, Rev. Sci. Instr. 25, 499-510 (May, 1954).

Synchrocyclotron
19. Anderson, H. L., et al.: Synchrocyclotron for 450-Mev Protons, Rev. Sci. Instr. 23, 707-728 (December, 1952).
20. Henrich, L. R., et al.: Operation of the 184-inch Cyclotron, Rev. Sci. Instr. 20, 887-898 (1949).
21. Livingston, M. S.: Synchrocyclotron, Ann. Rev. Nuclear Sci. 1, 163 (1952).
22. Oliphant, M. L.: Cyclosynchrotron, Nature 165, 466 (1950).
23. Riddiford, L.: Air-cored Synchrocyclotron for $400-\mathrm{Mev}$ Protons, Proc. Phys. Soc. (London) 64, 218-274 (March, 1951).
24. Veksler, V.: J. Phys. U.S.S.R. 9, 153 (1945).

## Electron Cyclotron

25. Henderson, C., et al.: Design and Operation of 4-5 Mev Microtron, Proc. Phys. Soc. (London) 66, 654-664 (August, 1953).
26. Henderson, W. J., and P. A. Redhead: The Electron Cyclotron, Nucleonics 5, 60 (1949).
27. Redhead, P. A., et al.: The Electron Cyclotron, Can. J. Research A28, 673-691 (1950).

## Betatron

28. Gregg, E. C.: Flux Forced, Field Biased Betatron, Rev. Sci. Instr. 22, 176-182 (March, 1951).
29. Kerst, D. W.: Acceleration of Electrons by Magnetic Induction, Phys. Rev. 60, 47-53 (1941).
30. Kerst; D. W., and R. Serber: Electron Orbits in the Induction Accelerator, Phys. Rev. 60, 53-58 (1941).
31. Kerst, D. W., et al.: An $80-\mathrm{Mev}$ Model of $300-\mathrm{Mev}$ Betatron, Rev. Sci. Instr. 21, 462-480 (1950).
32. Kerst, D. W., et al.: Operation of a $300-\mathrm{Mev}$ Betatron, Phys. Rev. 78, 297 (1950).
33. Skaggs, L. S., et al.: Development of the Betatron for Electron Therapy, Radiology 50, 167-173 (1948).
Electron Synchrotron (see also Proton Synchrotron and Betatron)
34. Camac, Morton: Characteristics of the Synchrotron Beam, Rev. Sci. Instr. 24, 290-297 (April, 1953).
35. Elder, F. R., et al.: A 70-Mev Synchrotron, J. Appl. Phys. 18, 810 (1947).
36. Fry, D. W., et al.: Design and Operation of a 30 Mev Synchrotron, Proc. Inst. Elec. Engrs. 97, 305-319 (1950).
37. Goward, F. K., et al.: Design of Electron Synchrotrons, Proc. Inst. Elec. Engrs. 97, 320-334 (1950).
38. Livingston, M. S.: "Advances in Electronics," vol. 1, chap. 6, Academic Press, Inc., New York, 1948.
39. McMillan, E. M.: The Synchrotron-A Proposed High-energy Particle Accelerator, Phys. Rev. 68, 143 (1945).
40. Thomas, J. E., et al.: Synchrotrons, Ann. Rev. Nuclear Sci. 1, 175-198 (1952).

## Proton Synchrotron

41. Blewett, M. H., et al.: The Cosmotron-A Review, Rev. Sci. Instr. 24, 723-870 (September, 1953).
42. Blumenthal, I. S.: Operating Principles of Synchrotron Accelerators, Am. J. Phys. 21, 164-170 (March, 1953).
43. Brobeck, W. M.: Design Study for a 10-Bev Magnetic Accelerator, Rev. Sci. Instr. 19, 545-551 (1948).
44. Courant, E. D., M. S. Livingston, and Hartland Snyder: The Strong Focusing Synchrotron . . , Phys. Rev. 88, 1190 (December, 1952).
45. Hibbard, L. U.: The Birmingham Proton Synchrotron, Phys. Rev. 73, 1258 (1948).
46. Livingston, M. S., et al.: Design Study for a 3-Bev Proton Accelerator, Rev. Sci. Instr. 21, 7-22 (1950).
47. Livingston, M. S.: Proton Synchrotron, Ann. Rev. Nuclear Sci. 1, 169-174 (1952).
48. Oliphant, M. L., et al.: The Acceleration of Charged Particles to Very High Energies, Proc. Phys. Soc. (London) 59, 666 (1947).
49. White, M. G.: Design of the Brookhaven High Energy Proton Synchrotron, Phys. Rev. 75, 1288 (1949).
50. The Proton Synchrotron at Birmingham University, Engineer 195, 271 (Feb. 20, 1953); 305 (Feb. 27, 1953).

## Linear Accelerators

51. Alvarez, L., et al.: The Berkeley Proton Linear Accelerator, U.S. Atomic Energy Commission Document, AECU-120 (UCRL-236), Nov. 30, 1948.
52. Bareford, C. F., and M. G. Kelliher: $15-\mathrm{Mev}$ Linear Accelerator for Harwell, Philips Tech. Rev. 15, 1-26 (July, 1953).
53. Becker, G. E., and D. A. Caswell: Operation of $6-\mathrm{Mev}$ Linear Electron Accelerator, Rev. Sci. Instr. 22, 402-405 (June, 1951).
54. Demos, P. T., et al.: MIT Linear Electron Accelerator, J. Appl. Phys. 23, 53-65 (January, 1952).
55. Fry, D. W., and W. Walkinshaw: Linear Accelerators, Repts. Progr. in Phys. 12, 102-132 (1949).
56. Fry, D. W.: The Linear Electron Accelerator, DeIngenieur 64 (14), 0.51 (1952); also Philips Tech. Rev. 14, 2 (July, 1952).
57. Mullett, L. B.: Design Study for a $600-\mathrm{Mev}$ Proton Linear Accelerator, Atomic Energy Research Establishment Document G/M 151, April, 1953.
58. Schultz, H. L., and W. G. Wadly: Yale Linear Electron Accelerator, Rev. Sci. Instr. 22, 383-385 (June, 1951).
59. Slater, J. C.: The Design of Linear Accelerators, Revs. Modern Phys. 20, 473 (1948).
60. Slater, J. C.: Linear Accelerators, Ann. Rev. Nuclear Sci. 1, 199-206 (1952).

## LOCATIONS AND PRINCIPAL CHARACTERISTICS OF OPERATIONAL MACHINES THROUGHOUT THE WORLD

The information in the following table was, for the most part, obtained from questionnaires returned to the editor by the operating laboratories. A few entries were obtained from publications and from data supplied by manufacturers. These cases are so indicated in the remarks column.




Table 8i-1. Electrostatic Generators (Continued)


Table 8i-1. Electrostatic Generators (Continued)

PARTICLE ACCELERATORS
8-189
Table 8i-2. Cyclotrons and Synchrocyclotrons


* Cam-shape pole to provide sharp cutoff of field for deflected beam.


Table 8i-2. Cyclotrons and Synchrocyclotrons (Continued)

| Location | Type of machine | Type of particle | Energy, <br> Mev | Magnet |  |  | Beam characteristics, avg beam current (particle), pulse data, meson intensities, etc. | Date of first operation, remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Pole diam, in. | Field, gauss | Weight, tons |  |  |
| Australia: |  |  |  |  |  |  |  |  |
| Australian National University, Canberra, A.C.T. | Cyl | $p$ | 8 | 26 in. | 15,000 | 25 | $1 \mu \mathrm{a}$ | 1954, injector for the 10-Bev synchrotron |
| University of Melbourne, Vic- | Cyl | $p$ | 5-10 |  |  |  |  |  |
| toria |  | ${ }_{\alpha}^{\text {d }}$ | $\begin{aligned} & 4-5 \\ & 8-10 \end{aligned}$ | 40 in . | 12,500 | 45 | $1 \mu \mathrm{a}$ | 1955 |
| Belgium: |  |  |  |  |  |  |  |  |
| University of Louvain, HeverléeLouvain. | Cyl | d | 13 | 94 cm | 18,000 | 68 | $90 \mu \mathrm{a}$ | 1953 |
| Canada: |  |  |  |  |  |  |  |  |
| McGill University, Montreal.... | Sync-cyl |  | 100 | 82 in. | 16,400 | 265 | $1 \mu \mathrm{a}, 200 \mathrm{pps}, 3 \times 10^{10}$ particles/pulse |  |
| University of Western Ontario, London, Ontario | Electron cyl | e | 5 | 35 mm | 1,000 | ......... | $0.5 \mu \mathrm{a}, 500 \mathrm{pps}, 2-\mu \mathrm{sec}$ pulses, $10-\mathrm{cm}$ tunable magnetroǹ | $1947$ |
| Denmark: |  |  |  |  |  |  |  |  |
| Institute for Theoretical Physics, Copenhagen. | Cyl | d | 10 | 90 cm | 18,000 | 40 | $200 \mu \mathrm{a}$ |  |
| France: |  |  |  |  |  |  |  |  |
| Commissariat à l'Énergie Atomique, Box 2, Giff-sur-Yvette | Cyl | $\begin{gathered} n \\ d \\ d, 0 \end{gathered}$ | 140 | 160 cm | 15,000 | 270 | $\ldots$. | 1954 |
| Germany: |  |  |  |  |  |  |  |  |
| Institut für Physik im Max Planck Institut Med. Forschung, Heidelberg | Cyl | $\begin{aligned} & d \\ & p \\ & \boldsymbol{\alpha} \end{aligned}$ | 13 | 101 cm | 17,000 | 80 | $80 \mu \mathrm{a}$ | 1944 |
| Institut für Strahlen und Kernphysik, University of Bonn. | Cyl | d | 30 | . | $\ldots$ | ......... | $\cdots$ | Under construction, 1954 |
| Great Britain: Atomic Energy Research Establishment, Harwell. | Sync-cyl | $p$ | $175$ | 110 in. |  |  |  | Listed in ref. 2 |

PARTICLE ACCELERATORS


$$
8-194
$$

Table 8i-3. Betatrons

| Location | Max electron energy, Mev | Injection energy, kev | Resonant frequency, cps | Vacuum chamber cross-section dimensions | Weight of magnet $(\mathrm{Fe}+\mathrm{Cu})$ | Orbit radius | Beam |  | Date of first operation, remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Electrons/pulse | $r / m i n$ at 1 m inside $\frac{1}{8} \mathrm{in}$. of lead |  |
| In the United States |  |  |  |  |  |  |  |  |  |
| University of California, Los Alamos. . | 24 | 60 | 180 | $1.75 \times 3.5 \mathrm{in}$. | 0.5 | 19 cm | $10^{-1} 10^{9}$ | 200 | March, 1950 |
| Case Institute of Technology......... | 25 | 40 | 180 | $\begin{aligned} & 1.62 \times 2.75 \text { in. } \\ & \text { (outside) } \end{aligned}$ | 3 | 17.25 cm |  | 10 | September, 1949, flux-forced, field-biased type |
| University of Chicago............... | 100 | 60 | 60 | $4 \times 7 \mathrm{in}$. oval | 140 | 33 in . |  | $\sim 2,000$ | April, 1950 (research operation) |
| General Electric Co., Schenectady .... | 100 | 70 | 60 | $5 \times 9 \mathrm{in}$. | 125 | 33 in . |  | $\sim 4,000$ | August, 1943 |
|  | 50 | 50 | 180 | $1.75 \times 3.5 \mathrm{in}$. | 9 | 11.5 in. |  | $\sim 1,000$ | May, 1947 |
|  | 11.3 | 50 | 310 | $1.75 \times 3.0 \mathrm{in}$. |  | 5.25 in . |  | $\sim 75$ | July, 1945 |
| University of Illinois............... | 24 | 45 | 180 | $\underset{(\text { rectangular) }}{9.3 \times 3.8 \mathrm{~cm}}$ | 3.5 | 20 cm | $7 \times 10^{7}$ external, $6 \times 10^{9}$ circulating; pulse, $\frac{1}{2}-300 \mu \mathrm{sec}$ | $70 \mathrm{r} / \mathrm{min}$ at 22 Mev in Al block $12 \times 11.5 \times 9.3 \mathrm{~cm}$ | September, 1941 |
|  | 80 | 25 | 60 | $5.6 \times 2 \mathrm{~cm} \mathrm{oval}$ | 4 | 26 cm | $10^{3}$ | $20 \mathrm{mr} / \mathrm{min}$ at 75 Mev in Al block $12 \times 11.5 \times 9.3 \mathrm{~cm}$ | September, 1948 |
|  | 340 | 100 | 60 | $5.75 \times 10 \mathrm{in} . \mathrm{oval}$ | 350 | 48.61 in. | Pulse, 1-1,200 $\boldsymbol{\mu} \mathrm{sec}$; 6 pps | - $\sim 15,000$ | February, 1950 |
| National Bureau of Standards........ | 50 | 40 | 180 | 2.5 in. high $\times 3.25 \mathrm{in}$. radial | 12.5 | 11.5 in. |  | 400 | January, 1952 |
| Naval Ordnance Laboratory . . . . . . . . | 10 | 45 | 1,920 | 7.5 in . ID, 4.5 sq in. section | 3 | 5.2 in. | $1.65 \times 10^{\circ}$ | 75 | November, 1948 |
| Naval Research Laboratory | 22 | 65 | 180 | $2 \times 3 \mathrm{in}$. inside | 5 | 18.5 cm | $3 \times 10^{\circ}, 0.1 \mu \mathrm{avg}$ | 100 | April, 1945 |
| University of Pennsylvania. | 25 | ${ }_{30}$ | 180 | $8 \times 6 \mathrm{~cm}$ oval | 5 4 | 19.1 cm 19 cm |  | $\sim 100$ $\sim 125$ | December, 1948 <br> April, 1947 |
| Picatinny Arsenal, Dover, N.J........ | 25 | 31 kw | 180 | $2.5 \times 5 \mathrm{in}$. | 4 | 19 cm |  | $\sim 125$ | April, 1947 |
| Rock Island Arsenal, Rock Island, Ill | 22 | 60 | 180 | $2.1 \times 2.8 \mathrm{in}$. | 4.5 | 8.5 in . |  | 100-in. polystyrene cylinder, $2-\mathrm{in}$. wall | March, 1945 |
| Washington University Medical School | 24 | 60 | 180 | $2.5 \times 3.6 \mathrm{in}$. | 6 | 19 cm | .... | 80 | April, 1954 |

PARTICLE ACCELERATORS
Table 8i-3. Betatrons (Continued)

| Location | Max <br> electron energy, Mev | Injection energy, kev | Resonant frequency, cps | Vacuum chamber cross-section dimensions | Weight of Magnet $(\mathrm{Fe}+\mathrm{Cu})$ | Orbit radius | Beam |  | Date of first operation, remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Electrons/pulse | $r / m i n ~ a t ~ 1 m$ inside $\frac{1}{8}$ in. of lead |  |
| Outside the United States |  |  |  |  |  |  |  |  |  |
| Canada: |  |  |  |  |  |  |  |  |  |
| University of Saskatchewan, Saskatoon | 26 | 60 | 180 | Standard Allis-Chalmers model |  |  | .......... | $200 \mathrm{r} / \mathrm{min}$ inside 4 cm of lucite | 1948 |
| Germany: |  |  |  |  |  |  |  |  |  |
| Megavolt Versuchstanstalt, Wrist... | 15 | $\ldots$ | $\ldots$ |  |  | $\ldots$. | .......... |  | Listed in ref. 2 |
| Siemens-Reiniger-Werke, Erlanger. . | ${ }^{6}$ | 4 | 550 | $4 \times 2.5 \mathrm{~cm}$ | 260 kg | 8.3 cm | $1.6 \times 10^{9}$ | 0.5 | Types built for research since |
|  | 15 | 45 | 50 | $7.6 \times 3.2 \mathrm{~cm}$ | 390 kg | 10.5 cm | $4.5 \times 10^{10}$ | 20 | 1944; also building a $35-\mathrm{Mev}$ |
|  |  |  |  |  |  |  |  |  |  |
| Metropolitan Vickers, Ltd., Manchester | $\begin{array}{r} 20 \\ 30 \end{array}$ | $\ldots$ | $\cdots$ | ................. |  |  | .......... |  | Listed in ref. 2 |
| Oxford University | 16 | $\ldots$ | $\ldots$ |  | ....... | 20 cm |  |  | Listed in ref. 2 |
| Sweden: <br> Institutionen for Fysikalisk Kemi |  |  |  |  | . |  | ........... | ................... | Listed in ref. 2 |
| Stockholm <br> Switzerland: | 5 | 20-50 | 50 | $5 \times 6 \mathrm{~cm}$ (elliptic) | 300 kg | 9.5 cm | $5 \times 1{ }^{7}$ | 0.6 | 1945 |
| Physikalisches Institut der Universităt, Zurich (Cantonal Hospital). . | 31 | 45 | 50 | $9 \times 5 \mathrm{~cm}$ (elliptic) | 3.5 tons | 24.5 cm | $0.17 \times 10^{11}$ | 220 | 1951 (in hospital) |

Table 8i-4. Electron

| Location | Energy max, $\mathbf{M e v}$ | Beam | Orbit radius, in. | Magnet |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Type, weight, flux bars | Gap, in. |
| In the |  |  |  |  |  |
| University of California, Berkeley | 330 | 500 to $1,000 \mathrm{r} / \mathrm{min} 1 \mathrm{~m}$ from target. Internal beam, $10^{8}$ electrons per | 39.4 | Three-leg, 136 tons, 214 in. ${ }^{2} \times 78 \mathrm{in}$. | $3.7 \times 4.75$ |
| California Institute of Technology | 500 | pulse reach target $7 \times 10^{12} \mathrm{Mev} / \mathrm{min}$ after collimation through $\frac{5}{8}$-in.diam hole 140 in . from target, approx $10^{11}$ electrons/pulse | 138 | Distributed, 155 tons, flux return both inside and outside of orbit | $13.5 \times 20$ |
| Cornell University . . . . . | 420 | Approx $10^{10}$ electrons/ pulse (strong-focusing) | $\sim 140$ | Distributed, 20 tons, 26 ft diam, 13,000 gauss | $3.25 \times 5.5$ |
| General Electric Co. Research Lab. | 70 | $1,500 \mathrm{r} / \mathrm{min}$ at 1 m inside $\frac{1}{8} \mathrm{in}$. lead $10{ }^{10}$ electrons/ pulse | 23 | Three-leg, 8 tons, 21.25 in. ${ }^{2} \times 13.75$ | .............. |
|  | 300 | $700 \mathrm{r} / \mathrm{min}$ at 1 m inside $\frac{1}{8}$ in. lead $10^{9}$ electrons/ pulse | 24 | Air-core, 16,000 gauss, peak |  |
| Iowa State............. . | 70 | $\begin{aligned} & 800 \mathrm{r} / \mathrm{min} \text { at } 1 \mathrm{~m} \text { inside } \frac{1}{3} \\ & \mathrm{in} \text {. of lead } \end{aligned}$ | 11.5 | Servo-controlled alternator* | $\cdots \cdots$ |
| Massachusetts Institute of Technology | 350 | $10^{8}$ electrons/burst; about 2,000 mesons per burst from an avg target | 40 | Distributed, 51 tons | $2.9 \times 3.5$ |
| University of Michigan.. | 350 | $10^{9}$ equiv photons $/ \mathrm{min}$, $10^{7}$ electrons/pulse | 40 | Three-leg, 16.5 tons, gap in middle leg, no flux bars | $3.5 \times 7$ |
| National Bureau of Standards] | 180 | $10,000 \mathrm{esu} / \mathrm{cc} / \mathrm{min}, \quad 2.8$ esu/cc/pulse, at 1 m inside $\frac{1}{8}$ in. lead | 33] | Two-leg, 150 tons, cylindrical flux bar. | $\cdots \cdots \cdots$ |
| Naval Research Laboratory | 100 | $10^{8}$ electrons/pulse, estimate | 30 | Air core, $400 \mathrm{lb} \mathrm{Cu}, 180$ in. ${ }^{2} \times 120 \mathrm{in}$. | 1.62 wide |
| Purdue University . . . . . | 290 | Central beam Q: $10^{9} / \mathrm{min}$, $10^{7} /$ pulse through $1 \times$ 0.62 in . at 1.5 m | 40 | Distributed, 51 tons, 240 in. ${ }^{2} \times 27.5 \mathrm{in}$. | $2.9 \times 3.5$ |
|  |  |  |  | Magnet |  |
| Location | $\begin{gathered} \text { Energy } \\ \max , \\ \text { Mev } \end{gathered}$ | Beam | Orbit radius | Type, weight, flux bars | Gap |

Outside the


[^377]Synchrotrons

| Magnet |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Rep. <br> freq., <br> pps | Res. <br> freq., <br> cps | Vacuum chamber, <br> material opening, in. | r-f system, type, freq. <br> peak power, gap $V$ <br> (operating) | Injection, type, energy; <br> at injection/end <br> betatron phase | Date, first operation

United States

| 6 | 32.1 | $\begin{aligned} & \text { Fused quartz, } 2.63 \times \\ & 5.38 \end{aligned}$ | Self-excited, class C, 47.7 Mc, $6 \mathrm{kw}, 3.0 \mathrm{kv}$ | $\underset{\mathrm{kv} / 2 \mathrm{Mev}}{\text { Hot-cathode gun, } 100}$ | December, 1948 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1.0 | $\ldots$ | 0.030 in. stainless steel, $9.5 \times 38$ | MO-PA, 20.3 Mc (twice the revolution freq.), 0.6 kw, 6.0 kv | Pulse transformer, short accel. column, 1,000 $\mathrm{kv} / \mathrm{no}$ betatron phase | July, 1952, designed for 1 Bev , rebuilding 19541955 |
| 30 | 30 | Pyrex, $1.87 \times 6$ | Self-excited, 47.5 Mc, $5.5 \mathrm{kw}, 1.9 \mathrm{kv}$ | VdG, $80 \mathrm{kv} / 2 \mathrm{Mev}$ | $\begin{aligned} & 1953(300 \mathrm{Mev}) \text { rebuilt, } \\ & 1954(420 \mathrm{Mev}), \\ & \text { designed for } 1 \mathrm{Bev} \end{aligned}$ |
| 60 | 60 | Porcelain, $2.25 \times 4.5$ | $163 \mathrm{Mc}, 0.06 \mathrm{kw}, 0.5 \mathrm{kv}$ | Pulse transformer, 70 kv/2 Mev | October, 1946 |
| 12 | 300 | Porcelain, $2 \times 0.1$ | $77.8 \mathrm{Mc}, 20 \mathrm{kw}, 10 \mathrm{kv}$ | Pulse transformer, 80 kv/3.5 Mev | January, 1954 |
|  | 52 | $1.62 \times 3.25$ | 163 Mc | Pulsed filament, 60 kv/2 Mev | January, 1950 |
| $\begin{gathered} 2 \\ 6 \text { (later) } \end{gathered}$ | 45 | Slip-cast steatite, $1.8 \times$ 6.0 | Self-excited, class C, 46.5 Mc, 7 kw | Two-electrode, $80 \mathrm{kv} / 7$ $\mathbf{M e v}$ | February, 1950 |
| 20 | 20 | Ceramic, $2.25 \times 6.75$ | Two stages: FM followed by FF. FM: 26.4-32 Mc, 4 kw ; FF: 32 Mc , $5.4 \mathrm{kw} ; 2.0 \mathrm{kv}$ | Electron gun with pulse transformer, $500 \mathrm{kv} / \mathrm{no}$ betatron phase | August, 1952 |
| 60 | 60 | Pyrex, $4 \times 7$, elliptical | Cavity, $57 \mathrm{Mc}, 1.5 \mathrm{kw}$, 1.5 kv | Lanthanum boride cathode, $60 \mathrm{kv} / 1.5 \mathrm{Mev}$ | February, 1954 (180 Mev ) |
| 1 | 250 | Pyrex, 1.12 diam | Cavity, class C, $1,250 \mathrm{Mc}$ (20th harmonic of revolution freq.), 15 kv | $35 \mathrm{kv} / 4 \mathrm{Mev}$ |  |
| $\begin{gathered} 2 \\ 4 \text { (later) } \end{gathered}$ | 30 | High-V porcelain, 2.12 $\times 6.5$ | $\underset{\mathrm{kv}}{\mathrm{MO}-\mathrm{PA}, 46.1 \mathrm{Mc}, \sim 1.5}$ | Outside-radius gun with pulse transformer, 70 $\mathrm{kv} / 2-4 \mathrm{Mev}$ | March, 1951 |


| Magnet |  | Vacuum chamber, material opening | r-f system, type, freq. peak power, gap $V$ (operating) | Injection, type, energy; at injection/end betatron phase | Date, first operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rep. freq., pps | Res. freq., cps |  |  |  |  |
| United States |  |  |  |  |  |
| 50 | $\ldots$ | $4.5 \times 2.5 \mathrm{~cm}$ | $\underset{\sim 100 ~ V}{478} \mathbf{~ M c ,} 4$ watts, avg | Kerst, 3 electrode, 50 $\mathrm{kv} / \mathrm{gain}, 10 \mathrm{ev} /$ turn | April, 1949 |
| 50 | 50 | Lead glass $1 \times 3.5 \mathrm{in}$. | $\underset{0.5 \mathrm{kV}}{\mathrm{MO}-\mathrm{PA}}, 102 \mathrm{Mc}, 2 \mathrm{kw},$ | External-diode gun, 60 kv/3 Mev | October, 1952 |
| 50 | 50 | Porcelain $3 \times 1.75$ in. | Self-excited, grind grid, $480 \mathrm{Mc}, 20$ watts, 0.15 kv | Kerst, 3-electrode, 25 kv/2 Mev | December, 1949 |
|  | 50 |  |  | Lanthanum boride cathode | March, 1950 |
| 50 | 50 | Pyrex $5.3 \times 7 \mathrm{~cm}$ | $\begin{aligned} & \text { PGT, } 238 \mathrm{Mc}, 50 \text { watts, } \\ & 0.2 \mathrm{kV} \end{aligned}$ | Pulse transformer, 18 $\mathrm{kv} / 2.5 \mathrm{Mev}$ | January, 1949 |
| ........ | ..... |  | ........................ | ....................... | Listed in ref. 7 |


Table 8i-5. Proton Synchrotrons (Continued)

|  | Cosmotron, Brookhaven National Laboratory | Bevatron, University of California | University of Birmingham | Proposed values for new AGS* machines; data are for CERN; Brookhaven is similar | Under construction at Australian National University, Canberra |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Injection system: |  |  |  |  |  |
| Type. | VdG accelerator | C-W/linear |  |  |  |
| Energy, Mev. |  | 0.43/9.8 | $0.46, \sim .7 \mathrm{ma}$ beam current | Linear accelerator <br> $50 \mathrm{Mev}, \sim 1.0 \mathrm{ma}$ peak, | Cyclotron |
| Time after start of magnetic cycle | 20.7 msec |  |  | 6- - sec pulse |  |
| Inflector voltage.. | 30.2 kv | 76 kv |  | 8 msec |  |
| r-f system: ${ }^{\text {a }}$, |  |  |  |  |  |
| Frequency, injection/ejection. . | $360 \mathrm{kc} / 4.18 \mathrm{Mc}$ | $360 \mathrm{kc} / 2.5 \mathrm{Mc}$ | $330 \mathrm{kc} / 9.3 \mathrm{Mc}$ |  |  |
| Volts/turn.............. | $\sim 1,000$ for 3 Bev | 7,000 available | $330 \mathrm{kc} / 9.3 \mathrm{Mc}$ | 5 to 16 Mc (32d harmonic) $50,000$ |  |
| Peak accelerating volts. | $\sim 2,000$ | 40,000 available | 240 VMS on $96^{\circ}$ cee |  |  |
| Power.. | 50 kw , peak | 30 kw , avg | 10 kw , peak; 5 kva in the | 50 kw |  |
|  |  |  |  |  |  |
| Description, pumps............ | $1220-\mathrm{in}$. diffusion | $2432-\mathrm{in}$. oil diffusion | $515-\mathrm{in}$. oil diffusion |  |  |
| Volume to be evacuated. | 300 cu ft | $11,000 \mathrm{cu} \mathrm{ft}$ | 4,000 liters | 32 4-in. diffusion |  |
| Min operating pressure. | $5 \times 10^{-6} \mathrm{~mm}$ | $\begin{aligned} & 1 \times 10^{-5} \mathrm{~mm} \\ & \text { (untrapped gauge) } \end{aligned}$ | $8 \times 10^{-7} \mathrm{~mm}$, avg | $<10^{-1} \mathrm{~mm}$ |  |
| Date first operation. | May, 1952 | February, 1954 | July, 1953 | Plan, 1960 |  |
| Date (to energy).. | January, 1954 (3 Bev) | April, 1954 (6 Bev) | July, 1953 (1 Bev) | Plan, 1060 |  |

[^378]Table 8i-6. Linear Accelerators


PARTICLE ACCELERATORS
Table 8i-6. Linear Accelerators (Continued)


# 8j. Fission-product Chains and Yields 

D. H. PERKEL<br>Aerojet-General Nucleonics

L. LEVENTHAL

Tracerlab, Inc.
L. R. ZUMWALT

General Dynamics Corp.

8j-1. Fission-product Chains. Table $8 \mathrm{j}-1$ comprises a listing of the chain relationships and half lives of nuclides produced by thermal neutron fission as reported in the literature up to approximately November, 1954.

The conventions adopted to describe these data are those employed by J. M. Hollander, I. Perlman, and G. T. Seaborg (HPS) in "Table of Isotopes," UCRL-1948, revised, December, 1952, ${ }^{1}$ and in Appendix A of "Radiochemical Studies: The Fission Products," Book 3, div. IV, vol. 9 of the National Nuclear Energy Series (NNES ${ }^{2}$ ).

A half life given in parentheses indicates the nuclide has not been identified as a fission product; a half life given in brackets indicates a limit on the half life has been established. The symbol $H$ means that the transition does not occur.

Since HPS represents the most recent compilation of data, references are given only for data differing from HPS. Data which do not appear in HPS are designated as follows: A horizontal line below the datum or a vertical line to the left identifies the source as NNES; a horizontal line above or a vertical line to the right of the datum indicates its mention in the General Electric "Chart of the Nuclides," 4th ed., November, 1952 (GECN). References for Table $8 \mathrm{j}-1$ are given on page 8-212.

The degree of certainty of assignment, where it has been evaluated, is indicated by a letter (following Seaborg):

A Element and mass number certain
B Element certain and mass number probable
C Element probable and mass number certain or probable
D Element certain and mass number not well established
E Element probable and mass number not well established
F Insufficient evidence
G Assignment probably in error
Absence of symbol means there has been no assignment of degree of certainty. Assignments are shown thus:
denotes HPS

[^379]Table 8j-1. Fission-product Chains

| \% |  |  |  |  |  |  |  |  |  | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| โై్ㅐ |  |  |  |  |  |  |  |  |  |  |
| \%\% |  |  |  |  |  |  |  |  |  |  |
| ถิฒ |  |  |  |  |  |  |  |  |  |  |
| \%\%\% |  |  |  |  |  |  |  |  |  |  |
| \% 3 |  |  |  |  |  |  |  |  |  |  |
| ొక |  |  | $\stackrel{0}{0}$ | $\begin{aligned} & \text { 㫿 } \\ & \text { ơ } \end{aligned}$ | $\begin{aligned} & \frac{0}{6} \\ & \left.\frac{8}{8} \right\rvert\, \end{aligned}$ | $17$ |  |  |  |  |
| लృరึ |  |  | \% |  |  |  |  |  |  |  |
| ¢ิs |  |  | $\cdots$ |  |  |  |  |  |  |  |
|  |  | セ | N | 2 | $\because$ | E | $\stackrel{\square}{\sim}$ | $\bigcirc$ | 8 | $\boldsymbol{\sim}$ |

Table 8j－1．Fission－product Chains（Continued）

| \％ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F会 |  |  |  |  |  |  |  |  |  |  |
| 온 |  |  |  |  |  |  |  |  | \％ |  |
| ¢ヵ |  |  |  |  |  |  |  | \％ | 1 |  |
| \％${ }_{\text {\％}}^{6}$ |  |  |  |  | － | 断浐 | $\stackrel{\circ}{\circ}$ | 嗕 |  |  |
| ¢ొ్ |  |  |  |  |  |  |  |  |  |  |
| \％岗 |  |  |  |  |  |  |  |  |  |  |
| ๕ゅ |  |  |  | $\begin{aligned} & \text { I } \\ & \hline 1 \\ & \text { ! } \\ & \text { 首 } \\ & 8 \end{aligned}$ |  |  |  |  |  |  |
| \％ึ\％ |  |  | an in in |  |  | $\begin{aligned} & \frac{1}{8} \\ & \text { 歳 } \end{aligned}$ |  |  |  |  |
|  | ๕ | ® | \％ | \％ | ® | ¢ | © | ® | 8 | a |

Table 8j-1. Fission-product Chains (Continued)

| $\begin{gathered} \text { Atomic } \\ \begin{array}{c} \text { Mases } \\ \text { No. } \end{array} \end{gathered}$ | ${ }^{36}$ | $\stackrel{37}{\mathbf{R b}}$ | ${ }_{\text {st }}^{38}$ | $\stackrel{39}{\mathbf{Y}}$ | ${ }_{\mathbf{Z r}}^{40}$ | $\stackrel{41}{\mathrm{Nb}}$ | ${ }^{42}$ | - ${ }_{\text {Tc }}$ |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 92 | $\begin{array}{ll} 3.0 \mathrm{sec} & \mathrm{~A} \\ \cline { 1 - 2 } & \mathrm{~B} \\ \hline \end{array}$ | $\rightarrow 80 \sec \frac{\mathrm{~A}}{\mathrm{D}}$ | $\rightarrow 2.7 \mathrm{hr} \frac{\mathrm{~A}}{\mathrm{~B}}$ | $\longrightarrow 3.60 \mathrm{hr} \frac{\mathrm{~A}}{\mathrm{~B}}$ | $\rightarrow \text { Stable } \quad \mathrm{A}$ |  |  |  |  | $\begin{aligned} & \text { GECN } \\ & \text { NNES } \\ & \text { A } 1863 \end{aligned}$ |
| 93 | $2.0 \mathrm{sec} \begin{gathered} \mathrm{A} \\ \\ \hline \end{gathered}$ | $\rightarrow \text { [Short] } \frac{\mathrm{A}}{[\mathrm{~B}]}$ | $\rightarrow 7 \min \frac{\mathrm{~A}}{\mathrm{~B}}$ | $\longrightarrow 10.0 \mathrm{hr} \xrightarrow[\mathrm{~B}]{\mathrm{A}}$ | $\begin{array}{r} \mathrm{A}^{\frac{1}{80}} \\ -1.1 \times 10^{6} \text { years } \frac{1}{87} \\ B_{1}^{87} \\ \hline \end{array}$ |  |  |  | 3.65-year in $\mathrm{H} 8 P$ $1.1 \times 10^{\circ}$ 4.2 -year branchin | Nb listed only <br> year $\mathrm{Zr}^{23}$ and $\mathrm{Nb}^{62}$ and othe g ratios 1 S 54 |
| 94 | $1.4 \mathrm{sec} \frac{\mathrm{~B}}{\mathrm{~B}}$ | $\rightarrow[\text { Short }] \frac{\mathrm{B}}{[\mathrm{~B}]}$ | $\sim 2 \min \frac{B}{B}$ | $\rightarrow 16.5 \min \frac{B}{B}$ | $\rightarrow$ Stable |  |  |  | Y mass A | 1 S 53 |
| 95 | $\text { Short } \mathrm{A}$ | $\rightarrow[\text { Short }] \frac{}{[\mathrm{A}]}$ | $- \text { Short } \frac{}{[\mathrm{A}]}$ | $\rightarrow 10.5 \min \frac{B}{B}$ | $\rightarrow 65 \text { days } \frac{1 \%}{99 \%}$ | $\begin{aligned} & \% \rightarrow 90 \mathrm{hr} \\ & \frac{1}{\%}-35 \text { days } \end{aligned}$ | $\longrightarrow$ Stable |  | 36, 37, 38 | not listed GECN |
| 96 |  |  |  |  |  |  | $\longrightarrow \text { Stable }$ |  | $\begin{array}{\|l\|} \hline \text { Statistical } \\ \text { decay } 2 N \\ 6 \times 101 \mathrm{y} \\ \text { tionabble } \end{array}$ | evidence for $\beta \beta$ 53 ears $\rightarrow$ stable ques late comm. 1 S54 |
| 97 | $\sim 1 \sec \frac{A}{B}$ | $\rightarrow[\text { Short }] \frac{A}{[A]}$ | $\rightarrow \text { Short } \frac{A}{[A]}$ | $\longrightarrow \text { Short } \frac{A}{[A]}$ | $\rightarrow 17.0 \mathrm{hr}$ | $\rightarrow 60 \mathrm{sec}$ | $\rightarrow$ Stable |  |  |  |
| 98 |  |  |  |  |  |  | Stable |  |  |  |
| 99 |  |  |  |  |  |  | $67 \mathrm{hr} \underset{\sim 90}{\widetilde{2}}$ | $\xrightarrow{10 \%} \underset{(10 \%}{1.20} \times 1.04 \mathrm{hr}$ | $\underset{\sim}{\mathrm{Ru}^{\text {sible }}}$ | Branching ratios late comm. IS54 |
| 100 |  |  |  |  |  |  | $\left[\geq 10^{15}\right.$ years] |  | $\begin{array}{\|l\|l\|} \hline \text { HPS } \\ \beta \beta \text { lists } \\ \hline \text { H5 } \end{array}$ | as stable |
| 101 |  |  |  |  |  |  | 14.6 min | $\rightarrow 14.0$ min | $\rightarrow \underset{\text { Stable }}{\mathrm{Ru}}$ |  |

Table 8j－1．Fission－product Chains（Continued）

| 咢 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9\％ |  |  |  |  |  |  |  |  |  |  |
| \＆ |  |  |  |  |  |  |  |  |  |  |
| F98 |  |  |  |  |  |  |  |  |  |  |
| 9\％ |  |  |  | \％ |  |  |  |  |  | $\begin{aligned} & \text { 曷 } \\ & \text { ä } \end{aligned}$ |
| ช8ํㅜ |  |  |  |  |  |  |  | 気 |  |  |
| \＃胥 |  |  |  | $\begin{aligned} & 4 \\ & \substack { 4 \\ \begin{subarray}{c}{0 \\ \hline{ 4 \\ \begin{subarray} { c } { 0 \\ \hline } } \\ {\uparrow} \\ {i} \end{aligned}$ | $\begin{aligned} & 1 \\ & \text { 震 } \\ & \hline \end{aligned}$ |  |  |  |  |  |
| F® |  |  |  |  |  | $\begin{aligned} & \text { \|国 } \\ & \stackrel{\text { 百 }}{\stackrel{\rightharpoonup}{v}} \end{aligned}$ |  |  |  |  |
| \＄줄 |  |  |  | $\begin{array}{c\|c} \hline \infty \\ i \\ i \\ i \\ i \end{array}$ |  |  |  |  |  |  |
|  | \％ | \％ | ＂ | $\stackrel{3}{\square}$ | $\%$ | 5 | \％ | \％ | 을 | $\exists$ |

Table 8j－1．Fission－product Chains（Contínued）

| 8 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8～ |  |  |  |  |  |  |  |  |  |  |
| \％\％ |  |  |  |  |  |  |  |  |  |  |
| ¢\％ |  |  |  |  |  |  |  |  |  |  |
| 8\％\％ |  |  |  |  |  |  |  |  | $\begin{gathered} \circ \\ \substack{9 \\ y_{2}^{2}} \end{gathered}$ | ｜ |
| 99 |  |  |  |  |  |  |  |  |  |  |
| 9\％ |  |  | $\qquad$ |  |  |  | 品 <br> 首 |  |  |  |
| Fs？ | 魚 届 |  |  |  |  |  |  |  |  |  |
| 98 | 릋 |  |  |  |  |  |  |  |  |  |
| 骨安 | ํㅡㄹ | ® | $\pm$ | 을 | $\pm$ | $\Xi$ | $\pm$ | ®ㅛㄹ | \％ | 짗 |

Table 8j-1 Fission-product Chains (Continued)

FISSION-PRODUCT CHAINS AND YIELDS
Table 8j-1. Fission-product Chains (Continued)

| $\begin{aligned} & \text { Atomic } \\ & \text { Masso. } \\ & \text { No. } \end{aligned}$ | $\begin{aligned} & 51 \\ & 8 \mathrm{Bb} \end{aligned}$ | 52 $\mathbf{T e}$ | $\stackrel{53}{\text { I }}$ | $\begin{aligned} & 54 \\ & \mathbf{X e} \end{aligned}$ | $\begin{gathered} 55 \\ \mathrm{Cs} \end{gathered}$ | $\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$ | 57 La | $\stackrel{58}{\mathrm{Ce}}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | $2 \min \frac{B}{B}$ | $\longrightarrow 77.7 \mathrm{hr} \frac{\mathrm{~B}}{\mathrm{~B}}$ | $\longrightarrow 2.4 \mathrm{hr} \frac{\mathrm{~B}}{\mathrm{~B}}$ | Stable |  |  |  |  |  |
| 133 | $4.4 \min \underset{\sim}{\sim} \underset{\sim 0 \% \% \mathrm{~B}}{20 \%}$ | $\begin{aligned} & \rightarrow 63 \min \cdots \\ & \rightarrow 2 \frac{\downarrow}{\min } \end{aligned}$ | $\longrightarrow 20.5 \mathrm{hr} \frac{2.4 \%}{97.6 \%}$ | $\begin{aligned} & \underset{\%}{\underset{\%}{T}} 2.3 \text { days } \\ & 5.270 \text { days } \end{aligned}$ | $\begin{gathered} 6.0 \times 10^{-9} \mathrm{sec} \\ \mathrm{l} \\ \hline \end{gathered}$ |  |  |  | $60 \%, 40 \%$ late comm. 1S54 $63 \mathrm{~min} \rightarrow 20.5 \mathrm{hr}$ 1K53 $63 \mathrm{~min}-\mathrm{F} 20.5 \mathrm{hr} 2 \mathrm{G} 52$ |
| 134 | $\sim 50 . \mathrm{sec} \longrightarrow \mathrm{D}$ | $\rightarrow 44 \min \xrightarrow{B}$ | $\longrightarrow 52.5 \mathrm{~min} \longrightarrow$ | $\longrightarrow$ Stable |  |  |  |  | $(50 \mathrm{sec}) 134$ or 135 |
| 135 |  | $<2 \min -$ | $\rightarrow 6.68 \mathrm{hr} \frac{\sim 30}{\sim 70}$ | $\begin{aligned} & \rightarrow 15.6 \min \\ & \rightarrow 9.13 \mathrm{hr} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 2.8 \times 10^{-10} \mathrm{sec} \\ 3.0 \times 10^{6} \text { years } \\ \hline \end{array}$ | $\longrightarrow \text { Stable }$ |  |  | $\underset{\text { sec } 1 \mathrm{~T} 54}{9.13 \mathrm{hr} \xrightarrow{\sim 95 \%}} 2.8 \times 10^{-10}$ |
| 136 |  | $\sim 1 \min \frac{\square}{E}$ |  |  | 13.7 days - | $\longrightarrow$ Stable |  |  | $\sim 1$ min mass uncertain, not listed GECN $\beta^{+}$ <br> 13.7 days $\rightarrow$ stable Xe ? <br> Sugarman, private comm. |
| 137 |  |  | $22.0 \mathrm{sec} \frac{\sim 8 \%}{\sim 940}$ | $\underset{\%}{\%} \underset{\%}{\longrightarrow} \text { Instant. } 3.9 \text { min } .$ | 33 years $\square$ $\frac{92 \%}{8 \%}$ |  |  |  |  |
| 138 |  |  | 5.9 sec | $\rightarrow 17$ min | $\rightarrow 32.9$ min | - ${ }^{\text {P }} 10^{16}$ years] |  |  | $10^{15}$ years $\beta \beta$ 1F52 <br> 32.0 min 1L53 |
| 139 |  |  | 2.7 sec | $\rightarrow 41 \mathrm{sec}$ | $-9.5 \mathrm{~min} \longrightarrow$ | $\rightarrow 85.0$ min | $\longrightarrow$ Stable |  |  |
| 140 |  |  |  | 16.0 sec | $\rightarrow 66 \mathrm{sec} \longrightarrow$ | $\rightarrow 12.80$ days | $\longrightarrow 40 \mathrm{hr}$ | $\longrightarrow$ Stable |  |
| 141 |  |  |  | 1.7 sec | $\rightarrow \text { Short } \frac{\mathrm{A}}{[\mathrm{~A}]}$ | $18 \min$ | $\longrightarrow 3.7 \mathrm{hr}-$ | $\longrightarrow 33.1$ days | $\longrightarrow \begin{gathered} \left(\mathrm{Pr}^{(14)}\right) \\ \text { Stable } \end{gathered}$ |

Table 8j－1．Fission－product Chains（Continued）

|  | 咱 |  |  |  | \|en |  |  |  |  | 最品 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { \& } \\ & \frac{1}{8} \\ & \hline \end{aligned}$ |  |  | ? |  |  |  |  |  | $\stackrel{0}{\infty}$ |  |
| ¢留 |  |  |  |  |  |  |  | 咅 |  |  |
| 8 8， |  |  | 器 | $\begin{aligned} & \text { 号 } \\ & \text { 喜 } \end{aligned}$ | $4$ |  | $\begin{aligned} & \frac{9}{0} \\ & \frac{\mathbf{S}}{3} \end{aligned}$ | 를 － |  |  |
| 85 | ． |  |  | ： | $\begin{array}{c\|c} 0 & \text { A } \\ \text { 冒 } \\ \text { Hí } \\ \text { N } \\ \hline \end{array}$ |  |  |  |  |  |
| ％ชి |  |  |  |  | $\begin{array}{l\|l} \text { U } & \text { A } \\ \text { 冒 } \\ \text { ゅ. } \end{array}$ |  |  |  | － |  |
| 50． |  |  |  |  |  |  |  |  | ＇ |  |
| ¢\％ |  |  | $\begin{array}{\|c\|} \hline 4 \\ \text { I } \\ \text { 客 } \\ 1 \end{array}$ | \％ |  | ， | ＊ |  |  |  |
| 48 | $\begin{array}{c\|} A \\ A \\ \text { 首 } \\ \frac{1}{2} \end{array}$ | $\begin{aligned} & \text { Z } \\ & \text { 艺 } \\ & \text { 盛 } \\ & 4 \end{aligned}$ | $\begin{array}{\|c\|} \hline 4 \\ \hline \\ \hline \end{array}$ |  | － | ． |  |  |  |  |
| ญ゙9 |  |  | $\begin{aligned} & 1 \\ & \stackrel{8}{8} \\ & \stackrel{2}{2} \end{aligned}$ |  |  |  |  |  |  |  |
|  | 욱 | 9 | \＃ | 3 | 9 | ＊ | 9 | 9 | 8 | 3 |

Table 8j-1. Fission-product Chains (Continued)


## References for Table $\mathbf{8 j - 1}$

1A 53. Ames, D. P., M. E. Bunker, L. M. Langer, and B. M. Sorenson: Phys. Rev. 91, 68 (1953).
1B 52. Bergstrom: Arkiv Fysik 5, 191 (1952).
1B 53. Bunker, M. E., R. J. Prestwood, and J. W. Starner: Phys. Rev. 91, 1021 (1953).
1B 54. Bernstein, W., S. S. Markowitz, and S. Katcoff: Phys. Rev. 93, 1073 (1954).
2B 54. Bunker, M. E., J. P. Mize, and J. W. Starner: Phys. Rev. 94, 1694 (1954).
1C 51. Coryell, C. D., and N. Sugarman: "Radiochemical Studies: The Fission Products," Book 3, div. IV, vol. 9, National Nuclear Energy Series, McGrawHill Book Company, Inc., New York, 1951.
1C 53. Caretto, A. H., and S. Katcoff: Phys. Rev. 89, 1267 (1953).
2C 53. Coryell, C. D., P. Levegue, and H. G. Richter: Phys. Rev. 89, 903A (1953).
3C 53. Cunninghame, J. G.: Phil. Mag. 44, 900 (1953).
1F 52. Fremlin, J. H., and M. C. Walters: Proc. Phys. Soc. (London) 65A, 911 (1952).
1F 54. Freiling, E. C., L. R. Bunney, and N. E. Ballou: Phys. Rev. 96, 102 (1954).
1G 52. General Electric: "Chart of the Nuclides," Knolls Atomic Power Laboratory, 4th ed., revised to November, 1952.
2G 52. Goldhaber, M., and R. D. Hill: Revs. Modern Phys. 24, 179 (1952).
1H 52. Hollander, J. M., I. Perlman, and G. T. Seaborg: "Table of Isotopes," UCRL, 1928 (1952).
1K 53. Katcoff, S., and W. Rubinson: Phys. Rev. 91, 1458 (1953).
1L 53. Langer, L. M., R. B. Duffield, and C. W. Stanley: Phys. Rev. 89, 907A (1953).
1M 53. MacGregor, M. H., and M. L. Wiedenbeck: Phys. Rev. 94, 138 (1953).
2M 53. McCarthy, J. A.: Phys. Rev. 90, 853 (1953).
3M 53. McGinnis, C. L.: Phys. Rev. 94, 780A (1953).
1S 53. Schott, G. L., and W. W. Meinke: Phys. Rev. 89, 1156 (1953).
2S 53. Stehney, A. F., and N. Sugarman: Phys. Rev. 89, 194 (1953).
3 S 53. Swinbank, P., and J. Walker: Proc. Phys. Soc. (London) 66A, 1093 (1953).
$1 S$ 54. Steinberg, E. P.: private communication, 1954.
1 54. Thulin, S.: Phys. Rev. 94, 734 (1954).
1W 52. Wahl, A. C., and N. A. Bonner: Phys. Rev. 85, 570 (1952).
8j-2. Fission-product Yields. The accompanying tables, presenting the experimentally determined yields of the fission products, are based largely upon those in Appendix B of "Radiochemical Studies: The Fission Products," National Nuclear Energy Series (NNES), div. IV, vol. 9, edited by C. D. Coryell and N. Sugarman, 1951.1 The data in the NNES tables have been augmented by the results of radiochemical and mass-spectrographic investigations published subsequent to the compilation of the NNES data, to about November, 1954. They include newer values of yields in neutron-induced fission as well as yields for charged-particle induced fission, photofission, and spontaneous fission.
The nuclides measured represent members of the beta-decay chains close to the stability line; the yield of each tabulated nuclide in general includes the yields of its precursors in the chain. Where independent yields have been measured, they are indicated by the prefix $i$ :. Since each fissioning nucleus gives rise to two fission fragments, the sum of the yields of all fission products for each nuclide is theoretically 200 per cent. The small amount of ternary and quaternary fission is generally considered negligible in yield computations.

Gratitude is expressed to E. P. Steinberg, R. W. Spence, G. P. Ford, and J. M. Hollander, for their valuable suggestions and assistance in the compilation of these data. References for Tables $8 \mathrm{j}-2$ to $8 \mathrm{j}-8$ are given on page 8-225.

[^380]FISSION-PRODUCT CHAINS AND YIELDS
8-213
Table 8j-2. Thermal-neutron Fission Yields

| Mass No. | Nuclide | $\mathrm{U}^{283}$ | $\mathrm{U}^{235}$ | Pu ${ }^{33}$ |
| :---: | :---: | :---: | :---: | :---: |
| 72 | $\mathrm{Zn}^{72}$ |  | $1.5 \times 10^{-6}(53)$ | $1.1 \times 10^{-4}(219)$ |
| 73 | $\mathrm{Ga}^{73}$ |  | $1.0 \times 10^{-4}(53)$ |  |
| 77 | Ge ${ }^{77}$ | 0.008 (S1) | 0.0037 (54) |  |
|  |  | 0.010 (S8) | 0.0023 (S5) |  |
| 77 | $\mathrm{As}^{77}$ | 0.018 (S1) | 0.0067 (S5) |  |
|  |  | 0.019 (S8) | 0.0091 (54) |  |
| 78 | Ge78 |  | 0.02 (54) |  |
|  |  |  | 0.018 (S5) |  |
| 78 | $\mathrm{As}^{78}$ | .......... | 0.02 (54) |  |
|  |  |  | $i:(1.8 \pm 0.6) \times 10^{-3}$ (S5) |  |
|  |  |  | 0.020 (S5) |  |
| 81 | Se ${ }^{81 m}$ | ..... | 0.008 (61) |  |
| 81 | $\mathrm{Se}^{81}$ |  | 0.133 (61) |  |
| 82 | $\mathrm{Br}^{82}$ |  | $i: 3.5 \times 10^{-5}(62)$ |  |
| 83 | $\mathrm{Se}^{83}$ |  | 0.21 (59) |  |
| 83 | $\mathrm{Br}^{83}$ | 0.70 (S1) | 0.48 (A1) | 0.080 (219) |
|  |  | 0.79 (S8) | 0.40 (59) |  |
| 83 | $\mathrm{Kr}^{83}$ |  | 0.586 (T1) |  |
| 84 | $\mathrm{Br}^{84}$ |  | 0.65 (58) |  |
| 84 | $\mathrm{Kr}^{84}$ |  | 1.09 (T1) |  |
| 85 | Kr ${ }^{85 m}$ |  | 33\% of $\mathrm{Kr}^{88}$ (K1) |  |
| 85 | Kr ${ }^{85}$ |  | 0.317 (T1) |  |
|  |  |  | 0.24 (69) |  |
| 86 | $\mathrm{Kr}^{88}$ |  | 2.09 (T1) |  |
| 86 | $\mathbf{R b}^{88}$ |  | i: $3.1 \times 10^{-5}(\mathrm{G} 1)$ |  |
|  |  |  | $i: 1.8 \times 10^{-4}(71)$ |  |
| 87 | $\mathrm{Kr}^{87}$ |  | $\mathbf{7 0 \%}$ of $\mathrm{Kr}^{88}$ (K1) |  |
| 89 | $\mathrm{Sr}^{88}$ | 5.6 (S1) | 4.6 (76) | 1.8 (219) |
|  |  | 6.5 (S8) | 3.2 (G2) |  |
|  | $\mathrm{Sr}^{91}$ |  | 5.0 (73) | 2.3 (219) |
| 91 | $\mathrm{Y}^{91}$ | 4.1 (G2) | 5.9 (75) | 2.8 (219) |
|  |  |  | 4.0 (G2) |  |
| 92 | $\mathrm{Sr}^{92}$ | .... | 5.0 (73) |  |
| 94 | $\mathrm{Y}^{94}$ |  | 5 (79) |  |
| 95 | Zr ${ }^{95}$ | 5.7 (S1) | $6.0 \text { (S3) }$ | 5.6 (219) |
|  |  | 5.9 (S8) | 6.4 (247) |  |
|  |  | 3.9 (G2) | 3.2 (G2) |  |
| 97 | $\mathbf{Z r}{ }^{\mathbf{9 7}}$ |  | 6.2 (S3) | 5.3 (219) |
|  |  |  | 6.1 (R1) |  |
| 99 | Mos9 | 4.7 (S1) | 6.2 (96) | 6.1 (219) |
|  |  | 5.1 (S8) | 5.9 (W5) |  |
|  |  |  | 6.2 (F5) |  |
| 101 | Mo ${ }^{101}$ |  | 5.4 (W5) |  |
| 102 | Mo ${ }^{102}$ | ..... | 4.1 (W5) |  |
| 102 | $\mathrm{Rh}^{102}$ |  | $i:<5 \times 10^{-7}(118)$ |  |
| 103 | Ru ${ }^{103}$ | 0.85 (S1) | 3.7 (103) | 5.5 (219) |
|  |  | 1.6 (S8) | 2.85 (H2) |  |
|  |  | 0.21 (G2) | 0.84 (G2) |  |
|  |  |  | 1.4 (W5) |  |
| 105 | Ru ${ }^{105}$ |  | 0.9 (105) |  |
|  |  |  | 0.83 (W5) |  |
| 105 | $\mathrm{Rh}^{195}$ |  |  | 3.7 (219) |
| 106 | Ru ${ }^{108}$ | 0.24 (S1) | 0.52 (103) | 4.7 (219) |
|  |  | 0.28 (S8) | 0.38 (H2) |  |
|  |  | 0.064 (G2) | 0.15 (G2) |  |
| 109 | Pd ${ }^{109}$ | 0.047 (S1) | 0.028 (217) | 1.0 (219) |
|  |  | 0.040 (S8) | 0.017 (119) |  |
|  |  |  | 0.026 (E1) |  |

[^381]Table 8j-2. Thermal-neutron Fission Yields (Continued)

| Mass No. | Nuclide | $\mathrm{U}^{233}$ | $\mathrm{U}^{235}$ | Pu ${ }^{239}$ |
| :---: | :---: | :---: | :---: | :---: |
| 111 | Ag ${ }^{111}$ | 0.022 (S1) | $0.018(123,217)$ | 0.27 (219) |
|  |  | 0.025 (S8) | 0.016 (G2) |  |
|  |  | 0.015 (G2) | . 0.018 (E1) |  |
| 112 | Pd ${ }^{112}$ | 0.014 (S1) | 0.0083 (217) | 0.10 (219) |
|  |  | 0.016 (S8) | 0.011 (119) |  |
|  |  |  | 0.018 (E1) |  |
| 115 | Ag ${ }^{115}$ | . . . . . . . . . . . | $i: 0.0078$ (W1) |  |
| 115 | Cd ${ }^{115 m}$ | 0.001 (S1) | $8 \times 10^{-4}(125)$ | 0.003 (219) |
|  |  | 0.001 (S8) | $i:<2 \times 10^{-5}$ (W1) |  |
|  |  |  | $7.1 \times 10^{-4}$ (W1) |  |
| 115 | Cd ${ }^{115}$ | 0.016 (S1) | 0.011 (127) | 0.045 (219) |
|  |  | 0.019 (S8) |  |  |
| 115 | Total chain | 0.020 (S8) | 0.020 (217) |  |
| 115 | Cd ${ }^{115}$ | . . . . . . . . . . | 0.019 (E1) |  |
|  |  |  | $i: 0.0027$ (W1) | . |
|  |  |  | 0.0098 (W1) |  |
| 117 | Cd ${ }^{117}$ |  | 0.010 (128) |  |
| 121 | $\mathrm{Sn}^{121}$ | 0.018 (S2, S8) | 0.014 (S2, 129) | 0.041 (S2, 219) |
| 123 | $\mathrm{Sn}^{123 m}$ | 0.0025 (G2) | 0.0012 (130) |  |
|  |  |  | $8.5 \times 10^{-4}$ (G2) |  |
| 125 | Sn ${ }^{125 m}$ | 0.054 (S2) | 0.012 (S2, 129) | 0.068 (S2, 219) |
|  |  | 0.050 (S8) |  |  |
| 125 | $\mathrm{Sb}^{125}$ | . . . . . . . . . . | 0.023 (134) |  |
|  |  |  | 0.017 (133) |  |
| 126 | Sn ${ }^{126}$ |  | 0.1 (129) |  |
| 127 | $\mathrm{Sb}^{127}$ | 0.092 (S1) | 0.094 (217) | 0.37 (219) |
|  |  | 0.101 (S8) | 0.093 (E1) |  |
| 127 | $\mathrm{Te}^{127 m}$ | 0.067 (G2) | 0.033 (136) |  |
|  |  |  | 0.015 (G2) |  |
| 129 | Te ${ }^{129 m}$ | 0.22 (G2) | 0.19 (136) |  |
|  |  |  | 0.09 (G2) |  |
|  |  |  | 0.23 (P2) |  |
| 129 | $\mathrm{Xe}{ }^{129}$ | . . . . . . . . . . . | $<4 \times 10^{-4}$ (T2) |  |
| 131 | $\mathrm{Te}{ }^{131 m}$ | . . . . . . . . . . | 0.44 (137) . |  |
|  |  |  | 0.45 (P2) |  |
| 131 | Te ${ }^{131}$ |  | 2.5 (P2) |  |
| 131 | [131 | 2.7 (S1, S8) | 2.8 (217) | 3.6 (219) |
|  |  | 2.4 (G2) | 2.23 (Y1) |  |
|  |  |  | 3.0 (P2)* |  |
|  |  |  | 2.9 (E1) | . |
| 131 | $\mathrm{X} \mathrm{e}^{181}$ |  | 2.80 (T1) $\dagger$ |  |
| 132 | Te ${ }^{132}$ | 4.9 (G2) | 4.4 (P1) | 4.9 (219) |
|  |  |  | 4.9 (G2) |  |
|  |  |  | 3.4 (205) |  |
|  |  |  | 2.1 (137) | - |
|  |  |  | 4.5 (P2) |  |
| 132 | $\mathrm{Xe}{ }^{132}$ |  | 4.17 (T1) |  |
| 133 | Te ${ }^{138}$ |  | 4.5 (P1, P2) |  |
| 133 | $\mathrm{I}^{133}$ | . | 4.6 (141) | 5.0 (219) |
|  |  |  | 5.2 (P2) |  |
|  |  |  | $i: 1.2$ (G1) |  |
|  |  |  | $i: 0.5$ (P2) |  |
| 133 | $\mathrm{Xe}{ }^{133}$ | . . . . . . . . . . | 6.29 (M1) |  |
|  |  |  | 6.62 (K2)* | , |
|  |  |  | $i: \sim 0.04 \%$ of total yield (K2) |  |
| 133 | $\mathrm{Cs}^{138}$ |  | $103 \%$ of $\mathrm{Cs}^{137}$ (I1) |  |
| 134 | $\mathrm{Te}^{134}$ | - | 6.9 (P1, P2) |  |
| 134 | $\mathrm{I}^{134}$ | . | 5.7 (Y1, 138) |  |
|  |  |  | $\begin{aligned} & 7.8 \text { (P2) } \\ & i: 1.0(\mathrm{G} 1) \end{aligned}$ | , |

[^382]Table 8j-2. Thermal-neutron Fission Yields (Continued)

| Mass No. | Nuclide | $\mathrm{U}^{233}$ | $\mathrm{U}^{235}$ | $\mathrm{Pu}^{280}$ |
| :---: | :---: | :---: | :---: | :---: |
| 134 | $\mathrm{Xe}^{134}$ | .............. | 7.41 (T1) |  |
| 135 | $\mathrm{I}^{136}$ | 5.1 (S8) | 5.6 (140, 141) |  |
| 135 | $\mathrm{Xe}{ }^{186}$ | ............. | 5.9 (147) | 5.5 (219) |
|  |  |  | $i: \sim 0.3$ (147) |  |
|  |  |  | $\boldsymbol{i}$ : $\mathbf{3 . 5 \%}$ of total $\mathrm{Xe}^{135}$ formed (K2) |  |
|  |  |  | $\boldsymbol{i}: \mathbf{2 . 6 \%}$ of total $\mathrm{Xe}^{135}$ (B1) |  |
| 135 | Cs ${ }^{185}$ | .............. | $128 \%$ of $\mathrm{Cs}^{137}$ (I1) |  |
|  |  |  | $110 \%$ of $\mathrm{Cs}^{137}$ (N2) |  |
| 136 | $\mathrm{I}^{136}$ | 1.7 (S4) | 3.1 (S4) | 1.9 (S4) |
| 136 | $\mathrm{Xe}{ }^{136}$ | .............. | 6.14 (T1) |  |
|  |  |  | 6.42 (W3 revised in K2) |  |
| 136 | Cs ${ }^{186}$ |  | i: $6.2 \times 10^{-3}$ (G1) | i: 0.09 (159) |
| 137 | $\mathrm{Cs}^{187}$ |  | 6.2 (S8), 6.07 (W3 revised in K2) |  |
| 139 | $\mathrm{Ba}{ }^{189}$ | $\cdots \ldots \ldots \ldots .$. | $\begin{aligned} & 6.3 \text { (161) } \\ & 6.1 \text { (G3) } \end{aligned}$ | 5.4 (219) |
| 140 | $\mathrm{Ba}^{140}$ | 6.0 (S1, S8) | 6.32 (206 corrected)* | 5.36 (219)* |
|  |  | 6.7 (G2) | 5.82 (205) |  |
|  |  |  | 5.6 (G2, G3) |  |
|  |  |  | 6.4 (E1) |  |
|  |  |  | 6.17 (S5) $\dagger$ |  |
|  |  |  | 6.2 (W5, H2) $\dagger$ |  |
| 140 | $\mathrm{La}^{140}$ |  | $i:<0.2(170)$ |  |
| 141 | $\mathrm{Ba}^{141}$ |  | 4.6 (181) |  |
| 141 | $\mathrm{La}^{141}+\mathrm{Ce}^{141}$ |  | i: <0.022 of total chain (F1) |  |
| 141 | $\mathrm{Ce}^{141}$ |  | 5.7 (180) | 4.9 (219) |
| 143 | La ${ }^{148}$ | $\ldots$ | $\sim 3.8$ (182) |  |
| 143 | $\mathrm{Ce}^{148}$ | $\ldots$ | 5.4 (176) | 5.1 (219) |
| 143 | Nd ${ }^{148}$ |  | 5.40 (12) $\dagger$ |  |
| 144 | Ce ${ }^{144}$ | 3.4 (S1) | 5.3 (184) | 3.7 (219) |
|  |  | 4.1 (S8) | 2.9 (G2) |  |
|  |  | 2.2 (G2) |  |  |
| 144 | Nd ${ }^{144}$ |  | 4.64 (I2) |  |
| 145 | $\mathrm{Nd}^{145}$ | $\ldots$ | 3.62 (I2) |  |
| 146 | $\mathrm{Nd}^{146}$ |  | 2.81 (I2) |  |
| 147 | $\mathrm{Nd}^{147}$ |  | 2.6 (191) |  |
| 147 | $\mathrm{Pm}^{157}$ | 0.6 (G2) | ~0.6 (G2) |  |
| 148 | $\mathrm{Nd}^{148}$ |  | 1.64 (I2) |  |
| 149 | Pm ${ }^{149}$ |  | 1.3 (193) |  |
| 150 | Nd ${ }^{150}$ |  | 0.658 (I2) |  |
| 151 | $\mathrm{Sm}^{151}$ |  | 0.445 (12) $\dagger$ |  |
| 152 | Sm ${ }^{152}$ |  | 0.279 (12) |  |
| 153 | Sm ${ }^{153}$ | 0.078 (S1) | 0.15 (217) | 0.39 (219, 129) |
|  |  | 0.095 (S8) | 0.16 (E1) |  |
| 154 | Sm ${ }^{164}$ | ............. | 0.0908 (12) |  |
| 155 | Sm ${ }^{155}$ |  | 0.031 (196) | 0.21 (196) |
| 155 | Eu ${ }^{155}$ |  | $\sim 0.03$ (199) |  |
| 156 | Sm ${ }^{156}$ | ............... | 0.012 (198) |  |
| 156 | Eu ${ }^{156}$ |  | 0.013 (198) | 0.12 (219) |
|  |  |  | $0.014(217$, E1) $7.4 \times 10^{-3}(197)$ |  |
| ${ }_{157}$ | $\mathrm{Gd}^{157}$ |  | $7.4 \times 10^{-3}(197)$ 0.0150 (12) $\dagger$ |  |
| (158) | Eu ${ }^{188}$ |  | 0.002 (197) |  |
| 158 | $\mathrm{Gd}^{158}$ |  | 0.0084 (12) $\ddagger$ |  |
| 159 | $\mathrm{Gd}^{159}$ |  | 0.00130 (F5) |  |
| 160 | $\mathrm{Gd}^{180}$ | . . . | 0.0027 (I2) $\ddagger$ |  |
| 161 | Tb ${ }^{161}$ |  | $8.3 \times 10^{-5}$ (F5) |  |

[^383]Table 8j-3. Fast-neutron Fission Yields: Thorium

| $\begin{gathered} \text { Mass } \\ \text { No. } \end{gathered}$ | Nuclide | $\mathrm{Th}^{232}$ <br> pile neutrons avg energy $2.6 \mathrm{Mev} \text { (T3) }$ | $\begin{gathered} \mathrm{Th}^{232} \\ \mathrm{Li}+\mathrm{D} \text { neutrons between } \\ 6 \text { and } 11 \mathrm{Mev}(\mathrm{~T} 4) \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 72 | $7 n^{72}$ | $3.3 \times 10^{-4}$ |  |
| 73 | $\mathrm{Ga}^{73}$ | $4.5 \times 10^{-4}$ |  |
| 77 | $\mathrm{Ge}^{77}$ | 0.009 | 0.022 |
| 77 | ```Ge }\mp@subsup{}{}{77}+\mp@subsup{\textrm{As}}{}{77}\mathrm{ (total chain)``` | 0.020 | 0.052 |
| 83 | $\mathrm{Br}^{83}$ | 1.9 | 2.74 |
| 89 | $\mathrm{Sr}^{89}$ | 6.7 | 6.7* |
| 90 | $\mathrm{Sr}^{90}$ | 6.1 |  |
| 91 | $\mathrm{Sr}^{91}$ | $6.4 \dagger$ | 5.6 |
| 97 | $\mathrm{Zr}^{97}$ | $5.4 \dagger$ | 4.75 |
| 99 | Mo ${ }^{99}$ | $2.9 \dagger$ | 3.1 |
| 103 | Ru ${ }^{103}$ | $0.20 \dagger$ | 0.51 |
| 105 | Rh ${ }^{105}$ | $0.07 \dagger$ |  |
| 106 | $\mathrm{Ru}^{106}$ | $0.058 \dagger$ | 0.53 |
| 109 | Pd ${ }^{109}$ | $0.053 \dagger$ |  |
| 111 | $\mathrm{Ag}^{111}$ | 0.052 | 0.63 |
| 112 | Pd ${ }^{112}$ | $0.065 \dagger$ |  |
| 115 | $\mathrm{Cd}^{115}$ | 0.072 | 0.76 |
| 115 | Cd ${ }^{115 m}$ | 0.003 |  |
| 115 | ```Cd}\mp@subsup{}{}{115}+\mp@subsup{Cd}{}{115m}\mathrm{ (total chain)``` | 0.075 |  |
| 117 | Cd ${ }^{117}$ | . . . . . . . | 0.37 |
| 131 | $\mathrm{I}^{131}$ | 1.2 | 2.3 |
| 132 | Te ${ }^{132}$ | 2.4 | 1.8 |
| 136 | $\mathrm{Cs}^{136}$ | 0.0017* |  |
| 137 | $\mathrm{Cs}^{137}$ | $6.6 \dagger$ |  |
| 139 | $\mathrm{Ba}^{139}$ |  | 9.0 |
| 140 | $\mathrm{Ba}^{140}$ | 6.2 |  |
| 144 | Ce ${ }^{144}$ | 7.1 | 7.2 |

* Assumed value for relative yields in the given reference.
$\dagger$ Obtained in comparison-type experiments. Yields depend directly on the assumption that corresponding yields in slow-neutron fission of $\mathrm{U}^{235}$ are correct (NNES, div. IV, vol. 9, Appendix B).

Table 8j-4. Fast-neutron Fission Yields: U238 and Pu ${ }^{239}$

| Mass No. | Nuclide | $\mathrm{U}^{238}$ est. avg neutron energy 2.8 Mev (K3) | $\begin{gathered} \mathrm{Pu}^{239} \\ \text { fission energy } \\ \text { (pile) neutrons NNES } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 77 | $\mathrm{Ge}^{77}$ |  |  |
| 77 | $\mathrm{As}^{77}$ | 0.0036 |  |
| 89 | $\mathrm{Sr}^{89}$ | 2.7 | . |
| 95 | Zr ${ }^{95}$ | 4.7 | 5.6 (219) |
| 97 | $\mathrm{Zr}^{97}$ |  | 5.2 (219) |
| 99 | Mo ${ }^{99}$ | 6.4 | 5.9 (219) |
| 103 | $\mathrm{Ru}^{103}$ | 6.3 |  |
| 106 | $\mathrm{Ru}^{106}$ | 2.9 |  |
| 109 | $\mathrm{Pd}^{109}$ |  | 1.7 (219) |
| 111 | $\mathbf{A g}^{111}$ | 0.064 |  |
| 115 | Cd ${ }^{115 m}$ | 0.0025 |  |
| 115 | $\mathrm{Cd}^{115}$ | 0.032 |  |
| 115 | Total chain | 0.035 |  |
| 127 | Sb ${ }^{127}$ | 0.13 |  |
| 132 | Te ${ }^{132}$ | 4.7 |  |
| 137 | Cs ${ }^{137}$ | 7.1 |  |
| 139 | $\mathrm{Ba}^{139}$ |  |  |
| 140 | $\mathrm{Ba}^{140}$ | 5.7* | 5.0 (219) |
| 144 | $\mathrm{Ce}^{144}$ | 4.9 | 5.0 (210) |
| 153 | $\mathrm{Sm}^{153}$ |  | 0.48 (219) |
| 156 | Eu ${ }^{156}$ | 0.073 |  |

[^384]Table 8j-5. Fast-neutron Fission Yields: 14-Mev Neutrons U ${ }^{235}$

| Mass No. | Nuclide | $\mathrm{U}^{235}$ <br> $14-\mathrm{Mev}$ neutrons | $\stackrel{\mathrm{U}^{235}}{\text { thermal neutrons* }}$ |
| :---: | :---: | :---: | :---: |
| 82 | $\mathrm{Br}^{82}$ | $i: 1.27 \times 10^{-3}(\mathrm{~F} 3)$ | $i: 3.5 \times 10^{-5}(62)$ |
| 83 | $\mathrm{Br}^{83}$ | 1.02 (F4) | 0.48 (A1) |
| 89 | $\mathrm{Sr}^{89}$ | 4.2 (S9) | 4.6 (76) |
| 91 | $\mathrm{Sr}^{91}$ | 4.2 (S9) | 5.0 (73) |
| 97 | $\mathrm{Zr}^{97}$ | 5.5 (S9) | 6.2 (S3) |
| 103 | $\mathrm{Ru}^{103}$ | 3.3 (F4) | 2.85 (H2) |
| 105 | Rh ${ }^{105}$ | 1.95 (S9) | $0.92 \dagger$ |
| 106 | Ru ${ }^{106}$ | 1.56 (F4) | 0.38 (H2) |
| 109 | $\mathrm{Pd}^{109}$ | 1.21 (F4) | 0.028 (217) |
| 111 | $\mathrm{Ag}^{111}$ | 1.16 (S9) | 0.018 (123, 217, E1) |
| 112 | $\mathrm{Pd}^{112}$ | 1.44 (F4) | 0.018 (E1) |
| 115 | $\mathrm{Cd}^{115}$ | 0.94 (S9) | 0.011 (127) |
| 121 | $\mathrm{Sn}^{121}$ | 1.14 (B2) | $0.014(\mathrm{~S} 2,129)$ |
| 125 | $\mathrm{Sn}^{125}$ | 1.52 (B2) | $0.024 \dagger$ |
| 126 | Sb ${ }^{126}$ | 1.48 (B2) | $0.046 \dagger$ |
| 127 | Sb ${ }^{127}$ | 1.62 (S9, B2) | 0.093 (E1) |
| 129 | $\mathrm{Sb}^{129}$ | 2.10 (F4) | $0.92 \dagger$ |
| 130 | Sb ${ }^{130}$ | 3.3 (F4) | $1.75 \dagger$ |
| 131 | $\mathrm{I}^{131}$ | 4.1 (B2, W4) | 3.0 (P2) |
| 132 | Te ${ }^{132}$ | 4.3 (W4) | 4.5 (P2) |
| 136 | $\mathrm{Cs}^{136}$ | $i: 0.24$ (F3) | $i: 6.2 \times 10^{-3}$ (G1) |
| 140 | $\mathrm{Ba}^{140}$ | 4.6 (S9) | 6.32 (206 corrected) |
| 143 | $\mathrm{Ce}^{143}$ | 3.5 (S9) | 5.4 (176) |
| 144 | $\mathrm{Ce}^{144}$ | 2.4 (F4) | 4.1 (mean of 184) (G2) |
| 156 | Eu ${ }^{166}$ | 0.054 (F4) | 0.014 (217, E1) |

* The $14-\mathrm{Mev}$ neutron data were quoted in ref. F4 as $R$ values, which were converted to fission yields by multiplying by the respective thermal-neutron fission yields. The thermal-neutron values selected for the calculations are tabulated here for reference.
$\dagger$ Values taken from a smooth curve drawn through the known thermal-neutron fission-yield curve for $\mathrm{U}^{\mathbf{2 3 5}}$.

FISSION-PRODUCT CHAINS AND YIELDS
Table 8j-6. Charged-particle Fission Yields


Table 8j-6. Charged-particle Fission Yields (Continued)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Mass \\
No.
\end{tabular} \& Nuclide \& \begin{tabular}{l}
\(\mathrm{Th}^{232}\) \\
\(37.5-\mathrm{Mev}\) alpha particles (N3)
\end{tabular} \& \[
\begin{gathered}
\mathrm{Bi}^{209} \\
\text { 400-Mev alpha } \\
\text { particles (P3) } \\
\text { relative yields }
\end{gathered}
\] \& \begin{tabular}{l}
\(\mathrm{Bi}^{209}\) \\
190-Mev deuterons \\
(G4)
\end{tabular} \\
\hline 92 \& \(\mathrm{Sr}^{92}\) \& 3.0 \& \& 2.8 \\
\hline 93 \& \(\mathrm{Y}^{93}\) \& \& \& \\
\hline 95 \& \(\mathrm{Zr}^{95}\) \& 2.5 \& \& i:3.4 \\
\hline 95 \& \(\mathrm{Nb}^{95}\) \& \& \& \(i\) : 1.5 \\
\hline 95 \& Total chain \& \& \& 4.9 \\
\hline 97 \& \(\mathrm{Zr}^{97}\) \& 2.7 \& \& \\
\hline 99 \& Mo \({ }^{99}\) \& 2.4 \& 480 \& 5.0 \\
\hline 103 \& \(\mathrm{Ru}^{103}\) \& \& \& 3.9 \\
\hline 105 \& \(\mathrm{Au}^{105}\) \& \& 240 \& 3.1 \\
\hline 106 \& \(\mathrm{Au}^{106}\) \& 3.0 \& \& 1.5 \\
\hline 109 \& \(\mathrm{Pd}^{109}\) \& \& \& 4.6 \\
\hline 111 \& \(\mathrm{Ag}^{111}\) \& 1.8 \& . . . . . . . . . \({ }^{\text {a }}\) \& 3.4 \\
\hline 112 \& \(\mathrm{Pd}^{112}\) \& 1.1 \& ............... \& 0.9 \\
\hline 112 \& \(\mathrm{As}^{112}\) \& \& \& \(i: 2.8\) \\
\hline 112 \& Total chain \& \& \& 3.7 \\
\hline 115 \& \(\mathrm{Cd}^{115}\) \& 1.8 \& \& 1.0 \\
\hline 115 \& \(\mathrm{Cd}^{115 m}\) \& 0.15 \& \& 0.7 \\
\hline 115 \& Total chain \& \& \& 0.7 \\
\hline 118 \& Te \({ }^{118}\) \& \& \& 0.008 \\
\hline 119 \& Te \({ }^{119}\) \& \& .............. \& 0.14 \\
\hline 120 \& Sb \({ }^{120}\) \& \& ............... \& 0.90 \\
\hline 121 \& \(\mathrm{Sn}^{121}\) \& 1.2 \& \& \\
\hline 121 \& \(\mathrm{Te}^{121 m}\) \& \& \& 0.20 \\
\hline 122 \& \(\mathrm{Sb}^{122}\) \& \& .............. \& \(i: 0.25\) \\
\hline [123] \& \(\mathrm{Sn}^{123}\) (75 d) \& 1.0 \& \& \\
\hline 123 \& \(\mathrm{Sn}^{123}\) (130 d) \& 1.0 \& \& \\
\hline 124 \& \(\mathrm{I}^{124}\) \& \& \& \(i: 0.43\) \\
\hline 124 \& \(\mathrm{Sb}^{124}\) \& \& \& \(i\) i: 0.12 \\
\hline 124 \& Total chain \& \& \& 0.55 \\
\hline 125 \& \(\mathrm{Sb}^{125}\) \& 1.2 \& \& \\
\hline 125 \& \(\mathrm{I}^{125}\) \& \& \& \[
\begin{aligned}
\& 1.2 \\
\& 0.11
\end{aligned}
\] \\
\hline 126 \& \(\mathrm{I}^{126}\) \& \& \& \[
0.11
\] \\
\hline 131 \& \(\mathrm{I}^{131}\) \& 1.1 \& 8 \& \\
\hline 131 \& \(\mathrm{Cs}^{131}\) \& \& \& \[
i: 0.002
\] \\
\hline 131 \& \(\mathrm{Ba}^{131}\) \& \& \& \[
i: 0.18
\] \\
\hline 131 \& Total chain \& \& . \(\cdot\)............ \& \[
\begin{aligned}
\& 0.18 \\
\& i: 0.056
\end{aligned}
\] \\
\hline 132 \& Te \({ }^{132}\) \& 1.6 \& \& \(i: 0.056\) \\
\hline 132 \& \(\mathrm{Cs}^{132}\)
\(\mathrm{Ba}^{133}\) \& \& 34 \& 0.25 \\
\hline 133 \& Ca

$\mathrm{Cs}^{133}$

138 \& .......
0.041 \& \& <br>
\hline 137 \& Cs ${ }^{137}$ \& 6.9 \& \& <br>
\hline 139 \& $\mathrm{Ce}^{139}$ \& \& \& 0.12 <br>
\hline 140 \& $\mathrm{Ba}^{140}$ \& 2.8 \& None detectable \& 0.0004 <br>
\hline 141 \& $\mathrm{Ce}^{141}$ \& \& \& 0.017 <br>
\hline 143 \& $\mathrm{Ce}^{143}$ \& 2.2 \& \& <br>
\hline
\end{tabular}

FISSION-PRODUCT CHAINS AND YIELDS
8-221
Table 8j-6. Charged-particle Fission Yields (Continued)

| $\begin{aligned} & \text { Mass } \\ & \text { No. } \end{aligned}$ | Nuclide |  | $\mathrm{Th}^{232}$ <br> 37.5-Mev alpha particles (N3) |  | $\begin{array}{r} \mathrm{Bi}^{2} \\ \text { 400-Me } \\ \text { particle } \\ \text { relative } \end{array}$ | pha <br> P3) <br> lds | $190-\mathrm{Mev}$ deuterons (G4) | | |
|---|---|---|---|---|---|---|---|---|---|
| 144 | Ce ${ }^{144}$ |  | 2.2 |  |  |  |  |
| 149 | $\mathrm{Eu}^{149}$ |  |  |  |  |  | 0.003 |
| 153 | $\mathrm{Sm}^{153}$ |  |  | 0.84 |  |  |  |
| 155 | Eu ${ }^{155}$ |  |  | 0.033 |  |  |  |
| 156 | Eu ${ }^{156}$ |  |  | 0.047 |  |  |  |
| 157 | Eu ${ }^{157}$ |  | 0.041 |  |  |  |  |
| Mass No. |  | Nuclide |  | $\mathrm{U}^{235}$ <br> $15-\mathrm{Mev}$ deuterons (W5 (yields relative to $\mathrm{Ba}^{140}$ ) |  | $\mathrm{U}^{238}$ <br> $15-\mathrm{Mev}$ deuterons (W5) (yields relative to $\mathrm{Ba}^{140}$ ) |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 99 |  | Mo ${ }^{99}$ |  | 1.42 |  |  | 1.27 |
| 101 |  | Mo ${ }^{101}$ |  | 1.27 |  |  | 1.30 |
| 102 |  | Mo ${ }^{102}$ |  | 0.86 |  |  | 1.06 |
| 103 |  | Ru ${ }^{103}$ |  | 0.44 |  |  | 0.22 |
| 105 |  | Ru ${ }^{105}$ |  | 0.90 |  |  | 1.16 |
| 106 |  | Ru ${ }^{106}$ |  | 0.60 |  |  | 0.30 |
| 140 |  | $\mathrm{Ba}^{140}$ |  |  |  |  | 1.00 |

Table 8j-7. Photofission Yields*

| Mass No. | Nuclide | $\begin{gathered} \mathrm{Bi}^{209} \\ \max 85 \\ \operatorname{Mev}(\mathrm{~S} 6) \end{gathered}$ | $\begin{gathered} \text { Th }^{232} \\ \max 69 \\ \text { Mev (H1) } \\ \text { Brems- } \\ \text { strahlung } \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ \max 13.0 \\ \text { Mev (W5) } \\ \text { Bremsstrahlung } \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ 7 \mathrm{Mev}(\mathrm{~S} 11) \\ (6.8 \pm 0.1) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | $\mathrm{Ge}^{77}$ | $\sim 0.3$ |  |  |  |
| 77 | $\mathbf{A s}^{77}$ | $<0.4$ |  |  |  |
| 82 | $\mathrm{Br}^{82}$ | $<0.5$ |  |  |  |
| 83 | $\mathrm{Br}^{83}$ | 1.2 | 1.9 |  |  |
| 84 | $\mathrm{Br}^{84}$ | $<1.4$ |  |  |  |
| 91 | $\mathrm{Sr}^{91}$ | $2.8 \dagger$ | 5.7 |  |  |
| 92 | $\mathrm{Sr}^{92}$ | $2.8 \dagger$ |  |  |  |
| 97 | $\mathrm{Zr}^{97}$ | 3.0 |  |  |  |
| 99 | Mo ${ }^{99}$ |  | 1.85 | 6.8 | $6.6 \ddagger$ |
| 101 | Mo ${ }^{101}$ |  | .... | 6.5 |  |
| 102 | Mo ${ }^{102}$ |  | $\ldots$ | 5.0 |  |
| 103 | $\mathrm{Ru}^{103}$ | . . . . |  | (1.4) (uncertain) |  |
| 105 | Ru ${ }^{105}$ | $5.0 \ddagger$ | 0.83 | 3.15 |  |
| 109 | Pd ${ }^{109}$ | $\sim 6.4$ |  |  |  |
| 111 | $\mathbf{A g}^{111}$ | $\sim 2.8$ | 0.90 |  | 0.046 |
| 112 | $\mathbf{A g}^{112}$ | . . . . | 0.68 |  | 0.031 |
| 113 | $\mathrm{Ag}^{113}$ | 3.0 | 0.58 |  |  |
| 117 | Cd ${ }^{117}$ | ..... | 0.68 | $\cdots$ |  |
| 131. | $\mathrm{Te}{ }^{131}$ |  | 0.81 |  |  |
| 131 | Total chain |  | 2.25 |  |  |
| 134 | $\mathrm{I}^{134}$ | $<0.2$ |  |  |  |
| 139 | $\mathrm{Ba}^{139}$ | <0.1 |  |  |  |
| 140 | $\mathrm{Ba}^{140}$ |  | 6.6 | $5.77 \ddagger$ | 5.8 |
| 143 | $\mathrm{Ce}^{143}$ |  | 4.85 |  |  |

See page 8-224 for footnotes.

Table 8j-7. Рhotofission Yields (Continued)

| Mass No. | Nuclide | $\begin{gathered} \mathrm{U}^{238} \\ \max 10 \\ \operatorname{Mev}(\mathrm{R} 2) \\ \text { Brems- } \\ \text { strahlung } \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ 10 \mathrm{Mev} \\ (\mathrm{~S} 11) \\ (9.7 \pm 0.1) \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ \max 16 \\ \text { Mev (R2) } \\ \text { Brems- } \\ \text { strahlung } \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ 16 \mathrm{Mev} \\ (\mathrm{~S} 11) \\ (15.5 \pm 0.1) \end{gathered}$ | $\underset{\operatorname{mev}}{\mathrm{U}^{238}} \underset{(\mathrm{~L} 1)}{\sim 17}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 83 | $\mathrm{Br}^{83}$ | 0.300 |  | 0.288 |  |  |
| 84 | $\mathrm{Br}^{84}$ | 0.411 |  | 0.511 |  |  |
| 89 | $\mathrm{Sr}^{89}$ |  |  | 3.67 |  |  |
| 91 | $\mathrm{Sr}^{91}$ | 4.44 |  | 4.22 |  | 4.7 |
| 92 | $\mathrm{Sr}^{92}$ |  |  | 3.46 |  | 3.7 |
| 93 | $\mathrm{Y}^{93}$ |  |  | 5.29 |  | 4.9 |
| 97 | $\mathrm{Zr}^{97}$ | 5.11 |  | 6.31 |  |  |
| 99 | Mo ${ }^{99}$ | 4.94 | $6.6 \ddagger$ | 6.06 | $6.6 \ddagger$ |  |
| 103 | $\mathrm{Ru}^{103}$ | . $\quad . .$. |  |  |  | $\sim 3.5$ |
| 105 | $\mathrm{Ru}^{105}$ |  |  | 3.61 |  | - 1.9 |
| 109 | $\mathrm{Pd}^{109}$ | 0.0854 |  | 0.224 |  | 0.22 |
| 111 | $\mathrm{Ag}^{111}$ | . . . . . | 0.065 |  | 0.30 |  |
| 112 | $\mathrm{Pd}^{112}$ | 0.042 |  | 0.110 |  | 0.14 |
| 112 | $\mathrm{Ag}^{112}$ | . .... | 0.047 |  | 0.16 |  |
| 113 | $\mathrm{Ag}^{113}$ | . ..... | ..... | 0.0627 |  | 0.051 |
| 115 | $\mathrm{Ag}^{115}$ |  |  |  | 0.0522 | 0.066 |
| 115 | $\mathrm{Cd}^{115}$ |  | 0.030 |  | 0.16 |  |
| 115 | $\mathrm{Cd}^{115 m}$ |  |  |  | 0.013 |  |
| 117 | $\mathrm{Cd}^{117}$ |  | 0.027 |  |  |  |
| 131 | $\mathrm{I}^{131}$ | 3.76 |  | 4.43 |  | 1.8 |
| 132 | Te ${ }^{132}$ | 5.58 |  | 5.78 |  |  |
| 133 | $\mathrm{I}^{133}$ | 6.80 |  | 7.06 |  | 6.6 |
| 139 | $\mathrm{Ba}^{139}$ | 5.878 |  | $5.97 \ddagger$ |  | $6.00 \ddagger$ |
| 140 | $\mathrm{Ba}^{140}$ | 5.77 | 5.7 | 5.77 | 5.0 | 5.60 |
| 143 | $\mathrm{Ce}^{143}$ | 5.94 |  | 5.32 |  | 5.2 |

See page 8-224 for footnotes.

Table 8j-7. Рhotofission Yields (Continued)

| $\begin{aligned} & \text { Mass } \\ & \text { No. } \end{aligned}$ | Nuclide | $\begin{gathered} \mathrm{U}^{238} \\ 21 \mathrm{Mev}(\mathrm{~S} 11) \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ 48 \mathrm{Mev}(\mathrm{~S} 11) \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ 100 \mathrm{Mev}(\mathrm{~S} 11) \end{gathered}$ | $\begin{gathered} \mathrm{U}^{238} \\ 300 \mathrm{Mev}(\mathrm{~S} 11) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | $\mathrm{Ge}^{77}$ | $\ldots$ | 0.032 |  |  |
| 78 | $\mathrm{Ge}^{78}$ | $\ldots$ | 0.059 |  |  |
| 83 | $\mathrm{Br}^{83}$ | $\ldots$ | 0.59 | 0.62 | 0.73 |
| 84 | $\mathrm{Br}^{84}$ |  | 1.03 | 1.04 | 1.09 |
| 89 | $\mathrm{Sr}^{89}$ | 2.6 | 2.8 | 2.8 | 3.0 |
| 91 | $\mathrm{Sr}^{91}$ |  | 3.9 |  |  |
| 97 | $\mathrm{Zr}^{97}$ | 5.7 | 5.8 | 5.8 |  |
| 99 | Mo ${ }^{99}$ | $6.6 \ddagger$ | 6.6 | $6.6 \ddagger$ | $6.6 \ddagger$ |
| 103 | $\mathrm{Ru}^{103}$ | 3.0 | 2.9 | 3.2 | 3.4 |
| 105 | $\mathrm{Ru}^{105}$ | . | 2.5 |  |  |
| 106 | $\mathrm{Ru}^{106}$ | 2.1 | 2.0 | 2.6 | 3.0 |
| 111 | $\mathrm{Ag}^{111}$ | 0.43 | 0.77 | 1.02 | 1.88 |
| 112 | $\mathrm{Ag}^{112}$ | 0.26 | 0.52 | 0.71 | 1.14 |
| 113 | $\mathrm{Ag}^{113}$ | .... | 0.60 | 0.77 | 1.21 |
| 115 | $\mathrm{Cd}^{115}$ | 0.25 | 0.047 | 0.67 | 1.15 |
| 115 | $\mathrm{Cd}^{115 m}$ | 0.18 | 0.041 | 0.048 | 0.20 |
| 117 | Cd ${ }^{117}$ |  | 0.50 | 0.69 | 1.04 |
| 127 | $\mathrm{Sb}^{127}$ (corrected) | 1.12 | 1.49 | 1.71 | 2.38 |
| 131 | $\mathrm{I}^{131}$ | 4.1 | 4.3 | 4.4 | 4.6 |
| 132 | $\mathrm{I}^{132}$ | 5.0 | 4.9 | 4.6 | 4.3 |
| 133 | $\mathrm{I}^{133}$ | .... | 6.2 |  |  |
| 137 | $\mathrm{Cs}^{137}$ | $\ldots$ | 4.7 |  |  |
| 139 | $\mathrm{Ba}^{139}$ | $\cdots$ | 4.6 |  |  |
| 140 | $\mathrm{Ba}^{140}$ | 4.9 | 5.0 | 5.3 | 4.8 |
| 141 | $\mathrm{Ce}^{141}$ | $\cdots$ | 4.9 |  |  |
| 143 | $\mathrm{Ce}^{143}$ | 4.0 | 3.8 | 3.8 | 3.6 |
| 144 | $\mathrm{Ce}^{144}$ | 3.8 | 3.4 |  |  |

[^385]FISSION-PRODUCT CHAINS AND YIELDS
8-225
Table 8j-8. Spontaneous Fission Yields

| $\begin{aligned} & \text { Mass } \\ & \text { No. } \end{aligned}$ | Nuclide | $\begin{gathered} \mathrm{Th}^{232} \\ \text { (monazite) (W2) } \end{gathered}$ | $\begin{aligned} & \mathrm{U}^{238} \\ & \text { (W2) } \end{aligned}$ | Cm ${ }^{242}$ (S7) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Yield of nuclide | Total chain yield |
| 83 | $\mathrm{Kr}^{83}$ | 0.036 | 0.036 |  |  |
| 84 | $\mathrm{Kr}^{84}$ | 0.180 | 0.119 |  |  |
| 86 | $\mathrm{Kr}^{86}$ | 0.87 | 0.75 |  |  |
| 91 | $\mathrm{Sr}^{91}$ |  | ...... | 0.94 | 0.95 |
| 92 | $\mathrm{Sr}^{92}$ | ..... | ...... | 1.1 | 1.2 |
| 99 | Mo ${ }^{99}$ | ..... | ..... | 5.7 | 5.7 |
| 103 | $\mathrm{Ru}^{103}$ |  |  | 7.2 | 7.2 |
| 105 | $\mathrm{Ru}^{105}$ | $\ldots$ | ....... | 9.5 | 9.9 |
| 106 | $\mathrm{Ru}^{106}$ | ..... | ....... | 7.4 | 8.4 |
| 109 | $\mathrm{Pd}^{109}$ | $\ldots$ |  | 2.9 | 2.9 |
| 112 | $\mathrm{Pd}^{112}$ | ..... | $\ldots . .$. | 0.95 | 1.1 |
| 115 | Cd ${ }^{115}$ | ..... | ....... | 0.033 |  |
| 115 | $\mathrm{Cd}^{115 m}$ |  |  | 0.003* | 0.036 |
| 117 | $\mathrm{Cd}^{117 m}$ | ..... |  | $<0.01$ | <0.01 |
| 127 | $\mathrm{Sb}^{127}$ | $\ldots .$. | ....... | 0.35 | 0.37 |
| 129 | Sb ${ }^{129}$ |  |  | 1.3 | 1.7 |
| 129 | Xe ${ }^{129}$ | 0 | <0.012 |  |  |
| 131 | Te ${ }^{131 m}$ | ..... | ....... | 2.3 |  |
| 131 | $\mathrm{I}^{131}$ |  |  | i: 2.0 |  |
| 131 | $\mathrm{Xe}^{131}$ | 0.509 | 0.455 |  |  |
| 132 | Te ${ }^{132}$ |  |  | 5.8 | 7.4 |
| 132 | Xe ${ }^{132}$ | 3.63 | 3.57 |  |  |
| 133 | $\mathrm{I}^{133}$ |  | ..... | 5.7 | 6.0 |
| 134 | $\mathrm{I}^{134}$ |  | ....... | 6.9 | 8.0 |
| 134 | $\mathrm{Xe}^{134}$ | 5.12 | 4.99 |  |  |
| 135 | $\mathrm{I}^{135}$ |  |  | 3.9 | 7.3 |
| 136 | Xe ${ }^{136}$ | $6.00 \dagger$ | $6.00 \dagger$ |  |  |
| 136 | Cs ${ }^{136}$ | ..... | ....... | 0.80 |  |
| 139 | $\mathrm{Ba}^{139}$ | $\ldots .$. |  | 6.6 | 6.6 |
| 140 | $\mathrm{Ba}^{140}$ |  |  | 5.9 | 5.9 |

* Assumed yield from known branching ratio in induced fission.
$\dagger$ Assumed value for relative yields in the given reference.


## References for Tables $\mathbf{8 j - 2}$ to $\mathbf{8 j - 8 1}$

A1. Arnold, J. R., and N. Sugarman: J. Chem. Phys. 15, 703 (1947) (NNES).
B1. Brown, F., and L. Yaffe: Can. J. Chem. 31, 242 (1953).
B2. Barnes, J. W., and A. J. Freedman: Phys. Rev. 84, 356 (1951).
E1. Engelkemeir, D., M. S. Freedman, E. P. Steinberg, J. A. Seiler, and L. Winsberg: ANL-4927 (1952).
F1. Ford, G. P., and C. W. Stanley: AECD-3551 (1953).
F2. Fleming, W. H., and H. G. Thode: Phys. Rev. 92, 378 (1953).
F3. Ford, G. P.: AECD-3597.
F4. Ford, G. P.: unpublished data, private communication, 1954.
F5. Freiling, E. C., L. R. Bunney, and N. E. Ballou: Phys. Rev. 96, 102 (1954).
G1. Glendenin, L. E., PhD Thesis, MIT, Aug. 1, 1949 (NNES).
G2. Grummitt, W. E., and G. Wilkinson: Nature, 161, 520 (1948) (NNES).
${ }^{1}$ References given without letter designation refer to papers in "Radiochemical Studies: The Fission Products," NNES, div. IV, vol. 9.

G3. Grummitt, W. E., J. Gueron, G. Wilkinson, and L. Yaffe: Can. J. Research 25B, 364 (1947) (NNES).
G4. Goeckermann, R. E., and I. Perlman: Phys. Rev. 76, 628 (1949).
H1. Hiller, D. M., and D. S. Martin, Jr.: Phys. Rev. 90, 581 (1953).
H2. Hardwick, W. H.: Phys. Rev. 92, 1072 (1953).
I1. Inghram, 'M. G., D. C. Hess, Jr., and J. H. Reynolds: Phys. Rev. 76, 1717 (1949) (NNES).
I2. Inghram, M. G., R. J. Hayden, and D. C. Hess, Jr.: Phys. Rev. 79, 271 (1950) (NNES).
K1. Koch, J., O. Kofoed-Hansen, P. Kristensen, and W. Drost-Hansen: Phys. Rev. 76, 279 (1949) (NNES).
K2. Katcoff, S., and W. Rubinson: Phys. Rev. 91, 1458 (1953).
K3. Keller, R. N., E. P. Steinberg, and L. E. Glendenin: Phys. Rev. 94, 969 (1954).
L1. Laboratory for Nuclear Science and Engineering, MIT, Progress Report, June 1, 1951-May 31, 1952, p. 129.
M1. MacNamara, J., C. B. Collins, and H. G. Thode: Phys. Rev. 78, 129 (1950) (NNES)
M2. MacNamara, J., and H. G. Thode: Phys. Rev. 80, 471 (1950).
N1. Niday, J., and A. Turkevich: AECD-2862 (1950) (NNES).
N2. Nagle, D., and J. R. Zacharias: private communication to authors of NNES; see also ref. G2 (NNES).
N3. Newton, A. S.: Phys. Rev. 75, 17 (1949).
P1. Pappas, A. C., and C. D. Coryell: Laboratory for Nuclear Science and Engineering, MIT, July 1, 1950 (NNES).
P2. Pappas, A. C., and C. D. Coryell: Phys. Rev. 81, 329 (1951).
P3. Perlman, I., R. H. Goeckermann, D. H. Templeton, and J. J. Howland: Phys. Rev. 72, 352 (1947).
R1. Ross, A. M., BS Thesis, MIT; see also C. D. Coryell et al., Phys. Rev. 77, 755 (1950) (NNES).

R2. Richter, H. G., and C. D. Coryell: Phys. Rev. 95, 1550 (1954).
S1. Steinberg, E. P., J. A. Seiler, A. Goldstein, and A. Dudley: MDDC-1632, 1948 (NNES).
S2. Steinberg, E. P.: private communication to authors of NNES, 1950 (NNES).
S3. Sakakura, A. Y.: BS Thesis, MIT, June 1, 1949; see also Coryell et al., Phys. Rev. 77, 755 (1950) (NNES).
S4. Stanley, C. W., and S. Katcoff: J. Chem. Phys. 17, 653 (1949) (NNES).
S5. Sugarman, N.: Phys. Rev. 89, 750 (1953).
S6. Sugarman, N.: Phys. Rev. 79, 532 (1950).
S7. Steinberg, E. P., and L. E. Glendenin: Phys. Rev. 95, 431 (1954).
S8. Steinberg, E. P.: private communication, 1954.
S9. Spence, R. W.: BNL-C-9, as quoted in ref. F4.
S10. Scott, Terrell, Gilmore, and Minkkinen: LADC-1463 quoted in ref. F4.
S11. Schmitt, R. A., and N. Sugarman: Phys. Rev. 95, 1260 (1954).
T1. Thode, H. G., and R. B. Shields: Repts. Progr. in Phys. 12, 18 (1949) (NNES).
T2. Thode: H. G.: private communication to authors of NNES, 1949 (NNES).
T3. Turkevich, A., and J. B. Niday: Phys. Rev. 84, 52 (1951).
T4. Turkevich, A., J. B. Niday, and A. Tompkins: Phys. Rev. 89, 552 (1953).
T5. Tewes, H. A., and R. A. James: Phys. Rev. 88, 860 (1952).
W1. Wahl, A. C., and N. A. Bonner: Phys. Rev. 85, 570 (1952).
W2. Wetherill, G. W.: Phys. Rev. 92, 907 (1953).
W3. Wiles, D. R., B. W. Smith, R. Horsley, and H. G. Thode: Can. J. Phys. 31, 419 (1953).

W4. Wahl, A. C.: unpublished data, quoted in ref. F4.
W5. Wiles, D. R., and C. D. Coryell: Phys. Rev. 96, 696 (1954).
Y1. Yaffe, L., and C. E. MacKintosh: Can. J. Research 25B, 371 (1947) (NNES).

# 8k. Nuclear Reactors 

H. S. ISBIN<br>University of Minnesota

A nuclear reactor is an assembly of fuel, moderator, and other components such as control rods, coolant system, shielding, and instrumentation, capable of sustaining a controlled neutron chain reaction. Smaller subcritical assemblies used to predict critical dimensions, called exponential piles, and those used to measure diffusion lengths, called sigma piles, are not reactors. Nuclear reactors can be classified as shown in Table 8k-1.

## Table 8k-1. Classification of Nuclear Reactors

1. Based upon purpose
a. Research, including limited isotope production
b. Plutonium and tritium production
c. Power, both military and industrial
d. Breeding
2. Based upon nature of assembly
a. For continuation of neutron chain reaction, neutron energies are thermal, intermediate, or fast
b. Fuel-moderator assemblies are homogeneous or heterogeneous
c. Fuel may be natural uranium (containing 0.7 per cent $\mathrm{U}^{235}$ ), enriched uranium (containing additional $\mathrm{U}^{235}$ ), $\mathrm{U}^{235}, \mathrm{U}^{233}$, or $\mathrm{Pu}^{239}$
d. Moderators used are graphite, heavy water, light water, beryllium, and beryllium oxide

The present security status for nuclear reactors, as applied to the United States, United Kingdom, and Canada, is that almost all information on low-power research reactors is available; information is partially available for higher-power research reactors; but only limited descriptions can be given for reactors having military and strategic value. A concise tabulation of nuclear-reactor descriptions is presented in Table $8 \mathrm{k}-2$. Power levels given pertain to the rate at which heat is generated in the reactor and are not to be interpreted as the generation of electrical power. Neutron flux, as neutrons $/ \mathrm{cm}^{2}-\mathrm{sec}$, is given in general for, the thermal flux, usually the maximum value. The starting date of operation is given in parentheses under the heading of Remarks.

In addition to the reactors listed, several boiling reactor experiments (Borox I, II, and Prototype Boiling-water Power Reactor) have been carried out at Arco, Idaho. Five Savannah River Reactors, CP-6, were completed by 1955 at Aitkin, South Carolina. These reactors employ natural uranium fuel and heavy-water moderator and are production reactors. Interest in additional research and testing reactors in the United States is chiefly confined to modifications of the water-boiler, swimmingpool, and MTR reactors. An expanded program is under way for mobile reactor

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CP-1, uraniumgraphite pile (West Stands, Chicago) | Thermal, heterogeneous, graphite, research, 200 watts | Uranium |  |  | . ${ }^{\text {a }}$......... | . |  |  | World's first reactor. Operated Dec. 2, 1942. After initial op-- eration was dismantled to form basis for CP-2 |
| $\begin{aligned} & \text { CP-2 (Palos Park, } \\ & \text { Chicago) } \end{aligned}$ | Thermal, heterogeneous, graphite, research, 200 watts | 3,200 uranium metal lumps, $2 \frac{1}{2} \mathrm{in}$. diam; 14,500 uranium oxide lumps, 2 I in . diam; about 50 tons uranium; lumps spaced on 8 d -in. square lattice | About a 19-ft cube | 12 in. graphite | 5-ft concrete walls; 6 in. lead and 4 ft wood on top | 30 ft wide, 32 ft long, 25 ft high; 472 tons graphite; 1,400 tons total | -Bronze strips covered with Cd. 1 regulating, 1 shim, and 3 safety | None | Operations started Mar. 20, 1943. In service until May, 1954 |
| GLEEP, graphite low-energy experimental pile (Harwell, England) | Thermal, heterogeneous, graphite, research, 100 kw , $3.7 \times 10^{10}$ | 13 tons of uranium bars, 0.97 in . diam, 12 in . long, sprayed with 0.003 in . A1; 26 tons of uranium oxide in Al cans 1.6 in. diam, 12 in. long; line lattice with 71in. pitch | Cylindrical core 5.24 m long, 3.05 m radius; metal in central portions up to 1.9 m radius | Graphite in shape of an octagon | Cubical concrete shield with walls about 5 ft thick | 37-ft cube containing 505 tons graphite | Rods containing Cd. 4 coarse control, 1 fine control, and 6 safety | Air, at least 5,000 $\mathrm{ft}^{3} / \mathrm{min}$ at subatmospheric pressure; max uranium cartridge temp., $60^{\circ} \mathrm{C}$ <br> Air, $120,000 \mathrm{ft}^{3}$ | Temp. coef. $=$ $-2.9 \times 10^{-5} /{ }^{\circ} \mathrm{C}$ Press. coef. $=$ $-6.5 \times 10^{-8} /$ mb $k_{\text {ex }}=0.002$ (1947) |
| Oak Ridge (Oak Ridge National Laboratory, Oak Ridge, Tenn.) | Thermal, heterogeneous, graphite, research, $1,000 \mathrm{kw}, 11^{12}$ | Al-jacketed uranium slugs, 1.1 in. diam, 4 in. long, <br> 2.57 lb per slug; 3954 slugs per channel; 1,248 fuel channels on $8-\mathrm{in}$. rectangular lattice; diamondshaped channel, $1 \frac{1}{1}$ in. square | 24-ft cube, including reflector | Graphite | Concrete, 7 ft thick | 47 ft long, 38 ft wide, 32 ft high | 2 control rods, each equivalent to $0.005 k ; 2$ shim rods, each $0.007 k$; 4 safety rods, each 0.003k | Air, $120,000 \mathrm{ft}^{3} /$ $\min$ drawn through reactor; fuel below $270^{\circ} \mathrm{C}$; avg moderator temp. $135^{\circ} \mathrm{C}$ | Used for isotope production. $1,000 \mathrm{kw}$ is design power, operation has reached 3,800 kw (1943) |

Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brookhaven (Brookhaven National Laboratory, Upton, N.Y.) | Thermal, heterogeneous, graphite, research, 30 mw , $4 \times 10^{12}$ | Al-clad uranium metal rods placed on 8 -in. centers, 33 uranium fuel slugs, each 1.1 in. diam and 4 in . long, placed in $11-\mathrm{ft}$ long Al can with 6 longitudinal fins 0.6 in. high centers; 1,369 fuel channels, circular cross section of $36 \mathrm{~cm}^{2}$ | Graphite moderator in two right rectangular prisms $12 \frac{1}{3}$ by 25 by 25 ft , separated by vertical openings for cooling air | 45 ft graphite | $6-\mathrm{in}$. iron plate, $4 \frac{\mathrm{ft}}{} \mathrm{heavy}$ concrete, 3 in. iron plate | 38 by 55 ft by 30 ft high; 20,000 tons, including foundation | Horizontal rods containing $1 \frac{3}{2} \%$ boron. Rods enter from two adjacent corners in two arrays of 8 rods each | Air, $300,000 \mathrm{ft}^{3} /$ $\min$ at subatmospheric pressure. Each half of moderator complex cooled separately | Plan to replace fuel with bent MTR-type plates (1950) |
| BEPO, British experimental pile (Harwell, England) | Thermal, heterogeneous, graphite, research, $4 \mathrm{mw}, 10^{12}$ (increased to 6 mw ) | $0.9-\mathrm{in}$.-diam, 12 -in.long uranium bars, encased in Al; 26 tons for criticality, 40 tons for full load, central 888 channels used; 20 bars per channel, $7 \frac{1}{8}$ in. between channels | Right cylinder, 10 ft radius, 20 ft long | About 3 ft of graphite | 6-in. cast-iron plate, and $6 \frac{1}{2}-\mathrm{ft}$ concrete on sides and $7 \frac{1}{2} \mathrm{ft}$ on top; 600 tons steel, 3,000 tons concrete | About a 40-ft cube | 4 horizontal and 10 vertical boron carbide filled hollow steel rods, 2 in . diam | Air; single pass, [180,000 $\mathrm{ft}^{3} / \mathrm{min}$, cross section of each empty channel is $3 \frac{1}{\frac{1}{2}}$ in. $^{2}$ | Max surface temp. $250^{\circ} \mathrm{C}$, A hot-water system to recover heat is being installed (1948) |
| Hanford (Hanford, Wash.) | Thermal, heterogeneous, graphite, Pu production | Uranium fuel slugs $1,359 \mathrm{in}$. diam, up to 8 in . long, bonded in 25 Al can, 1.440 in . OD with Al end caps |  |  |  |  |  | Water, 0.086 in. coolant annulus | Power information is classified. Three units in operation in 1945, and additional reactors have been built. Secondary recirculating glycol system furnishes heat to buildings |


Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ZOE (Chatillon, France) | Thermal, heterogeneous, heavy water, research, 5 kw , $2-3 \times 10^{10}$ | $\mathrm{UO}_{2}$ in tablets 3 cm high stacked in Al tubes of 68 mm ID, and 180 cm effective height. Effective density of oxide is 8.3 | Heavy-water moderator (at $40 \pm 6^{\circ} \mathrm{C}$ ) contained in cylindrical Al vat, 181 cm ID, 235.5 cm high. Max number of fuel bars is 69 ( 3.55 tons $\mathrm{UO}_{2}$ ), set hexagonally (sides of hexagon 18.6 cm ) | Graphite blocks (diffusion length, 45 cm ). 15 mm of heavy water at bottom | Concrete walls 150 cm thick | About a 500 cm cube | Two sets of two types of Cd safety rods. Cd regulating bars | External recirculation system provided for by heavy water | Laplacian $=5.8$ $\mathrm{m}^{-2}$. Power increased to 150 kw . Oxide fuel replaced by uranium metal rods 36.5 mm diam (1948) |
| Heavy Water Research Reactor (USSR) | Thermal, heterogenous, heavy water, research, 500 kw | Uranium fuel rods, $2.2-$ and $2.8-\mathrm{cm}$ diam, with a $0.1-\mathrm{cm}$ Al envelope; square lattice spacings from 63 to 162.6 cm ; 86 to 292 rods, about 160 cm long | Heavy water contained in 175 cm diam tank; critical level from 120 to 181.6 cm | $100-\mathrm{cm}-$ thick graphite reflector on sides and bottom | Concrete side shield 2.5 m thick | About 9 m diam by 8 m high | 4 Cd control rods | Heavy water circulated | Helium atmosphere above heavy water (1949) |
| JEEP (Kjeller, Norway) | Thermal, heterogeneous, heavy water, research, $300 \mathrm{kw}, 10^{12}$ | 2,200 -kg uranium slugs in Al tubes; $35.5 \mathrm{~kg} / \mathrm{rod}$; rods 25.4 mm diam, 300 mm long, placed on $180-\mathrm{mm}$ centers | 1.9 m long; 7 tons of heavy water moderator in 2 -m-diam tank | Graphite 700 mm thick | Octagonal concrete shield, 2 m thick on sides | About $7 \frac{1}{2}$ by $7 \frac{1}{2} \mathrm{~m}$ by 5 m high | 4 cadmium plates $1,300 \mathrm{~mm}$ long, 350 mm wide, 1.7 mm thick, held between Al plates | 4 liters of heavy water per sec (inlet $20^{\circ} \mathrm{C}$, outlet $40^{\circ} \mathrm{C}$ ) | Mean life of neutron $2 \times 10^{-3}$ $\sec$ (1951) |
| NRX (Chalk River, Canada) | Thermal, <br> heterogeneous, heavy water, research, 30 mw , $6.8 \times 11^{18}$ | 176 uranium rods, 1.36 in. diam, Al clad, surrounded by two concentric Al tubes | Heavy-water moderator contained in cylindrical vessel, 10년 ft high, $8 \frac{3}{\frac{3}{2}} \mathrm{ft}$ diam | Graphite | 8 ft concrete cast iron thermal shield | 34 ft diam, 34 ft high | Varying $\mathrm{D}_{2} \mathrm{O}$ level, cadmium and boron rods | Water flows downward in inner annulus | (1947) Shutdown Dec. 1952. Rebuilt reactor (Feb. 1954) up to 40 mw |

Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-2 (Saclay, France) | Thermal, heterogeneous, heavy water, research, $1,500 \mathrm{kw}$, $7 \times 10^{12}(\max )$ | 136 U rods, 1.1 in. diam, 7 ft long, triangular lattice with rod spacing of 5.93 in . Fuel element consists of 4 concentric Al cylinders with innermost as protective sheath for U rod. Insulating space between 2d and 3d cylinders | Fuel immersed in Al tank 8 ft high and about 6 ft diam, partly filled with $\mathrm{D}_{2} \mathrm{O}$ | Graphite 3 ft thick outside tank on sides and bottom | Cast-iron thermal shield, about 8 in. thick; concrete shield about 7 ft thick | About an 8-m cube | Cd plates moving between tank and reflector, 2 Cd rods in tank | Recirculation of nitrogen at 10 atm. Flows down space between 2 outer Al cylinders and up space between 1st and 2d cylinders. $\mathrm{N}_{2} \mathrm{re}-$ placed by $\mathrm{CO}_{2}$ | 400 kw per ton of U. With heavy-water level $1,794 \mathrm{~mm}$, critical height $=$ 224 cm , critical radius $=132 \mathrm{~cm}$ $M^{2}=238 \mathrm{~cm}^{2}$ $B^{2}=5.3(10)^{-4}$ $\mathrm{cm}^{2}$ (1952) |
| CP-5 Argonne Research Reactor (Argonne National Laboratory, Lemont, IIl.) | Thermal, <br> heterogeneous, heavy water, research, $1,000 \mathrm{kw}$, $3 \times 10^{13}$ | 3 in. sq fuel element assembly contains 12 Al plates, each about 3 by 24 by 0.060 in . Al-U alloy is sandwiched between 2 S Al sheets, and plates are clad with 72S Al. Each fuel assembly contains about $75 \mathrm{~g} \mathrm{U}^{235}$. About $1.7 \mathrm{~kg} \mathrm{U}^{235}$ required | About 16 fuel assembles are grouped to form a lattice of approx 300 liters (equivalent to a sphere of 40 cm radius). Heavy-water moderator and fuel lattice contained in a 183 cm diam right cylindrical tank | 2 ft heavy water and 2 ft graphite outer reflector | $\frac{1}{2} \mathrm{in}$. boral, $\frac{1}{3} \mathrm{in}$. steel, $3 \frac{1}{2}$ in. lead, 4 ft 8 in . limon-ite-iron concrete | Octagonal, 20 ft across and 13! ft high | Similar to CP-3 with additional vertical rods | Heavy water coolant velocity in central sections about $1 \mathrm{~m} /$ sec. Heat flux about $4 \times 6 \mathrm{cal} /$ $\mathrm{cm}^{2}$-sec. Flow up through fuel assemblies and down in tank. About 1,200 gpm with $5^{\circ} \mathrm{C}$ rise | Negative temp. coef., decrease in relativity of $1 \%$ for each $20^{\circ} \mathrm{C}$ rise. Reactor housed in an almost leakproof building (1954) |
| R-1, First Swedish Research Reactor (Stockholm, Sweden) | Thermal, heterogeneous heavy water, research, $300 \mathrm{kw}, 3$ by 10 in . (max) | 126 uranium rods, 29 mm diam, canned in reflectal (very pure Al alloyed with 0.5 Mg ), hexagonal spacing 145 mm | Heavy water contained in $1.85-\mathrm{m}$ diam and $2.54-\mathrm{m}-$ high reflectal tank | 900 -mm-thick graphite surrounding bottom and sides of tank | Biological shield of poured concrete with iron ore, 1.8 m thick, lined with $\mathrm{Cd}-\mathrm{Al}$ sandwich | $\begin{aligned} & \text { About } 7 \frac{1}{2} \text { by } 7 \frac{1}{2} \text { by } \\ & 6.8 \mathrm{~m} \end{aligned}$ | 2 security rods ( $\sim 2 \%$ reactivity), 2 regulating plates ( $\sim 0.6 \%$ reactivity) | Heavy water recirculated, $1000 \mathrm{l} / \mathrm{min}$ to air-cooled heater exchanger. Air cooling of moderator | Reactor built underground (1954) |

Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LOPO, low-power water boiler (Los Alamos, N.M.) | Thermal, homogeneous, light water, research, ${ }_{2} \delta$ watt | Enriched uranium sul- fate solution contain- ing $580 \mathrm{~g} \mathrm{U} \mathrm{U}^{235}, 3,378$ $\mathrm{~g} \mathrm{U238}, 534 \mathrm{~g} \mathrm{~S}$, $14,068 \mathrm{~g} \mathrm{O}, 1.573 \mathrm{~g}$ $\mathrm{H} ;$ density at $39^{\circ} \mathrm{C}$ is $1.348 \mathrm{~g} / \mathrm{cm}^{3}$ | Uranyl sulfate solution in 15 -liter stain-less-steel sphere, ${ }^{3} 2$ in. thick, 1 ft diam | 3 - by 3 - by 6 -in. bricks of Be 0 , $\rho=2.7$; graph ite on bottom | None | About 3 ft square by 4 ft high | Cadmium cylinder, $\frac{3}{3}$ in. diam, 34 in. long Cd safety curtain | Water. Max temp. is $39^{\circ} \mathrm{C}$ | World's first water boiler (1944). Replaced by HYPO |
| HYPO, high-power water boiler (Los Alamos, N.M.) | Thermal, homogeneous, light water, research, $6 \mathrm{kw}, 3 \times 10^{11}$ | Enriched uranium nitrate solution containing $869.6 \mathrm{~g} \mathrm{U}^{235}$, $5,341 \mathrm{~g} \mathrm{U} \mathrm{U}^{238}, 731 \mathrm{~g} \mathrm{~N}$, $13,780 \mathrm{~g} \mathrm{O}, 1,312 \mathrm{~g} \mathrm{H}$ | 13.65 liters of $\mathrm{UO}_{2}$ $\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$, $\rho=1.615$, in stain-less-steel sphere if in. thick, 12 in . diam | 24- by 24 - by 27 in. BeO surrounded by graphite to form a $60-$ by 48 - by $60-\mathrm{in}$. rectangular parallelepiped | 4 in . lead, $\mathrm{a}^{\frac{1}{2}} \mathrm{in}$. cadmium, 5 ft concrete |  | Rods containing cadmium, 1 shim, 2 control, 1 safety | $50 \mathrm{gal} / \mathrm{hr}$ water through 6-turn, $\frac{1}{3} \mathrm{in}$. ID, 157 -in. long coil. Max solution temp. $185^{\circ} \mathrm{F}$ | Replaced by SUPO. About $50 \mathrm{~cm}^{3} / \mathrm{sec}$ of air used to sweep out $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ from decomposition of water negative temp. coef. $=-1.33 \mathrm{~g}$ $\mathrm{U}^{235} /{ }^{\circ} \mathrm{C}$ (1944) |
| SUPO, super-power water boiler (Los Alamos, N.M.) | Thermal, homogeneous, light water, 45 kw, $1.7 \times 10^{12}$ (max) | Enriched uranium nitrate solution containing $88.7 \%$ of U as $U^{235} ; 777 \mathrm{~g}$ of $U^{235}$ for critical mass; 870 g of $\mathrm{U}^{255}$ used; solution density 1.10; | Solution contained in 12-in.-diam stainlesssteel sphere | About a $55-\mathrm{in}$. cube of graphite | ${ }_{2}^{\frac{1}{2}-i n . ~ o f ~} \mathrm{~B}_{4} \mathrm{C}+$ paraffin $2-\mathrm{in}$. steel; 4-in. lead; 5 ft concrete | 15 by 15 by 11 ft | 2 additional control rods (see HYPO) move into reactor core in reentrant thimbles | Light water circulating through 320 -ft-long $\frac{1}{4}-\mathrm{in}$. OD stainlesssteel cooling tubes | Est. max intermediate flux 2.8 $\times 10^{12}$. Est. max fast flux $1.9 \times 10^{12}$ (1951) |
| Raleigh (North Carolina State College, Raleigh, N.C.) | Thermal, homogeneous, light water, research, $10 \mathrm{kw}, 5 \times 10^{11}$ | 14 liters of light water solution of $\mathrm{UO}_{2} \mathrm{SO}_{4}$ containing 790 g U ${ }^{235}$ of $90 \%$ isotopic enrichment. Density of solution $=1.08$ $\mathrm{g} / \mathrm{cm}^{3}$ | Reactor solution contained in stainlesssteel cylinder i's in. thick 11 in. high 10-3 in. diam) | 20-in. graphite $105 \mathrm{cu} \mathrm{ft}, 5.4$ tons, density $=$ $1.65 \mathrm{~g} / \mathrm{cm}^{8}$ | 6 ft of concrete. Barytes ore as coarse aggregate, and colemanite ore as fine aggregate, density $=3.4$ $\mathrm{g} / \mathrm{cm}^{3}, 4$ to 6 in . lead around graphite | Octagon, 17 ft across, 12 ft high | 2 Control rods (stainless-steel tubes of $2.5 \mathrm{~g} /$ $\mathrm{cm}^{3}$ sintered $\mathrm{B}_{4} \mathrm{C}$ powder, in reentrantsheaths). 2 shim rods (4 in. wide Cd strips, periphery reactor cylinder). | Light water (refrigerated city water) 1 gpm flow through each of 4 helical coils of $\frac{1}{2}-\mathrm{in}$. stainless-steel tubing, 7 ft immersion length (total immersion length 28 ft ) | First university reactor (1953). Max reactor solution temp. $80^{\circ} \mathrm{C}$ |

NUCLEAR PHYSICS

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Water Boiler Neutron Source, WBNS (North American Aviation, Inc., Downey, Calif.) | Thermal, homogeneous, light water, research, $1 \text { watt, } 5 \times 10^{7}$ | 1.5 lb of U fuel in form of $U^{235}$ enriched uranyl nitrate in light-water solution | Solution contained in a 1 -ft-diam stainlesssteel sphere, ${ }^{1}$ ' in. thick | Graphite, 5 ft diam and 6 ft high | 2 ft of concrete blocks | 13 ft by 26 ft by | 2 safety rods coarse control fine control all move in reflector | None 6-turn helix of | Calc $k_{\infty}=1.561$ (leakage $=$ 0.360) (1951) |
| Livermore Water Boiler (Livermore, Calif.) | Thermal, homogeneous, light water, research, 100 watts, $10^{\circ}$ [increased to 500 watts, $2 \times 10^{10}$ (max)] | Light water solution of $\mathrm{UO}_{2} \mathrm{SO}_{4}$ containing $694.2 \mathrm{~g} \mathrm{U}^{235}, 798$ g -moles hydrogen, 420 g -moles oxygen; 5.64 g -moles sulfur; and 2.95 g -moles uranium | 14.524 liters contained in stainless-steel sphere, $12 \frac{1}{2}-\mathrm{in}$. OD, 0.06 -in. wall | Right cylinder of graphite, 5 ft diam by 5 ft high | Graphite in steel tank, 0.030 -in. Cd shot, 5 -in. lead, and 3 -ft concrete blocks | 13 ft by 26 ft by 9 ft high | 2 safety and 2 control rods | 6-turn helix of ${ }_{16}^{8}-\mathrm{in}$. ID tubing; $160-\mathrm{in}$. logs in sphere. Distilled water as coolant | Closed gas handling system (1953) |
| HRE-1, homogeneous reactor experiment (Oak Ridge National Laboratory, Oak Ridge Tenn.) | Thermal, homogeneous, water, research, $1,000 \mathrm{kw}$ | Water solution of enriched uranium sulfate (enrichment $>90 \%$ ), $35 \mathrm{~g} / \mathrm{kg}$ $\mathrm{H}_{2} \mathrm{O}$ | Solution contained in an 18 -in. diam 347 stainless-steel sphere with $1^{3} \mathrm{~g} \mathrm{-in}$. walls. Max fuel temp. $482^{\circ} \mathrm{F}$. Pressurized to 1,000 psi. | 10 in . heavy water | Reflector and core contained in outer pressure vessel of forged steel, $39-\mathrm{in}$. ID with 3 -in. wall; 7-ft concrete ( $\rho=3.5$ ) walls |  | Large negative temp. coef. leads to self-stabilization 2 safety plates | Heat removed by pumping fuel solution through external heat exchanger | Has operated at full design power and has generated about 150 kw of electric power, temp. coef. $=-$ $10^{-3} /{ }^{\circ} \mathrm{C}$ (1952). Reactor dismantled in 1954. To be replaced by HRE-2 |
| Los Alamos Fast Reactor (Los Alamos, N.M.) | Fast, research $25 \mathrm{kw}, 10^{13}$ fast flux | Rods of pure plutonium metal clad with steel | Plutonium and uranium rods in 6 -in. array, contained in 6 -in. diam pot | 6-in.-thick natural uranium, silver painted, 6-in. steel, 4-in. lead | Alternatinglayers of 3 -in. iron and masonite, iron and boron-impregnated plastic, 18 -in. heavy aggregate concrete | 11 by 15 by 9 ft high | 2 safety and 2 regulating rods in reflector, uranium in lower section and B-10 in upper | Mercury. Reflector cooled by water | World's first fast reactor (1946); dismantled in 1954 |

Table 8k-2. Nuclear Reactor Catalogue (Continued)

Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Zephyr, Zero Energy Fast Reactor (Harwell, England) | Fast, research, 2-30 watts | Plutonium | Cylindrical core with height $=\operatorname{diam} \cong 15$ cm , consisting of uranium and plutonium | Uranium | None, but reactor in concrete room | .............. | Control and safety rods consist of uranium rods moving vertically in channels around core, uranium | None | (1954) |
| Bulk Shielding Facility (Swimming Pool) (Oak Ridge National Laboratory, Oak Ridge, Tenn.) | Thermal, heterogeneous, light water, research, 100 kw , $5 \times 10^{11}$ | MTR-type fuel elements: 18 convex plates, each 3 in. wide, 24 in. long, and 0.06 in. thick, comprise a fuel box. Plates of enriched uranium ( $>90 \%$ $U^{235}$ ) encased in 25 Al sandwiches, clad with 72 S. About $140 \mathrm{~g} \mathrm{U}{ }^{235}$ per fuel box. Al-to- $\mathrm{H}_{2} \mathrm{O}$ volume ratio is 0.7 | Critical mass $\sim 3 \mathrm{~kg}$ of U235 in fuel core 12 by 12 by 24 in .; with allowances for other factors including beam holes, burnup, 3.5 kg ; with Be 0 reflector, 2.4 kg in a fuel core 9 by 12 by 24 in. | 10 cm of BeO on 4 sides of active lattice; or light water | $16 \frac{1}{2} \mathrm{ft}$ of water above, and $3 \frac{1}{\frac{1}{2} t}$ plus concrete below | Pool 40 ft long, 20 ft wide, 20 ft deep | $2 \mathrm{~B}-\mathrm{Pb}$ shimsafety rods (mixture of Pb and boral in oval Al can 1 by $2 \frac{1}{2} \mathrm{in}$. by 26 in . long). $2 \mathrm{Cd}-\mathrm{Pb}$ safety rods $1 \mathrm{Cd}-\mathrm{Pb}$ regulating rod | Light water (convective flow) | Negative temp. coef. $0.0075 \%$ / ${ }^{\circ} \mathrm{F} \quad$ Max available slow-neutron flux, $10^{12}$ $n / \mathrm{cm}^{2} / \mathrm{sec}, \max$ available epithermal flux, 3 $\times 10^{12} \quad n / \mathrm{cm}^{2} /$ sec (1950) |
| LITR, low-intensity test reactor (Oak Ridge National Laboratory, Oak Ridge, Tenn.) | Thermal, heterogeneous, light water, research. Increased from 500 to $3,000 \mathrm{kw}$, $2 \times 10^{13}$ | MTR fuel assemblies (16 plates) | $3.4 \mathrm{~kg} \mathrm{U}{ }^{235}$ | Loosely stacked Be blocks | Unmortared concrete blocks, except for outer $1 \mathrm{ft} 10 \frac{1}{2} \mathrm{ft}(\mathrm{min})$ | 25 ft diam 27 ft high | $3 \text { shim-safety, } 1$ control | Light water | Served as mockup for MTR and now used for research (1950) |

Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MTR, Materials Test ing Reactor (Reactor Testing Station, Arco, Idaho) | Thermal, heterogeneous, light water, research, 30 $\mathrm{mm}, 4 \times 10^{14}$ (level changed to 40 mv ) | Fuel assembly is $3 \times$ $3 \times 24$-in. box containing 18 curved, vertical, fuel plates; plates consist of uranium-Al alloy, 0.5 mm thick, sandwiched between 0.5 $\mathrm{mm} \mathrm{Al} ; 3.0 \mathrm{~mm}$ spacing between plates, $U^{235}$ per plate increased from 140 to 200 g | 27 to 45 fuel boxes. Boxes held in Algrido contained in 54 -in. diam Al tank | Primary reflector is Be 3 ft high and 5 ft diam, two zones of graphite outside tank of pebble stone of $1-\mathrm{mm}$ diam balls to form an 7 ft 4 in . square outer stack 12 ft by 14 ft by 8 ft 4 in . | 2-4 in. steel thermal shields, concrete 9 ft thick, water 15 ft above core and 5 ft below | About a $34-\mathrm{ft}$ cube | Up to 8 vertical shim-safety rods, 2 vertical regulating rods | Light water, recirculated, cooled by flash vaporization air cooling in graphite and thermal shield | For study of materials exposed to intense radiations, $1 \times 10^{14}$ (1952) |
| Experimental Nuclear Reactor (USSR) | Thermal, heterogeneous, light water, research, 300 kw , $2 \times 10^{12}$ | 16 fuel elements per unit, each fuel element 9 mm OD 50 cm high; square lattice with $\sim 18 \mathrm{~mm}$ spacing; fuel elements contain $10 \%$ enriched U ${ }^{235}$ | Active core approximated by a cylinder 40 cm diam, 50 cm high; core consists of 32 units with 24 units containing fuel. $3.5 \mathrm{~kg} \mathrm{U}^{235}$ in core. Core in 500 -mm-diam, waterfilled, A1 tank | Water | Cast iron and water |  | 3 borax-carbide safety rods, 1 steel rod | $240 \mathrm{~m}^{3} / \mathrm{hr}$ water flow through core, entering at $30^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C}$ rise | Max fuel surface temp. $70^{\circ} \mathrm{C}$ |
| RPT Reactor for Physical and Technical Investigation (USSR) | Thermal heterogeneous, light water and graphite, research, 10 mw , $8 \times 10^{13}$ (max) | Fuel elements are hollow cylinders, containing enriched uranium, covered with an Al casing, and inserted in ducts. 37 cylindrical ducts, 54 mm diam, 14 cm spacing, pierce graphite layers | About 1 m diam by 1 m high | Core and graphite reflector fill a cylinder 240 cm high, 260 cm diam. 80 cm graphite on sides, 60 cm on bottom | Side shielding, nonlayer/ <br> frame 2.5 cm thick, 320 cm concrete; top, 150 cm graphite, 40 cm Pb , 20-cm-thick iron |  | 2 automatic cọntrol rods, 3 manual, 3 slowly moving automatic rods of boron carbide, 2 systems of safety rods | Distilled water enters annulus between fuel tube and duct, $6 \mathrm{~m}^{3} / \mathrm{hr} /$ duct, $20-30^{\circ}$ inlet, $55-65^{\circ}$ outlet. Helium used for graphite | (1952) |

Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| APS, Atomic Power Station (USSR) | Thermal, heterogeneous, light water and graphite, power, 30 mw (heat), 5 mw (electrical), $5 \times 10^{18}$ | Thin walled steel used for fuel channel, and hollow fuel elements placed in channel (see RPT), enriched uranium (5\% U ${ }^{235}$ ). Fuel elements not bonded to jacket | 128 fuel channels pierce control part of graphite brickwork, forming a core 150 cm diam, 170 cm high. Total uranium, 550 kg | Graphite encased in a hermetical steel jacket, clearance allowed in graphite brickwork, jacket filled with He or $\mathrm{N}_{2}$ | Side water shield, 100 cm thick, concrete wall 300 cm thick |  | 18 boron carbide rods (watercooled); 4 automatic control rods in reflector, 2 safety rods in active zone | Distilled water at 100 atm pumped down through tube and return up flow over surface of fuel elements. Recirculation. Inlet temp. $190^{\circ} \mathrm{C}$, outlet $260-270^{\circ} \mathrm{C}$. Steam generated at 12.5 atm, $255-260^{\circ} \mathrm{C}$ | U235 burnup about 15 to $20 \%$. Max graphite temp. 650 to $700^{\circ} \mathrm{C}$ (1954) |
| Geneva Reactor Exhibit (Geneva, Switzerland) | Thermal, heterogeneous, light water, demonstration, 10-100 kw, 10 in. | Enriched uranium ( $20 \% \mathrm{U}^{235}$ ) in 23 MTR fuel assemblies (18 plates per assembly) Al to $\mathrm{H}_{2} \mathrm{O}$ vol. ratio 0.65 | About $3.6 \mathrm{~kg} \mathrm{U}^{235}$, active lattice 15 by 15 by 24 in . | Light water | Light water plus earth | Pool, 10 ft diam, 21 ft deep, 13,000 gal capacity of demineralized water | 3 safety and control rods, each about 2\% boron-carbide | Light water, natural convection | Automatic control from start to full power. Dismantled in 1955 and moved to Wurlingen in 1956 and rebuilt as Swiss Reactor No. 1. Power rating 1 mw |

NUCLEAR REACTORS
8-239
Table 8k-2. Nuclear Reactor Catalogue (Continued)

| Name | Classification | Fuel | Fuel core | Reflector | Shielding | Over-all size | Control | Coolant | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TTR, low-power thermal test reactor (Knolls Atomic Power Laboratory, Schenectady, N.Y.) (Several versions built) | Thermal, heterogeneous, research, 100 watts, $3.4 \times$ $10^{\circ}$ | $2.7 \mathrm{~kg}^{235}$ required for criticality; extra 0.1 kg provides about $0.6 \%$ excess reactivity | 20 fuel slug tubes, each $2 \mathrm{in} . \operatorname{diam}, 24 \mathrm{in}$. long, containing U-Al alloy disks with polyethylene spacers strung on $\mathrm{r}^{3} \mathrm{~d}$-in.-diam rod; disks (slugs) immersed in light paraf-fin-base oil contained in a slug tube. Tubes in cylindrical array in an Al tank of 12 in. ID and 18 in. OD; tank filled with water | 30-in. cylindrical ring of graphite | Reactor located in a room with 6-ft-thick concrete walls | .............. | Coarse: 6 Fe-clad Cd sheets, 4 in. wide, 18 in. long at periphery of tank. Fine: 2 Cd rods, 18 in. long, $\frac{1}{2}$ in. diam, move between fuel slug tabes. Safety: four $\frac{1}{3}-$ in.-diam Cd rods | , | Internal thermal column is a graphite cylinder, 12 in. diam, 18 in. high. <br> Test hole is in center of column. Temp. change of $10^{-8^{\circ}} \mathrm{C}$ causes reactivity change of $\Delta k / k$ $=10^{-7}$ (negative temp. coef.) (1951) |
| STR, submarine thermal reactor (STRMark I, prototype, National Reactor Testing Station, Arco, Idaho; STR Mark II, U.S.S. Nautilus) | Thermal, ship propulsion, 18 mm | Enriched uranium sheathed in zirconium |  |  |  |  |  | Pressurized light water | World's first (1953) mobile reactor unit. First major use of zirconium |
| Livermore Water Boiler (California Research and $\mathrm{D}_{0}$ velopment Co., Livermore, Calif.) | Thermal, homogeneous, light water, research, 100 watts, $10^{\circ}$ |  |  |  |  | $\cdots$ |  | ............... | Reactor designed and built by NAA |
| Zephyr (British lowpower breeder reactor, Harwell England) | Fast, heterogeneous, research, breeding 1-2 watts | Plutonium core surrounded by uranium |  |  |  | .............. |  | Sodium-potassium alloy |  |

units for submarines, shipcraft and aircraft. Both large-scale and small-scale power demonstration reactor programs have been started, utilizing pressurized-water, sodium-graphite, fast-breeder, boiling-water, homogeneous, liquid-metal-fuel, and gas-coolant designs.
Great Britain's first heavy-water reactor, DIMPLE, was placed in operation in 1954. A higher-power heavy-water reactor is under construction as well as a sodiumcooled breeder reactor. The Calder Hall reactors are the first commercial full-scale power plants. The reactors utilize natural uranium fuel and graphite moderator, and are cooled with $\mathrm{CO}_{2}$ under pressure.
The French program includes the building of two plutonium producing reactors, G1 and G2. The startup of G1 was February, 1956. The reactors are natural uranium, graphite-moderated units and are to produce electrical power. Air is used for the coolant for G 1 and $\mathrm{CO}_{2}$ for G 2 . Other similar power-producing reactors are under study. E.L. 3 is a high-flux materials testing reactor and will utilize slightly enriched uranium and heavy water.

Other significant reactor developments are in progress in The Netherlands, Belgium, Norway, Sweden, Switzerland, and Canada.

# 81. Mesons and Hyperons 

## MAURICE M. SHAPIRO

Nucleonics Division, U.S. Naval Research Laboratory

81-1. Nomenclature. Mesons are unstable particles intermediate in mass between the electron and proton. Hyperons are unstable particles intermediate in mass between the neutron and deuteron. So many new types of mesons and hyperons have recently been discovered (LL, LC, RG, BR, BR1, SA, OC, BH, AR, TR, BA1, FM3, MM $)^{1}$ that confusion in nomenclature has resulted. A systematic notation, proposed (AE, TR) as the result of discussion at the International Congress on Cosmic Radiation at Bagnères-de-Bigorre, France, in 1953 (BP, SM), has gained wide acceptance, and is employed here:

1. Generic symbols (Latin letters) classify the particles according to mass and phenomenology of decay, respectively:
a. Mass categories ${ }^{2}$
$L$ meson (light meson), $m_{e}<m_{L} \leq m_{\pi}$
$K$ meson (heavy meson), $m_{\pi}<m_{K}<m_{p}$
$Y$ particle (hyperon), $m_{n}<m_{Y}<m_{d}$
(Note that neutrons and protons are excluded.)
${ }^{1}$ The references on p. 8-245 include some useful general references on heavy unstable particles (MR1, VP, PC, RB2, PC1, LL1, SM, WJ, BJ, PC2, TA, RG1, RU, BP, DP, PP, HT1, DC2).
${ }^{2}$ Symbols: $e=$ electron; $\pi=\pi$ meson (pion); $\mu=\mu$ meson (muon); $p=$ proton; $n^{\prime}=$ neutron; $d=$ deuteron. In addition, the following symbols are employed to denote various decay products in Table 81-1: $\gamma=$ photon; $\nu=$ neutrino; $\boldsymbol{\eta}, \boldsymbol{\eta}^{\prime}=$ neutral particles as yet unspecified, which may or may not be alike.

## b. Phenomenological categories

$V$ event. Phenomenon interpretable as the decay in fight of a $K$ meson or hyperon. Subclasses: " $V^{0}$ event," decay of a neutral particle; " $V^{ \pm}$event," decay of a charged particle.
$S$ event. Phenomenon interpretable as the decay at rest of a $K$ meson or hyperon.
2. A specific symbol (Greek letter) designates each individual type of particle (see Table 8l-1); capital Greek letters are used for hyperons (for the proton and neutron, however, the conventional symbols $p$ and $n$, respectively, are retained).

Table 81-1. Characteristics of Mesons and Hyperons*


Parentheses denote information which is probable but not firmly established. The symbols in brackets are alternative designations for a given particle.

* This table was prepared in November, 1954, and is based primarily on the literature published prior to that time. A limited revision was possible several months later. However, the very rapid advances in the field of unstable particles will certainly have yielded improved data for some of the $K$ and $Y$ particles even by the time this goes to press. For references and explanatory remarks, see the Notes on Table 81-1, page 8-242. Conversion factors needed in constructing the table were based on the same data as in Sec. 8a. Symbols are defined in footnote 2, page 8-240. The estimated uncertainties are standard errors.
$\dagger Q$ is the total kinetic energy of the decay secondaries.
81-2. Characteristics of Mesons and Hyperons. ${ }^{1}$ Table 81-1 gives constants and decay schemes for mesons and hyperons whose existence is established, though in several instances some of their basic properties remain to be finally determined. The masses are given in units of the electron mass $m_{e}$ and in Mev. References and notes explaining how the numbers in the table were arrived at appear on the following pages.

To keep the references within bounds, only a set of representative papers is
${ }^{1}$ A review of the production and interactions of $\pi$ mesons could not be included here because of space limitations (see, however, MR1, RA, RA1, BH5).
given. Other works can be traced through these. In general, the most precise data on $L$ mesons derive from experiments with high-energy accelerators, the detectors being cloud chambers, photographic emulsions, and counters. Until very recently, information about $K$ and $Y$ particles came principally from cosmic-ray observations employing the first two techniques. As this is being written, however, the new Bev accelerators are beginning to contribute decisively to this field.

Notes on Table 8l-1. L meson masses: (1) Charged pions. From momentumrange comparison with protons (BW1, SF1), the mass of $\pi^{+}$is ( $273.3 \pm 0.2$ ) $m_{e}$, and the mass ratio $\pi^{-} / \pi^{+}$is $0.998 \pm 0.002$. For the $\pi^{-}$mass (CK), the energy of the $\gamma$ rays from the reaction $p+\pi^{-} \rightarrow n+\gamma$ yields $(272.7 \pm 0.3) m_{e}$. Within the precision thus far obtained there appears to be no evidence for a difference in mass between $\pi^{+}$and $\pi^{-}$. Accordingly, a single mass value, ( $273.0 \pm 0.5$ ) $m_{e}$, is adopted here for $\pi^{ \pm}$. This value was also used in computing the $\pi^{0}$ and $\mu^{ \pm}$masses in Table 81-1. (2) Neutral pion. The best mass determinations for $\pi^{0}$ are based on the $\pi^{-}-\pi^{0}$ mass difference. The Doppler shift of the decay $\gamma$ rays from $p+\pi^{-} \rightarrow n+\pi^{0}$ and $\pi^{0} \rightarrow 2 \gamma$ yields (PW) a difference of $(10.6 \pm 2) m_{e}$. The angular correlation of these $\gamma$ rays (CW1) gives $8.8 \pm 0.6 m_{e}$. Adopting the value 9.2, we derive $273.0-9.2=$ $(263.8 \pm 1) m_{e}$ for the $\pi^{0}$ mass. (3) Muons. Using the mass difference $\pi^{+}-\mu^{+}=$ $(66.4 \pm 0.1) m_{e}(\mathrm{SF} 2, \mathrm{BW} 2)$, we obtain $273.0-66.4=(206.6 \pm 0.5) m_{e}$.
$L$ meson lifetimes: (1) Charged pions. Three recent precise measurements for $\pi^{+}$ (in units of $10^{-8} \mathrm{sec}$ ) give $2.53 \pm 0.10(\mathrm{KW}), 2.54 \pm 0.11(\mathrm{JM})$, and $2.58 \pm 0.14(\mathrm{WC})$. Their mean, 2.55, agrees with the $\pi^{-}$value $2.55 \pm 0.19$ (DR1). Hence a single mean life for $\pi^{ \pm}$appears in the table. (2) Neutral pion. Observations on the alternate mode of decay, $\pi^{0} \rightarrow \gamma+e^{+}+e^{-}$, yield a "most probable value" of $5 \times 10^{-15} \mathrm{sec}$, with the limits $3 \times 10^{-15}<T<1.0 \times 10^{-14} \mathrm{sec}$ for the mean life (AB). The alternative mode of decay has a branching ratio of $0.013 \pm 0.004$ with respect to the usual decay into two photons (AB). (3) Muons. The average of three determinations (AL, RB1, BW3) has been adopted for the mean life of $\mu^{ \pm}$.
$L$ meson statistics and spins: (1) Pions. The spin of $\pi^{+}$has been experimentally determined to be zero (CW2, CD, DR); it is therefore a boson. The neutral pion must also be a boson, as it decays into photons. Since the number of photons is 2 , not 3 , the $\pi^{0}$ spin cannot be 1 but must be an even integer, probably zero (YC, LL2). The $\pi^{-}$, too, is a boson, as can be inferred from the reaction $\pi^{-}+p \rightarrow \pi^{0}+n$. Its spin is also probably zero. (2) Muons. $\pi-\mu$ decay is a two-body process, and the neutral secondary is known to have zero or near-zero rest mass. Assuming that this neutral particle is a neutrino, in order to avoid introducing a new neutral particle of vanishingly small mass, then the muon is a fermion. Moreover, on the neutrino assumption, the spin of $\mu^{+}$is $\frac{1}{2}$ since the $\pi^{+}$spin is zero. Some uncertainty over the decay scheme $\mu \rightarrow e+2 \nu$ persists, partly because of conflicting results on a zero cutoff at the high-energy end of the positron spectrum from $\mu^{+}$decay (see BH1, SR, VJ, LA1, HH). Should zero cutoff become firmly established, this would strengthen the case for a muon spin of $\frac{1}{2}$.
$K$ mesons: Tau ( $\tau^{ \pm}$). The $Q$ value 74.7 Mev is that reported at the Padua Confer, ence (PP). Other values, most of them close to this one, have been reported (LW, HH1, BC, LD, LD1, DA, CJ1, BG, CM1, AE2). Using this Q value ( $146.2 m_{e}$ ) and the $\pi^{ \pm}$mass of $273.0 m_{e}$ adopted here, the mass of $\tau^{ \pm}$is $965.2 \pm 1.3 m_{e}$. The mean life of $\tau^{ \pm}$is $10^{-8} \mathrm{sec}(\mathrm{AL} 1, \mathrm{PP}, \mathrm{BC})$. Earlier estimates gave a lower limit of $10^{-9}$ sec (FP, HA). Some evidence exists (CJ2, AE1, BP1, SN, BM1) for an alternative mode of decay of the tau meson, $\tau^{ \pm} \rightarrow \pi^{ \pm}+2 \pi^{0}$. The single charged secondary in these events, unlike that in most $K^{ \pm}$decay events with a single $L^{ \pm}$secondary, is emitted with an energy $<53 \mathrm{Mev}$ in the CM system. The expected $Q$ for this mode of decay, 84.1 Mev , differs appreciably from that for the usual decay into three charged pions, in view of the $\pi^{ \pm}-\pi^{0}$ mass difference.
$\theta^{0}$ meson. The two secondaries of $\theta^{0}$ decay are $L^{ \pm}$mesons, and at least one of them is a pion (TR, TR1). Double production of $\theta^{0}$ and $\Lambda^{0}$ from $\pi^{-}+p$ (TR2, FW2) suggests that $\theta^{0}$ is a boson, and that the second $L^{ \pm}$meson is therefore also a pion. The $Q$ value is $214 \pm 5 \mathrm{Mev}$ (TR3, BK). Accordingly, adopting the decay scheme $\theta^{0} \rightarrow \pi^{+}+\pi^{-}+214 \mathrm{Mev}$, the mass of $\theta^{0}$ is $965 \pm 10 m_{e}$. The mean life of $\theta^{0}$ (GD, BK1, AW) is $1.6_{-0.4}^{+0.6} \times 10^{-10} \mathrm{sec}$. Anomalous $Q$ values. Among some $V^{0}$ events with two $L^{ \pm}$secondaries, there appear to be some $Q$ values considerably lower than $214 \pm 5 \mathrm{Mev}$. Some of these are provisionally attributable to the decay scheme $\pi^{0} \rightarrow \pi^{+}+\pi^{-}+\pi^{0}$; others are not (VV, YH).
other $K^{ \pm}$mesons: In addition to the well-defined $\tau^{ \pm}$, there is evidence for the probable existence of at least three or four other types of $K^{ \pm}$mesons. These have been relatively slow in getting established, mainly because the visible evidence of their decay is confined to a single charged secondary, unlike that of the $\tau^{ \pm}$or $\theta^{0}$. From the $\boldsymbol{\chi}\left(K_{\pi 2}\right)$, this charged offspring is a pion; from the $K_{\mu 2}$ or $K_{\mu 3}$, it is a muon; and from the $K_{e 3}$, it is an electron. (The subscripts $\pi 2$, for example, denote a $\pi^{ \pm}$ secondary and two-body decay.) These various types of $K^{ \pm}$meson will be described in turn.

1. Chi meson ( $\chi, K_{\pi 2}, \theta^{ \pm}$). A pion secondary of apparently unique energy $\sim 109$ Mev is emitted in certain $K$ meson decays in nuclear emulsions (MM), and this led to the proposed decay scheme $\chi^{ \pm} \rightarrow \pi^{ \pm}+\eta$, hence the alternative designation $K_{\pi 2}$. The probability that the neutral particle is a $\pi^{0}$ is supported by observations of photon secondaries (BH2, DH, HA1, HE) as well as by other evidence (BM1, HR1, GS). Besides decaying into two pions with a $Q \approx 219 \mathrm{Mev}$, the $\chi$ has a mass (GS, RD) very close to that of the $\theta^{0}$. Therefore, it is natural to regard the $\chi$ as the charged counterpart of the $\theta^{0}$, and the former is sometimes referred to as $\theta^{ \pm}$(e.g., GM, RM).
2. $K_{\mu 2}$ meson. Evidence for a two-body decay, $K_{\mu} \rightarrow \mu+\eta$ (where $\eta$ is an unspecified neutral particle), came originally from cloud-chamber observations of a distribution of transverse momenta of secondary particles sharply peaked near $220 \mathrm{Mev} / \mathrm{c}$ (GB). More decisive evidence has recently come from range observations on the stopping muon secondaries in cloud chambers (HE), and in emulsions (GS). The muon has an energy of about 154 Mev . Although at first the $K_{\mu 2}$ mass appeared to be appreciably lower than that of the $\tau^{ \pm}$, more recent measurements (GS, RD) suggest that it is quite close to the tau mass. Actually, in an experiment at the Bevatron, the mass difference $\tau^{+}-K^{+}$was found to be $5 \pm 5 m_{e}$, using momentum and range for mass determination (FS). (In these measurements " $K^{+}$" was defined as a positive $K$ meson decaying into a particle with near-minimum ionization. The $K^{+}$ collection probably consisted mainly of $K_{\mu 2}$ and $\chi$ mesons with a slight admixture of $K_{\mu 3}$ and $K_{\text {e3 }}$.) The lack of secondary photons associated with the decay of $K_{\mu 2}$ under conditions in which the tracks of electron progeny would be visible makes it - very unlikely that the neutral secondary is a pion or photon. Hence the decay scheme commonly assumed is $K_{\mu 2} \rightarrow \mu+\nu$, and this implies a $Q$ value of $\sim 391 \mathrm{Mev}$. From both cosmic-ray and Bevatron experiments, the mean life appears to be $\sim 10^{-8} \mathrm{sec}$ (RD).
3. $K_{\mu 3}$ meson, also called kappa ${ }^{1}(\kappa)$, has a muon secondary which has been observed to be emitted with various energies (OC, MM, HT, IN, BA, YC1). One assumes, therefore, a three-body decay, $K_{\mu 3} \rightarrow \mu+\eta+\eta^{\prime}$. The identity of the neutral secondaries $\eta, \eta^{\prime}$ is unknown at the time of this writing. There is no evidence against the scheme $\kappa \rightarrow \mu+2 \nu$, and on this assumption the mean life has been calculated to be $\sim 10^{-9} \mathrm{sec}(\mathrm{DJ} 1, \mathrm{DN})$. Experiments indicate that it lies between $4 \times 10^{-9} \mathrm{sec}$

[^386]and $10^{-8} \mathrm{sec}(\mathrm{NJ}, \mathrm{AJ}, \mathrm{DR2}$, BK2, ML, BH3, YC1, BC, HR4). However, some of these experiments probably involved a mixture of various $K$ mesons. The emission of two neutrinos would of course imply that the kappa is a fermion. Current theoretical views (GM), on the other hand, favor the assumption that $K$ mesons are bosons. Modes of decay consistent with this idea [e.g., $\kappa \rightarrow \mu+\nu+\left(\pi^{0}\right.$ or $\left.\gamma\right)$ ] are not, thus far, excluded by experiment. The masses reported for the kappa range from approximately 900 to $1,500 m_{e}$ (VP, PC), with some clustering of values near $1,000 m_{e}$ (MM, HT, DR2, SM1, SM3). There is no clear evidence that the kappa mass differs significantly from those of the better-known $K$ mesons, hence the entry ( $\sim m_{\tau}$ ) in the mass column of Table 8l-1.
4. $K_{e 3}$ meson. Some $K$ mesons arrested in nuclear emulsion have a singly charged secondary which suffers along its path Bremsstrahlung loss of a magnitude expected for electrons but not for $L$ mesons (FM3, DC1, KM, GG, HH1). The electrons so identified are emitted with various energies; ${ }^{1}$ therefore, a three-body decay scheme is assumed: $K_{e 3} \rightarrow e+\eta+\eta^{\prime}$, where, as for the $K \mu_{3}$, the neutral secondaries are not yet identified. In mass, the $K_{e 3}$ meson appears close to the $\tau$ (RD). The remarks on statistics made above for the kappa apply as well to the $K_{e 3}$. In fact, the $K_{\mu 3}$ and $K_{e 3}$ may turn out to be a single type of $K$ meson which undergoes alternative modes of decay.
Negative $K$ mesons have been observed as $V$ and $S$ events in cloud chambers, and by their nuclear absorption in photographic emulsions (VP, p. 196; FW, LD, HJ, HJ1, HJ2, HR2, SN, SM3, TG, DH1, BK1, CW5, FW7). The latter have been observed much more rarely than $K$ decay events.
Production of $K$ mesons with the Brookhaven Cosmotron (HR4, HJ1, HG) and the Radiation Laboratory's Bevatron (KL, BR2, BR3, CW4, GG, RD) has begun to be copious and will make possible a rapid growth of our knowledge of the interactions and other properties of $K$ mesons.

Neutral hyperon $\Lambda^{0}$. Although the $\Lambda^{0}$ was discovered and has been mainly observed in cloud chambers, the most precise $Q$ values (and hence mass values) have resulted from range measurements in emulsion (FM1). These yield $Q=36.9 \pm 0.2 \mathrm{Mev}$ and $m=2,181 \pm 2 m_{e}$. Cloud-chamber results are in good agreement (TR1, BH4) or fair agreement (AR, VV1) with this $Q$ value. Mean-life measurements from various laboratories yield an estimate (PD1) of $3.7 \pm 0.6 \times 10^{-10} \mathrm{sec}$. The decay products of the $\Lambda^{0}$ are $p$ and $\pi^{-}$; since $\pi^{-}$is a boson, $\Lambda^{0}$ must be a fermion. Many anomalous $Q$ values have been observed for $V^{0}$ events which have decay products resembling those of the $\Lambda^{0}$.

Charged hyperons: $\Sigma^{+}$. This hyperon appears to have two modes of decay. The $Q$ value, and hence the mass, of $\Sigma^{+}$is best known from its decay into a proton and (presumably) $\pi^{0}$. When $\Sigma^{+}$decays after coming to rest in emulsion, the proton has a definite range ( $\sim 1.67 \mathrm{~mm}$ ) and therefore an energy which can be precisely measured. From this, the $Q$ and mass are rather well known (BA1, CC, BM2). The alternative mode of decay $\Sigma^{+} \rightarrow n+\pi^{+}$has been inferred from observations of the secondary $\pi^{+}$ (LD2, KD, CM2, YC1, FM2), which yielded an approximate mean of 114 Mev for the $Q$ value. However, in typical emulsion observations, the energetic pion leaves the stack; so its energy (and therefore the $Q$ value) is not so precisely determined as that of the short-range proton in the first mode of decay. What is probably a better value, $\sim 110 \mathrm{Mev}$, is obtained by computing the $Q$ for the alternative decay scheme using the known $\Sigma^{+}$mass, $2,327 \pm 4 m_{e}$. The mean life of $\Sigma^{+}$is estimated to lie between $10^{-11}$ and $3 \times 10^{-10} \mathrm{sec}(\mathrm{YC1}, \mathrm{BC})$. The symbol $\Sigma^{+}$, rather than $\Lambda^{+}$, is employed because this particle does not appear to be the charged counterpart of the $\Delta^{0}$. Like the latter, it decays into a nucleon and pion, but its $Q$ value is quite different from that of the $\Lambda^{0}$.

[^387]$\Sigma^{-}$hyperon. Observations have been reported (FW3, HE, p. 97, YC1) of a negative counterpart of the $\Sigma^{+}$which decays according to $\Sigma^{-} \rightarrow n+\pi^{-}$. In emulsion, this process is ordinarily indistinguishable from $\Sigma^{+} \rightarrow n+\pi^{+}$since the fast pion's sign is unknown unless it is arrested in the emulsion (and this is likely to happen only in a rather large stack). In such cases, the event must be labeled $\Sigma^{ \pm} \rightarrow n+\pi^{ \pm}$.
"Cascade hyperon" $\Xi^{-}$. This higher-mass hyperon is observed in cloud chambers as a $V^{-}$event in which a $\Lambda^{0}$ (or rather, its pair of charged secondaries) appears near the decay point of the $V^{-}$, hence the phenomenological name " $V$-particle cascade" (AR1, AC, CE). The charged secondary of $\Psi^{-}$is an $L^{-}$meson, very probably a pion. Thus, in the scheme $\Xi^{-} \rightarrow \Lambda^{0}+\pi^{-}$, the parent as well as the daughter hyperon each gives rise, successively, to a $\pi^{-}$. The $Q$ in the primary decay is $\sim 65 \mathrm{Mev}$; that in the decay of the secondary $\Lambda^{\circ}$ is, as usual, 37 Mev .

There is some evidence for nuclear interactions of charged hyperons (FM2, JR, HE).
Associated production of hyperons and $K$ mesons (PA, NY, PD2) according to the scheme $\pi^{-}+p \rightarrow Y+K$, where the products may be either charged or neutral, has been observed (FW2, FW3, FW5, DC, TR2). At a pion energy of 1.5 Bev the cross section for this process is $\sim 1$ millibarn (FW4). The term "associated production" also embraces interactions in which a $K$ meson is absorbed and a $Y$ particle emitted (e.g., DH1, HJ1), or in which both a $K$ meson and hyperfragment (see below) are emitted (DA1). Simultaneous production of $\xi^{-}$and two $\theta^{0}$ mesons has been observed (TG, GM2). There is also an indication of associated production in nucleon-nucleon collisions (BM3).

Classification schemes have been proposed (GM, GM1, GM2, SR1) for $K$ mesons and hyperons based on the assignment of an isotopic spin to each, and the correlation of their properties with this quantum number. The existence of additional unstable particles has been inferred from such schemes. At least one of these, a charged hyperon even heavier than the $\Xi^{-}$, has possibly been observed (EY); others, such as the $\Sigma^{0}$; would be difficult to detect.

Hyperons as excited nucleons. The modes of decay of $Y$ particles suggest that a hyperon is an "excited nucleon" which transforms into a lower-energy nucleon by emitting a pion. This view gains support from the production of hyperons in collisions in which the primary energy is insufficient to provide the rest mass of the hyperon (FW1, FW2, SM2, PC2). Moreover, under certain conditions a hyperon can apparently take the place of an ordinary nucleon in an excited nuclear fragment (DM), as discussed below.
Bound hyperons; hyperfragments. The disintegration of certain unstable nuclear fragments produced in high-energy collisions is interpreted as due to the decay of bound $\Lambda^{0}$ particles contained in these "hyperfragments" (DM, CP, BA2, TD, CJ3, FP1, HR3, FW4, FW6, GR, SN1, PC2).' This decay may be "mesonic," in which case a pion is emitted, or "nonmesonic," in which event its rest-mass energy is available for the kinetic energy of the fragment's disintegration products (CW3). There is evidence that a $\Lambda^{0}$ particle is bound more weakly than is the neutron which it supplants. A notable example is the hyperfragment ${ }^{4} \mathrm{He}$ * (HR3, SN1). The existence of hyperfragment ${ }^{4} \mathrm{H} .{ }^{*}$ has been predicted (DR3) and independently observed (GS). Also, the possibility of various dinucleon hyperfragments has been proposed (PH), including that of an excited dineutron; decay of the latter may have been observed (LD).

## References ${ }^{2}$

AB. Anand, B. M.: Proc. Roy. Soc. (London), ser. A, 220, 183 (1953).
AC. Anderson, Cowan, Leighton, and Van Lint: Phys. Rev. 92, 1089 (1953).
${ }^{\mathbf{1}}$ For additional references to the literature on hyperfragments, see GR and SN1.
${ }^{2}$ F. W. O'Dell has kindly helped in checking the references.

AE. Amaldi, Anderson, Blackett, Fretter, Leprince-Ringuet, Peters, Powell, Rochester, Rossi, and Thompson: Physics Today 6 (12), 24 (1953); Nature 173, 123 (1954).
AE1. Amaldi, Baroni, Castagnoli, Cortini, Franzinetti, and Manfredini: Nuovo cimento 11, 207 (1954).
AE2. Amaldi, Baroni, Castagnoli, Cortini, and Manfredini: Nuovo cimento 10, 937 (1953).

AJ. Astbury, Buchanan, Chippendale, Millar, Newth, Page, Rytz, and Sahiar: Phil. Mag. 44, 242 (1953).
AL. Alvarez, Longacre, Ogren, and Thomas: Phys. Rev. 77, 752 (1950).
AL1. Alvarez, L. W., and S. Goldhaber: UCRL Report 3041, June, 1955.
AR. Armenteros, Barker, Butler, and Cachon: Phil. Mag. 42, 1113 (1951).
AR1. Armenteros, Barker, Butler, Cachon, and York: Phil. Mag. 43, 597 (1952).
AR2. Armenteros, Barker, Butler, Coates, and Sowerby: Phil. Mag. 44, 861 (1953).
AW. Alford, W. L., and R. B. Leighton: Phys. Rev. 90, 622 (1953).
BA. Bonetti, Levi Setti, and Panetti: Proc. Roy. Soc. (London) 221, 318 (1954).
BA1. Bonetti, Levi Setti, Panetti, and Tomasini: Nuovo cimento 10, 345, 1736 (1953).
BA2. Bonetti, Levi Setti, Panetti, Scarsi, and Tomasini: Nuovo cimento 11, 210, 330 (1954).
BC. Butler, C. C.: Report at Glasgow Conference on Nuclear Physics, July, 1954; cf. J. R. Richardson, Technical Report ONRL-72-54, Office of Naval Research, London.
BG, Baroni, Castagnoli, Cortini, Franzinetti, and Manfredini: Proc. Roy. Soc. (London), ser. A, 221, 384 (1954).
BH. Bridge, H. S., and M. Annis: Phys. Rev. 82, 445 (1951).
BH1. Bramson, Seifert, and Havens: Phys. Rev. 88, 304 (1952).
BH2. Bridge, Courant, Dayton, De Staebler, Rossi, Safford, and Willard: Nuovo cimento 12, 81 (1954).
BH3. Bridge, Peyrou, Rossi, and Safford: Phys. Rev. 90, 921 (1953).
BH4. Bridge, Peyrou, Rossi, and Safford: Phys. Rev. 91, 362 (1953).
BH5. Bethe, H. A., and F. de Hoffmann: "Mesons and Fields," vol. II, Mesons, Row, Peterson \& Company, Evanston, Ill., 1955.
BJ. Blair, J. S., and G. F. Chew: Ann. Rev. Nuclear. Sci. 2, 165 (1953).
BK. Barker, K. H.; Proc. Roy. Soc. (London), ser. A, 221, 328 (1954).
BK1. Barker, K. H.: Proc. Duke University Cosmic Ray Conference, December, 1953.
BK2. Barker, Butler, Sowerby, and York: Phil. Mag. 43, 1201 (1952).
BK3. Bøggild, Hooper, Ortel, and Scharff: "Some Studies on Heavy Meson Events," 1955.

BM. Block, Harth, Fowler, Shutt, Thorndike, and Whittemore: Phys. Rev. 99, 261 (1955).

BM1. Baldo, Belliboni, Cecearelli, Grilli, Sechi, Vitale, and Zorn: Nuovo cimento 1, 1180 (1955).
BM2. Baldo, Belliboni, Ceccarelli, and Vitale: Padua Conference, April, 1954.
BM3. Block, Harth, Fowler, Shutt, Thorndike, and Whittemore: Phys. Rev. 99, 261 (1955).

BP. Bagnères-de-Bigorre: Proc. International Congress on Cosmic Radiation, July, 1953.

BP1. Barrett, P.: Phys. Rev. 94, 1328 (1954).
BR. Brown, Camerini, Fowler, Muirhead, Powell, and Ritson: Nature 163, 82 (1949).

BR1. Bjorklund, Crandall, Moyer, and York: Phys. Rev. 77, 213 (1950).
BR2. Birge, Haddock, Kerth, Peterson, Sandweiss, Stork, and Whitehead: Phys. Rev. 99, 329 (1955).
BR3. Birge, Peterson, Stork, and Whitehead: UCRL-3083, July, 1955.
BW1. Barkas, W. H.: UCRL-2327, Berkeley, Sept. 16, 1953.
BW2. Birnbaum, Smith, and Barkas: Phys. Rev. 83, 895A (1951).
BW3. Bell, W. E., and E. P. Hincks: Phys. Rev. 84, 1243 (1951).
CC. Castagnoli, Cortini, and Manfredini: Nuovo cimento 12, 464 (1954).
CD. Clark, Roberts, and Wilson: Phys. Rev. 83, 649L (1951).

CE. Cowan, E. W.: Phys. Rev. 94, 161 (1954).
CH. Courant, H.: Phys. Rev. 99, 282 (1955).
CJ1. Crussard, Kaplon, Klarmann, and Noon: Phys. Rev. 95, 584L (1954).
CJ2. Crussard, Kaplon, Klarmann, and Noon: Phys. Rev. 98, 253L (1954).
CJ3. Crussard, J., and D. Morellet: Compt. rend. 236, 64 (1953).
CK. Crowe, K. M., and R. H. Phillips: Phys. Rev. 96, 470 (1954).
CM1. Ceccarelli, Dellaporta, Merlin, Quareni, and Zorn: Proc. Roy. Soc. (London), ser. A, 221, 386 (1954).
CM2. Ceccarelli, M., and M. Merlin: Nuovo cimento 10, 1207 (1953).
CP. Ciok, Danysz, and Gierula: Nuovo cimento 11, 436-445 (1954).
CW1. Chinowsky, W., and J. Steinberger: Phys. Rev. 93, 586 (1954).
CW2. Cartwright, Richman, Whitehead, and Wilcox: Phys. Rev. 91, 677 (1953).
CW3. Cheston, W., and H. Primakoff: Phys. Rev. 92, 1537 (1953).
CW4. Chupp, G. Goldhaber, S. Goldhaber, Goldsack, Lannutti, Smith, and Webb: Phys. Rev. 99, 335 (1955).
CW5. Chupp, G. Goldhaber, S. Goldhaber, and Webb: UCRL-3044, June 14, 1955.
DA. Debenedetti, Garelli, Lovera, Tallone, and Vigone: Nuovo cimento 11, 420 (1954).

DA1. Debenedetti, Garelli, Tallone, and Vigone: Nuovo cimento 12, 466 (1954).
DC. Dahanayake, Francois, Fujimoto, Iredale, Waddington, and Yasin: Phil. Mag. 45, 855 (1954).
DC1. Dahanayake, Francois, Fujimoto, Iredale, Waddington, and Yasin: Phil. Mag.
46, 1219 (1954).
DC2. Dilworth, Occhialini, and Scarsi: Ann. Rev. Nucl. Science 4, 271 (1954).
DH. DeStaebler, H., Jr., and B. V. Sreekantan: Phys. Rev. 98, 1520 (1955).
DH1. DeStaebler, H., Jr.: Phys. Rev. 95, 1110 (1954).
DJ. DuMond, J. W. M., and E. R. Cohen: Revs. Modern Phys. 25, 691 (1953).
DJ1. Davidson, J. P.: Phys. Rev. 91, 1020L (1953).
DM. Danysz, M., and J. Pniewski: Phil. Mag. 44, 348 (1953).
DN. Dallaporta, N.: Nuovo cimento 11, 82 (1954).
DP. Proc. Duke University Conference on Cosmic Rays, December, 1953.
DR. Durbin, Loar, and Steinberger: Phys. Rev. 83, 646 (1951).
DR1. Durbin, Loar, and Havens: Phys. Rev. 88, 179 (1952).
DR2. Daniel, R. R., and D. H. Perkins: Proc. Roy. Soc. (London), ser. A, 221, 351 (1954).

DR3. Dalitz, R. H.: Phys. Rev. 99, 1475 (1955).
EY. Eisenberg, Y.: Phys. Rev. 96, 541 (1954).
FM1. Friedlander, Keefe, Menon, and Merlin: Phil. Mag. 45, 533 (1954).
FM2. Friedlander, M. W.: Phil. Mag. 45, 418 (1954).
FM3. Friedlander, Keefe, Menon, and van Rossum: Phil. Mag. 45, 1043 (1954).
FP. Fowler, Menon, Powell, and Rochat: Phil. Mag. 42, 1040 (1951).
FP1. Freier, Anderson, and Naugle: Phys. Rev. 94, 677 (1954).
FS. Fung, Mohler, Pevsner, and Ritson: Phys. Rev. 101, 493 (1956).
FW. Fry, W. F., and J. J. Lord: Phys. Rev. 87, 533 (1952).
FW1. Fretter, Gregory, Johnston, Lagarrigue, Meyer, Muller, and Peyrou: Bagnères Conference Proc. 26 (1953).
FW2. Fowler, Shutt, Thorndike, and Whittemore: Phys. Rev. 91, 1287 (1953).
FW3. Fowler, Shutt, Thorndike, and Whittemore: Phys. Rev. 93, 861 (1954).
FW4. Fry, W. F., and G. R. White: Nuovo cimento 11, 551 (1954).
FW5. Fowler, Shutt, Thorndike, and Whittemore: Phys. Rev. 98, 121 (1955).
FW6. Fry, Schneps, and Swami: Phys. Rev. 99, 1561 (1955); 101, 1526 (1956).
FW7. Fry, Schneps, Snow, and Swami: Phys. Rev. 100, 1448 (1955).
GB. Gregory, Lagarrigue, Leprince-Ringuet, Muller, and Peyrou: Nuovo cimento 11, 292 (1954).
GD. Gayther, D. B.: Phil. Mag. 45, 570 (1954).
GG. Goldhaber, G., and S. J. Goldsack: Bull. Am. Phys. Soc. 30 (1), 64 (1955).
GM. Gell-Mann, M., and A. Pais: Proc. International Physics Conference, Glasgow, July, 1954.
GM1. Goldhaber, M.: Phys. Rev. 92, 1279 (1953).

GM2. Gell-Mann, M.: Phys. Rev. 92, 833 (1953).
GR. Gatto, R.: Nuovo cimento 1, 372 (1955); for references to the hyperfragment literature, see especially p. 378.
GS. "G-Stack Collaboration Experiment (1954)," Cosmic-ray Laboratories of Bristol, Padua, Milan, Genoa, and Dublin (unpublished).
HA. Herz, Hodgson, and Tennent: Phil. Mag. 44, 85 (1953).
HA1. Hodson, Ballam, Arnold, Harris, Rau, Reynolds, and Treiman: Phys. Rev. 96; 1089 (1954).
HE. "High Energy Nuclear Physics," Proceedings of the Fifth Annual Rochester Conference, January, 1955, Interscience Publishers, Inc., New York. See especially the summary by B . Rossi, pp. 124 ff .
HG. Harris, G. G.: Phys. Reu. 98, 1202 (A), (1955).
HH. Hubbard, H. W.: University of California Radiation Laboratory Report, UCRL-1623, 1952 (unpublished).
HH1. Heckman, H. H.: UCRL Report 3003, May 18, 1955.
HJ. Hornbostel, J., and E. O. Salant: Phys. Rev. 93, 902L (1954).
HJ1. Hornbostel, J., and E. O. Salant: Phys. Rev. 98, 218 (1955).
HJ2. Hornbostel, J., and E. O. Salant: Phys. Rev. 99, 338 (1955).
HR1. Hill, Salant, and Widgoff: Bull. Am. Phys. Soc. 29 (7), 32 (1954).
HR2. Hill, Salant, and Widgoff: Phys. Rev. 94, 1794L (1954).
HR3. Hill, Salant, Widgoff, Osborne, Pevsner, Ritson, Crussard, and Walker: Bull. Am. Phys. Soc. 29, 60 (1954).
HR4. Hill, Salant, and Widgoff: Phys. Rev. 99, 229 (1955).
HT. Hoang, Jauneau, Kayas, Leprince-Ringuet, Morellet, Orkin-Lecourtois, and Trembley: Compt. rend. 238, 1633 (1954).
HT1. Hoang, Jauneau, Jouvin, Kayas, Leprince-Ringuet, Morellet, Orkin-Lecourtois, and Trembley, Suppl. Nuovo cimento, ser. X, 1 (3), (1955).
IN. Isachsen, Vangen, and Sörensen: Phil. Mag. 44, 224 (1953).
JM. Jakobson, Shulz, and Steinberger: Phys. Rev. 81, 894 (1952).
JR. Johnston, R. H. W., and C. O'Ceallaigh: Phil. Mag. 45, 424 (1954).
KD. King, Seeman, and Shapiro: Phys. Rev. 92, 838 (1953).
KL. Kerth, Stork, Birge, Haddock, and Whitehead: Bull. Am. Phys. Soc. 30 (3), 41 (1955).
KM. Kaplon, Klarmann, and Yekutieli: Phys. Rev. 99, 1528 (1955).
KW. Kraushaar, W. L.: Phys. Rev. 86, 513 (1952).
LA1. Lagarrigue, A., and C. Peyrou: J. phys. radium 12, 848 (1951).
LC. Lattes, Occhialini, and Powell: Nature 160, 453 (1947).
LD. Lal, Pal, and Peters: Phys. Rev. 92, 438 (1953).
LD1. Lal, Pal, and Peters: Proc. Indian Acad. Sci. 38, 398 (1953).
LD2. Lal, Pal, and Peters: Bagnères Conference Rept. 146 (1953).
LL. Leprince-Ringuet, L., and M. L'heritier: Compt. rend. 219, 618 (1944).
LL1. Leprince-Ringuet, L., Ann. Rev. Nuclear Sci. 3, 39 (1953).
LL2. Landau, L. D.: Doklady Akad. Nauk U.S.S.R. 60, 207 (1948).
LL3. Leprince-Ringuet, L., and B. Rossi: Phys. Rev. 92, 722 (1953).
LW. Lock, W. O., and J. V. Major: Proc. Roy. Soc. (London), ser. A, 221, 391 (1954).
ML. Mezzetti, L., and J. W. Keuffel: Phys. Rev. 95, 858 (1954).
MM. Menon, M. G. K., and C. O'Ceallaigh: Proc. Roy. Soc. (London), ser. A, 221, 292 (1954).
MR1. Marshak, R. E.: "Meson Physics," McGraw-Hill Book Company, Inc., New York, 1952.
NJ. Newth, J. A. : Proc. Roy. Soc. (London), ser. A, 221, 406 (1954).
NY. Nambu, Nishina, and Yamaguchi: Progr. Theoret. Phys. (Japan) 6, 615 (1951).

OC. C. O'Cealleigh: Phil. Mag. 42, 1032 (1951).
PA. Pais, A.: Phys. Rev. 86, 663 (1952).
PC. Powell, C. F., discussion leader, Proc. Roy. Soc. (London), ser. A, 221 (1146), 277-420 (1954).
PC1. Powell, C. F.: Repts. Progr. in Phys. 13, 350 (1950).
PC2. Powell, C. F.: Nature 173, 469 (1954).

PD1. Page, D. I.: Phil. Mag. 45, 863 (1954).
PD2. Peaslee, D. C.: Phys. Rev. 86, 127 (1952) ; Progr. Theoret. Phys. (Japan) 10, 227 (1953).

PH. Primakoff, H., and W. Cheston: Phys. Rev. 93, 908 (1954).
PP. Proceedings of Padua Conference on Unstable Particles, Suppl., Nuovo cimento 12 (2), 163 (1954).
PW. Panofsky, Aamodt, and Hadley: Phys. Rev. 81, 565 (1951).
RA. Rosenfeld, A. H.: Phys. Rev. 96, 130 (1954).
RA1. Rosenfeld, A. H.: Phys. Rev. 96, 139 (1954).
RB1. Rossi, B., and N. Nereson: Phys. Rev. 62, 417 (1942).
RB2. Rossi, B.: "High Energy Particles," Prentice-Hall, Inc., Englewood Cliffs, N.J., 1952.

RD. Ritson, Pevsner, Fung, Widgoff, Zorn, S. Goldhaber, and G. Goldhaber: Phys. Rev. 101, 1085 (1956).
RG. Rochester, G. D., and C. C. Butler: Nature 160, 855 (1947).
RG1. Rochester, G. D., and C. C. Butler: Repts. Progr. in Phys. 16, 364 (1953).
RM. Appa Rao, M. V. K., and S. Mitra: Proc. Indian Acad. Sci. (Sec. A) 41, 30 (1955).

RU. Proc. Univ. Rochester Ann. Conf. on High Energy Physics, 1952-1955.
SA. Seriff, Leighton, Hsiao, Cowan, and Anderson: Phys. Rev. 78, 290 (1950).
SF1. Smith, F. M.: UCRL-2371, Berkeley, Feb. 2, 1954.
SF2. Smith, Birnbaum, and Barkas: Phys. Rev. 91, 765 (1953).
SJ. Sorrels, Leighton, and Anderson: submitted to Phys. Rev. July, 1955.
SM. Shapiro, M. M.: Report on the Bagnères Congress, Science 118, 701 (1953).
SM1. Shapiro, King, and Seeman: Proc. Bagnères Conference on Cosmic Radiation (1953).

SM2. Schein, Haskin, Glasser, Fainberg, and Brown: Bagnères Conference Proc. 166 (1953).

SM3. Shapiro, Seeman, and Stiller: "Proceedings of the Fifth Annual Rochester Conference," Interscience Publishers, Inc., New York, 1955.
SN. Seeman, Shapiro, and Stiller: Bull. Am. Phys. Soc. 30 (1), (1955).
SN1. Seeman, Shapiro, and Stiller: Phys. Rev. 100, 1480 (1955).
SR. Sagane, Gardner, and Hubbard: Phys. Rev. 82, 557 (1951).
SR1. Sachs, R. G.: Phys. Rev. 99, 1573 (1955).
TA. Thorndike, A. M.: "Mesons, A Summary of Experimental Facts," McGrawHill Book Company, Inc., New York, 1952.
TD. Tidman, Davis, Herz, and Tennent: Phil. Mag. 44, 350 (1953).
TG. Trilling, G. H., and R. B. Leighton: Phys. Rev. 100, 1468 (1955).
TR. Thompson, R. W.: Science 120, 585 (1954).
TR1. Thompson, Buskirk, Etter, Karzmark, and Rediker: Phys. Rev. 90, 329 (1953).
TR2. Thompson, Burwell, Huggett, and Karzmark: Phys. Rev. 95, 1576 (1954).
TR3. Thompson, Burwell, Cohn, Huggett, and Karzmark: Phys. Rev. A 95, 661 (1954).

VJ. Vilain, J. H., and R. W. Williams, Phys. Rev. 94, 1011 (1954).
VP. Proceedings of the International School of Physics Held at Varenna, AugustSeptember, 1953, Súppl. Nuovo cimento 11 (2), (1954).
VV. Van Lint, Anderson, Cowan, Leighton, and York: Phys. Rev. 94, 1732 (1954).
VV1. Van Lint, Trilling, Leighton, and Anderson: Phys. Rev. 95, 295L (1954).
WC. Weigand, C.: Phys. Rev. 83, 1085 (1951).
WJ. Wilson, J. G.: "Progress in Cosmic-ray Physics," North-Holland Publishing Co., Amsterdam; Interscience Publishers, Inc., New York, 1954.
YC. Yang, C. N.: Phys. Rev. 77, 242 (1950).
YC1. York, Leighton, and Bjornerud: Phys. Rev. 95, 159 (1954).
YH. Yagoda, H.: Phys. Rev. 98, 103 (1955).

# 8m. Health Physics 

KARL Z. MORGAN

Oak Ridge National Laboratory

8m-1. Introduction. Health physics, or radiological physics, is a branch of physics relating to other sciences and in particular to biology, chemistry, industrial hygiene, and engineering. It deals with the scattering and loss of energy of ionizing radiation and the damage produced by this radiation in passing through matter. It relates to the design and proper use of sources of ionizing radiation, instruments for measuring the properties of this radiation, the absorption and scattering of this radiation in protective shields and in human tissue, engineering problems associated with the construction and use of facilities for the proper handling of sources of ionizing radiation, and the setting and enforcement of proper standards of radiation protection.

## Definition of Units and Terms Commonly Used in Health Physics

Roentgen ( $r$ ). That quantity of X or gamma radiation such that the associated corpuscular emission per 0.001293 g of dry air (equal 1 cc at $0^{\circ} \mathrm{C}$ and 760 mm Hg ) produces, in air, ions carrying 1 esu of quantity of electricity of either sign.

Roentgen Equivalent Physical (rep). That amount of ionizing radiation of any type which results in the absorption of energy at the point in question in soft tissue to the extent of $93 \mathrm{ergs} / \mathrm{g}$. It is approximately equal to 1 roentgen of about 200 kv X radiation in soft tissue.

Rad. An ionizing radiation unit corresponding to an absorption of energy in any medium of $100 \mathrm{ergs} / \mathrm{g}$ ( 1 rad in tissue $=100 / 93 \mathrm{rep}$ ).

Roentgen Equivalent Man (rem). That amount of ionizing radiation of any type which produces the same damage to man as 1 roentgen of about 200 kv X radiation. ( $1 \mathrm{rem}=1 \mathrm{rad}$ in tissue $/$ RBE. It should be noted that, when the physical dose is measured in rep units, the approximate definition is used: $1 \mathrm{rem} \approx 1 \mathrm{rep} / \mathrm{RBE}$.)

Relative Biological Effectiveness ( $R B E$ ). The biological effectiveness of any type of energy of ionizing radiation in producing a specific biological damage (e.g., leukemia, anemia, sterility, carcinogenesis, cataracts, shortening of life span, etc.) relative to damage produced by X or gamma radiation of about 200 kv . It is given frequently as an average value in the common energy range of a particular type of ion (see Table 8m-2).

Curie (c). A unit of radioactivity defined as the quantity of any radioactive nuclide in which the number of disintegrations per second is $3.700 \times 10^{10}$. Latest measurements of the half life of $\mathrm{Ra}^{226}$ seem to indicate that the activity of a gram of $\mathrm{Ra}^{226}$ is slightly less than 1 curie.

Bragg-Gray Principle ${ }^{1}$ and applications of it are used as the basis of many measurements of ionizing radiation. According to this principle the energy loss ( $d E / d m)_{b}$ of
${ }^{1}$ W. Bragg, "Studies in Radioactivity," 1912; L. H. Gray, Proc. Roy. Soc. (London), ser. A, 122, 647 (1929); 156, 578 (1936); Brit. J. Radiol. 10, 600, 721 (1937); Proc. Cambridge Phil. Soc. 40, 72 (1944).
ionizing radiation absorbed per unit of mass of a given medium is related to the ionization absorbed in a small gas-filled cavity in said medium by means of the following expression:

$$
\left(\frac{d E}{d m}\right)_{b}=P_{b} W_{g} J_{g}
$$

where $P_{b}$ is the relative mass stopping power of the medium with respect to the gas, $W_{g}$ is the average energy required to produce an ion pair in the gas, and $J$, the quantity that is usually determined experimentally, is the number of ion pairs produced per unit mass of the gas in the cavity. It should be emphasized that, in order for this principle to hold, the gas cavity must be small compared with the range of the ionizing particles and both $W_{g}$ and $P_{b}$ must be independent of the energy of the radiation. A special application of the Bragg-Gray principle is to construct the walls of the chamber and the gas of the same material, e.g., air or tissue equivalent, and under these conditions the principle applies when the cavity is large compared with the range of the ionizing particles.

## Conversion Equations Relating Dose to Flux

$$
\begin{aligned}
1 \mathrm{r} & =\frac{2.08 \times 10^{3} W_{a}}{\left(\mu-\sigma_{s}\right)_{a} E} \approx \frac{7.1 \times 10^{4}}{\left(\mu-\sigma_{s}\right)_{a} E} \quad \text { photons } / \mathrm{cm}^{2} \\
1 \mathrm{r} / \mathrm{hr} & =\frac{0.579 W_{a}}{\left(\mu-\sigma_{s}\right)_{a} E} \approx \frac{5.6 \times 10^{5 *}}{E} \quad \text { photons } / \mathrm{cm}^{2} \mathrm{sec} \\
1 \mathrm{rad} & =\frac{8.07 \times 10^{10}}{W_{a} S_{a} P_{t}} \quad \beta \text { or } \alpha / \mathrm{cm}^{2} \\
1 \mathrm{rad} / \mathrm{hr} & =\frac{2.24 \times 10^{7}}{W_{a} S_{a} P_{t}} \approx \frac{6.1 \times 10^{5} \dagger}{S_{a}} \quad \beta / \mathrm{cm}^{2} \mathrm{sec} \\
1 \mathrm{rad} / \mathrm{hr} & \approx \frac{5.4 \times 10^{5} \ddagger}{S_{a}} \quad \alpha / \mathrm{cm}^{2} \mathrm{sec}
\end{aligned}
$$

In these equations $W_{a}$ is the average energy per ion pair (ev/ip), $S_{a}$ is the average specific ionization (ip/cm), and $\left(\mu-\sigma_{s}\right)_{a}$ is the total coefficient of absorption minus the Compton-scattering coefficient $\mathbb{T}$ of energy, $E$ (Mev), in air. $P_{t}$ is the relative mass stopping power in tissue relative to air. The final values given in the above equations are for density of air, $\rho_{a}=0.001293 \mathrm{~g} / \mathrm{cc}$.

8m-2. Equations Used Frequently in Health Physics. Common Shielding Equations. point source: Dose rate at distance $X$ (centimeters) from a 1-curie point source:

$$
R_{p}=\frac{1.5 \sum_{i}\left(\mu-\sigma_{s}\right)_{i} E_{i} e^{-\mu_{i} X_{f} B_{i} 10^{8}}}{X^{2}}=\sum_{i} \frac{R_{i} e^{-\mu_{i} X} B_{i}}{X^{2}}
$$

in which $R_{i}=r / \mathrm{hr}$ at 1 cm distance from a 1 -curie point source emitting photons of energy $E_{i}(\mathrm{Mev}), R_{p}=$ total $\mathrm{r} / \mathrm{hr}$ at distance $X(\mathrm{~cm})$ from a 1-curie point source, $\mu_{i}$ is the total coefficient of absorption (in $\mathrm{cm}^{-1}$ of medium between source and point of measurement), $f_{i}$ is the fraction of emitted photons having energy $E_{i}$, and ( $\left.\mu-\sigma_{s}\right)_{i}$ is the total minus the Compton-scattering coefficient of absorption (in $\mathrm{cm}^{-1}$ of air) for

[^388]photons of energy $E_{i}$. The term $B_{i}$ is the build-up factor due to the scattered radiation of energy $E_{i}$. Its value ${ }^{1}$ depends upon the width of the beam and the distance, volume, and atomic number of the scattering medium. For a short distance $X$ from the point source (i.e., a few meters) in air
$$
e^{\mu_{i} x} B_{i} \approx 1
$$

## General Equations Applied to Beta Radiation

1. Range of beta radiation

$$
X \approx \frac{1}{\rho}\left[0.54 E_{m}-0.13\left(1-e^{\left.-3.2 E_{m}\right)}\right]\right.
$$

in which $X=$ range in centimeters of medium of density $\rho(\mathrm{g} / \mathrm{cc})$. The maximum energy of the beta radiation is $E_{m}$ (Mev).
2. Average energy of beta radiation is given approximately by the equation

$$
E \approx 0.33 E_{m}\left(1-\frac{Z^{\frac{1}{2}}}{50}\right)\left(1+\frac{E_{m^{\frac{1}{2}}}}{4}\right)
$$

in which $E$ is the average energy from the normal distribution of energies from a source of atomic number $Z$ that emits beta radiation with a maximum energy $E_{m}$.

Maximum Permissible Body Burdens and Concentrations of Radioisotopes in Air and Water. ${ }^{2}$ One should attempt to avoid all unnecessary exposure to ionizing radiation, but for practical reasons maximum permissible exposure levels have been set by the following equations.

1. Maximum permissible body burden $q$ under equilibrium conditions

$$
q=\frac{8.4 \times 10^{-4} m}{f_{2} \Sigma E(\mathrm{RBE}) N}
$$

in which $q(\mu \mathrm{c})$ in the total body under equilibrium conditions delivers a dose rate of $0.3 \mathrm{rem} /$ week to the critical body organ of mass $m(\mathrm{~g})$. The nonuniform distribution factor $N$ is taken as 5 for alpha, beta, and recoil components of energy emitted by radioisotopes for which the bone is the critical organ, with the exception of $\mathrm{Ra}^{226}$ and $\mathrm{P}^{32}$, in which case it is 1 . The term $f_{2}$ is the fraction in the critical organ of that in the total body, $E$ is the average energy (Mev), and RBE is the relative biological effectiveness of the radiation ( $=1$ for beta and gamma emitters, 10 for alpha, and 20 for atomic recoils). The critical body organ is the one receiving the radioisotope that results in the greatest body damage, and the equilibrium condition of exposure is considered to exist after the material has been consumed for a sufficient time that the amount taken into the body per day is equal exactly to the amount eliminated per day by radioactive decay plus biological elimination.

In the case of alpha-emitting radioisotopes for which the bone is the critical organ, use is made of the long-standing generally accepted value of $q=0.1 \mu \mathrm{c}$ for $\mathrm{Ra}^{226}$ by making a comparison on an energy basis with $\mathrm{Ra}^{226}$ by means of the equation

$$
q=\frac{16}{f_{2} \Sigma E(\mathrm{RBE}) N}
$$

[^389]2. Maximum permissible concentration in air (MPC) ${ }_{a}$ and water (MPC) ${ }_{v}$ under equilibrium conditions,
\[

$$
\begin{aligned}
(\mathrm{MPC})_{a} & =\frac{3.5 \times 10^{-8} q f_{2}}{T f_{a}\left(1-e^{-0.693 t / T}\right)} \\
(\mathrm{MPC})_{w} & =\frac{3.1 \times 10^{-4} q f_{2}}{T f_{w}\left(1-e^{-0.693 / T}\right)}
\end{aligned}
$$
\]

in which (MPC) $)_{a}$ and (MPC) $)_{w}$ are given in $\mu \mathrm{c} / \mathrm{cc}$ of air and water, respectively, that will result in a dose rate $0.3 \mathrm{rem} /$ week to the critical organ after an exposure for a time $t$ (days). $f_{a}$ and $f_{w}$ are the fractions that arrive in the critical organ from inhalation and ingestion, respectively, and the effective half life $T$ (days) in the critical organ is given by the equation

$$
T=\frac{T_{b} T_{r}}{T_{b}+T_{r}}
$$

in which $T_{b}$ and $T_{r}$ are the biological and radioactive half lives, respectively.
In the case of noble gas,

$$
(\mathrm{MPC})_{a}=\frac{9 \times 10^{-7}}{E}
$$

3. Dose delivered to the critical body organ following a single intake,

$$
D=\frac{74 \Sigma E(\mathrm{RBE}) N f I_{0} T}{m}\left(1-e^{-0.693 / T}\right)
$$

in which $D=$ dose in rem delivered to the critical organ of mass $m$ (g), in time $t$ (days), when $I_{0}(\mu \mathrm{c})$ are taken into the body in a single event and the fraction $f$ is deposited in the critical organ.

## 8m-3. Tables of Values Commonly Used in Health Physics

Table 8m-1. Conversion Factors for X- or Gamma-ray Absorption in Atr
(Values corresponding to 1 roentgen)

Absorbed in 1 cc of Air
1 esu/cc
$2.083 \times 10^{9}$ ion pair/cc
$3.336 \times 10^{-10}$ coulombs $/ \mathrm{cc}$
$7.09 \times 10^{10} \mathrm{ev} / \mathrm{cc}$
$0.113 \mathrm{ergs} / \mathrm{cc}$
$1.13 \times 10^{-8}$ joules $/ \mathrm{cc}$
$2.71 \times 10^{-9} \mathrm{cal} / \mathrm{cc}$

Absorbed in 1 g of Air
$773.4 \mathrm{esu} / \mathrm{g}$
$1.611 \times 10^{12}$ ion pair $/ \mathrm{g}$
$2.58 \times 10^{-7}$ coulombs $/ \mathrm{g}$
$5.48 \times 10^{13} \mathrm{ev} / \mathrm{g}$
$87.8 \mathrm{ergs} / \mathrm{g}$
$87.8 \times 10^{-6}$ joules $/ \mathrm{g}$
$2.09 \times 10^{-6} \mathrm{cal} / \mathrm{g}$

## Table 8m-2. General Values of Maximum Permissible Exposure to Various Types of Ionizing Radiation

| Type | mr/week | mrad/week in tissue | Gen. values of RBE | mrem/week | Approximate flux for an 8-hr exposure |
| :---: | :---: | :---: | :---: | :---: | :---: |
| X or $\gamma \ldots \ldots .$. | 300 | . . . | 1 | 300 | 4,200 photons $/ \mathrm{cm}^{2} \mathrm{sec}$ of 1 Mev |
|  |  | 300 | 1 | 300 | $45 \beta / \mathrm{cm}^{2} \mathrm{sec}$ of 1 Mev $\boldsymbol{E}_{\text {max }}$ |
| $\boldsymbol{e}^{-} \ldots \ldots . . .$. | $\ldots$ | 300 | 1 | 300 | 68 electrons $/ \mathrm{cm}^{2}$ sec of 1 Mev |
| $n_{t} \ldots \ldots . . . .$. |  | 120 | 2.5 | 300 | $\begin{aligned} & 2,000 \mathrm{n}_{t} / \mathrm{cm}^{2} \mathrm{sec} \text { of } \\ & 0.025 \mathrm{ev}^{*} \end{aligned}$ |
| $n_{f} \ldots \ldots . . . . .$. | . . | 30 | $\sim 10$ | 300 | $\begin{aligned} & 58 n_{f} / \mathrm{cm}^{2} \mathrm{sec} \text { of } \\ & 2 \mathrm{Mev}^{*} \end{aligned}$ |
| p........... | . $\cdot$ | 30 | 10 | 300 | $\begin{aligned} & 0.17 p / \mathrm{cm}^{2} \mathrm{sec} \text { of } \\ & 5 \mathrm{Mev} \end{aligned}$ |
|  | . | 30 | 10 | 300 | $0.014 \alpha / \mathrm{cm}^{2} \mathrm{sec}$ of 5 Mev |
| O, C, N, etc.. | $\cdots$ | 15 | 20 | 300 | 0.0006 oxygen ions/ $\mathrm{cm}^{2} \mathrm{sec}$ of 5 Mev |

[^390]HEALTH PHYSICS
Type of
radiation

| Type of radiation | Max permissible value measured at surface of trunk of body | In skin ${ }^{\text {b,f }}$ of the |  | Lens of eyes, ${ }^{d}$ mrem/week | Gonads, ${ }^{\text {d }}$ mrem/week | Bloodforming organs, ${ }^{d}$ mrem/week | Intermediate tissue, f.e mrem/week |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total body, mrem/week | Appendages of body, mrem/week |  |  |  |  |
| Low penetrating ${ }^{0}$ $X$ and $\gamma$ of $<3 \mathrm{Mev}$$\boldsymbol{\sigma}^{-}, e^{-}, e^{+} \ldots \ldots \ldots \ldots . .$ | $\begin{aligned} & 1,500 \mathrm{mrad} / \mathrm{week} \\ & (1,500 \mathrm{mrad} / \mathrm{week}) \\ & 450 \mathrm{mr} / \mathrm{week} \\ & (900 \mathrm{mr} / \mathrm{week}) \end{aligned}$ | 1,500 (1,500) | 1,500 (1,500) | 300 (600) | 300 (600) | 300 (600) | $\begin{aligned} & 300-1,500 \\ & (600-1,500) \end{aligned}$ |
|  |  | 450 (900) |  | 450 (600) | 300 (600) |  |  |
|  |  | 450 (900) | 1,500 (1,500) | 450 (600) | 300 (800) | 400 (800) |  |
|  | $600 \mathrm{mrad} / \mathrm{week}$ <br> (1,200 mrad/week) | $600(1,200)$ | 1,500 (1,500) | 300 (600) |  |  | $(800-900)$ $300-600$ |
| Protons $p$ | 60 mrad/week ${ }^{\text {(1,200 }}$ ) |  | 1,500 (1,500) | 3 | 300 (600) | 300 (600) | $\begin{aligned} & 300-600 \\ & (600-1,200) \end{aligned}$ |
| Fast neutrons $\boldsymbol{n}_{\boldsymbol{f}}$ | $(120 \mathrm{mrad} / \mathrm{week})$ | 600 (1,200) | 1,500 (1,500) | 300 (300) | 300 (600) | 300 (600) | $\begin{aligned} & (600-1,200) \\ & 300-600 \end{aligned}$ |
|  | $\begin{aligned} & 50-2,000 n_{f} / \mathrm{cm}^{2} \mathrm{sec} \\ & \left(100-4,000 n_{f} / \mathrm{cm}^{2} \mathrm{sec}\right) \end{aligned}$ | $\begin{aligned} & 300-600^{h} \\ & (600-1.200) \text { h } \end{aligned}$ | $750-1,500^{h}$ |  | 300 (600) |  | $(600-1,200)$ $300-600$ |
| Thermal neutrons, $n_{t} .$. | $3,000 n_{t} / \mathrm{cm}^{2} \mathrm{sec}$ | $\begin{gathered} (600-1,200)^{h} \\ 500^{h}(1,000)^{h} \end{gathered}$ | $\begin{aligned} & (750-1,500)^{h} \\ & 1,200^{h} \end{aligned}$ | $\begin{gathered} (300-600)^{h} \\ 300(420)^{h} \end{gathered}$ | $100300^{h, i}$ | $300(600)$ | $\begin{aligned} & 300-600 \\ & (600-1,200) \end{aligned}$ |
| Alpha. . . . . . . . . . . . . . | $\left(6,000 \mathrm{n}_{\mathrm{t}} / \mathrm{cm}^{2} \mathrm{sec}\right)$ | 500 (1,000) | 1,200 $(1,200)^{k}$ |  | $100,300^{h, i}$ $(200,600)^{h, i}$ | $170^{h}(340)^{h}$ |  |
| O, C, N, etc. . . . . . . . . | Exposure from internally deposited isotopes | 1,500 (1,500) | 1,500 (1,500) | 300 (300) | 300 (600) ${ }^{\text {a }}$ | 300 (600) | $(340-1,000)$ $300-1.500$ |
|  | Generated in body by fast neutrons | 1,500 (1,500) | 1,500 (1,500) |  |  |  | $300-1,500$ $(600-1,500)$ |
|  |  |  |  |  |  | (600) | $\begin{aligned} & 300-1,500 \\ & (600-1,500) \end{aligned}$ |

[^391]Table 8m-4. Maximum Permissible Flux of a Normal Beam of Neutrons Required to Deliver a Dose of 0.3 rem per 40 -hr Week

| Neutron <br> energy, <br> Mev | Calculated <br> values,* <br> $n / \mathrm{cm}^{2} / \mathrm{sec}$ | International (ICRP) <br> max permissible values, <br> $n / \mathrm{cm}^{2} / \mathrm{sec}$ |
| :---: | ---: | ---: |
| 10 | $27(50)$ | 30 |
| 5 | $27(55)$ | 30 |
| 4 | $31(57)$ | 30 |
| 3 | $36(58)$ | 30 |
| 2 | $(43) 58$ | 40 |
| 1 | $61(55)$ | 60 |
| 0.5 | $86(90)$ | 80 |
| 0.1 | $230(250)$ | 200 |
| 0.01 | $1,050(1,200)$ | 1,000 |
| $10^{-6}$ | $1600(1600)$ | 2,000 |
| $2.5 \times 10^{-8}$ | $1,909(2,000)$ | 2,000 |

* Values obtained by W. S. Snyder, Calculations for Maximum Permissible Exposure to Thermal Neutrons, Nucleonics 6, 2, 46-50 (February, 1950), Calculated Depth Dose Curves in Tissue for Broad Beams of Fast Neutrons, Brit. J. Radiol. 28, 342 (1955), and Papers of Health Physics Society meeting in Ann Arbor, Mich., June, 1956. All values are calculated with reference to a $30-\mathrm{cm}$ tissue phantom. The values in parentheses assume the functional relationship between RBE and linear energy transfer as given in the National Bureau of Standards Handbook 59. The other calculated values assume $\mathrm{RBE}=1$ for X and $\gamma$ radiation, $\mathrm{RBE}=10$ for protons, and $\mathrm{RBE}=20$ for heavy recoil ions.

Table 8m-5. Maximum Permisiblele Concentrations of Radioisotopes
in Air and Water for Continuous Exposure*

| Medium in which contained | $\begin{gathered} \beta \text { or } \gamma \text { emitter, } \\ \mu \mathrm{c} / \mathrm{cc} \end{gathered}$ | $\alpha$ emitter, $\mu \mathrm{c} / \mathrm{cc}$ |
| :---: | :---: | :---: |
| Air... Water | $\begin{aligned} & 10^{-0} \\ & 10^{-7} \end{aligned}$ | $\begin{gathered} 5 \times 10^{-12} \\ 10^{-7} \end{gathered}$ |

[^392]Table 8m-6. Theoretical Values of ( $\left.\mu-\sigma_{\mathrm{s}}\right)_{\text {air }}$ and of $\mathrm{r} / \mathrm{hr}$ at 1 m from a 1 -curie Source

| Energy, <br> Mev | $\left(\mu-\sigma_{s}\right)_{\text {air }}, *$ <br> $\mathrm{~cm}^{2} / \mathrm{g}$ | r/hr at 1 m from <br> 1-curie source $\dagger$ |
| :---: | :---: | :---: |
| 0.02 | 0.50 | 0.16 |
| 0.04 | 0.078 | 0.063 |
| 0.06 | 0.035 | 0.042 |
| 0.08 | 0.025 | 0.040 |
| 0.10 | 0.023 | 0.047 |
| 0.20 | 0.026 | 0.11 |
| 0.40 | 0.029 | 0.23 |
| 0.60 | 0.029 | 0.35 |
| 0.80 | 0.028 | 0.45 |
| 1.0 | 0.027 | 0.55 |
| 2.0 | 0.023 | 0.93 |
| 4.0 | 0.019 | 1.5 |
| 6.0 | 0.017 | 2.1 |
| 8.0 | 0.016 | 2.6 |
| 10 | 0.015 | 3.0 |
| 20 | 0.013 | 5.3 |
| 40 | 0.013 | 11 |
| 60 | 0.014 | 17 |
| 100 | 0.015 | 30 |

* W. S. Snyder and J. L. Powell, Absorption of $\gamma$-Rays, Report ORNL-421, March, 1950; G. R. White, X-ray Attenuation Coefficients from 10 kev to 100 Mev , Natl. Bur. Standards (U.S.) Rept. 1003, May 13, 1952.
$\dagger$ These values do not include contributions to the dose due to air scattering and absorption. If absorption of air is included, the value of $\mathrm{r} / \mathrm{hr}$ at 1 m from a 1 -curie source for 0.02 Mev would be reduced by $8 \%$, the value for 0.04 Mev by $3 \%$, the value for 0.06 Mev by $1 \%$, and the correction would be insignificant for the other values.

8m-4. Regulations for the Shipment of Radioactive Materials. The reader should refer to official publications ${ }^{1}$ for detailed information on the shipment of radioactive materials. General limitations for the shipment of radioisotopes are:

1. Package must not be less than 4 in . in its smallest outside dimension.
2. A single package must not contain more than 2 curies ( 2.7 curies $^{2}$ of less dangerous radioisotopes).
3. Surface of package must contain no significant contamination.
4. Dose rate at any accessible surface must not exceed $200 \mathrm{mr} / \mathrm{hr}$ (or equivalent in mrem $/ \mathrm{hr}$ ).
5. Dose rate at 1 m must not exceed $10 \mathrm{mr} / \mathrm{hr}$.
6. Shipments of radioactive materials by rail and motor express, air, and boat fall into four categories (groups I, II, III, and exempt). Only exempt shipments may be made by mail.
${ }^{1}$ Robley D. Evans, Chairman of the Subcommittee on Shipment of Radioactive Substances, "Physical, Biological and Administrative Problems Associated with the Transportation of Radioactive Substances." ICC shipping regulations are given in Title 49, Parts 71 to 78, of the Code of Federal Regulations; Civil Aeronautics Board regulations are given in Part 49 of the Civil Air Regulations, "Transportation of Explosives and Other Dangerous Articles'; regulations of the United States Coast Guard are given in the Federal Register, July 17, 1952 , pp. 6460ff.; regulations governing the transportation of radioactive materials in the U.S. Mails are given in the U.S. Postal Guide, p. 51, pt. I, 1951 ed.
${ }^{2}$ The subcommittee on Shipment of Radioisotopes of the National Research Council at its meeting in September, 1954, recommended to the Bureau of Explosives that this limit be raised to 300 curies.

## Index

References to table are shown by the letter T, and references to figures are shown by the letter f .

## A

Absolute electrical units related to international (T), 5-106
Absolute ohm, definition of, 5-105, 5-198
Absolute photopic luminosity, definition of, 6-50
Absolute scotopic luminosity, definition of, 6-53
Absolute thermoelectric power, 5-98
Absolute viscosity, definition of, 2-201, 2-203
units and conversion factors for ( $\mathbf{T}$ ), 2-202
of various gases (T), 2-207
Absolute volt, definition of, 5-105
Absorption, of light, 6-36 to 6-40
and scattering of em waves, 5-70 to 5-71
of sound, 3-43 to 3-53
and heat radiation, 3-49 to 3-50
vs. temperature, of sound in water (f), 3-69
Absorption coefficient, of audience (T), 3-116
for building materials (T), 3-116
definition of, 6-2, 6-36
vs. frequency for acoustic tiles ( $f$ 's), 3-114, 3-115
of seats (T), 3-116
of sound (f), (T), 3-113 to 3-116
in water (f), 3-71
of various substances (T), 6-37
Absorption constant, definition of (optical), 6-102, 6-103
of evaporated mirror coatings (T), 6-104
of organic liquids (T), 3-73
of various metals (T's), 6-105 to 6-107
Absorption cross section, 5-71
universal average, 5-71 to 5-72
Absorption factor, definition of, 6-2
Absorption measure in sound, 3-45 to 3-46
Absorption spectrum, definition of, 6-2

Absorptive power, definition of, 6-2 Absorptivity, definition of, 6-2
Abundance, of the elements (T), 7-9 to 7-12
per cent of stable nuclei (T), 8-6 to 8-17
A-C to d-e, application chart (T), 5-261
conversion of, 5-260 to 5-268
A-C generators, 5-258
A-C motors, fractional hp characteristics of (T), 5-253
and generators, 5-246 to 5-250
integral hp characteristics of (T), 5-254 to 5-255
A-C resistance, ratio to d-c for solid round wire (T), 5-201
Acceleration, definition of, 2-3, 3-2
due to gravity (T), 2-91
of electrons and protons, 8-172 to 8-181
Accelerators, electrostatic, world-wide list of (T), 8-182 to 8-188
linear, world-wide list of (T), 8-200 to 8-201
particle, various types of, 8-172 to 8-181 world-wide list of (T's), 8-181 to 8-201
Acceptable noise level for different rooms, 3-122
Acceptors and binding energies (T), 5-160, 5-163
Acetates, acoustic'properties of (T), 3-72
Acetone volume related to pressure and temperature (T), 2-158
Achromatic, definition of, 6-2
Acids, index of refraction of (T), 6-22
Acoustic, definition of, 3-2
(See also Sound)
Acoustic absorbing materials, porosity and permeability of (T), 2-180
Acoustic analogues, of capacitor and condenser, 3-141 to 3-142
of electric circuit elements, 3-140 to 3-142
of transducers and transformers; 3-177
Acoustic analogy, units for, 3-177

## INDEX

Acoustic attenuation constant, definition of, 3-8
Acoustic capacitance, 3-136
Acoustic center, 3-11
Acoustic compliance, definition of, 3-8, 3-10
Acoustic energy, continuity equation for, 3-44
Acoustic energy balance, 3-44
Acoustic energy flux vector, 3-42, 3-44
Acoustic equations, of first order, 3-33
of second order, 3-34
small-signal, 3-32 to 3-34
Acoustic impedance, 3-108 to 3-110
definition of, 3-8, 3-113
of ear (T), 3-123, 3-124
specific, of pulsating sphere, 3-108 to 3-109
of a thermoviscous medium, 3-53
vector, equation for, 3-138
Acoustic intensity, 3-6
Acoustic losses, in ferromagnetic and ferroelectric materials, 3-85 to 3-86
in metals, 3-84 to 3-88
Acoustic mass, definition of, 3-8
Acoustic medium and thermal noise, 3-53 to 3-55
Acoustic ohm, definition of, 3-9
Acoustic phase constant, definition of, 3-9
Acoustic power, definition of, 3-108
Acoustic pressure, alteration of, 3-39
Acoustic propagation constant, definition of, 3-9
Acoustic properties, of gases, 3-56 to 3-66
of liquids, 3-67 to 3-74
liquids vs. gases, 3-67
of organic liquids (T), 3-72 to 3-73
of solids, 3-74 to 3-88
Acoustic radiation pressure, 3-43
Acoustic radiation resistance, of pulsating sphere, 3-108
of sphere and piston (T), 3-110
Acoustic reactance, definition of, 3-9
Acoustic resistance, 3-134, 3-136
definition of, 3-9
Acoustic tile, absorption vs. frequency characteristics (f), 3-114, 3-115
Acoustic variables, 3-32
Acoustical, definition of, 3-2
Acoustical definitions, 3-2 to 3-18
Acoustical energetics, 3-41 to 3-43
Acoustical quantities (T), 3-139
conversion factors for (T), 3-24
letter symbols for, 3-18 to 3-24
Acoustical schematic diagrams, based on impedance analogy (T), 3-145 to 3-176
based on mobility analogy (T), 3-144 to 3-176
Acoustical symbols (T), 3-139
Acoustical systems, electrodynamical analogies to, 3-134 to 3-139
graphical analogies to electrodynamical systems (f's), 3-136, 3-137
with one degree of freedom, 3-137 to 3-138
Acoustical units (T), 3-139

Acoustical waves of finite amplitude, 3-37 to 3-39
Acoustics, architectural, 3-113 to 3-122
selected references on, 3-178 to 3-179
Activation cross section of neutrons, definition of, 8-130
Activation energy of pure ionic conductors (T), 5-186 to 5-188

Adiabatic compressibility of organic liquids (T), 2-163, 2-164

Adiabatic demagnetization, 4-15, 7-171
Adiabatic gas, pressure-density relation for, 3-35
Adiabatic isothermal elastic constants of various metals (T), 3-83
Adiabatic modulus of elasticity, 2-85 to 2-86
Adiabatic temperature change in sea water, 2-121
Adiabatic viscous fluid, equation for, 3-33
Aftershock in earthquakes, 2-113
Aichi's formula, 5-14
A.I.E.E. standards, 5-246

Air, absorption of sound by, 3-63 to 3-66
characteristic impedance of (T), 3-63
composition of atmosphere ( T ), 2-125
compressibility factors for (T), 4-82
critical energy and radiation length for (T), 8-39
energy loss of protons in (f), 8-26
enthalpy of (T), 4-85
entropy of (T), 4-86
maximum permissible concentration of radioisotopes in (T), 8-256
Prandtl numbers for (T), 2-222
range-energy relation for protons in (f), 8-27
recombination coefficient in (f's), 5-177, 5-178
relative density of (T), 4-83
specific heat of (T), 3-59, 4-84
thermodynamic conversion factors for (T), 4-81
virial coefficients for ( T ), 4-128
voltage breakdown in (f's), 5-179, 5-180
X-ray and gamma-ray absorption in (T), 8-253
Air columns, fundamental frequency of, 3-102 to 3-103
Air-earth currents, 5-285
density at various locations (T), 5-285
Aircraft engines, lubricating oil specifications for (T), 2-168
$\alpha$-Alanin, diffusion coefficients of (T), 2-192
Albedo measurements ( T ), 2-132
Alcohols, saturated, acoustic properties of (T), 3-72

Alloys, creep rates for (T), 2-89 to 2-90
demagnetization curves of (f), 5-218
density of, 2-22 to 2-30
elastic and strength constants of (T), 2-62 to 2-78
Hall constants of (T), 5-237 to 5-239
linear expansion coefficients of (T), 4-57 to 4-60

Alloys, magnetic, magnetization curves of, (f), 5-214
properties of, for permanent magnets (T), 5-219
resistivity vs. temperature for (T), 4-13
saturation magnetization and Curie points of (f) (T's), 5-207, 5-209 to 5-210
skin-effect quantities (T), 5-90
superconducting transition temperatures for (T), 5-205
thermal conductivity of (T), 4-67, 4-77, 4-79
thermal emf of, relative to platinum (T), 4-9
Alnico 5, demagnetization and energyproduct curves of (f), 5-218
Alpha decay, lifetimes and theory, 8-54 to 8-56
Alpha decay energy, 8-40
vs mass number (f), 8-46
Alpha-decay-energy profile (f), 8-46
Alpha emitters, alpha-partiole energies and abundances of (T), 8-48 to 8-53
$\log$ half life vs effective alpha energy for (f), 8-54
various kinds of, 8-46 to 8-54
Alpha groups, principal and rare, 8-46 to 8-47
Alpha-particle energies of alpha emitters (T), 8-48 to 8-53

Alpha particles, abundance of alpha emitters (T), 8-48 to 8-53
maximum permissible exposure to ( T 's), 8-254, 8-255
range-energy relation in Ilford C-2 emulsion, 8-32
range straggling in copper (f's), 8-37
symbols for, 8-3
Alpha spectra, complex, 8-40, 8-46 to 8-54
Alphabetical list of elements ( T ), 7-5 to 7-7
Alternate-gradient synchrotron, description of, 8-177 to 8-178
Alternating current, application chart for conversion to d-c (T), 5-262
Altitude, variation of atmospheric conductivity with (T), 5-286
variation of atmospheric electric field with (T), 5-286
Altocumulus clouds (f), 2-130, 2-134
Alumel, emf of chromel vs alumel thermocouples (T), 4-12
Aluminum, absorption curve for electrons in (f), 8-38
energy loss of protons in (f) (T), 8-28, 8-35
proton straggling in (T), 8-36
range-energy relation, for electrons in (f), 8-39
for protons in (f), 8-29, 8-31
Aluminum alloys, density of (T), 2-24
elastic and strength constants for ( $T$ ), 2-64 to 2-65
Aluminum I, energy-level diagram of (f), 7-31
Amagat units, definition of, 4-118, 4-119

Ambient pressure in flowing liquids, 2-182
Ambipolar diffusion coefficients for several gases (T), 7-218
American speech, characteristics of sounds in (T), 3-131 to 3-132
Ammonia, efficiency of electron attachment in (f), 5-176, 5-177
Amorphous selenium, index of refraction of (T), 6-26 to 6-27
Amorphous solids, dielectric properties of (T's), 5-120 to 5-132
Ampere, definition of, 5-2
international vs. absolute (T), 5-106
Ampere's law, 5-3
Amplitude of seismic waves, 2-102 to 2-103
Analogies between electrical, mechanical, and acoustical systems, 3-134 to 3-139
Anechoic chamber, definition of, 3-2, 3-17
Anelasticity, 2-84 to 2-86
logarithmic decrement, 2-85
mechanical model of (f), 2-84
Angular aperture, definition of, 6-2
Angular correlation of gamma rays, 8-93
Angular momentum, definition of, 2-6
of electrons, 7-17
of light nuclei (f's) (T), 8-57 to 8-86
Anisotropic media, field vectors for, 5-38
Anisotropic wave propagation systems, 5-64 to 5-65
Anisotropy constants of uniaxial crystals (T), 5-222

Anode, definition of, 5-3
in electrochemistry, 5-269
Anomalous dispersion of sound, 3-51
Anomalous skin effect, 5-200
Antiferroelectric crystals, properties of (T), 5-156
Antiferroelectric materials, definition of, 5-3
Antiferromagnetic materials, definition of, 5-3
and neutron diffraction (T), 5-227 to 5-228
orientation of magnetic moments in (f), 5-229
Antiferromagnetic points of various substances (T), 5-226
Antiferromagnetic resonance, 5-104
Antiferromagnetism, 5-102, 5-224 to 5-229
Antineutrino, 8-3
Antinodes, definition of, 3-2
Apochromat, definition of, 6-2
Approximation methods in wave mechanics, 7-165 to 7-167
Aqueous solution, isothermal compressibility of (T), 2-164
surface tension of (T's), 2-175, 2-177
Verdet constants for (T), 6-93
Archimedes, principle of, 2-12
Architectural acoustics, 3-113 to 3-122
Area, units and conversion factors for ( T ), 2-16
Argon, compressibility factors for (T), 4-87
electron energy losses in (f), 5-181
enthalpy of (T), 4-90
entropy of (T), 4-91
relative density of (T), 4-88

Argon, specific heat of (T), 4-89
thermodynamic conversion factors for (T), 4-81
virial coefficients for (T), 4-121
Argon I, energy-level diagram of (f), 7-33
photoelectric traces of spectrum (f), 7-63 to 7-66
principal spectral lines of (T), 7-58 to 7-62
Arsenic trisulfide glass, index of refraction of (T), 6-26 to 6-27

Articulation, acoustic, definition of, 3-12
sound, syllable, vowel, or consonant, 3-13
Articulation index, 3-132 to 3-133
and articulation scores (T), 3-133
Artificial radioisotopes, 8-96 to 8-128
ASA standards, 5-246
Asbestos insulation and current capacity of conductors (T), 5-202 to 5-203
Astatic inductors, 5-111
Astigmatism, definition of, 6-2
Astronomical constants (T), 2-91
Astronomical data, 2-90 to 2-91
Astronomical problem in geodesy, 2-93
Astronomy, radio, 6-120 to 6-123:
Asymmetric-top molecules, rotational constants and geometrical parameters of, five-atom (T), 7-159
four-atom (T), 7-155
six-atom (T), 7-161
triatomic (T), 7-153
Asymptotic speed of sound, 3-48
Atmosphere, characteristics of ions in (T's), 5-284
composition of (T), 2-125
conductivity, electric field, and air-earth current density of ( $T$ ), 5-285
conductivity vs altitude for (T), 5-286
electric field vs altitude (T), 5-286
as unit of pressure, 2-15
upper, electrical characteristics of, (T), 5-284
properties of, 2-128 to 2-130
Atmospheric density vs elevation (T), 3-58
Atmospheric diffusion (f), 2-135
Atmospheric electricity, 5-283 to 5-289
Atmospheric ionization, 5-283 to 5-284
Atmospheric precipitation, charge on particles (T), 5-287
Atmospheric pressure, 3-56
vs elevation (T), 3-58
Atmospheric temperature, 3-56
vs elevation (T), 3-58
Atomic constants ( T ), 7-3
Atomic diameters of elements ( T ), 7-9 to 7-12
Atomic hydrogen, hyperfine splitting of ( $T$ ), 6-122
Atomic levels of $n$ equivalent electrons (T), 7-21
Atomic mass (T), 7-3
of deuterium, 8-4
of hydrogen, 8-4
of neutron, 8-4
of stable nuclei (T), 8-6 to 8-17
Atomic number of elements (T), 7-5 to 7-8
Atomic rotatory power, definition of, 6-7

Atomic spectra, present status of analysis of (T), 7-22 to 7-24
principal lines in, Argon I (f) (T), 7-58 to 7-66
Helium (T), 7-44 to 7-45
Iron I (f) (T), 7-87 to 7-118
Krypton I (f) (T), 7-66 to 7-74
Mercury I (f) (T), 7-119 to 7-122
Neon I (f) (T), 7-45 to 7-58
Xenon I (f) (T), 7-74 to 7-87
structure of, 7-16 to 7-26
Atomic susceptibility of elements (f), 5-236
Atomic units, conversion factors of (T), 7-4
Atomic weights, of elements (T), 7-8 to 7-12
Atoms, electronic structure of (T), 7-13 to 7-15
energy-level diagrams of ( $f$ 's), 7-26 to 7-37
persistent spectral lines of ( T ), 7-39 to 7-41
Attenuation, of em waves, 5-58 to 5-59
and heat flow in metals (T), 3-83
of neutrons in concrete and water, 8-169
of sound, 3-63 to 3-66
Kneser's nomogram for (f), 3-64
due to radiation, 3-50
vs relative humidity (f), 3-66
in solids, 3-79
of standard r-f cables (f), 5-57
Attenuation constant, 3-8, 3-17, 3-63
vs relative humidity (f), 3-117
Attenuation peaks in copper crystals (f), 3-88
Audibility threshold, definition of, 3-14
Audience, absorption coefficient of, 3-116
Audio frequency, definition of, 3-2
Audiogram, definition of, 3-12
Auditory meatus, dimensions of (T), 3-123
Auger electrons, 8-3
Aural harmonic, definition of, 3-12
Autotransformers, 5-260
Average acoustic pressure, 3-39
Average velocity, 2-2
Avogadro's number (T), 7-3
Axially symmetric gas flow, 2-217 to 2-219
Axis, principal, 3-11
reference, 3-11
Azimuthal quantum number, 7-16

## B

Balmer series of spectral lines, definition of, 6-3
Band-pass filter sections, design of (T), 5-86 to 5-89
Band power level, definition of, 3-2
Band pressure level, definition of, 3-2
Band-spectrum constant (T), 7-3
Bar, of elliptical cross section, self-inductance of, 5-28
frequency of vibration of, 3-104, 3-106
Bar magnets, 5-35 to 5-36
Barium, Young's modulus vs temperature for (f), 3-96
Barium-titanate type transducer, materials, 3-92
Barn, definition of, 8-3
Barnet effect, 5-103

Barometric pressure, 3-57
Base vectors in different coordinate systems (f's), 2-2, 2-3
Basilar membrane in ear (T), 3-123
Beam angles for piston, ring, and line sources (f), 3-111, 3-112
Beam formation, reflectors, lenses, and horns, 5-73
Beats, definition of, 3-3
Beer's law, 6-3
Benzene, first Townsend ionization coefficient in (f), 5-169
variation of dielectric constant with temperature for (f), 5-131
volume related to pressure and temperature (T), 2-158
Bernoulli's principle, 2-13
Berthelot equation as a virial expansion, 4-119
Berthelot's method for measuring tensile strength, 2-170 to 2-171
Beryllium, energy levels of (f) (T), 8-59 to 8-67
energy loss of protons in (T), 8-35
proton straggling in (T), 8-36
Beta decay, 8-3
Beta-decay chains, 8-212
Beta radiation, range of, 8-252
Beta rays, maximum permissible exposure to (T's), 8-254, 8-255
Beta transitions, 8-97
Betatrons, description of, 8-175 to 8-176 world-wide list of (T), 8-194 to 8-195
Bethe-Bacher formula, 8-20
Biaxial minerals, index of refraction of ( $T$ ), 6-14 to 6-17
Binary compounds, saturation magnetization and Curie points of (T), 5-213
Binary mixtures of gases, 2-206
Binaural listening, minimum audible pressure (T), 3-125
Binding energy, of carriers to donors and acceptors (T), 5-160, 5-163
of last neutron and proton (T), 8-6 to 8-17
of nefutrons (T), 8-135 to 8-143 definition of, 8-130
of nucleus, 8-19 to 8-20
Birefringent filters, 6-48
Bismuth, transition parameters and phase diagram for (f) (T), 4-36
Black body, chromaticity coordinates of (T), 6-61
definition of, 6-3
Black-body radiation, functions of ( $T$ ), 6-64, 6-65
total (T), 6-66 to 6-67
Blasius gas flow, 2-224
Blood-forming organs, maximum permissible exposure to ionizing radiation ( T ), 8-255
Body, maximum permissible radiation exposure for trunk (T), 8-255
Body organs, maximum permissible exposure for various radiations (T's), 8-254, 8-255
Bohr magneton (T), 7-3
definition of, 5-206

Bohr magneton number, of certain solid solutions (T), 5-211
definition of, 5-206
of ferrites (T), 5-211, 5-212
of ferromagnetic elements (T), 5-208
of paramagnetic materials (T), 5-241 to 5-243
of spinels (T), 5-212
Boiling-water power reactor, 8-227
Bolometer, characteristics of (T's), 6-114, 6-118
Bolometric color index of stellar spectral classes (T), 6-80
Bolometric magnitude of stars, 6-80
Boltzmann constant (T), 7-3
Boron, energy levels of (f) (T), 8-62 to 8-71
Boson, 8-243
Bougie decimale, definition of, 6-9
Bound hyperons, 8-245
Boundary conditions and electromagnetic field equations, 5-41 to 5-42
Boundary layer in gas flow, 2-223
Bounded regions and em waves, 5-56 to 5-57
Bragg-Gray principle, 8-250 to 8-251
Branch point in circuit theory, 8-80
Breakdown voltage in air (f's), 5-179, 5-180
Breeding reactors, 8-227
Brewster's law, 6-3
Brightness, approximate, of various light sources (T), 6-78
definition of, 6-3
of various stars (T), 6-82
Brinell hardness number, definition of, 2-69, 2-78
of metals and alloys (T), 2-61 to 2-78
British reactors, 8-240
British thermal unit, definition of, 2-15
Broad-band noise in liquids, 3-68
Bromides, optical properties of, 6-40
Bubble cavities (see Transient cavities)
Building materials, absorption coefficients of (T), 3-116
diffusivities of (T), 4-74
Bulk modulus, 2-10
of earth layers, 2-108
$n$-Butyl alcohol, diffusion coefficients of (T), 2-192

$$
\mathbf{C}
$$

Cables, list of standard radio-frequency ( $T$ ), 5-52 to 5-55
Cadmium cells, 5-107 to 5-109
Calcite, index of refraction of (T), 6-23
Calcium fluoride, absorption coefficients of (T), 6-37
index of refraction of (T), 6-23, 6-26 to 6-27
optical properties of, 6-40
Calcium I, energy-level diagram of (f), 7-34
Calcium titanate, Young's modulus vs temperature for (f), 3-96
Calder Hall reactors, 8-240
Calorie, definition of, 2-15
Camphors, variation of dielectric constant with temperature for (f), 5-131

## INDEX

Candle, definition of, 6-9
Candle-meter, 6-4
Candle per square centimeter, definition of, 6-3, 6-10
Candlepower, definition of, 6-6
Capacitance, and acoustic analogy, 3-135, 3-136
per meter length of various bodies, 5-15 to 5-16
of various body arrangements, 5-12 to 5-18
Capacitance coefficients, 5-17 to 5-18
Capacitance edge corrections, 5-16 to 5-17
Capacitance formulas, mks units, 5-12 to 5-18
Capacitance standards, 5-109 to 5-110
Capacitivity, definition of, 5-2
relative, of semiconductors (T), 5-132
(See also Dielectric constants)
Capacitor-start motor, 5-249
torque-speed curves for (f), 5-249
Capacitors, 5-109 to 5-110
acoustic analogue of, 3-141 to 3-142
Capillary-height method, surface tension by, 2-175
Carbon, energy levels of (f) (T), 8-64 to 8-75
total neutron cross section of (f), 8-132
Carbon I, energy-level diagram of (f), 7-28
Carbon bisulfide, volume related to pressure and temperature (T), 2-159
Carbon dioxide, compressibility factor for (T), 4-92
enthalpy of (T), 4-93
entropy of (T), 4-93
first Townsend ionization coefficient for
(f), 5-168
relative density of (T), 4-92
specific heat of (T), 4-93
thermodynamic conversion factor for ( T ), 4-81
Carbon monoxide, virial coefficients for (T), 4-127

Carbon tetrachloride, volume related to pressure and temperature ( T ), 2-160
Carcel unit, 6-9, 6-10
Carcinotron, 5-77
Cascade hyperon, 8-245
Cathode, definition of, 5-3
in electrochemistry, 5-269
Cathode current density in glow discharge (T), 5-185

Cathode fall, normal, for various metals (T), 5-184

Cathode fall thickness for various metals (T), 5-184

Cathode-ray-tube screens, characteristics of (T), 6-113
Cation transference numbers of electrolytes (T), 5-270
Cavitation, critical pressure for (f), 2-184 definition of, 3-68
in flowing liquids, 2-182 to 2-189
in fresh water (f), 2-184
inception of, 2-183
in liquids, 3-68

Cavitation, symbols for, 2-183
Cavitation number, 2-182
for incipient cavitation (f), 2-186
Celestial triangulation, 2-96
Celsius temperature, conversion equations for (T), 4-2
Cent, definition of, 3-14, 3-107
Center of mass, definition of, 2-6
motion of, 2-7
for various bodies (T), 2-36 to 2-37
Centimeters of Hg at $0^{\circ} \mathrm{C}$, definition of, 2-15
Centrifugal force, definition of, 2-5
Ceramics, dielectric frequency and volume resistivity of (T), 5-120 to 5-121
dielectric properties of (T), 5-120 to 5-121
properties of (T), 3-95
Cerium magnesium nitrate, properties of (T), 4-14
temperature data for ( T ), 4-15
Cesium bromide, index of refraction of (T), 6-27 to 6-29
Cesium iodide, index of refraction of (T), 6-27 to 6-29
Cgs units and electrical formulas (T's), 5-8, 5-9
Chain relationships of nuclides (T), 8-202 to 8-211
Chamber, reverberation, 3-17
Chapman-Jouguet condition and shock waves, 2-233
Chapman's formula for gas viscosities, 2-206
Characteristic curves, for d-c motors (f), 5-246
for induction motors (f's), 5-247
Characteristic impedance, definition of, 3-62 to 3-63
for various gases (T), 3-63
Characteristic X-ray spectra, 7-123 to 7-135
Charge transfer of ions in a gas, 7-204
Charge-transfer cross sections of various substances ( f 's), 7-189 to 7-191
Charged hyperons, 8-244
Charged-particle fission yields (T), 8-219 to 8-221
Charged-particle induced fission, 8-212
Chemical rate theory, 2-88
Chemical symbols of stable nuclei (T), 8-6 to 8-17
Chemicals, fluorescent, characteristics of, (T), 6-111

Chemiluminescence, definition of, 6-3
Chi mesons, 8-243
Chlorides, optical properties of, 6-40
Chlorine (in argon), efficiency of electron attachment in (f), 5-173
Chlorine I, energy-level diagram of (f), 7-32
Chlorinity of sea water, 2-116
Chloro-fluoro liquids, density of (T), 2-149
Chloroform, volume related to pressure and temperature (T), 2-160
Christiansen effect, definition of, 6-3
Chromatic aberration, definition of, 6-3
Chromaticity, 6-60

Chromaticity coordinates, of black bodies (T), 6-61
of spectrum (T), 6-54 to 6-55
Chromel, emf in thermocouples (T), 4-12
Chromium methylammonium alum, properties of (T), 4-14, 4-16
temperature data for (T), 4-17
Chromium potassium alum, properties of (T), 4-14 to 4-16
temperature data for (T), 4-15, 4-16
Circuit configurations, magnetic field about, 5-25 to 5-27
Circuit theory, 5-79 to 5-85
basis of, 5-79 to 5-80
and networks, 5-80 to 5-81
Circuits, self- and mutual inductance of, 5-28
Circular birefringence, 6-91
Circular coil, self-inductance of, 5-31
Circular cylindrical resonators, 5-66, 5-67 modes in (f's), 5-66, 5-67
Circular cylindrical waveguides, 5-62 to 5-64
coordinate system for (f), 5-62
wave types for (T), 5-63
Circular dichroism, 6-92.
Circular jet, laminar flow in, 8-195 to 2-196
streamlines from point orifice (f), 2-196
symbols for, 2-195
Circular loop, magnetic induction of, 5-26 to 5-27
mutual inductance of, 5-29 to 5-31
Circular mil, definition of, 2-14
Clairaut's formula, 2-98
Clarke ellipsoid, 2-96
Classical absorption of sound, 3-49
Classical symbols for heavy radionuclides (T), 8-41

Clausius-Duhem inequality, 3-29
Clausius equation as a virial expansion, 4-119
Climatology, 2-134 to 2-135
Closed-stub impedance matching, 5-51
Clouds, average water content of (T), 2-134
at different levels (f), 2-130
drop-size spectra of (f), 2-134
electric field intensity inside of (T), 5-286
Coaxial transmission lines, constants for (T), 5-48 to 5-49

Cobalt alloys, density of (T), 2-25
saturation magnetization and Curie points of (T), 5-210
Cobalt ammonium sulfate, properties of (T), 4-14, 4-20

Cochlea, dimensions of (T), 3-123
Cockroft-Walton accelerators, 8-172
Coefficient, of absorption, for building materials, seats, and audience (T's), 3-116
definition of, 6-2, 6-36
of light, definition of, 6-36
for various substances (T), 6-37
of ambipolar diffusion, for gases (T), 7-218
of capacitance and elastance, 5-17 to 5-18
for color-difference evaluation (T), 6-62

Coefficient, of cubical expansion of liquids (T), 4-62
of cubical thermal expansion of elements (T), 4-56
of differential diffusion, of various substances (T's), 5-272
of diffusion, definition of, $\mathbf{2 - 8 0}$
for gases (T), 2-212 to 2-213
for ions in gases, 7-205
for metals (T), 2-79 to 2-80
for solutions (T's), 2-190 to 2-195
of drag, in flowing liquid, 2-183
in gas flow, 2-226
for various bodies (T), 2-188
eddy diffusion, 2-135
elastic, of crystals (T), 2-55 to 2-58
of electron attachment for various substances (f's), 7-182 to 7-186
electro-optic, for various crystals (T), 6-97
Ettingshausen, 5-99
of extinction (optical), definition of, 6-102
in infrared (T), 6-38
first Townsend ionization, for various substances (f's), 5-167 to 5-169
of friction (T), 2-39 to 2-44
Hall, 5-98
of heat radiation, 3-31
of internal friction of earth, 2-113
of linear absorption for gamma radiation (f), 8-93
of linear thermal expansion of alloys ( T ), 4-57 to 4-60
of elements (T's), 4-51 to 4-55
of miscellaneous materials (T), 4-61
of semiconductors (T), 4-63
mean-ionic-activity, of electrolytes (T), 5-278, 5-279
Nernst, 5-99
noise-reduction, 3-114
Peltier, 5-98
of pressure, in liquids, 2-151
of radiation, 3-50
radiative recombination (T), 5-171
recombination, in air (f's), 5-177, 5-178
reflection, for incandescent light ( T ), 6-43
for visible monochromatic radiation (T), 6-42
of retarded elastic motion of earth, 2-113
Righi-Leduc, 5-99
of rigidity of earth, 2-113
of rolling friction, definition of, 2-43
secondary emission, 7-192
self-diffusion, in gases (T), 2-213
skin-friction, 2-224
in liquids, definition of, 3-67
of sound absorption (f) (T), 3-17, 3-67, 3-113 to 3-116
in water (f), 3-71
of sound transmission, 3-120
of static friction, definition of, 2-40
for various substances (T), 2-40 to 2-41
temperature, of inorganic liquids (T), 5-133
of organic liquids (T), 5-134 to 5-142

Coefficient, temperature, of piezoelectric strain constants (T), 5-153
of standard liquids (T), 5-132
of temperature exchange, 3-60
of thixotropy, 2-83
virial (T's), 4-118 to 4-120
Thompson, 5-97 to 5-98
Townsend, 5-166, 7-192
of viscosity, definition of, 3-28, 3-41
of earth, 2-113
for gases (T), 3-58, 3-60
of volume expansion, definition of, 4-63
Coercive force, definition of, 5-3
of high-permeability materials (T), 5-216
of materials for permanent magnets (T), 5-219
Coil, magnetic force on, 5-32 to 5-33
self- and mutual inductance of, 5-30
Collision cross sections, 7-174
Collision losses for heavy charged particles, 8-23
Collision probabilities of electrons and ions in gases, 7-174 to 7-191
Collision probability curves for various substances ( f 's), 7-175 to 7-191
Colloidal systems, and gels, 2-81
and thixotropic substances, 2-81, 2-82
Color difference, evaluation coefficients for (T), 6-62
Color indices of stellar spectral classes (T), 6-80
Color-mixture data, standard, 6-53, 6-61
Color specification, standard coordinate system (T), 6-60
Colored glass, transmission characteristics of, 6-43 to 6-44
Colorimetry, 6-50 to 6-63
Coma, definition of, 6-3
Combination starters for electric motors, 5-256
Commercial dielectrics, dielectric constants of (T), 5-147
Common waveguides, 5-59 to 5-62
Compensation network theorem, 5-81
Complementary wavelength in colorimetry, 6-60
Complex alpha spectra, 8-40, 8-46 to 8-54
Complex impedances, 3-8
Complex tone, definition of, 3-14
Compliance, acoustic, 3-8
and acoustic analogy, 3-135 to 3-136
of crystals (T), 3-81, 3-82
mechanical, 3-9
Composite state variables, 3-32
Compound nucleus, definition of, 8-2
Compound-wound motors, 5-247
Compounds, critical temperatures, pressures, and densities of (T), 4-22 to 4-23 crystallographic data for (T), 2-53 to 2-54
heats of fusion of (T), 4-131 to 4-159
heats of sublimation of (T), 4-131 to 4-159
heats of transition of (T), 4-131 to 4-159
heats of vaporization of (T), 4-131 to 4-159

Compounds, melting parameters of (T's), 4-30 to 4-33
phase transition data for ( $T$ ), 4-130 to 4-159
Compressibility, of liquids, 2-151, 2-162 to 2-164
and skin friction, 2-230
Compressibility data for miscellaneous substances, 2-162 to 2-163
Compressibility factor, for air (T), 4-82
for argon (T), 4-87
for carbon dioxide (T), 4-92
for hydrogen (T), 4-95
for nitrogen (T), 4-103
for oxygen ( T ), 4-108
for steam (T), 4-113
Compressible flow in gases, 2-214 to 2-219
Compressional waves, definition of, 3-3
in fluids, 2-14
in sound, 3-46, 3-47
Compton effect, 8-88 to 8-89
Compton scattering, 8-89
cross section per electron vs gamma energy (f), 8-89
Compton wavelength, of electron, 8-4
of neutron, 8-4, 8-129
of proton, 8-4
Computation, mathematical aids to, 1-1 to 1-5
Computing devices, 1-1
Concentration of radioisotopes in air and water, 8-253
Condenser, acoustic analogue of, 3-141 to 3-142
Conductances, equivalent, of electrolytes (T), 5-270
of ions in various solutions (T's), 5-271 limiting equivalent (T's), 5-271
Conduction, of copper wire ( T ), 5-198 to 5-200
of electricity in gases, 5-166 to 5-184
Conductivity, of atmosphere at various locations (T), 5-285, 5-286
effect of frequency on, for copper, 5-197, 5-200
effect of pressure on (T), 5-190, 5-195
formulas for, 5-95 to 5-97
ionic, in salts, 5-185 to 5-196
of ionic conductors, 5-186 to 5-188
of mixed ionic and electronic conduction (T), 5-192 to 5-194
per cent, definition of, 5-197
representative values of (T), 5-162
of sea water, 2-120
thermal (see Thermal conductivity)
Conductivity parameters, 5-39
Conductors, definition of, 5-3
a-c resistance/d-c resistance for solid round wire (T), 5-201
and anomalous skin effect, 5-200
current-carrying capacities of insulated (T's), 5-202 to 5-203, 5-257
fluid types of, 3-47
ionic (see Ionic conductors)
properties of, metallic, 5-197 to 5-205 nonmetallic, 5-166 to 5-197

Conductors, resistance of rectangular (f), 5-92
skin-effect data for (T), 5-85, 5-90 to 5-95
transport numbers for ionic (T), 5-191 to 5-194
Configurational entropy, 2-81
Conical resonators, frequency of (T), 3-103
Conical tube, 3-103
Conjugate foci, definition of, 6-3
Conservation, of energy, definition, 2-5 to 2-8
in viscous fluids, 3-29
of mass in viscous fluids, 3-27
of momentum, 2-5, 2-7
Conservative force, definition of, 2-6
Constantan, emf of thermocouples using (T's), 4-11 to 4-12
Constitutive parameters and field vectors, 5-38 to 5-39
Constitutive relations in viscous fluids, 3-27
Contact discontinuity and shock waves, 2-232
Contact-potential effect, definition of, 5-5
Continerital platform, 2-115
Continuity equations, for acoustic energy, 3-44:
for electrical currents and charges, 5-36 to 5-38
in fluids, 2-13
in gas flow; 2-215, 2-221
for viscous fluids; 3-27 to 3-28
Continuous spectrum, definition of, 3-3
Control of various nuclear reactors (T), 8-228 to 8-239
Convergence of ocean waves, 2-123
Conversion equations, relating radiation dose to flux, 8-251
for temperature scales (T), 4-2
Conversion factors, for absolute viscosity (T), 2-202
acoustical (T), 3-24
area (T), 2-16
of atomic units (T), 7-4
for international vs. absolute electrical units (T), 5-106
for kinematic viscosity (T), 2-203
length (T), 2-15
mass-energy, 8-4
quantum energy, 8-4
for thermal conductivity (T), 4-66
for thermodynamic properties of, gases (T), 4-81
volume (T), 2-16
for X- or gamma-ray absorption in air (T), 8-253

Conversion formulas for neutrons, 8-129
Conversion probability curves for ions in various substances ( $f$ 's), 7-201 to 7-202
Conversion tables for optical density vs per cent transmission (T), 6-39
Converters, a-c to d-c, 5-260
Coolants for nuclear reactors, 8-228 to 8-239
Coordinate systems, 2-2
Coordinate transforms, 3-36
Copper, emf of copper vs. constantan thermocouples (T), 4-11

Copper, energy loss and range of protons in (T), 8-24 to 8-25, 8-35
frequency vs. conductivity for, 5-197, 5-200
resistance vs. temperature for, 5-197
skin depth and h-f-resistance for (f), 5-200
Copper I, energy-level diagram of (f), 7-38
Copper alloys, densities of (T), 2-26 to 2-28
elastic and strength constants of ( $T$ 's), 2-66 to 2-68, 3-81
Copper crystals, attenuation peaks and decrement for (f), 3-88
Copper oxide rectifier, $\mathbf{5}-266$
Copper potassium sulfate, properties of (T), 4-14, 4-17 to 4-18
Copper sulfate, properties of (T), 4-14, 4-20
Copper wire tables, solid wire (T), 5-198 to 5-199
Coriolis forces, definition of, 2-5
Coriolis parameter (T), 2-130, 2-131
Cosmic abundance, definition of, 8-5
of stable nuclei ( T ), 8-6 to ${ }^{\text {8-17 }}$
Cosmotren, 8-177
Coulomb, definition of, 5-2
international ఛֻ. absolute (T), 5-106
Coulomb forces in stable nuclei, 8-5
Coulomb scattering of charged particles, 8-36
Coulomb's law, 5-3
Couplers and acoustic analogy, 3-177
Coupling in atomic spectra, 7-17 to 7-18
Creep, 2-86 to 2-90
rates for various materials (T), 2-89 to 2-90
in solids (f), 2-84
typical curve of (f), 2-87
Critical absorption wavelengths in $X$-ray spectra (T), 7-130 to 7-132
Critical cavitation number (f), 2-185
Critical constants in heat, 4-21 to 4-23
Critical densities of elements and compounds, 4-21 to 4-23
Critical energy, of electrons; definition of, 8-38
of various substances (T), 8-39
Critical frequency band in hearing (T), 3-127
Critical pressure, for cavitation in sea water (f), 2-184:
of elements and compounds, 4-21 to 4-23
of inorganic and organic substances ( T ), 4-21 to 4-23
Critical temperature, of elements and compounds (T), 4-21 to 4-23
of inorganic and organic substances (T), 4-21 to 4-23
Crochet, definition of, 5-294
Cross section, for neutrons, 8-130, 8-143 to 8-144, 8-169
nuclear, definition of, 8-3
Cryogenie liquids, density of (T), 2-146
Crystal size of various cathode-ray-tube phosphors (T), 6-113
Crystal systems, lattice constants for (f) (T), 2-45

Crystalline medium, Hooke's law for, 2-11

Crystalline quartz, index of refraction of (T), 6-23 to 6-25

Crystalline solids, dielectric constants of (T's), 5-115 to 5-118
Crystallization of metals, 3-75
Crystallographic data, 2-44 to 2-54
for compounds, 2-53 to 2-54
for elements (T), 2-48 to 2-52
Crystals, anisotropy constant of (T), 5-222
antiferroelectric, properties of (T), 5-156
coefficients of linear thermal expansion of (T), 4-54 to 4-55
copper, attenuation peaks and decrement of (f), 3-88
cubic (see Cubic crystals)
densities of (T), 3-77 to 3-78
elastic constants and coefficients of (T's), 2-56 to 2-58, 3-81, 3-82
electro-optic coefficients for, (T), 6-97
ferroelectric, properties of (T), 5-155 to 5-156
hexagonal (T), 2-57
piezoelectric, properties of (T), 3-93
rhombic (T), 2-58
saturation magnetostriction of, 5-222, 5-223
tetragonal (T), 2-57
thermal conductivity of ( T ), 4-72 to 4-73, 4-79
trigonal (T), 2-57
Verdet constants for (T), 6-95
Cubic crystal systems (T), 2-45, 2-47
Cubic crystals, elastic constants and coefficients of (T), 2-56
magnetic crystal anisotropy constants of (T), 5-221.
magnetostriction constants of (T), 5-223
saturation magnetostriction of, 5-222, 5-223
thermal conductivity of (T), 4-72 to 4-73
Cubical expansion, coefficients of, for elements (T), 4-56
for liquids (T), 4-62, 4-63
Cumulonimbus clouds (f), 2-130, 2-134
Cumulus clouds (f), 2-130, 2-134
Curie, definition of, 8-250
Curie constants of paramagnetic materials
(T's), 4-14, 5-241 to 5-243
Curie law and paramagnetism, 5-100
Curie point, definition of, 5-3, 5-206
effect of pressure on (T), 5-220
and saturation magnetization (T), 5-208
Curie points, of binary compounds (T), 5-213
of cobalt alloys (T), 5-210
of ferrites (T), 5-211, 5-212
of ferroelectric crystals (T), 5-155 to 5-156
of ferromagnetic elements (T), 5-208
of high-permeability materials (T), 5-216
of iron alloys (T), 5-209
of iron-cobalt-nickel alloys (f), 5-207
of nickel alloys (T), 5-210
of spinels (T), 5-212
Curie temperature, definition of, 5-101
Curie-Weiss law, 5-101, 5-236
Curium 242, decay scheme of (f), 8-47

Current carriers, mobility of, 5-157, 5-159 to 5-160
Current-carrying capacities of insulated conductors (T's), 5-202 to 5-203, 5-257
Current density, cathode, in glow discharge (T), 5-185

Current noise in radiation detectors, 6-115
Current transformers, 5-259
Cutoff wavelength and frequency, 5-58
Cyclohexane, first Townsend ionization coefficient in (f), 5-169
Cyclotron resonance of electrons and holes, 5-99 to 5-100
Cyclotrons, description of types of, 8-173 to 8-175
world-wide list of (T), 8-189 to 8-193
Cylinder, capacitance per unit length of, 5-15
drag data for (f), 2-226, 2-228
magnetic induction due to, 5-25
Cylindrical coordinates, base vectors in (f), 2-3
definition of, 2-3
Cylindrical shell, skin-effect formulas for, 5-95
Cylindrical wave functions, 5-45 to 5-46

## D

D-layer in atmosphere (f), 2-130
D'Alembert's principle, 2-5
Darcy unit, definition of, 2-180
Darcy's law, 2-179
Day, definition of, 2-14
D-C generator, characteristics of (f), 5-259
connections for (f), 5-258
D-C motors, characteristic curves for (f), 5-246
fractional-horsepower, characteristics of (T), 5-253
integral-horsepower, characteristics of (T), 5-254 to 5-255
in relation to generators, 5-246 to 5-250
D-C resistance, ratio of a-c to, for solid round wire (T), 5-201
Dead room, definition of, 3-17
Deafness, 3-12
Debye $C_{v}$ values (T), 4-44
Debye equation, 4-44
Debye temperatures, definition of, 4-44, 4-46, 4-63
of metals (T), 4-48
of nonmetals (T), 4-47
of superconductors (T), 4-49
Decay, type of, for light nuclei (f's) ( $T$ ), 8-58 to 8-86
for nuclides (T), 8-98 to 8-128
Decay constant, definition of, 3-6, 3-17
Decay energy vs. mass number for alpha particles (f), 8-46
Decay-energy cycles for radioactive series $4 n$ through $4 n+3$ (f's), 8-42 to 8-45
Decay-energy profile, alpha (f), 8-46
Decay-energy systematics of heavy elements, 8-40 to 8-56

Decay products, mesons and hyperons (T), 8-241
Decay schemes, of odd-nucleon alpha emitters (f), 8-54
of $\mathrm{Th}^{228}$ and $\mathrm{Cm}^{242}$ (f), 8-47
Decibel, definition of, 3-3
"Dee" in betatron, 8-173
Deep-water waves, 2-122
Deflecting instruments, 5-113
Deflection of vertical in geodesy, 2-94
Deformable media, dynamics of, 2-10 to 2-12
Deformation, rate of, in viscous fluids, 3-27
Degeneracy and electronic structure, 7-18
Degenerate case in wave mechanics, 7-166
Degenerate modes of spherical resonators, 5-66 to 5-67
Degree, definition of, 2-14
Deionization, 5-166, 5-171
Demagnetization curves, of Alnico 5 (f), 5-218
of permanent-magnet alloys (f), 5-218
Demagnetizing factors, definition of, 5-240 for rods and ellipsoids (T), 5-244
Density, of air (T), 3-57
of alloys (T), 2-22 to 2-30
of aluminum alloys (T), 2-24
in amagat units, 4-118
of cobalt alloys, 2-25
of copper alloys (T), 2-26 to 2-28
critical, of elements and compounds ( T ), 4-21 to 4-23
of inorganic and organic substances (T), 4-21 to 4-23
of crystals (T), 3-77 to 3-78
definition of, 2-4
of earth, 2-101
of elementary gases (T), 2-198
of elements in solid form (T), 2-17 to 2-20
of gases (T), 2-197 to 2-201, 3-56, 3-57
of glasses (T), 3-77 to 3-78
of high-permeability materials (T), 5-216
of inorganic gases (T), 2-199
of ions in lower atmosphere (T), 5-284
of lead alloys (T), 2-29
of liquids, 2-136
various (T), 6-18
of magnesium alloys (T), 2-29
measurement in liquids, 2-136
of metals (T), 3-77 to 3-78
of nickel alloys (T), 2-30
of organic gases (T), 2-200
of paramagnetic salts (T), 4-14
of plasties ( T ), 2-34 to 2-35, 3-77 to 3-78
of resins (T), 2-34 to 2-35
of rubber (T), 2-35
of solids at $20^{\circ} \mathrm{C}$ (T), 2-21
and sound transmission in solids, 3-74 to 3-79
of steam (T), 4-114
of steels (T), 2-22 to 2-23
of water, fresh and sea (T), 3-69 sea, 2-117
of woods (T), 2-31 to 2-33
X-ray, of crystals (T), 3-77 to 3-78
of zinc alloys'(T), 2-30

Density defects for pure ionic conductors (T), 5-189

Density measurement of gases, 2-197 to 2-198
Density tables, for chloro-fluoro liquids (T), 2-149
for cryogenic liquids (T), 2-146
for deuterium (T), 2-139
for ethyl alcohol (T), 2-142
for fluorocarbon liquids (T), 2-149
for inorganic liquids (T), 2-143
for liquids of normally gaseous substances (T), 2-144
for mercury (T), 2-140
for methyl alcohol (T), 2-140 to 2-141
for organic liquids (T), 2-147
for water (T), 2-138 to 2-139
Derived units, definition of, 2-15
Detectability, threshold of, 3-14
Detonation and shock waves, 2-233
Deuterium, atomic mass of, 8-4
density of (T), 2-139
fractional distillation of, 2-137
virial coefficients for (T), 4-125
volume related to pressure and temperature (T), 2-154
Deuteron, mass of (T), 7-3
range-energy relation in Ilford C-2 emulsion (f), 8-32
range straggling in copper (f's), 8-37
symbols for, 8-3
Diamagnetic body, definition of, 5-3
Diamagnetic liquids, Faraday rotation in (T), 5-232

Diamagnetic solids, Faraday rotation in (T), 5-232

Diamagnetism, definition of, 5-100
Diatomic gases and shock waves (T), 2-235
Diatomic molecules, constants of (T), 7-136 to 7-141
energy-level and potential curves of ( $f$ 's), 7-142 to 7-145
and Zeeman effect, 7-169
Dielectric bodies, definition of, 5-3
in electrostatic fields, 5-22 to 5-23
Dielectric boundary formulas, 5-21 to 5-22
Dielectric capacitivity of piezoelectric crystals (T), 3-93
Dielectric constants, of antiferroelectric crystals (T), 5-156
of commercial dielectrics ( T ), 5-147
definition of, 5-2
of ferroelectric crystals (T), 5-155 to 5-156
of inorganic liquids (T), 5-133
of inorganic solids (T), 5-115 to 5-117
of liquids (T's), 5-132 to 5-147
of organic liquids (T), 5-134 to 5-142
of organic solids (T), 5-118
of reference gases (T), 5-147
of standard liquids (T), 5-132
of transducer materials (f), 3-97
variation with temperature (f), 5-131
Dielectric crystals, thermal conductivity of (T), 4-79

Dielectric properties, of amorphous solids, 5-120 to 5-132
of ceramics (T), 5-120 to 5-121
of gases (T's), 5-147 to 5-149
of glasses (T), 5-122 to 5-123
of plastics (T), 5-124 to 5-130
of rubbers ( $\mathbf{( T ) , 5 - 1 2 4}$ to 5-130
Dielectric strength, relative, of gases (T), 5-148 to 5-149 of nitrogen vapor (T), 5-148 to 5-149
Dielectrics, commercial, dielectric constants of (T), 5-147
properties of, 5-114 to 5-156
thermal conductivity of (T), 4-79
Dieterici equation as a virial expansion, 4-119
Difference limen, definition of, 3-12
Differential cross section, 5-71
Differential diffusion coefficients of various solutions ( $T$ ), 5-272
Differential equations for electrical, mechanical, and acoustical systems, 3-137 to 3-138
Differential forms of Maxwell's equations, 5-40
Differential formulations in electrical field equations, 5-37 to 5-38
Differential scattering cross section of neutrons, definition of, 8-130
Differential threshold for intensity in hearing (T), 3-126
Diffraction, definition of, 6-3
Diffraction grating, definition of, 6-3
Diffuse sound field, 3-120
Diffusing surfaces, reflection coefficients for incandescent light on ( T ), 6-43
Diffusion, in gases, 2-11 to 2-214
in liquids, 2-189 to 2-195
Diffusion coefficients, ambipolar, for several gases (T), 7-218
of aqueous solutions, variation with temperature (T), 2-194
of concentrated electrolytes (T), 2-191
definition of, 2-80, 2-211
of dilute electrolytes (T), 2-190
of ions in gases, 7-205
for liquids, definition of, 2-189
of metals (T), 2-79 to 2-80
of nonaqueous solutions (T), 2-195
of nonelectrolytes (T), 2-192
of organic compounds (T), 2-193
variation, with concentration (T), 2-213 with pressure (f), 2-213
of various gases (T), 2-212
Diffusion constants for electrons and holes, 5-160
Diffusion diagram for atmosphere (f), 2-135
Diffusion equation in fluid motion, 3-40
Diffusivity, of miscellaneous materials (T), 4-74
of sea water (T), 2-122
Dilatation rate in viscous fluids, 3-27
Dilatational deformation, 2-10
Dilatometer, 2-136
Dimensional analysis in sound absorption, 3-45 to 3-46

Dimensions of electrical quantities (T), 5-6 to 5-7
DIMPLE reactor, 8-240
Dip of earth's magnetic field, 5-291
Dipole, force, mutual energy, and torque, 5-21
potential of, 5-21
Dipole radiators, electric and magnetic, 5-69 to 5-70
Dipole rotation, 5-114
Direct sound, definition of, 3-17
Directional radiation, from circular piston, 3-111
from thin circular ring, 3-111 to 3-112
Directivity of a radiator, 5-69
Directivity factor, definition of, 3-10
Directivity index, definition of, 3-11
of piston or ring (f), 3-112
of transducer, 3-110, 3-112
Discharge characteristics, normal cathode fall (T), 5-184
Discrete radio sources, 6-122 to 6-123
Dispersion, definition of, 6-4
index of refraction vs., for optical glass (f), 6-33
Dispersive power, definition of, 6-4
Dissociation constants, of electrolytes ( $T$ ), 5-280
of water (T), 5-280
Dissociation energy of diatomic molecules (T), 7-136 to 7-141

Dissociative recombination (T), 5-171
Dispersion of sound, 3-43 to 3-53
and heat radiation, 3-49 to 3-50
in liquids, 3-68
Dispersion measure and viscothermal absorption, 3-47 to 3-49
Diurnal variation in ionosphere (f), 2-131
Divergence of ocean waves, 2-123
Dominant wavelength in colorimetry, 6-60
Donors and binding energies (T), 5-160, 5-163
Doppler effect, definition of, 3-3, 6-4
Drag in cavitating flow, 2-187 to 2-188
Drag coefficients, of flowing liquids, 2-183
vs. Reynolds number for cylinder and sphere (f), 2-226
for various bodies (T), 2-188
Drag data in gas flow, 2-226 to 2-228
Drift mobilities of germanium and silicon (T), 5-159

Drift velocity, definition of, 7-203
of electrons, 5-96
in various substances (f's), 7-205 to 7-209
of ions in various substances (f's), 7-212 to 7-218
Drop-weight method of surface tension measurement, 2-176
Dry-adiabatic lapse rate, 2-127
Dynamic-field equations, 5-36 to 5-95
Dynamic modulus of elasticity, 2-85 to 2-86
Dynamic similarity in gas flow, 2-215
Dynamic viscosity, definition of, 2-201 of sea water (T), 2-122.

Dynamics, of deformable media, $2-10$ to 2-12
fluid, 2-12 to 2-14
noninertial, 2-5
of rigid bodies, 2-8 to 2-10
and systems of particles, 2-6
Dyne, definition of, 2-15
E
$E$ waves, 5-47
EM waves (see Electromagnetic waves)
Ear, acoustic impedance of (T), 3-123, 3-124",
loudness level, 3-13
minimum audible pressure on external (T), 3-124 to 3-125
parts of (T), 3-123
physical dimensions of (T), 3-123
and pitch, 3-13
thresholds for, 3-14
Earth, altitude variation of orust (T), 2-115
characteristics of crust, 2-115 to 2-116
dimensions of, 2-100
elastic constants in, $2+108$
electric and magnetic properties of, 5-283 to 5-297
electrical characteristics of, 5-289 to 5-291
location of magnetic poles of (T), 5-292
longitudinal waves in (T), 2-103
magnetic moment of, 5-292
magnetism of, 5-291 to 5-295
methods of measuring size and shape of, 2-96 to 2-97
miscellaneous constants for (T), 2-91
nonelastic properties of interior of (T), 2-113 to 2-114
physical and orbital data for (T's), 2-90, 2-91
pressures in, 2-108
resistivity of, 5-290 to 5-291
seismicity of, 2-110 to 2-112
wave velocities in, 2-108
Earth currents (electrical), 5-289 to 5-290
Earth ellipsoid, dimensions of (T), 2-94
Earth materials, resistivities of (f), 5-290
Earthquake waves, energy reflection data
for (T), 2-105, 2-106
energy refraction data for (T), 2-105, 2-106
periods and amplitudes, 2-102 to 2-103
reflection and refraction of, 2-104 to 2-106
travel times of (T), 2-103 to 2-104
equations for, 2-107 to 2-108
types of, and symbols for, 2-106 to 2-107
velocity equations, 2-107 to 2-108
Earthquakes, aftershock of, 2-113
average energy release of (T), 2-112
comparison of shallow, intermediate, and deep (T), 2-111
epicentral distances for (T), 2-107
focal depths of (T), 2-107
intensity of, 2-108
at epicenter (T), 2-111
magnitude of, 2-108
vs. depth for greatest shock (T), $\mathbf{~ - 1 1 2}$

Earth's magnetic field, characteristics of, 5-291 to 5-293
origin of; 5-293
transient phenomena in, 5-293 to 5-294
Eccentricity of planetary orbits (T), 2-90
Echo, definition of, 3-3
Eddy current, definition of; 5-3
Eddy-current constant for magnetic losses at low induction (T), 5-220
Eddy-current heating of sphere, 5-95
Eddy diffusion in atmosphere, 2-135
Edison effect, definition of, 5-4
Effective acoustic center, definition of, 3-11
Effective bandwidth, definition of, 3-11
Effective decay energy vs. log half life for various alpha emitters (f), 8-54
Effective particle velocity, definition of, 3-3
Effective secondary emission of electrons by various substances (f's', 7-199 to 7-200
Effective sound pressure, definition of, 3-3
Effective volume velocity, definition of, 3-8
Einstein-de Hass effect, 5-103
Einstein viscosity equation, 2-181
Elastance coefficients, 5-17 to $5-18$
Elastic aftereffect, 2-84 to 2-86
Elastic coefficients of crystals (T), 2-55 to 2-58
Elastic collisions, by electrons in various substances (f's), 7-175 to 7-176
by ions of various substances (f's), 7-186 to 7-188
Elastic constants, of copper alloys (T), 3-81
of crystals (T), 2-55 to 2-58, 3-74
of cubic crystals ( T ), 3-81
in earth, 2-108
fundamental equations for, 2-102
of glasses (T), 3-80
of hexagonal crystals (T), 3-82
of metals (T), 3-80
of piezoelectric crystals (T), 3-93
of plastics, 3-80
of polycrystalline solids ( T ), 2-55 to 2-80
of rocks (T), 2-102
of solids, 3-74 to 3-79
of various metals (T), 3-83
Elastic hysteresis, 2-84 to 2-86
Elastic medium, definition of, 2-10
Hooke's law for, 2-11
Elastic modulus, 8-84 to 2-86
Elastic scattering of photons (f), 8-91 to 8-92
Elasticity, moduli of, 2-84 to 2-86
notation and symbols, 2-55
Electric charge, definition of, 5-2
on precipitation particles (T), 5-287
Electric circuit, acoustic analogy to, 3-140. to 3-142
definition of, 5-4
magnetic fields about, 5-25 to 5-27
magnetic forces on; 5-32 to 5-33
Electric current, average full load for motor:s (T), 5-256
definition of, 5-2
in earth, 5-289 to 5-291
Electric dipole as radiator, 5-69
Electric-dipole radiation, 7-21

Electric-dipole transition, selection and polarization rules for (T), 7-168
Electric field, vs. altitude in lower atmosphere (T), 5-286
of atmosphere (T), 5-285
inside clouds (T), 5-286
near thunderstorms (f), 5-287
Electric generators (see Generators)
Electric impedance, vector, equation for, 3-138
Electric intensity, definition of, 5-2
Electric lines of force, definition of, 5-4
Electric mesher, 3-141
Electric motors, a-c and d-c, 5-246 to 5-250
average full-load current for (f), 5-259
control and protection of, 5-254 to 5-257
fractional-horsepower (T), 5-253
integral horsepower characteristics of (T), 5-254 to 5-255
relative cost of ( $f$ 's), 5-251
selection criteria for, $5-250$ to $5-252$
standard ratings of frequency, horsepower, speed, and voltage, 5-252
Electric polarization, 5-3
Electric power level, definition of, 3-3
Electric quadrupole moment of stable nuclei (T), 8-6 to 8-17

Electric tubes of flux, definition of, 5-4
Electrical-apparatus standard, 5-245 to 5-246
Electrical characteristics of thunderstorms (T), 5-288

Electrical circuit (see Electric circuit)
Electrical conduction of rocks, 5-290 to 5-291
Electrical conductivity (see Conductivity)
Electrical formulas, 5-12 to 5-104
for capacitance, mks units, 5-12 to 5-18
for dielectric boundary, 5-21 to 5-22
dynamic-field equations, 5-36 to 5-95
electrostatic-force, 5-18 to 5-21
multipole, 5-21
for reduction to cgs, esu, and emu (T's), 5-8
for reduction to mks units ( T ), 5-10 to 5-11
static-current flow, 5-23 to 5-25
static field, 5-12 to 5-36
for transition between unit systems ( $\mathbf{T}$ ), 5-6 to 5-11
Electrical instruments, deflecting, 5-113
Electrical power practices, $5-245$ to $5-268$
Electrical properties, of earth and stars, 5-283 to 5-297
of metallic conductors, 5-197 to 5-205
of pure metals (T), 5-204
Electrical quantities, mks symbols, units, definitions, and dimensions ( T 's), 3-139, 5-6 to 5-7
Electrical resistance and acoustic analogy, 3-134, 3-136
Electrical resistivity (see Resistivity)
Electrical schematic diagrams, based on impedance analogy ( T ), 3-145 to 3-176
based on mobility analogy (T), 3-144 to 3-176

Electrical standards, basis for, 5-105
history of, 5-105 to 5-106
Electrical symbols (T), 3-139
Electrical system, graphical representation of (f's), 3-136, 3-137
of one degree of freedom, 3-137 to 3-138
Electrical units (T), 3-139
international vs absolute (T), 5-106
maintenance of, 5-106
Electricity, atmospheric, 5-283 to 5-289
terrestrial, 5-289 to 5-291
Electroacoustical reciprocity theorem, definition of, 3-11.
Electrochemical data, sources and symbols, 5-268 to 5-269
Electrochemistry, 5-268 to 5-283
Electrodes, definition of, 5-3, 5-4
Electro-dynamical analogies with acoustics, 3-134 to 3-139
Electrolysis, definition of, 5-4
Electrolyte, definition of, 5-4
diffusion coefficients of (T), 2-190, 2-191
dissociation constants of ( T ), 5-280
equivalent conductances and cation transference numbers (T), 5-270
mean-ionic-activity coofficients of (T), 5-278
Electromagnetic field, definition of, 5-38
Electromagnetic units and electrical formulas (T), 5-9
Electromagnetic waves, in bounded regions, 5-56 to 5-57
guided, 5-47 to 5-65
types, 5-47, 5-57
Electromechanical coupling of piezoelectric crystals (T), 3-93
Electromechanical coupling factor for transducers, 3-89
Electromotance, definition of, 5-2
Electromotive force, definition of, 5-2
standards of, 5-107 to 5-109 for half cells in water (T), 5-274 to 5-276
Electron acceleration, in betatrons, 8-175 to 8-176
in linear accelerators, 8-178
by magnetic induction, 8-175 to 8-176
in synchrotrons, 8-176 to 8-177
Electron attachment, efficiency of, for various gases (f's), 5-172 to 5-177 for various substances ( $f$ 's), 7-182 to 7-186
Electron conduction, 5-97
Electron configurations of atoms (T), 7-13 to 7-15
Electron emission, secondary, ratio to primary for several substances ( $f$ 's), 7-203
for various substances (f's), 7-192 to 7-198
Electron energy losses in various gases (f's), 5-181 to 5-183
Electron spin, definition of, 7-17
Electron stream, space-charge waves in, 5-75

Electron synchrotron, description of, 8-176 to 8-177
world-wide list of (T), 8-196 to 8-197
Electron temperature of discharge vs tube radius (f), 5-183
Electron transitions, selection rules for, 7-20 to 7-21, 7-25
Electron traps and electron conduction, 5-160
Electron yield of various substances (f's), 7-192 to 7-198
Electronic conductors, conductivity for (T), 5-192 to 5-194
transport numbers for (T), 5-191 to 5-194
Electronic constants, and Debye temperature, 4-46
for metals (T), 4-48
for superconductors (T), 4-49
Electronic rectifiers, 5-260
Electronic structure of atoms (T), 7-13 to 7-15
Electronic thermal agitation noise in radiation detectors, 6-115
Electrons, absorption curve for, in aluminum (f), 8-38
attachment coefficients for various substances (f's), 7-182 to 7-186
Compton wavelength of, 8-4
cyclotron resonance, 5-99 to 5-100
drift velocity of (f's), 7-205 to 7-209
effective secondary emission of ( $f$ 's), 7-199 to 7-200
elastic collisions of ( $f$ 's), 7-175 to 7-176
and Hall mobilities (T), 5-161
inelastic collisions of (f's), 7-177 to 7-182
ionization by, 5-166
magnetic moment of, 8-4
mean energy of (f's), 7-210 to 7-211
mobility of, 5-157, 5-159 to 5-160
motion of, in gases, 7-174 to 7-219.
passage of, through matter, 8-38 to 8-40
range-energy relation of, in aluminum (f), 8-39
rest mass of, 8-4
symbols for, 8-3
various constants of (T), 7-3
Electro-optic coefficiente for various crystals (T), 6-97
Electro-optic effect, definition of, 6-94
Electrophonic effect, definition of, 3-12
Electrostatic accelerators, description of, 8-172 to 8-173
world-wide list of (T), 8-182 to 8-188
Electrostatic fields, and dielectric bodies, 5-22 to 5-23
potential in, 5-3
Electrostatic-force formulas, 5-18 to 5-21
Electrostatic generators, world-wide list of (T), 8-182 to 8-188

Electrostatic units and electrical formulas (T), 5-8

Electrostriction, definition of, 5-4
Electrostrictive transducers, 3-92 to 3-98
Elementary gases, densities of (T), \&-198
Elements, alphabetical list of (T), 7-5 to 7-7 atomic numbers of (T), 8-5 to 7-8

Elements, atomic susceptibility of (f), 5-236
coefficients of cubical thermal expansion of (T), 4-56
çoefficients of linear thermal expansion of (T's), 4-51 to 4-55
critical temperatures, pressures, and densities of (T), 4-21 to 4-23
crystallographic data for (T), 2-48 to 2-52
decay-energy systematics of heavy, 8-40 to 8-56
density of (T), 2-17 to 2-20
gamma rays accompanying neutron capture in (T), 8-94 to 8-96
Hall constants of (T), 5-237
heats of fusion of (T), 4-131 to 4-159
heats of sublimation of (T), 4-131 to 4-159
heats of transition of (T), 4-131 to 4-159
heats of vaporization of (T), 4-131 to 4-159
isotopes of (T's), 8-154 to 8-168, 8-170 to 8-171
latent heats of (T), 4-131 to 4-159
melting parameters of (T's), $\mathbf{4 - 3 0}$ to $\mathbf{4}-32$
molar heat capacities of (T's), 4-40 to 4-43
neutron binding energies of (T), 8-135 to 8-143
periodic system of (T), 7-8
persistent spectral lines of (T), 7-39 to 7-41
phase transition data for ( T ), 4-130 to 4-159
reaction and scattering cross sections of (T's), 8-154 to 8-168, 8-170 to 8-171
relative volumes of ( T ), 4-29
resistivity of, vs temperature for (T), 4-13
symbols for (T), 7-5 to 7-8
thermal cross sections of ( T 's), 8-154 to 8-168, 8-170 to 8-171
thermal emf in relation to platinum ( $T$ ), 4-6 to 4-7
various properties of (T), 7-9 to 7-12
Elevation vs atmospheric pressure, temperature, and density (T), 3-58
Ellipsoid, Clarke and Krassovski, 2-96
demagnetizing factors for (T), 5-244
international, 2-100 to 2-101
Elongation, of metals and alloys (T), 2-61 to 2-78
in tensile testing, definition of, \&-69
Emission bands of various cathode-ray-tube phosphors (T), 6-113
Emission color of various cathode-ray-tube phosphors (T), 6-113
Emissive power, definition of, 6-4
Emissivity, definition of, 6-4
of globar sources (f), 6-81
of solids, definition of, 6-73
spectral, brightness vs. temperature for (T), 6-75
of oxides (T), 6-74
of unoxidized surfaces (T), 6-73
of various substances (T), 6-72
total, apparent vs. true temperature for (T), 6-76

Emissivity, total, for metals with unoxidized surfaces (T), 6-75 of various materials (T), 6-68 to 6-71
Emitted peak and range of fluorescent . chemicals (T), 6-111
End correction for organ pipe, 3-103
Energetics, acoustical, 3-41 to 3-43
Energy, conservation of, 2-5 to 2-8
of earthquake waves (T), 2-105, 2-106
of earthquakes, 2-112
gamma and particle, of nuclides (T), 8-98 to 8-128
kinetic, definition of, 2-4
mean, of electrons in several substances (f's), 7-210 to 7-211
mutual, of two dipoles, 5-21
potential, definition of, 2-6
Energy balance, in fluids, 3-42
and nuclear reactions, 8-2
Energy density, definition of, 3-6
in fluids, 3-42
Energy equation in gas flow, 2-215, 2-221
Energy gaps, definition of, 5-157
for various substances (T), 5-158 to 5-159
Energy-level curves, of $C_{2}$ (f's), 7-142
of CN (f's), 7-143
of $\mathrm{O}_{2}$ (f's), 7-145
Energy-level diagrams, of atoms (f's), 7-26 to 7-37
of X-ray spectra (f), 7-124
Energy levels, of CO(f), 7-143
of light nuclei (f's) (T), 8-56, 8-58 to 8-86
of $\mathrm{N}_{2}(\mathrm{~g}), 7-144$
of NO (f), 7-144
of X-ray spectra (T), 7-133 to 7-135
Energy loss, per ion pair in various gases (T), 8-36, 8-38
of protons, in air (f), 8-26
in aluminum (f) (T), 8-28, 8-35
in beryllium ( T ), 8-35
in copper (T's), 8-24 to 8-25, 8-35
in gold (T), 8-35
in lead (T), 8-33 to 8-34
in mica (T), 8-35
in silver ( T ), 8-30 to 8-34
Energy product of materials for permanent magnets (T), 5-219
Energy-product curve of Alnico 5 (f), 5-218
Energy reflection in earthquake waves ( $T$ ), 2-105
Energy refraction in earthquake waves (T), 2-106
Energy relations for viscous fluids, 3-29 to 3-31
Energy release of earthquakes (T), 2-112
Energy state, lifetime (or width) of, for light nuclei (f's) (T), 8-58 to 8-86
Energy transmission in earthquake waves (T), 2-105

English sperm candle, definition of, 6-10
Enthalpy, of air (T), 4-85
of argon (T), 4-90
of carbon dioxide (T), 4-93
of hydrogen (T), 4-98
of nitrogen (T), 4-106
of oxygen (T), 4-111

Enthalpy, of steam (T), 4-116
Entropy, of air (T), 4-86
of, argon (T), 4-91
of carbon dioxide (T), 4-93
of helium at various temperatures ( T ), 4-30
of hydrogen (T), 4-99
of nitrogen (T), 4-107
of oxygen (T), 4-112
of a solid (T), 4-44, 4-46
and sound absorption, 3-44
standard, of monatomic and polyatomic ions (T), 5-281, 5-282
of steam (T), 4-117
Entropy diagram, for helium (f), 4-94
for hydrogen (f), 4-100 to 4-102
Epicenter of earthquakes (T), 2-103, 2-107, 2-111
Equal-loudness contours, definition of, 3-13
Equally tempered intervals (T), 3-14
Equally tempered scale, definition of, 3-14
frequencies of ( T ), 3-16, 3-105
Equations, of motion, for elastic media, 2-12 for gas flow, 2-214 to 2-223
for rigid bodies, 2-8 to 2-9
of state, and gas flow, 2-215, 2-221
for viscous fluids, 3-29 to 3-31
Equilibrium, static, definition of, 2-9
Equilibrium distance for diatomic molecules (T), 7-136 to 7-141

Equivalent circuit, for magnetostrictive rod (f), 3-100
for magnetostrictive transducers, 3-98
for piezoelectric crystal (f), 3-90, 3-92
Equivalent conductances of electrolytes (T), 5-270

Equivalent electrons, 7-20
atomic levels for $n$ (T), 7-21
Equivalent noise input, of detector, definition of, 6-119
of thermal radiation detectors (T), 6-118
Equivalent physical roentgen, definition of, 8-250
Erg, definition of, 2-15
Ethanol, limiting equivalent conductances of ions in (T), 5-271
Ether, volume related to pressure and temperature (T), 2-161
Ethyl alcohol, density of (T), 2-142
volume related to pressure and temperature (T), 2-157
Ettingshausen coefficient, 5-99
Ettingshausen effect, definition of, 5-4, 5-99
Euler momentum equation in gas flow, 2-214
Euler's continuity equation, 3-27 to 3-28
Euler's equations, 2-9
Euler's formula and international ellipsoid, 2-101
Evaporated mirror coatings, optical constants of (T), 6-104
Even multiplicities, $g$ values in $L-S$ coupling (T), 7-172 to 7-173

Even-even alpha emitters, 8-46
ground-state transitions, 8-55
transitions to excited state, 8-55 to 8-56

Even-even nuclei, first excited-state energies of (f), 8-53
Exact wave equation, 3-35
Excitation energy of light nuclei (f's) (T), 8-56, 8-58 to 8-86
Excited-state emissions of alpha emitters, 8-55 to 8-56
Excited-state energies of even-even nuclei (f), 8-53

Exciting range of fluorescent chemicals (T), 6-111
Experimental piles, 8-227
Extensional deformation, 2-10
Extensional waves in solids, 3-75
External ear canal, minimum audible pressure for (T), 3-124 to 3-125
Extinction, index of, 6-2
Extinction coefficient (optical), definition of, 6-102
in infrared (T), 6-38
of light, definition of, 6-36
Eyes, maximum permissible exposure to ionizing radiation for (T), 8-255

## F

Fabry-Perot filter (f), 6-45, 6-47
Fahrenheit temperatures, conversion equations for (T), 4-2
Far zone of radiation field, 5-68
Far-zone field and current distribution, Fourier transform relations for, 5-72
Farad, international vs. absolute (T), 5-106
Faraday effect, 5-231, 6-4, 6-91 to 6-94
Faraday's law of induction, 5-3
Faraday rotation, in ferrites (T), 5-234 to 5-235
as function of field strength (f), 5-233
at microwave frequencies, 5-64 to 5-65
in various materials (T), 5-232
(See also Magneto-optical rotation)
Fast-neutron cross sections, 8-130, 8-143
Fast-neutron fission yields (T), 8-216 to 8-218
Feeling, threshold of discomfort, definition of, 3-14
Fermat's principle of least time, definition of, 6-4
Ferramic-type ferrites, properties of (T), 5-217
Ferrimagnetic materials, definition of, 5-4
Ferrimagnetic resonance, 5-104
Ferrimagnetism, 5-102
Ferrite materials, Faraday rotation in (T), 5-234 to 5-235
Ferrite-type transducers, materials for, 3-92
Ferrites, Bohr magneton numbers and Curie points of (T), 5-211, 5-212
magnetostrictive properties of (T), 3-99
properties of Ferroxcube and Ferramic types (T), 5-217
saturation magnetization and Curie points of (T), 5-211, 5-212
Ferroelectric crystals, properties of (T), 5-155 to 5-156

Ferroelectric materials, acoustic losses in, 3-85 to 3-86
definition of, 5-4
and transducers, 3-89
Ferromagnetic elements, Bohr magneton numbers, Curie points, and saturation magnetization of (T), 5-208
Ferromagnetic magnetized films, magnetic rotatory power of (T), 6-96
Ferromagnetic materials, acoustic losses in, 3-85 to 3-86
definition of, 5-4
Ferromagnetic resonance, 5-104
Ferromagnetism, 5-101
Ferroxcube-type ferrites, properties of (T), 5-217
Fick's diffusion equation, 2-189
Field, anechoic sound, 3-2
sound, 3-6
Field equations, differential formulations in, 5-37 to 5-38
dynamic, 5-36 to 5-44
integral formulations in, 5-36 to 5-37
Field intensity, magnetic, of sun (T), 5-295
Field strength, fractional volume change with (T), 5-224
Field vectors, and constitutive parameters, 5-38 to 5-39
wave equations for, 5-42
Filter (light) plates, transmission curves of (f), 6-49

Filter sections, design of low-pass, highpass, and band-pass (T), 5-86 to 5-89
Filters, glass, polarizing and interference, 6-43 to 6-50
with $\pi$ sections (T), 5-86 to 5-89
with T intermediate sections (T), 5-86 to 5-89
Finite amplitude waves, 3-37 to 3-39
First-order acoustic equations, 3-33
First-order vorticity, 3-40
Fission, definition of, 8-2
types of, 8-212
Fission fragments, range of, 8-36
Fission-product chains (T), 8-202 to 8-211
Fission yields, charged-particle (T), 8-219 to 8-221
fast-neutron (T), 8-216 to 8-218
photo- (T), 8-222 to 8-224
spontaneous (T), 8-225
thermal neutron (T), 8-212 to 8-215
Fissionable nuclei, resonance parameters of (T), 8-153

Fine-structure constant (T), 7-3
Five-atom molecules, fundamental vibrations of (T), 7-150
rotational constants and geometric parameters of, asymmetric-top (T), 7-159 linear (T), 7-156
spherical-top (T), 7-157 to 7-158
symmetric-top (T), 7-157 to 7-158
Fixed cavities, 2-183, 2-187
Fixed temperature points, on international temperature scale (T), 4-3
secondary (T), 4-5
Flame standards (T), 6-9

Flat plate, heat transfer data for (f), 2-229, 2-230
skin-friction data for, 2-228
turbulent flow along (f), 2-227
Flat strips, capacitance per unit length, 5-15 to 5-16
Floors, sound transmission loss through (T), 3-121
Flow variables vs. Mach number for isentropic gas flow (T), 2-218
Flow-velocity components of liquid jets, 2-196
Flowing liquids, symbols and definitions for, 2-182 to 2-183
Fluid dynamics, 2-12 to 2-14
Bernoulli's principle, 2-13
and viscous fluids, 2-13
Fluid flow properties of porous media, 2-179 to 2-180
Fluids, in equilibrium, 2-12
sound propagation in, 3-25 to 3-55
viscous (see Viscous fluids)
waves in, 2-14
Fluorescence, of gases and vapors (T), 6-112
of organic substances in solution (T), 6-111
Fluorescent chemicals, characteristics of (T), 6-111

Fluorine, energy levels of (f) (T), 8-77 to 8-85
Fluorocarbon liquids, density of (T), 2-149
Flutter echo, definition of, 3-4
Flux, luminous, definition of, 6-52
maximum permissible for normal neutron beam (T), 8-256
FM cyclotron, description of, 8-174 to 8-175
Focal depths of earthquakes (T), 2-107
Foot-candle, definition of, 6-4, 6-10
Foot-lambert, definition of, 6-9
Force, centrifugal, 2-5
Coriolis, 2-5
definition of, 2-4
on dipole, 5-21
moment of, 2-6 to 2-7
Force equation for viscous fluids, 3-27 to 3-29
Force factor, of ceramics (T), 3-95
of piezoelectric crystals (T), 3-93
Force law, 5-41
Foreign betatrons, list and descriptions of (T), 8-195

Foreign cyclotrons and synchrotrons, list and descriptions of (T), 8-191 to 8-193
Foreign electron synchrotrons, list and descriptions of (T), 8-196 to 8-197
Foreign electrostatic generators, list and descriptions of (T), 8-185 to 8-188
Foreign linear accelerators, list and descriptions of (T), 8-200 to 8-201
Foreign proton synchrotrons, list and descriptions of (T), 8-198 to 8-199
Form factors in demagnetization, 5-240
Formant frequencies in American speech (T), 3-131 to 3-132

Formative time lag, 5-180
Foucault current, definition of, 5-3

Four-atom molecules, fundamental vibrations of (T), 7-148 to 7-149
rotational constants and geometrical
parameters of, asymmetric-top (T), 7-155
linear (T), 7-154
spherical-top (T), 7-154
symmetric-top (T), 7-154
Fourier-Kirchhoff-Neuman energy equation, 3-29
Fractional change of volume of incompressible metals ( T ), 4-28
Fractional distillation, 2-137
Fragments, fission, definition of, 8-2
Fraunhofer's lines, 6-4
Free electrons and spin resonance, 5-103
Free field, definition of, 3-4
Free particle and wave mechanics, 7-162
Free surface, 2-12
of liquids, and shock waves, 2-235
Free surface energy, 2-175
Freezing point of sea water, 2-116
French reactor program, 8-240
Frenkel defects (T), 5-185, 5-195
Frequencies, of equal-tempered scale, 3-105 microwave letter notation for (T), 5-62
Frequency, of conical resonators (T), 3-103
critical hearing band (T), 3-127
dielectric, of ceramics, 5-120 to 5-121
of commercial dielectrics (T), 5-147
of glasses, 5-122 to 5-123
of plastics (T), 5-124 to 5-130
of rubbers (T), 5-124 to 5-130
differential threshold, in hearing ( $\mathbf{T}$ ), 3-126
effect on conductivity of copper, 5-197, 5-200
fundamental, of air columns and rods, 3-102 to 3-103
of strings, 3-100 to 3-102
and pitch (T), 3-129
relative, of sounds in American speech (T), 3-131 to 3-132
of simple vibrators, 3-100 to 3-106
of tuning fork, 3-104
of vibration of bars (T), 3-104, 3-106
Frequency bands, equivalent, in speech (T), 3-133
Frequency number and sound absorption, 3-46
Frequency perturbations in strings (T), 3-102
Frequency ratings of electric motors, 5-252
Frequency ratios for intervals in cents ( $T$ ), 3-106, 3-107
Frequency standards, 5-112 to 5-113
Fresh water, properties of (T), 3-69
Fresnel's formulas, 6-7
Friction, coefficients of (T), 2-39 to 2-44
rolling (f), 2-43 to 2-44
sliding, 2-40
static (T), 2-39 to 2-40
Friction factor vs. Reynolds number, rough pipes (f), 2-225
Frictional force, 2-39

Fuel cores of various nuclear reactors (T), 8-228 to 8-239
Fuels for various nuclear reactors (T), 8-228 to 8-239
Full-load currents, average, for motors (T), 5-256
Fundamental frequency, of air columns and rods, 3-102 to 3-103
of strings, 3-100 to 3-102
Fundamental tone, definition of, 3-14
Fundamental units in mechanics, 2-14 to 2-15
Fundamental vibrations of polyatomic molecules (T's), 7-147 to 7-151
Fused-quartz glass, index of refraction of (T), 6-31

Fused silica, optical properties of, 6-40
Fusion, heat of, for elements and compounds (T), 4-131 to $4-159$

## G

$g$ factor and Zeeman effect, 7-169
$g$ values, for $L-S$ coupling, 7-170 to 7-173
Gabbro, 2-108
Gadolinium sulfate, properties of (T), 4-14, 4-19
Gain function of radiating system, 5-68 to 5-69
Galactic magnetism, 5-295 to 5-297
Galactic radio noise, 6-122
Galvanomagnetic effect, 5-97 to 5-100
Gamma energy in neutron capture for elements (T), 8-96
Gamma quantum, symbols for, 8-3
Gamma-ray absorption in air (T), 8-253
Gamma-ray energy of nuclides (T), 8-98 to 8-128
Gamma rays, 8-87 to 8-95
absorption of, 8-87
total, 8-92 to 8-93
angular correlation and polarization of, 8-93
linear absorption coefficient for (f), 8-93
maximum permissible exposure to ( T 's), 8-254, 8-255
and neutron capture (T), 8-94 to 8-96
Gas, diffusion in, 2-211 to 2-214
laminar flow in, 2-220 to 2-224
turbulent flow in, 2-224 to 2-228
Gas constants, 3-56 to 3-60
per mole (T), 7-3
$R$ in various units (T), 4-80
Gas diode and triode rectifiers, 5-263
Gas flow, axially symmetric, 2-217 to 2-219
basic parameters of, 2-221
Blasius flow, 2-224
boundary layer relations for, 2-223
compressible, 2-214 to 2-219
drag data for, 2-226 to 2-228
equations for, 2-214 to 2-223
continuity, 2-215
energy, 2-215
Euler momentum, 2-214
linearized theory, 2-219
of motion, 2-220 to 2-221

Gas flow, equations for, one-dimensional, 2-216 to 2-217
of state, 2-215
two-dimensional, 2-217 to 2-219, 2-223
flow variables vs. Mach number for (T), 2-218
heat transfer data for, 2-228 to 2-230
hypersonic similarity rule for, 2-219
Prandtl-Glauert rule for, 2-219
and skin-friction data, 2-228
stream function for, 2-217
transonic similarity rule for, 2-219
turbulent, along flat plate (f), 2-227
two-dimensional, through pipe, 2-222
velocity potential for, 2-217
wall-friction relations (f), 2-225 to 2-226
Gas flow parameters, 2-215
Gas mixtures, viscosity of, 2-205 to 2-206
Gas temperature of discharge vs. tube radius (f), 5-183

Gaseous substances, liquid densities of (T), 2-144
Gases, absolute viscosities of (T), 2-207
acoustic properties of, 3-56 to 3-67
cathode fall in, for various metals ( T ), 5-184
characteristic impedance of (T), 3-63
coefficient of self-diffusion for (T), 2-213
compressible flow in, 2-214 to 2-219
conduction (electrical) in, 5-166 to 5-184
critical energy and radiation length for (T), 8-39
density of (T), 2-197 to 2-201, 3-56, 3-57
dielectric properties of (T's), 5-147 to 5-149
diffusion coefficients of (T), 2-212 to 2-213
vs. concentration (T), 2-213
vs. pressure (T), 2-213
dissociative recombination in (T), 5-171
energy loss per ion pair in (T), 8-38
Faraday rotation in (T), 5-232
fluorescence of (T), 6-112
index of refraction of (T), 6-21
isothermal compressibility of liquefied (T), 2-162
kinematic viscosities of (T), 2-208
Lennard-Jones potential function constants for (T), 4-129
motions of electrons and ions in, 7-174 to 7-219
pressure-volume-temperature relationships for, 4-118 to 4-129
recombination coefficients of ( T 's), 5-171
relative dielectric strengths of (T), 5-148 to 5-149
relative volume vs. temperature for (T's), 4-26
shock wave properties of (T), 2-235
specific heats of, at $C_{p}$ and $C_{v}$ (T), 3-59
thermal conductivities of (T), 3-58 to 3-61, 4-71
thermodynamic properties of, 4-80 to 4-117
Verdet constants for (T), 6-91
viscosity, 2-201 to 2-210, 3-58
viscosity coefficients for (T), 3-60

Gel-sol-gel transformation, 2-81
Gels, definition of, 2-81
mechanical properties of, 2-81 to 2-83
shear modulus of (T), 2-83
General transmission lines, formulas for ( T ), 5-50
Generators, a-c and d-c, 5-246 to 5-250
d-c, characteristics of (f), 5-259
connections for, 5-258
operating principles of, 5-258
world-wide list of electrostatic (T), 8-182
to 8-188
Geodesy, principal problems of, 2-92 to 2-95
Geodetic data, 2-92 to 2-101
Geodetic problem, 2-93
Geodetic symbols, 2-92
Geodetic systems, 2-95 to 2-96
Geoid, definition of, 2-92
gravimetrical undulations of, 2-99 to 2-100
Geomagnetic field vector, position of (T), 5-292
Geomagnetic poles, 5-291
Geomagnetic tide, 5-293
Geomagnetism, 5-291
Geometric parameters of polyatomic molecules (T's), 7-152 to 7-161
Geopotential, definition of, 2-125
vs. geometric height (T), 2-126
Geopotential meter, 8-125
Geostrophic wind, 2-130 to 2-131
Germanium, extinction coefficients of (T), 6-38
index of refraction of (T), 6-26 to 6-27
Gibbs-Hamilton notation, 3-28
Glass, density of (T), 3-77 to 3-78
dielectric frequency and volume resistivity of (T), 5-122 to 5-123
dielectric properties of (T), 5-122 to 5-123
elastic constants of (T), 3-80
impedance of (T), 3-80
index of refraction, of National Bureau of Standards (T), 6-32
of new types (T), 6-33
Verdet constants for (T), 6-95
wave velocities in (T), 3-80
Glass filters, 6-43 to 6-44
Globar light sources, characteristics of (f), 6-81
emissivity of (f), 6-81
Glossy surfaces, reflection coefficients for incandescent light on (T), 6-43
Glow discharge, cathode current density in (T), 5-185

Glower light sources, characteristics of (f), 6-81
Glycerin volume related to pressure and temperature (T), 2-161
Glycine, diffusion coefficients of (T), 2-192
Glycolamide, diffusion coefficients ( T ), 2-192
Golay pneumatic cell, characteristics of ( T ), 6-118
Gold, energy loss of protons in (T), 8-35
Gold alloys, elastic and strength constants for (T), 2-62 to 2-63

Gonads, maximum permissible exposure of, to ionizing radiation (T), 8-255
Gradient wind, 2-132
Grain rotation and thermal losses, 3-84
Grain scattering and thermal losses, 3-85
Gram-ionic weight of paramagnetic salts (T), 4-14

Granitic rocks, 2-108
Grashof number and gas flow, 2-221
Gravimetric undulations, 2-99
Gravimetrical method of earth measurement, 2-96
Gravitational constants (T), 2-91
Gravity anomalies and earth measurement, 2-97
Gravity formula, 2-98, 2-99
Gravity values for earth, 2-101
Gravity waves in sea water, 2-122 to 2-123
Ground-state configuration of stable nuclei (T), 8-6 to 8-17

Ground-state transitions of alpha emitters, 8-55 to 8-56
Ground states of atoms (T), 7-13 to 7-15
Ground surfaces, reflection coefficients for incandescent light on (T), 6-43
Group velocity of waves, 5-51, 5-58
Gruneisen's equation, constants in (T), 4-64 definition of, 4-63
Gut strings, mass per unit length (T), 3-101
Gyromagnetic effects, 5-4, 5-103 to 5-104
Gyromagnetic ratio, definition of, 5-103, 5-229
of various substances (T), 5-229, 5-230

## H

## $H$ waves, 5-47

Half cells, standard emf of (T), 5-274 to 5-276
Half life, vs. effective alpha energy for various alpha emitters (f), 8-54
of nuclides (T), 8-97 to 8-128, 8-202 to 8-211
Hall angle, definition of, 5-159
Hall coefficients, 5-98
Hall constant, definition of, 5-157, 5-233 of various materials (T), 5-237 to 5-238
Hall effect, definition of, 5-4, 5-98, 5-157, 5-159
Hall mobilities of various substances (T), 5-161
Hamiltonian in wave mechanics, 7-162
Handbooks, mathematical, list of, 1-2 to 1-5
Hardness numbers, definitions of, 2-69, 2-78, 2-80
(See also Brinell hardness number)
Harmonic, definition of, 3-14
Harmonic oscillator and wave mechanics, 7-162
Harmonic series, of sounds, definition of, 3-15
in string vibrators, 3-102
Hartree units, 7-174
Health physics, 8-250 to 8-257
definitions of units, 8-250 to 8-251

Hearing, critical frequency band of (T), 3-127
differential thresholds of, for intensity and frequency ( T ), 3-126
and localization of sound, 3-129
and loudness, 3-13, 3-128 to 3-129
loudness level vs. pressure and frequency, (T), 3-128
masking, definition of, 3-13
minimum audible pressure on ear for (T), 3-124 to 3-125
per cent of, definition of, 3-13
and physical dimensions of ear (T), 3-123
and pitch, 3-13
pitch vs. frequency (T), 3-129
of short-duration sounds, 3-127
and sound masking, 3-127
and speech, 3-123 to 3-133
threshold of feeling or discomfort, 3-126
and thresholds, 3-14
Hearing loss, definition of, 3-12 to 3-13
Heat, of fusion (T), 4-131 to 4-159
of sublimation (T), 4-131 to 4-159
of transition (T), 4-131 to 4-159
of vaporization (T), 4-131 to 4-159
Heat capacities, molar, of elements ( T 's), 4-41 to 4-43
of various substances, 4-39 to 4-50
Heat content, molal, of solutes (T), 5-281
Heat-exchange equation for viscous fluids, 3-27
Heat flow, and attenuation for metals (T), 3-83
intergrain, in metals (T), 3-83
in solids, 3-79
Heat flux in viscous liquids, 3-31
Heat index in stellar radiation, 6-80
Heat radiation, coefficient of, 3-31
and sound absorption and dispersion, 3-49 to 3-50
Heat transfer, from flat plate (f), 2-229
in gas flow (f's), 2-228 to 2-230
and skin friction, 2-230
Heavy meson, 8-227
Heavy nuclei, resonance parameters of ( T ), 8-147 to 8-152
Heavy particles, range-energy relations, 8-23 straggling of, 8-36
Hefner unit, 6-6, 6-9, 6-10
Heisenberg exchange coupling, 5-101
Helicotrema in ear (T), 3-123
Helium, electron power losses in (f), 5-182
energy levels of (f) (T), 8-58, 8-59
principal spectral lines of (T), 7-43 to 7-45
solid, volume and compressibility of (T), 4-27
temperature-entropy diagram for (f), 4-94
virial coefficients for (T), 4-119 to 4-120
Helium I, energy-level diagram of (f), 7-28
Helix, magnetic induction of, 5-27
Helmholtz coil, 5-26
Helmholtz resonator, 3-103 to 3-104
Henry, international vs. absolute (T), 5-106
Henry's law, 2-120
Hermite polynomials and wave mechanics, 7-162, 7-164

Hexagonal crystal systems (f) (T), 2-45, 2-47
Hexagonal crystals, elastic constants and coefficients (T), 2-57
Hexagonal symmetry, 3-75
High-pass filter sections, design of (T), 5-86 to 5-89
High-permeability materials, properties of (T), 5-216

High-pressure effects, 4-24 to 4-38
Hole conduction (electricity), 5-97
Hole traps and electron conduction, 5-160
Holes and Hall mobilities (T), 5-161
Hooke's law, 2-10, 2-11
Horns and beam formation, 5-73
Horsepower characteristics of motors (T's), 5-253 to 5-255
Horsepower rating of electric motors (T), 5-252
Horsepower requirements and electric motor selection, 5-250 to 5-251
Horseshoe magnets, 5-36
Hour, definition of, 2-14
Humidity, effects of, on sound propagation, 3-63 to 3-66
Huygens' theory of light, 6-4
Huygens-Fresnel principle, 5-72 to 5-73
Hydraulic junction, 3-141, 3-143
Hydrocarbons (saturated), acoustic properties of (T), 3-72
Hydrogen, atomic mass of, 7-3, 8-4
compressibility factor for (T), 4-95
electron energy losses in (f), 5-182
enthalpy of (T), 4-98
entropy of (T), 4-99
ionization per volt in (f), 5-170
Prandtl numbers for (T), 2-223
relative density of (T), 4-96
specific heat of (T), 4-97
temperature-entropy diagram for (f), 4-100 to 4-102
thermodynamic conversion factors for (T), 4-81
total neutron cross section of (f), 8-131
virial coefficients for (T), 4-124
Hydrogen chloride, efficiency electron attachment in (f), 5-173
mean-ionic-activity coefficient of (T), 5-279
Hydrogen isotopes, masses of (T), 7-3
Hydrogen sulfide, efficiency electron attachment in (f), 5-174
Hyperfine splitting of atomic hydrogen (T), 6-122

Hyperfine structure and Zeeman effect, 7-169
Hyperfragments, 8-245
Hyperons, characteristics of (T), 8-241, 8-244 to 8-245
definition of, 8-240 to 8-241
and excited nucleons, 8-245
nomenclature for, 8-240 to 8-241
Hypersonic similarity rule for gas flow, 2-219
Hypsometry, 2-126

Hysteresis constant for magnetic losses at low induction (T), 5-220
Hysteresis curves, definition of, 5-4
Hysteresis loss and maximum induction in several materials (f), 5-215

## I

Ice, transition parameters (f) (T), 4-34, 4-35
Ideal gas relations and shock waves (T), 2-232 to 2-233, 2-235
Ideal transmission lines, formulas for ( T ), 5-50
Ignition rectifiers, 5-263
Ilford C-2 emulsion, range-energy relations for alpha particles, deuterons, protons, and tritons in, 8-32
Illuminants, efficiencies of different types (T), 6-77
standard (T), 6-56
Illumination, definition of, 6-4, 6-9
Image force, definition of, 5-4
Impedance, acoustical, 3-8, 3-53, 3-108 to 3-110
American Standard, 3-8
characteristic, definition of, 3-9, 3-62 for gases (T), 3-63
of ear (T), 3-123, 3-124
of glasses (T), 3-80
mechanical, 3-9
of metals (T), 3-80
of organic liquids (T), 3-72, 3-73
of plastics, 3-80
and sound transmission in solids, 3-74 to 3-79
vector, equations for, 3-138
of water, fresh and sea (T), 3-69
Impedance analogy, and acoustics, 3-140 to 3-177
definition of, 3-140
symbols for constructing schematic diagram based on (T), 3-145 to 3-176
Impedance matching, curves of (f), 5-52
in transmission lines, 5-51
Impulse-momentum theorem, 2-5
Incandescent light, reflection coefficients for (T), 6-43
Incipient cavitation, cavitation number (f), 2-186

Inclination, of earth's magnetic field, 5-291
of planets to ecliptic (T), 2-90
Incremental variables, 3-32
Incus in ear (T), 3-123
Index of extinction, definition of, 6-2
Index of refraction, 6-11 to 6-35
of acids (T), 6-22
of biaxial minerals (T), 6-14 to 6-17
definition of, 6-4, 6-102, 6-103
vs. dispersion for optical glass (f), 6-33
of evaporated mirror coatings (T), 6-104
of fused-quartz glass (T), 6-31
of gases and vapors (T), 6-21
of liquids relative to air (T), 6-18
liquids used in measuring (T), 6-35

Index of refraction, of National Bureau of Standards optical glass, 6-32
of optical plastics (T), 6-19 to 6-20
of quartz at various temperatures ( T ), 6-34
of salt solutions (T), 6-22
of sea water, 2-119
of some new glasses (T), 6-33
of special optical materials (T), 6-23 to 6-30
uniaxial minerals (T), 6-12 to 6-13
of various metals (T's), 6-105 to 6-107
Inductance and acoustic analogy, 3-135, 3-136
Inductance standards, 5-110 to 5-112
Induction, low, magnetic losses at, 5-200
of magnetic material, 5-206
variation of hysteresis loss with (f), 5-215
Inductive reactance and sound absorption, 3-45
Inductors, 5-110 to 5-112
Inelastic collisions by electrons in various substances (f's), 7-177 to 7-182
Inertance and acoustic analogy, 3-135
Inertia, moments of, for various bodies (T), 2-38 to 2-39

Inertial forces, definition of, 2-5
Inertial frame of reference, 2-3 to 2-4
Infrared reflecting factors of dry pigments (T), 6-41

Infrared standard wavelength (T), 6-88 to 6-90
Infrasonic frequency, definition of, 3-4
Inharmonicity, definition of, 3-102
Initial permeability, definition of, 5-214
Inorganic aqueous solutions, surface tension of (T), 2-177
Inorganic gases, densities of (T), 2-199
Inorganic liquids, densities of (T), 2-143
dielectric constants of (T), 5-133
Verdet constants for (T), 6-92
Inorganic solids, dielectric constants of (T), 5-115 to 5-117

Inorganic substances, critical temperatures, pressures, and densities of (T), 4-21 to 4-22
Insertion loss, definition of, 3-9
Insolation, definition of, 2-132
Inspected electrical equipment, list of, 5-245
Instantaneous acceleration, definition of, 2-3
Instantaneous angular velocity, 2-8
Instantaneous cubical expansion, 2-151
Instantaneous sound pressure, definition of, 3-4
Instantaneous speech power, definition of, 3-13
Instantaneous velocity, 2-2
Instrument transformers, 5-259 to 5-260
Instruments, deflecting, 5-113
Insulated conductors, current-carrying capacities of (T), 5-202 to 5-203, 5-257
Insulating materials, thermal conductivity of (T), 4-68 to $4-70$
Integral forms of Maxwell's equations, 5-40

Integral formulations in electrical field equations, 5-36 to 5-37
Intelligibility of speech, definition of, 3-12
Intensity, atomic selection rules of, 7-25 to 7-26
differential threshold of, in hearing (T), 3-126
of illumination, definition of, 6-5
level of sound, 3-3
of radiation, definition of, 6-5
of sound, definition of, 3-6
of standard spectral lines (T), 6-83 to 6-86
in Zeeman effect, 7-169
Interference filters, 6-45 to 6-50
multilayer, 6-46 to 6-47
polarization, 6-48,
Intergrain heat flow, in metals (T), 3-83 and thermal losses, 3-84
Intermediate tissues of body, maximum permissible exposure to ionizing radiation (T), 8-255

Internal energy of a solid (T), 4-44, 4-45
Internal transmittance of light, definition of, 6-36
International candle, definition of, 6-3, 6-6, 6-8, 6-9
International electrical units related to absolute (T), 5-106
International ellipsoid, 2-96 to 2-99
quantities associated with, 2-100 to 2-101
International formula for emf of cells, 5-108
International gravity formula, 2-97 to 2-99, 2-101
International photometric standard, 6-52
International standard A, 3-105
International temperature scale, comparison of 1927 and 1948 (T), 4-4
definition and equations for (T), 4-3
interpolation equations for, 4-3
International wavelength standards in vacuum ultraviolet (T), 6-87
Interval rules of atomic selection, 7-25 to 7-26
Intervals, definition of, 3-15
for various frequency ratios (T), 3-106, 3-107
Intrinsic conduction, 5-160
Intrinsic viscosity, 2-165
Iodides, optical properties of, 6-40
Ion conversion, probability curves for various substances (f's), 7-201 to 7-202
Ion formation, probability of, in several substances (f's), 7-184 to 7-185
Ion ground states of atoms (T), 7-13 to 7-15
Ion mobility for various substances ( $f$ 's), 7-212 to 7-218
Ion production in upper atmosphere ( T ), 5-284
Ion recombination coefficient, definition of, 5-171
Ionic conductivity in salts, 5-185 to 5-196
Ionic conductors, conductivity of ( T 's), 5-186 to 5-188, 5-192 to 5-194
conductivity formulas (electric̣al), 5-97

Ionic conductors, density and mobility of defects for (T), 5-189
transport numbers for pure and mixed (T), 5-191 to 5-194

Ionization, atmospheric, 5-283 to 5-284
by electrons, 5-166
per volt in hydrogen and neon-argon mixtures (f's), 5-170
Ionization potential of atoms (T), 7-13 to 7-15
Ionized gases and Faraday rotation (T), 5-235
Ionizing radiation, permissible exposure to (T's), 8-254 to 8-256
Ionosphere, diurnal and seasonal variations in (f), 2-131
in relation to other atmospheric layers (f), 2-130

Ionospheric regions, characteristics of (T), 5-284
Ions, drift velocities in various substances (f's), 7-212 to 7-218
elastic collisions by, in various substances (f's), 7-186 to 7-188
formation, density, and mean life in lower atmosphere (T), 5-284
motions in gases, 7-174 to 7-219
surface phenomena of, 7-192 to 7-203
and Zeeman effect in crystals, 7-171
Iron, emf of, vs. constantan in thermocouples (T), 4-11
total cross section of (f), 8-133
Iron I, energy-level diagram of (f), 7-37
photoelectric traces of spectrum of (f), 7-103 to 7-118
principal spectral lines of (T), 7-87 to 7-102
Iron II, energy-level diagram of (f), 7-36
Iron alloys, Curie points and saturation magnetization of (T), 5-209
elastic and strength constants of ( T ), 2-70 to 2-71
Hall constants of (T), 5-239
Iron ammonium alum, properties of (T), 4-14, 4-18
temperature data for (T), 4-18
Iron-cobalt-nickel alloys, Curie points and saturation magnetization of (f), 5-207
Irrotational waves, 2-12
Isentropic gas flow, flow variables vs Mach number (T), 2-218
Isobar, definition of, 8-2
Isobaric interval, definition of, 2-132
Isoclinic lines, 5-292
Isocurrent junction, 3-141
Isodynamic lines, 5-292
Isogonic lines, 5-292
Isomagnetic patterns, 5-292
Isomers (T), 8-96 to 8-128
Isoporic lines, 5-293
Isostatic equilibrium, 2-99
Isothermal compressibility, 2-151
of aqueous solutions (T), 2-164
of liquefied gases (T), 2-162
of nitric acid (T), 2-162
of organic liquids (T), 2-163, 2-164

Isothermal compressibilty, of sulfurie acid (T), 2-162

Isothermal Hall effect, 5-98
Isothermal modulus of elasticity, 2-85, 2-86
Isotherms of tropopause (f), 2-129
Isotone, definition of, 8-2
Isotopes, definition of, 8-2
of elements (T's), 8-154 to 8-168, 8-170 to 8-171
Isotopic incoherence, 8-144
Isotopic spin for light nuclei (f's) (T), 8-57 to $8-86$
Isotropic media, field vectors for, 5-38
$J$
$J$ rule of electron transition, 7-21
$J$ values for multiplets (T), 7-19 to 7-20
Jets, liquid, 2-195 to 2-197
streamlines (f), 2-196
Joule, international vs. absolute (T), 5-106
Joule's law, 5-3

## K

$K$ capture, 8-3
$K$ index and magnetic activity, definition of, 5-294
$K$ mesons, 8-240, 8-242 to 8-244
$K_{\text {e3 }}$ meson, 8-244
$K_{\mu 2}$ meson, 8-243
$K_{\mu 3}$ meson, 8-244
$K$-series X-ray lines, wavelengths of (T), 7-125 to 7-126
Kamerlingh Onnes equation of state, 4-118
Kelvin temperatures, conversion equations for (T), 4-2
Kerr'effect and Pockel's effect, 6-94
Keyes equation, gas constants for (T), 2-204, 2-205
Kilowatthour, definition of, 2-15
Kinematic coefficient of viscosity, 3-58
Kinematic interpretation of viscosity ( f ), 2-203
Kinematic viscosity, conversion factors for (T), 2-203
definition of, 2-201
of sea water (T), 2-122
units of (T), 2-203
of various gases (T), 2-208
of water and water vapor (T), 2-210
Kinematics, definitions for, 2-2 to 2-3
Kinetic energy, definition of, 2-4 and work-energy theorem, 2-9
Kirchhoff-Langevin equation, 3-46, 3-49
Kirchhoff's formula for capacitance, 5-14
Kirchhoff's laws, and circuit theory, 5-80
of electric currents, 5-3
of radiation, 6-5
Kneser's nomogram for attenuation of sound (f), 3-64
Kozeny's equation, 2-180
Kramer's degeneracy and Zeeman effect, 7-171
Krasskouski ellipsoid, 2-96
Krypton, virial coefficients for (T), 4-122

Krypton I, photoelectric traces of spectrum of (f), 7-71 to 7-74
'principal spectral lines of (T), 7-66 to 7-70

## L

$L$ mesons, 8-240, 8-242
$L$ rule of electron transition, 7-25
$L, S$ coupling, 7-17, 7-18, '
$g$ values for (T's), 7-170 to 7-173
$L$-series X-ray lines, wavelengths of (T), 7-127 to 7-128
Lag constant for magnetic losses at low induction (T), 5-220
Lagrangian wave equation, 3-35
Lambert, definition of, 6-9, 6-10
Lambert's law, of absorption, 6-2, 6-5. 6-6 of illumination, 6-5
Lame elastic moduli, 3-75
Laminar flow, circular jet, 2-195 to 2-196 definition of, 2-224
of gases, 2-220 to 2-224
in plane jet, 2-197
Lamp color of fluorescent chemicals ( T ), 6-111
Lamps, approximate brightness of various types (T), 6-78
efficiencies of various types (T), 6-77
Lande splitting factor (g), definition of, 5-231
of various substances (T), 5-229, 5-230
Lande's formula, 7-168
Laplace's equation, 2-13
in geodesy, 2-96
Lapse rates in meteorology, 8-125 to 2-127
Large aperature systems, 5-73 to 5-74
Larmor principle in particle acceleration, 8-173 to 8-174
Latent heat, of sea water, 2-121
of various elements and compounds (T's), 4-30 to 4-159
for various substances ( T 's), 4-34 to 4-38
Lattice constants, for compounds (T), 2-53 to 2-54
for crystal systems (f) (T), 2-45
for elements (T), 2-48 to 2-52
Lattice energy (T), 4-45
Lattice entropy (T), 4-46
Lattice network, 5-84
Lattice vibration, 4-44
Laws and principles, Ampere's law, 5-3
Beer's law, 6-3
Bernoulli's principle, 2-13
Bragg-Gray (ionizing radiation) principle, 8-250 to 8-251
Brewster's law, 6-3
Coulomb's law, 5-3
Curie law (paramagnetism), 5-100
Curie-Weiss law, 5-101, 5-236
D'Alembert's principle, 2-5
Darcy's law, 2-179
Faraday's law of induction, 5-3
Fermat's principle of least time, 6-4
Henry's law, 2-210
Hooke's law, 2-10, 2-11
Huygens-Fresnel principle, 5-72 to 6-73

Laws and principles, hypersonic similarity rule, 2-219
Joule's law, 5-3
Kirchhoff's laws, in circuit theory, 5-80 of electric currents, 5-3 of radiation, 6-5
Lambert's law, of absorption, 6-2, 6-5 of illumination, 6-5
Larmor principle, 8-173 to 8-174
Lenz's law, 5-3
Newton's laws, 2-4 to 2-5
Ohm's law, 5-3
phase stability principle, 8-176
Prandtl-Glauert gas flow rule, 2-219
Snell's law, 3-78
of refraction, 6-7
Stokes law, 2-13
transonic similarity rule, 2-219
Wien's displacement law, 6-8
Lead, elastic and strength constants of (T), 2-72
energy loss and range of protons in (T), 8-33 to 8-34
proton straggling in (T), 8-36
Young's modulus vs temperature for (f), 3-96.
Lead alloys, density of (T), 2-29
elastic and strength constants for (T), 2-72
Lead sulfide color index of stellar spectral classes (T), 6-80
Least mechanical equivalent of light, definition of, 6-9
Legendre potynomials and wave mechanics, 7-164 to 7-165
Length, units and conversion factors for (T), 2-15

Lennard-Jones potential function, constants for various gases (T), 4-129
definition of, 4-129
Lenses, 6-5
and beam formation, 5-73
combinations of, 6-5
Lenz's law, 5-3
Letter symbols in acoustics, 3-18 to 3-24
Level, acoustic, of discomfort, 3-14
acoustic intensity, definition of, 3-4
band pressure, 3-2
power-spectrum, 3-5
pressure, 3-5
sound, 3-6
threshold of audibility, 3-14
Level order, nuclear (T), 8-19
Lifetime of energy state for light nuclei ( $f$ 's) (T), 8-57 to 8-86

Light, absorption of, 6-36 to 6-40
Huygens' theory of, 6-4
reflection of, by various metals (T), 6-109 to 6-110
transmission of, 6-36 to 6-40
vs. wavelength (f), 6-47
transmittance, definition of, 6-36
velocity of (T), 7-3
measurements of (T), 6-119, 6-120
Light meson, 8-227

Light nuclei, energy levels of ( $\mathbf{f}$ 's) (T), 8-56; 8-58 to 8-86
resonance parameters of (T), 8-145 to 8-146
Light sources, approximate brightness of, (T), 6-78
characteristics of globar and glower (f), 6-81
efficiencies of various types (T), 6-77
Light year, definition of, 2-14
Lightning discharge, nature of, 5-285 to 5-286
Lightning strokes, characteristics of (T), 5-288
Limiting equivalent conductances of ions in various solutions (T's), 5-271
Line sound source, beam angle of radiation (f), 3-111, 3-112
directional radiation from, 3-110 to 3-111
Line spectrum, definition of, 3-5
Line strength for various electron transitions, 7-26
Linear absorption coefficient of gamma radiation, 8-93
Linear accelerators, electron and proton, 8-178, 8-179
world-wide list of (T), 8-200 to 8-201
Linear circuit formulas, 5-23
Linear electron accelerators, description of, 8-178
Linear molecules, rotational constants and geometrical parameters of, five-atom (T), 7-156
four-atom (T), 7-154
six-atom (T), 7-160
triatomic (T), 7-152 to 7-153
Linear proton accelerator, description of, 8-179
Linear thermal expansion coefficients, of alloys (T), 4-57 to 4-60
of elements (T), 4-51 to 4-55
of miscellaneous materials (T), 4-61
of semiconductors (T), 4-63
Linearized theory equations for gas flow, 2-219
Linearizing of equations of motion, 3-32
Liquefied gases, Faraday rotation in ( $\mathbf{T}$ ), 5-232
isothermal compressibility of (T), 2-162
Liquid jets, 8-195 to 2-197
Liquids, acoustic properties, 3-67 to 3-74
adiabatic compressibilities (T), 2-163, 2-164
behavior under pressure, 2-152
cavitation in, 2-182 to 2-189, 3-68
compressibility experiments for, 2-151
cubical expansion of (T), 4-62
density of (T), 6-18
and compressibility, 2-136 to 2-164
cryogenic (T), 2-146
dielectric constants of (T's), 5-132 to 5-147
diffusion in, 2-189 to 2-195
index of refraction of, relative to air (T), 6-18

Liquids, isothermal compressibilities of ( $T$ ), 2-163, 2-164
pressure effect and thermal conductivity of (T), 4-75
pressure-volume-temperature relations of (T), 2-152 to 2-161
relative volume vs. temperature for (T's), 4-26, 4-27
specific rotation of (T), 6-99
surface energy of, 2-174 to 2-176
surface tension of (T), 2-172 to 2-176
symbols for acoustic properties of, 3-67
tensile strength of (T), 2-169 to 2-174
thermal conductivity of (T), 4-71, 4-75
used in measurement of index of refraction (T), 6-35
Verdet constants for various inorganic and metal-organic (T), 6-92
viscosity of, 2-165 to 2-168
organic (T), 2-169
volume vs. pressure and temperature, 2-151
Lithium, energy levels of (f) (T), 8-58 to 8-62
Lithium fluoride, absorption coefficients of (T), 6-37
index of refraction of (T), 6-23 to 6-25
optical properties of, 6-39
Live room, definition of, 3-17
Lloyd mirror effect, 3-68
Load impedance measurement in transmission lines, 5-51
Local anomalies in earth's magnetic field, 5-292
Localization of sound, 3-129
Logarithmic decrements, and anelasticity, 2-85, 2-86
vs. frequency for various materials ( $f$ 's), 2-86
of various materials (T's), 2-87
Logarithmic mean virtual temperature, 2-126
Longitudinal magnetostriction as function of field strength (f), 5-225
Longitudinal waves, definition of, 3-5
reflection of, 3-78
scattering factors of, in metals (T), 3-83
travel time of, through earth (T), 2-104
velocity of, 2-102 in earth (T), 2-109
Loschmidt's number (T), 7-3, 7-174
Losses due to heat flow, 3-79
Loudness, definition of, 3-13
and hearing, 3-128 to 3-129
Loudness contours, 3-13
Loudness levels, 3-13
in hearing, definition of, 3-128
vs. sound pressure and frequency ( T ), 3-128
Loudness units, 3-13
Low induction loss, material constants for (T), 5-220

Low-loss transmission lines, formulas for (T), 5-50

Low-pass filter sections, design of (T), 5-86 to 5-89

Lower atmosphere and standard atmosphere (T), 2-128
Lubricants, 2-42
viscosities of (T), 2-168
Lumen, definition of, 6-9, 6-10
scotopic, 6-53
Luminosity, photopic (T), 6-50 to 6-52
scotopic (T), 6-51 to 6-53
Luminous efficiency, maximum ( T ), 6-63
Luminous flux, 6-5, 6-52
definition of, 6-5
Luminous intensity, 6-6
Luminous reflectances, 6-52
maximum (T), 6-63
scotopic, 6-53
Luminous transmittance, 6-52
scotopic, 6-53
Lux, definition of, 6-4, 6-10
Lyophobic sols, 2-181
Lyophilic sols, 2-181
Lyot and Oehman filter, 6-48

## M

$m$-derived filters, 5-84
$M$ rule of electron transition, 7-25
$M$-series X-ray lines, wavelength of (T), 7-129
Mach number, definition of, 2-215
and gas flow, 2-221, 2-229
of incident shock wave, 2-233
vs. skin-friction ratio (f), 2-229
Mach reflection of shock waves, 2-234
Mach stem and shock waves, 2-234
Magnesium alloys, density of (T), 2-29
elastic and strength constants of (T), 2-73 to 2-74
Magnesium oxide, absorption coefficients of (T), 6-37
index of refraction of (T), 6-23 to 6-25
optical properties of, 6-40
Magnetic alloys, change of Curie point of, with pressure (T), 5-220
demagnetization curves of (f), 5-218
longitudinal magnetostriction of, as function of field strength (f), 5-225
magnetization curves of (f), 5-214
variation of hysteresis loss with maximum induction for ( $f$ ), 5-215
Magnetic axis of earth, 5-291
Magnetic bays, definition of, 5-294
Magnetic circuit, 5-34 to 5-35
Magnetic crystal anisotropy constants of cubic crystals (T), 5-221 to 5-222
Magnetic declination, 5-291
Magnetic dip poles, position of (T), 5-292
Magnetic dipole radiator, 5-69 to 5-70
Magnetic dipole moment of stable nuclei (T), 8-6 to 8-17

Magnetic ellipticity, 6-92
Magnetic field, effect of, on atoms, 7-168 to 7-173
energy of permeable bodies in, 5-33 to 5-34
of stars, 5-297
of sun (T), 5-295

Magnetic field, and sunspots, 5-297 transient penetration into plane solid, 5-93
for various circuit configurations; 5-25 to 5-27
Magnetic field strengths, polar, of stars (T), 5-296

Magnetic flux density, definition of, 5-2
Magnetic forces on electrical circuits, 5-32 to 5-33
Magnetic formulas, static-magnetic-field, 5-25 to 5-36
Magnetic induction, definition of, 5-2 due to various bodies, 5-25 to 5-27
Magnetic lines of force, definition of, 5-4
Magnetic losses at low induction, 5-220
Magnetic moment, direction of, in anti-
ferromagnetic materials (T), 5-227 to 5-228
of earth, 5-292
of electron, 8-4
of neutron, 8-129
of nuclei, definition of, 8-5
orientation of, in antiferromagnetic materials (f), 5-229
of proton, 8-4
Magnetic polarization, 5-3
Magnetic properties, of earth and stars, 5-283 to 5-297
of materials, 5-206 to 5-244
symbols for, 5-206
Magnetic rotation, 6-91 to 6-94
Magnetic rotatory power for ferromagnetic films (T), 6-96
Magnetic saturation, definition of, 5-4
Magnetic shielding, 5-34
Magnetic sources, 5-37
and Maxwell's equations, 5-40
Magnetic splitting in crystals, 7-171
Magnetic starters for electric motors, 5-256
Magnetic storms, definition of, 5-294
Magnetic structure of antiferromagnetic materials (T), 5-227 to 5-228
Magnetic susceptibility, 5-100
Magnetic tubes of flux, definition of, 5-4
Magnetic-type waves, 5-47
Magnetism, gyromagnetic effects of, 5-103
stellar and galactic, 5-295 to 5-297
terrestrial, 5-291 to 5-295
types of, 5-100 to 5-103
Magnetization curves of some commercial alloys (f), 5-214
Magnetohydrodynamic action, 5-293
Magnetomotance, definition of, 5-35
Magneto-optical rotation, definition of, 5-231
of various substances (T), 5-232
(See also Faraday effect)
Magnetoresistance, 5-99
Magnetostriction, definition of, 5-4 longitudinal, as function of field strength (f), 5-225
saturation, of crystals and polycrystalline materials, 5-222 to 5-224
Magnetostriction constants of cubic crystals (T), 5-223

Magnetostriction form factors (T), 5-244
Magnetostrictive properties of metals and ferrites (T), 3-99
Magnetostrictive rod, equivalent circuit (f), 3-100

Magnetostrictive transducers, 3-92 to 3-98 equivalent circuits for, 3-89, 3-98
Magnets, permanent, properties of material for (T), 5-219
Magnifying power, definition of, 6-6
Magnitude, various types of, of stars, 6-80
Malleus in ear (T), 3-123
Manganese I, energy-level diagram of (f), 7-35
Manganese ammonium sulfate, properties of (T), 4-14, 4-19
Manganese-copper-aluminum alloys, saturation induction of (f), 5-207
Manual starters for electric motors, 5-256
Masking (acoustics), definition of, 3-13 of sound in hearing, 3-127
Masking audiogram, definition of, 3-13
Mass, acoustic, 3-8
and acoustic analogy, 3-135
of atomic particles (T), 7-3
center of, for various bodies (T), 2-36 to 2-37
definition of, 2-4
of earth, 2-101
of mesons and hyperons (T), 8-241
of neutron, 8-129
Mass absorption, 6-2
Mass anomalies in geodesy (f), 2-93
Mass deficiencies of oceans (f), 2-93
Mass-energy conversion factors, 8-4
Mass formulas, semiempirical, 8-19 to 8-21
Mass numbers, of atoms in diatomic molecules (T), 7-136 to 7-141
of elements (T), 7-9 to 7-12
of stable nuclei (T), 8-6 to 8-17
Mass reactance and sound absorption, 3-45
Mass surplus of mountains (f), 2-93
Mass transport velocity, 3-29
Material coordinate transforms, 3-36 to 3-37
Material coordinates and wave equation, 3-34 to 3-36
Material derivatives in viscous fluids, 3-27
Material particle, definition of, 3-27
Mathematical tables, list of compilations of, 1-2 to 1-5
Mathematics, aids to computation, 1-1 to 1-5
Matt surfaces, reflection coefficients for incandescent light on ( T ), 6-43
Maximum-bubble-pressure method of surface tension measurement, 2-176
Maximum permeability, definition of, 5-214
Maximum permissible concentration of radioisotopes in air and water ( T ), 8-256
Maximum permissible exposures to ionizing radiations ( T 's), 8-254 to 8-256
Maximum permissible flux of normal beam of neutrons (T), 8-256

Maximum spontaneous polarization of ferroelectric crystals (T), 5-155 to 5-156
Maxwell's equations, 2-2,04
in various forms, 5-40 to 5-41
Mean acoustic pressure, definition of, 3-31
Mean distance from sun to planets (T), 2-90
Mean energies, of electrons in several substances ( $f$ 's), 7-210 to 7-211
of ions, definition of, 7-204 to 7-205
Mean free path, definition of, 3-17
Mean-ionic-activity coefficients, of electrolytes (T), 5-278
of hydrochloric acid (T), 5-279
Mean life, of ions in lower atmosphere (T), 5-284
of mesons and hyperons (T), 8-241
Mechanical compliance, definition of, 3-9
Mechanical computing devices, 1-1
Mechanical impedance, definition of, 3-9 vector, equation for, 3-138
Mechanical ohm, definition of, 3-9
Mechanical propertios, of gels, 2-81 to 2-82 of thixotropic substances, 2-82 to 2-84
Mechanical reactance, 3-9, 3-10
Mechanical rectifiers, 5-260, 5-266
Mechanical rectilineal quantities (T), 3-139
Mechanical rectilineal resistance and acoustic andogy, 3-134, 3-136
Mechanical rectilineal symbols (T), 3-139
Mechanical rectilineal systems, graphical representation of (f's), 3-136, 3-137
of one degree of freedom, 3-137 to 3-138
Mechanical rectilineal units (T), 3-139
Mechanical resistance, definition of, 3-10
Mechanical resonance of piezoelectric crystals, 3-91
Mechanical rotational quantities (T), 3-139
Mechanical rotational resistance and acoustic analogy, 3-134, 3-136
Mechanical rotational symbols (T), 3-139
Mechanical rotational systems, graphical representation of (f's), 3-136, 3-137
of one degree of freedom, 3-137 to 3-138
Mechanical rotational units (T), 3-139
Mechanical schematic diagrams, and acoustical analogy, 3-140
based on impedance analogy ( $T$ ), 3-145 to 3-176
based on mobility analogy (T), 3-144 to 3-176
Mechanical systems of one degree of freedom, 3-137 to 3-138
Mechanics, Newtonian concepts of, 2-2
Mel, definition of, 3-13, 3-129
Melting parameters of various elements and compounds (T's), 4-30 to 4-33
Melting point of sea water, 2-117
Melting temperature, definition of, 4-63
Mercalli scale, 2-108
Mercury, density of (T), 2-140
viscosity of (T), 2-169
volume in relation to pressure and temperature (T), 2-155

INDEX
Mercury I, energy-level diagram of (f), 7-38
photoelectric traces of spectrum (f), 7-122
principal spectral lines of (T), 7-119 to 7-121
Mercury-arc rectifiers, 5-263, 5-266
Mesh in circuit theory, 5-80
Mesons, characteristics of (T), 8-241 to 8-244
definition and nomenclature of, 8-240 to 8-241
Mesosphere (f), 2-130
Metal-organic liquids, Verdet constants for (T), 6-92
Metallic conductors, properties of, 5-197 to 5-205
Metallic films, reflectance of light by ( $T$ ), 6-108
Metallic rectifiers, 5-260
Metals, absorption constants of (T's), 6-105 to 6-107
adiabatic isothermal elastic constants of (T), 3-83
and attenuation due to heat flow (T), 3-83
conductivity (electrical) formulas for, 5-96
creep rates of (T), 2-89 to 2-90
critical energy and radiation length for (T), 8-39
crystallization of, 3-75
Debye temperature for (T), 4-48
densities of (T), 3-77 to 3-78
diffusion coefficients for (T's), 2-79 to 2-80
diffusivities of (T), 4-74
elastic constants for (T's), 2-61 to 2-80, 3-80
electrical properties of pure (T), 5-204
electronic constants for (T), 4-48
fractional change in volume of ( T ), 4-28
impedances of (T), 3-80
index of refraction of (T's), 6-105 to 6-107
intergrain heat flow in (T), 3-83
magnetostrictive properties of (T), 3-99
optical behavior of, 6-102 to 6-110
optical constants of (T's), 6-102 to 6-110
reflection of light by (T), 6-109 to 6-110
scattering factors for waves (T), 3-83
skin-effect quantities for (T), 5-90
sputtered mass of, in hydrogen (T), 5-185
strength constants for (T), 2-61 to 2-80
superconducting transition temperatures for (T), 5-205
surface tension (T), 2-174
thermal conductivity of (T's), 4-67, 4-78
at low temperatures, 4-77
total emissivity of, for unoxidized surfaces (T), 6-75
wave velocities in (T), 3-80
Meteorological data, 2-124 to 2-135
Meteorology, composition of dry air (T), 2-125
dynamical relationships in, 2-130 to 2-132
and geopotential (T), 2-125 to 2-126

Meteorology, physical constants in, 2-125
and radiation, 2-132 to 2-134
symbols used in, 2-124 to 2-125
Meter-candle, definition of, 6-4, 6-10
Methanol, limiting equivalent conductances of ions in (T), 5-271
Methyl alcohol, density of (T), 2+140 to 2-141
volume in relation to pressure and temperature (T), 2-156
Meyer's method of tensile strength measurement, 2-170
Mica, energy loss of protons in (T), 8-35
Miorobar, definition of, 3-5
Microhysteresis effect, 3-86
Microwave frequencies, letter notation for (T), 5-62

Microwave spectra, 7-146
Middle ear, dimensions of (T), 3-123
Millibarn, definition of, 8-3
Millilambert, definition of, 6-10
Milliphot, definition of, $\mathbf{6 - 1 0}$
Minerals, index of refraction of, biaxial (T), 6-14 to 6-17 uniaxial (T), 6-12 to 6-13
Minimum audible pressure on external ear (T), 3-124 to 3-125

Minimum audible sound, 3-125
Minimum deviation, definition of, 6-6
Minute, definition of, 2-14
Mirror coatings, optical constants of evaporated (T), 6-104
Mks units, electrical (T), 5-6 to 5-7
and electrical formulas (T), 5-10 to 5-11
Mobility, of defects for pure ionic conductors (T), 5-189
drift, of germanium and silicon (T), 5-159
of electrons, 5-96, 5-157, 5-159 to 5-160
Hall, of various substances (T), 5-161
of ions in various substances (f's), 7-212 to 7-218
Mobility analogy, and acoustics, 3-140 to 3-177
definition of, 3-140
and ground, earth, and sky, 3-141
schematic diagram for, 3-142 to 3-143
symbols for constructing schematic diagram based on (T), 3-144 to 3-176
and wires, rods, and tubes, 3-140 to 3-141
Mode count and acoustic energy, 3-54
Mode of decay for light nuclei (f's) (T), 8-58 to 8-86
Moderators for reactors, 8-227
Modern symbols for heavy radionuclides (T), 8-41

Modulus of elasticity, volume, 2-10
Mohorovičić discontinuity, 2-106, 2-108
Molal heat content of solutes (T), 5-280
Molar heat capacity, 4-63
at $C_{v}(\mathrm{~T}) ; 4-44$
of elements above room temperature ( $T$ ), 4-42 to 4-43
of elements at low temperature (T), 4-40 to 4-41
Molar volume constant (T), 7-3
Mole fraction of defects, 5-189

Molecular refraction, definition of, 6.6:
Molecular refractivity, definition of, 6-7
Molecular rotatory power, definition of, 6-7
Molecular susceptibilities of paramagnetic materials (T), 5-241 to 5 -243
Molecules, constants of; diatomic (T), 7-136 to 7,141 polyatomic, 7-145 to 7-161
energy levels of diatomic (f's), 7-142 to 7-144
Moment, of force, definition of, 2-6 to 2-7 of inertia, 2-8 and acoustic analogy, 3-135
for various bodies (T), 2-38 to 2-39
of momentum, definition of, 2-6, 2-7 of fluid elements, 3-41
Momentum, conservation of, 2-5, 2-7: definition of, 2-4
Momentum equations for gas flow, $2+214$, 2-220
Monatomio gases and shock waves (T), 2-235
Monatomic ions, standard entropy of (T), 5-281
Monaural listening, minimum audible pres* sure (T), 3-125
Monoclinic crystal system (f) (T), 2-45 to 2-47
Moon, approximate brightness of (T), 6-78

- miscellaneous constants for ( T ), 2-91 physical data for (T), 2-91
Moon-camera method of earth measurement, 2-96, 2-97
Moon photography, 2-97
Morse potential and wave mechanics, 8-163
Motor-circuit protection, 5-256 to: ©-257
Motor controllers, 5-256
Motor generator, 5 -260
Motor protection, 6-256 to 5-257
Motors (see Electric motors)
Moving axes, 2-9
MTR reactors, 8-227
Multilayer interference filters, 6-46 to 6-47
Multiplet intensities, 7-26
Multiplet spectrum, definition of, 7-16
Multiplets, $J$ values for (T), 7-19 to 7-20
Multiplicities for varying valence electrons (T), 7-18

Multipole, potential of, 5-21
Multipole formulas, 5-21
Music, definition of, 3-14
Musical interval, definition of, 3-107
equally tempered (T), 3-14
for various frequency ratios ( T ), 3-106, 3-107
Musical scales, 3-106 to 3-107
equal-tempered frequencies (T), 3-105
Mutual inductance for various static fields, 5-28 to 5-31
Mutual inductance standards, 5-110 to 5-112

## N

$N$-terminal-pair networks, 5-81 to 5-82
Narrow-band interference filters, 6-45 to 6-50

Narrow-band radiation, 6-64
National Board of Fire Underwriters, 5-245
National Bureau of Standards glass index of refraction (T), 6-32
National Electrical Code, 5-245
National Fire Protection Association, 5-245
Natural electrical currents, 5-289
Natural frequency, definition of, 3-10
Natural light sources, approximate brightness of (T), 6-78
Navier-Stokes equations, 3-29
Neel point, of antiferromagnetic materials (T), 5-227 to 5-228
of various substances (T), 5-226
NEMA standards, 5-245 to 5-246
Neon, electron energy losses in (f), 5-181
energy levels of (f) (T), 8-80 to 8-86
virial coefficients for (T), 4-120
Neon I, photoelectric traces of (f), 7-54 to 7-58
principal spectral lines of (T), 7-45 to 7-53
Neon-argon mixtures, ionization per volt in (f), 5-170

Neper, definition of, 3-5
Nernst coefficient, 5-99
Nernst effect, 5-4, 5-99
Network theorems, 5-81
Networks and circuit theory, 5-80 to 5-85
Neutral atoms, persistent spectral lines of (T), 7-39 to 7-41

Neutral hyperons, 8-246
Neutrino, 8-3
Neutron bindịng energies (T), 8-135 to 8-143 definition of, 8-130
Neutron capture and gamma rays (T), 8-94 to 8-96
Neutron cross sections, total, for various elements (f's), 8-131 to 8-134
types of, 8-130, 8-143 to 8-144, 8-169
Neutron diffraction in antiferromagnetic materials (T), 5-227 to 5-228
Neutron fission and fission product chains (T), 8-202 to 8-211

Neutron flux in reactors, 8-227
Neutron-induced fission, 8-212
Neutron levels (T), 8-19
Neutron numbers of stable nuclei (T), 8-6 to 8-17
Neutron optics, 8-144
Neutrons, 8-129 to 8-171
atomic mass of, 8-4
attenuation of, in concrete and water (f), 8-169
Compton wavelength of, 8-4
fast-neutron fission yields from $U_{235}(T)$, 8-218
maximum permissible exposure to (T's), 8-254, 8-255
permissible flux for normal beam of (T), 8-256
properties of, 8-129
rest mass of, 8-4
symbols for, 8-3
velocity of thermal, 8-4
New candle, definition of, 6-3, 6-9
Newton, definition of, 2-15, 5-2

Newtonian mechanics, 2-2
of particles, 2-3 to 2-6
Newton's laws, of fluid friction (f), 2-201
of motion, 2-4 to 2-5
application of, 2-7
Nickel, elastic and strength constants for. 2-75 to 2-76
Nickel alloys, density of (T), 2-30
elastic and strength constants for (T), 2-75 to 2-76
Hall constants of (T), 5-237 to 5-239
saturation magnetization and Curie points of (T), 5-210
Nitric acid, isothermal compressibility ( $T$ ), 2-162
Nitric oxide, efficiency of electron attachment in (f), 5-172
Nitrogen, compressibility factor for (T), 4-103
energy levels of (f) (T), 8-69 to 8-74, 8-76 to 8-79
enthalpy of (T), 4-106
entropy of (T), 4-107
relative density of (T), 4-104
in sea water, 2-120
specific heat of (T), 4-105
thermodynamic conversion factors for (T), 4-81
virial coefficients for (T), 4-125, 4-126
Nitrogen I, energy-level diagram of (f), 7-29
Nitrogen-vapor mixtures, relative dielectric strengths of (T), 5-148 to 5-149
Nitrous oxide, efficiency of electron attachment in (f), 5-175, 5-176
Noctilucent clouds (f), 2-130
Nodal points, definition of, 6-6
Node, in circuit theory, 5-80
definition of, 3-5
Noise, definition of, 3-5
differential threshold for intensity (T), 3-126
in thermal radiation detectors (T), 6-114
Noise control, definition of, 3-17
Noise equivalent power of detector, definition of, 6-119
Noise-insulation factor, 3-120
Noise level, in rooms, 3-119 to 3-122
recommended for rooms (T), 3-122
Noise-reduction coefficient, 3-114
Noise spectrum, 3-55
Nonaqueous solutions, diffusion coefficients for (T), 2-195
Noncubic crystals, thermal conductivity of (T), 4-73

Nondegenerate states in wave mechanics, 7-166
Nonelectrolytes, diffusion coefficients of (T), 2-192

Noninertial dynamics, 2-5
Nonmetallic conductors, properties of, 5-166 to 5-197
Nonmetals, Debye temperatures for (T), 4-47
Nonpropagating fields, 5-58
Nonrelativistic conversion formulas for neutron, 8-129

Nonstationary cavities, 2-188 to 2-189
Normal cathode fall for various metals (T's), 5-184
Normal density of gases, standard conditions for, 2-197
Normal hysteresis, definition of, 5-214
Normal incidence of shock waves, 2-233, 2-234
Normal mode of vibration, definition of, 3-10
Normal spectral emissivities of various substances (T), 6-72
Normal state of diatomic molecules (T), 7-136 to 7-141
Normal threshold of audibility, definition of, 3-14
Nuclear constants, definitions and symbols, 8-3 to 8-4
Nuclear cross section, definition of, 8-3
Nuclear definitions, 8-2
Nuclear level order (T), 8-19
Nuclear magneton (T), 7-3, 8-4
Nuclear particles, list of (T), 8-3
Nuclear photodisintegration, 8-90 to 8-91
Nuclear physics, general constants for, 8-3 to 8-4
Nuclear reaction, definitions and symbolism of, 8-2 to 8-3
Nuclear reactors, catalog of (T), 8-228 to 8-239
classification of (T), 8-227
components of, 8-227
foreign programs for, 8-240
Nuclear resonance scattering of photons, 8-91
Nuclear spin, definition of, 8-5
Nuclear stability rules, 8-21 to 8-22
Nuclei, energy levels of light (f's) (T), 8-56, 8-58 to 8-86
properties of stable (T), 8-6 to 8-17
resonance parameters of (T's), 8-145 to 8-153
shell structures of stable, 8-5
Nucleon, definition of, 8-2
Nuclides, decay types (T), 8-98 to 8-128
definition of, 8-2
fission-product chains for (T), 8-202 to 8-211
gamma energies of (T), 8-98 to 8-128
half lives of (T's), 8-98 to 8-128, 8-202 to 8-211
list of special (T), 8-3
particle energies of (T), 8-98 to 8-128
thermal-neutron fission yields (T), 8-212 to 8-215
Nusselt number, 2-228

## 0

Oblate spheroid, magnetic induction of coil about, 5-27
Oblique incidence of shock waves, 2-234, 2-235
Obliquity of the ecliptic (T), 2-91
Ocarina, 3-103

Ocean tides, constituents of (T), 2-123, 2-124
Ocean waves, types of, 2-122 to 2-123
Oceanic platform, 2-115
Oceanographic data, 2-115 to 2-123
Occultation method of earth measurement, 2-96, 2-97
Octave, definition of, 3-15
Odd multiplicities, $g$ values in $L-S$ coupling (T), 7-172 to 7-173
Odd-nucleon alpha emitters, 8-47, 8-53 to 8-54, 8-56
decay schemes of (f), 8-54
Ohm, absolute, definition of, 5-105
acoustic, 3-8
definition of, 5-7, 5-107
international vs absolute (T), 5-106
Ohm's law, 5-3
Oils, specific gravity (T), 2-150
specification for aircraft (T), 2-168
viscosities of, Bureau of Standards (T), 2-167
industrial, 2-168
Olivine-gabbro, 2-108
One-center problem and wave mechanics, 7-164
One-dimensional gas flow, 2-216 to 2-217
One-dimensional rotation and wave mechanics, 7-163
One-terminal-pair networks (f's), 5-82 to 5-83
Open-circuit voltage for ceramics (T), 3-95
Open-shell nuclear model, 8-18
Open-stub impedance matching, 5-51
Optical constants, of evaporated mirror coatings (T), 6-104
of metals (T's), 6-102 to 6-110
Optical definitions, 6-2 to 6-8
Optical densities converted to per cent transmission (T), 6-39
Optical energy gap, definition of, 5-157
Optical glass, index of refraction of, vs dispersion (f), 6-33
Optical materials, absorption and transmission of (T's), 6-38 to 6-39
index of refraction of (T), 6-23 to 6-30
properties of, 6-39 to 6-40
thermal conductivity of ( T ), 4-76
Optical plastics, index of refraction of ( T ), 6-19
reciprocal dispersive power of (T), 6-19
Optical pyrometers, 6-64
Optical pyrometry, 6-64
Optical standards, 6-8 to 6-9
Optics, definitions, standards, and units of, 6-2 to 6-10
Optimum reverberation time, definition of, 3-118
for different rooms (f), 3-118
vs frequency (f), 3-119
Ordinates, selected, for standard sources (illumination) (T), 6-59
Organ pipes, 3-102 to 3-103
Organic aqueous solutions, surface tension of (T), 2-175

Organic compounds, critical temperatures, pressures, and densities of (T), 4-22 to 4-23
diffusion coefficients of (T), 2-193
Organic gases, densities of (T), 2-200
Organic liquids, adiabatic compressibilities of (T), 2-163, 2-164
densities of (T), 2-147
dielectric constants of (T), 5-134 to 5-142
isothermal compressibilities of (T),

$$
2-163,2-164
$$

sound absorption constants of (T), 3-73
velocity of sound in (T), 3-71 to 3-73
Verdet constants for (T), 6-94
viscosity of, 2-169
Organic materials, thermal conductivity of (T), 4-71
Organic solids, dielectric constants of (T), 5-118
Organic substances, fluorescence of (T), 6-111
Orthorhombic crystal systems (f) (T), 2-45 to 2-47
Overtone, definition of, 3-15
Oxides, spectral emissivity of (T), 6-74
Oxygen, compressibility factor for (T), 4-108
electron attachment coefficients for (f), 5-172
energy levels of (f) (T), 8-72, 8-73, 8-75 to 8-83
enthalpy of (T), 4-111
entropy of (T), 4-112
relative density of (T), 4-109
in sea water, 2-120
specific heat of (T), 4-110
temperature variation of, recombination coefficient (f), 5-178
thermodynamic conversion factors for (T), 4-81
virial coefficients for (T), 4-126
Oxygen I, energy-level diagram of (f), 7-30

## P

Pain due to sound, 3-14
Pair production and gamma rays (f), 8-89 to 8-90
Palladium alloys, elastic and strength constants for (T), 2-62 to 2-63
Parallel-bar transmission lines, constants for (T), 5-48 to 5-49
Parallel connections, definition of, 5-4
Parallel tubes, self-inductance of, 5-29
Parallel-wire transmission lines, constants for (T), 5-48 to 5-49
Parallel wires, self-inductance of, 5-29
Paramagnetic bodies, definition of, 5-4
Paramagnetic materials, Bohr magneton numbers of (T), 5-241 to 5-243
Curie points of (T), 5-241 to 5-243
molecular susceptibilities of (T), 5-241 to 5-243
Paramagnetic resonance, 4-16, 7-171
Paramagnetic salts, properties of (T), 4-14 to 4-20

Paramagnetic salts, and spin resonance, 5-103
Paramagnetism, 5-100
Parity, in atomic energy levels, 7-18
of stable nuclei (T), 8-6 to 8-17
Parity rule of electron transitions, 7-21
Partial, definition of, 3-15
Partial cross section of neutrons, definition of, 8-130
Partial molal heat content of solutes (T), 5-281
Particle accelerators, types of, 8-172 to 8-181
world-wide list of (T's), 8-181 to 8-201
Particle density in upper atmosphere (T), 5-284
Particle energy of nuclides (T), 8-98 to 8-128
Particles, passage of, through matter, 8-23 to 8-39
range-energy relations for, 8-23
Pascal's law, 2-12
Paschen-Back effect, 7-169
Paschen curves for various gases (f), 5-179
Paschen notation for spectral lines, 7-58
Pauli exclusion principle, 7-20
Peak speech power, definition of, 3-13
Peltier coefficient, 5-98
Pentane candle, definition of, 6-10
Per cent conductivity, definition of, 5-197
Per cent transmission converted to optical density (T), 6-39
Period, of seismic waves, 2-102 to 2-103 of vibration of strings, 3-102
Periodic system of the elements (T), 7-8
Permanent magnets, definition of, 5-5, 5-35 to 5-36
demagnetization curves of (f), 5-218
materials for, 5-214, 5-218
properties of, 5-214, 5-218
properties of materials for (T), 5-214, 5-219
Permanent-split-capacitor motors, 5-249
Permanent strain, 2-86
Permeability, definition of, 2-179, 5-2 of high-permeability materials (T), 5-216
relative, of metals and alloys (T), 5-90 of various materials (T), 2-180
Permeability tensor, 5-64
Permeable bodies, energy in magnetic fields, 5-33 to 5-34
Permissible body burdens of ionizing radiation, 8-252
Persistent spectral lines of elements (T), 7-39 to 7-41
Perturbation method in wave mechanics, 7-165 to 7-166
Perturbations of state, 3-32
Phase constant, acoustic, 3-9
Phase diagrams, of various substances (f's), 4-35 to 4-38
of water (f), 4-35
Phase stability principle and electron synchrotron, 8-176
Phase transition data for elements and compounds (T), 4-130 to 4-159

Phase velocity of waves, 5-51, 5-58
Phon, definition of, 3-13
Phonon, 3-55
Phosphors, characteristics of various cathode-ray-tube (T), 6-113
Phot, definition of, 6-4, 6-10
Photoconductivity, definition of, 5-5
Photoconductor cell as radiation detector (T), 6-114

Photodisintegration, in $\mathrm{Al}, \mathrm{Ag}$, and Br , 8-91
nuclear, 8-90 to 8-91
Photoelectric cell as radiation detector (T), 6-114

Photoelectric effect, 5-5, 8-87 to 8-88
Photoelectric traces of spectrum microwave discharges, 7-54 to 7-122
for Argon I (f), 7-63 to 7-66
for Iron I (f), 7-103 to 7-118
for Krypton I (f), 7-71 to 7-74
for Mercury I (f), 7-119 to 7-122
for Neon I (f), 7-54 to 7-58
for Xenon I (f), 7-80 to 7-87
Photofission yields (T), 8-222 to 8-224
Photographic color index of stellar spectral classes (T), 6-80
Photographic density, definition of, 6-6
Photographic magnitude of stars, 6-80
Photometric quantities, 6-9
Photometric standards, 6-9, 6-52
Photometric units, 6-9 to 6-10
Photon scattering, 8-89, 8-91 to 8-92 •
Photons, elastic scattering of (f), 8-92
Photopic luminosity, 6-50, 6-52
Photopic luminosity data ( T ), 6-51
wavelengths for selected ordinates (T), 6-53
Photoreceivers and brightness of stars (T), 6-87
Photosurface (S4) color index of stellar spectral classes (T), 6-80
Phototubes, spectral sensitivities of ( $f$ 's), 6-116 to 6-117
Photovoltaic cell as radiation detector ( T ), 6-114
Physical constants in meteorology, 2-125
Piezoelectric constant, of piezoelectric crystals (T), 3-93
of transducer materials (f), 3-97
Piezoelectric crystals, equivalent circuit of (f), 3-90, 3-92
properties of (T), 3-89 to 3-93
and transducers, 3-89 to 3-92
Piezoelectric effect, definition of, 5-5
Piezoelectric strain constants (T), 5-150 to 5-151
temperature coefficients for (T), 5-153
temperature dependence of ( T ), 5-152
Pigments, dry, infrared reflecting factors of (T), 6-41

Piles (see Nuclear reactors)
Pinna, dimensions of (T), 3-123
Pions, 8-242
Pipe gas flow, 2-222
and heat transfer, 8-229 to 2-230

Piston, acoustic radiation resistance of (T), 3-110
directional radiation from, 3-111
Piston sound source, beam angle of radiation for (f), 3-111, 3-112
directivity index of (f), 3-112
Pitch, definition of, 3-13
and frequency (T), 3-129
and hearing, 3-129
standard, definition of, 3-15
Planck function, 6-64
Planck's constant (T), 7-3
Planck's radiation formula, 6-6
Plane jet, laminar flow in, 2-197
Plane sheet, skin-effect formulas for, 5-94 to 5-95
Plane solid, skin-effect formulas for, 5-85, 5-90
Plane wave, definition of, 3-5
Plane wave functions, 5-45
Planetary orbits ( T ), 2-90
Planets, physical and orbital data for (T), 2-90, 2-91
Plasma conductivity, 7-204
Plasma oscillations, 5-74 to 5-75
Plastic strain, 2-86, 2-87
Plasticizers, viscosity (T), 2-169
Plastics, density of (T), 2-34 to 2-35, 3-77 to 3-78
dielectric properties of (T), 5-124 to 5-130
elastic constants of (T), 3-80
impedances of ( T ), 3-86
index of refraction of (T), 6-19 to 6-20
wave velocities of (T), 3-80
Platinum, emf of platinum-platinum-rhodium thermocouples (T), 4-10
various thermal emf's relative to (T's), 4-6 to 4-9
Platinum alloys, elastic and strength constants for (T), 2-62 to 2-63
Plutonium production reactors, 8-227
Plutonium-239, fast-neutron fission yields of (T), 8-217

Pneumatic radiation detector, characteristics of (T), 6-114, 6-118
Pockels effect, 6-94 to 6-97
for various crystals (T), 6-97
Point charge, potential of, 5-21
Point orifice, jet streamlines for (f), 2-196
Poise, definition of, 2-207, 2-165
Poisson's ratio, definition of, 2-10
for glasses (T), 3-80
for plastics (T), 3-80
and ratio of longitudinal to transverse waves (T), 2-102
of various metals and alloys (T), 2-62 to 2-77, 3-80
Polar magnetic field strength of $\mathbf{3 5}$ stars ( T ), 5-296
Polarization of gamma rays, 8-93
Polarization interference filters, $6-48$
Polarization rules for electric-dipole transition (T), 7-168
Polarization vectors, 5-39 to 5-40
Polarized light, definition of, 6-6

Polarizers, sheet, properties of, 6-44 spectral transmittance of (T), 6-44
Polarizing filters, 6-44
Polished surfaces, reflection coefficients for incandescent light on (T), 6-43
Polyatomic ions, standard entropy of (T), 5-282
Polyatomic molecules, constants of, 7-145 to 7-161
Polycrystalline elements, coefficients of linear thermal expansion of (T), 4-51 to 4-53
Polycrystalline materials, saturation magnetostriction of ( T ), 5-223, 5-224
Polycrystalline solids, elastic and strength constants of (T), 2-61 to 2-80
Polycyclohexyl methacrylate, index of refraction of (T), 6-20
Polymethyl methacrylate, index of refraction of (T), 6-20
Polyphase motors, a-c induction, 5-247
induction, control and protection of, 5-254 to 5-255
synchronous, 5-256
Polyphase transformers, 5-260
Polystyrene, index of refraction of (T), 6-20
Porosity, definition of, 2-179
symbols for, 2-179
of various materials ( T ), 2-180
Porous media, fluid flow properties, 2-179 to 2-180
Positive-ion accelerators, 8-173 to 8-174
Positron, symbols for, 8-3
Potassium bromide, absorption coefficients of (T), 6-37
index of refraction of (T), 6-27 to 6-29
Potassium chloride, differential diffusion coefficients of (T), 5-272
Potential (electric), definition of, 5-3
Potential curves, 7-142 to 7-145
of $\mathrm{C}_{2}$, 7-142
of CN, 7-143
of CO, 7-143
of $N_{2}, 7-144$
of NO, 7-144
of $\mathrm{O}_{2}, 7-145$
Potential energy, definition of, 2-6
of diatomic molecules, 7-136
Potential function, Lennard-Jones, definition and constants for various gases (T), 4-129

Poundal, definition of, 2-15
Power, available from piezoelectric crystal, 3-91
definition of, 3-5, 3-7
electric, 3-3
sound, 3-7
Power band, definition of, 3-5
Power-conversion efficiency of piezoelectric crystal, 3-91
Power levels, acoustic, 3-5, 3-7
Power-line capacity and motor selection, 5-252
Power reactors, 8-227
Power spectrum of thermal noise, 3-55
Power spectrum level, 3-5

Power supply and electric motor selection, 5-250
Poynting vector, 5-42, 5-68
Poynting's theorem in differential and integral forms, 5-43
Practical range of electrons in matter, definition of, 8-38
Prandtl-Glauert rule in gas flow, 2-219
Prandtl numbers, for air (T), 2-222
and gas flow, 2-221
for hydrogen (T), 2-223
for sea water (T), 2-122
and sound absorption, 3-45
Precedence effect in hearing, 3-129
Precession, of earth, 2-97
of equinoxes (T), 2-91
Precipitation electricity, 5-287 to 5-289
Precipitation particles, electric charge on (T), 5-287

Pressure, atmospheric, 3-57
critical, of elements and compounds ( $T$ ), 4-21 to 4-23
definition of, 3-3, 3-4
in earth, 2-108
effect of, on Curie point for various substances (T), 5-220
on electrical conductivity (T), 5-190, 5-195
effective (acoustical), 3-3
excess (acoustic), 3-4
instantaneous, 3-4
sound, 3-3, 3-4
static, 3-57
Pressure coefficient in liquids, 2-151
Pressure-density relation for adiabatic gas, 3-35
Pressure effect and thermal conductivity of liquids (T), 4-75
Pressure level, definition of, 3-7
Pressure spectrum level, definition of, 3-5
Pressure-volume-temperature relationships of gases, 4-118 to 4-129
Pressure-volume-temperature tables for liquids (T's), 2-152 to 2-161
Pressures, critical, for inorganic and organic substances (T), 4-21 to 4-23
in viscous fluids, 3-28
Primary wavelength standard, definition of, 6-9, 7-43
Principal alpha groups, 8-46 to 8-47
Principal axes, 2-8
Principal focus, definition of, 6-6
Principal waves, 5-47
Principles (see Laws and principles)
Probability of ion formation for several substances (f's), 7-184 to 7-185
Probe-tube microphone, 3-125
Prolate spheroid, magnetic induction of coil about, 5-27
Propagation of sound through gases, 3-61 to 3-62
Propagation constant in sound, 3-9, 3-46
Protection of electric motors, 5-254 to 5-257
Proton acceleration, 8-172 to 8-179 in cyclotrons, 8-173 to 8-175

Proton acceleration, in electrostatic accelerators, 8-172 to 8-173
in linear accelerators, 8-179
in synchrocyclotrons, 8-174 to 8-175
in synchrotrons, 8-177 to 8-178
Proton energy loss, 8-26 to 8-35
in air (f), 8-26
in aluminum (f) (T), 8-28, 8-35
in beryllium (T), 8-35
in copper (T's), 8-24 to 8-25, 8-35
in gold (T), 8-35
in lead (T), 8-33 to 8-34
in mica ( T ), 8-35
in silver (T), 8-30 to 8-34
Proton levels (T), 8-19
Protion ranges, 8-24 to 8-34
in air (f), 8-27
in aluminum (f), 8-29, 8-31
in copper (T), 8-24 to 8-25
in Ilford C-2 emulsion (f), 8-32
in lead (T), 8-33 to 8-34
in silver (T), 8-30 to 8-31
Proton straggling in various metals ( T ), 8-36
Proton synchrotron, description of, 8-177 to 8-188
world-wide list of (T), 8-198 to 8-199
Protons, Compton wavelength of, 8-4
magnetic moment of, 8-4
maximum permissible exposure to (T's), 8-254, 8-255
range-energy relation in Ilford C-2 emulsion (f), 8-32
range straggling in copper (f's), 8-37
rest mass of, 8-4
and spin resonance, 5-103
symbols for, 8-3
various constants concerning (T), 7-3
Proximity effect, definition of, 5-5
Pseudo-adiabatic lapse ratio (T), 2-127
Pulsating sphere, acoustic impedance of, 3-108 to 3-109
specific acoustic resistance (f), 3-109
Pulsed fields, penetration into conductor (f), 5-94
Pure tone, 3-15
Pycnometer, 2-136
Pyrite, extinction coefficients (T), 6-38 index of refraction of ( T ), 6-26 to 6-27
Pyroelectric constants, temperature variation of (T), 5-154
of various substances (T), 5-153
Pyroelectric effect, definition of, 5-5
Pyrometers, 6-64
Pyrometry, optical, 6-64

## Q

Quadripole moment of nuclei, definition of, 8-5
Quantum energy conversion factors, 8-4
Quantum numbers, definition of, 7-16 to 7-18
limits of, 7-18
Quantum radiation detectors, chapacteristics of (f) (T), 6-114, 6-115

Quartz, absorption coefficients of (T), 6-37 index of refraction of, crystalline (T), 6-23 to 6-25
at various temperatures (T), 6-34
optical properties of, 6-40
thermal conductivity of fused (T), 4-74
Young's modulus for (T), 2-103
Quartz glass, index of refraction of (T), 6-31
Quaternary fission, 8-212

## R

Rad, definition of, 8-250
Radial mode in transducer materials, 3-98
Radial wave functions and wave mechanics, 7-165
Radian, definition of, 2-14
Radiation, black-body, functions for (T), 6-64, 6-65
total (T), 6-66 to 6-67
maximum permissible exposure to ionizing (T's), 8-254 to 8-256
in meterology, 2-132 to 2-134
narrow-band, 6-64
reflection coefficients for visible monochromatic (T), 6-42
of sound, 3-108 to 3-112
directional, 3-110 to 3-112
stellar, 6-80
Radiation coefficient, 3-50
Radiation constants (T), 7-3
Radiation detection, 6-114 to 6-119
Radiation detectors, characteristics of, 6-114 to 6-119
quantum (f) (T), 6-114, 6-115
Radiation exposure, maximum permissible, to ionizing radiation (T's), 8-254 to 8-256
Radiation field of current distribution, 5-68
Radiation formula, Planck's, 6-6
Radiation impedance characteristics, 3-110
Radiation intensity, definition of, 6-6
Radiation length for various substances (T), 8-39
Radiation pressure in sound, 3-43
Radiation resistance, acoustic, of sphere and piston ( T ), 3-110
Radiation vector, 5-74
Radiative attachment of electrons, 7-182
Radiative recombination coefficients ( $\mathbf{T}$ ), 5-171
Radio astronomy, 6-120 to 6-123
measurements in, 6-120 to 6-121
spectra in (f), 6-121
Radio-frequency cables, 5-52
standard, attenuation of (f), 5-57 list of (T), 5-53 to 5-56
Radio luminosity in radio astronomy, definition of, 6-121
Radio magnitude in radio astronomy, definition of, 6-121
Radio noise, galactic, 6-122
Radioactive decay of neutrons, 8-129
Radioactive isotopes, data on (T), 8-96 to 8-128

Radioactive materials, shipping regulations for, 8-257
Radioactive nuclides, decay-energy cycles for the $4 n$ through $4 n+3$ series ( $f$ 's), 8-42 to 8-45
Radioisotope data (T), 8-98 to 8-128
Radioisotopes, concentration in air and water (T), 8-253; 8-256
Radiometry, 6-64 to 8-82
Radionuclides, classical and modern designation of (T), 8-41
Radius, of curvature from spherometer readings, definition of, 6-7
of gyration, 2-9
Range, of fission fragments, 8-36
of protons, 8-27 to 8-31
in air (f), 8-27
in aluminum (f), 8-29, 8-31
in copper (T), 8-24 to 8-25
in Ilford C-2 emulsion (f), 8-32
in lead ( T ), 8-33 to 8-34
in silver (T), 8-30 to 8-31
Range-energy relations, 8-23 to 8-39
for alpha particles in Ilford C-2 emulsion (f), 8-32
for deuterons in Ilford C-2 emulsion (f), 8-32
for electrons in aluminum (f), 8-39
for heavy charged particles, 8-23
for protons, in air (f), 8-27
in aluminum (f), 8-29, 8-31
in Ilford C-2 emulsion (f), 8-32
for tritons in Ilford C-2 emulsion (f), 8-32
Range straggling, of alpha particles in copper (f's), 8-37
of deuterons in copper ( $f$ 's), 8-37
of protons in copper ( $f$ 's), 8-37
Rankine-Hugoniot relation (f), 2-232, 2-234
Rankine temperature, conversion equations for (T), 4-2
Rare alpha groups, 8-47
Rare gases, first Townsend ionization coefficients in (f), 5-169
Rate of deformation tensor, 3-28
Ratio of proton to electron mass, 8-4
Rayl, definition of, 3-10
Rayleigh scattering of photons, 8-91
Rayleigh's laws in low magnetic fields, 5-214
Reaction cross sections of elements (T's), 8-154 to 8-168, 8-170 to 8-171
Reactors (see Nuclear reactors)
Reciprocal dispersive power and optical plastics (T), 6-19
Reciprocity principle, 3-10
Reciprocity theorem, 3-11
and absorption cross section, 5-71 to 5-72
for network theory, 5-81
Recombination coefficient, in air (f), 5-177, 5-178
temperature variation in oxygen (f), 5-178
Recommended noise level for different rooms (T), 3-122

Rectangular conductors, resistance of (f), 5-92
Rectangular coordinates, 2-3
base vectors for (f), 2-2, 2-3
Rectangular prism, capacitance per unit length, 5-16
Rectangular resonators, 5-65 to 5-66
electric and magnetic fields in (f), 5-65
Rectangular waveguides, 5-59 to 5-62
coordinate system for (f), 5-59
wave types for (T), 5-61
Rectifier circuits (T), 5-264 to 5-265
Rectifiers, 5-5, 5-263 to 5-266
Rectilineal compliance and acoustic analogy, 3-135
Reduced mass of diatomic molecules (T). 7-136 to 7-141
Reduction in area, metals and alloys (T), 2-62 to 2-63, 2-66 to 2-72, 2-75 to 2-76
in tensile testing, definition of, 2-69
Reference ellipsoid in geodesy, 2-92
Reference gases, dielectric constants of (T), 5-147

Reference intensity, 3-6
Reference power, 3-7
Reference sound pressure, 3-7
References, in acoustics, 3-178 to 3-179
in mathematics, 1-2 to 1-5
Reflectance, by films of various metals (T), 6-108
luminous, definition of, 6-52
maximum luminous ( T ), 6-63
Reflecting factors, infrared, of dry pigments (T), 6-41
Reflection, 6-41 to 6-43
of earthquake waves, 2-104 to 2-106
of light, by transparent medium, 6-7 by various metals (T), 6-109 to 6-110
of longitudinal and shear waves, 3-78
of shock waves, 2-233 to 2-235
total, definition of, 6-8
Reflection coefficients, definition of, 6-7
for incandescent light on various substances (T), 6-43
for visible monochromatic radiation on various substances (T), 6-42
Reflectivity, definition of, 6-7
Reflectors, and beam formation, 5-73
used in various nuclear reactors ( T ), 8-228 to 8-239
Refraction, of earthquake waves, 2-104 to 2-106
index of (see Index of refraction)
of ocean waves, 2-123
of shock waves, 2-233 to 2-235
of sound in water, 3-68
at a spherical surface, 6-7
Refractive index (see Index of refraction)
Refractivity, definition of, 6-7
Refutas chart, 2-165
Regular reflection of shock waves, 2-234
Relative biological effectiveness of ionizing radiation, 8-250
Relative capacitivity of semiconductors (T), 5-132
(See also Dielectric constants)

Relative density, of air (T), 4-83
of argon (T), 4-88
of carbon dioxide (T), 4-92
of hydrogen (T), 4-96
of nitrogen (T), 4-104
of oxygen (T), 4-109
Relative dielectric strengths, of gases (T), 5-148 to 5-149
of nitrogen-vapor mixtures (T), 5-148 to 5-149
Relative humidity vs. attenuation constant (f), $\mathbf{3} \mathbf{- 1 1 7}$
and energy attenuation (f), 3-66
Relative molal heat content of solutes (T), 5-281

Relative photopic luminosity, definition of, 6-50
Relative visibility, definition of, 6-9
Relative volume, 2-137
of elements ( T ), 4-29
of gases vs. temperature (T's), 4-26
of liquids vs. temperature (T's), 4-26, 4-27
of solids (T's), 4-28, 4-29
Relaxation, attenuation of sound due to, 3-79
Relaxation frequencies in sound, 3-51
Relaxation processes and sound absorption, 3-50 to 3-53
Reluctance of magnetic circuit, definition of, 5-34
Remanence of materials for permanent magnets (T), 5-219
Repulsion motor, 5-250
Repulsion-start motors, 5-249
Research reactors (see Nuclear reactors)
Residual induction, 5-214
Resins, density ( T ), 2-34 to 2-35
Resistance, ac/dc, for solid round wire (T), 5-201
acoustic, 3-9
acoustic analogies to, 3-134 to 3-136
of copper wire (T), 5-198 to 5-200
high-frequency, of copper (f), 5-200
of rectangular conductors (f), 5-92
of thermal radiation detectors (T), 6-118
Resistance standards, 5-107
Resistivity, of earth, 5-290 to 5-291
of earth materials (f), 5-290
of elements and alloys at different temperatures (T), 4-13
of high-permeability materials (T), 5-216
of metals and alloys (T's), 5-90, 5-204
volume, of ceramics (T), 5-120 to 5-121 of glasses (T), 5-122 to 5-123
Resolving power, definition of, 6-7
Resonance, viscothermal, 3-48
Resonance cross sections, 8-143 to 8-144
Resonance frequency, definition of, 3-10
Resonance lines of atoms (T), 7-13 to 7-15
Resonance parameters, of fissionable nuclei (T), 8-153
of heavy nuclei (T), 8-147 to 8-152
of light nuclei (T), 8-145 to 8-146

Resonance potentials of atoms (T), 7-13 to 7-15
Resonant cavities at microwave frequencies, 5-65 to 5-68
Resonators, frequency of conical (T), 3-103 rectangular and circular, 5-65 to 5-67 volume, 3-103 to 3-104
Response, relative, definition of, 3-11
Rest mass, of electron, 8-4 of neutron, 8-4
of proton, 8-4
Reverberant sound, definition of, 3-17
Reverberation, definition of, 3-115 of sound in water, 3-68
Reverberation chamber, definition of, 3-17
Reverberation time, definition of, 3-6, 3-117
optimum, for different rooms (f), 3-118 vs. frequency (f), 3-119
Reversible permeability of materials for permanent magnets (T), 5-219
Reyn, definition of, 2-165
Reynolds number, and cavitating flow data (T), 2-188
definition of, 2-179
vs. drag coefficient for cylinder and sphere (f), 2-226
in flowing liquids, 2-183
vs. friction factor for rough pipes (f), 2-225
and gas flow, 2-221, 2-225, 2-226
Rhes, definition of, 2-165
Rhodium, emf of platinum vs platinumrhodium thermocouples ( T ), $4-10$
Rhombic crystals, elastic constants and coefficients for (T), 2-58
Richardson effect, definition of, 5-4
Righi-Leduc coefficient, 5-98
Righi-Leduc effect, 5-99
Rigid bodies, dynamics of, 2-8 to 2-10
Rigidity, 2-10
of earth layers, 2-108
Rigidity modulus, of gels, 2-82
of metals and alloys ( T ), 2-61, 2-64 to 2-71, 2-74 to 2-76
Ring sound source, beam angle of radiation for (f), 3-111, 3-112
directional radiation from, 3-111 to 3-112
directivity index for ( f ), 3-112
Rocks, elastic constants of (T), 2-102
electrical conduction of, $5-290$ to $5-291$
resistivities of (f), 5-290
wave velocities in (T), 2-102
Rock materials, diffusivities of (T), 4-74
Rockwell hardness number, definition of, 2-69
Rods, demagnetizing factors for (T), 5-244
fundamental frequency of, 3-102 to 3-103
Roentgen, definition of, $\mathbf{8 - 2 5 0}$
Roentgen equivalent man, definition of, 8-250
Roentgens per hour at 1 m from a 1-curie source (T), 8-257
Rolling friction (f), 2-43 to 2-44
coefficient of, 2-43
Room constant (acoustics), definition of, 3-17

Rooms, acceptable noise level for, 3-122 recommended noise level for (T), 3-122
Rotary converter, 5-262
Rotating machines, 5-260
Rotational compliance and acoustic analogy, 3-136
Rotational constants of polyatomic molecules (T), 7-146, 7-152 to 7-161
Rotational motion, definition of, 2-8
Rough pipes and turbulent gas flow, 2-224
Round wire, self-inductance of, 5-28, 5-29
skin-effect formulas for, 5-90 to 5-91
Rubber insulation and current capacity of conductors (T), 5-202 to 5-203
Rubbers, density of (T), 2-35
dielectric frequency of (T), 5-124 to 5-130
dielectric properties of (T), 5-124 to 5-130
Russell-Saunders coupling, 7-17 to 7-18 and Zeeman effect, 7-168
Rutile, index of refraction of (T), 6-23 to 6-25
optical properties of, 6-40
Rydberg constants (T), 7-3

## S

$S$ event in meson and hyperon decay, 8-241
$S$ rule of electron transitions, 7-25
Sabin, definition of, 3-17, 3-113
Salinity of sea water related to temperature (f), 2-118

Salt solutions, index of refraction of ( T ), 6-22
Salts, ionic conductivity in, 5-185 to 5-196
Sand, porosity and permeability of (T), 2-180.
Sandstone, porosity and permeability of (T), 2-180

Sapphire, index of refraction of (T), 6-23 to 6-25
optical properties of, 6-40
Saturated air, virtual temperature of (T), 2-127
Saturation, of iron-cobalt-nickel alloys (f), 5-207
Saturation hysteresis of high-permeability materials (T), 5-216
Saturation induction, of high-permeability materials (T), 5-216
of manganese-copper-aluminum alloys (f), 5-207

Saturation magnetization, of binary compounds (T), 5-213
of cobalt alloys (T), 5-210
definition of, 5-206
of ferrites (T), 5-211
for ferromagnetic elements ( T ), 5-208
of iron alloys (T), 5-209
of nickel alloys (T), 5-210
Saturation magnetostriction of crystals and polycrystalline materials, 5-222 to 5-224
Saybolt viscometer, calibrating oils for (T), 2-167
Scalar potential, 5-43 to 5-44
in fluid motion, 3-40

Scale, definition of, 3-15
equally tempered, 3-14
Scattering, and absorption of em waves, 5-70 to 5-71
attenuation of sound due to, 3-79
Coulomb, of charged particles, 8-36
of photons, 8-89
of sound in water, 3-68
Scattering cross sections, 5-71
of elements (T's), 8-154 to 8-168, 8-170 to 8-171
of neutrons, definition of, 8-130
Scattering factors for waves in metals ( $T$ ), 3-83
Schematic diagrams and acoustical analogies, 3-142 to 3-143
Schlichting formulas, 2-196
Schottky defects, 5-185
Scotopic lumens, 6-53
Scotopic luminosity, 6-52 to 6-53
Scotopic luminosity data (T), 6-51
wavelengths for selected ordinates (T), 6-53
Scotopic luminous reflectance, 6-53
Scotopic luminous transmittance, 6-53
Sea level and earth's crust (T), 2-115
Sea water, critical pressure for cavitation in (f), 2-184
gravity waves in, 2-122 to 2-123
properties of (T), 2-116 to 2-122, 3-69
temperature-salinity diagram for (f), 2-118
Seasonal variation in ionosphere (f), 2-131
Seats, absorption coefficients of (T), 3-116
Second, definition of, 2-14
Second-harmonic components of sound pressure, 3-38
Second law of thermodynamics and viscous fluids, 3-29
Second-order acoustic equations, 3-34
in fluid motion, 3-40, 3-41
Secondary electron emission, ratio to incident primary for several substances (f's), 7-203
for various substances (f's), 7-192 to 7-198
Secondary emission coefficient for electrons, 7-192
Secondary fixed temperature points (T), 4-5
Secondary wavelength standards, definition of, 7-43
Secular change in earth's magnetic field, 5-293
Seeback effect, 5-5, 5-98
Seeback emf, 5-98
Seismic waves (see Earthquake waves)
Seismicity of earth, 2-110 to 2-112
Seismological data, 2-101 to 2-114
symbols used in, 2-101 to 2-102
Selection rules, for electric-dipole transition (T), 7-168
for electron transitions, 7-20 to 7-21, 7-25
Selenium rectifier, 5-266
Self-diffusion coefficients in gases (T), 2-213
Self-inductance for various static fields, 5-28 to 5-31
Self-induetance standards, 5-110 to 5-112

Semiconductors, 5-5, 5-157 to 5-165 coefficients of linear expansion of (T), 4-63 conductivity (electrical) formulas for, 5-96
and Faraday rotation (T), 5-235
relative capacitivity of (T), 5-132
thermal conductivity of (T), 4-76
Semidegenerate case in wave mechanics, 7-167
Semitone, definition of, 3-15
Sensitivities, spectral, of various phototubes (f's), 6-116 to 6-117
Sensitivity peak of fluorescent chemicals (T), 6-111

Series connections, definition of, 5-5
Series spectrum, definition of, 7-16
Series universal motor, 5-250
torque-speed curves for (f), 5-250
Series-wound motors, 5-246
Shaded-pole motors, 5-249
torque-speed curve for (f), 5-249
Shallow water waves, 2-123
Shear, definition of, 2-10
Shear modulus, 2-10
of gels (T), 2-83
Shear stiffness for ceramics (T), 3-95
Shear strength, definition of, 2-69
of metals and alloys (T), 2-64 to 2-78
Shear waves, definition of, 3-6
reflection of, 3-78
scattering factors for, in metals (T), 3-83
Shearing stress in liquids, 2-165
Sheet, self-inductance of, 5-31
Sheet cavities, 2-183, 2-187
Sheet polarizers, properties of, 6-44
spectral transmittance of ( $T$ ), 6-44
Shell structure of stable nuclei, 8-5, 8-18 to 8-19
Shells of nucleons, 8-5
Shielded-pair transmission lines, constants for, 5-48 to 5-49
Shielding of various nuclear reactors (T), 8-228 to 8-239
Shielding equations in health physics, 8-251 to 8-253
Shipping regulations for radioactive materials, 8-257
Shock waves, 2-231 to 2-236
formation, 3-38
and ideal gases (T), 2-232 to 2-233, 2-235
reflection and refraction of, 2-233 to 2-235
in steady-state, one-dimensional flow, 2-232 to 2-233
symbols for, 2-231
Shoran measurements, 2-96
Shot noise in radiation detectors, 6-115
Shunt-wound motors, 5-246
Sidereal day (T), 2-2, 2-91
Sidereal periods of planets (T), 2-90
Sigma hyperons, 8-245
Sigma pile, 8-227
Silica, fused, absorption coefficients for ( $T$ ), 6-37
extinction coefficients for (T), 6-38
index of refraction of (T), 6+26 to 6-27
Silt, porosity and permeability of (T), 2-180

Silver, energy loss and range of protons in (T), 8-30 to 8-31
proton straggling in (T), 8-36
Silver alloys, elastic and strength constants for (T), 2-62 to 2-63
Silver chloride, index of refraction of (T), 6-27 to 6-29
Simple tone, definition of, 3-15
Simple vibrators, frequencies of, 3-100 to 3-107
strings (T), 3-100 to 3-102
Single body, capacitance of, 5-12 to 5-14
Single-particle nuclear model, 8-18
Single-phase a-c induction motor, 5-248
Single-phase rectifier circuits (T), 5-264 to 5-265
Singly ionized atoms, persistent spectral lines of (T), 7-39 to 7-41
Six-atom molecules, fundamental vibrations of (T), 7-151
rotational constants and geometric parameters of, asymmetric-top (T), 7-161
linear (T), 7-160
spherical-top (T), 7-160 symmetric-top (T), 7-160
Six-phase rectifier circuits (T), 5-265
Skin, maximum permissible exposure to ionizing radiation (T), 8-255
Skin depth, 5-85
of copper (f), 5-200
definition of, 5-200
Skin effect, 5-85 to 5-95
definition of, 5-5, 5-85
Skin-effect quantities for various conductors (T), 5-90
Skin friction, and compressibility, 2-230
and heat transfer, 2-230
Skin-friction data, for flat plate, 2-228
for turbulent gas flow, 2-224 to 8-226
Skin-friction ratio, vs Mach number (f), 2-229
Sky, approximate brightness of (T), 6-78
Sliding friction, 2-40
coefficient of, for various substances ( T ), 2-41 to 2-42
Slow-burning insulations and current capacity of conductor (T), 5-202 to 5-203
Small-signal acoustic equations, 3-32 to 3-34
Small-signal scalar wave equation, 3-34
Smooth pipes and turbulent gas flow, 2-224
Snell's law, 3-78
of refraction, 6-7
Sodium, energy levels of (f) (T), 8-85, 8-86
Sodium I, energy-level diagram of (f), 7-31
Sodium chloride, absorption coefficient of (T), 6-37
index of refraction of (T), 6-23, 6-27 to 6-29
Solar constant, definition of, 2-132
Solar eclipse method of earth measurement, 2-96
Solar-flare effect, definition of, 5-294
Solar insolation, daily average (f), 2-133
Solar noise and radio astronomy, 6-121 to 6-122

## INDEX

Solar radio-frequency radiation, spectra of (f), 3-121

Solenoid, magnetic induction of, 5-27
Solenoidal waves, 2-12
Solid helium, volume and compressibility of (T), 4-27

Solid solutions, Bohr magneton numbers of (T), 5-211

Solid-state formulas, 5-95 to 5-104
Solids, acoustic properties of, 3-74 to 3-88
attenuation of sound in, 3-79
density of $20^{\circ} \mathrm{C}(\mathrm{T}), \mathbf{2 - 2 1}$
dielectric properties of (T's), 5-114 to 5-132
emissivity of, 6-73
extensional and torsional waves in, 3-75
internal energy and entropy of (T's), 4-44 to $4-46$
logarithmic decrements of (T's), 2-87
magnetic properties of, 5-206 to 5-244
and metallic conductors, 5-197 to 5-205
polyerystalline, elastic and strength constants of (T), 2-55 to 2-80
relative volume of (T's), 4-28 to 4-29
specific rotation of (T), 6-98
Verdet constants for (T), 6-95
viscosity of, 2-84 to 2-90
Solutions, specific rotation of (T), 6-100 to 6-101
Sone, definition of, 3-13
Sound, absorption constant in organic
liquids (T), 3-73
attenuation of, 3-63 to 3-66
nomogram for (f), 3-64
definition of, 3-6
directional radiation of, 3-110 to 3-112
energy density of, 3-6
hearing, of short duration, 3-127
propagation of, 8-63 to 3-66
in fluids, 3-2 to 3-55
radiation of, 3-108 to 3-112
and reverberation, 3-6
speed of, equation for, 3-61
in liquids, 3-67
in sea water, 2-119 to 2-120
in various gases ( T ), 3-62
velocity of, in air vs. temperature (T), 8-216
effect of dissolved salt in water (f), 3-70
in fresh and sea water (T), 3-69
as function of density, 3-37
in organic liquids ( T ), 3-71 to 3-73
(See also under Acoustic)
Sound absorption, 3-43 to 3-53
in air, 3-63 to 3-66
classical, 3-49
first-order equations for, 3-45
and relaxation processes, 3-50 to 3-53
and viscosity (f), 3-65
in water vs. temperature (f), 3-69
Sound-absorption coefficients, definition of, 3-17, 3-67
for water (f), 3-71
Sound-absorptive materials, 3-113 to 3-115
Sound dispersion, 3-43 to 3-53
Sound-energy density, 8-6

Sound-energy flux, 3-6
Sound field, 3-6
anechoic, 3-2
Sound intensity, 3-6, 3-42
Sound level, definition of, 3-6
Sound power level, definition of, 3-7
Sound pressure, 3-4
vs distance from microphone ( T ), 3-130
Sound propagation, streaming in, 3-39 to 3-41
symbols for, 3-25 to 3-26
vorticity in, 3-39 to 3-41
Sound spectrum level, 3-55
Sound transmission, 3-63 to 3-66
through partitions, 3-119
in water, 8-67 to 3-68
Sound waves and transducers, 3-89 to 3-99
Space-charge regions, waves in, 5-74 to 5-79
Space-charge waves, 5-74 to 5-79
energy relations in, 5-79
of noise, 5-79
Space-group symbols in crystallography, 2-47
Space-time relationships, 2-2 to 2-3
Spallation reaction, definition of, 8-2
Spatial coordinate transforms, 3-36 to 3-37
Spatial coordinates, 3-34 to 3-37
Specific acoustic compliance, definition of, 3-10
Specific acoustic impedance, definition of, 3-10
Specific acoustic mass, definition of, 3-10
Specific acoustic reactance, 3-10
of pulsating sphere (f), 3-109
of vibrating piston (f), 3-109
Specific damping capacity, 2-84 to 2-86
Specific gravity, of animal oils (T), 2-150 of vegetable oils (T), 2-150
Specific heat, of air (T's), 2-125, 3-59, 4-84 of argon (T), 4-89
of carbon dioxide ( T ), 4-93
of gases (T), 3-59
of hydrogen (T), 4-97
of nitrogen (T), 4-105
of oxygen (T), 4-110
ratio $C_{p} / C_{v}$ for gases ( T ), 3-59
of sea water, 2-121
of steam (T), 4-115
Specific heat constant of paramagnetic salts (T), 4-14

Specific heat equation for viscous fluids, 3-29
Specific impedance, 3-53
Specific impedance ratio, 3-53
Specific refractivity, definition of, 6-7
Specific rotation, definition of, 6-8
of solids, liquids, and solutions (T's), 6-98 to 6-101
Specific volume, 2-151
of sea water, 2-117, 2-119
of viscous fluids, 3-27
of water vs. temperature (T), 4-25
Spectra (see Atomic spectra; X-ray spectra)
Spectral emissivity, brightness vs. temperature (T), 6-75
of oxides (T), 6-74

Spectral emissivity, of unoxidized surfaces (T), 6-73

Spectral lines, persistent, of elements ( $T$ ), 7-39 to 7-41
wavelengths and intensities of standard (T), 6-83 to 6-86

Spectral response in radiation detectors, 6-114
Spectral sensitivities of various phototubes (f's), 6-116 to 6-117
Spectral series, definition of, 6-8
Spectral transmittance of sheet polarizers (T), 6-44

Spectroscopic calibration, wavelengths for (T's), 6-83 to 6-90
Spectroscopic splitting factor (g), definition of, 5-231
for various substances (T), 5-230
Spectrum, continuous, definition of, 3-3 definition of, 3-7
line, definition of, 3-5
Spectrum level in sound, 3-55
Specular surfaces, reflection coefficients for incandescent light on (T), 6-43
Speech, articulation index for, 3-132 to 3-133
articulation scores vs. articulation index (T), 3-133
characteristic sounds of (T), 3-131 to 3-132
and equivalent frequency bands (T), 3-133
and hearing, 3-123 to 3-133
hearing loss for, 3-13
peak power, 3-13
sound pressure for, vs. microphone distance (T), 3-130
Speech levels, power, 3-12, 3-13
Speech power, 3-130 to 3-132
Speed of sound (see Sound)
Speed ratings of electric motors, 5-252
Speed requirements and motor selection, 5-251
Spheres, acoustic radiation resistance of (T), 3-110
drag data for (f), 2-226, 2-228
Spherical aberration, definition of, 6-8
Spherical candlepower, definition of, 6-9
Spherical coordinates, 2-3
base vectors in (f); 2-3
Spherical mirrors, 6-8
Spherical resonators, 5-66
modes in (f), 5-67
Spherical shell, skin-effect formulas for, 5-95
Spherical surface, refraction at, 6-7
Spherical-top molecules, rotational constants and geometrical parameters of, five-atom (T), 7-157 to 7-158
four-atom (T), 7-154
six-atom (T), 7-160
Spherical wave, definition of, 3-7
Spherical wave functions, 5-46 to 5-47
Spherite, index of refraction of (T), 6-26
Spin, of electron, 7-17
isotopic, for light nuclei ( $f$ 's) ( $T$ ), 8-57 to 8-86

Spin, of neutron, 8-129 of stable nuclei (T), 8-6 to 8-17
Spin-dependent incoherence, 8-144
Spin-orbit coupling, 8-5
Spin resonance, 5-103 to 5-104
Spinels, Bohr magneton numbers and Curie points of (T), 5-212
index of refraction of (T), 6-26
optical properties of, 6-40
Split-capacitor motor, torque-speed curve for (f), 5-249
Split-phase motors, 5-248 to 5-249
torque-speed curve for (f), 5-248
Splitting factor, in paramagnetic salts (T), 4-14
in Zeeman effect, 7-168
Spontaneous fission yields (T), 8-225
Spurious harmonics, 3-38
Sputtered mass for metals in hydrogen (T), 5-185
Squirrel-cage induction motors, characteristic curves for (f), 5-247
Squirrel-cage rotor, 5-247
Stability rules, nuclear, 8-21 to 8-22
Stable nuclei; properties of (T), 8-6 to 8-17 systematics of, 8-5 to 8-23
Standard atmosphere, definition of, 2-127 to 2-128
and lower atmosphere (T), 2-128
Standard cells (batteries), 5-107 to 5-109
characteristics and use, 5-107 to 5-109
Standard coordinate system for color specifications (T), 6-60
Standard cyclotron, 8-173 to 8-174
Standard electromotive forces of half cells in water (T), 5-274 to 5-276
Standard entropy of monatomic and polyatomic ions (T), 5-281, 5-282
Standard illuminants (T), 6-56
Standard liquids, dielectric constants of (T), 5-132
Standard observer, chromaticity coordinates and tristimulus values for ( T ), 6-54 to 6-55
Standard pitch, definition of, 3-15
Standard radio-frequency cables, attenuation of (f), 5-57
list of (T), 5-53 to 5-56
Standard ratings of electric motors as to frequency, horsepower, speed, and voltage, 5-252
Standard second, definition of, 5-112
Standard sources (illumination), selected ordinates for (T), 6-59
tristimulus computation data for ( T ), 6-57, 6-58
Standard tuning frequency, 3-106
Standard wavelength, infrared ( T ), 6-88 to 6-90
primary (light), 6-9
Standards, electrical, 5-105 to 5-113
of viscosity (T), 2-167
wavelength, for vacuum ultraviolet (T), 6-83 to 6-86
for wavelength measurement, 7-42, 7-43
Standing waves, definition of, 3-7

Stapes in ear (T), 3-123
Star occultation, 2-97
Stars, brightness of (T), 6-82
electric and magnetic properties of, 5-283 to 5-297
polar magnetic field strengths of (T), 5-296
Starters for electric motors, 5-254
Static-current-flow formulas, 5-23 to 5-25
Static equilibrium, definition of, 2-9, 3-33
Static-field formulas, 5-12 to 5-36
Static fields, inductance for, 5-28 to 5-31
Static friction, 2-39 to 2-40
coefficients, various materials (T), 2-41 to 2-42
Static-magnetic-field formulas, 5-25 to 5-36
Static modulus of elasticity, 2-85 to 2-86
Static pressure, definition of, 3-7
Statics, definition of, 2-5
Stationary wave, definition of, 3-7
Steady-state alteration of pressure, 3-38
Steady-state cavities, 2-183, 2-187
Steady-state one-dimensional flow, 2-232 to 2-233
Steady-state sinuoids, 5-81 to 5-82
Steam, compressibility factor for (T), 4-113
density of (T), 4-114
enthalpy of (T), 4-116
entropy of (T), 4-117
specific heat of (T), 4-115
thermodynamic conversion factors for (T), 4-81
viscosity vs. temperature (T's), 2-209, . 2-210
Steel, coefficient of static friction for (T), 2-40, 2-41
density of (T), 2-22 to 2-23
Steel alloys, elastic and strength constants for (T), 2-70 to 2-71
Steel strings, mass per unit length (T), 3-101
Stefan-Boltzmann constant (T), 7-3
Stefan-Boltzmann function, 6-64
Stellar magnetic field strengths (T), 5-296
Stellar magnetism, 5-297
Stellar magnitude, definition of, 6-80
of various stars (T), 6-82
Stellar radiation, 6-80
Stellar spectral classes, color indices of (T), 6-80
Steradian, definition of, 2-14
Stereophonic sound source, 3-129
Stiffness modulus of crystals (T), 3-81, 3-82
Stilb, definition of, 6-10
Stokes, definition of, 2-165
Stokes formula in geodesy, 2-100
Stokes law, 2-13
and viscosity, 2-203
Stokes number and sound absorption, 3-45
Stokes relation in viscous fluids, 3-28
Stopping power of heavy charged particles, 8-23
Strain, 2-10, 2-11
Strain constants, piezoelectric (T), 5-150 to 5-151
Strain tensor, 2-11
Stratocumulus clouds (f), 2-130, 2-134

Stratosphere (f), 2-130
Stratus clouds (f), 2-130, 2-134
Stream function in gas flow, 2-217, 2-221
Streaming in sound waves, 3-39 to 3-41
Streaming potential, 3-41
Strength, definition of terms, 2-55, 2-69, 2-78, 2-80
(See also Shear strength; Tensile strength; Yield strength)
Strength constants of polycrystalline solids (T), 2-61 to 2-80

Stress and strain, general concepts of, 2-10
Stress and strain relations, 2-11
Stress tensor, 2-11
in viscous fluids, 3-28
Strings, frequency perturbations of (T), 3-102
fundamental frequencies of, 3-100 to 3-102
mass per unit length, of gut (T), 3-101 of steel (T), 3-101
Strong-focusing methods in proton synchrotron, 8-177
Strontium titanate, index of refraction of (T), 6-26

Structure, of antiferroelectric crystals (T), 5-156
of atomic spectra, 7-16 to 7-26
of ferroelectric crystals (T), 5-155 to 5-156
Sublimation, heat of, for elements and compounds (T), 4-131 to 4-159
Subsonic gas flow, 2-217
Sucrose, diffusion coefficients of (T), 2-192
Sulfur dioxide, efficiency of electron attachment in (f), 5-175
Sulfuric acid, isothermal compressibility of (T), 2-162

Sun, approximate brightness of (T), 6-78
magnetic field of (T), 5-295
mean distance of planets from (T), 2-90
miscellaneous constants for (T), 2-91
Sunspot cycles, 5-297
Sunspot fields, 5-297
Superconducting transition temperature (T), 4-49
for metals and alloys (T's), 5-205
Superconductors, transition temperatures, electronic constants, and Debye temperatures for (T), 4-49
Superposition theorem for networks, 5-81
Supersonic gas flow, 2-217
Supersonics, definition of, 3-12
Surface energy of liquids, 2-172 to 2-176
Surface phenomena, for ions on metals, 7-192 to 7-203
secondary electron emission by various substances ( $f$ 's), 7-192 to 7-198
Surface resistivity of metals and alloys ( $T$ ), 5-90
Surface tension, definitions and formulas for, 2-172, 2-175 to 2-176
of inorganic aqueous solutions (T), 2-177
of liquids (T), 2-14, 2-172 to 2-174
of metals (T), 2-174
methods of measuring, 2-175 to 2-176
of organic aqueous solutions (T), $\mathbf{2}-175$

Surface tension, of water, 2-172
Susceptibility, definition of, 5-236 to 5-240
Suspensions, viscosity of. 2-180 to 2-181
Suspensoids, 2-181
Sutherland's equation, 2-204
"Swimming-pool" reactor, 8-227
Syllable articulation, definition of, 3-13
Sylvine, index of refraction of (T), 6-23
Symbols, for acoustic properties of liquids, 3-67
for acoustical quantities, 3-18 to 3-24
for cavitation in flowing liquids, 2-182 to 2-183
classical and modern, for heavy radionuclides (T), 8-41
for elastic and related constants, 2-55
electrical (T), 5-6 to 5-7
for electrical, mechanical, and acoustical elements (T), 3-139
for electrochemical data, 5-268 to 5-269
for elements (T), 7-5 to 7-8
for geodetic data, 2-92 to 2-101
for liquid jets, 2-195
for magnetic properties, 5-206
for meteorology, 2-124 to 2-125
for nuclear constants, 8-4
for nuclear reactions, spallation reactions, and fission, 8-2 to 8-3
for porosity and viscosity, 2-179
for propagation of sound, 3-25 to 3-26
for schematic diagrams, based on impedance analogy ( T ), 3-145 to 3-176
based on mobility analogy (T), 3-144 to 3-176
in seismological data, 2-101 to 2-102
for shock-wave quantities, 2-231
Symmetric-top molecules, rotational constants and geometrical parameters of, five-atom (T), 7-157 to 7-158
four-atom (T), 7-154
six-atom (T), 7-160
Symmetrical top and wave mechanics, 7-163 to 7-164
Synchrocyclotron, description of, 8-174 to 8-175
Synchronous motors, 5-248
torque-speed curve for (f), 5-248
Synchronous reluctance motor, 5-250
torque-speed curves for (f), 5-250
Synchrotrons, alternate-gradient, 8-177 to 8-178
electron, 8-176 to 8-177
proton, 8-177 to 8-178
world-wide list of (T), 8-189 to 8-193, 8-196 to 8-199
Synthetic crystals for filters, 6-50
Systematic notation for spectral lines, 7-58
Systematics of stable nuclei, 8-5 to 8-23
Systems of one degree of freedom, electrical, mechanical, and acoustical, 3-137 to 3-138

## T

Tait equation, 2-223
Taylor series expansions, 3-36
$T E$ waves, plane, cylindrical, and spherical functions of, 5-45 to 5-47
Teller-Pöschl potential and wave mechanics, 7-163
Telluric currents, 5-289
$T E M$ waves, plane, cylindrical, and spherical functions of, 5-45 to 5-47
Temperature, and piezoelectric strain constants (T), 5-152
and pyroelectric constants (T), 5-154
vs. thermal conductivity of various materials (f), 4-77
variation of dielectric constants with (f), 5-131
Temperature coefficient, of inorganic liquids (T), 5-133
of organic liquids (T), 5-134 to 5-142
and per cent conductivity, 5-197
of piezoelectric strain constants (T), 5-153
of standard liquids (T), 5-132
Temperature data, of paramagnetic salts, 4-14 to 4-20
at very low temperatures, 4-14 to 4-20
Temperature-entropy diagram, for helium (f), 4-94
for hydrogen (f), 4-100 to 4-102
Temperature-salinity diagrams for sea water (f), 2-118
Temperature scales, equation and definition of ( T ), 4-2 to 4-4
International, 4-3, 4-4
Temperatures, critical, of elements and compounds (T), 4-21 to 4-23
of inorganic and organic substances, 4-21 to 4-23
Tensile strength, definition of, 2-55
of liquids (T), 2-169 to 2-172
of metals and alloys (T), 2-61 to 2-78
methods of measuring in liquids, 2-170 to 2-172
Ternary fission, 8-212
Terrestrial abundance of elements (T), 7-9 to 7-12
Terrestrial electricity, 5-289 to 5-291
Terrestrial magnetism, 5-291 to 5-295
Tetragonal crystal systems (f) (T), 2-45 to 2-47
Tetragonal crystals, elastic constants and coefficients of (T), 2-57
Thallium, phase diagrams for (f) (T), 4-38 transition parameters for (f) (T), 4-38
Thallium bromide-iodide, index of refraction of (T), 6-27 to 6-29
Theorems, for electrical networks, 5-81
impulse-momentum, 2-5
work-energy, 2-5 to 2-7, 2-9
Thermal conductivity, 3-52, 4-65 to 4-79 of alloys, 4-67, 4-79
conversion factors for (T), 4-66
of cubic crystals (T), 4-72 to 4-73
of dielectric crystals (T), 4-79
of disordered dielectrics (T), 4-79
of fused quartz (T), 4-74
of gases (T's), 3-58, 3-61, 4-71
of insulating materials (T), 4-68 to 4-70
of liquids (T's), 4-71, 4-75

Thermal conductivity, at low temperatures, (f) 4-77
of metals (T), 4-67, 4-78
of noncubic crystals (T), 4-73
of optical materials (T), 4-76
of organic materials (T), 4-71
of sea water (T), 2-122
of semiconductors (T), 4-76
vs. temperature for various materials (f), 4-77
of water (T), 4-70
Thermal cross sections, of elements (T's), $8-154$ to 8-168, 8-170 to 8-171
of neutrons, definition of, 8-144, 8-169
Thermal detectors, characteristics of ( T 's), 6-114, 6-118
Thermal diff usion of gases, 3-58
Thermal dissipation function, 3-30, 3-31
Thermal effects, attenuation of sound due to, 3-79
Thermal emf, of alloys relative to platinum (T), 4-9
of elements relative to platinum (T), 4-6 to 4-7
of thermocouple materials relative to platinum (T), 4-8
Thermal energy gap, definition of, 5-157
Thermal expansion, 4-51 to 4-64
Grüneisen equation constants (T), 4-63
Thermal expansion coefficients, cubical, of elements (T), 4-56
of liquids (T), 4-62
linear, of alloys (T), 4-57 to 4-60 of elements (T's), 4-51 to 4-55 of miscellaneous materials ( T ), 4-61
Thermal losses, due to grain rotation, 3-84
due to grain scattering, 3-85
due to intergrain heat flow, 3-84
Thermal-neutron fission, and fission-product chains (T), 8-202 to 8-211
yields (T), 8-212 to 8-215
Thermal neutrons, velocity of, 8-4
Thermal noise in acoustic medium, 3-53 to 3-55
Thermal noise pressure, 3-55
Thermal waves in sound, 3-46, 3-47
Thermionic cathode rectifiers, 5-263
Thermionic emission, 5-97
Thermocouples, characteristics of (T), 6-114
emf of, chromel vs. alumel (T), 4-12 chromel vs. constantan (T), 4-12 copper vs. constantan (T), 4-11
iron vs. constantan (T), 4-11
platinum vs. platinum-rhodium ( T ), 4-10
thermal emf of, alloys relative to platinum (T), 4-8, 4-9
elements relative to platinum (T), 4-6 to 4-7
Thermodynamic properties of gases, $4-80$ to 4-117
Thermodynamics, conversion factors for gases (T), 4-81
Thermaelectric effect, 5-5, 5-97 to 5-100
Thermomagnetic effect, 5-97 to 5-100

Thermoplastic insulations and current capacity of conductor (T), 5-202 to 5-203
Thermosphere (f), 2-130
Thermoviscous medium, acoustic impedance of, 3-53
Thermoviscous number, 3-46
Thermoviscous parameters in fluids, 3-47
Thevenin's theorem, 5-81
Thin films, Faraday rotation in (T), 5-232
Thin-sheet shielding, formulas for, 5-94
Thixotropic substances, definition of, 2-81 mechanical properties of, 2-82 to 2-83
Thixotropy, coefficient of, 2-83
Thompson coefficient, 5-97 to 5-98
Thomson cross section, 8-4
Thomson effects, definition of, 5-5
Thomson scattering of photons, 8-91
Thorium, fast-neutron fission yields of (T), 8-216
Thorium-228, decay scheme of (f), 8-47
Three-phase rectifier circuits (T), 5-264 to 5-265
Threshold (in hearing), of audibility, 3-14
of damage, 3-14
of detectability, 3-14
of discomfort, 3-14, 3-126
of feeling, 3-14, 3-126
of hearing, 3-14
of pain, 3-14
of tolerance, 3-14
Threshold field at absolute zero for superconductors (T), 4-49
Thunderstorms, characteristics of ( $T$ ), 5-285, 5-288
electric field near (f), 5-287
Thyratron rectifier, 5-263
Tickle due to loud sounds, 3-14
Tidal constituents (T), 2-123, 2-124
Time in mechanics, 2-2
Time constant, in radiation, definition of, 6-119
of radiation detectors (T), 6-118
Time interval, 2-2
Time lag in voltage breakdown in air ( $f$ 's), 5-180
Time periodic fields, $5-39$
basic wave functions for, 5-45 to 5-47
and Maxwell's equations, 5-41
Tin, elastic and strength constants of (T), 2-77
Tin alloys, elastic and strength constants of (T), 2-77

Titanium cesium alum, properties of (T), 4-14, 4-19 to 4-20
$T M$ waves, plane, cylindrical, and spherical functions of, 5-45 to 5-47
Toluene, first Townsend ionization coefficient in (f), 5-169
Tone, complex, 3-14
definition of, 3-15
fundamental, 3-14
whole, 3-14
Tones, differential threshold for intensity and frequency ( T ), 3-126
Tonometer and tensile strength, 2-171
Torque, definition of, 2-6, 2-7

Torque requirements and motor selection, 5-251
Torque-speed curves, for capacitor-start, split-capacitor, and shaded-pole motors (f), 5-249
for synchronous reluctance and series universal motors (f), 5-250
for synchronous and split-phase motors (f's), 5-248
Torsional mode in transducer materials, 3-98
Torsional waves in solids, 3-75
Torus, magnetic induction of, 5-27
Total emissivity, apparent vs. true temperature (T), 6-76
of metals, unoxidized surfaces ( T ), 6-75
Total heat flux in viscous liquids, 3-30
Total mechanical energy, definition of, 2-6
Total neutron cross sections of various elements (f's), 8-131 to 8-134
Total normal emissivity of various substances (T), 6-68 to 6-71
Total reflection, definition of, 6-8
Total volume emissivity and radio astronomy, 6-121
Townsend coefficient, definition of, 7-192
first, for various substances ( f 's), $\mathbf{5 - 1 6 6}$, 5-167 to 5-169
second, for various substances ( $\mathbf{f}$ 's), 7-199 to 7-200
Transducer materials, 3-89 to 3-99
dielectric and piezoelectric constants of (f), 3-97

Young's modulus vs. temperature for (f), 3-96
Transducer network, 5-83
Transducers, and acoustic analogy, 3-177
directivity index of, 3-110, 3-112
electrostrictive, 3-92 to 3-98
magnetostrictive, 3-92 to 3-98
piezoelectric crystal, 3-89 to 3-92
piezoelectric properties of ( T ), 3-93
Transformation properties in viscous fluids, 3-27
Transformer connections (T), 5-261
Transformer cooling, 5-259
Transformers, and acoustic analogy, 3-177 operating principles of, 5-258 to 5-259 types of, 5-259 to 5-260
Transforms and material and spatial coordinates, 3-36 to 3-37
Transient cavities, 2-183, 2-186 to 2-187
Transient penetration of magnetic field into a plane solid, 5-93
Transient phenomena in earth's magnetic field, 5-293 to 5-294
Transinertor, 3-142
Transition, heat of, for elements and compounds (T), 4-131 to 4-159
Transition parameters for various substances (T), 4-34 to 4-38
Transition temperatures, of antiferroelectric crystals (T), 5-156
superconducting, for metals and alloys (T's), 5-205
for superconductors (T), 4-49

Transitions of alpha emitters, 8-55 to 8-56
Translational motion, definition of, 2-8
Transmission of light, 6-36 to 6-40
vs. wavelength for light (f), 6-47
Transmission coefficient for sound, 3-120
Transmission curves of light filter plates ( $f$ ), 6-49
Transmission lines, constants for (T), 5-48 to 5-49
conventional, 5-47, 5-51
formulas for (T), 5-50
impedances of, 5-50, 5-51
Transmission loss for sound, definition of, 3-10, 3-18
through various materials (f), 3-119, 3-120
through walls and floors (T), 3-121
Transmittance, of light, definition of, 6-36 luminous, definition of, 6-52
Transonic similarity rule for gas flow, 2-219
Transport cross section of neutrons, definition of, 8-130
Transport numbers, definition of, 5-190
for electronic conductors (T), 5-192 to 5-194
for pure and mixed ionic conductors ( T ), 5-191 to 5-194
Transport phenomena in sea water ( T ), 2-121 to 2-122
Transverse electric waves, 5-47, 5-58 to 5-59
Transverse em waves, 5-47, 5-57
Transverse isotropy, 3-75
Transverse magnetic waves, 5-58 definition of, 5-47
Transverse waves, travel time through earth (T), 2-104
velocity of, 2-102 in earth, 2-109
Traveling-wave interaction and growing waves, 5-76, 5-77
Triangulation in geodesy, 2-93
Triatomic molecules, fundamental vibrations of (T), 7-147
rotational constants and geometric parameters of, asymmetric-top ( T ), 7-153
linear (T), 7-152 to 7-153
Triboelectricity, definition of, 5-5
Triclinic crystal systems (T), 2-45, 2-47
Trigonal crystal systems (T), 2-45
Trigonal crystals, elastic constants and coefficients of (T), 2-57
Triple point, for various substances (T's), 4-34 to 4-38
of water (f) (T), 4-34, 4-35
Tristimulus computation data for standard sources (T), 6-57, 6-58
Tristimulus system of color specification, 6-53
Tristimulus values of spectrum for standard observer (T), 6-53 to 6-55
Triton, mass of (T), 7-3
range-energy relations in Ilford C-2 emulsion (f), 8-32
symbols for, 8-3

Tropopause, isotherms aloft and mean position of (f), 2-129
temperature of (f), 2-129
Trunk of body, maximum permissible exposure to ionizing radiation (T), 8-255
Tube, self-inductance of, 5-28
Tubular conductor, skin-effect formulas for, 5-91
Tungsten, properties of (T), 6-79
Tuning fork frequency, 3-104
Turbulent flow, definition of, 2-224
of gases, 2-224 to 2-228
along flat plate (f), 2-227
through pipes, 2-224
Two-body combinations, capacitance of, 5-14 to 5-15
Two-dimensional gas flow, 2-217 to 2-219
Two-dimensional rotator and wave mechanics, 7-163
Two-terminal-pair networks (f), 5-83 to 5-85
Two-winding transformers, 5-260
Tympanic membrane, dimensions of (T), 3-123

## U

Ultrasonic detector, definition of, 3-12
Ultrasonic frequency, definition of, 3-7
Ultrasonic generator, definition of, 3-12
Ultrasonics, definition of, 3-12
Underwriters' Laboratories, Inc., 5-245
Uniaxial crystals, anisotropy constants of (T), 5-222

Uniaxial minerals, index of refraction of (T), 6-12 to 6-13

United States, betatrons, list and descriptions of (T), 8-194
cyclotrons and synchrotrons, list and descriptions of (T), 8-189 to 8-191
electron synchrotrons, list and descriptions of (T), 8-196 to 8-197
electrostatic generators, list and descriptions of (T), 8-182 to 8-185
linear accelerators, list and descriptions of (T), 8-200 to 8-201
proton synchrotrons, list and descriptions of (T), 8-198 to 8-199
Units, absolute viscosity (T), 2-202
acoustical conversion (T), 3-24
of area (T), 2-16
derived, definition of, 2-14
for electrical, mechanical, and acoustical elements (T), 3-139
fundamental, definition of, 2-14
of kinematic viscosity (T), 2-203
of length (T), 2-15
photometric, 6-9 to 6-10
of volume (T), 2-16
Unstable nuclei, 8-3
Upper atmosphere, characteristics of ionospheric regions in (T), 5-284
properties of, 2-128 to 2-130
structure of (f), 2-130
Uranium, total cross section of (f), 8-134
Uranium-235, fast-neutron fission yields from (T), 8-218

Uranium-238, fast-neutron fission yields from (T), 8-217
Urea, diffusion coefficients for (T), 2-192
Urethane, transition parameters and phase diagram for (f) (T), 4-37

## V

$V$ event in meson and hyperon decay, 8-241
Vacuum diode rectifiers, 5-263
Vacuum ultraviolet, international wavelength standards in (T), 6-87
wavelength standards for (T), 6-83 to 6-86
Valence electrons, 7-16
Valences of elements (T), 7-9 to 7-12
Van de Graaf accelerators, 8-172
Van der Waals equation as virial expansion, 4-119
Vapor pressure, in flowing liquids, 2-183 of sea water, 2-120 to 2-121
Vaporization, heat of, for elements and compounds (T), 4-131 to 4-159
Vapors, fluorescence of (T), 6-112
index of refraction of ( T ), 6-21
Verdet constants for (T), 6-91
Variation method of approximation in wave mechanics, 7-167
Vector force equation in viscous liquids, 3-28
Vector potential, 5-43 to 5-44
in fluid motion, 3-40
Velocity, definition of, 2-2, 3-8
drift, of electrons in various substances

> (f's), 7-205 to 7-209
of ions in various substances (f's), 7-212 to 7-218
effective, 3-8
instantaneous, 3-4
of light, measurement of (f) (T), 6-119, 6-120
particle, 3-4
of sound, 3-61 to 3-63
in fresh and sea water (T), 3-69
in organic liquids ( T ), 3-71 to 3-73
in solids, 3-74 to 3-79
variation with temperature for air ( T ), 2-216
in water vs. dissolved salt (f), 3-70
volume, 3-7
Velocity field equations, 5-38
Velocity potential, 2-13
in gas flow, 2-217
Vening Meinesz formula in geodesy, 2-100
Verdet constants, 6-91 to 6-95
for aqueous solutions (T), 6-93
definition of, 6-91
for gases and vapors (T), 6-91
for inorganic liquids (T), 6-92
for metal-organic liquids (T), 6-92
for organic liquids (T), 6-94
for solids (T), 6-95
Vibrating piston, acoustic impedance of, 3-109 to 3-110
specific acoustic resistance of (f), 3-109

Vibrational frequency of diatomio molecules (T), 7-136 to 7-141:

Vickers hardness number, definition of, 2-78, 2-80
Virial coefficients, for air (T), 4-128
for argon (T), 4-121
for carbon monoxide (T), 4-127
definition of, 4-1:18
for deuterium (T), 4-125
for helium (T), 4-119 to 4-120
for hydrogen (T), 4-124
for krypton (T), 4-122
for neon (T), 4-120
for nitrogen (T), 4-125, 4-126
for oxygen (T), 4-126
for xenon (T), 4-122, 4-123
Virial expansions of various pressure-vol-ume-temperature equations, 4-119
Virtual temperature, definition of, 2-126 of saturated air (T), 2-127
Viscometer, calibrating oils for (T), 2-167 definition of, 2-165
Viscosity; absolute, of gases (T), 2-207
and anelasticity, 2-84 to 2-86
coefficients (T), 3-28, 3-41, 3-58, 3-60
and creep, 2-86 to 2-90
definition of, 2-13, 2-165, 2-201
of gases and gaseous mixtures, 2-201 to 2-210, 3-58
of industrial oils and lubricants (T), 2-168
kinematic, 3-58
of gases (T), 2-208
interpretation (f), 2-203
of liquids, 2-165 to 2-168
common (T), 2-166
organic (T), 2-169
and logarithmic decrement of materials (T's), 2-87
of mercury (T), 2-169
of National Bureau of Standards oils (T), 2-167
of plasticizers (T), 2-169
secondary standards of (T), 2-167
of solids, 2-84 to 2-90
and sound absorption (f), 3-65
and suspensions, 2-180 to 2-181
symbols for, 2-179
variation of, with pressure and temperature, 2-203 to 2-205
of viscometer calibrating oils (T), 2-167
of water and water vapor (T), 2-206, 2-209, 2-210
Viscosity number and sound absorption, 3-45
Viscosity specifications for aircraft-engine oils (T), 2-168
Viscosity tables, 2-206 to 2-210
Viscosity tonometer, 2-171
Viscothermal absorption and dispersion measure, 3-47 to 3-49, 3-52
Viscothermal resonance, 3-48
Viscothermal theory, 3-33
Viscous dissipation function, 3-30, 3-31
Viscous fluids, definition of, 2-13
energy relations for, 3-29 to 3-31
equations of state for, 3-29 to 3-31

Viscous fluids, motion of, 3-27 to 3-32 various equations for, 3-27 to 8-32
Viscous waves in fluids, 3-47
Visibility, definition of, 6-8
Visible persistence of various cathode-raytube phosphors (T), 6-113
Visual magnitude of stars, 6-80
Volt, definition of, $5-2$
international vs. absolute (T), 5-106
Volta effect, definition of, 5-5
Voltage breakdown, 5-178, 5-180 to 5-181 time lag in (f's), 5-180
Voltage ratings of electric motors, 5-252
Voltage standards, 5-107 to 5-109
Volume, fractional change of, with field strength (T), 5-224
units and conversion factors for (f), 2-16
Volume magnetostriction, 5-224
Volume resistivity, of ceramics (T), 5-120 to 5-121
of glasses (T), 5-122 to 5-123
Volume resonators, 3-103 to 3-104
Volume velocity, 3-8
Vorticity, in sound waves, 3-39 to 3-41
in viscous liquids, 3-29
Vorticity equation, 3-40

## W

Walls, and shock waves, 2-233 to 2-235
sound transmission loss through (T), 3-121
Walther equation, 2-165
Water, absorption of sound by, vs temperature (f), 3-69
attenuation of neutrons in (f), 8-169
cavitation in (f's), 2-184, 3-68
critical energy and radiation length for (T), 8-39
density of (T's), 2-137 to 2-139
deuterium density (T), 2-139
diffusivity of (T), 4-74
dissociation constants of (T), 5-280
effect of salt on sound velocity in (f), 3-70
maximum permissible concentration of radioisotopes in (T), 8-256
phase diagram for (f), 4-35
properties of (T), 3-69
refraction of sound, in 3-68
resistivity of, in earth (f), 5-290
reverberation in, 3-68
scattering of sound in, 3-68
sound absorption coefficients for (f), 3-71 specific volume vs. temperature for (T), 4-25
surface tension of (T), 2-172
thermal conductivity of (T), 4-70
transition parameters (f) (T), 4-34, 4-35
transmission of sound in, 3-67 to 3-68
Verdet constant for (T), 6-92
viscosity of, vs. temperature (T's), 2-201, 2-210
volume related to pressure and temperature (T), 2-152 to 2-154
"Water-boiler" reactor, 8-227

Water vapor, efficiency of electron attachment in (f), 5-174
viscosity of, vs. temperature (T's), 2-209, 2-210
Watt, definition of, 2-15
international vs. absolute (T), 5-106
Wave, definition of, 3-8
plane, definition of, 3-7
spherical, definition of, 3-7
standing, definition of, 3-7
stationary, definition of, 3-7
Wave equation, for field vectors, 5-42
in material coordinates, 3-34 to 3-36
small signal scalan, 3-34
Wave functions, for time-periodic fields, 5-45 to 5-47
in wave mechanics, 7-164 to 7-165
Wave interference, definition of, 3-8
Wave mechanics, 7-162 to 7-167
approximation methods used in, 7-165 to 7-167
common wawe functions in, 7-164 to 7-165
special cases of soluble systems, 7-162 to 7-164
Wave propagation, anistropic systems, 5-64 to 5-65
velocities of, 5-51
Wave types for rectangular waveguides (T), 5-61
Wave velocity, in earth, 2-108
at different depths (T), 2-109
longitudinal ( T ), 2-103
fundamental equations for, 2-102
for glasses (T), 3-80
for metals ( T ), 3-80
for plastics (T), 3-80
in rocks (T), 2-102
Wavefront, definition of, 3-8
Waveguide discontinnities, 5-64
Waveguides, 5-47 to 5-65
circular cylindrical (f) (T), 5-63 to 5-64
and Faraday rotation (T), 5-234
rectangular (f) (T), 5-69 to 5-62
Wavelength standards, 6-9, 6-83 to 6-86, 7-42, 7-43
international, in vacuum ultraviolet ( T ), 6-87
primary, 6-9
for vacuum ultraviolet (T), 6-83 to 6-86
Wavelengths, critieal absorption, for X-ray spectra (f), 7-130 to 7-132
in important atomic spectra, 7-42
for spectroscopic calibration (T's), 6-83
of various X-ray spectral series (T's), 7-125 to 7-129
Waves, of finite amplitude, 3-37 to 3-39
in fluids, 2-14
scattering factors in metals (T), 3-83
in solids, 3-75
in space-charge regions, 5-74 to 5-79
Weatherproof insulations and current capacity of conductors (T), 5-202 to 5-203
Weber, definition of, 5-2
Weiss molecular field, 5-101

Weston cells, 5-107 to 5-109
Width of energy state for light nuclei (f's) (T), 8-57 to 8-86

Wien's displacement law, 6-8
constant (T), 7-3
Wire of infinite length, magnetic force on, 5-33
Wood, density of (T), 2-31 to 2-33
diffusivity of (T), 4-74
Work-energy theorem, 2-5 to 2-7
Work function, definition of, 5-5 and photoelectric effect, 8-88
Wound rotor, 5-247 to 5-248
Wound-rotor motors, control and protection of, 5-255 to 5-256
induction, characteristic curves for (f), 5-247

## X

X-ray absorption in air (T), 8-253
X-ray densities of crystals (T), 3-77 to 3-78
X-ray spectra, absorption wavelengths of (T), 7-130 to 7-132
data on characteristic, 7-123 to 7-135
energy levels in (T), 7-133 to 7-135
energy-level diagrams for (f), 7-124
X-ray units, 7-123
X-ray wavelengths, of $K$-series lines (T), 7-125 to 7-126
of $L$-series lines (T), 7-127 to 7-128
of $M$-series lines (T), 7-129
$\mathbf{X}$ rays, maximum permissible exposure to (T's), 8-254, 8-255
Xenon, virial coefficients for (T), 4-122, 4-123
Xenon I, photoelectric traces of spectrum (f), 7-80 to 7-87
principal spectral lines of (T), 7-74 to 7-79
Xerogels, 2-81

## Y

$Y$ particle, 8-227, 8-240
Year, definitions of various kinds of, 2-12, 2-15
Yield point, definition of, 2-69
Yield strength, definition of, 2-55, 2-69
of metals and alloys (T), 2-61 to 2-77
Young's modulus, definition of, 2-10 of gels, 2-82
of metals and alloys ( T ), 2-61 to 2-77
of quartz (T), 2-103
of several transducer materials (f), 3-96

## Z

Zeeman displacement per gauss (T), 7-3
Zeeman effect, 6-8, 7-168 to 7-173
and astronomical magnetic fields, 5-295 to 5-297
Zinc, elastic and strength constants of (T), 2-78
Zinc alloys, density of (T), 2-30 elastic and strength constants of (T), 2-78

# American Institute of Physics Handbook  

14



[^0]:    ${ }^{1}$ Now at Yale University.
    ${ }_{2}$ Now at RAND Corporation, Santa Monica, California.

[^1]:    * The density varies with the state and previous treatment of the solids. The figures quoted may be considered reasonable limits (taken largely from "Smithsonian Physical Tables," 9th ed.).

[^2]:    * "Metals Handbook," 48th ed., American Society for Metals.

[^3]:    *" Metals Handbook," 48th ed., American Society for Metals.

[^4]:    * "Metals Handbook," 48th ed., American Society for Metals.

[^5]:    *"Metals Handbook," 48th ed., American Society for Metals.

[^6]:    See page 2-33 for footnotes.

[^7]:    * "Handbook of Chemistry and Physics," 30th ed.
    $\dagger$ Air-dry.

[^8]:    * "Handbook of Chemistry and Physics," 30th ed., p. 1282.

[^9]:    * For definition see Sec. 2a-4. All bodies cited are homogeneous rigid bodies.

[^10]:    * For definitions see Sec. 2a-5; $\boldsymbol{m}=$ mass of body. All bodies are homogeneous.

[^11]:    * Numbers in parentheses indicate references to data sources; letters identify lubricant in following

[^12]:    ${ }^{1}$ For the Miller indices notation for crystal planes or faces, see any of the books listed in the references. A simple summary is given in ref. 6. See also ref. 9, p. 24.

[^13]:    * Starred values probably are not in angstroms (A) but in $k X(1 \mathrm{kX}=1.00202 \mathrm{~A})$, since they come from a reference published prior to 1949. See Acta Cryst. 1, 46 (1948). Cubic-lattice constants have all been converted to Angstrom units.

[^14]:    * Starred values probably are not in Angstroms (A) but in $\mathrm{kX}(1 \mathrm{kX}=1.00202 \mathrm{~A}$ ), since they come from a reference published prior to 1949. See Acta Cryst. 1, 46 (1948). Cubic-lattice constants have all been converted to Angstrom units.

[^15]:    * Starred values probably are not in angstroms (A) but in $k X(1 k X=1.00202 \mathrm{~A})$, since they come from a reference published prior to 1949. See Acta Cryst. 1, 46 (1948). Cubic-lattice constants have all been converted to Angstrom units.

[^16]:    * Starred values probably are not in Angstroms (A) but in $\mathrm{kX}(1 \mathrm{kX}=1.00202 \mathrm{~A})$, since they come from a reference published prior to 1949. See Acta Cryst. 1, 46 (1948). Cubic-lattice constants have all been converted to Angstrom units.
    $\dagger$ Greiner and Breidt, J. Metals 7, 187 (1955).
    $\ddagger$ Burbank, R. D., Acta Cryst. 4, 140 (1951).
    TI Burbank, R. D., Acta Cryst. 5, 236 (1952).
    §Lipson and Rogers, Phil. Mag. 35, 544 (1944).

[^17]:    See page 2-54 for footnotes.

[^18]:    * Starred values probably are not in Angstroms (A) but in $\mathrm{kX}(1 \mathrm{kX}=1.00202 \mathrm{~A}$ ), since they come from a reference published prior to 1949 . See Acta Cryst. 1, 46 (1948). Cubic-lattice constants have been converted to Angstrom units.
    $\dagger$ Now known not to be the structure of perovskite.
    $\ddagger$ "Spinel" in this table includes "inverse spinel."

[^19]:    * References are on p. 2-58.

[^20]:    * References are on p. 2-78.

[^21]:    $\begin{array}{ll}* \text { References are on p. 2-78. } & \text { If At } 0.01 \% \text { offset. } \\ \text { \& } 10-\mathrm{mm} \text { ball, } 3,0\end{array}$
    $810-\mathrm{mm}$ ball, $3,000-\mathrm{kg}$ load.

[^22]:    1 "Metals Handbook," 1948 ed., American Society for Metals.
    ${ }^{2}$ J. G. Henderson, "Metallurgical Dictionary."
    ${ }^{3}$ Natl. Bur. Standards (U.S.) Circ. C447.
    ${ }^{4}$ D. Tabor, "The Hardness of Metals."

    * Continued on p. 2-78.

[^23]:    * References are on p. 2-78.
    $\dagger 316$-in. ball, $9.85-\mathrm{kg}$ load for 30 sec.

[^24]:    * References are on p. 2-78.

[^25]:    ＊References are on p．2－78．

[^26]:    ${ }^{1}$ D. Tabor, "The Hardness of Metals."

[^27]:    ${ }^{1}$ P. H. Hermans, Gels, in "Colloid Science," vol. II, H. R. Kruyt, ed., Elsevier Press, Inc., New York, 1949.
    ${ }^{2}$ J. D. Ferry, Physical Properties of High Polymers, in "Annual Review of Physical Chemistry," vol. 4, Annual Reviews, Inc., Stanford, Calif.
    ${ }^{3}$ P. J. Flory, "Principles of Polymer Chemistry," Cornell University Press, Ithaca, N.Y., 1953.

[^28]:    ${ }^{1}$ Flory, op. cit.
    ${ }^{2}$ Hermans, op. cit.
    ${ }^{2}$ Turner Alfrey, Jr., "Mechanical Behavior of High Polymers," Interscience Publishers, Inc., New York, 1948.
    ${ }^{4}$ Pryce-Jones, Kolloid-Z. (in English) 129, 96 (1952).
    ${ }^{5}$ H. Green, "Industrial Rheology and Rheological Structures," John Wiley \& Sons, Inc., New York, 1949.
    ${ }^{6}$ Goodeve and Whitfield, Trans. Faraday Soc. 34, 511 (1938); Goodeve, Trans. Faraday Soc. 35, 342 (1939).

[^29]:    ${ }^{1}$ C. Zener, "Elasticity and Anelasticity of Metals," University of Chicago Press, Chicago, 1948.

[^30]:    ${ }^{1}$ A. L. Kimball, "Vibration Prevention in Engineering," John Wiley \& Sons, Inc., New York, 1932.
    ${ }^{2}$ A. Gemant, "Frictional Phenomena," Chemical Publishing Company, Inc., New York, 1950.
    ${ }^{3}$ A. Gemant and W. Jackson, Phil. Mag. 23, 960 (1937).
    ${ }^{4}$ J. S. Rinehart, J. Appl. Phys. 12, 811 (1941).
    ${ }^{5}$ K. Bennewitz and H. Rötger, Z. tech. Phys. 19, 521 (1938).

[^31]:    ${ }^{1}$ A prime (') on a strain or strain rate indicates elastic deformation; a double prime (') indicates plastic or permanent strain. The total strain or strain rate, is the sum of the elastic and the plastic parts, i.e.,

    $$
    \epsilon=\epsilon^{\prime}+\epsilon^{\prime \prime} \quad \text { or } \quad u=u^{\prime}+u^{\prime \prime}
    $$

[^32]:    ${ }^{1}$ E. N. da C. Andrade, Proc. Roy. Soc. (London), ser. A, 84, 1 (1911); 90, 329 (1914).
    ${ }^{2}$ P. G. McVetty, Mech. Eng. 56, 149 (March, 1934).

[^33]:    ${ }^{1}$ W. Kauzmann, Trans. AIME 143, 57-83 (1941).
    ${ }^{2}$ Mechanical Properties of Metals and Alloys, Natl. Bur. Standards (U.S.) Circ. C447, 1943.

[^34]:    * Mechanical Properties of Metals and Alloys, Natl. Bur. Standards (U.S.) Circ. C447, 1943.
    $\dagger$ Stress for 0.005 strain in $\mathbf{1 , 0 0 0} \mathbf{~ h r}$.

[^35]:    * Taken from the "American Ephemeris and Nautical Almanac" for the year 1955, Government Printing Office, Washington, D.C., 1952.

[^36]:    * F. Birch, ed., Handbook of Physical Constants, Geol. Soc. Amer., Spec. Paper 36 (1942); L. H.; Adams, Elastic Properties of Materials of the Earth's Crust, in "Internal Constitution of the Earth," 2d ed., pp. 50-80, 1951.

[^37]:    ${ }^{1}$ F. Birch, ed., Handbook of Physical Constants, Geol. Soc. Amer., Spec. Paper 36, 70 (1942).

[^38]:    ${ }^{1}$ B. Gutenberg, Travel Times of Longitudinal Waves from Surface Foci, Proc. Natl. Acad. Sci. U.S. 39, 849 (1953).

[^39]:    ${ }^{1}$ M. Ewing and F. Press, Crustal Structure and Surface-wave Dispersion, Bull. Seis. Soc. Amer. 40, 271-280 (1950); 42, 315-325 (1952) ; 43, 137-144 (1953).
    ${ }^{2}$ J. B. Macelwane, "Introduction to Theoretical Seismology," pt. 1, pp. 156-178, 1936; B. Gutenberg, Energy Ratio of Reflected and Refracted Seismic Waves, Bull. Seis. Soc. Amer. 34, 85-102 (1944).
    ${ }^{3}$ B. Gutenberg, SV and SH, Trans. Am. Geophys. Union 33, 573-584 (1952).

[^40]:    †B. Gutenberg, SV and SH, Trans. Am. Geophys. Union 33, 573-584 (1952).

[^41]:    * K. E. Bullen, "An Introduction to the Theory of Seismology," 2d ed., pp.: 212-223, Cambridge, 1953.

[^42]:    ${ }^{1}$ C. F. Richter, An Instrumental Earthquake Magnitude Scale, Bull. Seis. Soc. Amer. 25, 1-32 (1935).
    ${ }^{2}$ B. Gutenberg and C. F. Richter, "Seismicity of the Earth," 2d ed., Princeton University Press, Princeton, N.J., 1954.
    ${ }^{3}$ B. Gutenberg and C. F. Richter, Magnitude and Energy of Earthquakes, Nature 176, 795 (1955).

    * Continued after Table 2k-17, p. 2-112.

[^43]:    * B. Gutenberg and C. F. Richter, Earthquake Magnitude, Intensity, Energy, and Acceleration, Bull. Seis. Soc. Amer. 32, 163-191 (1942). Recent values (1955) for $\log E$ using $M_{B}$ and $m=5.8$, $n=2.4 \mathrm{in}$ Eq. ( $2 \mathrm{k}-13$ ) agree within the limits of error with those in Table $2 \mathrm{k}-13$. $M, M_{s}$, and $M_{B}$ agree with each other only near $M=6$ to 7. For details see Nature 176, 795 (1955).

    Table 2k-14. Number of Shallow, Intermediate, and Deep-focus Earthquakes, \% of All Earthquakes in the Given Depth Range, and Corresponding Energy Release (a) in the Major Units of the Earth and (b) in Selected Areas

[^44]:    ${ }_{2}^{1}$ H. Benioff, Earthquakes and Rock Creep, Bull. Seis. Soc. Amer. 41, 31-62 (1951).
    ${ }^{2}$ H. Benioff, Global Strain Accumulation and Release as Revealed by Great Earthquakes, Bull. Geol. Soc. Amer. 62, 331-338 (1951).
    ${ }^{3}$ H. Benioff, Orogenesis and Deep Crustal Structure-Additional Evidence from Seismology, Bull. Geol. Soc. Amer. 65, 385-400 (1954).
    ${ }^{4}$ H. Jeffreys, "The Earth," 3d ed., p. 242, Cambridge Univ. Press, New York, 1952.
    ${ }^{5}$ B. Gutenberg, "Handbuch der Geophysik," vol. 4, p. 22, Borntraeger, Berlin, 1932.
    ${ }^{6}$ B. Gutenberg, "Internal Constitution of the Earth," 2 d ed., p. 385, Dover Publications, New York, 1951.

[^45]:    ${ }^{1}$ B. Gutenberg, "Internal Constitution of the Earth", 2d ed., p. 385, Dover Publications, New York, 1951.
    ${ }^{2}$ Op. cit., pp. 244, 247.
    ${ }^{3}$ Jeffreys, op. cit., p. 192.

[^46]:    * Wilhelm Meinardus, Die bathygraphische Kurve des Tiefseebodens und die hypsographische Kurve der Erdkruste (Tabelle 6), Ann. Hydrogr. mar. Meteor. 70, 225-244 (1942). $\dagger$ Mt. Everest.
    $\ddagger$ Pressüre according to NACA standard atmosphere. See, e.g., Smithsonian Meteorological Tables, 6th ed., Smithsonian Misc. Collections 114 (1951).

    IT Sea pressure in water at $0^{\circ} \mathrm{C}$, salinity 35 per mille, gravity at sea level being $9.8 \mathrm{~m} / \mathrm{sec}^{2}$. From Vilhelm Bjerknes, Hydrographic Tables, Carnegie Inst. Wash. Publ. 88, 1A-36A (1910).
    8 Marianas Trench, adjacent to Mariana Islands, Pacific Ocean. Soundings from H.M. Survey Ship Challenger in 1951. T. F. Gaskell, J. C. Swallow, and G. S. Ritchie, Further Notes on the Greatest Oceanic Sounding and the Topography of the Marianas Trench, Deep-sea Research 1, 60-63 (1953).
    ${ }^{1}$ For a more extensive compilation, see Ozeanographie, Landolt-Börnstein Zahlenwerte und Funktionen, 6 Auflage, 3, 426-541 (1952).

[^47]:    ${ }^{1}$ P. H. Kuenen, "Marine Geology," John Wiley \& Sons, Inc., New York, 1950; J. T. Wilson, The Development and Structure of the Crust, "The Earth as a Planet," J. P. Kuiper, The University of Chicago Press, pp. 138-214, 1954.
    ${ }^{2}$ H. U. Sverdrup, M. W. Johnson, and R. H. Fleming, "The Oceans, Their Physics, Chemistry, and General Biology," Table 33, Prentice-Hall, Inc., New York, 1942.
    ${ }^{3}$ E.g., Sverdrup et al., op. cit., p. 52.
    ${ }^{4}$ Bjørn Helland-Hansen, J. P. Jacobsen, and T. G. Thompson, Chemical Methods and Units, Publ. sci. Ass. Océanogr. phys. 9, 28 (1948).

[^48]:    ${ }^{1}$ Martin Knudsen, "Hydrographical Tables," Copenhagen, 1901; N. E. Dorsey, "Properties of Ordinary Water Substance," Reinhold Publishing Corporation, New York, 1940.
    ${ }^{2}$ Dorsey, op. cit., p. 275.
    ${ }^{3}$ Yasuo Miyake, Chemical Studies of the Western Pacific Ocean, III, Freezing Point, Osmotic Pressure, Boiling Point and Vapour Pressure of Sea Water, Bull. Chem. Soc. Japan 14, 58-62 (1939).
    ${ }^{4}$ Dorsey, op. cit., Table 267.

[^49]:    ${ }^{1}$ C. L. Utterback, T. G. Thompson, and B. D. Thomas, Refractivity-chlorinity-temperature Relationships of Ocean Waters, J. Cons. Int. Explor. Mer 9, 35-38 (1934). (Table for $0,5, \ldots, 25^{\circ} \mathrm{C}$, chlorinity $1,2, \ldots, 22$ per mille.)
    ${ }^{2}$ L. W. Tilton and J. K. Taylor, Refractive Index and Dispersion of Distilled Water for Visible Radiation, at Temperatures 0 to $60^{\circ} \mathrm{C}, J$. Research Natl. Bur. Standards 20, 419-477 (1938).
    ${ }^{3}$ Willy Bein, Physikalische und chemische Konstanten des Meerwassers, Veröffentl. Inst. Meeresk. Univ. Berlin, neue Folge, A, 28, 162 (1935).
    ${ }^{4}$ Dorsey, op. cit., Table 144.
    ${ }^{5}$ V. A. Del Grosso, The Velocity of Sound in Sea Water at Zero Depth. Naval Research Lab. Rept. 4002, $39 \mathrm{pp} ., 1952$. (Tables for range 0 to $40^{\circ} \mathrm{C}$, salinity 0 and 19 to 41 per mille.)
    ${ }^{6}$ R. T. Lagemann, L. W. Gilley, and E. G. McLeroy, The Ultrasonic Velocity, Density, and Compressibility of Supercooled $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{D}_{2} \mathrm{O}$, J. Chem. Phys. 21, 819-821 (1953).
    ${ }^{7}$ D. J. Matthews, "Tables of the Velocity of Sound in Pure Water and Sea Water for Use in Echo-sounding and Sound-ranging," 2d ed., H.D. 282, Hydrographic Department, Admiralty, London, $52 \mathrm{pp} ., 1939$. (Range -2 to $30^{\circ} \mathrm{C}$, salinity 0 to 41 per mille, depth 0 to $10,900 \mathrm{~m}$.)
    ${ }^{8}$ Susumu Kuwahara, The Velocity of Sound in Sea Water and Calculation of the Velocity for Use in Sonic Sounding, Japan. J. Astron. Geophys. 16, 1-17 (1938). (Tables for range -2 to $30^{\circ} \mathrm{C}$, salinity 30 to 40 per mille, pressure 0 to 10,000 decibars.) Kuwahara's tables are reproduced and extended in salinity down to 21 per mille by E.C. LaFond, "Processing Oceanographic Data," Table XIV, U.S. Navy Hydrographic Office, H.O. Pub. 614, 1951.

[^50]:    ${ }^{1}$ Kuwahara's values increased by $3.1 \mathrm{~m} / \mathrm{sec}$ to gain agreement with Del Grosso's.
    ${ }^{2}$ B. D. Thomas with T. G. Thompson and C. L. Utterback, The Electrical Conductivity of Sea Water, J. Cons. int. Explor. Mer 9, 28-35 (1934). (Table for 0, 5, . . , $25^{\circ} \mathrm{C}$, chlorinity 1,2 , . . . , 22 per mille.)
    ${ }^{3}$ Bein, op. cit., p. 174.
    ${ }^{4}$ C. J. J. Fox, On the Coefficients of Absorption of Nitrogen and Oxygen in Distilled Water and Sea-water, and of Atmospheric Carbonic Acid in Sea-water, Trans. Faraday Soc. 5, 68-87 (1909). (Table 1 gives nitrogen dissolved in pure water from 1 atm of pure nitrogen for $0,1, \ldots, 50^{\circ} \mathrm{C}$.)
    ${ }_{5}^{5}$ N. W. Rakestraw and V. M. Emmel, The Solubility of Nitrogen and Argon in Sea Water, J. Phys. Chem. 42, 1211-1215 (1938). (Table 2 gives nitrogen dissolved in sea water from 1 atm of saturated air for $0,1, \ldots, 28^{\circ} \mathrm{C}$, chlorinity $15,16, \ldots, 21$ per mille.) A personal communication from Dr. Rakestraw states that all values pertain to air saturated with aqueous vapor. Data in Table 1 used in present work.
    ${ }^{6}$ C. J. J. Fox, On the Coefficients of Absorption of the Atmospheric Gases in Distilled Water and Sea Water, pt. I, Nitrogen and Oxygen, Publ. Circ. Cons. int. Explor. Mer 41, 23 pp (1907). (Table 11 gives oxygen dissolved in sea water from 1 atm of dry air at -2, $-1, \ldots ., 30^{\circ} \mathrm{C}$, chlorinity $0,1, \ldots, 20$ per mille.) Table reproduced by K. Kalle, Landolt-Börnstein Zahlenwerte und Funktionen, 6 Auflage, 3, 478 (1952).
    ${ }^{7}$ Dorsey, op. cit., Table 233.

[^51]:    ${ }^{1}$ Rolf Witting, Untersuchungen zur Kenntnis der Wasserbewegungen und der Wasserumsetzung in den Finland umgebenden Meeren, I, Finnländische Hydrographischbiologische Untersuchungen 2, 173 (1908).
    ${ }^{2}$ A. B. Arons and C. F. Kientzler, Vapor Pressure of Sea-salt Solutions, Trans. Am. Geophys. Union 35, 722-728 (1954).
    ${ }^{3}$ Otto Krümmel, "Handbuch der Ozeanographie," vol. 1, p. 279, Stuttgart, 1907.
    ${ }^{4}$ V. W. Ekman, Der adiabatische Temperaturgradient im Meere, Ann. Hydrogr. mar. Meteor. 42, 340-344 (1914).

[^52]:    ${ }^{1}$ Dorsey, op. cit., Table 86.
    ${ }^{2}$ Ibid., Table 131.
    ${ }^{3}$ See, e.g., C. A. Coulson, "Waves," 6th ed., Oliver \& Boyd, Ltd., Edinburgh, 1952.

[^53]:    ${ }^{1}$ U.S. Department of the Army, Corps of Engineers, Bulletin of the Beach Erosion Board, Special Issue 2, Appendix D, 1953.

[^54]:    * See E. Glueckauf, "Compendium of Meteorology," T. F. Malone, ed., pp. 3-10, American Meteorological Society, Boston, 1951.
    $\dagger$ Variable; see T. M. Carpenter, J. Am. Chem. Soc. 59, 358 (1937); J. B. S. Haldane, Nature 1037, 575 (1936); G. S. Callendar, Quart. J. Roy. Meteorol. Soc. 66, 395 (1947).
    $\ddagger$ Variable, increasing with height.
    IT Variable, decreasing with height.

[^55]:    ${ }^{1}$ The logarithmic mean virtual temperature is required. This quantity can be approximated graphically on most standard aerological diagrams.
    ${ }^{2}$ See List, op. cit., p. 295.

[^56]:    ${ }^{1}$ The unit of altitude used in the standard atmosphere is actually a unit of geopotential, the standard geopotential meter $=0.980665 \times 10^{5} \mathrm{~cm}^{2} \mathrm{sec}^{-2}$ (see Sec. 2m-4). For engineering purposes these may be taken as meters.
    ${ }_{2} \mathrm{H}$. Wexler, Tellus 2 (4), 262-273 (November, 1950).

[^57]:    * For clouds in the absence of absorption, the albedo is a function of the drop-size distribution, liquidwater content, and cloud thickness. See S. Fritz, J. Meteorol. 11 (4), 291-300 (1954).
    $\dagger$ The reflectivity of a water surface for solar radiation is a function of the sun's elevation angle. The values given have been computed for a plane surface; however, the observed reflection from disturbed surfaces shows only small deviation from these values.
    ${ }^{1}$ F. S. Johnson, J. Meteorol. 11 (6), (December, 1954).
    ${ }^{2}$ S. Fritz, Heating and Ventilating 46 (1), (January, 1949).
    ${ }^{3}$ S. Fritz and T. H. MacDonald, Heating and Ventilating 46 (7), (July, 1949).
    ${ }^{4}$ For a more complete list, including sources, see R. J. List, op. cit., pp. 442-444.

[^58]:    * Cirrus clouds consist mainly of column-shaped ice crystals. In cirrostratus, single, more or less completely built columns (twin crystals) of about $100 \mu$ in length and $25 \mu$ in diameter predominate. In dense cirrus and cirrocumulus clouds the columns are incompletely built and occur in clusters. The length of the individual crystals in such clusters is approximately 100 to $300 \mu$ and the diameter 30 to $100 \mu$.

[^59]:    ${ }^{1}$ For the definition of diffusion coefficient ef. pp. 2-189 and 2-211.
    ${ }^{2}$ H. Lettau, "Compendium of Meteorology," T. F. Malone, ed., pp. 320-333, American Meteorological Society, Boston, 1951.
    ${ }^{3}$ O. G. Sutton, "Micrometeorology," McGraw-Hill Book Company, Inc., New York, 1953.

[^60]:    ${ }^{1}$ Now at Trinity College.
    ${ }^{2}$ A. Weissberger and W. N. Rae, "Physical Methods of Organic Chemistry," 2d ed., vol. I, pt. 1, pp. 253ff., Interscience Publishers, Inc., New York, 1949; V. Reilly and W. N. Rae, "Physico-Chemical Methods," 3d ed., vol. I, pp. 61ff., D. Van Nostrand Company, Inc., New York, 1949.
    ${ }^{3}$ W. H. Keeson, "Helium," pp. 206ff., Elsevier Press, Inc., New York, 1942; E. R. Grilly, E. F. Hammel, and S. G. Sydoriak, Phys. Rev. 75, 1103 (1949) ; E. R. Grilly, J. Am. Chem. Soc. 73, 5307 (1951).

[^61]:    ${ }^{1}$ N. Ernest Dorsey, "Properties of Ordinary Water Substance," Reinhold Publishing Corporation, New York, 1948.

[^62]:    See page 2-139 for footnotes.

[^63]:    * Stott and Bigg, "International Critical Tables," vol. 2, p. 457, McGraw-Hill Book Company, Inc., New York, 1928; Sears, Proc. Phys. Soc. (London) 26, 95 (1913).
    $\dagger$ G. W. C. Kaye and T. H. Laby, "Tables of Physical and Chemical Constants," 10th Ed., Longmans, Green \& Co., Inc., New York, 1948; Chappuis, "Traveaux et memoires du bureau international des poids et mesures," vol. 16, 1917.

[^64]:    * Kretschmer, Nowakowska, and Wieba, J. Am. Chem. Soc. 70, 1785 (1948).
    $\dagger$ N. S. Osborne, E. C. McKelvey, and H. W. Bearce, Natl. Bur. Standards (U.S.) Bull. 9, 327 (1913).
    $\ddagger$ N. S. Osborne, E. C. McKelvey, and H. W. Bearce, Natl. Bur. Standards (U.S.) Bull. 9, 327 (1913).
    © Brunel and Van Bibber, "International Critical Tables," vol. 3, p. 27, McGraw-Hill Book Company, Inc., New York, 1928.
    \& Beilstein, "Organische Chemie," vol. 1, p. 148, 1928.

[^65]:    N.B.P. $=$ normal boiling point; T.P. $=$ triple point.

    See Table $2 \mathrm{n}-\mathbf{8}$ for liquid hydrogen and liquid helium.

    * Unless specified as orthobaric (i.e., corresponding to thermodynamic equilibrium of coexistent liquid and vapor phases) or T.P.

[^66]:    ${ }^{1}$ P. W. Bridgman, "The Physics of High Pressure," George Bell \& Sons, Ltd., London, 1952; Rev. Modern Phys. 18, 1 (1946).

[^67]:    * P. W. Bridgman, J. Chem. Phys. 3, 597 (1936). These values were calculated from the original data assuming a molecular weight of 20.028 (chemical scale) for $\mathrm{D}_{2} \mathrm{O}$.

[^68]:    * P. W. Bridgman, Proc. Am. Acad. Arts Sci. 47, 345 (1911). These values were calculated from the original data assuming the density of mercury at $0^{\circ} \mathrm{C}$ and 760 mm to be $13.5955 \mathrm{~g} / \mathrm{ml}$.
    $\dagger$ L. B. Smith and F. G. Keyes, Proc. Am. Acad. Arts Sci. 69, 313 (1934). The mean compressibility coefficient $(1 / v)(\Delta v / \Delta p)$. These data were obtained from the study of the dilation of a nickel container under pressure from compressed mercury.

[^69]:    * P. W. Bridgman, "International Critical Tables," vol. 3, p. 41, McGraw-Hill Book Company, Inc., New York, 1928.
    $\dagger$ P. W. Bridgman, Proc. Am. Acad. Arts Sci. 74, 403 (1942).
    $\ddagger$ Displays subcooling at higher pressures.

[^70]:    * P. W. Bridgman, "International Critical Tables," vol. 3, p. 41, McGraw-Hill Book Company, Inc., New York, 1928.
    $\dagger$ P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 74, 399 (1942).
    $\ddagger$ Solid below this.

[^71]:    * P. W. Bridgman, "International Critical Tables," vol. 3, p. 41, McGraw-Hill Book Company, Inc., New York, 1928.
    $\dagger$ P. W. Bridgman, Proc. Am. Acad. Arts. Sci. 74, 415 (1941).
    $\ddagger$ Solid below this.

[^72]:    * P. W. Bridgman, "International Critical Tables," vol. 3, p. 41, McGraw-Hill Book Company, Inc., New York, 1928. Additional data on ether are reported in the same temperature and pressure range by Bridgman, Proc. Am. Acad. Arts Sci. 66, 218 (1931). These data were obtained by a method different from that above.

[^73]:    1 J. Inst. Petroleum Technol. 22, 21 (1936).
    ${ }^{2}$ By J. F. Swindells, J. R. Coe, Jr., and T. B. Godfrey, J. Research Natl. Bur. Standarde 48, 1 (1952).
    ${ }^{3}$ Proc. Am. Acad. Arts Sci. 61, 57 (1926).

[^74]:    These oils are not intended for use as permanent standards. They are not suitable for stockroom items and should be ordered only for immediate use in $1-1 b$ samples. The exact viscosities are listed by the NBS for each sample.: The National Bureau of Standards should be consulted about these oils.

[^75]:    * Forbes, Pope, and Everett, "Lubrication of Industrial and Marine Machinery," p. 134, John Wiley \& Sons, Inc., New York, 1954.
    $\dagger$ Lubrication 34, 48 (April, 1948).

[^76]:    * "Handbook of Chemistry and Physics," 37th ed., Chemical Rubber Publishing Company, Cleveland, 1965.

[^77]:    ${ }^{1}$ Robert E. Hungate, Plant Physiol. 9, 783 (1934).
    ${ }^{2}$ E. C. Marboe, Chem. Eng. News 27, 2198 (1949).
    ${ }^{3}$ D. A. Glaser, Phys. Rev. 87, 665 (1952).
    ${ }^{4}$ Jere Lord, University of Washington, private communication.

[^78]:    ${ }^{3}$ General references: Neil K. Adam, "The Physics and Chemistry of Surfaces," Chap. IX, Oxford University Press, New York, 1941; H. S. Taylor and S. Glasstone, "A Treatise on Physical Chemistry," D. Van Nostrand Company, Inc., New York, 1952.

[^79]:    * General reference: "Handbook of Chemistry and Physics," 37th ed., Chemical Rubber Publishing Company, Cleveland, 1955. A reference key is on pp. 2-176 and 2-178.

[^80]:    ${ }^{1}$ Rayleigh, Phil. Mag. 30, 386 (1890).

[^81]:    ${ }^{1}$ Adam, op. cit. Chap. IX.
    *Continued on p. 2-178.

[^82]:    * General reference: "Handbook of Chemistry and Physics," 37th ed., Chemical Rubber Publishing Company, Cleveland, 1955.

[^83]:    The permeability of a given type of porous substance varies widely depending upon such factors as the degree of cementation and the nature of the interconnections between pores, and so the values quoted above represent only typical values that have been reported in the literature cited in the refer-

[^84]:    ${ }^{1}$ Newton E. Harvey, W. D. McElroy, and A. H. Whiteley, On Cavity Formation in Water, J. Appl. Phys. 18, 162-172 (February, 1947).
    ${ }^{2}$ Eisenberg, loc. cit.; P. S. Epstein and M. S. Plesset, On the Stability of Gas Bubbles in Liquid-Gas Solutions, J. Chem. Phys. 18, (11), 1505-1509 (November, 1950).
    ${ }^{3}$ S. F. Crump, Determination of Critical Pressures for the Inception of Cavitation in Fresh and Sea Water as Influenced by Air Content of the Water, David Taylor Model Basin, U.S. Navy Dept. Rept. 575, October, 1949.
    ${ }^{4}$ S. F. Crump, Critical Pressures for the Inception of Cavitation in a Large-scale Numachi Nozzle as Influenced by the Air Content of the Water, David Taylor Model Basin, U.S. Navy Dept. Rept. 770, July, 1951.
    ${ }^{5}$ S. F. Crump, Determination of Critical Pressures for the Inception of Cavitation in Fresh and Sea Water as Influenced by Air Content of the Water, David Taylor Model Basin, U.S. Navy Dept. Rept. 575, October, 1949.

[^85]:    ${ }^{1}$ Hunter Rouse and John S. McNown, Cavitation and Pressure Distribution; Head Forms at Zero Angle of Yaw, State Univ. Iowa Studies Eng. Bull. 32, 1948.
    ${ }^{2}$ R. W. Kermeen, Some Observations of Cavitation on Hemispherical Head Models, Calif. Inst. Technol. Hydrodynamics Lab. Rept. E-35.1, June, 1952.
    ${ }^{3}$ Blaine R. Parkin, Scale Effects in Cavitating Flow, Calif. Inst. Technol. Hydrodynamics Lab. Rept. 21-8, July 31, 1952.

[^86]:    ${ }^{1}$ Eisenberg, loc. cit.; Parkin, loc. cit.
    ${ }^{2}$ M. S. Plesset, The Dynamics of Cavitation Bubbles, J. Appl. Mech. 16, 277-282 (September, 1949).
    ${ }^{3}$ Lord Rayleigh, On the Pressure Developed in a Liquid during the Collapse of a Spherical Cavity, Phil. Mag. 34, 94-98 (1917).

[^87]:    ${ }^{1}$ R. T. Knapp, and A. Hollander, Laboratory Investigations of the Mechanism of Cavitation, Trans. Am. Soc. Mech. Engra. 70, (5), 419-435 (July, 1948).
    ${ }^{2}$ Forrest R. Gilmore, The Growth or Collapse of a Spherical Bubble in a Viscous Compressible Liquid, Calif. Inst. Technol. Hydrodynamics Lab. Rept. 26-4, Apr. 1, 1952.
    ${ }^{3}$ Eisenberg, loc. cit.
    ${ }^{4}$ H. Reichardt, The Laws of Cavitation Bubbles at Axially Symmetrical Bodies in a Flow, Ministry Aircraft Prod., Rept. Translations 766, Aug. 15, 1946 (distributed in the United States by the Office of Naval Research, Washington, D.C.)
    ${ }^{5}$ Eisenberg, loc. cit.; Phillip Eisenberg and Hartley L. Pond, Water Tunnel Investigations of Steady State Cavities, David Taylor Model Basin, U.S. Navy Dept. Rept. 668, October, 1948.
    ${ }^{6}$ Loc. cit.
    ${ }^{7}$ Loc. cit.

[^88]:    ${ }^{1}$ Eisenberg, loc. cit.
    ${ }^{2}$ Loc. cit.
    ${ }^{3}$ Loc. cit.
    ${ }^{4}$ S. Brodetsky, Discontinuous Fluid Motion Past Circular and Elliptic Cylinders, Proc. Roy. Soc. (London), ser. A, 102, (A718), 542-553 (February, 1923).
    ${ }^{5}$ Garrett Birkhoff, "Hydrodynamics," chap. 2, Princeton University Press, Princeton, N.J., 1950.
    ${ }^{6}$ W. A. Kanstantinov, Influence of the Reynolds Number on the Separation (Cavitation) Flow, David Taylor Model Basin, U.S. Navy Dept. Translation 233, November, 1950.

[^89]:    ${ }^{1}$ Loc. cit.
    ${ }^{2}$ Loc. cit.
    ${ }^{3}$ Loc. cit.

[^90]:    References

    1. Dunlop, P. J., and R. H. Stokes: J. Am. Chem. Soc. 73, 5456 (1951). Gosting, L. J.: J. Am. Chem. Soc. 72, 4418 (1950).

    Hall, J. R., B. F. Wishaw, and R. H. Stokes: J. Am. Chem. Soc. 75, 1556 (1953).
    5. Wishaw, B. F., and R. H. Stokes: J. Am. Chem. Soc. 76, 2065 (1954).

[^91]:    Isomers are in groups. Rayleigh interference method except glycolamide.

    * L. G. Longsworth, J. Am. Chem. Soc. 75, 5705 (1953) and previously unpublished work except for glycolamide.
    $\dagger D$ strongly concentration-dependent.
    $\ddagger$ P. J. Dunlop and L. J. Gosting, J. Am. Chem. Soc. 75, 5073 (1953).

[^92]:    * F. G. Keyes, The Heat Conductivity, Viscosity, Specific Heat and Prandtl Number for Thirteen Gases, Project SQUID, MIT Tech. Rept. 37, 1952.
    $\dagger$ The viscosity of helium, argon, and hydrogen cannot be represented by Keyes' formula over the whole range of temperature with a single set of constants. The respective correlations follow:

[^93]:    * Measured by Timroth, interpolated by Vukalovitch, "Thermodynamic Properties of Water and Water Vapor," Moscow, 1951, translation by General Electric Company, Schenectady, 1954.

[^94]:    * Measured by Timroth, interpolated by Vukalovitch, "Thermodynamic Properties of Water and

[^95]:    * $\boldsymbol{p}=760 \mathrm{~mm} \mathrm{Hg}$ except where noted.

[^96]:    * The values in Tables $2 y-1$ and $2 y-2$ are taken from the National Bureau of Standards, "NACA Tables of Thermal Properties of Gases" (cf. ref. 6).

[^97]:    ${ }^{1}$ From American Standard Z24.1-1951, American Standards Association.
    3-2

[^98]:    ${ }^{1}$ American Standard Sound Level Meters for the Measurement of Noise and Other Sounds, Z24.3-1944, American Standards Association, Inc., New York. This standard is in process of revision.

[^99]:    ${ }^{1}$ See J. Am. Med. Assoc. 133, 396, 397 (Feb. 8, 1947).
    ${ }^{2}$ See notes above under Articulation and Intelligibility.

[^100]:    ${ }^{1}$ For definitions of "peak" and "maximum" see American Standard Acoustical Terminology (ASA Z24.1-1951).

[^101]:    ${ }^{1}$ For definitions of "peak" and "maximum" see American Standard Acoustical Terminology (ASA Z24.1-1951).

[^102]:    ${ }^{1}$ A definitive restatement of the classical-continuum point of view, with critical comments on more than 800 bibliographical references, has been given by C. Truesdell, The Mechanical Foundations of Elasticity and Fluid Dynamics, J. Rational Mechanics and Analysis 1, 125-300 (January and April, 1952), and Corrections and Additions J. Rational Mechanics and Analysis 2, 593-616 (July, 1953). See also Lamb, "Hydro' dynamics," 6th ed., Dover Publications, New York, 1945; Rayleigh, "Theory of Sound," 2d ed. rev., Dover Publications, New York, 1945; and L. Howarth, ed., "Modern Developments in Fluid Dynamics, vol. I, chap. III, Oxford University Press, New York, 1953.

[^103]:    ${ }^{1}$ See footnote, p. 3-27.

[^104]:    ${ }^{1}$ Eckart, Phys. Rev. 73, 68-76 (1948).

[^105]:    ${ }^{1}$ But, for a case in which F and $\nabla \rho_{0}$ cannot be neglected, see Haskell, J. Appl. Phys. 22, 157-168 (February, 1951).

[^106]:    ${ }^{1}$ Rayleigh, "Theory of Sound" vol. II, §249; Lamb, "Hydrodynamics" §813-15, 279-284.
    ${ }^{2}$ But see Courant and Friedrichs, "Supersonic Flow and Shock Waves," p. 8, Interscience Publishers, Inc., New York, 1948.

[^107]:    1 " Theory of Sound," vol. II, §§249-253.
    ${ }^{2}$ Alta Frequenza 4, 530-581 (1935).
    ${ }^{3}$ See also Sec. 2 z of this book, "Shock Waves," pp. 2-231 to 2-236.

[^108]:    ${ }^{1}$ Thuras, Jenkins, and O'Neil, J. Acoust. Soc. Am. 6, 173-180 (1935) ; Fay, J. Acoust. Soc. Am. 3, 222-241 (October, 1931); O. N. Geertsen, unpublished (ONR) Tech. Report no. III, May, 1951, U.C.L.A.
    ${ }^{2}$ Westervelt, J. Acoust. Soc. Am. 22, 319-327 (1950).

[^109]:    ${ }^{1}$ Morse, "Vibration and Sound," 2d ed., pp. 368-371, McGraw-Hill Book Company, Inc., New York, 1948.
    ${ }^{2}$ Medwin and Rudnick, J. Acoust. Soc. Am. 25, 538-540 (1953).
    ${ }^{3}$ Liebermann, Phys. Rev. 75, 1415-1422 (1949) ; Medwin, J. Acoust. Soc. Am. 26, 332-341 (1954).
    ${ }^{4}$ Eckart, Phys. Rev. 73, 68-76 (1948).
    ${ }^{5}$ Nyborg, J. Acoust. Soc. Am. 25, 938-944 (1953); Westervelt, J. Acoust. Soc. Am. 25, 60-67 and errata, 799 (1953).
    ${ }^{6}$ Nyborg, J. Acoust. Soc. Am. 25, 68-75 (1953); Doak, Proc. Roy. Soc. (London), ser. A, 226, 7-16 (1954) ; Piercy and Lamb, Proc. Roy. Soc. (London), ser. A, 226, 43-50 (1954).

[^110]:    ${ }^{1}$ Schock, Acustica 3, 181-184 (1953).
    ${ }_{2}$ The literature on radiation pressure is extensive, and much of it is confusing. The fundamentals are soundly discussed by L. Brillouin, "Les Tenseurs en mécanique et en élasticité," Dover Publications, New York, 1946. The influence of oblique incidence and of the reflection coefficient of the obstacle is discussed in detail by F. E. Borgnis, On the Forces upon Plane Obstacles Produced by Acoustic Radiation, J. Madras Inst. Technology 1 (2), pp. 171-210 (November, 1953); (3), pp. 1-33 (September, 1954); also a condensed version in Revs. Modern Phys. 25, 653-664 (1953). A suggestive review, with a critical bibliography, has been given recently by E. J. Post, J. Acoust. Soc. Am. 25, 55-60 (1953).

[^111]:    ${ }^{1}$ C. A. Truesdell, Precise Theory of the Absorption and Dispersion of Forced Plane Infinitesimal Waves According to the Navier-Stokes Equations, J. Rational Mechanics and Analysis 2, 643-741 (October, 1953).
    ${ }^{2}$ Reported by Biquard, Ann. phys. (11) 6, 195-304 (1936).
    ${ }^{3}$ E. Buckingham, Phys. Rev. 4, 345 (1914); Phil. Mag. (6) 42, 696 (1921).

[^112]:    ${ }^{1}$ Rayleigh, "Theory of Sound," vol. II, §8347; Mason, Trans. ASME 69, 359-367 (1947); Epstein and Carhart, J. Acoust. Soc. Am. 25, 553-565, [557] (1953).
    ${ }^{2}$ C. A. Truesdell, Precise Theory of the Absorption and Dispersion of Forced Plane Infinitesimal Waves According to the Navier-Stokes Equations, J. Rational Mechanics and Analysis 2, 643-741 (October, 1953).
    ${ }^{3}$ G. W. Pịerce, Proc. Am. Acad. Arts Sci. 57, 175-191 (1922).

[^113]:    ${ }^{1}$ Truesdell, J. Rational Mechanics and Analysis 2, 643-741 (October, 1953).
    ${ }_{2}$ Peshkof, J. Phys. (U.S.S.R.) 8, 381 (1944); 10, 389-398 (1946); Lane, Fairbank, and Fairbank. Phys. Rev. 71, 600-605 (1947).

[^114]:    ${ }^{4}$ C. A. Truesdell, J. Rational Mechanics and Analysis 2, 643-741 [666] (October, 1953).
    ${ }^{2}$ Einstein, Sitzber. deut. Akad. Wiss. Berlin Math.-Phys. Kl. 1920, 380-385.
    ${ }^{3}$ Liebermann, Phys. Rev. 76, 1520-1524 (1949).

[^115]:    ${ }^{1}$ Jeans, "Dynamical Theory of Gases," 2d ed., pp. 260-262, Cambridge University Press, Cambridge, England, 1916.
    ${ }^{2}$ For reviews of what has been called the "exuberant literature" dealing with relaxation and other theories of sound absorption, see Kneser, Ergeb. exakt. Naturwiss. 22, 121-185 (1949); Markham, Beyer, and Lindsay, Revs. Modern Phys. 23, 353-411 (1951); Kittel, Phys. Soc. (London), Repts. Progr. in Phys. 11, 205-247 (1948); see also, for background, W. T. Richards, Revs. Modern Phys. 11, 36-64 (1939).
    ${ }^{3}$ Greenspan, Phys. Rev. 75, 197-198 (1949) ; J. Acoust. Soc. Am. 22, 568-571 (1950).

[^116]:    ${ }^{1}$ Z. Sakadi, Proc. Phys.-Math. Soc. Japan (3) 23, 208-213 (1941); Meixner, Acustica 2, 101-109 (1952).

[^117]:    ${ }^{1}$ Jeans, "Dynamical Theory of Gases," 2d ed., pp. 381-391.

[^118]:    * "Handbook of Chemistry and Physics," 37 th ed.

[^119]:    ${ }^{1}$ See Hardy, Telfair, and Pielemeier, J. Acoust. Soc. Am. 13, 226 (1942).

[^120]:    * "Handbook of Chemistry and Physics," 37th ed., "International Critical Tables," and J. Acoust. Soc. Am.
    $\dagger$ "High frequencies" means that the acoustic period is so short that the periodic changes in the vibrational heat constant cannot remain in phase with the other periodic changes as the sound wave passes through the gas.

[^121]:    ${ }^{1}$ V. O. Knudsen, The Propagation of Sound in the Atmosphere-Attenuation and Fluctuations, J. Acoust. Soc. Am. 18, 90-96 (1946).
    ${ }^{2}$ H. O. Kneser, The Interpretation of the Anomalous Sound-absorption in Air and Oxygen in Terms of Molecular Collisions, J. Acoust. Soc. Am. 5, 122-126 (1933); A Nomogram for Determination of the Sound Absorption Coefficient in Air, Akust. Z. 5, 256-257 (1940) (in German).
    ${ }^{3}$ W. H. Pielemeier, Kneser's Sound Absorption Nomogram and Other Charts, J. Acoust. Soc. Am. 16, 273-274 (1945).

[^122]:    ${ }^{1}$ V. O. Knudsen, The Absorption of Sound in Air, in Oxygen and in Nitrogen-Effects of Humidity and Temperature, J. Acoust. Soc. Am. 5, 112-121 (1933).
    ${ }^{2}$ Lord Rayleigh, "Theory of Sound," The Maemillan Company, New York, 1929.

[^123]:    ${ }^{1}$ L. J. Sivian, High Frequency Absorption in Air and in Other Gases," J. Acoust. Soc. Am. 19, 914-916 (1947).
    ${ }^{2}$ P. E. Krasnooshkin, On Supersonic Waves in Cylindrical Tubes and the Theory of the Acoustical Interferometer, Phys. Rev. 65, 190 (1944). See also W. H. Pielemeier, Observed Classical Sound Absorption in Air, J. Acoust. Soc. Am. 17, 24-28 (1945).

[^124]:    ${ }^{1}$ Kuwahara, Hydrographic Rev. 16, 123 (1939).
    ${ }^{2}$ Weissler and Del Grosso, J. Acoust. Soc. Am. 23, 219 (1951).
    ${ }^{3}$ Fox and Rock, J. Acoust. Soc. Am. 12, 505 (1941).
    ${ }^{4}$ Measured values have, however, been reported over 1,000 times greater than these.

[^125]:    ${ }^{1}$ Willard, J. Acoust. Soc. Am. 12, 438 (1941) ; Willis, J. Acoust. Soc. Am. 19, 242 (1947);

[^126]:    * Ring, Fitzgerald, and Hurdle, Phys. Rev., 72, 87 (1947).

[^127]:    ${ }^{1}$ G. W. Willard, J. Acoust. Soc. Am. 12, 438 (1941).

[^128]:    ${ }^{1}$ Love, "Theory of Elasticity," 4th ed., p. 298, Cambridge University Press, New York, 1934.
    ${ }_{2}$ Standards on Piezoelectric Crystals, Proc. IRE 37 (12), 1378-1395 (December, 1949).

[^129]:    ${ }^{1}$ W. P. Mason, "Piezoelectric Crystals and Their Application to Ultrasonics," pp. 480481, D. Van Nostrand Company, Inc., New York, 1950.

[^130]:    $\dagger$ Recent data by W. L. Bond and H. J. McSkimin.

[^131]:    ${ }^{1}$ Mason, op. cit., p. 422.
    ${ }^{2}$ R. B. Roney, "The Influence of Metal Grain Structure on the Attenuation of Ultrasonic Waves," Thesis, California Institute of Technology, 1950.
    ${ }^{3}$ Philip M. Morse, "Vibration and Sound," 2d ed., p. 355, McGraw-Hill Book Company, Inc., New York, 1948.
    ${ }^{4}$ R. M. Bozorth, "Ferromagnetism," p. 691, D. Van Nostrand Company, Inc., New York, 1951.

[^132]:    ${ }^{1}$ R. L. Wegel and H. Walter, Physics 6, 141 (1935).
    ${ }^{2}$ P. G. Bordoni, Assorbimento degli Ultrasuoni nei solidi, Nuovo cimento 7 (2), 144 (1950).

[^133]:    Abbreviations: L.L. $=$ length longitudinal; T.L $=$ thickness longitudinal; T.S. $=$ thickness shear; ADP $=$ ammonium dihydrogen phosphate; KDP $=$ potassium dihydrogen phosphate; EDT $=$ ethylene diamine tartrate; L.H. $=$ lithium sulphate monohydrate.

[^134]:    * If higher-order terms than those considered here are used, second-order electrostrictive and magnetostrictive terms and the change in elastic constants with polarization can be taken care of. For example, see W. P. Mason, Phys. Rev. 82 (5), 715-723 (June 1, 1951).

[^135]:    *From H. Jaffe.

[^136]:    * This table is based on a density of steel of $7.83 \mathrm{~g} / \mathrm{cm}^{3}$. Density of gut is assumed to be $1.4 \mathrm{~g} / \mathrm{cm}^{3}$, about one-sixth that of steel. This is only approximate, since the density of gut varies from sample to sample, and increases markedly with humidity. Brass wire has a density of $8.7 \mathrm{~g} / \mathrm{cm}^{2}$, about 1.1 times that of steel.

[^137]:    ${ }^{1}$ E. G. Richardson, ed., "The Technical Aspects of Sound," vol. I, pp. 493-496, 578, Elsevier Publishing Company, Amsterdam, 1953; Harold Levine, J. Acoust. Soc. Am. 26, 200-211 (1954).
    ${ }^{2}$ Eric J. Irons, Phil. Mag. 9, 346-360 (1930).
    ${ }^{3}$ A. E. Bate and E. T. Wilson, Phil. Mag. 26, 752-757 (1938).

[^138]:    ${ }^{1}$ See U.S. Pats. $1,838,502$ (1931) and $1,632,751$ (1927).
    ${ }^{2}$ See U.S. Pats. 2,273,333 (1942), 2,516,725 (1950), 2,536,800 (1951), and 2,606,474 (1952).

[^139]:    ${ }^{1}$ P. M. Morse, "Vibration and Sound," chap. VIII, McGraw-Hill Book Company, Inc., New York, 1948.

[^140]:    ${ }^{1}$ C. M. Harris, "Handbook of Noise Control," chapter by H. J. Sabine, McGraw-Hill Book Company, Inc., New York, in preparation.
    ${ }^{2}$ Acoustical Materials Association, Bull. XV, New York, 1955.
    ${ }^{3}$ V. O. Knudsen and C. M. Harris, "Acoustical Designing in Architecture," John Wiley \& Sons, Inc., New York, 1950.

[^141]:    * From AMA Bull. XV, no. 2.

[^142]:    ${ }^{1}$ Knudsen and Harris, op. cit.; Sound Insulation of Wall and Floor Constructions, Building Materials and Structures, Natl. Bur. Standards (U.S.) Rept. 144 (1955).

[^143]:    * For the average values for other types of construction, and for windows and doors, also see Fig. 3j-7.

[^144]:    * S. S. Stevens, ed., "Handbook of Experimental Psychology," John Wiley \& Sons, Inc., New York, 1951.

    3k-2. Acoustic Impedance of the Ear. Reasonable agreement on measurements below $1,000 \mathrm{cps}$ has been obtained. The reference point for measurements is just
    ${ }^{1}$ This section benefited from the advice and assistance of Dr. S. S. Stevens and Mrs. Nancy C. Waugh.

[^145]:    ${ }^{a}$ F. M. Wiener and D. A. Ross, The Pressure Distribution in the Auditory Canal in a Progressive Sound Field, J. Acoust. Soc. Am. 18, 401-408 (1946).
    ${ }^{b}$ L. J. Wheeler and E. D. D. Dickson, The Determination of the Threshold of Hearing, J. Laryngol. Otol. 66, 379-395 (1952).
    c E. L. R. Corliss, R. F. Brown, Jr., M. D. Burkhard, R. P. Thompson, Jr., and J. F. Mullen, Methods for Calibration of Hearing Diagnostic Instruments, Natl. Bur. Standards (U.S.) Rept. 1470, 1-43 (1952).

[^146]:    ${ }^{1}$ R. R. Reisz, Differential Intensity Sensitivity of the Ear for Pure Tones, Phys. Rev. 31, 867-875 (1928).

[^147]:    ${ }^{1}$ G. A. Miller, Sensitivity to Changes in the Intensity of White Noise and Its Relation to Masking and Loudness, J. Acoust. Soc. Am. 19, 609-619 (1947).
    ${ }^{2}$ S. S. Stevens, ed., "Handbook of Experimental Psychology," pp. 1020-1021, John Wiley \& Sons, Inc., New York, 1951.

[^148]:    ${ }^{1}$ S. S. Stevens and J. Volkmann, The Relation of Pitch to Frequency: a Revised Scale, Am. J. Psychol. 53, 329-353 (1940).
    ${ }^{2}$ H. Wallach, Ueber die Wahrnehmung der Schallrichtung, Psychol. Forsch. 22, 238-260 (1938).
    ${ }^{3}$ H. Wallach, E. B. Newman, and M. R. Rosenzweig, The Precedence Effect in Sound Localization, Am. J. Psychol. 62, 313-336 (1949).

[^149]:    ${ }^{1}$ J. H. Shaxby and F. H. Gage, Studies in the Localization of Sound. A. The Localization of Sounds in the Median Plane: An Experimental Investigation of the Physical Processes Concerned, Med. Research Council (Brit.) Spec. Rept. Ser. no. 166 (1932), 32 pp.
    ${ }^{2}$ M. H. Abrams, S. J. Goffard, J. Miller, F. H. Sanford, and S. S. Stevens, The Effect of Microphone Position on the Intelligibility of Speech in Noise, OSRD Rept. 4023 (1944), 16 pp .
    ${ }^{3}$ H. K. Dunn and S. D. White, Statistical Measurements on Conversational Speech, -J. Acoust. Soc. Am. 11, 278-288 (1940).

[^150]:    * The power measurements do not represent the peak instantaneous power but the average over the sustained portion of the phoneme where such a period can be defined. In this case, as with the formant frequencies, the absolute values are highly variable, but intercomparisons among the various sounds are generally more reliable.
    $\dagger$ H. Fletcher, "Speech and Hearing in Communication," p. 86, D. Van Nostrand Company, Inc., New York, 1953.
    $\ddagger$ G. Dewey, " Relative Frequency of English Speech Sounds," Harvard University Press, Cambridge, Mass., 1923.

    IT E. G. Richardson, ed., "Technical Aspects of Sound," pp. 215-217, Elsevier Press, Inc., New York. 1953.

[^151]:    ${ }^{1}$ N. R. French and J. C. Steinberg, Factors Governing the Intelligibility of Speech Sounds, J. Acoust. Soc. Am. 19, 90-119 (1947).

[^152]:    ${ }^{1}$ The author wishes to acknowledge with pleasure many interesting and instructive conversations on this subject, as well as a voluminous correspondence, with Dr. Horace M. Trent.

[^153]:    See page 4-7 for footnotes.

[^154]:    * A positive sign means that in a simple thermoelectric circuit the resultant emf as given is in such a direction as to produce a current from the element to the platinum at the reference junction ( $0^{\circ} \mathrm{C}$ ).

    The values below $0^{\circ} \mathrm{C}$, in most cases, have not been determined on the same samples as the values above $0^{\circ} \mathrm{C}$.

    American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," pp. 1308-1310, Reinhold Publishing Corporation, New York, 1941.

[^155]:    * American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry,' pp. 1308-1310, Reinhold Publishing Corporation, New York, 1941.

[^156]:    * Henry Shenker, John I. Lauritzen, Jr., and Robert J. Corruccini, Reference Tables for Thermocouples, Natl. Bur. Standards (U.S.) Circ. 508 (May 7, 1951).

[^157]:    * Henry Shenker, John L. Lauritzen, Jr., and Robert J. Corruccini, Reference Tables for Thermocouples, Natl. Bur. Standards (U.S.) Circ. 508 (May 7, 1951).

[^158]:    * Robert J. Corruccini and Henry Shenker, Modified 1913 Reference Tables for Iron-Constantan Thermocouples, J. Research Natl. Bur. Standards 50, 229 (1953), RP2415.

[^159]:    * Henry Shenker, John L. Lauritzen, Jr., and Robert J. Corruccini, Reference Tables for Thermocouples, Natl. Bur. Standards (U.S.) Circ. 508, (May 7, 1951).

[^160]:    * The values below $0^{\circ} \mathrm{C}$, in most cases, were not determined on the same samples as the values above $0^{\circ} \mathrm{C}$.

    American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," p. 1312, Reinhold Publishing Corporation, New York; 1941.

[^161]:    ${ }^{1}$ A. H. Cooke, H. J. Duffus, and W. P. Wolf, Phil. Mag. 44, (7), 623 (1953).

[^162]:    ${ }^{1}$ B. Bleaney, K. D. Bowers, and D. J. E. Ingram, Proc. Phys. Soc. (London), ser. A, 64, 758 (1951).
    ${ }^{2}$ R. J. Benzie and A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 63, 201, 213 (1950).
    ${ }^{3}$ C. G. B. Garrett, Proc. Roy. Soc. (London), ser. A, 203, 375 (1950)
    ${ }^{4}$ D. de Klerk, Physica 12, 513 (1946).
    ${ }^{5}$ M. J. Steenland, D. de Klerk, J. A. Beun, and C. J. Gorter, Physica 17, 161 (1951).

[^163]:    ${ }^{1}$ B. Bleaney, R. J. Elliott, H. E. D. Scovil, and R. S. Trenam, Phil. Mag. 42, 1062 (1951).
    ${ }^{2}$ W. J. de Haas and F. K. du Pre, Physica 6, 705 (1939).
    ${ }^{3}$ D. Bijl, Physica 16, 269 (1950).
    ${ }^{4}$ R. J. Benzie and A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 63, 201, 213 (1950).
    ${ }^{5}$ H. van Dijk and W. V. Auer, Physica 9, 785 (1942).
    ${ }^{6}$ M. H. Hebb and E. M. Purcell, J. Chem. Phys. 5, 338 (1937).
    ${ }^{7}$ H. van Dijk, Physica 9, 729 (1942).
    ${ }^{8}$ H. van Dijk, Physica 12, 371 (1946).
    ${ }^{9}$ W. F. Giauque and D. P. MacDougall, Phys. Rev. 43, 768 (1933).
    ${ }^{10}$ B. Bleaney and D. J. E. Ingram, Proc. Roy. Soc. (London), ser. A, 205, 336 (1951).
    ${ }^{11}$ R. J. Benzie and A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 201, 213 (1950).
    ${ }^{12}$ A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 62, 269 (1949).
    ${ }^{13}$ M. J. Steenland, L. C. van der Marel, D. de Klerk, and C. J. Gorter, Physica 15, 906 (1949).
    ${ }^{14}$ A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London), ser. A, 205, 135 (1951). ${ }^{15}$ R. J. Benzie and A. H. Cooke, Proc. Roy. Soc. (London), ser. A, 209, 269 (1951).

[^164]:    ${ }^{1}$ N. Kurti, P. Laine, and F. Simon, Compt. rend. 204, 675 (1937).
    ${ }_{2}$ B. Bleaney and D. H. E. Ingram, Proc. Roy. Soc. (London), ser. A, 208, 143 (1951).
    ${ }^{3}$ C. G. B. Garrett, Proc. Roy. Soc. (London); ser. A, 206, 242 (1951).
    ${ }^{4}$ S. F. Malaker, Phys. Rev. 84, 133 (1951).
    ${ }^{5}$ A. H. Cooke, H. J. Duffus, and W. P. Wolf, Phil. Mag. 44, (7), 623 (1953).
    ${ }^{6}$ T. H. Geballe and W. F. Giauque, J. Amer. Chem. Soc. 74; 3513 (1952).
    ${ }^{7}$ R. J. Benzie and A. H. Cooke, Proc. Phys. Soc. (London), ser. A, 64, 124 (1951).

[^165]:    See page 4-23 for footnotes.

[^166]:    See page 4-23 for footnotes.

[^167]:    * R. Anderson, J. G. Schnizlein, R. C. Toole, and T. D. O'Brien, J. Phys. Chem. 56, 473-474 (1952).
    $\dagger$ A. C. Jenkins and C. M. Birdsall, J. Chem. Phys. 20, 1158-1161 (1952).

[^168]:    * P. W. Bridgman, Proc. Am. Acad. Arts Sci. 66, 185 (1931).

[^169]:    * P. W. Bridgman, Proc. Am. Acad. Arts Sci. 49, 1, (1913) (CS2); 66, 185 (1931) ( $n$-pentane).

[^170]:    * P. W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 187 (1949).

[^171]:    * P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 71 (1948).

[^172]:    * P. W. Bridgman, Phys. Rev. 46, 930 (1934).

[^173]:    See page 4-33 for footnotes.

[^174]:    Doklady Akad. Nauk SSSSR 91, 1083 (1953).

[^175]:    * From "Handbuch der Physik," vol. 10, p. 367.

[^176]:    * "Handbuch der Physik," vol. 10, p. 368.

[^177]:    * The coefficient of cubical expansion of an isotropic solid element may be taken as 3 times the coefficient of linear expansion within a high degree of approximation (see Table 4f-3 for measured coefficients of cubical expansion of some chemical elements).
    $\dagger$ For references, see "Smithsonian Physical Tables," 9th ed.
    $\ddagger$ The coefficients of expansion depend upon the orientation of the constituent crystals.
    IT The coefficients of expansion depend upon coarseness of grains and treatment of metal.

[^178]:    * If there is random orientation of the crystals in a polycrystalline element such as antimony or cadmium, the coefficient of linear expansion of the polycrystalline element may be computed from the following equation:

    $$
    a=\frac{1}{3}(a \|+2 a \perp)
    $$

    where $a \|$ is the coefficient of linear expansion of the crystal parallel to its axis, and. $a \perp$ is the coefficient of linear expansion of the crystal in the direction perpendicular to its axis (see Table $4 f-1$ for measured coefficients of linear expansion of polycrystalline elements).

[^179]:    See page 4-60 for footnotes.

[^180]:    * For references, see "Smithsonian Physical Tables," 9th ed.
    $\dagger$ Chemical composition is given in per cent by weight.
    $\ddagger$ Coefficient of expansion varies with composition and treatment.
    ${ }_{\top}{ }^{\circ}$ Composition of Kanthal: A: 68.5 Fe, 23.4 Cr, 6.2 Al , 1.9 Co, 0.06 C; A-1: $69.0 \mathrm{Fe}, 23.4 \mathrm{Cr}, 5.7 \mathrm{Al}$, $1.9 \mathrm{Co}, 0.06 \mathrm{C} ; \mathrm{D}: 70.9 \mathrm{Fe}, 22.6 \mathrm{Cr}, 4.5 \mathrm{Al}, 2.0 \mathrm{Co}, 0.09 \mathrm{C}$.
    § Coefficients of expansion of other SAE steels (free-cutting, manganese, nickel, nickel-chromium, molybdenum, chromium, chromium-vanadium, and chromium-nickel austenitic steels) are given in "Metals Handbook" for the American Society for Metals.

[^181]:    * For references, see "Smithsonian Physical Tables," 9th ed.
    $\dagger$ With load of 30 psi .
    $\ddagger$ Includes terms "ebonite" and "vulcanite."
    IT Various temperature ranges between 0 and $100^{\circ} \mathrm{C}$.

[^182]:    ${ }^{1}$ H. Adenstedt, Ann. Physik 26, 69 (1936).
    ${ }^{2}$ H. D. Erfling, Ann. Physik 34, 136 (1939) ; 41, 467 (1942).
    ${ }^{3}$ F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941); 61, 74 (1942).

[^183]:    * Complled from the "International Critionl Tables"; see original for more somplete data,

[^184]:    * E. Schmidt and W. Sellschopp, Forsch, Gebiete Ingenieurv. 3, 277-286 (1932).

[^185]:    * Air: $\boldsymbol{k}_{0}=5.22\left(10^{-b}\right) \mathrm{cal} \mathrm{cm}^{-1} \mathrm{sec}^{-1}{ }^{\circ} \mathrm{C}^{-1} ; 5.74$ at $22^{\circ}$; temp. coef. $=0.0029$.

[^186]:    * For references see Alexander Smakula, "Physical Properties of Optical Crystals," O.T.S. Document PB No. 111053, 1952.

[^187]:    * References for this table may be found in Alexander Smakula, "Physical Properties of Optical Crystals," O.T.S. Document PB No. 111053, 1952.

[^188]:    The diffusivity of a substance $=h^{2}=k / c \rho$, where $k$ is the thermal conductivity, $c$ the specific heat, and $\rho$ the density. The values are mostly for room temperature, about $18^{\circ} \mathrm{C}$.

[^189]:    * P. W. Bridgman, Proc. Am. Acad. Arts Sci. 59, 158 (1923).
    $\dagger 1,2,6,8,12,13$, extreme purity; $3,4,5,7,9,10,11$, very pure; 14,15 , commercial.
    $\ddagger$ Toluol freezes at $9,900 \mathrm{~kg} / \mathrm{cm}^{2}$ at $30^{\circ}$. The figure at 11,000 is for the solid.

[^190]:    * Measured by S. S. Ballard and K. A. McCarthy, Rev. Sci. Instr. 21, 905 (1950); J. Opt. Soc. Am. 41 1062 (1951).
    $\dagger$ See also J. L. Weeks and R. L. Seifert, J. Am. Ceram. Soc. 35, 15 (1952)

[^191]:    * Extrapolated.

[^192]:    * $10^{6}$ dynes $/ \mathrm{cm}^{2}$.
    ${ }^{1}$ Joseph Hilsenrath et al., Tables of Thermal Properties of Gases, Natl. Bur. Standards (U.S.) Circ. 564, 1955.

[^193]:    Density in amagats ( 1 amagat $=4.4927 \times 10^{-5}$ mole Xe per cc)

    * A. Michels et al., Physica 20, $99(1954)$.

[^194]:    Pressure range: 0 to 200 atm.

    * H. L. Johnston et al., Ohio State University Cryogenic Laboratory.

[^195]:    * Calculated with quantum corrections.

[^196]:    The following table, $4 \mathrm{j}-1$, is based upon a more extensive compilation, Natl. Bur. Standards (U.S.) Circ. 500, in which all references may be found. In this table $\mathrm{c}=$ crystal, liq $=$ liquid, $\mathrm{g}=$ gas, $\Delta H=$ heat, $\Delta S=$ entropy change, and $\Delta C_{p}=$ change of heat capacity.

[^197]:    ${ }^{a}$ Space vectors are printed in boldface. Phasors, which are complex numbers used in solving algebraically for the steady-state value of a sinusoidally time-dependent quantity, are designated by a flat $v$ over the symbol. For conjugate phasors, an inverted flat $v$ is used. The symbol $j$ is used for $(-1)^{\frac{1}{2}}$.

[^198]:    a A formula given in emu, unrationalized practical cgs or rationalized mks units, in which the capacitivity or permeability, if relevant, appears explicitly, is expressed in ags esu by replacing each symbol by the value given in the emu, practical cgs or rationalized mks column, respectively. Each line may be read as an equation relating the size of the units involved. Here $c$ is $2.9979 \times 10^{10}$. For precise work the 3 and 9 factors should be replaced by 2.9979 and 8.9874 .

[^199]:    a formula given in esu, Gaussian (starred), unrationalized practical cgs, or rationalized mks units, in which the capacitivity or permeability, if relevant, appears explicitly, is expressed in cgs emu by replacing each symbol by the value given in the esu, starred, practical cgs, or rationalized mks columns, respectively. Each line may be read as an equation relating the size of the units involved. Here $c$ is $2.9979 \times 10^{10}$.

[^200]:    ${ }^{a}$ A formula given in cgs emu, cgs esu, or Gaussian (starred) units, in which the capacitivity or permeability, if relevant, appears explicitly, may be expressed in (a) unrationalized cgs practical units or (b) rationalized mks units by replacing each symbol with its value in the emu, esu, or starred column, respectively. Each line may be read as an equation relating the size of the units involved. In precise work, replace 3 by 2.9979 and 9 by 8.9874 .

[^201]:    istatlo-field formulas.
    ${ }^{2}$ Dynamicufield equations.

    - Some nolid-ntate formulan.

[^202]:    ${ }^{1}$ For additional intersecting sphere-capacitance formulas, see Snow, J. Research Natl. Bur. Standards 43, 377-407 (1949).

[^203]:    ${ }^{1}$ For other two-strip configurations see A. E. H. Love, Proc. London Math. Soc. 22, 339-369 (1923).

[^204]:    ${ }^{1}$ For torque on general ellipsoid, see Stratton, "Electromagnetic Theory," p.215, McGraw-Hill Book Company, Inc., New York, 1941.

[^205]:    ${ }^{1}$ Six-place tables of $I_{1}$ and $I_{2}$ suitable for linear interpolation are given by C. L. Bartberger, J. Appl. Phys. 21, 1108 (1950).

[^206]:    ${ }^{1}$ Tables are given by Grover, pp. 59-65.
    ${ }^{2}$ Grover gives tables on pp. 77-87.

[^207]:    ${ }^{1}$ For tables, see Grover, pp. 66-69.
    ${ }^{2}$ For tables, see Grover, pp. 193-208.
    ${ }^{3}$ For tables, see Grover, pp. 114-118.
    ${ }^{4}$ Louis Cohen, Bull. Natl. Bur. Standards 3, 298 (1907). For practical purposes, tables given in Grover, pp. 122-141, are better.

[^208]:    ${ }^{1}$ For most purposes the tables given in Grover, pp. 142-162, are more practical than the formula.

[^209]:    ${ }^{1}$ When $\mu$ and $\epsilon_{T}$ are complex, the propagation constant $k$ and the propagation vector $k$ are multivalued. The choice of the branch of the function is determined by such physical considerations as that the sense of attenuation must correspond with the sense of propagation of the wave.
    ${ }^{2}$ See Sec. 5b-10.

[^210]:    $R, L, G, C=$ distributed resistance, inductance, conductance, capacitance $\quad z=$ distance along line from input end
    $\lambda=$ wavelength measured along line
    $l=\begin{aligned} & \text { per ungth of line }\end{aligned}$ Subscript $i$ denotes input end quantities.
    Subscript $L$ denotes load end quantities.

    * Ramo and Whinnery, "Fields and Waves in Modern Radio," 2d ed., John Wiley \& Sons, Inc., New York, 1953.

[^211]:    ${ }^{1}$ King, Mimno, and Wing, "Transmission Lines, Antennas, and Wave Guides," p. 41, McGraw-Hill Book Company, Inc., New York, 1945; D. King, "Measurements at Centimeter Wavelength," Chap. 6, D. Van Nostrand Company, Inc., New York, 1952; Montgomery, "Technique of Microwave Measurements, vol. 11, MIT Radiation Laboratory Series, McGraw-Hill Book Company, Inc., New York, 1947; "Handbook of Microwave Measurements," vols. 1, 2, Polytechnic Institute of Brooklyn, 1954.
    ${ }_{2}$ "Reference Data for Radio Engineers," 3d ed., p. 331, Federal Telephone and Radio Corp., New York.

[^212]:    ${ }^{1}$ Listed by the Armed Services Index of R.F. Transmission Lines and Fittings, Armed Services Electro Standards Agency ASEA 49-2B, Fort Monmouth, N.J.

[^213]:    Note 1. The detail requirements for the cable types listed herein are covered by Specification JAN-C-17A.

    * Dielectric materials:
    A. Stabilized polyethylene.
    $D$. Layer of synthetic rubber between two layers of conducting rubber.
    $E$. Layer of conducting rubber plus two layers of synthetic rubber.
    F. Polytetrafluoroethylene (teflon).
    $\dagger$ See individual specifications for nominal impedances and allowable tolerances. $\dagger$ This cable is mechanically and electrically the same as the one listed with it but has the improved, noncontaminating, low-temperature synthetic resin jacket. This cable is preferred for all Signal
    Corps procurements.

[^214]:    ${ }^{1}$ Ramo and Whinnery, "Fields and Waves in Modern Radio" 2d ed., pp. 305-307, John Wiley \& Sons, Inc., New York, 1953.

[^215]:    ${ }^{1}$ Jahnke and Emde, "Tables of Functions," Dover Publications, New York, 1943

[^216]:    ${ }^{1}$ Marcuvitz, "Waveguide Handbook," pp. 101-413, MIT Radiation Laboratory Series, McGraw-Hill Book Company, Inc., New York.
    ${ }_{2}$ D. Polder, On the Theory of Electromagnetic Resonance, Phil. Mag. 40, 99-115 (1949).
    ${ }^{3}$ Fox, Miller, and Weiss, Behavior and Applications of Ferrites in the Microwave Region, Bell System Tech. J. XXXIV-5 (January, 1955).

[^217]:    ${ }^{1}$ J. C. Slater, "Microwave Electronics," pp. 135-168, D. Van Nostrand Company, Inc., New York, 1950.

[^218]:    ${ }^{1}$ D. Bohm and E. P. Gross, Phys. Rev. 75, 1851, 1864 (1948).
    ${ }^{2}$ H. R. Mimno, Revs. Modern Phys. 9, 1 (1937); H. Lassen, Ann. Physik 1, 415 (1947); H. Margenau, Phys. Rev. 73, 297 (1948).
    ${ }^{3}$ Bohm and Gross, loc. cit.
    ${ }^{4}$ W. C. Hahn, Gen. Elec. Rev. 42, 258 (1939).
    ${ }^{5}$ S. Ramo, Phys. Rev. 56, 276 (1939).

[^219]:    ${ }^{1}$ J. R. Pierce, "Traveling-wave Tubes," D. Van Nostrand Company, Inc., New York, 1950; R. Kompfner, Wireless World 52, 369 (1946).
    ${ }^{2}$ J. R. Pierce and W. B. Hebenstreit, Bell System Tech. J. 28, 33 (1949); A. V. Haeff, Proc. IRE 37, 4 (1949).
    ${ }^{3}$ L. R. Walker as described by Pierce, op.cit., p. 195; C. K. Birdsall and J. R. Whinnery, J. Appl. Phys. 24, 314 (1953).
    ${ }^{4}$ J. R. Pierce, Bell System Tech. J. 30, 626 (1951); C. K. Birdsall, G. R. Brewer, and A. V. Haeff, Proc. IRE 41, 865 (1953).
    ${ }^{5}$ P. K. Tien and L. M. Field, Proc. IRE 40, 694 (1952).
    ${ }^{6}$ S. Bloom and R. W. Peter, RCA Rev. 15, 95 (1954); C. K. Birdsall, Proc. IRE 42, 1628 (1954).
    ${ }^{7}$ R. Warnecke, W. Kleen, A. Lerbs, O. Doehler, and H. Huber, Proc. IRE 38, 486 (1950).
    ${ }^{8}$ G. G. MacFarlane and H. G. Hay, Proc. Phys. Soc. (London) B63, 409 (1950); R. Warnecke, H. Huber, P. Guenard, and O. Doehler, Compt. rend. 235, 470 (1952).

[^220]:    1 "Traveling-wave Tubes," D. Van Nostrand Company, Inc., New York, 1950.
    ${ }^{2}$ C. C. Cutler, Proc. IRE 39, 914 (1951).
    ${ }^{3}$ Warnecke, Kleen, Lerbs, Doehler, and Huber, loc. cit.
    ${ }^{4}$ R. Kompfner and N. T. Williams, Proc. IRE 41, 1602 (1953).
    ${ }^{5}$ R. Warnecke, Ann. radioélec. compagn. franc. assoc. T.S.F. 9, 286 (1954).
    ${ }^{6}$ L. D. Smullin, J. Appl. Phys. 22, 1496 (1951).
    ${ }^{7}$ W. E. Benham, Phil. Mag. 5, 641 (1928); J. Muller, Hochfreq. u. Elek. 41, 156 (1933); F. B. Llewellyn, Bell System Tech. J. 14, 1632 (1935).
    ${ }^{8}$ F. B. Llewellyn and L. C. Peterson, Proc. IRE 32, 144 (1944).

[^221]:    ${ }^{1}$ F．E．Terman，＂Radio Engineers＇Handbook，＂p．198，McGraw－Hill Book Company， Inc．，New York， 1943.
    ${ }^{2}$ When the sources of energy in the network are constant－current generators，instead of constant－voltage generators，the internal impedance $Z$ is the impedance observed between the terminals when all constant－current generators are open－circuited．

[^222]:    ${ }^{1}$ C. G. Montgomery, R. H. Dicke, and E. M. Purcell, "Principles of Microwave Circuits," MIT Radiation Laboratory Series, vol. 8, p. 146, McGraw-Hill Book Company, Inc., New York, 1948.
    ${ }^{2}$ S. A. Schelkunoff, Proc. IRE 32, 83 (1944).

[^223]:    ${ }^{1}$ R. M. Foster, Bell System Tech. J. 3, 259 (1924).
    ${ }^{2}$ Schelkunoff, loc. cit.
    ${ }^{3}$ Cauer, Arch. Elektrotech. 17, 355 (1927).
    ${ }^{4}$ E. Guillemin, "Communication Networks," vol. II, John Wiley \& Sons, Inc., New York, 1935.

[^224]:    ${ }^{1}$ O. J. Zobel, Bell System Tech. J. 2, 1 (1923); T. E. Shea, " Transmission Networks and Wave Filters," D. Van Nostrand \& Company, Inc., New York, 1939.
    ${ }^{2}$ O. J. Zobel, Bell System Tech. J. 10, 284 (1931).

[^225]:    ${ }^{1}$ Cauer, Siebschaltungen V.D.I. Verlag, 1931; Cauer, Z. angew. Math. Mech. 10, 425 (1930).
    ${ }^{2}$ H. W. Bode, J. Math. Phys. 13, 275 (1934).
    ${ }^{3}$ W. W. Hansen and O. C. Lundstrum, Proc. IRE 33, 528 (1945).

[^226]:    * Values from Pender and McIlwain, "Electrical Engineers' Handbook," 4th ed., John Wiley \& Sons, Inc., New York, 1950.
    $\dagger$ Values at $0^{\circ} \mathrm{C}$; others at $20^{\circ} \mathrm{C}$.
    Formulas for a Solid Round Wire. For a solid round conductor of radius a with applied axial electric field $E_{0}$ at the surface, current density at radius $r$ is

    $$
    \check{J}_{z}=\sigma \check{E}_{0}\left[\frac{\operatorname{Ber}(\sqrt{2} r / \delta)+j \operatorname{Bei}(\sqrt{2} r / \delta)}{\operatorname{Ber}(\sqrt{2} a / \delta)+j \operatorname{Bei}(\sqrt{2} a / \delta)}\right] \quad \mathrm{amp} / \mathrm{m}^{2}
    $$

    (5b-250)

[^227]:    ${ }^{1}$ Jahnke and Emde, "Tables of Functions," Dover Publications, New York, 1945.
    ${ }^{2}$ More complete curves for the thick-walled tubular conductor are given in H. B. Dwight, A Precise Method of Calculating Skin Effect on Isolated Tubes, J. Am. Inst. Elec. Engrs. 42, 827 (August, 1923).

[^228]:    ${ }^{1}$ S. J. Haefner, Alternating Current Resistance of Rectangular Conductors, Proc. IRE 25, 434 (April, 1937).
    ${ }^{2}$ H. A. Wheeler, Skin Resistance of a Transmission-line Conductor of Polygon Cross Section, Proc. IRE 43, 805 (July, 1955).

[^229]:    ${ }^{1}$ A. M. Clogston, Bell System Tech. J. 30, 491 (1951).

[^230]:    ${ }^{1}$ Material supplied by W. R. Smythe.

[^231]:    ${ }^{1}$ See ref. I, chap. IV, also ref. II. General references, given at the end of this section, are designated by roman numerals.

[^232]:    ${ }^{1}$ F. Seitz, "Physics of Metals," p. 183, McGraw-Hill Book Company, Inc., New York, 1943.
    ${ }^{2}$ See ref. I, p. 179.
    ${ }^{3}$ A. Sommerfeld and N. H. Frank, Revs. Modern Phys. 3, 1 (1931).
    ${ }^{4}$ V. A. Johnson and K. Lark-Horovitz, Phys, Rev. 92, 226 (1953).

[^233]:    ${ }^{1}$ For a summary of thermoelectric and galvanomagnetic formulas for semiconductors, see E. H. Putley, Proc. Phys. Soc. (London) B68, 22, 35 (1955).
    ${ }^{2}$ See ref. I, p. 184.
    ${ }^{3}$ For a more extensive treatment, consult the literature. H. Jones and C. Zener, Proc. Roy. Soc. (London) 145, 268 (1934); L. David, Phys. Rev. 56, 93(1939) ; F. Seitz, Phys. Rev. 79, 372 (1950); C. Herring, Bell System Tech. J. 34, 237 (1955).

[^234]:    1 J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941).
    ${ }_{2}^{2}$ For other models, see J. Samuel Smart, Phys. Rev. 86, 968 (1952).
    ${ }^{3}$ L. Nêel, Ann. Phys. 3, 137 (1948).

[^235]:    ${ }_{1}{ }^{2}$ S. J. Barnett, Revs. Modern Phys. 7, 129 (1935).
    ${ }^{2}$ A. Einstein and W. J. de Hass, Verhandl. deut. physik. Ges. 17, 152 (1915).
    ${ }^{3}$ For metals, see Freeman J. Dyson, Phys. Rev. 98, 349 (1955).
    ${ }^{4}$ F. Bloch, Phys. Rev. 70, 460 (1946),

[^236]:    ${ }^{1}$ F. B. Silsbee, Instruments 26, 1522 (1953).
    ${ }^{2}$ Thomas, Peterson, Cooter, and Kotter, J. Research Natl. Bur. Standards 43, 291 (1949).
    ${ }^{3}$ Curtis, Driscoll, and Critchfield, J. Research Natl. Bur. Standards 28, 133 (1942).

[^237]:    ${ }^{1}$ Thomas, J. Research Natl. Bur. Standards 5, 295 (1930); 36, 107 (1946).
    ${ }^{2}$ The initial small decrease of emf usually observed in a neutral cell during the first few months after it is made is believed to result from the formation of acid in the electrolyte.
    ${ }^{3}$ These supplementary groups are kept under the same conditions as the primary group and are regularly compared with them. Thus, if a cell in the primary group should fail, another cell having a known history of constancy could be used to replace it.

[^238]:    ${ }^{1}$ Mueller and Stimson, J. Research Natl. Bur. Standards 13, 699 (1933).
    ${ }^{2}$ Saturated cells are used extensively for this purpose in Great Britain.

[^239]:    ${ }^{1}$ A list of prefixes, sponsored by the International Union of Physics and approved by the International Electrotechnical Commission (05-35-080 in IEC Publication 80), which represent the most common powers of 10 has been accepted in several countries and is used somewhat in the United States. The prefixes and the corresponding powers of 10 are given in the table below.

[^240]:    ${ }^{2}$ Moon and Sparks, J. Research Natl. Bur. Standards 41, 497 (1948).

[^241]:    ${ }^{1}$ Snow, J. Research Natl. Bur. Standards 42, 287. (1949).
    ${ }^{2}$ Koops, Philips Tech. Rev. 5, 300 (1940).
    ${ }^{3}$ Curtis, Moon, and Sparks, J. Research Natl. Bur. Standards 21, 371 (1938).
    ${ }^{4}$ Campbell, Proc. Roy. Soc. (London), ser. A, 79, 428 (1907).
    ${ }^{5}$ Thomas, Peterson, Cooter, and Kotter, J. Research Natl. Bur. Standards 43, 325 (1949).

[^242]:    ${ }_{1}$ Standard C-39 of the American Standards Association lists the types of errors and their expected magnitudes for a number of types of instruments in various accuracy classes. For more complete information on the errors of deflecting instruments a good text on instruments or measurements should be consulted.

[^243]:    * References are on p. 5-119.

[^244]:    $\dagger$ Not corrected for variations in density.
    $\ddagger$ Samples nonhomogeneous.

[^245]:    * Taken from Tables of Dielectric Materials, vol. IV, Laboratory for Insulation Research, MIT Technical Report 57.
    $\dagger$ Frequency $=1 \times 10^{9}$.

[^246]:    * These liquids are recommended as reference standards. They may be used to calibrate dielectric measuring cells.

[^247]:    ${ }_{b}$ Depressed numbers indicate uncertainty in that number.
    ${ }^{6}$ At pressure of 50 atm .
    ${ }^{c} \nu=3.6 \times 10^{8} \mathrm{cps}$.
    ${ }^{d} \epsilon=78.25\left[1-4.617\left(10^{-8}\right)(t-25)+1.22\left(10^{-5}\right)(t-25)^{2}-2.7\left(10^{-8}\right)(t-25)^{3}\right]$; average deviation $\pm 0.04 \%$.

    - $\nu=4 \times 10^{8} \mathrm{cps}$.
    ${ }^{f}{ }^{\nu}$ Liquid transition and discontinuity in variation of dielectric constant with temperature at $2.295^{\circ} \mathrm{K}$. Values reported in ref. 290 agree closely with those listed.
    ${ }^{\circ} g=84.2-0.62 t+0.0032 t^{2}$.
    ${ }^{h}$ Graphical data in the range 118 to $350^{\circ} \mathrm{C}$ show a minimum near $160^{\circ}$ and a broad maximum near $200^{\circ}$.
    ${ }_{i}{ }^{i}$ Critical temperature.
    ${ }_{i} \epsilon / \epsilon \epsilon_{0}=78.54\left[1-4.579\left(10^{-8}\right)(t-25)+1.19\left(10^{-5}\right)(t-25)^{2}-2.8\left(10^{-8}\right)(t-25)^{3}\right] ;$ average deviation $\pm 0.03 \%$.
    ${ }_{k}{ }_{\epsilon} / \epsilon_{v}=5321 / T+233.76-0.9297 T+0.001417 T^{2}-0.0000008292 T^{3}$.

[^248]:    References

    1. Bantle, W., and C. Caflisch: Helv. Phys. Acta 16, 235 (1943).
    2. Brush Laboratories Company, Cleveland, Ohio: reports.
    3. Cady, W.: "Piezoelectricity," McGraw-Hill Book Company, Inc., New York,
    4. 
    5. Caspari, M. E., and W. J. Merz: Phys. Rev. 80, 1082 (1950).
    6. Mason, W. P.: "Piezoelectric Crystals and Their Application to Ultrasonics,"
    D. Van Nostrand Company, Inc., New York, 1950.
    7. Matthias, B., W. Merz, and P. Scherrer: Helv. Phys. Acta 20, 273 (1947).
    8. Valasek, J.: Science 65, 235 (1927).
    9. Valasek, J.: Phys. Rev. 20, 639 (1922).
[^249]:    *W. Ackermann, Ann. Physik 46, 197 (1915).

[^250]:    The tabulated values are in electron volts and should be multiplied by $1.60 \times 10^{-10}$ to obtain values in mks units. The values are for single crystals and for low concentrations of donors and acceptors. In the case of chemical additives (e.g., $\mathrm{Fe}, \mathrm{Cu}$ ) in germanium which are not from column III or column $\mathbf{V}$ of the periodic table, the energy levels introduced by the additive are measured from the conduction band if the additive is labeled "donor" and from the valence band if labeled "acceptor." The deep levels usually appear as trapping levels rather than as donors or acceptors.

    * References are on p. 5-164.

[^251]:    ${ }^{1}$ Many of the values presented in the tables of Sec. 5e are subject to considerable doubt. Some of the references cited support the tabulated figures and some give contrary evidence. These references do, however, provide an entry into the original literature which should be consulted to determine the reliability of the tabulated figures.

[^252]:    * H. S. W. Massey and E. H. S. Burhop, "Electronic and Ionic Impact Phenomena," p. 635, Oxford University Press, New York, 1952.

[^253]:    Mole fraction of defects $x=x_{0} \exp (-E / 2 k T)$. Mobility $\mu=\mu_{0} \exp (-U / k T)$ in $^{2} \mathrm{~cm}^{2} \mathrm{volt}^{-1} \mathrm{sec}^{-1}$.
    Numbers are written as $6.1(-1)=6.1 \times 10^{-1}$. * indicates single crystal. References are on p. 5-195.
    a $\mu$ (cation vacancy).
    ${ }^{b}$ Assuming $\mu(\mathrm{Ag}$ vacancy $)=\mu(\mathrm{Ag}$ interstitial).
    ${ }^{c} \mu(\mathrm{Ag}$ interstitial).
    ${ }^{d} \mu$ (Ag vacancy).

    - Assuming $\mu(\mathrm{F}$ vacancy $)=\mu(\mathrm{F}$ interstitial).

[^254]:    ${ }^{1}$ Natl. Bur. Standards (U.S.) Circ. 31, p. 11.

[^255]:    * Data obtained from Natl. Bur. Standards (U.S.) Circ. 31 for 100 per cent conductivity copper at $20^{\circ} \mathrm{C}$ (see Sec. $5 \mathrm{~g}-1$ ).
    $\dagger$ American wire gage (Awg) or Brown and Sharpe gage (B\&S).
    $\ddagger$ The tables in Circ. 31 are given in "international" electrical units. Since Jan. 1, 1948, "absolute" units are standard. To obtain absolute ohms the res.
    1.000495 (see Natl. Bur. Standards (U.S.) Circ. 459).

[^256]:    * Data obtained from Natl. Bur. Standards (U.S.) Circ. 31 for 100 per cent conductivity copper at $20^{\circ} \mathrm{C}$ (see Sec. $5 \mathrm{~g}-1$ ).
    $\dagger$ American wire gage (Awg) or Brown and Sharpe (B\&S).
    $\ddagger$ The tables in Circ. 31 are given in "international" electrical units. Since Jan. 1, 1948, "absolute" units are standard. To obtain absolute ohms the resistance values in the table must be multiplied by 1.000495 (see Natl. Bur. Standards (U.S.) Circ. 459).

[^257]:    ${ }^{1}$ A. B. Pippard, Proc. Roy. Soc. (London), ser. A, 191, 385-399 (1947).
    ${ }^{2}$ G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London), ser. A, 195, 336 (1948).
    ${ }^{3}$ R. G. Chambers, Nature 165, 239-240 (1950).

    - R. B. Dingle, Physica 19, 348-364 (1953).

[^258]:    ${ }^{1}$ MoGraw-Hill Book Company, Inc., New York, 1943.
    ${ }^{2}$ F. Seitz, "The Modern Theory of Solids," p. 10, McGraw-Hill Book Company, Inc., New York, 1940.

[^259]:    * If type RH-RW rubber-insulated wire is used in wet locations, the allowable current-carrying oapaei-

[^260]:    * Taken from E. Justi, "Leitfähigkeit und Leitungsmechanismus fester Stoffe," Table 17, p. 914, Vandenhoech und Ruprecht, Göttingen, 1948.
    $\dagger$ Eutectic.
    ${ }^{1}$ P. W. Bridgman, The Resistance of 72 Elements, Alloys and Compounds to 100,000 $\mathrm{kg} / \mathrm{cm}^{2}$, Proc. Am. Acad. Arts Sci., 81, 165-251 (1952).

[^261]:    * Additional data are given in the references
    $\dagger$ P. Weiss and R. Forrer, Ann. phys. 12 (10), 279 (1929).
    $\ddagger$ M. Peschard, Compt. rend. 180, 1837 (1925); for change of saturation with ordering, see E. M. Grabbe and L. W. McKeehan, Phys. Rev. 87, 728 (1940).

    II M. Fallot, Ann. phye, (11), 806 (1086).
    (M. Fallot, Ann. phys. 10 (11), 291 (1988).

[^262]:    * V. Marian, Ann. phys. 7 (11), 459 (1937); additional data are given in the original.

[^263]:    ${ }^{*} \mathrm{Cu}_{0.6} \mathrm{Zn}_{0.6} \mathrm{Fe}_{2} \mathrm{O}_{4}, n_{B}=4.7$ [E. W. Gorter, Philips Research Repts. 9, 295, 403 (1954)]; $\mathrm{Mgo}_{0.6} \mathrm{Zn}_{0.6} \mathrm{Fe}_{2} \mathrm{O}_{4}$, $n_{B}=4.9$ [C. A. Clark and W. Sucksmith, Proc. Roy. Soc. (London), ser. A, 225, 147 (1954)].
    $\dagger$ C. Guillaud, J. phys. radium 12, 239 (1951), E. W. Gorter, Philips Research Repts. 9, 295, 403 (1954).

[^264]:    ${ }^{1}$ R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.

[^265]:    ${ }^{1}$ C. D. Owens, Proc. IRE 41, 359 (1953).

[^266]:    * See above equations. R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.
    $\dagger$ L. R. Bickford, J. Pappis, and J. L. Stull, Phys. Rev. 99, 1210 (1955).
    $\ddagger$ R. M. Bozorth and J. G. Walker, Phys. Rev. 88, 1209 (1952).
    T R. M. Bozorth, E. F. Tilden, and A. J. Williams, Phys. Rev. 99, 1788 (1955).

[^267]:    * R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.
    $\dagger$ C. M. Diethelm, Tech. Mitt. PTT 29, 281 (1951); J. Smit and H. P. J. Wijn, "Advances in Electronics and Electron Physics," vol. VI, p. 83, Academic Press, Inc., New York, 1954.
    $\ddagger$ R. Vautier, Compt. rend. 235, 417 (1952).
    II Nesbitt, E. A., J. Appl. Phys. 21, 879 (1950).

[^268]:    ${ }^{1}$ W. P. Mason, Phys. Rev. 96, 302 (1954).
    ${ }^{2}$ R. M. Bozorth, Phys. Rev. 96, 311 (1954).
    ${ }^{3}$ R. M. Bozorth, "Ferromagnetism," D. Van Nostrand Company, Inc., New York, 1951.

[^269]:    ${ }^{1}$ Compiled by J. K. Galt, Bell Telephone Laboratories.

[^270]:    ${ }^{1}$ Compiled by C. L. Hogan, Harvard University, and J. H. Rowen, Bell Telephone Laboratories.

[^271]:    ${ }^{1}$ For further information, see C. L. Hogan, Bell System Tech. J. 31, 1-30 (1952).
    ${ }^{2}$ Unpublished data by C. L. Hogan.
    ${ }^{3}$ Compiled by Emerson M. Pugh, Carnegie Institute of Technology.

[^272]:    * Calculated.
    $\dagger$ P. Keck and J. Zenneck, Hochfreq. u. Elektroakus. 40, 153 (1932); Keck, Ann. Physik 15, 903-925 (1932).
    $\ddagger$ L. Goldstein and M. Lampert, Phys. Rev. 82, 956 (1951)
    TT H. Suhl and G. L. Pearson, Phys. Rev. 92, 858 (1953).

[^273]:    a R. Benoit, Compt. rend. 231, 1216 (1950).
    ${ }^{6}$ C. Henry La Blanchetais, J. recherches (Paris) (29), 103 (1954).
    ${ }^{\circ}$ Private communication from F. K. Lotgering.
    ${ }^{d}$ A. F. Johnson and H. Grayson-Smith, Can. J. Research 28A, 229 (1950).

    - N. Elliott, J. Chem. Phys. 22, 1924 (1954).
    ${ }^{\prime}$ D. Davidson and L. A. Welo, J. Phys. Chem. 32, 1191 (1928).
    o W. Klemm and E. Krose, Z. anorg. Chem. 253, 226 (1947).
    ${ }^{n}$ A. E. Sanchez, Rev. acad. cienc. exact., fis. y nat. Madrid 34, 202 (1940).
    i J. K. Dawson, J. Chem. Soc. (London), p. 429 (1951).
    ; N. Elliott, Phys. Rev. 76, 431 (1949).

[^274]:    1 w. J. Carr and R. Smoluchowski, Phys. Rev. 83, 1240 (1951).

[^275]:    ${ }^{1}$ National Fire Protection Association, 60 Batterymarch St., Boston, Mass.
    ${ }^{2}$ National Board of Fire Underwriters, 85 John St., New York; 222 West Adams St., Chicago; Merchants Exchange Building, San Francisco
    ${ }^{3}$ Underwriters' Laboratories, Inc., 207 East Ohio St., Chicago; 161 Sixth Ave., New York; 500 Sansome St., San Francisco.
    ${ }^{4}$ NEMA standards may be obtained by writing to the National Electrical Manufacturers Association, 155 East 44th St.. New York.

[^276]:    * The maximum current and maximum voltage values given are mutually exclusive. A high-voltage tube is usually a low-current tube and vice versa.
    $\dagger$ Maximum current for a single tube. In a rectifier utilizing several tubes, the rectifier current rating may be higher.

[^277]:    ${ }^{1}$ Additional data are available in Latimer (1952). Note the special table (p. 345) for alkaline solutions. More emf values can be calculated by Eq. ( $5 \mathrm{j}-1$ ) from the extensive free-energy tables of Rossini et al. (1952).

[^278]:    * This is not equivalent to the setting of $S^{\circ}$ of $\mathrm{H}^{+}$equal to zero; cf. Klotz (1950).

[^279]:    ${ }^{1}$ Atmospheric electricity. ${ }^{3}$ Terrestrial magnetism.
    ${ }^{2}$ Terrestrial electricity. ${ }^{4}$ Stellar and galactic magnetism.
    ${ }^{5}$ L. B. Loeb, "Kinetic Theory of Gases," 2d ed., McGraw-Hill Book Company, Inc., New York, 1934.

[^280]:    * From Mitra, "The Upper Atmosphere," 2d ed., Asiatic Society, Calcutta, 1949; see pp. 290-291 for references to the theories of the origin of the various ionospheric regions.

[^281]:    * Actual lightning activity doubtful.

[^282]:    ${ }^{1}$ Sydney Chapman and Julius Bartels, "Geomagnetism," vol. 1, pp. 417-448, Oxford University Press, New York, 1940; "Terrestrial Magnetism and Electricity," pp. 270-307, McGraw-Hill Book Company, Inc., New York, 1939, pt. VIII of a series, "Physics of the Earth."

[^283]:    ${ }^{1}$ A. G. McNish, Physical Representations of the Geomagnetic Field, Trans. Am. Geophys. Union 21, 287-291 (1940).
    ${ }^{2}$ S. Chapman, Notes on Isomagnetic Charts, J. Geophys. Research 45, 433-450; 46, 7-26, 168-172; 47, 1-13, 115-146 (1940-1942).

[^284]:    ${ }^{1}$ E. C. Bullard, C. Freedman, H. Gellman, and J. Nixon, The Westward Drift of the Earth's Magnetic Field, Phil. Trans. Roy. Soc. (London), ser. A, 243, 67-92 (1950).
    ${ }^{2}$ H. G. Macht, The Representation of the Main Geomagnetic Field and of Its Secular Variation by Means of Two Eccentric Dipoles, Trans. Am. Geophys. Union 32, 555-562 (1951).
    ${ }^{3}$ W. M. Elsasser, Hydromagnetism: a Review, Amer. J. Phys. 23, 590-608 (1955) and 24, 85-110 (1956).

[^285]:    ${ }^{1}$ E. R. R. Holmberg, Rapid Periodic Fluctuations of the Geomagnetic Field, I, Monthly Notices Roy. Astron. Soc., Geophys. Suppl. 6, 467-481 (1953).
    ${ }^{2}$ M. A. Ellison, Solar Flares and Their Terrestrial Effects, Nature 163, 749-752 (1949).

[^286]:    1 W. A. Hiltner and J. Hall, Astrophys. J. 114, 241 (1951).
    ${ }^{2}$ L. Spitzer and J. W. Tukey, Astrophys. J. 114, 187 (1951).
    ${ }^{3}$ E. Fermi, Astrophys. J. 119, 1 (1954).
    ${ }^{4}$ S. Chandrasekhar and E. Fermi, Astrophys. J. 118, 113 (1953).
    ${ }^{5}$ H. W. Babcock and T. G. Cowling, Monthly Notices Roy. Astron. Soc. 113, 357 (1953).

[^287]:    * Taken from Table I of H. W. Babcock and T. G. Cowling, Monthly Notices Roy. Astron. Soc. 113,

[^288]:    ${ }^{1}$ E. Pettit, "The Sun and Stellar Radiation," in J. A. Hynek, "Astrophysics, A Topical Symposium," McGraw-Hill Book Company, Inc., New York, 1951; W. Grotrian, Z. angew. Phys. 2, 376 (1950).
    ${ }^{2}$ J. W. Broxon, Phys. Rev. 62, 508 (1942).
    ${ }^{3}$ G. E. Hale and S. B. Nicholson, Astrophys. J. 62, 270 (1925).
    ${ }^{4}$ H. W. Babcock and T. G. Cowling, Monthly Notices Roy. Astron. Soc. 113, 357 (1953).

[^289]:    ${ }^{1}$ Definitions, standards, and units presented in this section follow for the most part the wording used in the "Handbook of Chemistry and Physics," 36th ed., pp. 2480, 27872841, 2880-2881, Chemical Rubber Publishing Company, 1954-1955.

[^290]:    *"Smithsonian Physical Tables," 1954, Table 546. Selected by Edgar T. Wherry from a private compilation of Esper S. Larsen, of the U.S. Geological Survey.

[^291]:    *"Smithsonian Physical Tables," 1954, Table 548. The values are arranged in the order of increasing $\beta$ index of refraction and are for the sodium $D$ line except where noted. Selected by Edgar T. Wherry from private compilation of Esper S. Larsen, of the U.S. Geological Survey.

[^292]:    " "Smithsonian Physical Tables," 1954, Table 551.

[^293]:    * H. C. Raine, Plastic Glasses, Proc. London Conf. Opt. Instruments 1950, 243.

[^294]:    * "Smithsonian Physical Tables," 1954, Table 554. A formula was given by Biot and Arago expressing the dependence of the index of refraction of a gas on pressure and temperature. More recent experiments confirm their conclusions. The formula is $n_{t}-1=\frac{n_{0}-1}{1+a t} \frac{p}{760}$, where $n_{t}$ is the index of refraction for temperature $t$, $n_{0}$ for temperature zero, $a$ the coefficient of expansion of the gas with temperature, and $p$ the pressure of the gas in millimeters of mercury.

[^295]:    * "Smithsonian Physical Tables," 1954, Table 552.

[^296]:    * Compiled from data of Martens, Paschen, and others.

    Transmittance $10 \%$ for 1.0 mm thickness.

[^297]:    * Compiled by J. C. Baker, Harvard College Observatory.

[^298]:    * J. L. Michaelson, in "Handbook of Chemistry and Physics," 36th ed., p. 2689, Chemical Rubber Publishing Company, 1954-1955.

[^299]:    1. Hagen and Rubens. 2. Nutting, Jones, and Elliot. . 3. J. E. Bock. 4. Frank Benford. 5. J. L. Michaelson.

    * "Handbook of Chemistry and Physics," 36th ed., p. 2689, Chemical Rubber Publishing Company,
    1954-1955.

[^300]:    ${ }^{1}$ Sheet polarizers.
    ${ }^{2}$ Interference filters.

[^301]:    * Data supplied by Polaroid Corporation, Cambridge, Massachusetts. For each type of polarizer, the transmittance values near the ends of the useful range depend on the type of supporting sheet or lamination used. Also some variation from lot to lot must be expected.

[^302]:    ${ }^{1}$ Bruce H. Billings, Narrow Band Optical Interference Filters, Phot. Eng. 2, 2, 45-52 (1951).
    ${ }^{2}$ O. Struve, Sky and Telescope, January, 1951.

[^303]:    ${ }^{1}$ H. D. Polster, J. Opt. Soc. Am. 39, 1054A (1949).

[^304]:    ${ }^{1}$ B. Lyot, Compt. rend. 197, 1593 (1933).
    ${ }^{2}$ Y. Oehman, Nature 141, 291 (1938).
    ${ }^{3}$ E. Pettit, Publs. Astron. Soc. Pacific 53 (309), 305 (October, 1940); J. W. Evans, Ciencia e invest. (Buenos Aires) III (9), 365 (1947); J. Opt. Soc. Am. 39 (3), 229-242 (1949).

[^305]:    ${ }^{1}$ B. Billings, J. Opt. Soc. Am. 37, 738 (1947).

[^306]:    *Optical Society of America, "The Science of Color," p. 309, Thomas Y. Crowell Company, New

[^307]:    * D. B. Judd, J. Opt. Soc. Am. 23, 359 (1933).

[^308]:    ${ }^{1}$ Pp. 268-271, Thomas Y. Crowell Company, New York, 1953.

[^309]:    * MIT, "Handbook of Colorimetry," Technology Press, Cambridge, 1936.
    $\dagger$ Abbreviated set for use with only slightly selective samples. In such cases, multiply factors by 3.

[^310]:    ${ }^{1}$ Op. cit., pp. 278-291.

[^311]:    * Entries marked with star in this and in Tables 6f-10 and 6f-11 are for chromaticities beyond domain of real colors, but are useful for interpolations. Approximate values for intermediate chromaticities may be determined by tabular interpolation. Contour diagrams permitting more accurate interpolation were published by MacAdam, J. Opt. Soc. Am. 33, 18-26 (1943).

[^312]:    * See footnote following Table 6f-9. Contour diagrams permitting more accurate interpolation than Table $6 \mathrm{f}-11$ were published in "The Science of Color,". pp. 310, 311, Thomas Y. Crowell Company, New York, 1953.

[^313]:    The emissivity of oxides and oxidized metals depends to a large extent upon the roughness of the surface. In general, higher values of emissivity are obtained on the rougher surfaces.

    * American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," p. 1313, Reinhold Publishing Corporation, New York, 1941.

[^314]:    * American Institute of Physics, "Temperature, Its Measurement and Control in Science and Industry," Reinhold Publishing Corporation, New York, 1941.

[^315]:    The rating listed is the commercial rating of the lamp. The absolute efficiency is the equivalent power in light flux ( $0.556 \mu$ ) per watt input. Efficiency is given in lumens per watt input.

    * "Handbook of Chemistry and Physics," 36th ed., pp. 2480, 2481, Chemical Rubber Publishing Company, 1954-1955. Compiled by J. M. Smith and C. E. Weitz.

[^316]:    * "Handbook of Chemistry and Physics," 36th ed., pp. 2481, 2482, Chemical Rubber Publishing Company, 1954-1955. Compiled by J. M. Smith and C. E. Weitz.
    $\dagger$ To convert Lamberts to foot-Lamberts multiply by 929 . To convert Lamberts to candles/cm ${ }^{2}$ divide by $\pi$.

[^317]:    * "Handbook of Chemistry and Physics," 36th ed., p. 2691, Chemical Publishing Company, 19541955. Roeser and Wensel, National Bureau of Standards.

[^318]:    ${ }^{1}$ This section presents calibration standards in the ultraviolet and infrared wavelength regions. For corresponding data on visible wavelengths, see Sec. 7.

[^319]:    ${ }^{a}$ K. R. More and C. A. Rieke, Phys. Rev. 50, 1054 (1936).
    ${ }^{b}$ J. C. Boyce and C. A. Rieke, Phys. Rev. 47, 653 (1935).
    ${ }^{-}$R. L. Weber and W. W. Watson, J. Opt. Soc. Am. 26, 307 (1936).
    ${ }^{d}$ A. Fowler, Proc. Roy. Soc. (London), ser. A, 123, 422 (1929).
    e A. G. Shenstone, Phys. Rev. 72, 411 (1947).
    ${ }^{\prime}$ E. Ekefors, Z. Physik 63, 437 (1930).
    ○ B. Edlén, Z. Physik 98, 561 (1936); Nature 159, 129 (1947).
    ${ }^{\wedge}$ F. Paschen and G. Kruger, Ann. phys. 7, 1 (1930).

[^320]:    ${ }^{1}$ These are supplied by Eastman Kodak Company. See their List No. 39, 1954, of Organic Chemicals, from which the present $n d$ 's are taken.
    ${ }^{2}$ L. Ingersoll, J. Opt. Soc. Am. 6, 663 (1922).

[^321]:    ${ }^{a}$ F. Pockels, Abhandl. Ges Wiss. Göttingen, Math. Physik. Kl. 39, 1 (1893).
    ${ }^{b}$ N. Gunther, Ann. phys. 13, 783 (1932).
    ${ }^{\circ}$ C. Schramm, Ann. phys. 25, 309 (1936).
    ${ }^{d}$ C. D. West, J. Opt. Soc. Am. 43, 335 (1953).
    ${ }^{\bullet}$ R. O'B. Carpenter, J. Opt. Soc. Am. 40, 225 (1950).
    $f$ H. Jaffe, Brush Electronics Co., privately communicated.

    - Kara, Mathieu, and Poulet, J. phys. radium 15, 60-61 (1954).

[^322]:    $\dagger$ Corrections for values of the specific rotation for concentration are given in the last column. $c$ indicates concentration in grams per 100 ml of solution; $d$ indicates the concentration in grams per 100 g of solution.

[^323]:    * H. M. O'Bryan, J. Opt. Soc. Am. 26, 122 (1936).

[^324]:    * "Handbook of Chemistry and Physics," 36th ed., pp. 2684, 2685, 2686, Chemical Rubber Publishing Company, 1954-1955.
    $\dagger$ Coblentz, 1906, 1911.
    $\ddagger$ Coblentz, Emerson, 1917.
    ๆ Coblentz, Natl. Bur. Standards (U.S.) Bull. 379 (1920).

[^325]:    * "Handbook of Chemistry and Physics," 36th ed., p. 2736, Chemical Rubber Publishing Company, 1954-1955.

[^326]:    * "Handbook of Chemistry and Physics," 36th ed., p. 2736, Chemical Rubber Publishing Company, 1954-1955.

[^327]:    * Made by Baird-Atomic, Inc.
    $\ddagger$ Made by Eppley Laboratory, Inc.

[^328]:    * Scientific American.

[^329]:    ${ }^{1}$ The reader is advised to consult the current literature in this new and rapidly advancing field.

[^330]:    ${ }^{1}$ R. H. Brown and C. Hazard, Phil. Mag. 43, 137 (.1952).
    ${ }^{2}$ R. Minkowski and J. E. Greenstein, Astrophys. J. 119, 238 (1954).
    ${ }^{3}$ Useful conversion factors from Aller, "Astrophysics," p. ix, The Ronald Press Company, New York, 1954. Parsec: $3.084 \times 10^{18} \mathrm{~cm} / \mathrm{pc} ; 3.258$ light-year/pc. Light-year: $9.463 \times 10^{17} \mathrm{~cm} /$ light-year; $\log \mathrm{cm} /$ light-year $=17.97603$. Astronomical unit $=\mathbf{1 . 4 9 6 7 4}$ $\times 10^{8} \mathrm{~km}$.
    ${ }_{5}^{4}$ Westerhout and Oort, Bull. Astron. Inst. Netherlands 11, 323 (1951).
    ${ }^{5}$ R. Minkowski and J. E. Greenstein, Astrophys. J. 119, 238 (1954).

[^331]:    * J. P. Wittke and R. H. Dicke, Phys. Rev. 96, 530 (1954).
    $\dagger$ P. Kusch, Phys. Rev. 100, 1188 (1955).

[^332]:    ${ }_{2}{ }_{2}$ J. H. Piddington and H. C. Minnett, Australian J. Sci. Research, ser. A, 4, 131 (1951).
    ${ }^{2}$ R. Payne-Scott and A. G. Little, Australian J. Sci. Research, ser. A, 5, 32 (1952); H. W. Dodson, E. R. Hedeman, and L. Owren, Astrophys. J. 118, 169 (1953).
    ${ }_{4} 3$ J. G. Bolton and K. C. Westfold, Australian J. Sci. Research, ser. A, 3, 19 (1950).
    ${ }^{4}$ R. H. Brown and C. Hazard, Phil. Mag. 44, 939 (1953).
    ${ }^{5}$ W. Baade and R. Minkowski, Astrophys. J. 119, 230 (1954).
    ${ }^{6}$ J. H. Piddington, Monthly Notices Roy. Astron. Soc. 111, 45 (1951).
    ${ }^{7}$ H. C. Van de Hulst, Observatory 73, 129 (1953) ; J. H. Oort, Naturwiss. 41, 73 (1954); H. C. Van de Hulst, C. A. Muller, and J. H. Oort, Bull. Astron. Inst. Netherlands 12, 117 (1954).
    ${ }^{8}$ Ibid.
    ${ }^{9}$ F. J. Ken, J. V. Hindman, and B. J. Robinson, Australian J. Phys. 7, 297 (1954).
    ${ }^{10}$ J. P. Hagen and E. F. McClain, Astrophys. J. 120, 368 (1954).

[^333]:    * Where no contributor is specifically mentioned, the material of this section has been compiled by the editor. Dr. W. F. Meggers has reviewed some of the material and valuable corrections are due to him.

[^334]:    Note that to convert to wavelength it is necessary to divide the conversion factor by the number of the other units and vice versa.

[^335]:    * Alternate or obsolete names. An order number between parentheses means that the discovery of the element was an error and another element has taken its place. Element symbols between parentheses have been given up.

[^336]:    * Much of the material in this table was taken from Henry D. Hubbard and William F. Meggers "Key to Periodic Chart of the Atoms," 1950. Courtesy of W. M. Welch Manufacturing Company, Chicago.
    $\dagger$ E. Wichers, J. Am. Chem. Soc. 76, 2033 (1954).
    $\ddagger$ Radioactive isotope.
    T For more recent values of abundances see H. E. Suess and H. C. Urey, Revs. Modern Phys. 28, 53 (1956).

[^337]:    ${ }^{1}$ For conversion from wave numbers into electron volts or vice versa, see Table 7a-2.

[^338]:    ${ }^{a}$ Data taken from current literature. Use has been made of Moore, "Atomic Energy Levels," vols. I and II, and "Smithsonian Physical Tables," 9th ed.
    ${ }^{6}$ Normal state of ion-3d ${ }^{4}$.

    - Normal state of ion-3d ${ }^{8}$.
    ${ }^{d}$ Normal state of ion-3d .
    - Normal state of ion-5d2.
    ${ }^{\prime}$ Normal state of ion-4f26s.
    - Normal state of ion-4f56s.
    ${ }^{n}$ Structure of closed shells [Xe] $4 \int^{145 d}{ }^{10}$.

[^339]:    * Compiled by Meggers, J. Opt. Soc. Am. 41, 143 (1951). The present state (1950) is indicated by letters A to E where A means a fairly complete analysis and E that only a few lines have been classified, with B, C, and D intermediate between the two extremes. The small letters preceding the capitals present the state of affairs in 1932 .

[^340]:    ${ }^{1}$ Taken from White and Eliason, Phys. Rev. 44, 753 (1933).

[^341]:    $\dagger$ Scribner, Bozman, Meggers, J. Research Natl. Bur. Standards 46, 85 (1951) (Pm).
    $\ddagger$ Scribner, Bozman, Meggers, J. Research Natl. Bur. Standards 45, 476 (1950).
    \|IFred, Tomkins, J. Opt. Soc. Am. 39, 357 (1949).

[^342]:    ${ }^{1}$ See the references at the end of Sec. 7.

[^343]:    ${ }^{1}$ For specifications of the lamp, see Procès verbaux comité int. poids et mesures 17 (2), 91 (1935).
    ${ }^{2}$ Meggers, J. Opt. Soc. Am. 38, 7 (1948).

[^344]:    ${ }^{1}$ Trans. Intern. Astron. Union 5, 86 (1935).

[^345]:    ${ }^{1}$ Russell and Moore, Trans. Am. Phil. Soc. 34, 113 (1944) ; Trans. Intern. Astron. Union 3, 186 (1928); 4, 234 (1932); 6, 79 (1938); 5, 84 (1935); 7, 146 (1949); 6, 80 (1938).
    ${ }^{2}$ Russell and Moore, loc. cit. (1944).
    ${ }^{3}$ J. Blackie and T. A. Littlefield, Proc. Roy. Soc. (London) 234, 398 (1956).
    ${ }^{4}$ Stanley and G. H. Dieke, J. Opt. Soc. Am. 45, 280 (1955).
    ${ }^{5}$ Williams and Middleton, Proc. Roy. Soc. (London) 172, 159 (1939).
    ${ }^{6}$ Moore, "Atomic Energy Levels," vol. II, 1952.
    7 Unpublished measurements by Crosswhite.
    ${ }^{8}$ Dissertation, The Johns Hopkins University, and unpublished data.
    ${ }^{9}$ King, Astrophys. J. 95, 78 (1942).
    ${ }^{10}$ King and King, Astrophys. J. 87, 24 (1938).
    ${ }^{11}$ Carter, Phys. Rev. 76, 962 (1949).

[^346]:    ${ }^{1}$ Schüler and Keyston, Z. Physik 72, 423 (1931) ; Schüler and Jones, Z. Physik 79, 631 (1932); Burns and Adams, J. Opt. Soc. Am. 42, 716 (1952).

[^347]:    ${ }^{1}$ Blank, J. Opt. Soc. Am. 40, 345 (1950).
    ${ }^{2}$ Burns, Adams, and Longwell, J. Opt. Soc. Am. 40, 339 (1950); Burns and Adams, J. Opt. Soc. Am. 42, 56 (1952); 42, 716 (1952).

[^348]:    * From "Smithsonian Physical Tables," and A. H. Compton, and S. K., Allison, "X-rays in Theory and Experiment," D. Van Nostrand Company, Inc., Princeton, N. J., 1935.

[^349]:    * From "Smithsonian Physical Tables."

[^350]:    * E. Lindberg, Dissertation, Uppsala, 1931. From "Smithsonian Physical Tables."

[^351]:    * From Landolt Börnstein, "Zahlenwerte und Funktionen," 6 th ed., vol. I, Springer-Verlag OHG, Berlin, 1950. For literature references, see this volume.

    Values given in heavy type represent the most reliable measurements.

[^352]:    

[^353]:    ${ }^{1}$ G. Herzberg, "Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules," D. Van Nostrand Company, Inc., Princeton, N.J., 1945.
    ${ }^{2}$ R. S. Mulliken, JCP 23, 1997 (1955).

[^354]:    ${ }^{1}$ Loc. cit.
    ${ }^{2}$ W. Gordy, W. V. Smith, and R. F. Trambarulo, "Microwave Spectroscopy," John Wiley \& Sons, Inc., New York, 1953.
    ${ }^{3}$ P. Kisliuk and G. H. Townes, Natl. Bur. Standards (U.S.) Circ. 518.
    4 J. W. M. DuMond and E. R Cohen, Phys. Rev. 82, 555 (1951).
    ${ }^{5}$ J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).

[^355]:    Values in parentheses are uncertain or have been obtained indirectly.

    * Observed in liquid only.
    $\dagger$ Fermi resonance between $\nu_{1}$ and $2 \nu_{2}$.
    $\ddagger$ Observed in crystal only.

[^356]:    Values in parentheses are uncertain or have been obtained indirectly.

    * Observed in liquid only.
    $\dagger$ Fermi resonance between $\nu_{1}$ and $2 \nu_{2}$.
    $\ddagger$ Observed in crystal only.

[^357]:    ${ }^{1}$ J. W. M. DuMond and E. R. Cohen, Revs. Modern Phys. 25, 691 (1953).

[^358]:    ${ }^{1}$ Mayer, Phys. Rev. 78, 16 (1950).
    ${ }^{2}$ Klinkenberg, Revs. Modern Phys. 24, 63 (1952).

[^359]:    ${ }^{1}$ Aten, Science 110, 260 (1949).
    ${ }^{2}$ Phys. Rev. 92, 210 (1953).
    ${ }^{3}$ Bohr and Wheeler, loc. cit.
    ${ }^{4}$ Kohman, Phys. Rev. 73, 16 (1948).
    ${ }^{5}$ Kohman, Phys. Rev. 76, 448 (1949).
    ${ }^{6}$ Physica 18, 83 (1952).

[^360]:    ${ }^{1}$ The author is indebted to Prof. Emilio Segrè for valuable guidance in the preparation of this article.
    ${ }^{2}$ For experimental values of $I$, see R. Mather and E. Segrè, Phys. Rev. 81, 191 (1951).

[^361]:    * W. Aron, UCRL-1325.

[^362]:    * W, Aron, UCRL-1325.

[^363]:    * Allison and Warshaw, Revs. Modern Phys. 25, 779 (1953).

[^364]:    ${ }^{1}$ For a discussion of the methods of determining the range from an absorption curve, see L. Katz and A. S. Penfold, Revs. Modern Phys. 24, 28 (1952).
    ${ }^{2}$ The data used in this compilation were originally drawn from many primary sources. Figures 8d-1 to 8d-4 are from R. A. Glass, S. G. Thompson, and G. T. Seaborg, Nuclear Thermodynamics of the Heaviest Elements, J. Inorganic and Nuclear Chem. 1, 3 (1955). Figures 8d-5 to 8d-11 and Table 8d-2 are from Perlman and Asaro, Alpha Radioactivity, Ann. Rev. Nuclear Sci. IV (1954).

[^365]:    * By F. N. D. Kurie.

[^366]:    * Numerous levels are reported to exist in the range $E_{x}=13.4$ to 19.0 Mev , but their locations are not well established.

[^367]:    * Twelve or more levels may exist in the range 10.6 to 12.8 Mev .

[^368]:    ${ }^{1}$ Montalbetti, Katz, and Goldberg, Phys. Rev. 91, 659 (1953).

[^369]:    ${ }^{1}$ R. R. Wilson, Phys. Rev. 90, 720 (1953).

[^370]:    ${ }^{1}$ Advances in Phys. 2, 141 (1953). Additional pertinent information was derived from the nuclear data tables published in Nuclear Science Abstracts (through June, 1954); J. M. Hollander, I. Perlman, and G. T. Seaborg, Revs. Modern Phys. 25, 469 (1953); F. Ajzenberg and T. Lauritsen, Revs. Modern Phys. 24, 321 (1952) ; P. M. Endt and J. C. Kluyver, Revs. Modern Phys. 26, 95 (1954); J. R. Huizenga and L. B. Magnusson, ANL-5158 (November, 1953) ; N. S. Wall, Phys. Rev. 96, 664 (1954).

[^371]:    ${ }^{2}$ W. E. Lamb, Jr., Phys. Rev. 55, 190 (1939).

[^372]:    $* 1 \mathrm{mv}=10^{-8} \mathrm{ev}$.
    $\dagger$ The resonances have not been identified with a particular isotope, and as a result the neutron widths listed are actually $a \Gamma_{n}$ and $a \Gamma_{n}{ }^{0}$, where $a$ is the abundance of the isotope.

[^373]:    * $1 \mathrm{mv}=10^{-3} \mathrm{ev}$.

[^374]:    * $1 \mathrm{mv}=10^{-3} \mathrm{ev}$.

[^375]:    * Pile neutrons.

[^376]:    * Pile neutrons.

[^377]:    *See J. Appl. Phys. 18, 811.

[^378]:    *AGS = alternating gradient synchrotron.
    $\dagger$ Here $n=-(r / H)(d H / d r)$, in obvious nomenclature.
    $\ddagger$ Information not available.

[^379]:    ${ }^{1}$ Revs. Modern Phys. 25, 469 (1953).
    ${ }^{2}$ National Nuclear Energy Series, McGraw-Hill Book Company, Inc., New York, 1951.

[^380]:    ${ }^{1}$ Published by McGraw-Hill Book Company, Inc., New York.

[^381]:    See page 8-215 for footnotes.

[^382]:    See page 8-215 for footnotes.

[^383]:    * Best value (S8).
    $\dagger$ Assumed value for relative yields in the given reference.
    $\ddagger$ Gd values in I 2 too high because of Pu contribution (S8).

[^384]:    * Assumed value for relative yields in the given reference.

[^385]:    * For such element heading a column the yields due to photofission by the indicated gamma radiation are shown opposite the mass numbers in the first column.
    $\dagger$ Yields of $9.7-\mathrm{hr} \mathrm{Sr}^{91}$ and $2.7-\mathrm{hr} \mathrm{Sr}^{91}$ assumed equal for analysis of complex-decay curve.
    $\ddagger$ Assumed value for relative yields in the given reference.
    \& Reference value to give integral of the yield-mass curve of $200 \%$.

[^386]:    ${ }^{1}$ Note that the kappa is a particular type of $K$ meson. Hence the specific symbol $\kappa$ should not be confused with the generic designation $K$.

[^387]:    ${ }^{1}$ From 20 to $\sim 260 \mathrm{Mev}$, in the first seven examples of $K_{e 3}$.

[^388]:    * Final approximate equation correct from 0.07 to 2.0 Mev within about 12 per cent, assuming $W_{a}=34 \mathrm{ev}$ per ion pair.
    $\dagger$ Final approximate equation correct from 0.01 to 2.0 Mev within about 6 per cent.
    $\ddagger$ Final approximate equation correct from 1.0 to 6.0 Mev within about 6 per cent.
    IT W. S. Snyder and J. L. Powell, Absorption of $\gamma$-Rays, Report ORNL-421, March, 1950; G. R. White, X-ray Attenuation Coefficients from 10 kev to 100 Mev , Natl. Bur. Standards (U.S.) Rept. 1003, May 13, 1952.

[^389]:    ${ }^{1}$ G. H. Peebles, Gamma-ray Transmission through Finite Slabs, Rand Report R-240, Dec. 1, 1952.
    ${ }^{2}$ For detailed information on maximum permissible exposure levels, refer to "Maximum Permissible Amounts of Radioisotopes in the Human Body and Maximum Permissible Concentrations in Air and Water," Handbook 52, Superintendent of Documents, Washington, D.C.; Report of the International Commission on Radiological Protection, Supplement No. 6, Dec. 1, 1956; and K. Z. Morgan and M. R. Ford, Developments in Internal Dose Determinations, Nucleonics 12 (6), 32-39 (June, 1954).

[^390]:    * Values obtained by W. S. Snyder, Calculations for Maximum Permissible Exposure to Thermal Neutrons, Nucleonics 6, 2, 46-50 (February, 1950); also W. S. Snyder and J. Neufeld, Calculated Depth Dose Curves in Tissue for Broad Beams of Fast Neutrons, Brit. J. Radiol. 28, 342 (1955).

[^391]:    Refer to NBS Handbooks 52 and 59 for additional information. and 20 for heavy ions ( $0, \mathrm{C}, \mathrm{C}$, and N ). The values in parentheses apply to persons after andy assumed - The minimum thickness of the epidermis is taken as 0.07 mm .
    © The average depths of the ovaries, testes, hionds, forearms, feet, and ankles.
    
    Nucleonics 6 , neutrons are determined by pattern of distribur-value layer less than 1 mm of soft tissue. Does not apply to neutron radiation. Physics Society meeting in Ann Arbor, Mich., June, 1956. Vath Dose Curves for Broad Beams of Fast Neutrons, Brit. J. Radiol. 28, 342 (1955) and Papal Neutrons, Smaller value applies to ovaries at 7 cm depth and larger value to testes at 1 cm depth.

[^392]:    * These values are reduced by a factor of 10 when applied to minors and to large populations. These are general values which are considered to be safe for limited exposure (for a few months) to any mixture of radioisotopes. The reader is referred to various publications for values of maximum permissible concentrations of specific radioisotopes. See "Maximum Permissible Amounts of Radioisotopes in the Human Body and Maximum Permissible Concentrations in Air and Water," Handbook 52, Superintendent of Documents, Washington, D.C.; Report of the International Commission on Radiological Protection, Supplement No. 6, Dec. 1, 1954; and K. Z. Morgan and M. R. Ford, Developments in Internal Dose Determination, Nucleonics 12 (6), 32-39 (June, 1954).

